ML20203A169

From kanterella
Jump to navigation Jump to search
Evaluation of Eddy Current Probe for Once-Through Steam Generator Sleeve Exams
ML20203A169
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 08/02/1985
From:
BABCOCK & WILCOX CO.
To:
Shared Package
ML19292F311 List:
References
A3081, NUDOCS 8604160247
Download: ML20203A169 (25)


Text

-

THE RASCOCK & WILCIX COMPANY r

Pown opsEATION OROUP nevisicms

==-

'::" '.m 1

1 8%-

DI 1

I r.!=[

i!l 2t ei*i ea5

. *C

  • 1 i R

et.a j;

EVALUATION OF THE EDDY CURRENT r

PROBE FOR OTSG SLEEVE EXAMINATIONS ii 1.

ni rn!

ei 8.**

>I13i t2i U,t o

9 8..:.!

i i.r og?

I ri 81E X!!

3.e o

(3.I Bl5 on hs8 t

I.,

s8 isi e a u

I 8 8604160247 860401 lIX PDR ADOCK 0500 3

=no P

!.I?

A3081 Page 1 gcs_ u _

09/52/75 gg[u ~d W_UATIO*. 7 T-E c--s r

e--

"a' E:

  • "= m r

2

_=_:-

e

.z... -.

~

~'

THE EABCOCK & WILCCX COMPANY Powa ca4 RADON ORCW navisecms

'y

.m

.e. n 88:

i i

~

$E I

1.0 INTRODUCTION

gEI fli An earlier study of different probe types indicated the probe II 33*

exhibited the best flaw detection capabilities in the expansion

{

transition and end of sleeve areas (Reference 1). This report documents 1

P!i the inspection capabilities of a field deployable -

robe and j!?

inspection system.

ejt

31 2.0

SUMMARY

I*

3}

The best inspection procedure for OTSG sleeve examinations is a I&

combination of the bobbin coil an-II eddy current system.

The diameter bobbin coil should be used for ti the inspection of the sleeved mid span regions and the unsleeved portion

[3 of the tube. The

il should be used for the inspection of the sleeve expansion transition areas and at the sleeve end. Using this combination, ASME size flaws in the sleeving of 20% TW or greater can be detected and quantified in the sleeve mid span. ASME size flaws in the parent tubing of 20% TW or greater can be cetected and semi-ouantified in et the unsleeveo tube and sleeved mid span.

ASME size flaws 20% throegh the

'*i sleeve or parent tube can be detected but are unquantifiable at thc-

!!3i exphnsion transitions.

An ASME size flaw 40% througn the parent tube can

I!!

be detected but not quantified at tne sleeve end.

'8iI

j{

3.0

, EVALUATION PROGRAM

'UEe 1

i!!

The evaluation program was a continuation of the earlier probe study I

a;!

(Reference 7.1).

ni*

8i:

'<i.?

8

  • i ;.

Tne sleeve tubino standard used in this evaluatien are shown in Figure ig 3 1, 2 and 3.

Several dif ferent mixes were tried to further suppress the i;

sleeve end and expansion signals.

g 12 fE Sleeves with dif ferent tapered ends were evaluated to determine any

[!l increased in detectability of flaws at the sleeve end.

r8 i85 4.0 RESULTS eja

[g The previous OTSG sleeve inspection technique employs the bobbin coil and i 3g (Reference 7.2).

Multifrequency mixing is used to 1,3 suppress the expansion transition signals.

A3081 Page 2 h,a :.

c-a,

._...A.._.... _._....:

~

THE BABCOCK & WILCCX COMPANY Pown oENERADON OROUP nevisio ns "g

  • 'J"

==

11e Rcl fl.

lII I.!I L

I

5*

iji er 3 t

i:2 Figures 4 and'5 show signals from a 60% and 40% flaw in the parent tube i f using the bobbin coil Figures 6 and 7 show much " cleaner" 8i signals from the same f1aws'using the bobbin coil a lE settings.

All further evaluations were perfomed using the

  • i!*

saturation.

5 Figures 8 and 9 show the 60% and 40% flaws in the parent tube mid span using the

4 Note the lj distortion to the signals.

The distortion is due to ID variations caused by the sleeving technique.

The probe is much more sensitive f!}

to this noise than the bobbin coil.

