ML20205R553

From kanterella
Jump to navigation Jump to search
Duke Power Co McGuire Nuclear Station McGuire Unit 2 Cycle 2 Startup Rept
ML20205R553
Person / Time
Site: Mcguire
Issue date: 07/31/1985
From: Tucker H
DUKE POWER CO.
To: Grace J
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
References
NUDOCS 8606050407
Download: ML20205R553 (64)


Text

DUKE POWER COMPAhT McGUIRE NUCLEAR STATION McGUIRE UNIT 2 CYCLE 2 STARTUP REPORT JULY 31, 1985 f

i I

t 1

8606050407 850731 PDR ADOCK 05000370 P PDR bh

=

TABLE OF CONTENTS Page List of Tables ii List of Figures iii 1

1.0 Introduction

2. 0 Criticality 3 3.0 Zero Power Physics Testing 4 3.1 All Rods Out Boron Endpoint Measurement - 8 PT/0/A/4150/10 3.2 Moderator Temperature Coefficient of Reactivity - 9 ARO - PT/0/A/4150/12A 3.3 Control Rod Worth Measurement - PT/0/A/4150/11 12

~

3.4 Control Rod Worth Measurement: Rod Swap - 15 PT/0/A/4150/11A -

3.5 Moderator Temperature Coefficient of Reactivity 17 During Startup Mode: D-in - PT/0/A/4150/12B 3.6 Core Power Distribution - PT/0/A/4150/02A 19 4.0 Power Escalation Testing 29 4.1 Incore and NIS Recalibration: Post Outage - 40 ,

PT/0/A/4600/02E 4.2 Thermal Fower Output Measurement - PT/0/A/4150/03 43 4.3 Reactivity Anomalies Calculation - PT/0/A/4150/04 45 4.4 Incore and Nuclear Instrumentation System 46 Correlation Check - PT/0/A/4600/02A 4.5 Target Flux Difference Calculation ,

47 PT/0/A/4150/08 4.6 Core Power Distribution - PT/0/A/4150/02A 48 i

LIST OF TABLES P,alle

1. Overlap Data 5
2. Nuclear Heat 6
3. Reactivity Computer Checkout 7
4. Control Rod Worth Measurement: Rod Swap 16
5. Core Power Distribution Results - 3.5% Full Power 20
6. Core Power Distribution Results - 48.4% Full Power 30
7. Overlap Data 39
8. Quarter Core Flux Map Data for PT/0/A/4600/02E, Incore 41 and NIS Recalibration: Post Outage
9. Thermal Power Output Measurement Results 44
10. Core Power Distribution Results - 100% Full Power 49 ii

.a l l

I LIST OF FIGURES l

Page

1. Unit 2 Cycle 2 Core Loading Pattern ,

2

2. ARO MTC Heatup and Cooldown Data: J1irst Run 10 s
3. ARO MTC Heatup and Cooldown Data: Second Run 11
4. Control Bank C Rod Worth 13
5. Control Bank D Rod Worth 14
6. D-in MTC Heatup and Cooldown Data ,

18 i

7. Power Distribution Factors and Comparison to 21 -

Tech Specs for F Suo Q - 3.5%

8. 80 Highest Values of Enthalpy Rise Factors - 3.5% 22
9. Nuclear Peaking Factors for Enthalpy Rise - 3.5% 23 N '
10. RelativeErrorsinFfg-3.5% 24 l'1. Axial Offset Ratios and Tiling Factors - 3.5% 25 - 28
12. Power Distribution Factors and Comparison to 31

~

Tech Specs for F Sub Q - 48.4% ,

13. 80 Highest Values of Enthalpy Rise Factors - 48.4% 32
14. Nuclear Peaking Factors for Enthalpy Rise - 48.4% 33
15. Relative Errors in F AH

~

16. Axial Offset Ratios and Tilting Factors - 48.4% 35 - 38
17. Incore and NIS Recalibration'Results 42
18. Power Distribution Factors and Comparison to 50 Tech Specs for F Sub Q - 100%
19. 80 Highest Values of Enthalpy Rise Factois - 100% 51
20. Nuclear Peaking Factors for Enthalpy Rise - 100% 52
21. Relative Errors in F -

00% 53 AH

22. Axial Offset Ratios and Tilting Factors - 100% 54 - 57 iii

1.0 Introduction Core It :ing for McGuire Unit 2 Cycle 2 was started on March 19, 1985 at 1245. . ore loading was completed on March 24, 1985 at 0515. Criticality, zero power physics testing and power escalation testing were performed under PT/0/A/4150/21, Post Refueling Controlling Procedure for Criticality, Zero Power Physics, and Power Escalation Testing starting May 4, 1985 at 2020 and ending May 24, 1985 at 1600.

Figure 1 gives the Unit 2 Cycle 2 core loading pattern.

t l

l l

l i

1 i

Figure 1 l' nit 2 Cycle 2 Core Loading Pattern eCDUIPO uni _ 2 Quadrant 4 1 Is/

  • > j G.

r 1 Cu g w 3 2

' P05 P25 ;P28 P43 'P45 'P03 r I P56 ;

1 4

, 94 88 133 130 57 M 73

_.t.. . .. .. _. .  ;. . _ _ ...... . ,

! P12!P37'P38iM04lP33,L50:P35 M16 ' P24 ' P27 ' Poi l g i i 124 ' R116 #4R A114 #44K : R115 l #34K R107 . # M l R148 ! 80 . . ] _ _. ,

i L. .,. . , . ,. .

P42lN14 N47 M35 M31 ;M47 M23 iM15 ,M36 M12 ,N36 N16 ,P22 3

  • 71 , 217KT 2RT : R153 16ET A134 'SSB R144 8 63 i R138 91 22RT ' 53

! P14 ; N29 N41 :N59 N55 M27 'M45 M46 ,N13 !N05 N38lN39jP50' 4

' R152 l 120 R125 - 218KT 69 74 ' R103 ; 97 22RT , 21RT R101 ' 20MT : R145 7 .9 .

..__.7 ...,.--.t .

P48 P40 M34 N20 N22 M40 N01 'M19 'N12 M58 . N63 N151 MOS ' P60 P39, , g

, 114 ; #42K , R129 , 20RT . 21RT ~ 109 14MT . 89 , 318KT 268KT ' 201XT l 2tRT l R133 . #M 43 ,

m.

' P36 M20 lM24 ,N61 ,M61 N42 ,N35 N46 ! N37 i N26 . M17 ' N21 I M01 M62 lP47 I g 72 , R117 59 126 87 R138 139 R146 51 ' Rias 26*T i 58 118 , RiO2 ,111 P13 j P52 ' M10 . M53 . N56 NES lN58 M49 Nii N49 N25 M38 ' M07 ' Pii ,' P26 , 7

55 #3R l R142.r , 2MT ; 328KT . 22RT . 22*T ' 88 21XT 3tRT I 107 82 ' Rii9 #4R : 67 P46[L41lM37,M33 __M54,N52lM22 L37 ' M30 ; N54 i M52 , M63 M44 L27 P31 ' g 137 ; R112 ; 79 R127 116 Ridi i 61 ,Atil 62 , R108 66 ' R110 31RT ' R139 e 101

. . . ~ . _.

. P49 I P51 ' Mii M32 N45 NOSjN07 MOS N48 , N62 i N53 M56 ' M13 ; P59 , P06 , g

, 60 I #3M ' R120 20*T , 228KT : 334KT ; 22iKT 132 22RT l 85 i 331KT 115 , RiOS ' #4tK i 58 ,

...5.

'P58lM28'M09'N27 M26 'N17 N44;N60,N57lN31,M03 NO3 l M16 i M50 ; P07 10 1 100 ; R122 44 52 78 R143 '; 125 R121 50 R132 i 20*T .117 98 iR151 75

. . . t.... .... _ . , . _ . . . .

P19 , Pio l M29 N64 N33 *M48 I NO2 M55'N09iMOS N30 N50 MidlP20 P30 , gi

127 {#MlRtOS 210KT 22MT l 322KT ; 45 l 113 84

__..- _ _ . . . l 270KT : 20RT ._r . l. .titKT 21*T I R118 I #M._ _ ,

N40 N10 ,_M60 i P29

  • N04 !N32 M25 iM21 .N19 ;N23 iN18 NOS P15 4m

~

' 30iKT 2iRT ! R148 3tRT R150 l IL H130 l 103 i R135 220KT 48  ; 110 R105 ;' 98 i....'- -

l P44 l N24 , N51. M02 ; M51 ' M64 , MS'9 M43 M42 M57 : N43 N34 i P34 i 13 R147 i 106 R104 I 83 20RT ! 98 I 119 l 22RT ! 20RT l R140 ' 77 lR124 SSO t

._ a u._.-- _. ... ,'.. ._ .7 .v__ .

_;._.. I P53 P32 P08 ;Pi7 P41 P16

  1. 3R , lR137 M41 P23 #3R l! R123 L63 ' lP09 #3R M39 ' R128 , #M ' Rii3 123
  • 4 4

90 R131 P54 i P18 PO4 , ' P02 l P21 j P57 l P55 ! 15 46 l68 81 [108 [105 l122 l121 j R P N M L K J H G F E D C B A 2

l l

I 1

2.0 Criticality - PT/0/A/4150/28 l On May 4, 1985 at 2016 boron samples of the reactor coolant system and l pressurizer were taken in preparation for the approach to criticality.

These samples indicated reactor coolant boron to be 2029 ppm and the pressurizer boron to be 2314 ppm. (No reason found for discrepancy but plant was spraying into pressurizer at maximum capability). This information was used to calculate a conservative target Inverse Count Rate Ratio (ICRR) of 0.115, in order to go critical at desired Control Bank D position with 100 ppm inserted. At 2245, starting with an all rods in configuration, Shutdown Banks and Control Banks were pulled until Control Bank D reached 177 steps withdrawn (250 pcm inserted). ICRR plots were maintained during rod withdrawal.

At 0140 hours0.00162 days <br />0.0389 hours <br />2.314815e-4 weeks <br />5.327e-5 months <br /> on May 5, 1985, a controlled reactor coolant system boron dilution of s50 gpm was started. At 0713 hours0.00825 days <br />0.198 hours <br />0.00118 weeks <br />2.712965e-4 months <br />, this dilution was stopped with the ICRR on the most concervative source range (N31) indicating 0.197. The system was allowed to mix, and then Control Bank D was pulled to an all rods out configuration without achieving criticality, as expected. Control Bank D was reinserted to 177 steps, the ICRR's were renormalized to 1.0, and dilution was resumed at N20 gpm. At 0930 hours0.0108 days <br />0.258 hours <br />0.00154 weeks <br />3.53865e-4 months <br />, dilution was again stopped with the ICRR on N31 equal to 0.602 and, after mixing, Control Bank D was again pulled without achieving criticality.

The ICRR on N31 at this point was indicating 0.04. Control Bank D was again reinserted to 177 steps and the ICRR's renormalized to 1.0. At 1021 dilution was resumed at $15-20 gpm. At 1110, dilution was cut to S7 gpm.

At 1130, dilution was stopped with the ICRR on N31 at 0.576.

Control Bank D was again pulled from 177 steps withdrawn and criticality was achieved at 1149 on May 5, 1985 with Control Bank D at 207/208 steps withdrawn (%93 pcm inserted). A total of 19431 gallons of demineralized water had been added to the reactor coolant system and a final boron sample indicated that the reactor coolant system boron was 1396 ppm.

Note that only one irradiated secondary source was used in Unit 2 Cyc1,e 2 since one of the sources had been bent during component insert shuffle while preparing for Cycle 2. This does not significantly affect the approach to criticality.

3 i

3.0 Zero Power Physics Testing- (ZPPT)

Zero Pcwer Physics Testing for McGuire 2 Cycle 2 started May 5, 1985 at 1930 and was completed May 8, 1985 at 0430. The output of Power Range Detector N43 was used as input to the reactivity computer for Zero' Power Physics Testing. The acceptance criteria for the All Rods Out Boron Endpoint was not met. After an evaluation by Westinghouse, a change was made to allow the acceptance criteria to be met since the Reload Safety Evaluation conclusions remained valid. All other acceptance criteria for ZPPT were met without any problems.

A minimum ef one decade of overlap between the source range and the intermediarit range 'etectors was verified on May 5, 1985 at 2050. The results are shown on Table 1.

The point of adding nuclear heat was determined May 5, 1985 at 2235. This was done by establishing a slow positive startup rate and observing a change in plant parameters such as an increase in Reactor Coolant System average temperatures (Tave) with a change in the reactivity trace and an increase in pressurizer level. Table 2 gives the results of the two tries.

Nuclear heat was determined to be at a flux level 4 f amps 1.6 x 10-6 ,,p, ,,

the reactivity computer picoamoey r and 7.25 x 10 on Intermediate Range Detector N35 and 6.25 x 10 amps on Intermediate Range Detector N36. FromtheseresultsthetesgbandforZPPTexceptforfluxmapping was determined to be 10 ,7 to 10 amps on the reactivity computer.

7 Excessive noise below 10 amps prevented the test band from being any lower.

% May 5, 1985 at 2336, an on line checkout of the reactivity computer was performed. This was done by withdrawing Control Bank D until a positive reactivity insertion of $25 pcm was indicated on the reactivity computer.

The time for the flux level to double was measured and from this doubling time (DT) the reactor period was calculated (period = DT/.693). Using the reactor period, the amount of reactivity was determined using the Reactor Period and Doubling Time as a Function of Reactivity at BOL, HZP, No Xenon curve supplied by Westinghouse. This reactivity was compared to the reactivity computer indication. The test was repeated for a reactivity insertion of +50 pcm. The results met all acceptance criteria and are given in Table 3.

4

TABLE 1 Overlap Data Source Range Intermediate Range cps amps N31 N32 N35 N36 2*

6.5 x 10 1.4 x 10 3 1.5 x 10~II 1.6 x 10 ~II 10 ~II 1.4 x 10' 1.1 x 10 1.0 x 10 9.0 x 10 4 4 -

10 -10 When SR blocked 2.8 x 10 2.2 x 10 2.0 x 10 1.8 x 10 6

-i

  • NOTE: Lower counts on N31 due to new secondary source (see Section 2.0).

I a

5 t

-* - -r~.,.- - - . _ . - -.y_ . _ , _ . _ . _ . . _ _ , , _ . _ y .,,-, ..,v. . . , .__,_,._,,-___.c.__.,__.__-.-___.-_,_.m. _-_,.__m__ _-_-.__-_,...._,-r_._-%..c

1 I

4

)

TABLE 2 i

Nuclear Heat i

Reactivity Computer Intermediate Range N43 N35 N36

-6 -7 ~

l 1.8 x 10 7.5 x 10 6.5 x 10

-6 7.0 x 10" 6.0 x 10" 1.4 x 10 AVERAGE 1.6 x 10

-0 amps 7.25 x 10 ~7 6.25 x 10 -7 amps

~7 ~0 Test Band: 10 to 10 amps on N43.

l 1

i 4

,' s l

l l

6 l

8 r

o r 0 2 0 0 8 0 9 1 1

+r 2 0 2 0

E 0 1 0 1 1 y) tT iD v 0 0 0 5 0 ip 0 5 5 0 to c( 8 7 7 6 7 6 6 5 5 a 2 2 2 2 4 4 4 4 4 eT RD

)

c p

ya t(

i r ve 0 0 5 5 0 0 0 0 0 it t u 8 8 7 7 6 6 5 5 5 cp 2 2 2 2 4 4 4 4 4 t

am eo u RC o

k c

e h

C r

3 e t

E u L p e B m m A o i T C Ts d 5 3 1 8 1 3 9 6 0 y gn 5 5 7 8 5 9 1 0 3 t no .

3 i ic 7 9 0 4 9 1 2 3 v l e 4 4 5 5 7 8 8 8 8 i bS 1 1 1 1 t u c o a D e

R d s 1 7 7 0 3 2 0 6 0 od 9 7 4 5 7 2 6 8 2 i n ro 2 5 7 3 4 8 8 9 0 ec 1 1 1 2 1 1 1 1 2 P e 2 2 2 2 1 1 1 1 1 S

)

s p

m 8 0 A ~ ~ ~ ~ ~ ~ ~ ~ - 0 (6 0 0 0 0 0 0 0 0 0 1 3 1 1 1 1 1 1 1 1 1 l N x e x x x x x x x x x v

e 7 7 7 7 7 7 7 7 7 T L D p T x A D p

u l - A F

8 0 p l - A a

i 5

~

0 1

0 1

~

0 1

~

0 1

"01 "01

'01 "01

~

0 1 +

t3 i N n x x x x x x x x I 8 8 8 8 8 8 8 8

3.1 All Rods Out Boron Endpoint Measurement - PT/0/A/4150/10 This test was performed May 5,1985 at 0105 hours0.00122 days <br />0.0292 hours <br />1.736111e-4 weeks <br />3.99525e-5 months <br />. Control Bank D was initially at 214/215 steps withdrawn, the Reactor Coolant System boron concentration was 1409 ppm and the Pressurizer boron concentration was 1464 ppm.

Control Bank D was pulled to the All Rods Out (ARO) Configuration and the resulting reactivity change was converted to equivalent boron using the predicted Inverse Boron Worth. Control Bank D was then reinserted to the just critical condition and the resulting reactivity change was again converted to an equivalent boron.

The results of these reactivity changes were each added to the initial Reactor Coolant System boron concentration to give two values for the ARO Boron Endpoint. These values were averaged to give the final result of 1413 ppm. This value did not meet the acceptance criteria for the Hot Zero Power (NZP) ARO Critical Boron concentration of 1491 50 ppm. The results of this test were given vendor review and Westinghouse Nuclear Fuel Division indicated that the conclusions of the Reload Safety Evaluation would remain valid despite the discrepancy in the HZP ARO Critical Boron Concentration.

A procedure change was initiated to allow continued testing.

8 l

3.2 Moderator Temperature Coefficient of Reactivity - ARO -

PT/0/A/4150/12A This test t as started on May 6,1985 at 0227. The test measures Isothermal Temperature Coefficient (ITC) by plotting Reactivity versus. Average Reactor Coolant System Temperature. The Moderator Temperature Coefficient (MTC) is found using the relationship as follows:

MTC (pcm/'F) = ITC - Doppler Temperature Coefficient The acceptance criteria on the ARO ITC was -1.26 3.0 pcm/*F. The predicted Doppler Temperature Coefficient was -1.88 p m/'F.

