ML20199L506

From kanterella
Jump to navigation Jump to search
Forwards Responses to NRC Comments Re Calculations Based on Preliminary re-assessments,which Will Be Formally Incorporated Into Calculations & Issued to NRC by 990201,in Order to Support Schedule for NRC Review of LAR 98-01
ML20199L506
Person / Time
Site: Arkansas Nuclear, 07201007  Entergy icon.png
Issue date: 01/22/1999
From: Fuller E
SIERRA NUCLEAR, INC.
To:
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
Shared Package
ML20199L511 List:
References
BFS-NRC-99-007, BFS-NRC-99-7, NUDOCS 9901280027
Download: ML20199L506 (33)


Text

_

'h- Io07 e:::: A  % )

f M ,

l f /f f f j A f/g 7 f j f g O f g & ~.v.., m i

Jar.uary 22,1999 BFS/NRC 99-007 Docket No. 72-1007 File No. SNC-09 Director, Office of Nuclear Material Safety and Sa Sguards US Nuclear Regulatory Commisdon Washington, D.C. 20555-0001 $j

Subject:

License Amendment Request 98-01, Burnable Poison Rod Assemblies (BPRA)  :

References:

SNC letter dated December 30,1998 (BFS/NRC 98-028), License  ;

Amendment Request 98-01, Burnable Poison Rod Assemblies (BPRA)

Dear Sir,

In Reference 1, Sierra Nuclear Corporation (SNC) submitted a License Amendment Request (LAR) 98-01, which proposes revisions to the VSC-24 Safety Analysis Report (SAR) and Certificate of Compliance No. 72-1007 to address the storage of B&W fuel with BPRAs in the Ventilated Storage Cask (VSC) system. During phone calls on January 19 through 22,1999, the NRC discussed a number of comments regarding l LAR 98-01 with representatives of SNC and Arkansas Nuclear One (ANO). Many of the  ;

comments were closed during the discussions. However, SNC agreed to provide the  !

attached written responses to close the remaining NRC comments. 1 In order to support the schedule for the NRC review of LAR 98-01, the attached responses to comments regarding calculations are based on preliminary re-assessments, l

which will be formally incorporated into the calculations and issued to the NRC by February 1,1999. Additionally, the attached responses include proposed changes to the VSC-24 SAR. In order to incorporate any additional changes to the SAR resulting for the '

NRC's review, the final pages of the SAR supporting LAR 98-01 will be submitted to the NRC upon a schedule to support issuance of NRC's Safety Evaluation.

SNC considers that the attached responses do not change the conclusions, or the basis of any conclusions, of LAR 98-01. Representatives of ANO have agreed with the attached M

responses. fy bbk 0 9901290027 990122 g0049 ,

~

Vh pr ' D PDR ADOCK 05000313 y PDR ,

1 Victor Square . Scotts Valley, California 95066 . (408) 438-6444 -

Fax (408) 438-5206 L l

US Nuclear R gul tory Commission BFS/NRC 99-007 ,

Docket No. 72-1007  :

Page 2 If any questions exist relative to this submittal, please contact me at (831) 438-6444.

Sincerely, ,

)

E. D. uller President & CEO 6 cc) Ms. Marilyn Meigs Mr. Dan Ropson BNFL Inc. Entergy Operations, Inc 90017'h Street NW. Suite 1050 1448 State Road 333  !

Washington, DC 20006-2501 Russellville, AR 72801 Mr. John Broschak Mr. C. Randy Hutchinson Consumers Energy Vice President, Operations Palisades Nuclear Plant Arkansas Nuclear One 27780 Blue Star Memorial Hwy. 1448 State Road 333 '

Covert, MI 49043 Russellville, AR 72801

]

I Mr. Thomas J. Palmisano Mr. Mike Holzmann I Site Vice President- Palisades Wisconsin Electric Power Palisades Plant Poir.t Beach Nuclear Plant 27780 Blue Star Memorial Hwy. 6610 Nuclear Road Covert, MI 49043 Two Rivers, WI 54241 Mr. Mark E. Reddemann Site Vice President Point Beach Nuclear Plant Wisconsin Electric Power Co.