It was noted, however, that v)I expansion suppression mixes would also suppress this noise using the

j[

prob e.

5t!

Several two and thre'e frequency combinations were evaluated for expansion e;j suppression mixes.

proved to be best for detectig us, flaws at the expansion transitions (highest signal to noise ratio).

lI The mix was repeatable in that it could always detect ASME size holes of 20%

or greater in the sleeve or parent tube at expansion transitions.

[ij.

A repeatable mix could not be generated which resulted in phase separation gga between the signals from flaws of varying depths. Therefore, the f1aws g=i could be detected but not quantified as to how deep they were.

!.12 jEl Figure 10 shows the residual expansion signal using the expansion suppression mix.

Figure 11 shows a 40% ASME size hole through the sleeve

'E8 at an expansion transition.

Figure 12 shows a 40% flaw through the its parent tube at an expansion transition. These flaws are readily a"I detectable using the o

The phase infomation indicates g,j whether the flaw is in the sleeve or parent tube.

!!V i48 A3081 Page 3 k.T,gr.T' % te aE Er

-_j t

.y.

_.,.. ~. _

THE BABCOCK & WILCGX COMPANY POWR GINRADCW OROUP navisio NS "g*

".: " m.

33.;

ggi Several two and three frequency mixes to suppress the response to the lrj sleeve end were evaluated.

2[g*i signal to noise ratio, although the signal to ncise ratio was still g

proved to give the best relatively low.

( Approximately 1 for the 40% ASME size hole).

I-by comparing the resultant signal of a 40% ASME size hole at the sleeveHowever, e2y end to a defect free sleeve end signal, the 40% flaw can be detected.

!!eI!:li

.!!s b I 15 3m

  • r !

e8

  • lif

!.Ei

. a u;9,5r n!!

.II gi:

Xi!

0 1' 7l5 Note the signal shapes are somewhat different between shape of the resultant mix signal was not necessarily repeatable, eine

'ig however, each mix generated, exhibited distinct differences between the 8

I5

" clean" sleeve end and flawed sleeve end signals.

g; lg" Several different tapered sleeve end designs were evaluated to determine U su if using tapered sleeve ends would enhance the detection of flaws at the iy sleeve end.

3 Figures 30 through 33 show the residual sleeve end signal from a non-tapered sleeve end, a 1/4 inch long OD tapered sleeve end, a 1/4 inch long ID tapered sleeve end and a 1 1/2 inch long, 00 tapered

=

jg,gl i

sleeve end, respectively. All of the residual signals give the same general shape. The long tapered sleeve signal drif ted somewhat while the probe was in the taper, then gave the same sharp transition at the sleeve A3081 Page 4 l EVAten:3 cf

<-e

.x

~

THE RABCOCK & WILCOX COMPANY PoWR OENRADON GeOUP nmios.

=-

.m 8i i

gg i end as exhibited by the other sleeve end designs.

3 lg j

=

increase in signal to noise ratios were observed from one sleeve end No significant i}

design to another.

33*i 5.0

_ CONCLUSIONS

!!l

}!

.5:;

Table 1 summarizes the sleeve inspection capabilities using a combinat of the 2l5 oe.

.sIl 5.1 3,g*

offers increased I!

rent tube flaws in the

=

ys t}

5.2 The bobbin coil gives the best examination for detection and j5 sizing flaws in the sleeve and parent tube at all areas except the

=;

expansions and sleeve end.

I*

al 5.3 The flaws at the expansions and at the sleeve end. probe gives the b

g

~

5.4 The j$3 probe 2s

!;e:

examina tion.

j 5.5 The or parent tube at expansion transitions. probe can detect 20% ASM ggg 3in i!!

5.6.

The nj parent tube at the sleeve end. probe can detect a 40% ASME size hole in

.g 8II 5.7 Different tapers at the sleeve end do not significantly improve

{!!

the detectability of flaws at the sleeve end.

3jg';i 6.0 RECOMMENDATIONS 8 g 6.1 12.g Inspect OTSG sleeved tubing with both a bobbin coil probe and a i g probe.

L s8 6.2 Use the' Igj and with for the bobbin coil exam, below lf n.

,for the Jjust i

' probe exam.

ljgl Compare inspection results to previous data whenever possible.