The first attempt of the test was hampered by Auto Makeup to the Volume Control Tank (VCT) and pressurizer level swings effectively borating the Reactor Coolant System due to tue boron concentration difference between the pressurizer and the Reantor Coolant System.

The second attempt of the test was made May 7, 1985 at 1230 with Control Bank D at 218 steps withdrawn and a Reactor Coolant System boron concentration of 1423 ppm. Auto Makeup to the VCT was secured and the pressurizer level was kept constant or increasing slightly.

Two heatup/cooldown pairs were done to establish confidence in the data. The results are shown in Figures 2 and 3. The average ARO ITC was found to be -1.73 pcm/*F. This fell within the acceptance criteria band. This gave an ARO NTC of 0.16 pcm/'F.

d 9

Figure 2 ARO MTC Heacup and Cooldown Data First Run

~ ~ ' ~

heatup cooldown j g

l . (3 .

7

-e.

se-/F. '

Nk

^

D %E ~

~ s e_: _.

u i

'c -t. r, u m Y

L -

r -

%%$a .l{

N -29m.

'Tr

-2<t) k

,z _ . , ,  ;

EM SE5 :5M:, , 5'n' i L j y -

( l l'} I4e

-4~

- \ (.*P) 5 53 M4 \

595

, PC

-: va

~

{' F) '

e

~

. _ . l 10

Figure 3 ARO MTC Heatup and Cooldown Data Second Run 1 heatup

, I, cooldown ,-

. r 1 N

, . _ NL

% - 2.2 , f. N -/.o App

,F -

l ,

m r< - a.

.l&h .. e l AA 1_

-, . ,i-s,- - h .

i-i L 9-j .

,i ..u i t u _; 9 -

Ye e aj-3 j

-b ' i-t r '--

b ,,

1-- 4 43 I N. .

1.- - e .. . . . - -

t' F

\ SIS. S4 s1 08 9 f . ...L-5fe. . T p"

, n. p j .

7 .j .

,.34 ..r:..

1 ti i l

.. r .I,... -. 7 . . . r .. -....1

.- . .. i

( )

l 1Aan , , . .. :

._ , b.. . . .p l 4.L  !

L-A M, I......... -L j ,

..a. f

. ' . '. . . ~

. . . + _  ! J . .'

  • l

, a 11

3.3 Control Rod Worth Measurement - PT/0/A/4150/11 On May 6, 1985 at 1115 hours0.0129 days <br />0.31 hours <br />0.00184 weeks <br />4.242575e-4 months <br />, Control Bank C rod worth was measured using the established boration/ dilution method. There were no other rods in the core at the time. Control Bank C was predicted to be the

" heaviest" bank and was measured using this method so as to serve as the reference bank for Control Rod Worth Measurements by Rod Swap.

The measured worth of Control Bank C was 871 pcm. The predicted worth was 908 pcm. This represented an error of -4.1% and was well within the acceptance criteria of 110%. Figure 4 shows the measured integral and differential rod worths for Control Bank C.

Following Control Rod Worth Measurement: Rod Swap, PT/0/A/4150/11A (discussed in Section 3.4), the core was left in a configuration suited for performing rod worth measurement for Control Bank D by boration/ dilution. This was done on May 7, 1985 at 0830 hours0.00961 days <br />0.231 hours <br />0.00137 weeks <br />3.15815e-4 months <br />.

Again, there were no other rods in the core. The measured worth of Control Bank D was 665 pcm. The predicted worth was 691 pcm. The error was -3.8%, well within the acceptance criteria, also. The resulting integral and differential rod worths for Control Bank D are shown in Figure 5.

12

i l Figure 4 Control Bank C Rod Worth l

l l

l l Differential and Intemral BCC Bank (RCCA) Worth 3' ll lIIl 0 !bll  !!I  !! bbbb!!b b!!!!!b!  !

l ll l l l HNhl UIhl0l6ll ll h ll $

U i dilhlIldIO i IJlIl IIlbl l l l **

i2.0 U lIL Mk 4 Wl I Il Ifl IHII Ullll, Mill 'lh lll hldlM lill! MlWlulHillL

' iPllul! I"Ilh 4llHllWilHllylmumm

@ E F dl$iiiM iM un nn

>>.e hplillhlllqlllllyl I h .,l!Ih'll b IU Mblibli! 'N IIlhllgllIl!

hu l i ULhlW .' l 1000

'"** ll1 IILillhillil IIi 'llhili

,1 I M h:,1- e ' ,: hilWI dikJI1li: HRI 9.0 il h lldlhhlhlt llllhlNlb! dl! h E i ^ I I i Obi lM ' h Nhll[ II 900 utyiM,in ;HHdllg p; ,; . zg,;.. 1 p@lllly g; .; ll ;gplg li lUhlIhilhPhd ? o 'L L. ' 3 lNl'Oh . I ' $ liMSO ~

y udn

    • " IIHI.rIfi;il ilqihh d ' .

M L W nlll', M i "

di ll ! H '

' ' f 1 hfh, t n'Ih W wh;m Ihhilii -

j j D. j ; i p H 'l d'F l.' i; ' q ', . o j,llh11c:ll h II H ID h .il. h Rh! 4iH 600

WIIl4

,' : . ~8

- ld j l? ..!  : 'l' '

e l'l hl.Mn N hll[ dhWl-

, ~

f ihllil JH W l., o w: ;,1 i n 10 h ' I ilbbl'Ofh odldIl ha l

g u .e '

ijgf e

.m.

',j<.

I o# >

'j g f j,p h jj[pl a

5 '*' I y l m. 1 on a :n , W .M i

L 1 lilhl[ 1,,Iniflhih. HH@h o p. p' j " : Ip

- ' o 'l Ljj j Llh[' ,q l M 3.0 L ' l g n ,

.;gg p;

'j ; '

i l I"; y U' "?'l .- I- lF y- .h

m. t ,

1.0 ' p  ; : .-

e, 100 0.0 O O 20 40 60 80 100 120 140 160 ISO 200 220 240 NCC Bank (RCCA) Poeiglaa (Steps Withdrnwii _

, 13

Figuro $

Control Bank D Rod Worth l

l Differential and Intearal RCC Sank (RCCA) Worth II. ' l lll ll ll ll l ,I,IllIl ll{ll .0Nl{llllll I lfl Ill Hl llllllHlH Ml ll Illli

! lhlll1 !I hlllhlllllll LliiillllJI!if ll Illlt l l l!all Nllf llll ll

, pm ql i2.oqllhllHill'IHillllin gpl Ti j ;llg j pll 4 n' 1

  • H lnlllli Htigjq liilnohlF i niin; lli g nH m iMlIllh jgll giqq jjg i2e "8 Ni In Ill llillinh J lli ein hu !J ~ wW hl !n unellHi il ""

10.0 3000 il til llWilil MIh ;h , - AhIn:m i nh N 1h ,n!I n al I 9.0 M

$ ' hll !h j . h d lj.. 'lnlh-

  • a klh Uh!hlh k SiY ,l C o4  !.

I R l. J $ lIlIlf 'l;l : il'. I M !lhj} . U: N!h Whj e ,

      • W l

! 'i hj ild :1 Hi !

l injH 4L t o %" PIlh' b- mf% h !it Tlij 0 O

to

,7 a @w W. Al i on r . & , "i wll ia e6-

' l lij"

'l' W

i ,:

3 '

[R 6.0 3

.! / r ;

g i p l l 1. ' U ;, o . .. '4L',! ill .h j h j lu , ' ,

. c lil .

,Uhi h.; ;r " .,u,In 4 ijh I,.i Ulh f , slii t

l g 5.0  ;., q ;, ;, c .

. . tg : p,i!. , ,.g ,,.

q 500 lh i R - 't" .

't h HM 'l thfdl f li ' 7%l f

  • l h 1q , n h. pulh- l l liti lhi c;t'

' i' @'pp' i R Ni % l lllllldlh ! , .(MMl 0 4 g t' i j H " M $ i' F

,."'f d 'l I o I R

' ' . .'lp j '"300

i '" i'I 3.0 y. H ;,1 p ,ni lq,  ; .

' ' ' p h h y" ' M l, ,y:

n. ,

gg 2.0

l. ! : .- i

",- ". i , o l .l., 200

,t,, ,-) .

p.

0.0 O O 20 40 to 80 100 120 140 160 100 200 220 240 NCC Bank (RCCA) Position (Steps Withdrawq) 14

3.4 Control Rod b' orth Measurement: Rod Swap - PT/0/A/4150/11A On May 6 and 7, 1985 the rod swap method of control rod worth measurement was performed. Control Bank C was used as the reference bank and its worth was measured by the boration/ dilution method (see Section 3.3).

Starting with the reference bank essentially all the way in and the reactor just critical, each control and shutdown bank was swapped into the core for the reference bank. The integral worth of the test bank was determined from the difference in the critical rod position of the reference bank with and without the test bank in the core.

The measured worths were compared with predicted worths and all banks were within the acceptance criteria of 115%.

The results of the rod swap test are given on Table 4.

1 l

15

r, TABLE 4 Control Rod Worth Measurement: Rod Swap Bank Predicted Worth Measured Worth Percent Identification pcm pcm Difference Control Bank C 908 871* -4.08 (reference)

Control Bank D 702 668 -4.84 Control Bank B 487 470 -3.49 Control Bank A 486 434 -10.70 Shutdown Bank E 327 283 -13.46 Shutdown Bank D 397 388 -2.27 Shutdown Bank C 396 390 -1.52 Shutdown Bank B 524 482 -8.02 Shutdown Bank A 423 434 2.60 TOTAL ROD WORTH 4650 4420 -4.95

  • Measured by boration/ dilution method ,

, Measured - Predicted x 100 Measured r

16

3.5 Moderator Temperature Coefficient of Reactivity During Startup Mode:

D-in - PT/0/A/4150/12B This test was completed prior to measuring Control Bank D rod worth.

It was done May 7, 1985 at 0620. The predicted ITC with Control Bank D inserted and all other rods withdrawn was -2.74 3 pcm/*F. The predicted HZP Doppler Temperature Coefficient was -1.88 pcm/*F.

The test was accomplished in the same manner as the ARO MTC test, PT/0/A/4150/12A (discussed in Section 3.2). The average measured ITC was found to be -2.2 pcm/*F. This value was within the limits of the predicted ITC. Using this value, the computed MTC was -0.32 pcm/*F.

This result was within the limits imposed by Technical Specification 3.1.1.3. Figure 6 shows the data collected for this test.

Using data from Section 3.2 and this section, PT/0/A/4150/31, Determination of Rod Withdrawal Limits to Ensure a Moderator Temperature Coefficient Within Limits of Technical Specifications, was performed on May 7,1985 at 1645 hours0.019 days <br />0.457 hours <br />0.00272 weeks <br />6.259225e-4 months <br /> and it was found that no rod withdrawal limits were required.

t i

17

i . m

]__ _g"-

j l

J- T- ...

L -- - I F . i m.

__ l

_ . . . . 4, I 1 ga

.._*= _ l._ s a a

{. A

. ._1 . ..

.n '. ir 7 P'" '-" -

(- p.f r -

3 . _ _ . , _ ,- _.. _ - . - . . . .__. _ _ _ . . . _ _ . .

t _ ._ _. . . . . _ _

i

l. . . . . _ . . _ . . . . . _ .. _ _ _ . ._ __. _ _ ,

g_._ . .

l

__iL_..

...L_..

.. . L __

.. Q..

g . b .._. _._ ._

m V f....__~ .. .

f ._

j.

. L _._ .

l _-

. _. .. _. . . _ . _. l . _ _ _ . ..

y g. ._ __ _.- . . _ .. .

. l - . _ . . . _ . _ .

. . 1 . . . . _ . . 6-.. . _ _ , . _

'% - - - -. i O I f-O

  • g U _ . .

L_... . . ._

g . _ . . . .- . . . . . ___. _. . .. . ._ _ . . . . . . .

ce f- .-N . . . - . . - .

C3 l g

.- . . - . ..y

. t _

  • i

~ - - ~~

~~

O V t _ _ . _ . ..

m O a O 1 e --m t g g .

M be c . . _ . . . _

3

=e e6 4

. ._f9 .

._. _- ___. 7 g g . . _A. _ - - . . . .

.l

. _.. g I,

. I .a z,3

!2 ._ _~M _I t_

a- ^ Ie_

C

. M

_4 [# \  ?,_

    • C A- '; i

> M Q .

a . _.

m

.]

g__. '

E_ .. .. . . . . _ ,

.. V$ .y _

g , . . _ . . . - . _ . _ ... _ . . _ _ . _ _ _ _ . . .

.c -.L._' a _ . . . . . . . _ . ... . -__._.

.g . L _ . . . _ . - _ . . . _ . . . . _ . _.-. . _ . . . -

.y e... . _ . . . , . . _ _ _ ,. . . . . _

...p.

,/

,  ;.._g ..__ _ . . . ..t... _A. ______ .

/ --

/ ..

._.S*_

/ _. .

._ ._ . . . . .. . . .- - ~ _ . .

_. .a _. 3; . _ L.

qg .

_. 3 g __ . . . _. g _. . g. . _

i - . _ _ _ _ . .

j_ __ _ . L .. . . -. -.

.[..._. -_ .- .- 6

._.._EL Q p. j .. . . _ _

..J L....

f._ . _ . . . . _ . y...._ ..

. - _4 ._ . _ ..._...[._..--.

.. . g _ _ . . .

f. l-18

- - - - - - - . . _ _ . __ _ _ _ ,_ g

3.6 Core Power Distribution - PT/0/A/4150/02A On May 7, 1985 at 1610 reactor power was increased to approximately 3.5% to take a flux map. The map was considered to be at essentially zero power and was performed to verify core loading and predicted core power distribution.

Core Power Distribution, PT/0/A/4150/02A, was performed to verify the predicted core power distribution and Technical Specifications for power operation. Table 5 gives the results from the test.

Figures 7, 8, 9, 10 and 11 were obtained from the output of SNACORE computer cede using the data from the incore detectors.

All acceptance criteria were met and the power escalation was commenced.

i 19

TABLE 5 Core Power Distribution Results 3.5% Full Power Unit 2 Cycle 2 Hap M/2/02/001 Date/ Time Map Taken 5/7/85 2103 Power Level $3.5%

Cycle Burnup 0 EFPD 0.2 MWD /MTU Boron Concentration 1420 ppm Control Rod Position Control Bank D at 223 steps withdrawn Maximum F" : 1.7418 at Axial Loc. 16, Horiz. Loc.

  • Y B-11 Maximum F : 3.6594 at Axial Loc. 53, Horiz.

O Loc H-11 Maximum Fg : 2.1339 at Axial Loc. 51 Maximum pin F g 1.4703 at Horiz. Loc. L-11 N

Maximum error Fg (from predicted) 7.11% at Horiz. Loc. B-13 Maximum F /K(Z) 3.8245 at Axial Loc. 52 Maximum % Reduction in AFD Wings 0%

Minimum % Margin to AFD Wings -7.4340% at Axial Loc. 52 Rmax (Tech Spec 3/4.2.3) 0.765 Total NC Flowrate 400713 gal / min Total Incore Axial Offset 58.447%

Incore Tilts %:

Upper Core Lower Core Quadrant 1: -1.370% Quadrant 1: -3.696%

Quadrant 2: 1.579% Quadrant 2: 2.257%

Quadrant 3: 0.225% Quadrant 3: -0.670%

Quadrant 4: -0.434% Quadrant 4: 2.108%

NOTE: Axial location 1 is the bottom of the core.

Axial location 61 is the top of the core.

20

It i

+

i w' i I

3 . .

3= g j

3. ~ , t ee

>6J .t *

.e e a.

f ' a t i .

J t

> J i l e

= ~ N , .e:

5 **A Nr .o,=

8 4.e 4 4pe e~ ~4 Wee we.o=p~,=e. e 4-,G A~ eG #m 4 g

! J . J W#.? . eN.o00,,~

=..ee9 ..=e -?

eW-,=P.99 eee. ,.P.e~

W-~~. m .-? ~ P . . N e~ .= A. A 4.e e~ 4. ,4 W 4,.,

m.Ieevee?ee~

g C s?.e.N%

.m - e%e mo ?-

pqq, i

i .,

l o s.y3N e e A= . e4o4e-e4=eNW o e e e- R.e eo A=ea8N** S e** ***gg eNme % g e=4 ==eeoeeeeeeeeeeeoeeee g 94 7 N9 3 9 g p a p N =en g-eNoe g N=oN.g .

m,e pee 5, e 3 , a,3J .N e9 A ? o e w% ee.e% 97 -eName%eme e e e o e e e es es o am e o%eN e e e e Ah e oe e eeN9W e o e om e o-Ne w e em s===eNN eeye g

I g eqN e . e.e 0 ee ==NfWemsspemW W W WO@@@@ e4 44 e 4 NP=~N-Pm p*e se eC S e ce e e e e e ,

p e 3

003080000 908098080500480000009000880000008080000s80st800 0gge g 4 g N l

c. s !JJ .

k #

+

et m Y M esos a .

f; e=o.ea.ee.NNeve=N eecedse medAom m ee-p# eWee=ep

.a . r =es e Ner* *Me# 4 *0p *9# 4N'= d e*W e * =** *# e4 4* e * =*e em me r=e- s e e=e.se* .ec o# e4 NNeeNN eset e Ndeam e Ne se =*% e.= wee

? ? om?  ? se===e -e wc emoc adeeee=m?me--oc N=ewa=e stp6 Nog-oooom e4 -9 em mo eos osmo '

C mNNN! .. .

cAAA, e 'Jg3eNe 7g ! Jan e e .4o 7 esm.

an

. e p o s s.e.o.a.s.em eeeeeeeseeeeeeeeeeeeeeoe e s4 4 4 e==a=4e. eeee.em esee eee Aca.c.e. e e e. - 5 eetes't#

se # #W e ** **M- -am - ea==%e=e-%e===c e%=e-m f.ie 3 eme.Malme* W .99M"*9mes'IMMMM9mese9eW ew e erwee { A es e e W -  ! t r

, , 3 w O 4

  • e w u g ,

osesomenesesosesomeosseosseosomosenosoooss e% 4 o N=e e? ossoso

- o oooos se, ' go.

u) y ==

A an e 2 3 e 3 Goe s oec.es 4 d eam sen e=9W?e% A9e SNo-sNameNee.er-Se==.e=====.emfN ee ? ? S St e==N9NNN NNNNNNNNNN oMNo =em m N=NNN9M e sse be.oa opsc A-Povv oc ec oococ o so mo so coco!