6610 Nuclear Road Two Rivers, WI 54241 l

h

US Nuclear Regulatory Commission l BFS/NRC 99-007 '

Docket No. 72-1007 Page 3 I.IST OF COMMITMENTS 99-007-1 To incorporate the NRC comments regarding LAR 98-01, SNC will revise the following calculations by February 1,1999: ANO-109.001.006, ANO-109.001.007, ANO-109.002.218, and WEP-109.003.018 99-007-2 SNC will provide revised pages to the VSC-24 SAR for LAR 98-01 on a schedule to support issuance of NRC's Safety Evaluation.

l i

i 1

l

1u- -. m >e 4 .a s L e--.w. a a +.--..s - a uaa aa.. ara, .se..x - .ws. e am . -u o . asaa as a..- - - .s - sm.a l Attachment 1 i

RESPONSE TO NRC COMMENTS ON LAR 98-01 BURNABLE POISON ROD ASSEMBLIES 1

l l

s

ATTACilMENT 1 RESPONSE TO NRC COMMENTS VSC-24 Safety Evaluation Report License Amendment Request 98-01, December 1998 Sierra Nuclear Corporation (SNC) submitted a License Amendment Request (LAR) 98-01 in letter dated December 30,1998 (BFS/NRC 98-028). LAR 98-01 proposes revisions to the VSC-24 Safety Analysis Report (SAR) and Certificate of Compliance No. 72-1007 to address the storage of B&W fuel with BPRAs in the Ventilated Storage Cask (VSC) system. During phone calls on January 19 through 22,1999, the NRC discussed a number of comments regarding LAR 98-01 with representatives of SNC and Arkansas Nuclear One (ANO). Many of the comments were closed during the discussions. However, SNC agreed to provide the following written responses to close the remaining NRC comments. In every case, i.e., the proposed revision to the SAR, the calculations, or the list of drawings and calculations, there were no changes to any conclusion, or the bases of any conclusion, of LAR 98-01.

An item number established by the NRC identifies each of the NRC comments.

Item 2-1 SAR Sections A9-5.4.4 and A9-5.4.5. Dose Rates The conservative application ofthe absolute increased dose rate at the cask to various distancesfrom the l'SC would exceed 10CFR limits.

SNC Response The SAR Sections will be revised as follows to describe a conservative application of a percentage dose rate increase at various distances from the cask, which is safficient to demonstrate compliance with 10CFR limits. The SAR Sections will be revised as follows:

Section A9-5.4.4 will be rewritten as follows:

It is conservative to assume that the dose rates at various distances from the VSC due to gamma radiation streaming from the side of the cask will not increase by more than the percentage dose rate increase on the surface of the cask. The estimated potential percent increase in the dose rate on the surface of the cask was calculated to be 0.198 %. Therefore, all previously calculated dose rates at various distances should not increase by more than 0.198 % due to the direct radiation streaming from the side of the cask, and remain well within the VSC-24 design limits and applicable 10CFR requirements.

Section A9-5.4.5 will be rewritten as follows:

It is conservative to assume that the dose rates at various distances from the VSC due to gamma radiation scattering from the upper regions of the cask will not increase by more than the percentage dose rate increase at the top of the VSC l

l BFS/NRC 98-007 Page 2 structural lid. The estimated potential percent increase in the dose rate at the top of the VSC structural lid was calculated to be 6.832 %. Therefore, all previously calculated dose rates at various distances should not increase by any more than 6.832 % due to scattered radiation from the upper regions of the cask, and remain well within VSC-24 design limits and applicable 10CFR requirements.

Item 3-1 LAR 98-01. Tab 3. Evaluation of CofC Chances The weightfor the generic Transfer Cask (MTC) is indicated as maximum in SAR Table 1.2-6. The NRC requested that Tab 3, page 6 ofLAR 98-01 he clanfied to indicate that the weight ofthe generic MTC as a maxinnun weight.

l SNC Response provides a revision to Tab 3, page 6 which indicates the maximum weight of the generic MTC is a maximum weight. A revisien har indicates the change to Tab 3,  ;

page 6. This revised page replaces page 6 of Tab 3 in LAR 98-01.