6.3

[

Present and previous dati must be compared using the same mix.

! !n A3081 Page 5 e.e EVA

...LUAT! M ^: Te 4;

~

i s

THE BABCOCK & WILCOX COMPANY Pown oevaADON OROUP navisions "R=-

.c..m 8Is li[

6.4

?

Mix on installed sleeve expansions and sleeve ends to evaluate data from other installed sleeves in the same generator.

t I 8 aI

7.0 REFERENCES

  • =

3 88 i 7.1 B&W technical document entitled " Interim Report of the Evaluation ei:!

of EC Probes for OTSG Sleeve Examinations", Dwg. No. 1157587, dated 6/28/85.

maj i-g 7.2 B&W technical document entitled, " Baseline Inspection of OTSG 2l.

Sleeved Tubes", Dwg. No. 1154552, dated 11/26/84.

t.E e";

t*

2,

!a!

e E!:

U*lGi!

YfC s5g e2 I

xi 8II a!!

V e

g Eb II

,82 ll8 E r8 e

.i In e oa I 8

!rg 1 5 3

!.!7 A3081 Page 6 l ;q.gi m, y I u..

  • ~ ~ -

c--

o..

.....~...

THE BABCOCK & WILCOX COMPANY pown oENRADON OROUP ncvisio n "g-

"."..m 88e 3gl TABLE 1 1rj'h

!!ej st-

'kh St*MMARY OF INSFECTION CAPABILITIES s

tGK L3

-I g*2 giE SLEEVE ID g,

A B

C D

E F

C "E

)

lG

/

X E

ai i

e 1

1.

9* *0 E$

. n B E CD

$f

  • r-

>a z t 2.e[

TSP l*u,r E!

S8.

j1I

~I e7-I ni 8II E,I !

X ARIA A

B C

D E

F G

Confin.at t en Expansion 2

I

  1. 9
  • a FROBE r

zee

  • I,.

FREQi.' ENC) g*z

.II DETECTION 202 20Z 20:

2CZ 20%

20%

40 t:u8 h**5 SIZING Best Best Yes No Best No No 1.5 mils F;

Iffort Iffort

-u Effort Isi 37 jo 3m Ia8

!!W L68 iI?

A3081 Page 7 l: j...:-.,., e e...

_. L._ -,.....

a s

THE RABCOCK & WiLCOX COMPANY POWR OmRADON OROUP l

navisions

=-

=

.c.

i 88~

l t

Ra e X

I!"!

x! a yj t

t*

i t y =.,

g$

t.

a It ij I

3 t*

.'.I E.8 e8 ii.

>i*>

o,.

u9,

.:2 Oa3 33.

ji 1 V I

ag-n;r 8I3 X!!

3.e n:!

g=r 5.8 f I

8 a.yu o

U !8 d

.Ig3 j'a

!I X

!eM I(3 Figure 1:

Sleeved GTSG Tubing Standard A egn*

.' w s-A3081 Page 8 l.:...

r--

e...

~.~~

.en-==--

. _ eee *. e A

4 i

i THE BABCOCK & WILCOX COMPANY POWR GENBunON 040UP navassoMS T*

  • ~.

.m 8ti 225 y~I.

III

..I st*

22{

s4-a..

,itI*

.cI i.*t

E Ei A6 I

I t' s

..I 3

.S I i

o i

ei ii, a

E&5 I.]

o I u,9,

-:2 Oaa u, I a ii!

e 7.g

,ir g!

M!!

8ge t.

g*2 r

8[t n.8

'~

"s8 lEl e o a

f 8 3sy I8 Figure 2:

Sleeved OTSG Tubing Standard B g

157

.o>

A3081 Page 9 l,.c u -,,.

<-e se a: =

a '--

r i.

~

THE RABCOCK & WILCOX COMPANY POWBt OENRADON OROUP uvimo=

m.

l

==

..m l

l l

81-80.t gt.

I r.s I

,y 35a

!!f 44-

  • ie;s=

tiI

.g*

2.8 i.t il

$j t's

  • I
  • i eI Id

.f j

s!

!2 "5.,f r

u i..

a S1.

i17 i

e3-

=ir 8?I 8!e 8 e g

f 3n

,82 a5 r3 9 2 8 g

  • su Is*

i t 0 w

I 8

.!!X

  • 2l Figure 3:

Sleeved 0TSG Tubing Standard C

,I

.r..r A3081 Page 10 lEc - ;r.T;rn, cp e-

.e...