> i I =

m.w ooooo get g W I me= o c es se e m e? O

  • 4 4 G C O 3 e=e.**.e=====

wueSeeeGG393G33 ee g?g g a i e e e, 1 36 e e e .e.e-s o o eee-o.ee o me ee=eme e o e e e ee.e.= o eae== e o=eeeso se e o e eoeeases e eeeoe e e e ee -ee ==.e.e o eee=o o e o e .eeeee meee-o e e===.e o e.e== e e= e e eeee e e=ee o.e-e 6 l

J=e 3g 4 g e= .

=e 4 48

.e u eJ  :

N s=9 93 eW P A eS So eS soeom3eoSGoo3Soco o3OS ) 438W wage Q J I o S ae=e NN u so seDoesso33eososos essa J ;pe to =* '

me o W F 9 F t t=et e'b? e eWN7F=m W S@ eN ew Seee N W4==9mNa*  % PN eam eN e am eo s s 3 gegosogogggezogge e

n=

2 me= 4.s e=e 4 =9 7 9 8 t A A# A 4 4 4 eP=a***eng a g ge p p ec es e g g,l < jig.

O = i u J wv ww e.~.e.m.e.e.e.e.e.e.e.t.e.c.e.e.?.?.e.t.e.e.e.e.e.P.e.e.e.e.e.c.e.o. .e.e.e.e... o.s.o e o.o. o.o.o e

eo.o ee e 0e.

o m. oesse soo. I <eN o O eo 3 Oe 3 et O e 3 o 3 e 3 o o eo eo e 3 e O es eo **=e**.ee**.= ee.e.e===e .e== esee e== ee==ee==== -' ' e == =

J '

9 Meg

=

t

  • I . 944 j _ i i ) =e ad

.4 e i es= .J

' ,a, e= * =

c.4 W P N a as s JJ m e ? c eNeo r v e==m e ee e 4 4-a= O Ae ? 4 A& P o w e%o Aa% e 34 ==> AP= see wc N a co%eme wAWW 33 9 T 4 a.3 T 7D*mAa*

JO O >

O eO 04 p f emeNe@

a

= M*d PW? A ** AeN e 4A 0c

    • fS=="*N e 9 7 8WC T *9Nas A SDPe4WM c a=P= 4 A W9 N TN* S 4 ** A NS S.FW eSF O P N% 4AN S SP=7 e#@W ? **N C #Oe#9 ?
  • N aa=

e"**Do

  • S 2O4.*

N ON

??%

4 * > a* T ae O# e** NS W ma e a ace C A nam  ? se se-e? % 7 N e # =e 4 '

73

  • 4.F)

=e 4 e@AAT,Tt99MM e 4 M =gneeeeoeoeeeoeeoeeeeeeeoeoeeoeeeeeeeeeeeeoeeeeeo o e e. eeeoee NeN N,= e Aga 3 E == osoo .N 3 N 4O Y s w NNva9=6 eeeeeeeWNNNNNNNN===.=*e.e============.a 3 3 so o s o o no 3 o no o s ooo N*eOA 4O W N Z e 3. 2 W4 M T DMP J C

q J 3 n"AC4 e

64 6

  • eW m g 3Z Je= >9N4 y a44 mA e 4 2 e ene 2 Mao O sw3 MM ph*= 32w a we g#e 9?NedeW#o=P#94Se?%h479?o%NeNe#WWCSNN?f?@e.CPCo=%eWCANN4=PA e Wese.W 49 4 7 4 97.eA 9m Acamo NotN4N AP AC99W PN P =AP=4A AA*P=me c c.a.ee eAcc >= 3 te m O Y ANP% JW= W 9 O EedDNAP?eseDN9m*==30@eNADP?aSMON%=Th7aN#3e*DA9m?%Ad*C%449NS% ==OO g 3>e A = 2JEDONT49e?3===Oce@%%ed@TMNNam3OPPD%%%S44@AW7t@99999NNNNNNNm e eoe gg wanN J 333eoeeoeeeeeoeoeeeoeoeoeeoe**eeoe****e eeeeeeeoeeeeeeoeoeeoe o333 D 0A 9 4 3 E t o mo seen e=e e=eN N NN NN ee.e me-o.e=e semese.e======== =eo C o33333333333333333333D3333  :.3
  • 3 d
e. I NDN

' =* 3 F3 == J

? ic = A 4

,g 3 4J 63

=

,o == M4* S a=

,,4 tagg34 O ee 324 9 3 3 u .e=.e-e e N m???

W = =se .see.eooe=ecasso

.eas A A @ =e ==A A A A A N.N.NN NNeN.e.N ====eN.e== ===N . NN N N ==.=.e

. ===.=====

==..==s-e. e ======a.e

=m.

300o A c# c==.e C333 2JW4 A 33 MEW AF 2

=

EJOI$5000000000000000000400000B00800 JJJJJJJJJJJJJJJJJJJJJCSCCCD3DCDCDTDZ2CDCCZCC22CC3ZDCCJJJJ 88 000800000 0 008000 00000 0t60 JagJ Ent: *4 3th *D O A Q. 4 2 =e e b "3 433E9 J%ED*

D e m J 3 1 Je e%%hTWWeseewsAAATwAAAACO99&cCCCCCNCCOD2NNNNNNNNNNNNNNNAAAA Accc mzgm 4 O 4 *E OM38PWOWTwerew7get#WWW@TeDo33o3DOo373333c?????????@?????TWWe esso wat W*

4 Y O A 4 2 4 4 S T W T W W W W W 7 W @ W W 4 4 4 4 W 4*m%"*%P=Pm ******** 4%P*P=NP* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 W 4 4 O733 4 Ed ed k 31 MAN I

J1 er M M .S EE

  • 2dJe Z3 J

O2dSwu e=4= 3 w g eu N=o?E*=4A@eNeeJPC%@@ e9N= U D T h> a=

see 443  %

4 J 3430$###@@A

? S ** 4 A T 9 A@ N e* 3 A?7C3am W aFAW T a9 7W N **

7 3W? ?' S**9M*MMMMNNNNNN 4 4 3 9 N **o ? $ h 4 # 7 "NN NN .*==.*= ==== *e = ==

w NJ63d 4 4**43>7 g

O E E8= 3 2333ME

== J r e===w 3 4 3'.D D

< E E 3.e4 2 3 wDOg24M Q..E.=E ==eo. m3EA 2 M M MK E E

- e 4444C33 t 9 ( ,

%.,,8 J EE EW E E EM b "":JW EI ***

g e=*= EE L_.

E,

- _ - , _ - . , . , _ _ , - . , . - , - - . , , , _ - __ , e -

, - . - , -__-.,.y , - . . . - - - - . - -

Figm 3

) Highest Values of Enthalpy Rise Factors 3.

  • Coulat otitCiud wu4 (LNIT d,CYCLt 23 vel 2P "h5 2/04/00i uta5URED PSudaN 15 'd = *a L i l L J to YtCa setC LIM!? F08 F5c8M fu v! LLC pl ni ig L0pranto fu ftCn I Limit e lh,1 CATES W10LAT1De VFset(tCN 5etCa OF i.000erv % 7- e uta5gatat%f ur4LE s t a l % T f FaClu= ib INCLULtD IN N AND inuS NOT uaLO IN 7ttn SPEI Cu*vealbuo Mal 10 UF AbfuAL PQatw IU NAlto PbNtW. P a v.03.uemaL12AfluA 9 -

60 M1wntST WALut5 0F t91MaLet a!5t t aC1Cd5 ANu COMP 4R15ar.3 alf H TrE TLCnntCAL SPECIF,1C A f iU.15 FutL rua. TLCM SetC mahbi%

QPDtw ea*. Lut. F5ue"N di OlFr . FMALT. w!UL.

i ==. L-!! i.. 0.7 52 0.2348 0.3068 2 eso LLao

= t ,i i . e.10 3 3 0.7 1 0 43e. o. 3343Q 3 we) i.g 3=. 0.73T2 o.d.te

..t L=il o.233 0.d. 2 5 =5 L=%$

i.

A..e.. o.7538 . 2e.2 0..34..32.97

[=ii 8..eew 37 0.2344 0.3313 7 .e.0

$3 ra . O i..a).5 G

. 7e7, . F e i e. o.d52 o.337 O

t=,>( v.330

. e.3. f L. i.434t

.. i 3.i47 ,-

o.f,33f 4

.. o i..u.

o.L53 . 0.< ,. .a.3.i.

l0i o. d.u <-n i. 3q . 3 u.c , o.3.31 3 11 ie

tt

., 5:!"t.il i::51.

i.edo.

":f:' r39 h. .l?..' I ::1:0!

i, s.3,3 L.id .. Di o.73.3 . o o.3s. 3, 9d., .

. .. n i.15 O. .l9

.>,. o.i3.i 0.

ss o.31 ,9 iii ,.f i. id,0 L i. 0. . o.3 339

. )

..o,. i . . n.)

o .13 4.e o 733, 0.2 ..

v.e.se o.311 3.

11 0na ii.e.,

...0.,sY,

. 333

u. ,.$.)
o. ...
0. 3.
3. 9 <-o, e... 1.3,..
o. 2 o ..a.,. o.33t.

o.3,rs. 4 23 ,3 n.di o ..

'ti  ;!! t:I; o.ift; h 8:1!:t d,9 .. n I:}:11

. 94 . 74 .0 h4f.::.

v.b.e o.30:2 it1 <,i

.09 a - o, t-o,

,.30 i.3 9.

i.3en

.. d33

v. 4 i o.fi

..i99 o.d e o.3ed.

9.i.29 o.

f,o 4.,..3 6- n, i.3e.io o.di.d

o. ei ..di o.30 3 e,..

. n. t-o, i.3e . o. doe o.d.,ed

..d 00

..se.el

.i3i 3.? L..

(=vi r=12 i.4 3 i.3192 1.3ffd

9. 400 9.
o. ii.7e e

..dedd o.2532 0.3 .9 o.393

. 3v38

,>5

, 2 i.3feo o. ist o. e44 o.34ee et $ 3 )r L E=0= fi .l i.3725 0 i.) 8. 057 0. 000 et Jol n-oe s.3 tov .. 3 . ....:

, id e)3 Jell o. 0.2. 5e.9 0. 9d

'9 433 L=ow i . 3.F o i .. .t o.26 ..ao*

0 dSe

.o L*04 J-ii l.3.17 i.3.

i.3 3 9.

o. 1 9 ill. '8.4962
9. 09:

9 0. 0 3

.u 9..

. e2 kau3 4.3 0 0. 891 0. o..

.e .

t

  • 2..

L=ll L=09 i.A...

8.3. 0 S . to.

097 0.2903 69

..ao/7

. 090

:M S O i:i b. -- H509O.UD Mfhi h:df

.o ...n9

.1 a(

3d eai

.v.

..us o . --i. -.3.o,9 i.!3.9 >

v . f o.

..sv.,

o.3, . 2,ir v.e,33 o.4 3e

...i>0 0..i.0

'~ )

ill eo ":!1 -l:llt}-

L=of i.), REll.i

.."o .

I:f o.2ws.

if-hito.etw?99 3 44 J=0% i.3))2 3 9. 3 0.295.5 o.29 7 0..i99 a e Jao5 i.33 7 .. 5 0. 43 5 d.w9 L=o5 .. 1 0.2909 0..dd)

E=ld i.3S.ow o. 5 0.dwr5 0. 43.

V, .* (l959 Mel0 i.3.vv 1 3 97 0 404 0 297. 0.. - *- - '

e c.9 J=u I3 9 odi . 29/9 0. d=2 9

0 h 35 3 e-i$

m=od i.349.:

i.3 e 9 0

9.30s. ol3

.<ved 0.p9as 0.

0.

434 230

~

54 Dett 8.3.79 7050 0.(999 9. 455 " e =* e .W,sa- 9 ;a . . ..s.

. 2 ==32 I.,.99 a.3 0 7005 9.v99's

. .0 o=ld 50 c.7000

0. v.; 000 o.e4..
0. 2

,* ee . . ..e.. 0..vv. .. o . e < '98

>=0.) .. :.. o.50 --

m-

.,m f: i. 0 0. ... .

ef

..a i:l: *:y 1.. .

0.. m.,3 0..

10 0.,

gg ....

il o.

1 a9 . ~ 3.-..

v I:Tt

.. . 8::3.R, 0...

8:u0d.0..

I:0!

0..

0..

05 0A W

e... .5.

~" - "" - '

s. .~1. 0....i g 64 ,.; ~~A C
7. . . , ~.11 .0.. '.'9t'e S..ed ud.. e. . 1:.3.

0..,t. 3.h!!.!.

. ...~.

0..~.9 b3 g .. 0

$3,4 O.10

0. 04, _ . ' .-' *
. ip P. ] tti 0...b'1
Pft!
! tit!F

! t,h 2 m .m -

8:te 1:lini 8:::i: . . - -

s::1 8:::11, - .

0 0. x, , . a. .m -- .

- . ,. ... . . ,ws.w. J

(

- m. - . . .w m v .u- :q 4- 4.e., a a.a s.= _ ,- h

' 1 m 2 ,,. 22  %. .

w r x >

e CE 1

I i

i e '

% 3  % N @

% 4 9 e 4.e #

4 & S S S S S e e e e e o e e e o e 3 o 3 9

.e  % e e P  %  % = o N o a N  % m 3 & D m  % N

e. 4 o, .* @ e.o P* O C ** '@ O
w. e o e e o e e e e e .

.e o .e O .e o se o o e

e N Ol N . O 4 #=  ? m e a o o O S C' A M M N P O 9 O M M e

i . O = o 2 S  %  % e P = P e M.e - e P.e e e e e o e , e o e e e i

I o 9 .e- .* o e o e o e e o l

I e P  % o N  % e a 4 e N e A N ** 9 4* A e e N .e =e N =* e D c \

iN o .e *u 9 N P c'  ? N 9 N *== 7 e

i = e o e e e e e e e o e o e g z =e se -e .* e 3 o -e o 3

1 -.

m o e e* e v e N N e A > > w e A 4 9 7 Ps ee e  % O N S  % 4 9 9 N W-W N . 4 S M 9 b eee M o == 9 9 3 ee.

4

=4 -e  ! .=e e. e e e e N.

.o .e m . .*

e

.= e Cf.o J l.

o .

m ..

r .= b .e q

t Y h ,

= > .n P s' m a e e > o o e

c. 3 P @ 4  ?*

e 4 %oe .e e N to o A A .e M C D  % G 9 =oe

  • eN N N N N M.e N D G a q .e o e e e, e e o e o e e o e e e I

3 3 me m = m m m m a a o @ p 1 Y 3

] N 4 E J E e e o o W r c w & e a e M e m m N

@ 3 1 A  ? e 3 3 9 4  %  % .e= 9 .e  ? O 4 h  ? C 2 9  ? 9 N m  ? m N N 7  % o e e e e e o e e e o e o GQ eJ 3 e o e e he % I o .e o o .= -e = = == .e o o -. o

=

3 ==

to W 32  ? e e o a e P. A e N e 9 A 4

.e 6 N N A C  % 0 W N N 3 9 6 g a e =e 7  % -e ==

o C  %  % e NN C D  % Pm C 3 N 7  %  ? "J u NW D e e e o e o e e e e e e o e e g .3J O o O 3 m a o D 3 m a 3 3 3 3 g J%2 g UNE

> J P 4 W D A 4 em P= == M W N A # #

M UMI e r 7 o e A m  %  % N P N m C e E eZE  % 4 3  % 7 N m m 7 m N N  ? O o S o e o e e e e e e H NLu O e e o e o e 3 = o*

M v3 3 == o o se .* o e .* == 9 C e- */)

@ ** 4 4 N '9 4 Z .* T  % e =e v g se N 4 A 3 %  % N N A -e N.o n .e A N 7 A 4 4 em a m se N.e N N N N N .&e N O C P=

L w Q e e e e e e o e O o e e e n 2 s

o e

a e

o .e .= .o .= .e = .= a a o g 3 4 g *L D o e N = 7 m

  • W U =  % A e  % P e e e e A A ** = 3 **

3

~

T 3 s e 3

4 A

2 ,e N 3

M A

=

==

N .

J N

e

=

e m

e a

e

=

e m

e e

e o= w o e e e e o e e o

.o .e se me .* O uJ 1 3 =e O .e se .o se =e sue eJ J

= a M 7 3 W Z C e @ d 2 se N A N '9

  • 4 3 e. O o y o 2 e == == N e 9 1 == e'l -e P c @ N 9 N *  ?

2 7 e e e e e o e e 3 e e e e e 4 4 3 == se m a 3 z 3 .e == e se 3 3

= Z 2 3  % .e A  %

  • 4 N J A o S .= N P. 4 P* N
  • N U e M =8'l  ? @ P m O @

e c  %  % C C P  ? 4 T -A O P -.  ?

e e e e ='e' *

  • Y 3 e e e e e o O D 3 3 3 m O O O 4 o a 3 2 e-

@ 3 O T "

o O $

= *

  • A

. N  % >  %, e o

% o A

C O 7 O C 0,

, N, 4

e e e e o. . e e o. -

m O m a O y o o e a m O m

O C $ O N = ,E N - 7 M M E ' O A = 4  % S S y e e e e e *

  • z o O O 3 o D o 4

M

.4 4 C W O M  % W E D A M

=

  • ~

k 4 4 4 = ) t t t *

  • t e e e 5 e e G . 8

n r

(-

k E.

y

' * )[ f .* te

, s

( a- b al P'

.E , y , g p

,~ I f.  %

> L h th i t F e y

- i E f  ?.

g

~

. - K n ,-

e p y n.

s .

E  ; k $

s A

L. ] e j

j :j & i 4 e w a m > l y .n f_ - Ne , -e m -e - N O e g

. 1< K O e -.Oe O e h -

f O (o e.

e O.

O O O.

O e .

[

  • h [

, t. >

e re

( .

m e o m

% . .r.e e

  • en .e N. . . N w.

i e m. e 'v e O N o O O m .

W. s. 9 O O O e O O O *O O .3, ee< ,, m e . e e e e e : e e e e i e  :. 6 O' O ,O 9 O O O O O t g

M

  • g 1 0 ,0 9 g .

