ML20206N608
ML20206N608 | |
Person / Time | |
---|---|
Issue date: | 05/11/1999 |
From: | Wichman K NRC (Affiliation Not Assigned) |
To: | Bateman W NRC (Affiliation Not Assigned) |
Shared Package | |
ML20206N613 | List: |
References | |
NUDOCS 9905180009 | |
Download: ML20206N608 (28) | |
Text
m a ne af -
p UNITED STATES 4' ;f S NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 30506 4 001
% # May 11, 1999 MEMORANDUM TO: William H. Bateman, Chief Materials and Chemical Engineering Branch Division of Engineering FROM: QKeith R. Wichman, Chief
/ Component Integrity Section Materials and Chemical Engineering Branch Division of Engineering
SUBJECT:
MEETING
SUMMARY
FOR THE MAY 6,1999 MEETING WITH THE l ELECTRIC POWER RESEARCH INSTITUTE AND STRUCTURES TECHNOLOGY, INCORPORATED REGARDING THE PRESSURE TEMPERATURE LIMITS CALCULATOR SOFTWARE
~
On Thursday, May 6,1999, members of the U.S. Nuclear Regulatory Commission (NRC) staff participated in a public meeting with representatives from the Electric Power Research Institute (EPRI) and Structures Technology, Incorporated (STI) at the NRC's Headquarters located in Rockville, MD, to discuss the pressure-temperature (P-T) limits calculator software developed by STI for EPRI. Attachment 1 is a list of the meeting participants. Attachments 2 and 3 are EPRl's and STl's presentation view graphs, respectively.
The representative from EPRI opened the meeting by introducing the programmers from STI .
who developed the P-T Calculator software for Windows @. The software was developed to assist utility engineers in the determination and analysis of reactor pressure vessel heatup and cooldown P-T limits curves. The program was designed to operate both under Windows 95@,
and Windows NT@ environments. In addition, the program was developed under the quality assurance requirements of Appendix B to Title 10 of the Code of FederalRegulations (10 CFR .
50, Appendix B). !
The presenters demonstrated the software's functionality to the staff. There are separate modules for calculating pressurized water reactor and boiling water reactor P-T limit curves.
The program also incorporates recent American Society of Mechanical Engineers Code 1 changes. For example, the use of the lower bound on static fracture toughness, Kc, is an option in the P-T calculator. Another option is the Raju-Newman method of determining the etress intensity factor (the current method is from Welding research Council Bulletin 175). ( ,
i q0085 d myy pg ,
CONTACT: 'Andrea D. Lee, EMCB/DE -h1bb1 415-2735 y op L wl h-9905100009 990511 PDR TOPRP EXIEPRI C PDR l .. .. ... ...
.. _ _ _ _j
F (4
= William H. Bateman One comment from the staff was that there should be some method (i.e. the user's manual) to ,
alert licensee's that they need to generate more than one curve to ensure that the heatup and l cooldown curves that they submit are bounding. For example the isothermal curve, which is normally bounding, .hould be generated and compared to the heatup or cooldown rate curve.
Another comment for the programmers to consider was that the Raju-Newman method assumes a radius-to-thickness ratio of 10, and some BWRs have a ratio of 20.
EPRI has not asked for NRC approval of the P-T Calculator at this time, however, members of the staff have been provided with copies of the software and the user's manual in order to become familiar with the program.
Attachments: 1. Meeting Participants
- 2. View Graphs from EPRI
- 3. View Graphs from STI 4
4 e
1 4
4
/
'[ MEETING PARTICIPANTS MEETING TO DISCUSS INDUSTRY MAINTENANCE OF THE REACTOR VESSEL INTEGRITY DATABASE MARCH 18,1998 NAME ORGANIZATION PHONE /E-Mall K. Wmhman NRC/NRR/EMCB (301) 415-2757/knw@nrc. gov M. Mitchell NRC/NRR/EMCB (301) 415-3303/mam4@nrc. gov A. Lee NRC/NRRIEMCB (301) 415-2735/adwi@nrc. gov F.G. Yuan Structures Technology, Inc. (919) 821-5950/ yuan @eos.ncsu.edu J. Medoff NRC/NRR/EMCB (301) 415-2715/jxm@nrc. gov G. Cal Structures Technology, Inc. (919) 821-5950 S. Rosinski Electric Power Research (704) 547-6123/strosins@epri.com Institute H.F. Conrad NRC/NRR/EMCB (301) 415-2703/hfc@nrc. gov C. Santos NRC/RES/MEB (301) 415-6004/cas3@nrc. gov
. A. Hiser NRC/NRR/EMCB (301) 415-1034/alhi@nrc. gov M. Khanna NRC/NRR/EMCB (301) 415-2150/mkk@nrc. gov B. Elliot NRC/NRRIEMCB (301) 415-2709/bje@nrc. gov S.Sheng NRC/NRR/EMCB (301) 415-2708/sheng@nrc. gov C.Hsu RES (301) 415-6356/cchi@nrc. gov ATTACHMENT 1 l
P-T Calculator for Windows
% Version 3.0 Stan T. Rosinski Electric Power Research Instituto Gary X. Cal .ao Fuh-Gwo Yuan l
mucnatsrecant.oegac May 6,1999 k Agenda a introduction to PT Calculator for Windows, Version 3.0 m Theoreticalbackground a Software demonstration i a Questions and Answers
-l I
5 b N S .