L -. _........ L, ;....._,

l.CH 1 VERT.l. CH I HOS2.l M. Nu -- 1 ID # 1108 3CL 1l

-i n

W DISPUW 8

con -

_m^

race

...a sem l

I q-y--

1. EFT STRI oma -

o rare sem Q'

g ROTATION -

l 9F p

prowr sTRr 1

ona -

JL 8'

F1tEG sem u

e.c ws:s me oEs ca a 1

T1.Ef

+4.9 smRT10w -

L.

}

_I f

sysTe c:wicmarrow 1

m - DEFRA.T t___

g

.,, on,. 4 g

3:25:% SWt JfMMYIIW

[..

i d

I r' -

2 m

T l

j

-L W

l

)

q_

g Figure 4 - 6G; TW fl&w in parent tube mid span using boDbin coli and 2

l_Ch 1 6 '.l_ Ch 1660.!

On+E2. HD - 2 llD A st0W 3 C:L i

o 8

i

}

i w m.v I

094 -

y.

FEQ

..=k

.f..

SP4 t

=

5074T15 -

t y

i R E T STs

____.e t y; l

on. -

l F1tEG t

I SP544 b

==

4 h

l D

it0TATIOH -

7P

'I 2

t i

RJ.GHT STR i

one -

L

}

dL FitEQ M

SPm 4

f e.63 7.L75 g DEG M.

' ttEE

+4.&

It0TATION -

I

?

2/

SYSTEN cDF,mrION l

a i

M-DEFALLT

,,, og,. 4 g

3:25:56 Sin 1

. _._....)

JsHLswy 1 Im _

g;

.. y.

..f......

y 1s

<l l

4-t f

f'l i

Figure 5 - 40% TW flaw in parent tube mid span using bobbin coil and

5

. CH I VERT,j. Q*

1 H(EIZ.l C4MEL W - 1 ID 8 ROW 1

l

)

{

o peel 1 we i

_-_.p

_-5_--

j srm c-g 3

acnnTItm s

090EL 2 i

.::4h A

d h l, ROTRTION Op6EL 3 f

e SPM Mf 7

ROTATION M

l OpeEL 4 j --

1 T11C 6,a SPM -

2.43 VOLT 5 BE DEG 68 %

l It0TATION MIX 1 (5)

D O4ELs u

~P

~

I m-

->acTATION l

nix 2 (s) w m

I onens A

l sPm -

1

}

t

}

stoTATim Figure 6 - 60" TW flaw in parent tube mid span using bobbin coil and 1

I

,_ 04 1YERT.j D-1rEE C,

00+C. @ - 1

$D 4 End e CIL ej f

d i

J De#EL 1

_k _

L_._

I lC_____

{ noTailm j

3 p

7_

ej OG#n 2 i

l N

i fl

^

- _==,

4

=

g i

stCTETION l

i De*EL 3 i

f m

l see M-F ItOTATION M

OD4EL 4 M

m I

t 1

2.31 YOL T5 EE DEG M TUEE

+4,e SPW l

ROTRTION

?

1 RIX 1 (5)

W oaens u

H q

ym P

%)

)IIDTRTION 4

RIX 2 (6)

_3r omens

__:u sPm 1

g flDTRTim Figure 7 - 40 Ta' flaw in parent tube mid span using bobbin coil and

. os tet.1_ m a c 2:.

mt wo - 2 pp eem o ca.

cj l

lo9 EEL 1 me -

n sPm -

C"Jh 4-.

aDmTim I

omen a

/ a%

FRED -

-~ -

p ROTmION Open 3 rREc -

sem -

HUTRTItet open 4 l

1. 5C VCt. T S M [EG 60 %

, sPm -

Tust

+e.O j

~

EDTATICH g

nix : (s) k

-'onens sw -

7-j acTRT: m l

nix 2 (s) caens l

sem

--T-l A

}

l RermIm -

a.s; Figure B - 60% TW flaw in parent tube mid span using probe and

.cxIvoT.;_ m a mRI:.;

on+o. m -

po e am l

l 1

fo neEL 1 NG -

-- - {

e f' 4 acTmIm.