Items Il-1.12-1.13-1 LAR 98-01. fabs 11.12.13. Drawing Lists I The lists ofdrawings contain incorrect revision levelsfor some drawings submitted in LAR 98-01.

l SNC Response l contains revised lists of drawings that correctly identify the revision level of the drawings submitted in LAR 98-01. Revdon bars indicate the changes to the lists of drawings. These pages replace the first pages of Tabs 11,12 and 13 of LAR 98-01.

Items 14-la and 14-lb ANO-109.001.006. Geometry Discrenancies Several geometry discrepancies were identified as inputsfor the critical benchmark Configurations A and D in ANO-109.001.007, which is used as a reference in ANO-109.001.006.

SNC Response ' provides the re-assessments of Calculations ANO-109.001.007 and ANO-109.001.006. The correction of the geometry errors in the critical benchmarks resulted in slightly increased bias values and a slightly decreased bias uncertainty for each fuel type. The net effect on the results obtained in the required minimum boron concentration criticality evaluation (re: ANO-109.001.006) was that the maximum predicted final kenvalue for each fuel type decreased by an average of 0.0028. The decrease in bias uncertainty between the corrected benchmark results and the previous benchmark results is the reason for the resulting net dec ase in the maximum predicted kca values. The decrease in the corrected bias uncertainty, relative to the previous bias uncertainty, is due to the tighter spread of the corrected benchmark results about the linear regression of key as a function of rod pitch.

The previously calculated bias and uncertainty values obtained from the benchmark set containing the geometry errors yield conservative results (+0.0028 Akcaon average)

1 Attachment 1 BFS/NRC 98-007 Page 3 when used to determine a final kar value for a criticality calculation.

ANO-109.001.006 and ANO-109.001.007 will be revised to reflect the revisions in the l

benchmark geometry inputs.  !

l Item 14-Ic ANO-109.001.006. Typonraphical Error

)

ANO-109.001.006, page 29 has a opographic error in the equationfor calculating kp,,at.

SNC Response l

Although the correct value was used in the actual calculation, the equation has a i typographical error in that the value of 0.0346 should be 0.00346. However the value was revised as a result of the re-assessments performed for Items 14-la and 14-lb. The revised value is 0.00188, which will be incorporated in a revision of calculation l

ANO-109.001.006. i Item 14-2 ANO-109.002.205 and ANO-109.002.209. Weld Stresses The NRC requested that SNC clarify an apparent discrepancy in the variation in u eld l

stresses between the two calculations. l SNC Response ANO-109.002.209 refers to a variation ofle<s than 1% in the calculated weld dead load. l ANO-109.002.205 states that the weld stresses are increased by approximately 6%.

The 6% and 1% changes in stresses identified in the two calculations are unrelated. The statement in ANO-109.002.205 is related to the basket shell, bottom plate and sleeves.

The vertical stresses in these components are affected by length and, therefore, are i increased by 6% (See Section 5.2 of ANO-109.002.205). 4 The statement made in ANO-109.002.209 is related to the shield lid weld. This weld and its loads are not affected by the change in basket length because the lid configuration remains the same. Calculation ANO-109.002.209 is not related to LAR 98-01 and should not be considered. This calculation has been deleted from the list of calculations applicable to LAR 98-01. The revised list of calculations is provided in Attachment 5 and replaces the first page of LAR 98-01, Tab 14.

Item 14-3 ANO-109.002.201. Chance of Temperature An earlier version ofthe calculation used a value of500*Ffor the top and bottom plates.

rather than 300"F. The revised calculation does not provide a basisfor the revised temperature.

SNC Response The nodal maps and temperature printout from Calculation WEP-109.003.018 (See Attachment 6) shows that the top and bottom plate temperatures at all locations are less than 300 F. Calculation ANO-109.002.201 will be revised to reflect the use of nodal maps from WEP-109.003.018.