i
\
1 J
PT Calculator for Windows Version 3.0 h General Features a Generate heatup/cooldown curves for BWRs/PWRs
- Separate PWR analysis module (includes LTOP)
- Separate BWR analysis module (also indudes head and nozzle regions) m Evaluate plant-specific thermal transients using ASME Section XI Appendix E (E-1200) a Software developed under 10CFR50 Appendix B Quality Assurance Program a Comprehensive user's manual
- Separate sections to support " methodology report" under GL 96-03 l
l h Key Features e incorporates recent ASME Code changes
- Raju-Newman stress intensity solutions
- Code Case N-588; flaw orientation
- Code Case N-626; Km to Ke a Multiple ' data set' concept
- Sensitivity studies ;
- Whatif scenarios i
a Extensive graphing capabilities a Data exporting capabilities l
. m Comprehensive summary report generation 2
I
'd.
k Benefits a Consistent application of ASME Section XI Appendix G approach a User flexibirity for plant-specific application a Developed under 10CFR50 Appendix B QA Program
- Verification and validation performed to demonstrate consistency with attemate approaches
- Ensures utility submittals are based on most recent software version
- Once methodology accepted, only review of inputs necessary r='
j
==,-m== l i
)
6 6
.i !
i i
.S.,
M e
'EET m 1R l.... .....................J_L.
1 1
^~
g WR M
.)_...... ' i .s G a.!L. . '. ~ilh* !' ' l . . ~ l 8
4
4 6
F S
b 4
F ew i.-asus -- .
i i
1 "Pm;
- ey.-
-.,..4 - A , sa . ' . , . - ^
9 4
1 l
l
c ,
.g
+
i P-T Calculator for Windows version 3.0
% Theoretical Background j U. S. Nuclear Regulatory Commission l
Stan T. Rosinski j Electric Power Research Institute 1
- i Gary X. Cal w Fuh-Gwo Yuan l srawrvassrecauxoenac j May 6,1999 g;
OE! P-T Calculator Functionality it -J -, m...
, . .. y a d fl m PWRs and BWRs
'j ,3 m Appendix G P-Tcurve f - Axial and circumferential flaws
!l
- Kni and Kci criteria P } m Minimum temperature requirements l 9 m LTOPanalysis l
l u Appendix E curve (Article E-1200) u I
ri j
i 1
l
!! 1 i
Y '
l
's i
_ _ . . _ -- _ . . . . . _ . = ,.m J.- -_ _
l j f u Basis and analysis procedures 1 a Determination of RTuor
! j, u Stress intensity factor evaluation i a Primary stresses f a Thermal stresses (secondary stresses)
[ [ m Heat transfer analysis
[ 'j u Pressure-temperature requirements li l m Miscellaneous topics E 'J ,
- g. <
i h ,
ii h
i.i._.. ._ Basis and Analysis Procedures r -' S - - ~ --- ~-- - '- - -- - '
lj !
E g, I. e CVN curve due toirradiation v
,; ; a Fracture toughness curve due to irradiation
( ;< u Effects ofirradiation on P-T curves
}) .'g a Postulated flaw geometry and size
{ u Fracture criteria for vessel materials (LEFM) p 1 m Comparison between K ai and K ie E a Typical P-T curve calculation procedure L i u .
1 1 4 ;
li -
2
e e'
di l
. g- #
CVN Curve due to Irradiation e .
t T'DlTi5 S T W Mk?2 NIN'QQf{,[
i"mM ~; 3'[t 1 fi!..O d UO3*9U[N2 p .)s,r.vn$e/8 D
r.m -n.- M *j':
$W; ,y&j&C4U
,- su h?M?{t Qu, f *,DN NN AY/M.W Q' tb nl tfM $f M" rlhGif' d
(' ;M. W t ?p l*?[n'yC,J:Wsea.?".'.T**i J
qO Mit' iAf,YdF . cik4
.f: $%q A Ne h {fth,-'M i>ff.{*[gla~*Mky'*.M.JTW O k C.EQ,'*dh,'pW2h r? % ,lt ggdrygdlgggd JC;p h.:". [
}F4 Tao Allims9 M V. moos w.w M,&
!; >pf -
.2 1.