OC onec 2 j

FREQ srm

(

ROTATIDH -

On#E 3 FREQ I

i armn0H -

t ODOE 4 E.22 vrtT5 m DED 40 %

TUtE

+e.e sPm l

kOTATIDH -

g NIX 1 (5) a.

w on#Es sem RDTRTION -

r MIX 2 (6) omens sem y

ROTATIDH -

Figure 9 - 40% TW flaw in parent tube mid span using probe and

l CH !VGT

l. Di ! KSI l

Op+G HD - 5 jrD 910e l ll l

OpeE2. 1

=

=

FREQ 1

T spy RDTAT194 De6E. 2 FREQ ll 9

sPm i

l O

RUTRTION 3

0900.3 re -

i sm -

i i

RtrfATION I

De+EL 4

~

8.14 VOLTi 49 DEG e4 CLEm EX

+0.0 N-l l

ROTATI(N j

g MIX 1 (5) g g

a D O+Els l

i"~

L ROTATICh p

l h

i 1

gMIX2(6) i on+ns g I l

l sm -

s

! I i

i l

ROTAT134 Figure 10 - Residual " clean" expansion transition using mix i ;_ o4 IvsT.L cx : H0cI 1

on+c Mrs - s ha e RS

.e ca J --.

M~

lO69EL1 F

Ci i FREC J

e SPm

  • i RDTATICH -

U 09+n 2 fl if.__

T rm lI j

ROTATION -

)

OAin 3 w-FE g -

2m ROTETICN -

OD+n 4 l

1.14 Yr,t TS M DEG *e %

S:.V. TRW

+e.p SPm r

RoTAT!0w.

MIX 1 (5) onens

\\ ROTATION -

MIX 2 (6',

i opens se y

ROTATICH -

Figure 11 - 40". TW flaw through sleeve at expansion transition using mix

s

. CH 1 VEN oi. Os 1 McEIO.,

ML NO - 5

'ID eW 8r

,__ L i

4 OneC.1

[

HIED f

SPm p-Il0TRTICD8 -

L OpeEL 2

(

N 1-i

-- h C

IICTRTION.

O peel 3 no I

SPD itDTNTit>I -

Oe#EL 4 filed

~

g 1.03 VOLTS

.'5 DEG 40 %

__T_LEIC TPJP+

+e.0 SPm w

l ROTRTION -

5 l

3

_]

,mix 1 (5)

~ ~5._

{

Op+ELS I

l__

8 l SPD

- ROTATION j

l

. nix 2 <s) r-l De.as sPm

(

7

)

RcTATIm -

Figure 12 - 40% flaw through parent tube at expansion transitior using

.'. O-i s... o<

.a l z,

c>u+(. m - :

so e =c t

j ii iOpeEL 1 2

j IFREG l SPm l

i I

i eciav!c>.

! l I

i

\\

00+C. 2 I

I P

i l:l L;

l' AtEG

i [

j 3

i eTcT:m r-y

\\

o net _ s s

(

l

\\e3 NG

! l 4

sw

+

4 acT~ rim

$li I

IC AttL 4 i

i i.s ws sm :c. - s i"

!l i=rt ntt -e.e SP*

'l'

\\

i i **'

  • t

[

{MIa1(5' g

, ca+c.s I

i; sPm l

t poTmm i

l pix 2cs) t p

ca+e 5

\\

w t i s

1

sPm i !

y i

f i ROTATIcma Figure 13 - 40% flaw through parent tube mid span using

.ube end suppression mix

'. Os IVERT

,l_ CH 1 HOE!I,e ODE MJ - 5

$K, S Row f

l 3

OpeEL 1 No m

-=

%l SPM gnoTaTIGH g

Op+EL 2 r

FnEn i

g noTnTION l

I Op4EL 3 F4EE i

m

. acTATIDH I,ODeEL 4

' N8 i.31 n rs ss a o 4e x stv. o o +e.e sPm t

/

l

.EDTATIGH l

nix

<s)

W

- Op+ELS I

l j

sPm -

l l

kCTATION pix e <s)