Attachment i BFS/NRC 98-007 3 Page 4 Please note that Figure 1 of Calculation WEP-109.003.018 will be replaced with the figure providd in Attachment 7.

Item 16-1a ANO-109.002.218 Copy of Refereaces The NRC requested a copy ofreferences 4, 9,14,15, and 17 of Calculation ANO-109.002.218.

SNC Response Attachment 8 provides a copy of the requested references. Please note that Reference 4 has been updated to refer to an Entergy letter dated January 21,1999. ANO-109.002.218 will be revised to include the updated reference, item 16-lb ANO-109.002.218 Assumed Temperature The assumptions listed in Section 3 ofthe calctdation did not reflect a bounding basket average gas temperature of460*F. This value was conservatively selected as the bounding gas temperaturefor the normal condition. Additionally, thejustification that the selected bounding gas temperature is conservative is based on an approximation of average axial and radial temperature distributions. The approximation ofthe axial temperature distribution is calculated as the average ofthe basket top, middle, and bottom temperatures with the middle temperature being given double weight. Provide a basisfor the double weight of the middle temperature.

SNC Response BFS has validated the calculation of the average gas temperature equation against 3D ANSYS MSB temperature data from WEP-109.003.018 (See Attachment 6). This validation will be incorporated into a revision of Calculation ANO 109.002.218 to provide a basis that the selected gas temperature of 460 F is conservative.

Item 16-1c ANO-109.002.218. Undate Reference Page 23 ofthe calculation refers to Reference 19, and the correct reference is 18.

SNC Response The correct reference is 18 and the calculation will be updated to correct the reference number.

Item 16-2 ANO-109.001.008. Order of Macnitude The basisfor Ratio 1 on Page 30 ofthe calcidation is not clear. Additionally, Page 31 of the calculation states that the BPRA hardware source isfour orders ofmagnitude lower than thefuelassembly totalsource. Table 4.3.2-1 ofthis calculation indicates that the difference is closer to three orders ofmagnitude.

SNC Response The sentence that reads "Since the fuel assembly source generally has a greater relative photon intensity at higher energies, it is conservative to scale based on the calculated l --

Attachment I l BFS/NRC 98-007 l Page 5 l

l value for Ratio 1." will be removed from p. 30 of calculation ANO-109.001.008, Rev. O.

Additionally, the calculation will be revised to indicate the difference between the BPRA hardware source and the fuel assembly total source as shown on Table 4.3.2-1 is three orders of magnitude.

Item 17-1 ANO-109.002.218. Axial Growth The NRC requested a basisfor the axialgrowth ofB& Il'fuelsince Rcference 4 is to a Combustion Engineering report.

SNC Response Revised information from Entergy in letter dated January 21,1999 indicates that the fuel pins would grow approximately 2 inches in length for burnups up to 60GWD/MTU during the fuel assembly lifetime. Calculation ANO-109.002.208 will be updated to reflect the revision in axial growth of the B&W fuel. A u-assessment of the calculation indicates that the change in free volume of the basket and corresponding basket pressures are small. The calculated basket pressures will remain within the basket design limits.

l

. _ _ ~ - . _ . . . ,_ - .- .-- -_ -. _ . . . . . . . . _ _ . . . . - . . . _ . _ - . _ , . . . . . _ - . . . - . - . - . . - _ _ . .

F f

Attachment 2 I

Item 3-1 Evaluation of CofC Changes  !

l l

l l

l I

l i

l t

i

, , , _ . . . _ -r- -..

9 _. , g _. ,,.__.._,_,,_r ew ---c. '.- ,

  • T=-

. _ _ _ _ . . . . _ _ . - _ . - . _ _ . _ _._ _._. ___m___._ _ _ _ _

License Amendment Request 98-01 Burnable Poison Rod Assemblies '

Tab 3 1

The first editorial change inserts missing words in the basis of the Fuel Specification and  ;

does not change the meaning of the basis and has no impact on safety. The other editorial l revision deletes the calculation value of 49.4 psia value from the MSB Backfill Pressure l Technical Specification 1.2.8. The calculation value is not a design limit, and its deletion

]

does not change the meaning of the basis and has no impact on safety.