W :100 DW.d.s.n.;nj. , U ROM *T Ch . eeeeeeeeeeeeeru tn
, e ,
',J'* y*;
,n t y** #* l. M* 2 u p;:. k '
f I.,
a .,A y
fiP su.f., yeus m. . - . g H.# % ; j')*Q'< /1. t,.gdl3.l.$d.i S, i .h 92 t'e 9
P( Pi 3< -
j'M ~., *fT . e. , e I b , ,gf ,,[ . . .N..M...{.l.M..... - 2 [
-g qs in o .$. .,s,(T, p a
J, . . ,
{
- /.m4,s
,e m.n'*,. '0 i s. 3.%
-"'- a ey - r . -
,,s4 -
' d
,:,,4,,t%9'
,s
, l' f"t.V %t > .;n
- s .
L ..e..ejQ4
,.,,,e
,,.e q.,>
t gd/ w"'.%, , y}g$[\,
h_*.i.'W .
e
, %. 300 e t V %R$%w'-800.,,4 mm: -100 ,203 300 -:400 sa,,resmo(*n m'n;500 m w %y 6
l:y n _ . p~mgw___g Charpy V-notch curves shift due to iradiation fft b
,._., Fracture Toughness Curve 1, a
! Due to Irradiation 30 - . _ _ _ _ _ _ . _
- - _ . _ - _.___;___ _ __ .a___ u- ym.,,,,,,,,,,.,,,
h , - - _ _ . _ _ - - , _ _ _ _ . . _ , - - -
7.
i .
~ 4 i
. . _ _ , _ _ _ , , a t a m m.e ,=, . ,_ -- -
4 Ain1* mmim e,u s'.s.a si in.s}sggy 4 pi
- i. WS !so y a e -
M, g' .Q+$m.y) n ,,. ,
pen'(AdA.fuertem a i '* M.,n.$.vs
\
l{ f Y ,YY %'
lL"u vn(r 1.' YL -T
- e. . y'.61.J Je 4-e--M' P
. .x m a
p1 d ' {,, &p*&41 * -dCh qw$5 A2$$..: e
- w%%+:
2
- 4..
&xa W.t yb.)
1 -
b m.y im. .v:
. . , . :y Jsepuw.ce;;.l-le e.
,u :a.wanp SWW : emy , fr.m.s'-s h ,gy xk ::n u
+ % :; w ,pf% *
- J
}
- J s> S0, m: p#i,PG/.n.t>y" a',4 y-y. T ly 'Ns #p.39. '? ,M /<
3 w J/, ? *"a/*i>.M.N .e .m % J Ni yu l ,
yd10%
4 x ,, 3
~
)- ;' %" r- W 'u s
% g )4 e -
'(
?
G, .b; . ==*C(.%. a.a
- n. .f..Q.y $sy[
%g ,Ae s ,04. %, n,, qwn6Ci *a p,,
p, e . .. m ~ %, .%d, ;
k 'i 4 :.se0 es00 . m . m . ;.
I.
3 L
. a MWi&Og ____._e.,-.w i.;e07,,Je .sgnsgw ;,,- m , ,k,,, -
r a II $ Fracture toughness (K ic) curves shift due to irradiation p 4 ,
a i <
i i
i n
_____._.m_m___.m__m- -- _ _ . _ _ . _ __ _ . _ -- - _ - - _ _ _ _ _
. )
S m
a
] M
_w s
Effects ofIrradiation on P-T Curves l,
I k @fD UTIN5( d d h h h S M id^ N I i- $l -1800 w. p . Normal eperettee pektg r;.4.
.g9 W r.MUK.
p
- m. r 3f, p '4 W.~-
4 ;
- e. . . geweg, .
' ~
.A. t;u f 'c!n?,q ,
. *e , ,
In {- 2000 inittel plant , !;p;Toperstlag tosion
.!u.w , e . ,
- 7. .' l
.. . prenurteaues- J i j .'.? NU 1:q$5a . , swet du tQ. m. '
{
A.%.4.p 4
t hsi. gt. t-w,
. artseeues .. , - , e, +,T g po u.a.
- t. 5. v .,._
8&p ;
i Q 50; f. ap%? $ d$kb?.%*Ol * ;
{[ { y }.y w.W3ffj;g ty' y y,tp l
- 4. 0 2; ;"
u ; =======.===*'8 -
. - , v. ## e ~.E*4"Er%a e . , .,3 9 fiFr ,;o.,3o. a .aco < oo ..soo 4oo , soo ssoo?
l) mme : % aseet'er c.elat wipereine (*n vemiM; -
b f il e
t}MWMh7W@dE5EThn@WG
,G Aa-Lw.~a :,--n.., nt .-aci w h Operating window shrinks due to change in vessel toughness I
{
. h.