._ Opens I

m-i f

l

}

RainTION Figure 14 - 40% TW flaw at sleeve end at

. D4 1YERT,l_ 04 1 POEI2,l Do+EL HD - 5 gic Rtad i

1 I

[ODen i h

-Ik, w

! "m -

_=

g p

g y ')

l@TATION a

w my

[

e

'FEQ -

s.8 I

sem -

W ROTATION CN 3 me -

SFTe4 -

ROTATION lOp+EL 4

~

1.10 WJL!!

Bd MG 46 %

' SLV. E.T 4.9 SPM -

ROTATIDH l

MIX 1 (5)

{

ODeELS j sPm -

ROTATION

MIX 2 (6) j l

Owens sem -

l l

ROTAT!G4 Figure 15 - 40% TW flaw at sleeve end at

_ CH IST. }. CH I HORIZ,l o&+G MD - 5

$G e Row I

t j

open i rue -

J, JE.

s= -

90TATICH oD*EI. 2 FREQ -

i SP5W -

l ROTATION onen s FRED -

SPEN -

ROTATION Me 1.59 YOLTS 46 CE6 6 Oc

~

j i stv. no +e.e orcW -

I

}

j r

ROTATIo-

,!y ex I (::

I oa+as i sFm -

' RDTATIO>

g

_-I_

9 - opens l

cx

<s:

4 lY spaw -

i RorATIc*

Figure 16

~

showing

." clean" sleeve end signal, CH I si.i_ o4 : c::,;

an.n wo __ 3 pc,,,

oO*C 1 FREG SPm RDTATICH 3

0DeEL 2 l

j FRED l

SN l

ROTATICH -

i I

~ - -

ROTRTI(> -

oM4 0

1. 3 R TS Em EG 4e %

, uv. oe

4..

l i

ROTATIDH -

l PflX I <5) e l

omens l

1 SPcw l

l--

ROTnTIt> -

l mix a <s)

__.owecs l

(,

i RoTnTIcN -

Figure 17 - 40% TW flaw at sleeve ent

i

. CH I VDtT g. Q4 1MORIZ.I O**Ei HD - 3 E '*

Op*EL 1 F1tEQ SPm 2

ROTATICH -

f Op4EL 2 F1tED

\\

5" y

RDTATIDH =

O p eel. 3 FREQ SFM d

l' ROTRTIDH -

i OpeEL 4 i

ram i

e,e9 wtTS 235 DEG de %

SLV. DO

+0.9 g

1 kO1ATIDH -

p I

MIX 1 (5)

}

l O PEELS 1,

,SPG*

ROTA110H -

[

MIX 2 (D O neELs D

in ~'

(~l

. 1 "SPm "Ic"

  • Figure 18 - 40% TW flaw at sleeve en.d at

. Co 1 VET <T,J. Cu ! HCr *:,.

C;CidC H0 - 5 SG B kOW OOeEL 1 FFfG

(

l SFm

~

p ROTATICH -

/

045*EL 2 A

J RCTATION -

Q@ EEL 3 FE1EG um --

EDTATICH -

O n#EL 4 FT1Q 1.08 90LT5 84 DEG 46 %

_g v. o o +e.e srm ROTATIDH -

MIX 1 (5)

Dams sPm ROTATION -

MIX 2 (O Dams um f

ROTATION -

Figure 19 - 40% W flaw at sleeve end

l

_ Q1 1 VERT

,I. Cu 1 H0RIZ.l DOeEL60 - S P 0 ROW F

)

090EL 1

/

FREQ ~

b SPN 3

A-ROTATION -

Op*EI. 2 i

N p

a s

ROTRTICM -

1 O G4EL 3 FRED-SPFed 3

ROTATION -

i 1

1 0 00EL 4 FREQ 1

1.69 v0LTS 238 DEG 46 %

C st,v, p o +e e Srw I

ROTATION -

M n!X 1 (5) io***S 1

, SFm

$L 3-ROTATION -

flX 2 (6) s Oaecs l..

gm ROTATIDH i

Figure 20 - 40% flaw at sleeve end I j_ ex : vE:-.l

a. 2 aIz.

on+c.m - 5 pc eo e ca ai i

i Oa.a i n-q FREQ SPm j

ROTRTIDH -

==

O pe(L 2 FREU

'[

~

SPm ROTRTIChe -

F OD*E 3 F~EQ i

i SPm ROTATICpt -

O pett 4

6. % vr.A.T 19 DEG 84 j

stv. oo 5.a sF*

l ROTATION -

l 9

mix : <s) f I.