Table 2 presents a comparison of the main physical characteristics of the generic VSC-24 and the

! VSC-24 loaded with B&W 15x15 fuel with BPRAs.

TABLE 2 VENTILATED STORAGE CASK COMPARISON Generie VSC-24 with VSC-24 B&W 15 x 15 and l BPRA l

Ventilated Concrete Cask (VCC) l Outer Diameter (inches) 132 132 inner Diameter (inches) 70.5 70.5 l Overall IIeight (inches) 196.7 to 213.7 225.0 l

Weight (lb) of VCC(Empty w/o cover 199,050 215,200 plate)

Multi-Assembiv Sealed Basket (MSB)

Outer Diameter (inches) 62.5 62.5 Overall Length (inches) 164.2 to 180.9 192.0 l \

Weight (lb) ofloaded MSB w/ lids 63,780 68,250 i MSB Tnasfer Cask Overall Diameter (inches) 83.5 83.5 j Overalllleight (inches) 187.7 to 192.3 197.4 i Weight (lb) of MSB Transfer Cask (Empty w/o lid) 118,630 (max.) 112,500 l l The structural evaluation of the VSC-24 loaded with the B&W 15x15 Fuel with BPRA considers

( normal, off-normal, and accident loading conditions. The normal loads include dead weight, i internal pressure (considering 1% rod failures), thermal stress t.nd normal handling loads. For the l

- Page 6 -

l

License Amendment Request 98-01 ,

Burnable Poison Rod Assemblies Tab 3 Attachment 3 i

Items I l-1,12-1,13-1 REVISED DRAWINGS LISTS i

l l

l l

l l

l-t l

l l

I l

I

, - Page 6 -

1 I

l

TAB 11 LICENSE AMENDMENT REQUEST 98-01  !

l NON-PROPRIETARY DRAWINGS l 1

NUMBER SHEET REVISION TITLE AVCC-24-001 1/2 5 Ventilated Concrete Cask Assembly l AVCC-24-001 2/2 5 Ventilated Concrete Cask Assembly

{

} AVCC-24-002 1/2 5 Cask Liner and Lid Assembly

! AVCC-24-002 2/2 5 Cask Liner and Lid Assembly l

AVCC-24-003 1/1 4 AirInlet Assembly _

AVCC-24-004 1/1 5 AirOutlet Assembly AVCC-24-005 1/2 3 VCC Bottom Plate Assembly AVCC-24-005 2/2 3 VCC Bottom Plate Assembly l

AVCC-24-006 1/2 4 VCC Reinforcement l l

AVCC-24-006 2/2 3 VCC Reinforcement AVCC-24-007 1/1 4 Misc. Steel Components l l AMTC-24-001 1/2 3 MSB Transfer Cask AMTC-24-001 2/2 3 MSB Transfer Cask AMTC-24-002 1/2 3 Cask Wall Assembly l AMTC-24-002 2/2 2 Cask Wall Assembly l AMTC-24-003 1/2 3 Outer Shell l AMTC-24-003 2/2 2 Outer Shell AMTC-24-004 1/1 2 Inner Shell AMTC-24-005 1/1 3 Cask Lid and Shim Rings l l AMTC-24-006 1/1 3 Rail Assembly l AMTC-24-007 1/1 2 Trunnion Assembly l AMTC-24-008 1/1 3 Shield Lid Door AMTC-24-009 1/2 4 Hydraulic Cylinder Assembly l AMTC-24-009 2/2 2 Hydraulic Cylinder Assembly  !

ACLY-001 1/2 2 Cask Lining Yoke i ACLY-001 2/2 2 Cask Lining Yoke i

i I'

I-l l  !