I I
l l
j j u.a ;
Postulated Flaw Geometry and Size r- ,!t _ - . ~ _. _ - . _ _ . ,
I <
p.mxwwwxmwom;wiuwgwez~m h
W ef r. p K_f[$rk,k TT rm )
- >.. kG w rn v ,q.a. g .r
- h<v,..a..yns_g
' AkhP .
az e av u u.s. n mm .a. a , anis . .w u-m-vmim 3 .
m~
, h r'
h h5 hi. ..
.m.,'. * ^
. . . h. h,:lG?~fjf.
m'f 2 l', A f, % : g.4 ^ ;y' s
} *i' ;,p;$fY . . b y;"
abI +
.' ;m~^M
, . , . - .,.- g. . $w k,,
a m[W .'$*h.
? hv .
DE E '
k 'y' "
- 1 1
? - ;f PR* . ;~ ;
! gmq &#< d@':-.p y(Am wpg., *.- i . . ./
.a 4
Cm r a e 1 . qu-a 3
..fs, & m 5 , x Mhw' . M. . X; M 4% .h s.f ~ 4 f1; *ef 4 i E E y d
p%-,a- , .. ..
f ,.
me ^^
.M's - -a ' .4ut*
nr, e emww g ?pr t*
w% n%nr.y r0 4 M
>,v ,gf *6 g a.: g,+7, (Atf 4-
] [ /. w -
1 1
b
- n. a n
%,'$y 7Eh kh.4 $ &lf YM '
V o
I l
l l
4 l
.--.t__ _ . __
l
E.
2
\
Fracture Criteria for Vessel Materials i l
(Linear Elastic Fracture Mechanics)
.. - e 5 I r
- j Current ASME code requirement I
~
b ik h cyt;gg/wbx e Erh h h hwww -
Mk h 8 ,.
,M M- .
r i me#%g1ggAU ar.wks.Kr<rsetwei"5 -
\
1 iXf426.78+1%a10.0145.gw:7Td mm a+a m1 ntw y
i ,
Proposed future changes 1 i muc.r+7p m m m1 .a .
1 : ysgrr g[.hi,g D d B %g d sygm .
i
\ q .Jwxep .. *f:RP!R?s%typsx;%ggy...
- e. s.nqf f
,1
[aggeg23_2,473Qxpp2gggg)3
>i l 1
ia[ r_
f Comparison Between K i a and K i c
-s n- 31.mrmw a o.-=rs,i--n-. -w .m
._-..___..m--m y~ ~, ,
e.,, . .t , k i h
jI: w ii
' g'gRgw=_aegg,%
W M, yyn,:'y. ~ ~.c
-a n A . .-- wg,.yygy q;.yi
~. .a ap r n Aft .j my .x, @4p.
- 4 un,wggvgga.
1 y
, q*A@4Swa
.1
. _m c,md :n$[*M ~J,4w, C,f W e$Ib ~7y p3 8
q:, , E fijN u ;' "'ps ggf*Rger " 'M , ,W<ir
, , ;-f5 g'M,f.v4 ...q g .gg . \1 a
1 , fn,, "g,; _
"m g4, a r b ? $ L rn > .
k ! Ma _h eg w;megst.a@s a g p~ew l g
! qms-.es a._m= m._s -
cer i L
3' l
= ,
1 l
b
)
s f_._ Typ. :l P-T Curve Calculation Procedure
->i _ . . . - .
x w. , - - _ _ _ _n - _ . -
1
[ q ximwww?~&p$p,w&wp'%?w;h;e.9;.g.m m&b:y *m- g;g~;v e h p:s-a rn,m , .-u
-W AC 4-.
. m.a r &r-lm.u L'
9
[ QI f$2m..N eas:m a d j g y h 'fE A M ? M htNM b>=E gipyfff; tWa gre##Mitr#As eJ 3 ,
.,, ,n u ~
g,v.~.- +e_ . :-axqwg,6,
.v.-,w r n. see g .a .uggleq4 m am.mpm j
I ; yi P8""% ,1 5%9 6 4 Gi p,WE www.m,G+ li,-tw a#: " Lgoq er: p 54$g{Anglp#%e t
j $ q py%W,n yp. g % gy i jk {f{4
,B %., y ,pe up ,.xt;7g. g.g,g. e ig@tt M- i ty g
,, y
- yp.~.w wa.asy w op.w. ,sav.. u
.m,y:ty$$,.W,4.,.3
.u, mm m g. gg$j; E9 hT; Y is cn.1 ~ .nnxa 4 >w" m]gy?)
h y #1 n g %{f'Gs(KiiiwKd)/al.?JtM m w f; y ,'. EM.e. e .is.le 3r.-c:.i o WaM g ,a, . . w4, wgfE%ggwmmn_swn,n..,,MNh
.c,.
=
y g i
%siee wnumameetaM wwt %y M pp n _y t., M ,
Ud _k _ z. .
Determination
_ _ . ,. ___=_
of RTuor
-2 .