4

=* e N6 O N 2 N N @ h ee E @ 9e e e-@ q M- O tu e N O ,

9 .-P=O 9 O* O ro O O O S g.

.% .e .e e e e e. e e e 4 O. e. g ,, i e 'O O Du O iO O 3 o O 6 O O s a i M 4 0 8. t 0 9 0 0 2 0 0 f. 3 4

' M N 9 @ N O e ==- N 4 N 4 .e Wy t

g q.2 E e e N N m e m ao O e .o O O y q 0 N , O. 3 O 3 O O p O 3 gO P

- e. O. e e. e e . e e e g , .,e W 8' *O 9 O O O O 3 O s e O O = p g

.J 8 5 0 0 0 8 8 0 9 3 ,* f. m 4 ,

J N - = .. - 4 , A. ~

h; , _

- N N - 3 3

,N-N 3 .e -~ 3- , ..

O .o . O O = O O O N.

y .

.e

.o e e . e e ,o e O.

.e O. e . e . .s eo t, .

3

.e 9

m M

=

O JO0 ,. e pl O .O I O 9

O e

a O

er 6 y O .O 4 z .

v ~ .~ -

4,

~

O .

e,

~.

O .O.

O

- . O.. ,. se - O 1 < ii 3 O !O o* O o e O e m , - e e e.

. e. O. t.o.

0 e. o. e o e Oe .:. . e e .

= 1 O O o of C .O s O e Oq c 30 t 3 o ~

a. j . t 0 0 e. $ o. 1 0.

e e .

x .2 e W . N .o e e m e N e e.e N w o

.e  ; 3 == '

N 4

O se O N m= e 3 3 == ee me . O ,- m 4 at a 3 r.g - i ? O O O 3 O O 3 3 O O O 90 e e 3 y a o e e e O. e e e e o e e O. e e >

2 O O O O O O O O O O O O> O 7,O e N =e y ,4 U y 3 P S 0 0 0 8 0 0 0 0 $ o 2 ad e a MO or 4 @ A w N o e N e N P O = c O O e 76 a3- O m N = o = = - o N N e e so a g AW N% . C O O 3 O o to e f.aJ Nm a o e o. O. O. e O. O. e e e e. O. - o. e s x 404 3 O O O O O O o O o O O O O O ss 3 CJ J % == 0 0 0 0 8 8 0 0 0 0 E

> VNE Z m e > J N M e 9 e

  • N 4 O  % 4 M N r= c 3 w g UM* = m O m N W N Q 3 O m N N 3 9 mW q *Z M  % 3 O O 3 O O O O O O O O O O O = E g NEE 3 e o e e e e e o e e e e e o e (

3 O O 3 3 O O O O O O O O O O e.* id

  • T I O I I O 4 0 > E

-e 3 o -

Z Z 4 N 4 4 O M M ** @ E3 N W =* 4 9 3 3 a. e e e 9 N N O == 3 o e == ** N e w '

4 O @ O O O O O O O O O O 3 O O 3 e 3 3 e o e e e o e e e e o e o e e 2 2 aJ O O O O O O O O O O O O O 3 O a e O

  • 0 0 0 0 0 3 3 2 4 Z N p

i J C  % e N N m W Ja N N O N @ U O 4 O 2 : O

  • 4 7 == 3 O 3 3 3 N == 3 == # > e 3 W e O O O O O c O O O e

O O e

O e

O e

O e

O e

MO e= J O e o e e e e e e o J 4 S O O O O O O 2 3 3 O O O 3 O 4 W W 0 0 0 0 0 8 I I

=

  • 10 4 C 3 4't 3 4  % O & O N F6 N k 4 3 N erl e == == O == N N *e o O ** 3 M T 3 0 3 3 3 O 3 O 3 3 3 0 3 Z 4 laJ == 3 e e e e e e e o e e e
  • e 4 3 2 J 3 O 3 3 3 O O O 3 3 0 3 O J e'* M 0 0 0 0 0 0 4 3 3 m
  • J N me 3 p o N N e *e O D. D D P t J 2 O O o me A O N O A A N
  • O O uh l

T U 9 O O 3 D O O 3 0 3 3 3 3 3 3

  • M 3 e e e e e e e e e e e * ** O 3 O O 3 3 O O O O O O O O O e J 6 0 0 0 $ $ 0 0 3 D
  1. 3 2 N A  % N  % 7 N O D D

== a o m

N 3

e O O N 4 e' O

3 O

4 N e O O O O O O O 9 90 M 3 e e e e e e e e e e e d 2 O O O O O O O O O O O a E O 4 0 0 0 0 3 >

2 4 J. 3  ? O N N C O 4 m

.J W e N N e M M > Q O O O O O O O 4 o e e o e e o e 2 2 l a O O O 3 O 3 O <e l =e 4J laJ

- z z J id te l

j < e u o u w u  : => < .4 x z  ! c. E = z 2 ,

t. - e-

. L

- b L -

w s O O

  • O 9 l

.. . ._- . . _ _ _ _ . __ _._. . . _ . _ _ _ _ . _ . - _ _ . . . . . _ . . . . . . . _ . _ _ . . _ . . _ _ - . . . . _._ . _ . _. . _ _ _ - _ . . . . .~

i

' .O Page 1 of 4

!O Figure 11 t Axial ffset Rati s and Tilting Factors - 3.5%  !

O i O i i  !

i

,,; e i.

l8 f

)

o, t j  !

{, ._ ._ -.. . _ _ . _ . . - . - .-

i attAL UfFStl NAilllS tkHM ASSEMblAGL PtimLHS ,

total CUNL AX1AL off5t1 : 0.58447 (58.447%)

O I 2 5 AX1AL bttSLI lbN ud Adh alJ I S AND ION iuAORAhIS d tl 6 I 4 3 7 [

l 4,

8 U.59221 0.5 tid 21 0.51950 <

0.56656 0.59504 l 0.5F611 0.56741 0.57660 ' -

e c i

  • 2S ,

n j 4X1 AL Of f 5ti MY OCT ANTS I 4 i

, n 5

! *  ! , 16

) * '

l 0.58791 0.57132 o.59050 0.59303 1

  • x o.51611 v.59111 [

~

0.47545 0.5T115 '

O O I O.

O:.

9

]. . . se -- *pv M ' ~.3 . 't O. . < ~ r e .1 .a . >:, m ps w ee j

O 1

er l

1O l

Page 2 of 4 l

l Figure 11

.i Axial Offset Ratios and Tilting Factors - 3.5%

i O i O l

o t

( ,y __ _ _

11Lilta F ALIONS t NOM A bbtMtiL Abt FUntH3 tUH thilHe CUHe lit Ibni

.. .p as e e =g g.-, 4*.

(~

, a2 5

    • * -T!l. TIME F AC TURS F ON GU ADet AN T S AND FOR WUADRANTS 5 6 P OR tNTIRE Eastt-teticalf - "
  • P - .T ~*i - - -
  • E PwatWTevv %? 1 -

, p 4 3 7 0.9814o 1.01720 0.99075 i

"" 0.99509 164129E ' <

'44VT?'dt' .L ' * . .W' Nfl50er M 19'*Jt ra-

!- '"'"  ! *"'5'  ! "" 6' O~.

, . .- yyer - cy .v .

. , , g g ., , .

a O',- riuin6 c ACrowS tow oci A=TS n' ^=

o S Pow enviwt. towt utioni 2 76 ' ~ *3 *.R ' f '*' ' ' ~ ~- ** M

!O .. o.97ss2 n.uore, 1.02651 I

c.98931 ..wy g-gypen i --- -

. x m. . . me r . 33 vespyrr *w t v .. .m 1.00080 0.99554

!9 t

1.00102 1.00225 IIL11Nb FALIUH$ tOH 'JU ADM Afs l 3

' FHUM L ALOHt. Ot it.C TUkS

. ,r ,a ~. -
z. - ,  :.; ac ,- .,-

i 1.S 575 1 776

O- o.. sis o.33.92 1 . r. - . . , - - . . , , s , . p ..+ , y y g-

. g ew , ....< aswo 1@

i

4. ses;r s -

,m n < ==wn" : em-wNafter;t.w.m i-m *

<:wB M v **m19 N .* N '*J4eE *E!

O .".

ummme=< c., snummw c w.

o? ..

m a- ,. -,+.p.71.Ter.t***E N P'* N $ 6 07 ..

l, - -

P e '* - ,.ny...., , , - . -

<+.w-w e.e<rwwwpww;,w g y i

1 Page 3 of 4

(

5

< Figure 11 f Axial Oftset Ratios and Tilting Factors - 3.5%

(

t

(

^ ~

l

[

11L T it:G F AL T ORS F huh ASSLMbLAGt PUnERS HY LONL UuAURAI4IS

.** mx r i

  • i tr, + +.. r y i

! (

I2 5

' TIL11NG FALTUN3 FUN UUADNANTS AND FUM WUADNANTS 5 6 FUN TOP HALP UP GUNt, i s er W "+ ' * .

g 4 3 7 t.S6216 1.bb949 1.Sb490 P

1.57579 1.615e2 *

-i - <

  • n I.$7760 1.SeSc3 1.S7918 1 2 S O TILTING F AL TONS FOR uuADN Anis Arad t UN QUADNANTS H b Fuk BUTTUM HALF UF LUNL N 4 3 i

. cf.

g# 0.40u17 0.42401 u.41061 0.41139 0.41003 t -

0.42429 0.41275 0.44409 . , . . . .

, ()

  • 1 . $

r TILTANG PACTUN5 FUM QUADNANI3 AND FUM WUADNANTS O 6 FUM IUP HALP, nuMMALAZtp ***

  • O
  • 5 '

i u.48630 1.01519 0.95165 l P9+ 0.99641 1.01925 -

T I 0; ' " " * * **""' "*"'

l i

m, . . # ., p . -- . , r** - - + -- .a - m l g i 2 5 i

TILi1NG FALIURS tun uuADNANt3 Af40 F UM WUADHANib M 6 FUH BUT HALF, NUNMALIZLD 4 5 1

m. .,e ... < y 3.q w q..mp- < c, . .sp,yp. n. s onmr -

0.96304 1.02251 1.00259 O- -

0.99004 0.95616 1.02106 0.99350 1.02060

- mesupw - = *cm e m. -ta . w + nr: sermm3*varsneeuer. wm es *<

9 .,. ,,

N .e -tgg>g e q* w ,,,, .. .. - numy,-i w w.,

O.[..

. g gM

  • rd 3 ggsy ^

E Le ug 'e Ihg ,h TW'4 Y NW'W 4 O\.. \

es ,pp

  • e , ef W '99ft) W P* % #f3899 % pm.

Page 4 of 4 Figure 11 ,

Axial Offset Ratios and Tilting Factors - 3.5%

,y .- .

~

l it. I ll4G FACistR5 fHOM ASST.MBL Kt PunLHS tty CONL OLIANTS

' ~ '

23 '

TILTING FACions Fuw uCla413 1 4 fun TOP MALP OF CDWL '

  • 5 o

I6 1.57944 1.63526 1.57B13 1.59478 '

l.57FOT 1.55129 *

? .

e 00 hj , ,- .

N TILTING F ACTul+5 FOR oCI A:els 1 4 Foet duil0M HALF Uf CuHL '

s n 5 -

j =

'l 6 ,

0.40116 0.43406 ,

0.39419 ,

0.41176 , 3

',.42369 U.40230 -

+

. s

+ s 4

s d 3 IILilNG FAL.IURS FOR OCIAN13 *1 4 t ua luta HALF, NHHMsLiZt.D i el 5 l } 76 .,

- 0.9757J 0.99453- - .

0.99b83 s,s , 1.03205 ,

! .9.99o00 $ .

1.00650 -

) ,

0.99533 U .V'd t v4 ,

. 23 a

IIL T ING F At.1'sHS F OH OCIANIS 1 4 FOR bui HALF, NOHHAll2tu '

a $

.. , i.

- . - . . . . . . . g

. , 16 .

  • r 0.96067< 1.00537 ' ~ ' '

1.019:41 0.9#.815 1.02275 1. 01 n 8 6 . , , , , , , , , , , _

4.0 Power Escalation Testing McGuire Unit 2 Cycle 2 Power Escalation testing started May 8, 1985 at 0530 and was completed May 24, 1985 at 1600.

The unit experienced a manual reactor trip due to the loss of both feed pumps at s8% reactor power May 8, 1985 at 0647. The unit went on line May 8, 1985 at 1655 and began increasing power at 2 1/2% per hour.

May 8, 1985 at 1905 the power increase was halted at $12% due to secondary chemistry being out of spec. Power increase at 2 1/2% per hour was commenced May 9, 1985 at 0058. PT/0/A/4600/02F, Incore and NIS Interim Recalibration with a QCFM was performed May 9, 1985 at 0630 because the excore tilts on Quadrant 4 were $17%. The limit on excore tilts is 2%.

This was believed to be due to the replacement of the cables on excore detector N41. At 0900 May 9, 1985 the power increase was recommenced.

The Quadrant 4 excore tilts went from s17% to s3% on the lower quadrant.

Reactor power was at $49% and holding.

May 9, 1985 .it 2154, while attempting to reduce power from s51% to 49% the turbine load decreased from s550 MWe to $220 MWe and reactor power went from s49% to 20%. The turbine load decrease was due to a loose indicator plate on one of the turbine governor valves. After the unit stabilized, power was increased from 20% at 2 1/2% per hour.

May 10, 1985 at 0230 the interim recalibration PT/0/A/4600/02F was performed again to try to make all tilts less than 2%. The excore tilts went from $3% to less than 2%.

At 48.4% reactor power, Core Distribution, PT/0/A/4150/02A, was performed to verify the core power distribution technical specification limits for operation at 100% power would not be violated. All acceptance criteria for this test were met. Table 6 and Figures 12, 13, 14, 15 and 16 give the results of this test. .

After performing PT/0/A/4150/02A, Core Power Distribution, power was increased from 50% to 80% and PT/0/A/4600/02E, Incore and NIS Recalibration: Post Outage was performed during this time (see Section 4.1).

Power was reduced from 80% to 55% at 10% per hour on May 12, 1985 at 0016 due to "B" Feedwater Pump control problems. At 0426 on May 12, 1985 the problem had been corrected and power was increased from 55% at 2 1/2% per hour.

The unit reached 100% Full Power May 12 at 2302 and the remainder of power escalation testing was completed after reaching equilibrium conditions and is discussed in Section 4.2. Table 7 gives overlap data for intermediate range detectors between 3% and 100% Full Power.

29

t TABLE 6 Core Power Distribution Results.

48.4% Full Power Unit 2 Cycle 2 Map FCM/2/02/005 Date/ Time Map Taken 5/11/85 0212 Power Level 48.4%

Cycle Burnup .89 EFPD 34.93 MWD /MTU Boron Concentration 1119 ppm Control Rod Position Control Bank D at 215 steps withdrawn

1.5931 at Axial Loc. 10, Horiz. Loc.

Maximum

Maximum F : 2.2743 at Axial Loc. 52, Horiz.

9 Loc H-06 Maximum F : 1.4915 at Axial Loc. 50 Z

Maximum pin Fg 1.3909 at Horiz. Loc. E-11 Maximum error Fg (from predicted) 9.45% at Horiz. Loc. B-13 Maximum F /K(Z) 2.4019 at Axial Loc. 52 Maximum % Reduction in AFD Wings 0%

Minimum % Margin to AFD Wings -42.1529% at Axial Loc. 52 R,,, (Tech Spec 3/4.2.3) 0.809 Total NC Flowrate 399529 gal / min Total Incore Axial Offset , 23.847% ,

Incore Tilts %:

Upper Core Lower Core Quadrant 1: -1.1840% Quadrant 1: -0.9890 Quadrant 2: 1.406% Quadrant 2: 0.577%

Quadrant 3: -0.5840% Quadrant 3: 0.065%

Quadrant 4: 0.362% Quadrant 4: 0.347%

NOTE: Axial location 1 is the bottom of the core.

Axial location 61 is the top of the core.

l 30

l

[ # c '

l j ,

It j

e i  :

i O *

' i

^

3 D- I

, .az - ( i j. e. 4 l

o3r - -

! ==om I l

I Du. J 5 N f -

y g

  • f 3 4

i e p t- e 6 . e e # i

  • j > ge=e W 88kC h4 , t i .# P ' e I

E 4N95 %.=Cpp 48tf 7 4 4 997WMC.et W = A P OMM N C P ==O CP**@ 7 # C Pw= O 0 90t* 7 C 4 Cu> a et .J W O#9 4 dSNN 3 mot > 3po t P OM 3 7 3 49 0 3 4 4 NeNA %% N#9 =W P %9 ? O N==== N C AT e w W 7'S 4 N W ery 3 8 Op** W9 9 )

1

, El'n% eeN W -W-e e .mM=S#e(r39 4 m%4 =% W.=e meeNP=

e W 4-%4 t o NeeWD 4M W~ 4 W-=Ne4 N cOrN988Wm = P C N o NNWP - > =Wo C eo eeoeeeeee e a f4r*o W 4P%

> 4.-O "4#9 emonU zu,m N e..a =.? e# O O J see e4 eeeeeoeemeo eeeeoeeeoeee **eeeeeo eeee***e e o e e e oetypreppepgpyyne% ,

eeee e 3 3 aJ O S W D eeNP e*MNMA4 D e*OS O P > e MaPM W p e% p De 3 3 3 0 i aJ> N egg y E 4 thaw #5%AW W W W W W CW@#Wl# W WrtA@#the@#@#@ ed 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4444Npermer*P= P= c Cac 's 2 048888808400800049880048888884040808800 005888488058809100 i 8808 r a

yy o 8' ,

to 3-

,e 2 H *

  • A ex a. -

N

  • O M88WmP=N8M O TP=e 3 4 P e*#E NM9f4Aa 49 4#4**P***.e4 ?8t WA O S.e C @ 3 0 4 W 39 33 3 300s0 m CO wl, M 3=mm Pe MAP =ce.4.@P=N 9. P.Gec l O O ese T

A E=e D 32ftpt W13 AAAPm 4 OR JmWonNNNe@ 48W 4,=p'm Os 33#3o 3%N1%>.S PW @=*e seO N3434eome>

Pr==.Na cNNN.=

p g scama

= %>wm c p=== pw. PW= Se 4 4 c 4Np*p 4 N c eOPc39#N=3P*4 thee *'ieN%e P=== 4A e? ytfgp 4%SC p p Wm.ptf w3een 3A4 ?j E N D88t>

N 4*N W NS$*WNN p p pefg  ;

e l 2 De guneeeeeeeeeeeeseeeeeeeeeeeeeeeeeseeeo eeeeeeeeeoee eeeeeyeee B= Ad.se8W98FM W # # W f8M W W W W W W W W 88tartM999 Mrem"6ffM9"'Iprl=6a8M58M*8 MEIN M*pfMarM88 Mart W w FW W eeee - 3 p W W Wee # J '

x 4 E

3 x e

y *W 3033393034A39@fCDMC WOO 3MfACe3=#OM r 333o

  • t

==4

=e e O *= +3 e 3 0 3 eO O 3e 3 0 7 mN 9 4 N 3.P.=3 4 p O O4 7 =.NN Oa= 4 W9.2 = 3 9 47 N e Cmm/

8=#.OO=99Wam 4 4=9 0 J e=9 0 e 33 3 3 3 3mo ( gem.