I l .

l l

l l

TAB 12 LICENSE AMENDMENT REQUEST 98-01 NON-PROPRIETARY / REDACTED DRAWINGS l

NUMBER SHEET REVISION TITLE l AMSB 24-001 1/2 5 MSB Assembly AMSB 24-001 2/2 5 MSB Assembly AMSB 24-002 1/2 3 MSB Shell and Structural Plates AMSB 24-002 2/2 5 MSB Shell and Structural Plates AMSB 24-003 1/1 4 Shield Lid Assembly l AMSB 24-004 1/3 4 Storage Sleeve Assembly l AMSB 24-004 2/3 2 Storage Sleeve Assembly AMSB 24-004 3/3 3 Storage Sleeve Assembly l

l l

(.

I l

J i

4 l

, . , - - - , ~ - , , . - a - - - - - - -

-a , ,

.. _ . ~ _ _ . _ . . . . _ . . . _ _ _ _ . _ _ - . _ _ . . . _ . . . _ _ _ _ . - . . . _ _ _ . . _ . _ . _ - _ _ _ . _ . _ . . _ _ _ _ _ _ _ . _ _ .

l I

l i

I j TABI3 3

j. LICENSE AMENDMENT REQUEST 98-01  !

l PROPRIETARY DRAWINGS NUMBER SHEET REVISION TITLE

! AMSB 24-001 1/2 5 MSB Assembly AMSB 24-001 2/2 5 MSB Assembly l AMSB 24-002 1/2 3 MSB Shell and Structural Plates l AMSB 24-002 2/2 5 MSB Shell and Structural Plates l AMSB 24-003 1/1 4 Shield Lid Assembly AMSB 24-004 1/3 4 Storage Sleeve Assembly AMSB 24-004 2/3 2 Storage Sleeve Assembly AMSB 24-004 3/3 3 Storage Sleeve Assembly i

r 1.

l l 1 l I l

l l

l l

l.

l i

l l

7 Y -

Y -- - -

W 'M ' 'TT ' '-*w'"" ftUT7 5FTT'

~ . _ . . . . _ _ . _ _ . . . - _ - - . . _ . . _ . _ _ _ _ . _ _ - - _ _ . _ - . - . _ _ _ . _ _

Attachment 4 Items 14-la and 14-lb ANO-109.001.006, Geometry Discrepancies  !

1 i

l l

l l

i l

1 l

i -

i i

k f

f

Attachment 4 BFS/NRC 98-007 Page1 During the NRC review of the critical benchmark calculation (ANO-109.001.007, Rev.1) several geometry discrepancies were identified in the CSAS25 inputs for critical benchmark configurations A and C. Table 1 presents the geometry discrepancies identified in configuration A. Four variations ofconfiguration A were included in the benchmark set. Each variation required correction of the identified geometric discrepancies. Table 2 presents the geometry discrepancies identified in configuration C. Three variations of configuration C were included in the benchmark set. Variations 1,2, and 3 of configuration C required all three geometric corrections shown in Table 2. Variations 1 and 2 ofconfiguration C required the second and third geometric corrections shown in Table 2. The differences between the previous .

CSAS25 inputs and the corrected CSAS25 inputs for configurations A and C are shown in Figures I through 7, respectively.

Table 1. Geometry Discrepancies Identified in Critical Benchmark Configuration A Parameter Previous Correct (PNL-4267)

Fuel Pellet Radius 0.6347 cm 0.63245 cm Water Level Height 117.0 cm 111.7 cm "

Rubber Plug Radius 0.70735 cm

  • 0.64135 cm '

Distance between the top of the plexiglass bottom and the water level, b

Cladding outcr radius.

Cladding inner radius, The value for the rubber plug radius was ambiguous in the benchmark configuration reference. The value 0.64135 cm was used for the rubber plug radius and the cladding was extended to the end of the rubber plugs.

Table 2. Geometry Discrepancies Identified in Critical Benchmark Configuration C Parameter Previous Correct (EPRI NP-196) l Fuel Pellet Outer Diameter 1.176 cm 1.1176 cm Water Gap in Lower Support 1.3215 cm 1.3335 cm No Fuelin Axial Space Fuel in Axial Space Between Between 61.125 inches and 61.125 inches and 64.0 inches 64.0 inches Figure 1. Input Corrections for Configuration Al Comparing files BENCHA1.INP and d \ano-10-1\1-21-9-1\alnew.inp l ****** BENCHA1 INP 16: END COMP 17: SQUAREPITCH 1.715 1.2694 1 3 1.4147 2 END 18: NUREG/CR-2709, CASE A1 (4. 31% E, 0.675" P, O PPM B)  !