T t
[ , NRC Regulatory Guide 1.99, Rev. 2 n mytwxmcwwww::agyw.mn p F1
.vWnwmnm+a M cw..
p}Ri'.$iRTsi?1RTyt%RTxi+na&h. ,ih%qi
[ Dis ar Q fy/gifyw n
p (%
R.J m mafyws~gAag4r Tf M ues c.sf icar ? R A T,% ,A n w a y e.r wX,, *4m..
> ., b55$ ~
b t . Fluence attenuation formula
.ESE}T[:3FjW 36KWh-wwMTd h i s g u&aa:dcan% g imp e&,yxM,Jh@7a2xexp(-0.26);1gm32.
y j Chemistry factor ( CF) interpolation l 3
i s l,
1
( 6
j Stress Intensity Factor Evaluation
,gy.,____ -
-. me .. _ . - -
_~
. . ~ , ,,
1 u
- ,a a Raju-Newman formula c l j u WRC 175 (plate) formula l
g j u Appendix G formula {
r ,
a Head and nozzle regions j
'l ;
n , j 3 i a : s 1
i! ;
U 1 e i ;
il ,,
1
- ! e n >
o ,
t'i*ii kl. ,.,__ ,Raju-Newman Formula -,c..-_-- -._
{
l
,; ._J __ _ _ . _ . . _ -_ _ _ _ _ . - -
P
.ti. -
}.' , For inner surface flaws AMfMMR%%wvmma?:anww il ?
p.0359a. tV.6322ir +0.3855&fd!N l
.%mn&ct:zw[d+0.4733a/'M.i: MmeaA 2nd -
f For outer surface flaws j l u9 u,'
Fjju;A~h[av;wnws::m;y wenae
- M+L e m m %-e -u ~%n}',
1.043a/4 0.630s 0.4014 4',
a tw&mucMew,440A81a Flaw surface stress profiles li !
^
( i.
1 I 7
1 s
WRC 175 (Plate) Formula (usedin PWR module)
)
- Stress intensity factor l 4 .
i
, ]
s Gatd kI $$hA*2Sh#M,em j j Stress parameter evaluation l
/J l DUI5NENhi@ p*
!I i
i . ..nJINN (I@n,49dsdill,sn,e$d@D
- .S.$)G P W IS E= w fifbED l
j t4 !. \
u !
ii i _
I Stress Intensity Factor Due to Pressure l 6-f (Appendix G Formula, used in BWR module) l p_;* ...
fl b Stress intensity factor !
t t <
$ Coefficients for axial flaw l 1
P5)f c
yg amanwg gfsfif
$, g fd$f g g$pM A .Finfhiy? Wuai g ,g g s
- i,um i i
i ! hd5EM$NN2Ij$$[y-_lkIEN[lNb !
i 1' , Coefficients for circumferential flaw ;
i ML 9L ,
8
~ ~ - - -~~ ._,.g, _ . - . . . . . _ . _ _ __ . _ . , . . . _ . . . . _ _
S Thermal Stress Intensity Factor (Appendix G Formula, used in BWR module) t L1 For inner flaws 9
l .
} } -qije:maevmiqcsv
< ehw:X E0.953k1pixCR$sq* T*
~
- 9.
- l 21%?2'~ihht?f$8%? MD L ]% L
For outer flaws k '
1
@wasXg@=
3M 0W W W @f dueP3y r $g q# y i 4
- sesikhdM.753xloixHUAT,,
IG#GM7 jut"$ffsachs s, :
l i
it g , __ _;
jE Head and Nozzle Regions 6 .c, _ _ .- -
v=
C
%.(-
_ _ ___ _ _ . _ . = - - -- ..-
u o li j Head region flaw stress intensity factor l.e %
5%Wi IkG&+f=il?$5'dHit@f[M(Njff2W i Nx&%dAe NGdiNWGM#i8s3GY.bfy=WP a j \
j i Dfd@4r Fu '
ci lj j Nozzle region flaw stress intensity factor
( ,
- Di& M B % T h Wa^/40,(~ @ lj W W' W '
t n-ifG d-
'j l bb ,a,4Gh*)a,'dsG,ff $@hhehffy 'jk
[j -
1 trM 353 $ wieg m w A an @ r
/s 0.706?.G$ 0.337k6 k0.'448,yG/= 3 0393 T,
%j L- ) d '
N G W L u G t's U t % n} G 8+1 h % D L*) ~
!I ti .