  • .A*

NWO O 3 0 3 9 3 0 3 W CP= 4 4 4 4 er=> .eart tit'LN49 C J' ? e t DC e 3.e NN9*'INNNN Nart Mam ?on#Oe333 .tM 3 3e 33 3 3 .,3eo y set i*

J O e4 .: 3e 0 : 0 3e 9e 3 3. =e .S O O O 3 O ee

=W ee. S O.3.=.=.=.=e=e=.=.=.=e=.=.=.=e=.=.% e eN N.N%

ee N.N e NN Ne N N.Ne e N s NM.99 ees 0 9 e3 3 3 Ceee3 3e, k". . u= sr,o u- =. ee. .eeoeeem=.e=.e .e . = .e = =eee = = .o .e e e , .e e Un .,J 6n N 1 l {r 4>

h.
  • i
n .a

-ea

. I L; w Ja ;

4J Domm NN9? te 73?O bw amwN%NC 9 2WP T?@2 33930 30 3 3 33 33 0 0 3 3 30 3 3 30 33 3 3333 i 4 44 3 g="*' 330333e333 J%

g *Ns=#2W 4.* 7.W*

C C7.te9 P aW* 4W PWNT7 A  % A@

> N A7 h4 P4N47 Ca=%P=%

k? N em > DN DO T hC 3 3?3?e 3e33303339333033303330333O333 3:3333O:33O: 1 33333300 'g% .=g D W [

g:a mucu~ereterererecerece?eteterese303e=O0o3000033030303030333 gm oeeeo eeeeee eoeee e oeeoee eoeo eeeeeeee eeee e eoe e eeee eee eo 03=3 eoeo p-4mE o -

gum ;

3 O 3 O O O 3 O 3 OC 3 O O ? C 3 0 3 3 C OO O SO O O O O == .e= .=.e .== m.===.e.= e e.e.e.e e e e == =.e.e e or @ me */:

0 =4 g J = M a ll .

744 e 3 e We N P E f= e= . I et=.J N O JJ * =8't N= 3 N 4 7 9= c N? > M a c t @ N=o e*= a c r'-O N c == = > 3 co == c e r c e A 7 N rM 3 e t e r's o  % 7 7 =. .= 4 a t

m. r/J 7 4 4. 3 ? P P 4 C r*Je# e W9N p o d e t' art; w d' ea'= 4 T W ===== c r e Osw a t.e.N e r ? > 4 4 9 9 3 % 2 am e ==== P. 4 3 9 Per@ 33

.s s 3 > 2 % F% C 9 N 9 4 W h % A N10 ? e ==.e 3 D A O ? % W W 9.* *3 A.* 7 ? ? ? t % A N P N D ? r == # e 3 % .e e 3 7 t N C . 3% *JN W O 4. M Q WM y

3e3=9#NPO3=NNNNNm37303??@C%%N%NJ4CACWT77WWe9NNNNNNN======w30 kgneeeo e eoeee eo eeee oeee eeeoeee o e ee eoee ee e o eeoe e o e o e o ee eoeeeo PNe@

e o ee

=W q =Y 4Z6 3 a 1 d. =*== == =NN N N NN N NN N = NN N .* =.e .= = ===.* == == = = = = 3333 .Jy s o gg4 N e= 3 M 3 ku3 '

5m,h e +

J v ow%%4-

"3 e No C3 J= **eWm

@Z >%#4 4 M.4.n 2 .e mM o ffj O mg 3 y M3 hA W4 *J 9C 9?NM 3: 4 TADA OD= 3 0Z 2 4 e9#N se* N W

.* W Nr 4e===%@%@?

N 4 3.e 3 7 ? A = NP=

S e 3C P 9=P 9 4N? 3'* NM OCP 9 3N=r e r @m Naa r t 3AJ* DN#

  • C 0O 0 C 9=0==

N C 4 /N.=OcNe o ? A.% C =w 3 >a=  %

7CN7 =D la c w3 E e4 3 W P A C A C % #NT & c@% w O# 7 =7 4=9*W Nm ? % F P 7 A Ac e= 3 % N=N N= 3 ? C A=== 3 c ?3# C?a= JOm 3 yg =J E J E 4h t omNN94W 7 W U temeM99NNN===== 3 0 3 ? ? ? ? ? ? P 7 C C C D L C 3%%%%%%% 4 4 4 A 799N 4 3h e Q>3eee e o eo ee ee e eee ee ee e eeeoeo e ee eee o eo ee eeo e oe oe e e e e ee o eoe e e o ee o 6b M?N g 4 Z41303============================3303333333333333333333O333 3333 3 04

.n. J m3C

,: 22A30 3 n=J

.O. 3 g o.a. et 4U .a. 3

.mI 8=

i4 % $D O "' E e L L 2 4 3 4's

= = = * = O2W w3 =.I

.e 2 O3V? O.3.3# 4 4 # 4 4 4 = N.e=NNN.NNN.N 303c333 .. . . N.N.e N.N.NNNN.NN NNNN NNN NN NNN NN.=.==*p#

.= :330333O=33333 . 33 z tt a= 4 e 62 :J8IO488 I II I I 4III40 0tI8II4 IIeI8 II I I I I 68 I 4 4 4 5I eiI tt i B I 4 680I4 48I8 4.**

eJ = .J O 3 3"3 Z E"3 0 % .J JJ.J O 31 & 2 O E ". O

  • 2 O = 0 0 0 J' C C O E T f I E O C Z ." C JaJ J J.T.nJ JJ.J a. .J .J.J J.Z 3 e4O u O m .A. DEA =W q a4 2.a e g 2 WJ2 1  %.
  • J4 1.T..J4.E.N Y

d d

.J w 'i

  • 3**** ** =9 =m999 7 7 e t D 5 4 D D & 4
  • D J 4 0 4 : 0 2 4 4 4 % N NN % % N N % N % % % % C 4 3 3 4 4 D C S 4COC ~24s M DW3*4C49Acer@p===N%%cctractrertCCECEC33333330333003==NN===== ==== MW4 Um 33 4 4 =I N9 99 NN WN NN N99e8 Mart e W 3 5 4 3 3 C 7 7 7 7 7 7 7 3 7 4 7 7 7 W 7 3
  • W 3 2 7 W 3 7 M " 9M9d' 9999 4E= od 31 31M1N m' = G. (n M3 TT *L 2 4J.J 20 J

' O Y 4 C ad=J 4J W4kTZ4M

  • =37D%4PQ*N=37D%4?W*N=OTC%4.*3+%= ?D%4P3*N=O7C%4?3*N=2tC%CP 39N= J>EL==
  • dS4?PfAPPP#P#397%:4773W99e9*9=9^+NNNNNNNNNN=*======== 44O 2 1
  • NJAOW l

4=43=>

g 'JZk= Q

3 3 V1 2e J E - e-.2 =3 1 E J ;D 4 E Z Z.n.i 13 4.23:2Se 3 E is.

. e. .E..E. E.1 2MMmKEZ 4444333 eJEEEMEE =~

J .

VathJdJ2 M 3 4 Z= EII"E

8

I

_ _.- W' - A

. - - . ... . .~ .

e' e e' e +

~ ~~

D O e e e e e e e e e' s e e e

Figure .3

) Highest Values of Enthalpy Rise Factors - 48.

  • Lestat Utftsfu* wui (UNIT L13u deCvCLE2j/ug)
  • %d 2/C _ _ _ _ .

MEASURED F30sMN J3 NOReasiltD 70 TECM SPEC LIRIT?PDR F8uCH TO Y!tLD R1 en 15 Lu*ra es le ftL= 5e6 alf it 1.uubu e thu!LATLS v10Lallus ut ActaL A' set C S mEaSupEMENT uhCEnfa{Nir FaCTOW IS INCLuutD 19 NQamaL12ATION AND 7MUS NOT USLU 14 TECM SPEC COMPAW13uh aatsu ut eclutt v s ..t = la , arty ee..tn. v s 0.404, 80 M14MEST WALUES OF LNIMaLPy R!st FACTU93 AND COMPAs[30NS n!TM TML TLCNNICAL 3PtCIFICATIONS tett nsa. ftQn avtL wawulN bk0tW ASM. LOC. F3veMN W1 01FF. FRaCf. WIUL.

I $1e E=ll 1. 409 0.0065 0.19 4 U.43e9 4 sde t=a4 1. 911 0.svo$ u.19 7 u.dev3 3 325 E=nd 1. 871 v.5065 0.19 7 0.2403 e $se t=ad .sco5 u.cs)* b.4941 u.eeve 3 }&w Lalt .3e43 v. eve 7 d.1943 u.2=ce o sc s 6=us ,.3 eve u.evde s.tvio u.a 33 7 378 U-11 1.3193 0.0048 U.1982 0.d472 e 31/ t=ll 1.3/au u. solo a.lv99 U.cece 9 344 L*ll 1.3117 0.1913 u.20d7 C.dse?

.J 3t3 L=s3 1.3e18 v.1431 a.cuev u.457e

,1 381 a=ut 4.3636 0.7v26 0.2074 0.d617 2 adv L*64 6.asal u.7 eve u.4196 v.doo?

v.154e 332 L = t' s 1.3301 u.2100 U.4007

.A 333 t=ta 1.3375 9.7e41 u.dtu* u.ge73 15 31e E=us 1.3ees u.7e39 0.2161 0.4757 to als e=s= s. Asis u.7n34 0.211U J.d!!2 17 Sde mit 1.3ees u.751) 0.21mi u.4796 le $31 aatt t. seed s./?t3 1.21e3 v.dtke 19 lie h-11 1.3439 u.7 ell J.2189a 0.2602 gu ses 6-s4 1.3e1e o.tesa u.22s u.2 ego el 321 t=C5 1.3108 0.7 tee 0.d23d 0.edi3 ed 4.2 64 i.23 e v./I)3 v.ddad s. dew 5 g3 e03 .e=u2 1.3322 v.7/se 0.2256 v.2914 ce ese c=le 1. sto s b.7141 s.dtiv S.ew32 25 es? e=14 4.349) L.7 tov J.2291 v.44/1 de $we s=t. 4.sedi v. lose u.4312 4.Jou7 27 327 U=05 1.3225 0.76d7 0 4313 0.3008 se 33J os3 1. add 5 J.Foni v.dal3 u.3uve ,

a9 333 u*b5 1.3240 u.Fece 0.g316 u.aule 30 3v= salm 1.3dw7 v.76/1 p.4323 u.aute 3 274  %=ue 1.3079 U. U.23v8 0.315e 3 13v c=se 1. 6u 3 7 v.l602 isde u.seuw u.alo5 3 233 n=.e L.Juee u.73e2 v.2 ele 0.31e9 3e e o r ,e 3 3 ale u.73er u. el3 0.3435 35 493 Pabe 1.2999 0.7556 0. 444 0.3435 36 led t=tl 1.d930 u.7338 u. 409 v.3dI4 37 dat J-us 1.2930 1 0. 409 0.3279 18 (de J=.4 3.dw5u u.73}u 142 0. e70 u.3d01 39 lee u=11 1.2911 u.7504

0. -0 49{ 0.3319 6s *I= s=tl 1.dwie u.73ue 0. eve 0.3340 el wie c=ll 1.tvle u.7508 v.249 U.33d0 e2 47v v=s3 3.dce* 7ewd 0.d5J 0.3337 e3 485 P=v5 4.de99 d.7498
0. U.250 0.3337 4 4_ _ 1)*__ L-11 3.ded4 1.ge41

_.U.l442 T493 4 43d u.ddu7 W4 4*>

v.Jae) 65 3== t=3e ee 140 tal* l.dend u.7edo 0 u.4540 v.3370 47 3u3 J-il 1.dece u.147e 0.2522 o.3372 40 3dd u=ub 1.deel 7470 v.2524 U.3317 49 stw __.t*we 1.29eq u.7e7*L.__ _ h d52$ ud3Zn 0 e0 L=ub 1.2est u.7e7e 0.25de 0.33et es u=to 1. u.7471

v. u. 3/4 0 33en 06 J-11 1.de52 48e4 0.7446 0. 534 0.J395 5 v3 u=ud 1.203* o.Feo) u. 337 0.3e00 e ese e=ow t. 622 U.7453 0.2547 0.3417 5 e39 naud 1. ett u.Te52 0.2346 0.Je19 6 300 E=09 1. e20 0.7452 0.2564 e.5419 F Ase u=i2 1 u. tees u.4554 u. sere 58 277 n=ue 1.<ete.2e12 u.leel 0.2553 0.34d8 59 det n=se 1.tato Teen u. 35e 0.3e30 e0 301 E=09 1.279e u.7439 U. 0. 561 0.3442 el 43 L=ce 1.g191 s.743s u. Se5 u.3esu o2 is Malu 1.d70u 7e28 0.2572 v.3ee2 e3 So L=uv a.2fie 0 7ere u.gs7e 0.seet
c. 0.3648 l 64 27 L=09 1.2774 u.7425 0.2571 es se r=ud 3.t770 u.7443 u.2571 0.3412 66 Se F-10 1.276d v.7848 0. 582 0.3461 e7 54 r=ue a. /=o Teuw 0 191 0.3494 68 48 P-11 1.g(745 c.

(.7488 9. 592 # -0.5499 . .ai. 7e ce two mano 1.2145 v.7340 v. eue u.3540 i

i 70 358 P-11 1.2721 v.7393 0.2006 0.3524 7 d23 G=ll 1.devo u 736u v. du 0, 53 -

4e 7 10 R=10 4.2694 0.7316 0. & - S. 55 7 4 e u-11 1.eeve u.73re u. ees u. 55 7e e5 o=1l 1.2e92 7377 c. 623 v.3555 75 37u n=id g.dee9 6 v.7370 v. ode 0.343A -*

.- 76 304 4-0? a.2606 0.7474 0. 626 0.3541 7i ecd Pat 5 1.Joio 7see u. 032 v.35sl 70 set J=le 4.2674 u 7367 c. 3 0.357e 79 eed J=le 3.de7 u.73en 3 u. e 0.3}i5 80 399 k=08 1.2 e t)r 0.7363 9. 7 9.3352 4F75F?

s W G h A=s.:5

- .w - t 3 .f J=~- " * :MWEdisF *

^ 1 t=W's3 h = . 'a6 - .?*- .- Ahan.EW %.CLV.k uw '.a w :.. * '~ " ~8 " *'"C"~ -

32 1

humr: -v w . :.x - - - m muse W> m me.W __,= - c  ;-; ;=== m

s -

' i # E .

=g' (

t g e . g V s e r ?w b s

5 5 e

? ,

e

=

f l . E i y

V i

i e f p  ;

e -

r r.

t r  ;  :. y ..

L 3  ; 9 g .,  !

e . .= .

g l A e

. , a i

. . E e $. f.

o 4

r

(

, s. ,

'

  • I p. == ee pm 9 g kM i h *.

7 f

b i

l- - t e. e ;N e N 4 se g e p > .a.

[

ye g a.s a. <. . e. s .

. e. o. .

L y i O O +O e O O e 3 .

f f- I h e t t (3

' ,e e O' e ;4 e C e e e i e I C A W= P iN es 7 == == pm A*- 5 e m P m. p f P

  • 4 4 S = =

9.e 44 8-

  • l ee

. *O e .e

= m-o O

e 5-e b -

e e O .-

e p

e e Oe

  • ( y 3

, L 5 i

a N

i 4M 56 42 e N e ~

w .~ m o.e;. e tp  ! & I

. k.. e i4 e e e ** D e O e p g l

. Er c *

.'Se. g M 4 g P. 7 p e 4 -

ee O. e. e. ee e e. .e e e p p O M = O 3 0 3 O 3 m O' O . >

t i .

p ,

ae e m

o a

e me

~. ==

3 4 4

7 s

N een . ~

4 .p e

p e

3 am

<;c N O == m m. == = e > == N == =e p 8

== e e e e e e e o e e e e e r 4 E a a w = = 3 0 3 m = m m. O y ,

3 K v g

~* . e

  • O M 9 N 4 4 == e  % T '} 4 == t an. 4, we e U C 7' W N P Pe N 'S & = N O 4 me N fc t .'/

@ M =* 4 ** 3 N N. =e N & .e N- en N N O =e e Ve

-O H =< -e e e e s e. e

  • e e e e o  !

Q.  ! =J 3 == == m = = = .* f == 0 == = = .es =e., == PC ( g-i 5 b - y  : -

x  ?

x v N m er o -

L T O 3 e N P et N 5

&~ 4 a 3 N m 3

= G l ~@ e # c 3 P= p *: O p r-

)*

=,

e o ee y e N. .P. f-e ee - =* o.

e - pe ab. Sam n

e 2.

, =e e e no

=

e e e e e e e - e 3 O 3 et === == == -e == == =e =s 3 3 3

] C eJ 2

0  ? K

  • 4W = Q O e A e =1 N N e c e E m e m ==

" 3 L M A 3 O == @ N e N 7 3 O e N ==

b P == r P N == == P so ** N P S == 7 0 O J 3  ?. . e e e . . e e e e e e e o k 4e Z O se 3 O == == == O == *e == O 3 =e 3 3 >=

29 Th  ?

32 O A > 4 O N N M == 7 7 @ A O  %

w k e e c y A O a3- 3 N e O r e  % 3 e O 4,J NN 9 7 IC P= C 7 ** 7 P*  ? = 7 C Pm C C Nn O e o e e o e e e o e o e e e e g O 3 0 3 = 3 O 3 3 3 4CJ O 3 3 3 =

e 3 J%J UN4 +

> J D D 4 9 == =e =e =* P b 3  ? 7 7

,J UM3 s O = > 2 N = 4 3 A 3 O N m =

C eTE N 7 = C e = = = P = a N O c a  ?