Onens Sesp RomT!ow -

nix 2 <s) l opens SPm l

y RDTATICH

,DEGl Figure 21 -

shows " clean" sleeve end,

_ m :,or.i_ m i nI:.!

N

  • -5 N**

i opeEL 1 me 1

2 sem

,7 RoTRTICD4 -

i

)

onut 2 i

T me --

l i

noTmio* -

\\

e 1

  1. _C M'

open a a

g, FG

\\

sem 7

1 ROTATION -

OWM14 me 1.32 vntTS 233 DEG 89 %

stv. ee +e.e y

stoTATION -

mix 1 (5's

,m onens sem

'st0TATION -

l cx a <s:-

Da*Et l

ROTDTICD+

Figure 22 - 40% TW flaw at sleeve end

_ m ivt-;.i. m i KsI:.'

"M NCe - 5

%9h J, __

W' e

No -

)

sem -

acTmICn.

1-onen a j

4.

FRETe sem -

noTerm i

094R 3

)

l l

MQ

\\

sem -

s e

l l

l aarmsm opea 4

\\

ma i

1.83 m.:s sus DE3 40 %

l sv. eo +e.s SPW t

i normim l

nix 1 <st opens sem noTmzow -

J mx a (6)

J I

on ns

[

j

[

vee q

nurmion -

Figure 23 - 40% TW flaw at sleeve end

r 1

2 1YDT

,l. 04 1 HOEIZ,l OD*El HD - 5 BG eIDs 05HEL 1 FREG -

l i

m --

\\

4 ROTRTION 2;;

=-

O peel 2 i

FREG -

q m-ROTATION i

I O ptEl 8 4'

FiEU -

R sem -

RUTRTIDH opeEL 4 1.71 WL TS 44 N G 9%

l k,.

SLV. DO

+0.0 SPN -

ROTATION I

l l MIX I (5) i Do+as

(

,SPm -

ROTATIDH NIX 2 (6) pi O p4ELS sem -

l ROTC?lth Figure 24 -

" clean" sleeve end,

,i

_ Oi 1 YDtT,! 04 1 HOE 12,l OD+G 2 - 5

. K P R0W 6 Ca.

GI DO*EL 1 l

FREQ sPCN ROTMION c

094EL 2

]

MG r

sem ROTATION 0 9 EEL 3 l

g ma i

g SPAN RUTATION Op4EL 4 I

1. 2f YUL Tf.,

25e M G 4e A

{

stv. oo +e.e sPm

.ROTAT10H l

L_

_IMIX 1 (5)

On+ns i

M 7

s sem f

ROTATIG4

~

l lMIX 2 (6) u

_a

' Quecs l!

r--

--- J m -- -

i

/

7 l

f it0TATION OEG !

[

Figure 25 - 40% TW flaw at sleeve end 4

)

i 4

l

. CN 1VEPT.l. D4 3 OI:,l C""- <1 NO - 5

% e Row e Ca el l

1 OMeE1. 1 s

rREe -

I sm -

l l

4 ROTATICH -

OWeEI. 2 FRED -

SF%N -

l ROTATIDF -

f onen s C

l F3lE3 srm f

ROTATjCN -

De+EL 4 l

1.74 VOL f5 51 MG 46 P.

4 A v. oc.e.e sP5m Y

l ROTATICH -

HIX I (5) l acaens Si*

90TRTION -

HIX 2 (6) g Opens l

l POTRTICH -

saw C

Figure 26 - 40% TW flaw at sleeve end

~

tW i O',!. CH 3 HCEIZ,l C";;CL HJ E6 A DCh Op+C. 1 FREG EMN-3 c

ROTETION -

1 g

O@eE 2 i

FREQ

~-

spsw -

7 ROTETICH -

i L

i OD#El. 3 N

SPAN -

ROTRTION -

On4EI. 4 l

l 8.83 VLLli EHL DEG 40 :c y

a l_SLV. DO +e,O SF9f l

M l

l ROTATICh -

MIX 1 (5)

~

J 4r-~

_ g I

O PEELS i

sp,w __._

RGTATION -

3 MIX 2 (6)

I I l owens a

N t

I smatw -

Figure 27 - 40% TW flaw at sleeve end

C

. CH 1YERT CH I HDEcIZ. )

Que(1 @ - 5 W e stok 05aeE1.1 g

f

-f _

FRED

~

SP5N -

p Q

ROTRTION -

open 2

'h

~

FitES

) __ i' J,

N sm -

= = > = -

g OpeE 3

,FRES -

SN -

ItCTRTION -

O p*EL 4

1. % VOL T f.