9 m
e 6 rg awpW6 44 49 eb+h & e- . &#p . e e em g, y . ,4 4g,
s Beltline Primary Stress Analysis
]E -_t 1
f Stress distribution solution in cylinder
(, Ng ~.wM@@(FF,vg.+vgy,sMp* N-bJM- # <-
'En g
- 6,M_ h. -----m j@.:':p,6M.i8';;rg$3gnyAbh9$36@'f(+ilL
- v l Stress intensity factora j %,..r6sr&M,zGM.."r.4.qamurwngg. ""W m A, o m.. q7s 7 .=. . . . 1 g ; ~.syd N MM #'p'g n5) th, $ j3Il P Ml f,; t ..&n -n m u
- w- en r r. era n o m , g%a.ya, r &.k
- 2
.i 4,.a o 1:%93?^%
&. w . -
s
? .3,w%de?,t4, -f.wsh@i- .D'& ~
w.sya@g*gwA v
1 sh w MoMir l %e,.w.was
!!sM,M,waam@m%:
MIBe AP4b,,IFI %th.%g. hb$qRw.mkawu fsc
. 9&w$wp .yy L : m f5 br + . ,_. _, _ _ _ _ u ,..==
Beltline Thermal Stress Analysis
, .. . J __
, i b .,
e m m s .nc y. .
.myir,ay* wr.y,,
w ,m ,y;un;hm.,,
V Il ( tv k
.5Mp4nEf]g(F/a)Ci%y,y& kw.r ~~ pga
?& r H .n 4 43
. .: T{u,1 dkil}'W 7(u,i,.ot N y s;m"*W:
y v <
no,VV)= , ,.-l : ;
,' a qao r,n = r ) $ u,bhufyh, u u- .
y . r.
4 d iB p ga,W)ssTM.
rf= gMvi[-b, @ 3 -. :,.,h;df@+T(u,r)udu-
.we g;r R!&"%[
yf; .gf eeT h.% vQN;1 M R ^$
g -vg* *% -
_ [d$bbh[c' fb fth ' Ik h?h f k a.
c l
=
l t I, e-10 g
2 o HeatTransferin Plate (Steady State Analysis) h n y j [ Goveming equation r .
I. r F: .&,.v$$yd6fReiV6%p w
- c1 tFe "it wA r-x -i -
n ~#6e..M. t h... rh
'1 m .
wpp 1 ; gg, s;a. c.t Boundary conditions q?'-$r,di Ws.&, ..:.
j r ..t_ .
Nbi h D' 5
,1, t
m =% . h vnmo % w @ wye R9y b4h,
~_
gg,~
11
+
solutions NT), ;l[ dtAs
' 5E~b,7d.-.E,z@_nT.e;li@
P 2K A n K r?
N ..N .r. ! ab.
L=?M%RTWn24 i
c:- Q.M wt% g "^ %~ws
\
x ; u'w w h-DyktAnn i d 4. I ii t !
Heat Transferin Cylinder m'
d (Basic Equations)
L y--
et 4 l' il q si Goveming equation i "f[1Ni),ii5$7dN$il ,.$$h%,7j$id8M5 3
a5Ards.1wsdM y w i+ r m u wa er = wW
.n W% ; ; ,, .
[ j ,
dej'f 4 -
] f
."W I < Boundary conditions &
- I h$h,h$F4 M 5 a
y
. p;
.\ a.A{d N{$
9,2 gr:P,k.Q Q
. p *..
Wn%nl%-}: a,nh
{r2r
~ w.,a ,
.* *" : ? ' . A fpf]s )- l p,459 4 4 7, w ... o fhhfb$khh-.akuha d . .. ) h. -[ k W I
p' i i
d j -
11 S
t A
HeatTransferin Cylinder (TransientAnalysis)
.___f ._
) p in response to ramp functionf(t) = t:
^
3 w;g wxrt.y
- 47
<<1 y stim R p?g7piu
,..,ac.x
..y_
r,6.1;yvi;wwFibu r.ap4.9 M i mr.1,.4'%n fw;g n 91W @
. 6
.$. f Q 7 n=
' ;3.e.Q..e., . 74 *11*y .&,cnf,i
- y- 'nk; 1a
~
, ,a~u,m.:s...uwem x
.ga ~~.syc cr axm, a e,s n, b Y '. .On l YO O n a i l , at $1M E W:* Eau T M a c b # n h , & %_ ,
- M 1 l with i
[
pwm.u>:sy y(nliif4MFKGi;@di.@wndhm.l
- t, MM.2.n.UN=4.
q uy g% -To ~
.a-%wwwwwe~s
- w. -
i e
etg.s.jEfMijydew(a,r)[w$a;J acuen 7 g aarkwac$hna
+
(a;a)~hl,(a.,)~D]w, oggggg W
n 4'
c- Heat 6 h.- ..__ _.._(Transferin Cylinder
!! TransientAnalysis) g_q((
D In response to step functionf(t) = H(t) :
Y. 4' WMTQMTWswn"yp..WTM:1Wuwpe ep~A.wpmw fw ,, m?t* MS "3
& %..a:Mmsnm nw
. Y?ph.h K .h f 4 9
a *b, ?s N:s (~*Pg%r. ..