H e e e e e e e e e e

%EJ O e e e e e

== O == 3

=M M 3 == 3 O ** == == O *e == 3 n m n

-8 4 Q N

% 2 3 4 3 m m  % D F 7 7 b W  % 3 3 X N em v p 3 4 P O P 7 N P D 3 D w 3 4 S 4 C == == ** = N == = == -e C P C u a O e e e e o e o e e e e o e e e n = 0 3 3 - - = = = = = = - 3 3 3 i

y 0 I e4 2 m U **

i == # 4 3 4 4 @ P= W @ O 4 Pm Pm ==

U  % 2 7 to  ? O 3 == == O N 9 D N == 3 0 Z C W 4 O P N == N == N 4

- - O e e e e N. . N. O. e . e N. O. a. e 1 == .e == .= =e - - =. == 3 s 3 .e 3 .e =

as J

== 4 4 I @ == == N W == O 8a= N  ? N 4 A 3 e- C 3 @ 4 m == N "P O  % P e we

.=. e p == == N ** @ S C N N == == 3 e e o e e e o e o e e e a J O e 3 == == == == 3 O 3 =* ** == ==

2

=* Y 3 3 P N A A

  • 2 s e D 4 P D  % C P

.,J .n N O O == 2 n A O  ? 4 4 4 T W = 4 T O 3 7 C P'm T  ?  ? == 7 C o e e o e e e r O e e

=e e

==

e O

e 3

e O 3 3 3 == 3 3 3 3 J

=

4,)

.* D Pm & D  % 4 N A 2" M M a e 4 == == N O e O O 7 C N @ @ =* 7 .= S == 7 == 0 4 e o e e- e e e e e e 2 O e l 3 == O == 3 == *= 3 i O 3 3 ==s l =e 1 < e

< ~ - > e --

P a l .J  % 4 =* O N a = 4 C  ? e  ? C 4 i O e e e .o e *

  • l T o O 3 e 3 3 3 l

< [

eJ J .-

U 3 4 Q J Q W 6 0 Z 7 3C J E Z L g 2 ,

l Z t' s F t _

E i L e  %  %  %  %  % g

r e I L 4 L

D l

e f.-

l I C @

f f.

4A O

$ i F

b *

(

l ae O.e e Oc of N '4N  ;,0 O ~- O  %.

e O. -e se O. e .

2 I

f OT Om O O 0

eo 0p 9 '

O O .

i f.

g ,

i .~

r

. a.4 N .- == O S

O mee..

O 3 or

%i e' y.

v e e O O Os O O: O 3 0,; 4 s

, e e. e , e e of e e og ft e O W *e s

). ,no Oes O O or O O ;.

4 0 0 4 0 0 0 04 * ', ,

' e

  1. A W @ P  % > (" N 4
e. -r i

m N N we O .* O O . g I

e- O AO O O O e O. O I= O O O

(. e o e e e y e ge e Mp q

FR e

, O 0

O 0

N O 0

9 O e a- o. o uO*

k Ce O$ 0 O

(

da a.

g-d - b@ e. *9 M' am

@ 4 e

i N g?, A *@

O O

.e

.=

4 g-ag i

p + e

% W p4 O s-  : .e

?. O 3 31 O '3 e o O -O 3 t 0

d 0%

e e ,a e* e g e e o e be e- o .,

en g 8 f .#

O v0 O* O 3 e O O (j o DS O D eg=

(

i .*

J B 0 0 a, 0 lI O fL {, ===

a a N 9 t0 m '. p O v2 3 - 5- m e o 4

  • - A.

% 5 w > e.

mm 4

=a ee *9 N D O 9 #A N- 3 fN 4 ==e . .e o O w O O 33 e O- O 3 3 H w l m m

3 o

O e

O s

9 e

3 e

o e

3 e*

O e , e a e Se N O e

3 o e na p s.e 4 n 3. O .3 3 0 3 *3O $ 0 0 0 . - 7 e t . I- O bI '

O O e' b . c' 48 3 p

m, o .-e P t, e -

b .=

w N e .' N- = N e a

N.

m- O

>O 8

>+O W N N O Of O m N N O .=

  • 4; G 3 3 O 3n O O 3 0 3 e O !p3 e g w e e. e e e 0e4.e*. e - e 2
u. en e e a O h, e

O 3 0 3 e 3*' O 3 3 3 O 3 D O 3 H

I 0 0 0g ,,  ;

ew - u - - , , e - . . O - - N. . .- o e N .. N N N N- O 3 3

""* 3 =* N N 3 N N. .e O O O 'O

~

A "l:

E** = P 3 O O O O O O O 3 O 3

m. m e o e e e e e e e e e e C4 4 O e e e O O 3 0 3 O O N ==*

W  %"

3 O O e O O 3 O O Z l") M > 0 0 e J cc W @d O  % O e ** 4 O

  • C N O C m 9 3
  • O C 4 O mow N N N @ m N N g m N M w e m = I NW N% 3 O 3 O O O 3 O O O O O O O 3 w 413 e e o e e e o e o e e E y NO O e o e o O 3 O 3 O 3 60 3 M34 3 O 3 O 3 0 3 O O 0 I g JN 0 0 Z ==

U N "I e N # .* 4 e == 3 x

> > J e m & 4 .9 ==  %

e A

m 9 e e O = = 4

  • UMW D N # @  % a N w O O O 3 m K U oZJ > 3 O O O 3 0 3 O O O 3 e e e e e e e e e e e d t'3 NE: O e e o e O 3 O O O O 3 O =

O O O O O O 3 o -

x - O J' E A 4 e N 4 A e c N O N 4 3 # O 9.= N O 0 3 N N O ==

3 A 9 as e N .= 3 O O O 3 3 *

  • . 3 3 3 O O 3 3 O O O 3 o e e e o e e e e e e Z O O e e o e 0 3 3 O O 3 O O 4 4 O 3 3 O 3 3 3 x < = ~

N O a N ** O 4 3 J e. en .= O e .= 0  ? ".; ee e so '6 =

  • 2 3
  • N .e 3 .e 'y .e 3 O O O 3 0 3 O O O O M 3 3 J W 3 O O O 3 e e e e e e e
  • J O e e e e e e e e O O O O O O O 3 O O 4 J 4 O O 3 O 3 4 W I I I O 9 0

{

I e @ N N e w 6 e 4 3

e.

== O 3

em 3 O N m e N .o= .e* e @ 3 W)

O 3 3 3 0 3 O 7 O 3 O 2 M

  • E W 3 3 e o e 4 3 o e o e e *
  • M *= O e o e O J O O 3 O 3 0 3 0 3 O 3 I Z J 3 0 0 0 0 0 e

= d 0 l

O P 7 m  ? 4

  • m n O 4 7 N O m o o O m N O 3 @ r @ o a u n se -

O 3 3 3 O S O S -

I "" e9 3 3 O 3 3 3 e e e e e e e e o e e 3 3 V2 O e e O O O O e J O 3 O 3 O 3 O 3 3 9 0 0 0 O

& 0 O O O e a - m .* m o N e e .r.

.= 3 0 3 O o m.

p e. e

= O H N 3 O D O O O O O O O O JE O e e o e e e o e e e e a x 3 O 3 O 3 O O O O O O u

1 0. 0 0 3

  • 3 0 0 0

.4 l

z o ~ w < .

l x 4 * -  %

3* 3

.J == -e O =* O 3

.'" O O O O O O O e e e o e e e Z Z eJ O 4 4

> o O o e o O 3 d 4

    • I I O O O O E 1 4 t JLa J E
  • dE I. U Q and be. J Z "3 E - =d Z~ 4 y2 ,

l L

t 0 , , , - -

.ip

O Page 1 of 4 1

O Figure 16 Axial Offset Ratios and Tilting Factors - 48.4%

O

O 1

1 i

i d '- "* * ***

AX1 AL OFFSET RAT 103 FHUM ASSEMBLAGE P0hERS

)

TOTAL CORL AXIAL OFFSEI z 0.23any (23.847%)

a .

d 1 2 5 **

  • AXIAL OFFSET FOR CUAURANTS ANil FOR QUAUNANTS 86 4 3 i u./3/54 0./4234 U.23/91 0.23955 0.2M17
  • s 0.chn%4 v.23%nu u.23td3 23 ~

sn l Ax1AL HF F bt. I ed OLIA4(5 1 4 m l - l n S

/6

, . 9.235 % o . d es o s 's

  • 0.23939 u.24460
u.23972 0.23369 Q 0.231 % u.?3112 i

i i Ol.,

l 1 f

, O..i ,

n. : .. .

,.n.,. . ., m . .

. - - . . . . . . .: ...m._.,___,,_

I O: 4

-e * ,

g,. ,wg.pg,,m m m

OE

Page 2 of 4 ,

Figure.16 -

Axial Offset Ratios and Tiiting Factors - 48.4%

P l

I TIL TING F ACTORS FNUM ASStMSLAGL PUNERS FOR ENTIRL CORL HEIGHT f*J F r ** Laps e ..' t J.* * ** * '

12 S '

.'.'*** M ie:" r * 'i?"

I I L i l N L. f t t. ll)Hb I UH JU A68H A N 13 A14U FUH UUADHANi$ 0 b fuk t ili lHL COHL t1LIbHl 4 3 1 0.98690 1.01091 0.991833 ' - '*' ***-

1.UUt20 1.udans l 1.00350 0.99663 0.99/44

] . . . s. . .

23

. T IL i 14ti t At luHs p t H ut i Aral S I o tUH t o I I Ht. LuHL HL i bet I l 6 5  ;

e

  • Is n o.960#,0 1.01446 0 99120 1.00135 /

1.bol20 p.99530 v.99993 0.9949h I /

TILTING FACIURS FOR uu4DNANIS FNOM LXCURL DETLCTORS 34 1 1.22b9 1.1994 u . I l 9's n.192/

l i

g

  • l- [* ,&  ? g . O h, ,<

9

  • =

. , , t '.

,; i .- g i ,4 f.t * * *" r e .f' i9t*

Page 3 of 4 Figure 16 ,

- Axial Offset Ratios and Tilting Factors - 48.4%

,y . . _ ._ __ ___ __ _. _ _ _ _ _. __ _.__ _ _

, ' TILTING FACTURS FROM ASSEMBLAGE P0nERS SY CORE QUADRANTS

-?' * *

  • O?'+ 9F **1 **U' Wilt - -

t , s . .... . . ,. .. ,, , ., _ _ ,.

. IILilfab iALIOH3 P0H JU A DH Ars l 3 ArJu F UH uuADHANIS H b FUH T Ol' It AL,-,ut r LUNL 4 3 7

~

1.22380 1.25589 1.23485

  • 1 *-- v ' ' ' c= Evgurr m - . .

av 1.letin 1.tgebi

', 1.24495 1.23124 1.23407 a m y gamy .. e "t** w /*t W est m Jm ir misge gru wrear m *

' 12 5

  • "' IILilNb IAllOWS FUh uunUHAN13 AllD F UN WUADHANIS b 6 fuH uu T TtlM Halt Of LUNL T -? *MoengupwenM u&KM-74reggPF*"11Mrogiquepy wgm 4 3 O 75400 0.16593 0.16021 0.76212 U.7bd48 * ' -

s.76418 0.76202 0.76081 *~ -- "* ' r' * ?

  • F-r** A? T #wne -

1 2 5 7 * N ' " T SP '

illilNb tACIUHS FOH 'JU ADH AN I .i Alan t OH uuAuHANib ti en FOH IOP llALI, HUHriAll/tD 4 3 7 0.99708

~

0.98816 1.01406 4.  ; %.' P_ . MJJUN-r 1.uu50n 1.00339 1.00562 0.99416 0.99645

] -

es - .9 - r- -

, , m y w . p. .m y e.

I2 5 ilL11Nb fACTURS FOR i4UADHANIS AiJD FOR QUADHAfJTS N b FUH duT ' llALF, NuMMALIZED 4 3 7 ' ' '**'VW"*P N WAWVMM M '

( 0.99011 1.00571 0.99b27 1.00077 1.0019u

'; P* 1.00347 1.00065 0.99906- * * > 'w? * ** M71** *aw wm*wa twn;-<=

l w"* v3t1ryny.re ra*=p- w %g f.survivuur L- .

h . . '# hg*" **.j . * - @M+ 5N* p l I"M* . e ***M mr*WP'{ ; yygmyg y e' i

~ . -

  • r e .yn .gm ~,

m y me .- s-

O Page 4 of 4 O Figure 16 ,

Axial Offset Ratios and Tilting Factors'- 48.4%

O O

, p . _. _ _ _ _ _ _ _ _ _ . . . _ . . _ _ _

'$8sn'tMUseWBF N HWWI*WIWev4T1Mt,

' TILTING FACTORS FROM As8EMBLAGE POWERS BY CORE OCTANTS r* w ' ' B ' '

p3 < i <;y .,3 5 v= .=t=

g *; - er:w sengtWW*We'af *gquar1FWTmWT*

TILilNG FALIDks tuH OL i n ed I S I 4 FOR li,P Halt OF LOHL e 5

  • e . ; . r myvist9stwt.wAtw* ,m.w'M.M".3 tic * -

se r e.w T 3.?3591 t.25375 1.24864 1.231.59 **lerWWes "" ^ !r3"#N. 'tte;7"mPSW PWT **'WWNT W ~

1.231/6 1.23068

~ ... ,.5g yyy 3 -, or, , 3w.,g,3, ,.,g-r. w ,- , op

~ , t g, y..y e. O n* 3 TILTING FACICHS FOR HCIANTS 1 4 FOR BOfiUM NALF OF CURE ,

o S ^- &  % *>iv:asT**mr ,w .ita'ercy .

  • e q am a .

76 * *v-puest' '

1 0.74952 0.T7090 0.75o4u 0.1609S , , , , , , , , , , , ,

u Ich t e, u.165o1 0.16260 0.15903

.. ., v. .

~ 2 S 4 FOR I UP r1 Alt , huRMALIZip

.' me w- i l L 11 r4G F At tuws t uR OCIANIS 1g -

.i==" .- - +.4.g gwwzg yygg.cantys w'*

r 16 O 9I35W l*0l I9 W 6*'

,,3... 0.99794 1.01 m

~

"N WN "'MN O: i.ono22 0.9944s

  • poew.

u.999u3 0.99367 ' NmvMr,m'43l* -

T' 2 3 WWWFTILTING F ACTORS FOR OCT ANTS 1 4 FOR BOT HALF, NORMALIZED **~ ~' " r W '

O': 7 6 N 'r O.98423 1.01231 - ~ we . -m~ ..ur O'-

1.ouSSS 1.00451

,' ~< - " '

N Kw 1.00140 0.99672

i. O. ...,,..,.*%,w,,,,

l r- * - . .

TABLE 7 Overlap Data Intermediate Range (Volts) Thermal Power Power Level Date Time N35 N36 Best Estimate (%)

3% 5/8/85 1338 3.812 3.818 2.2335 10% 5/8/85 1815 4.128 4.134 10.1715 20% 5/9/85 0440 4.316 4.319 20.9114 25% 5/9/85 0525 4.375 4.377 25.9346 30% 5/9/85 0829 4.395 4.398 27.9780 5/9/85 1000 4.408 4.410 29.5801 50% 5/10/85 2330 4.525 4.530 48.1880 75% 5/11/85 1903 4.686 4.686 75.8184 100% 5/13/85 0034 4.763 4.763 100.1309 .

39

4.1 Incore and NIS Recalibration: Post Outage - PT/0/A/4600/02E This test was started on May 11, 1985 at 0555 hours0.00642 days <br />0.154 hours <br />9.176587e-4 weeks <br />2.111775e-4 months <br /> and was run during the power escalation from 50% to 80% Full Power. The data obtained from this test was used to set the nuclear instrumentation system amplifier gains, the axial flux difference function of the overpower AT setpoints and to determine the correlatica between incore and excore axial offsets.

The data was collected by taking a quarter core flux map and associated excore detector currents at eleven different axial offsets as indicated in Table 8. (The quarter core flux map pattern had previously been verified as an accurate representation of axial offset through PT/0/A/4150/23, Quarter Core Flux Map Qualification Test). This data was then input into the off-line computer program SPCALIB, which generated the output shown in Figure 17. The appropriate factors were then input into the plant instrumentation systems and 311 acceptance criteria were met.

l l

i 40 l

L

I TABLE 8 Quarter Core Flux Map Data for PT/0/A/4600/02E, Incore and NIS Recalibration: Post Outage Map Average Thermal Power (%) Incore Axial Offset (%)

1) QCM/2/02/006 50.33 8.818
2) QCM/2/02/007 53.03 4.062
3) QCM/2/02/008 55.37 0. 72..
4) QCM/2/02/010 58.09 -2.990
5) QCM/2/02/011 60.34 -3.602
6) QCM/2/02/012 65.07 -4.618
7) QCM/2/02/013 67.59 -2.051
8) QCM/2/02/014 69.86 1.075 .
9) QCM/2/02/015 72.13 3.972
10) QCM/2/02/016 75.51 5.956
11) QCM/2/02/017 77.75 7.938 41

MCGUIRE UNIT NUMBt.H ....:L.;..............

Figure 17 t Incore and NIS  ;

Recalibration Results '

INCORE AXIAL OFFSETS

  • FULL POWER DETECTOR CvRRENTS (MICRO-AMPS)

--________- =____________ CORRESPONDING.TO _ _ _VARI

___t

-' - DETECTOR N-43

  • INCORE - - - DETECTOR-N * -* DETECTOR'N-42 *

~-

~ DETECTOR-N-44*a ,

AXIAL T B T' B- T B- T B'

OFFSET

"'O . O - - - -- - 692 ; 8 - - 565. 9 - ~ - 62845 * -- 489;O* - - 540.4 '- 431 e 9 - -

574.1 *~ -4583 2

  • 588.7 521.1 506.9 462.4 533.5 488.7'

). O 649.4 604.5 493.0 502.9- 519.3e J. O 605.9 643.2 548.9 553.3- 473.4- .

0.0 562.5 681.8 509.1 585.5 439.8 523.6 467.4 549.8'

~ 1o,o. ." "-*519.O'-- 720. 5 ~- '- 469. 3 ' ~617 4 7 * " " 406. 3 <-'* -- 554.1 a "- -- ' 431. 396.28 * * - 580. 4 '.'