40 %

stv. 90

+a., 54 E G CA -

l

}

ItCTDTION -

mx: <s,

(

onens

sm 320TATICN
  • MIX 2 (6) y ouses m

l j

t. ROTETION -

Figure 28 - 400 TW flaw at sleeve end l__ 1,. Ch 1 Wrt.j, p. 3 gs j;,j nc,m-$

l pG e g3.

l joO+E 1 FitEG s

~

SN ROTm:0N -

~

CM*C 2 o

N 30TATION -

j OG+C. 3 i

,FREQ -

r i

sm 4

1-amm::= -

l NE4 6.L5 vot.TL 74 EG G% ~

LstV. EO

+* to SN i

k ROTRTIO4 -

~

R MIX 1 (5) 1 oa.as e

s. -

f L.-

IlmATION -

I O'

fflX 2 (6)

! wsN -

g i

1

! ammIm -

Figure 29 -

shows " clean" sleeve end, 1

o.

2 m'... > ; G.

O'e c_ @ - apre ?

,ID e sta.

l r

7

==

C_~'l

om -

4 I

}W-I

201ATICes ll

[

t I i t

I l g

l 4

L"5 1

I con-1 I

I g F"tEO -

\\

sw -

-j l

g

. MWh l

l RIGA.51 oun-FRrr., -

su -

6.54 vta. TS 56 MG 6%

RCTATION

}

')

)

j l

t pm i

g aat - >

r

__ e or on.

i L

__I_

2:4h I_

_.).u-se i

L u,

k !

?

Figure 30

" Clean" non-tapered sleeve end

. > - - e...- : s.

xnc s - -:n e i

, e% +ca e

==

a one -

I i !IO. -

j KTG Ices g

i

i Le r T.

I w-t j

\\

\\m -

O 1

i e.44. -

i

, RST;.T:Ca.

l

.i

' Ei E _

l r x_o n f:

I 3

.s -

! I g

s.M RS "2 M 5 s4 3*m e

t MTATIM i

I s

]

f l2TI'P.'E*.

i l

3

-,ur - >

i l e of 00+

3 j

g g

1: F:.

I l

w. = =. e.a.

I i

(

,I e

i.

L-r I-i I

f s

i t

Figure 31

" Clean" 1/4 inch long OD tapered sleeve end u.

- 2.p.,
.< _.., s. _,

,,3, i

g.

cw 7

$J b.

!one i

SPQH -

l l

%l l RotaT!a i

L I

l i

L i

l un_:

on.e l

4 i

nra -

,L w

f I

sm -

8 g j{

i

~

emIm j

)

}

l I #!G" !

i a

1 On.e il*5 i

i ms -

I

e. s va.is, sm -

av.rm

.e., e oco. -

l Rcm!m.

i I

.L.

t l

in

_ne_s 1

i l

g

~

I e of CW i

l l

  • l.

1 l

I

}

/

l i

L?

I h

a i

j l

i~

Figure 32

" Clean" 1/4 inch long ID tapered sleeve end

! f

  • 8 *7

! m i HmI:.i

> m a.o _ 6 g,,

l IDD+E. 2 l

I i

IFREG -

f SP$N ----

f

801AT10, 8

I i

On+C. 2

}

i i

ma -

g l

(

\\

E m-p tjy no urlm I

l On+E. 3 4

l N --

q a

SPSH ~

,RUTRTIDH I

l On+0. 4 l

i I

~

me 1

j N34' W

4. O l sP5N g

l ROTRTIDH

,f, s

j d

MIX ! (5) i i

oo+us 1

4 I

sw 1

s

~

l J

>RDTRTION MIX 2 (&)

, I.

on+o.s

(

4 sm i

+

era,I,.

Figure 33

" Clean" 11/2 inch long OD tapered sleeve end l

l