. h,.,
a..J ..q%p.[yn,jm t? !L J1te m r,cu rmyen yh j;a. a . )f;f,h;f
@pdg$p%. To/%~W'(a.6k,(%'y,sgggg
. 4 51 i
[- bm8tWG5m,(idEMBi#!&Bs#auAp ag+%(W'9 j.- -
a T!WrsdB a ,
'i l
4
'l .
q .
7, !
N
!.:, l 1
I a
t i
l 12 r
.s. . . . . . -. - . . . _..
}
r.
e.-
4
& Heat Transferin Cylinder i (Multiple Step Loading)
L_.
i 7
i i 2 i y!!p swpfyr +g ~yf mage w w f;s &p 4 2W4N w*-nu.~4 umW:)mfA 3 ;
1 ,
n,e.
I CO a 1 u. . u. n a ,trn,.,w,,,ysnD 3 m.
gp A4' 4 '&
L ft K,g'ei W N'g 7 -
} gk'g" epdw.^"re%O,u,g'V'ar ?
/ t -
WS 4
{1 >45$Q;:
r & v/h ? ,p$f5. Qarcaes?p$WP'D.1 Fh'y i
}
l 9.
% m a@t'El m, g. =n a v a gy u s. .y'.ge
' VMe4.
... x \
- z-
! idra.
W n..d*%egE$g 4 ,*W*v q' A c Q w g x: &a en g %wrt.ynm>
% wVr ."5M g( w % *y y , , + .g %wk$tmp _w a -
G73 l; 4 arm).ar .g,4.c.44;.ever,eqwQ e ; q %f awadm ,$,p, N ga s M4 e n%gy.4 4
- n. m p.g.d+e'ra.......,y..
W.3 . . . .
um Yi y>
gm g? new. .,epwgunam%Lgb W
guw,w.,%%yw%.m%g&re%1Witsp^9 l
i fi wmmspewy 9
r m .
wmr p%m%g h
~ W3E}W T(r,f),= .:.
cm 'H(t-t i
n )(mp-mg)Gj(m.f--t, ~
fde 4% *%m;c!yP b hMM wm,MDh+ f43YdM"I'NM,,w.w-MNt$f2fM!3[5Mi M 1
l y Pressure-Temperature Requirement '
4 u_ f .- .-.-- PWR_- Vessels (10 CFR Part 50) __,
l I*
If "r r r h Table 71 Pressors and temperature requiressents for the reactor pressere vessel
- i s a Oposetng sendman Wesent t- i P T lune seismomente Woumum pessw,e
- tec.ippens,e 4
{ l-segunernenes h P 1. Myonsists passwo and leek easts; I
I is r.a m en new sus l5 h 1.9 Fuel m sie veneel
- 20 %
Asue s d= 0 umme AnedE Appends O Lanne m
p)* 90 V j L 9 2. an e,s.non:
l fI d
2.s Case notestest s 20 % ASWE Appenem0Lhes g)
) 2b Cave not enessi e to % ASME Appenshu O Lanns g)+ 120 V t2 .2 2.s Care meest s to % A8ut Appenas O Lanae + 40 v terower gas er g2)
O !
+ 40 9) 3 ; 2.0 Case attesi e 20 % ASMt Appenas O Lbnte + 40 V ;
4 ,,
. Larger iso g1 of g3)) erl(2) l O # (1) Perenne et es penesume system nymessoas assi pueswe.
g' I g) The hgheel andevouse - i _ et the meetial m me efesure tange steen fisi h hsghly atmesed by sie het 1
J; peined.
J l (3) The noneeum pommann temperonse ser me heeruss system nyeesemes poseus tesL i l
h l3
R, Pressure-Temperature Requirement F
5 BWR Vessels (10 CFR Part 50) g - >. , ~~m 9 )
4 -n j .
TaWe 81 Ppsesse and taperesse seqierensues for the reactor prosess vessel (10 CFIL Part $0) 1 4 op.e - 1.ne _ .-.n
- 1. egees.es pas.se ans men m l
, .. p.- s ,. % - . L.n m tA puel thesessef e 30 % ASA.. .n G tmas E Agipenen p)* 90 V
- 2. Namtaleewesen j 2 g)
, 2 _com _n. .ees.t .sso% A.eM.s dessaa.n 2% A...pp.m..L s e L= m...
,3, 2.8 Com s.nel s 20 % ABME Appenes O L#nas + 40 V Larger et p)l orl(2)
+ 4e vj f 1. - , .- m 2. % - . _ . - . . .L., r,., ,, ,, jQ) y t. ,,, - p _ _ ,o _ _ -
e m , - _ e. .e . o n . . , s se . .e.