61O.9

-20.O 475.6 759,2 429.5- 649.9 372.8 584.7

-30.O 432.2- 797.8 389.7 - 682.1 - 339.3 615.3 360.7- 641.4('

1 bo i

I NORMACIZED DETECTOR VOLTACES' _(VOLTS) AT - VARIOUS - INCORE- AX I AL- OFFSETS, 7

DETECTOR N-42 DETECTOR N-43 De!TidCTOR N-44 !

INCORE DETECTOR N-41

-AXIAL

  • T' B- T-B -

T- -

B T-B-OFFSET T -B- T-B T- B- T-B-30.O- ' " ~ 15. 26' 6. 91 - 3.35 - ' 10. 28 -- 6;96 --3. 33 - -- - 10. 23 --6 e 87 - 3. 36'- - 10.23 - 7.40 6794 ' 2.19e 3:29' -

9.62 7.39 2.23 9.63 7.41 2.22 9.60 7.36- 2.24 9.60 20.O *8.96 7.84 '1.12 *8.96 7.87- 1.10*

'10.0 '8.97 7.86 1.12 8.98 7.87 1.11 8.33 8.33

. O. O 8.33 0.33 0.00 8.33 8.33 0.00 8.33 8.33 0.00 .

0.00I-

7. 68 - 8. 79 -1 ;; 11 - -'-7. 70 " 8.~82 "-1.12 - - -7. 70 *8.-79 -1.10

"- 10. O ~ -

'~ 7.69~ 8.80 -1.12 ~~ 7.06 9.30 -2.24 7.06 9.26 -2.19!

-20.0 7.04 9.27 -2.23 7.03 9.25 -2.22 6.43 - 9.72 -3.291

-30.0- 6.40 9.75 -3.35 - 6.38 9.70 -3.33 6.43 9.79 -3.36 1

AFD INCORE/EXCORE RATIOS FOR QUADANTS 1_4,

-QUAD ia"-+* QUAD 31 1

- QUAD - QUAD 2' N41 N42 N43 N44 '

M4=1.493 M2=1.502 - M1=1. 486 M3=1.l519'

.I a , .

NOTE: THE MAXIMUM QUADANT POWE T..kV....(UPPER ILT RAT I O IS . . .l1.O.c.>.o.

/ LOWER) SECTIONj .O........'8 eAND IS LOCATE OF QUADANT l-Q. ;l.IN (1-4)-THE . . . '~

4.2 Thermal Power Output Measurement - PT/0/A/4150/03 This test was used to verify that the primary and secondary heat balances on the plant computer were consistent with primary and secondary heat balances on an offline computer. The test was run on May 23, 1985 at 1450 hours0.0168 days <br />0.403 hours <br />0.0024 weeks <br />5.51725e-4 months <br /> after reaching 100% F.P. and the results are shown in Table 9.

The acceptance criteria of 2% difference between the offline computer and the plant computer was met.

6 b

h I

43

4 TABLE 9 Thermal Power Output Measurement Results Plant Com'puter Off-Line Computer

% Wt  % Wt Primary Heat Balance 98.94 3374.47 99.19 3383.32 Secondary Heat Balance 100.12 3415.27 99.86 3406.30 d

4 44

4.3 Reactivity Anomalies Calculation - PT/0/A/4150/04 This test compared the actual core reactivity to the predicted core reactivity by taking into account the actual Reactor Coolant System boron concentration, Xenon and Samarium worths, rod positions and power level and adjusting these to the ARO, Hot Full Power (HFP),

equilibrium Xenon and Samarium condition and then comparing the theoretical and actual Reactor Coolant System boron concentration for this conditions.

The test, performed at 100% on May 15,1985 at 0905 hours0.0105 days <br />0.251 hours <br />0.0015 weeks <br />3.443525e-4 months <br />, indicated that the actual AR0, HFP, equilibrium Xenon and Samarium condition boron concentration was 958 ppm. This compares to a predicted value of 998 ppm. The 40 ppm difference translated into a -356 pcm error between actual and predicted reactivity worths. This was, however, within the acceptance criteria for the test of iS00 pcm.

45 I -

~

4.4 Incore and Nuclear Instrumentation System Correlation Check -

PT/0/A/4600/02A This test was used to compare the incore axial offset as indicated by a full core flux map to the axial offset indicated on the plant computer by the excore detectors. This test also verifies the incore/excore calibration data that had been implemented during PT/0/A/4600/02E, Incore and NIS Recalibation: Post Outage.

The test was performed at 100% on May 15,1985 at 0958 hours0.0111 days <br />0.266 hours <br />0.00158 weeks <br />3.64519e-4 months <br />. The indicated incore axial offset from FCM/2/02/019 was 6.787%. The core average axial offset from the excore detectors was 7.91%. These results gave an absolute difference of 1.123% and did not challenge the acceptance criteria of 13% difference.

46

i 4.5 Target Flux Difference Calculation - PT/0/A/4150/08 This test was performed to find the target axial flux difference which is used to provide guidance for plant operation.

The test was performed on May 15, 1985 at 0906 after reaching 100% F.P. The target AFD at 100% F.P. for quadrants 1 and 2 was 7.95%; for quadrant 3, 8.05%; and for quadrant 4, 7.83%.

All acceptance criteria for this test were met. However, it was necessary to enter baseload operation since the 100% F.P. target was above the 100% F.P. RAOC limit.

47

4.6 Core Power Distribution - PT/0/A/4150/02A May 15, 1985 at 0905, Core Power Distribution, was performed to verify the core power distribution technical specification limits for operation would not be violated. The reactor was at 100% Full Power equilibrium conditions, and in Baseload operation.

All acceptance criteria for this test were met. Table 10 and Figures 18, 19, 20, 21 and 22 give the results of this test.

48

i TABLE 10 Core Power Distribution Results 100% Full Power i

Unit 2 Cycle 2 Map FCM/2/02/019 Date/ Time Map Taken 5/15/85 1111 Power Level 100% Baseload operation Cycle Bur. nap 4.68 EFPD 184.6 MWD /MTU Boron Concentration 953 ppm Control Rod Position Control Bank D at 213 steps withdrawn Maximum F" : 1.5638 at Axial Loc. 52, Horiz. Loc.

  • Y H-06 Maximum F : 1.8555 at Axial Loc. 51, Horiz.

9 Loc H-06 Maximum Fg : 1.2192 at Axial Loc. 49 Maximum pin Fg 1.364 at Horiz. Loc. L-05 Maximum error Fg (from predicted) -4.24% at Horiz. Loc. D-14 Maximum F /K(Z) 1.9544 at Axial Loc. 51 Maximum % Reduction in AFD Wings 0%

Minimum % Margin to AFD Wings -6.4687% at Axial Loc. 51 Rmax (Tech Spec 3/4.2.3) 0.9151 Total NC Flowrate 397644 gal / min

~

Total Incore Axial Offset 6.787%

Incore Tilts %:

Upper Core Lower Core Quadrant 1: -0.805% Quadrant 1: -1.207%

Quadrant 2: 0.666% Quadrant 2: 0.613%

Quadrant 3: -0.592% Quadrant 3: -0.120%

Quadrant 4: 0.730% Quadrant 4: 0.713%

~

NOTE: Axial location 1 is the bottom of the core.

Axial location 61 is the top of the core.

49

.m__ , _ _ ._ _ - _ _ _ ._ __ .

05 i w l l a Op .

)

I

[*

wM= g L i I

, zw.a p . , 4 O

r: . . g

i. t ,
E n= e 3 .E eWh@egr.pe een e e c e e Nesp M W %B8%e e GN999W p ne8te ep.e stNpe#eWNeNeNep asp *e e Pr 4 f'ge=N.eemN.OPmeO eWegee W.= 4@Na,n,e L ,y
g J ,,gp gepeteem OFNNees8 tem @meePufte em .ep t ut. 5 WOWPmf%rmedte @@e***We@ 8te ch P =e"80e *e P49W 5 J

gh ep pepsstpmpe8t Weeese9fD me88te et ""S ee"# 4 WO WO'8tWeWem'*Iee eeftfe a8488tNP eeeame#Ne" 8PlW#P P arPe@O Needb ONPP* N e* me eppt e e en e gege=4 e e e o e e. e e e e eo eoeoe e eoe o eino ee e eoe eo e e eoeee o eoe ee o . e e**posee o e e o .e e egesg e o.sgNa ssg gype see # W e 4p ,g H

O O G.O #@e N

  1. ,6.stNetsagsstsN.e= e e e es.o.se.e.e=== .ngm e eec- gem.e- e==N =======.as8t see etm p u s p.%4.=4.e.e.e%jge.

=.em.o.e** go. p et

.e.emertr8tm W eW@ep gg me. ..

o O g 0teIeg108 8888l688go88g80eg4 lag 48890800888808I888888;88 e a s is [g M I

[* s l

O 2 .

b u * '

4 I J

.""Q s . . . s. a. .e e a= 3N e eW#te ese*etsstN.ee modek ee =ep pe We etn.as8tW9 Pmen eF6fN'8Dmee eM@=*e> ^ -T - 1^.Mm ms8ts8 test yt y A? et Nepe@. epm ee e e etpP O W 4 WP*@@ 44 84N wpm 4=4emert.eD 8me 90e etn =am 8tfP Nen **'m eestetmmes't tp88t@64 4=O40 4 meemm j Zoe 4443 p l e 0 en og easeN emepeWin 48t.#=8ts9Jtheesafts99Ws8

.e.epp se eeeeeee P ep ee ten ee W Ne pe eeep p eeeee se ee@e Ge@ermett eeeeeeeeeer e

eM W W@th e d WOsqeP.Pme NosNNensegNa. , eyee evo

%N .ageen e o e e6 e I

e=Ja .e .oeie e orisNetsNo e e ^o. ^4 e oJ48tsNetsNee.

e e o e o e o e e.e .o.=.e e o ee e e o e.o.e== .e e eeeman.e o e e o e e .es=.e o e o e e.e e.e.e .oe.e o. e e.e.e e o-e o e e_ J.;^4Negg 5 rgeneNfgg g g

^

o ftj == I

' 2 e C > l ,

O 4 3 x a4 s W l em 4 u me O S O S S S O S O #tN o.O P P P S Pm e 4 /t t W mm N.e.e.s eO O P P*4 4m"IfN.eeeeP e c>= 4 44 W84mO eO D O OOOO [ e.

g m== a ee e O OO Ge ee#4 ttO* 44P= P em W N O.eN eamer%ssfWheP=@fte.e9 P= Jte e wa8tt t1 W eOP P P*@NO SO OO 0009 et see.

+

y epee eip8tNNN. .e==%AA 4e 6909 g W44 u Ne=O

=.ru OO eO OOc cis O eOeOeGSPSP=4 e eO e W 4 G4O4e4Orm9.**8% e C e== esse W e rme.e.e.@.=p

  • =.= .e p .e p0.>

e S.e.e.stelf%BNfif8%f f%BNNNNNf%fNNN.ON S 9eo90OO0 0 pte8gapiO OOOO C

.g e

  • e e. e agm W

& E m o.=.e. e e .e

. .e.e

  • e* * .e.e.e.e
  • * * * *
  • eeeeee o e *=.e * * * *.e.e.e.
  • e .e .e.. .o e e. e e e . .o

. ..e.ewe eeee e.e.ee o e e e * *.ee o ee * =* * * *

  • e.e.ees.e **** pe , o@

A J e*N

' y e et a=

U J- } estao 4 4 g wuot f/3 u. O S e.*NN'84P W P W e@ S 4.ed eeP=NP="Ide*19 WP WPJtetet leee GeeeGOOOSOeOGOGOOO OOOO 3 4 04 =Pt

=e a *W W W W W WP a=W 49isW**PNW a*P NW a=0* NWa*P NWf=*e OSI Idee eeOOOOOO3OeoeOOOOO 0006 g. J de

-4 E  %=4 =e 4 ==4.am W W W Wett J%@ 4 4 4 4Pm****P= S e se te pee 64 ee GeeOOOOOOOGeeO SeOS . W. $N

"" Z eeeeeceaseeces Ooop > 4.K e y u 'g**W,n. 4P=P* e e 0*P P P P P P P P P P P & P P P P P P P P990* D eeet -De e e****eeeoeoeee**eoe***e****eoeeoe **D e eeee 4 W ee

- e ^ oese o o.e e e ese==.e.e**.ee*==.==

          • eeoee i

=g tal OOOOOOOOOOSeeeOeOeOeOOOOOGOeOGee eemsees en t f%smen g = 3*

P  !

t l

PMMM

=44

- I y i N N

>3 p= a  : L ee J U Oitt S .e4 6eJ S

.' 3 I"* 2 Ju 4SN 4 h 3 N#m'8%NP== NP *tt ee W@tt e 34 4 4N et/t #te 40*

7 4/tN# OP=NNamPm@0*

W e #ttA P >==eP Jk P O* 4 @afgpm O GOpef'iq.e.eSOP =.P= epmemaft OO**O o o.e.oN gp ge pp ggpfWt O Omm Wa*P=P=P*@**P= g ge.NW WP'*P=P=

e e

cedtAttN 33 W e 4 P *tP= 038tw M o ese2 ON.S.=P 3 e- 4 =8t.*

OM NNO W@@me t ap8 WIN.eP m W a=e =NNN.ecem.eWP= 30* P P ANP N*t*8iN =P 4 C ONN8%#===0 S8t ftsterme ee ee eP=ee *P e eP=Pme= 4 ee 4 4 ati 44 4 4 444@@

bu me eeee o e eeeeoeeeoeeeeeo eeee Azs

4 2 e=g n e e e e e e e o e e .e e e e o.e e e e e e o e

& w 0 e=.= .=== .e eee. o.e==.e e o e e.=em.aeeeee. .e.e .* OOO mac N

' 3 C 4 New3@

CO 4 = 2 34mE e @4

=.4 O DM@ J y u Ma@P4 2

j g

  • e **

, 3 Je= 6 *>.* mitt W 'a't=

2 W4M ax e E"* 4 3==

O sus 06 a M .= O OM WP=N.ee t .*C O W 4N#tO 4# eetam W Ne Jk PmeN e art.antle c N0* Am= Ne W m.***# C ft Op.e O P= S @ O t.34 o.eNW NP e*<0 eDPWe 0.

p 3S00 = 0

  • E 2 eN O O 4 4 CP** epm @P88%85 4 6/te e =81.t%W eeO Oa84O P 400 e artP=me c e.=OMN06 3.ms8t.= Wm.S ees8%.ep=

Sem tts8t uma eW P=itt

"'3 3 mP=P= PO P P P e W ONW W W W WM Same . .e==.coca8tW#ted%fe Wa= i C e- E *%eJP=

SO R W@S4c9OOP=Orm WP=O.eae.eeart e =.=e*.*e*==*=44.o=eO O O e O O OO OO O O O O O O OP P P O O O O O 0* P P P 44t P O* O O.***NNNN==== P t eem c a* 4 Oke 333 e o e e oeeeoeoeoeseoeeoeeeees esee 6b M@=

$ uet g et L O S O 9 C O =*==.*.e.a.***.**e=ese.=*e.e=e.coe==

  • e s e e e e e e e e e e o e e o e e e e o e e e e e e s e o000O

.e.e.e=******.m.=.e.e .eO SO.em e=e.eO S O D O 90 0 0 e 2 0 #l f) 6 O m3 D y Z2MDM we 3 M=e d g 3O 8 , **h 4 a ==  ! Eu 60 0 > L We* 2>

,0 3 ee AA=J34 ea* 2 Eur sitteitt @ ttehe n/5@ =.a.e**=e-e.= e.e eee== = ww.e.e.e== ==== .e s.e@@.e =*=====* ===.=== C 289

== 33OOOOOOOOOeOOOe 4 4 4 0 44 4 4 4.*==@30 s O OO O.e.e e e.e.e e.e .e.= = = =.e=.= .*.= O O .e=== == em.e 2O>4 W C 2 EJeeaeeeeeeeeeett909OO88000tIeee3eetseeeeeeeeeeaeeetee50Ifl ae8e WEu et O *= AE"" ""3"3EZ Z:EZZ:KWJJ.lJJEEESC SOSSSeSceCDeBSS13232 SE S=1 J AedeJieJWW WWeJW 2=e4 3 #

a.4 M ogw *P u = 44 S=e 3 3 WODE=

4  ; J14M=

2 Je as me .J as WE W W W W W W ar W e W W W W W W W W W e & W W W W W W W S0 0 4 4 4 0 4 .0444 == Z r .n. M y

y M 3M 3*OP e .ememmmmmmesta8%

dip Mma8't@@ttit/t tttttfl@@.4of%#NNNNe GO e O Oerm amp m=Namp= h>==memamP= PmPmeme= rm t he=P=P= hP= ame= W N N e = = = = = *======= w tale u ==

3 8

  • *E 2 N ==NNNNNNNansNNNAP8Wl81*tm*1**t e W W W W W W W W W W W W W W W W em W W W W W W W W 88WWimarr84mr81 '9mdte 4 B +3 NJ m 1
  • 8 34 MAN WL 4M 2 Mo EE ia-

' ) zaE aw 03 k J t DTetWu U qu .

>W>OZWg 3 ** 3.e OF Sem 4./t W m N==OP eh @@ WMN==OP SP= 4@ We89 Nee 00* eP= @@ WAN.= 09 C >= enti t*8'l Af==Oc> OP= =D@ emN e O W J e 4@ft/t@@#l@#tatt/l4 WW W W WW W W em'84=idtmmm*tmarbr% isNNN8%#NNNN==e==.e==.e==*==.e u>

44OE E **" E A 4 5' 6 NJw3W l eJ =e4 3 m >

  • e @zzw 3 2au 3 te=

3 3 M.2 >=3 x ZJS 4EEEWZ3

. 433324M t' g i LEEECZE

g. ===e-o L s

gunuKEE l 4444Q33 4 I e

W

., E E E G.E.E o e uwWWWZM

' 3I E Z Z a* eL i

  • g e >e-e= K E

' i j

e t

  • 1 a

w r

> c > )w L -

l * - -- i im

". . ..;e . : ;t.".e . .  ; ..

. s. g af.