- 8 p) Th m ;_ - tungernew
- ) p.e-mr.nu_.r -) se ter p. t.w.e..Mas.ey.am
. hyeesenes.
en,e e ,o pre _ense test._
p.m t
- i, i
- I
_. Pressure-Temperature Requirement BW r!),s- __' k._ . _Rm. Vessels (GE Convention)_
i Table 8-2 Pressee and esmperstwo requirements for the reacter pressee vessel (OE) e
[
pj Oposseng senemen Weseet pressure '
p.T enel regutements Maumum tensorehme n 9
- 1. 60yepetats peesure and insk teses g (80m IB Ret erheBl)e OSI.)$ eWue:
l: ' s20% ASME Appenes 0 L>es t.sppuo is l gie. usesel
= ,s Q)+ 00 9 q . 30 % AsM App.ne.e L m co,
[ = spw.=
s 2.
j $ 2.s. com ASME Apponas e umas i
notnot stessi(p.T eurve) .s3020% % g)
- 9,0 20 4 ll 2 Com antant(p.T ewwe) ABMt App-nen G Lknas g)* T 2 s Com artteel(e.sel P.T surve) s 20 % ACME Appenes O Lanes + 40 V j
Q)* 90 V j 2.d Com
- 30 % ASME Appones O Lanes + 40 9 Larger etlQg erl(2) y tentep.T e.ast earwo)ter PNit
- 160 v]
r ,,, - p_ ,
m.,e.s s e -
p , m ri. i m e,,e, - - er . n. . e., i.n.s , . i.e. e.es ., = =
) a tw no.n.a pomme== wmp.swa er = >.m. e,s.m n,*=.es-inet (
y n
o l i 14
a
?
ew 3 Miscellaneous Topics ti k,.
3 a Appendix E evaluation d a LTOP analysis j
a Gravityload compensation 3 m Feedwaterinjection thermalloading a Temperature monitoring locations D 9 L !
-I {
s ll 1
n r-jEi d., . . ,,-...m_,._,._ppendix A E Evaluation
.,_-=_m_.,,,,.....~__.._,,
L L s I; ) Article E-1200 requirements:
i! k - For isothermal pressure transients f.e.
E J AT/At<10'F/hr.), the maximum pressure is required
[ ] not to exceed the allowable values in Table 7-2 at
! Il any value of T-RTuor.
j [ - For pressurized thermal transients y.e.
d l AT/At>10*F/hr.), the maximum pressure is required j ! not to exceed the design pressure and T-RTuore is t : not less than 55 'F.
l t
i !
t l
13 l
. ~ . . . _ , _ - - . . . 1
V Appendix E Evaluation
-s
^
Il .(
j l Maximum allowable pressure for isothermal transients:
1 t s i 1 ',
, > Table
.c 7 2r.,Maxha.um r.47,., ia. ai alloweble
, a , =p.easure as a function j .m
=
, :,;- - "=
1 i
l ': :=
t ::: :=
E t :: :=
3
?
.sco
=
7so
,i e B !
a
- i l
,. a 3
LTOP Analysis (PWRVessels Only) d_m' m, -.- - - _. -
,m .y -
II t
L i
I 2 m Setpoint f) l - 110 % of the allowable pressure ti j u Enable temperature 1 - 200 'F
{ { - RTuor + 50 *F
'l I
i.
)! ;l 16 1
____]
~!
w P"*' I
- a Gravity Load Compensation (BWR Vessels Only) w.3.. --
7--., -
J [ Compensate the hydrostatic pressure difference 3
1 !
[ J (H-B) x 0.0361 psi /in.
.1 I
- i i Where
~
fj
- H: vesselheight h h -B: Bottom of active fuel height B
n [
n ;
i F $
N A 5 Feedwaterinjection ThermalLoad
)!E [.._-, ,_, ,,_, -(BWR Vessels Only)
_m.-.s._,,_,m._,_,_..,,,
7.- :_ p,.-._....,,.- _ . . , , , _ . . . . - _ . ,
N .. I e ;
- - Specify Kn at operating temperature. For any given f.[ pressure, the thermal stress intensity factor is
!: .f evaluated as :
6 e i [6 hfNYAN)$dN[MIdY T((kE Nhp?h.YM Ii ibWih$0li$$${N~?$**ikb$sE,MS$$$[$hklift b
B? 6 mm fML%_6.m5m%M95_s@_h5$i#%
I
[d i
u, i
17
.D V
N 4 Temperature Monitoring Locations (BWR Vessels Only)
--L . . _ _
t j > a P-T curves use metal temperature as reference temperature f
{f m Temperature non-uniform throughout vessel wall t a Temperature monitored at vesselwall l a Monitor locations can be specified r a Flaw tip temperature evaluated by heat transfer E
analysis l
.' Y l
- I
[.! 9 h
n
[!
E ;
I i
l l
E r4 . ThankrYotrl 3
t J
i 18
_ _ . . _ _ _ _ _ _ . . _ _ _ _ _ . . - _ _ . _ -