Figure 19 a0 Highest Values of Enthalpy Rise Ractors --10, "CGuliE DETECTCH wuN (Uh1T de une2R L{

"I'ty"lM!vt"a

  • INul aik3 v OLAfluma'dy""!'bll'tJyr'U" v

O T Cn SPEC 3

'"! bul'**" ' """ "'

lif8"D*: lit:!'!!*l 'ic' 1?!B ALDMPo! . 8""""'"'""*"""""'""'"*"*

.0 MIGMESI VALUL3 UF tmIMALPT NISL FACiuw3 Amp L0mPAR1304S m1TM TME TLCnn! CAL se'ECIFICailuhb FUEL MOE. TECM SPEC waRGIN ORDtM ASM. LOC. F3uent NI O!FF. FRaCI. VluL.

! if b:!t 8:31ji 8:8:: 8:::ff sit  !:11  !:::t:!'

1:i 1: 8:38 4 8:881 3:8::

!;fj b:it i:!:lli 8:383! 8:83 6 8:!!M i 4  !:11 1: 11 8 88::t 3: i:1 i; isi t:ii 0:ii 8;:369 1:: .: 388l 8.3*::! 8: :181 fil i:i"1i 8::49i 8:iI: 8: !!)

~

k:i; 1}

1.  ::f! 1:15  !:f!!4 8:ill 8 ifi 8: It!

!! At h:$! 1:sMi 8:i:45 lif88 8:Lf 1 13 113 L:ii 1:.af 8:i:11 8:'li 8:.:fl9 F: 111 ":11 1:1911 8:lill 8:lla! 8:10.!

fj 117 $:8'  !:11: 8:li!! 8:lijl 8:if81

f. fij i:8! 1:flil 8:::8: 8:l.: 8:l:1 S! to 8:31 i:18:1 8:!!8 8:!:f:

$! j ij F:8% 1:18ji 8:3?!I 8:d}"l 8:ll:. 8:liti -

f: :L d:ll 1:i:71 8:!81 8:1:;;9

}. fil  !:11  !:ill! 8:li:1  ::lt : 8:::l' 8:'*

c c89 i:ll 1:f:1! 8::9 8:1)

Ll 8-l:5 i?! W:l 1:f:l!  !!!::! 8:l:1. 8il I"I

[!

d }::

B:i 6:14 1:i41 1

8:!:tf 8:::' .-

8:I f 8: n!!

li*)

ci }3

1  :$: ::fi 1:lllf 8::LL 8:  : :! 8:!!!
1  !!! 2:44  !:$..

i: t: 8:t:i'l 8:lutt 8:1184 ~ - ~

lit E:U 1:$21:- ~~ 8:::if I ET F 8:!!!!
  • ! 583  !!:f!  !:itij 8:::! 8:l:b 8:it!!

3 - --s"if- c C.18 L .. i:l":p.  :.:":t8.'i 8:'.j0 8 ":e:-

.:1 -

i. .

.g .

l $$ 1:8? i:$lof 8:t:{ 8 :8 i 1:1 1:f?ff 8:2t?. 8::s*I 8: .:'

f t ":0

1:ff! P  !!!!!'I 8:l: 8: ':IF 4 l'!!

! :lf 1:ilj} n::j'iis s 8:::) 8: tin ill  ::f' 1:i b ! 8:llL 8:  ::1 8:it' ll' *jj ""l 8:  ::j '"L 24

9 l..

3i dl 2:::

!:lj':8

!:fri 8::jj[i 8::,.

2::111 a:llj.

!! )[L 8: 71 it .:j. 1:

2-8:llft r d'

b:81

8: li [. 8:liji 8:::h 8:lj a:<..

8: +I 8: 9ji

1.F

- - ~ ~

Uk k:!: 1:f11 8:::.1 :W:

li  !![lf 74 fit I:li l'

1:f:'8 8:i:fi 8::E9 8:

a: H 8:4 8:

8: sli 8: ::4L 09 1:f:t -

  • ! (:8,}
  • 8: d 8:: i!a

- .it . . 49. f. 1:it:'$'

i... ..

83!.:0!r. .. w. ... .n -

x._ .

.  : ; ~ ..

-._.-- 51 - - 1-'

. em o %h - mu. ., , ,' .. me. . .

Figure 20

, Nuclear Peaking Factors for Enthalpy Rise - 100%

7 C

MCGU1HL DLTECIDH HUN (UNii 2 CVCLL 2) U182H Mks 2/02/019 g NUCLLAN PLAKINb FACTUNS FON LNTHALPY HISL FUN ASSEMdLAGLS th THh POWLH NONMALIZATION 01 02 03 04 05 06 07 08 09 10  !! 12 13 - 14 15 -

\l

- A 0.654 0.851 0.919 0.914 0.928 0.868 0.687 8 0.642 0.980 1.084 0.888 1.134 0.839 1.158 0.928 1.138 0.996 0.654

.. C 0.627 0.910 1.099 0.976 0.890 0.837 0.779 0.859 0.907 0.998 1.109 0.940 0.662

- D 0.949 't.078 1.141 1.230 1.156 0.915 '0.831 0.918 1.189 1.262 1.145 1.125--14010 w'

E 0.669 1.096 0.982 1.238 1.234 1.090 1.211 1.002 1.206 1.115 1.264 1.261 1.019 1.139 0.687 F 0.849 0.898 0.891 1.161 1.103 1.166 1.130 1.207 1.160 1.193 1.112 1.165 0.908 0.915 0.856 "n i

~ ~

. G 0.919',1,136 0.851 0.925 1.216 1.167 1.127 0.965 1.126 1.159 1.227 0.911 0.85 6 1.145 0.932 H 0.905 0.831 0.767 0.860 1.025 1.229 0.980 0.813 0.966 1.190 1.023 0.843 0.768 0.815 0.914 J 0.922 1.145 0.858 0.934 1.247 1.167 1.124 0.988 1.132 1.143 1.228 0.926 0.848 1.122 0.920 1 k U.855 0.909 0.V10 1.191 1.117 1.187- 1.165 1.197 1.152 1.177 1.115 1.174 0.900 0.901 0.850 L 0.670 1.111 1.000 1.266 1.271 1.126 1.227 0.993 1.212 1.095 1.263 1.249 0.980 1.101 0.673 M 0.999 1.135 1.187 1.273 1.181 0.928 0.840 0.914 1.166 1.248 1.153 1.005 0.961 N 0.655 0.939 1.126 1.014 0.901 0.848 0.766 0.849 0.908 1.006 1.102 0.913 0.632 U P U.647 U.989 1.128 0.904 1.133 0.814 1.132 0.913 1.130 0.970 0.638

p -_.

0.923 0.923 0.859 0.681

" R 0.677 0.852 0.909

.. ._. . .. - ,.. - - -., . . . . ~ . . .

e e eo y 9

CG i

i i 4' 9 N > N P 7 N O N N *e o O P O e 'O O O O O

=e e e e e e e e O O *O O O O O

, 9 8

  • 8 8 9 0 8 N N @ Pm e me N @ W @ P
  • O 2 N O 8 =e O e

O O e

O .A O O i ese O O O O O o ,o e O

, e e e, e o e e o e o e e ,O e o, O ,e e o O O e O M 9 9 0~ 0 0 0 8-8 de 4J N N N O N Ih 4 @ N P 4 m 4 E E A N u e *O O O me = e O O s e o . O'e O e se e O. e. O. e. l O.

e. o. O. . e. e O. M e e O O O O +O e O O O O O O w M- 8 9 9 0 9 0 3 4 J uJ S 4 m N N O 4 @ N W N =* 4 E m == 0 O == == O O .O. == se O == > g 8 N O O O O O O O O O O O O O =e e se e e o e e e e e e e e e e e g J O O O O O O O O O O O O O P 3 J G B 8 0 8 ==

4 y  ? 9 == ** "9 m W "89 == @ N 9 @ P= @ aJ e-w- N N O O O O O O == 3 O O O -e == ,* > <

ao O O O O O O O O O O O O O O O "3 m =e e e e e o e , e o e e e e e o e 3 g M O O O O O O ?O O O O O O O O O 4 N N, I O

2 0 0 8 f 8 I O 8 W O

o a O

== @ A # @ O N P= m C N P == N @ N Z e M u- N N O O == == O == N se == ee o O -e e.= O eo e O O O O O O O O O O O O O O O l w =e e e e o e e o e e o e e e e e g 2 O O O O O O @ O O O O O O O O Q

N =J B e a e w ss 4

g4 e.* u a @ P= m O m m m e m O @ m == N w

. 3 a.e N N O -e m .e =e =e O == N == O O == 3 g g e- p O g;# O O O O O O O O O O O O O O 3 g 4 e e o e e o e e e o e e o e e e 4 o=

2 O O O O O O O O O O O O O O O == e-o

@ Q t i I e O E b W tw e G U ke =e z @ 4 N O C N @ @ & 4 N O itt 4 e O 4 CO O moe- N m .= N -e O == == O O N -e o O N E W be N% e O O O O O O O O O O O O O O O Au N3 e e e e e e e e o e e

  • e
  • e e E t:J aJ O w O O O O O O O O O O O O O O O as 3 J%> 0 I e t 8 0 t E c) UNZ Z ==

y > Q e == @ W == art N N 4 @ N M @ @ @ Q 3r y u u'>e O O == =e N M == O = O == 0 O O =* ee 4 y mZ d P'm O O O O O O O O O O O O O O O > E NEE O e e o e e e o e e e o e e e e 4 O O O O O O O O O O O O O O O O em w

> K 9 0 0 8 8 >

U =* 3 W e-D$ 2 2 N m N O a8'l 4 P= 3 == S O t O =* 4 3 3 A N N N N N N O N O O O O == 0 O w 4 O O O O O O O O O O O O O O O 3 e 3 O e e e e e e e e e e e o e e e g 2 aJ O O O O O O O O O O O O O O O 4 N 3 e- 9 3 3 =9 2 4 2" a J M W 4 sfl == O me # @ == c e @ P @ 4 O T 3 N N N N N N N O O O O O == =* ** >= e l Q w @ O O O O O O O O O O O O O O O MO i e- J O e o e e e e e e o e e e *

  • e I

u 4 O O O O O c O O O O O O O O O w i

.aJ u I 9 0 0 0 0 0 0 e=

e= 18 aJ Z M -e t == == P= 7 P= == 4 @ O =

3 == O N N N O == O == O == M M D M 4 W D o O O O O O O O O O O O 2 uJ aJ e= O e e e e o e e o e e e *

  • 4 3 2 .,J O O O O O O O O O O O O O J
    • uJ t 0 0 t 9 9 0 8 4 3 3 '>

g N O m P= =e ==

  • P= == == 0 a ** C v 2 == O se == N O O f3 O O ad'n m M O heJ E D M O O O O O O O O O O O O O O e-M O e e o e e e e e e e e e e O 3
O O O O O O @ Q O O O O O e -,J r w 6 8 0 8 I O O C 0 1D Z == O m P t% 4 =e == O N N D

= O == O O e N == O O m m 4 N O O O O O O O O O O O 11 M O e e e e e o e e e o e enJ 2 O O O O O O O O O O O w I Q I 3 e

2 B

  • B' O 8 0 0 J

2 ar) p8't == @ N F*

  • 4 m aJ O O == == =e 3 O > Q

' =e O O O O O O O l .sJ O e e e e e e e 2 Z l > O O O O O O O 4 4 i == 0 8 9 8 8 8 8 w w I > E E I

, =J w w

( .i 4 C y 3 w w L3 Z *) g 4 1 2 CL CI: Z Z

> 2 l

O Page 1 of 4

'.'O s l O Figure 22 .

j Axial Offset Ratios and Tilting Factors - 100%

O O

L 0

)

i

, g ;. ..

I --

j Ax1 AL OFF8ET M ATIUS FROM AS8kM6LAEL PumENS g ',

e TOTAL Copt AxlAL OFFSET a 0.06787 (6.787%)

0, 5

1 2 AXIAL OFFSti FON UUADNANTS AND FUH uuAL' RANTS 86 4 3 7

.- 0.06990 0.06814 0.06793 4 0.06601 0.00929 - -

g, 0.06796 0.06552 0.06627 AX1AL OFFSET UV OCTANTS 1 4 l O-i .

6 3 s on i o i6 . s

{ ,, '

0.07074 0.06517 O- 0.0 90s s

0.07:30 .

'3 ***'5" O

O::

Q" s c.. ..

4i Ts'em.-

4

" O....

J ..

y- - - - . - . ., ;, ., ,g. ......7,.. , ,

)

o{. ..

_. 7 ..._y.7y.

O.. -

.r .. . . .. . . , . , . . . .

1_..,..,

Page 2 of.4 r

Figure 22 -

, 7 Axial Ofiset Ratios and Tilting Factors - 100%

, f f

11LTING FACTURS FROM ASSEM6LAGt PUNLRS FON ENTIRE CUML HFIGHT T ,I 12 5

. . TILTING FACTURS FOR QUADRANTS AND FON UUADRANTS 86 FOR ENTIPL CORL HLIGHT 4 3 7 0.99006 1.00642 0.99707 1.00079 1.00055 1.00722 0.99628 1.00178 l

TILTING FACipHS FOR OCTANTS 1 4 FOR ENTI90 COHE HCIGHT

, a 5 o an 1.00659 0.99247 Oi i.o09:2 i.00532 0.99825 0.99432 l

0; 12 l TILTING FACIONS FUM UUADNANIS FHOM t*CuHL DtitCTURS 3*

O; i.uss4 i.osos U.4441 0.9500 O -

O:.'

r.

O i -

O' O. '

Paga 3 of 4

, Figure 22 ,

Axial Offset Ratios and Tilting Factors - 100%

r~

a si a

e v

.,s TILTING FACTONS FWOM ASSEMELAGE POWERS SY CORE GUADHANTS

~

12 5 '

s TILTING FACTORS FOR QUADRANTS Af4D FOR uuADRANTS 86 FOR TOP HALF UF CONL 4 3 7 s 1.05925 1.07499 1.06480 -

1.06886 1.06967 1.07567 1.00156 1.06517 4

d 12 5 '

- .* TILTING FACTORS FOR quADNANTS AND FOR QUADRANTS 86 reit BOTTON HALF OF LORE j 4 3 7 0.92006 0.437s4 0.92933

  • 0.93273 0.93104 "
  • 0.93578 0.93101 0.93539 -

\

'l 12 5 'i TILTING FACTORS FOR QUADRANTS Ar3D FOR quAURANTS 86 FOR TOP HALF, NURNAL12ED +

~

, 3 .

4 3 7 t ,

0.9919S 1.00666 0.99712 f' -

1.00092 '1.00168 - + 1 - 6 1.00730 0.99408 1.00C28 , ,,

12 5 '

TILTING FACTURS FOR QUAURANTS At40 FUN QUADRANTS 86 FOR BOT HALF, pr0HMALIZED se 1 4 3 7

, j '

0.98193 1.00613 0.99700 #

  • f
  • 1.00065 0.99884 1.00713 0.49860 1.00351 I.

m . j

.e rwa

  • e ee e e 90 e f-I

,Page 4 of 4 Figure 22 -

7 Axial Offset Ratios and Tilting Factors - 100%

a

~

TILTING FACTURS FRUM ASSEMBLAGE POWERS BY CORE OCTANTS ' - - -

h ,

i g3 -

- ' TILTING FALIORS FOR DCTANTS 1 4 FOR TOP HALF OF CEWE 5 $

76

- i 1.05757 1.07203 1.06100 1,07795 1.07671 1.06139 -'

1.07462 1.06173 IILilNG F ACIHRS FuH UCI ANTS 1 23 4 fur suTioM HALF OF CUHL S

O

' 76 - -

0.92393 0.93484 o.93602 0.93477 l 23

, TILi thG F ALTURS FOR HCIANTS I 4 FUR IUP HALF, NORMALIZLD 1 e 5 76 0.99356 1.00943

1.00632 0.99424 i

23 TILTING F ACIONS FUH OCT ANTS 1 4 FUH UUT HALF, NDHMALIZLD -

6 S 76 0.99121 1.03291 1.01009 0.99477

, 1.00418 1.00283 .

I

~

/

V DUKE POWER COMPANY 18.0. HOX 331fl0 CitAHLOTTE, N.C. Sf3242 IIAL 11. Tt*CKEH Trternoxn vne caresurwr (704) 373-4S:11 as uras emoos (now July 31, 1985 Dr. J. Nelson Grace, Regional Administrator U.S. Nuclear Regulatory Commission :_

Region II 101 Marietta Street NW, Suite 2900 [i

, Atlanta, Georgia 30323 -

N

Subject:

McGaire Nuclear Station, Unit 2 -,

Docket No. 50-370 h Startup Report (Cyc e 2) 53 cn w

Dear Dr. Grace:

Pursuant to Technical Specifications 6.9.1.1, 6.9.1.2, and 6.9.1.3, attached is the McGuire Nuclear Station Unit 2 Cycle 2 startup report for Criticality, Zero Power Physics Testing, and Power Escalation Testing. The Unit 2 Cycle 2 startup test program has been completed; consequently, no Cycle 2 supple-mentary reports (pursuant to T.S. 6.9.1.3) will be submitted.

Please advise if there are any questions concerning this report.

Very truly yours, Hal B. Tucker lfh PBN/hrp Attachment cc: Document Control Desk (36)

U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Mr. Darl Hood Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Mr. W. T. Orders NRC Resident Inspector McGuire Nuclear Station

' t L

-yy [{U -l 4

I Dr. J. Nelson Grace, Regional Administrator July 31, 1985 Page 2 bec: (w/ attachment)

K. S. Canady N. A. Rutherford W. H. McDowell D. S. Marquis (MI:S)

B. H. Hamilton S. W. Brown (MNS)

H. T. Snead P. H. Barton R. C. Futrell M. S. Tuckman j M. S. Kitlan, Jr. (MNS)

J. W. Boyle (MNS)

R. H. Clark R. B. White (MNS)

T. J. Keane L. Lewis B. C. Moore E. M. Gaddie G. W. Hallman W. A. Houston (5)

L. H. Flores Dennis Robinson (CNS)

J. Silver (MNS)

B. Snyder Laura Lawson (INS) ,

.l R. L. Gill

{ E. O. McCraw (MNS)

T. L. McConnell S. A. Gewehr J. B. Day D. E. Simmons (MNS) l S. A. Rosenau (MNS) j L. Kunka (MNS)

. Section File: MC-818.02 MC-801.02 MC-818.09

<x,

. . _ . . - - . . - - - . - . _.