            • d:\ano-10-1\1-21-9-1\ainew.inp i 16: END COMP l 17: SQUAREPITCH 1.715 1.2649 1 3 1.4147 2 END

< 18 NUREG/CR-2709, CASE A1 (4.31% E, 0.675" P, O PPM B)

.. ~. . . . .. . - _ . . - - . , .. . .. . _ - . .

BFS/NRC 98-007 Page 2

            • BENCHA1.INP 23: COM='END CAP IN BOTTOM POLY TEMPLATE' 24: CYLINDER 6 1 0.70735 2.54 0.0 25: CUBOID 5 1 4PO.8575 2.54 0.0
            • d:\ano-10-1\1-21-9-1\ainew.inp 23: COM='END CAP IN BOTTOM POLY TEMPLATE' l 24: CYLINDER 6 1 0.64135' 2.54 0.0 25: CYLINDER 2 1 0.70735 2.54 0.0 26: CUBOID 5 1 4PO.8575 2.54 0.0 l l

l

            • BENCHA1.INP i 37: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' l 38: CYLINDER 1 1 0.63425 93.96 71.10 39: CYLINDER 2 1 0.70735 93.96 71.10 40: CYLINDER 6 1 0.70735 96.50 71.10 41: CUBOID 3 1 4PO.8575 96.50 71.10 i
            • d:\ano-10-1\1-21-9-1\ainew.inp l 38: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE'  ;

39: CYLINDER 1 1 0.63245 93.96 71.10 '

40 CYLINDER 2 1 0.64135 93.96 71.10 41: CYLINDER 6 1 0.64135 96.50 71.10 l 42: CYLINDER 2 1 0.70735 96 3 71.10 43: CUBOID 3 1 4PO.8575 96.50 71.10

            • BENCHA1.INP  ;

74: UNIT 14 75: COM='FRATIONAL FUEL ROD HEIGHT IN TOP TEMPLATE' 76: CYLINDER 0 1 0.63245 71.10 69.83

            • d:\ano-10-1\1-21-9-1\ainew.inp i 76: UNIT 14 77: COM=' FRACTIONAL FUEL ROD HEIGHT IN TOP TEMPLATE' 78: CYLINDER 0 1 0.63245 71.10 69.83  ;

e.**.*  !

            • BENCHA1.INP 79: UNIT 15 80: COM='FRATIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' 81: CYLINDER 0 1 0.63245 93.96 71.10 82: CYLINDER 2 1 0.70735 93.96 71.10 83: CYLINDER 6 1 0.70735 96.50 71.10 84: CUBOID 3 1 4PO.8575 96.50 71.10
            • d \ano-10-1\1-21-9-1\ainew.inp 81: UNIT 15 82: COM=' FRACTIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' 83: CYLINDER 0 1 0.63245 93.96 71.10 84: CYLINDER 2 1 0.64135 93.96 71.10 85: CYLINDER 6 1 0.64135 96.50 71.10 86: CYLINDER 2 1 0.70735 96.50 71.10 87: CUBOID 3 1 4PO.8575 96.50 71.10
            • BENCHA1.INP

l l

l Attachment 4 BFSaQRC 98-007 Page 3 86: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 87: CUBOID 3 1 79.245 -0.355 75.67 -0.21 117.0 0.0 88: CUBOID 4 1 81.15 -2.26 77.575 -2.115 117.0 -17.105 89: CUBOID 3 1 101.15 -22.26 97.575 -22.115 117.0 -17.105 i 90: END GEOM

( ****** d:\ano-10-1\1-21-9-1\alnew.inp l 89: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 90: CUBOID 3 1 79.245 -0.355 75.67 -0.21 111.7 0.0 91: CUBOID 4 1 81.15 -2.26 77.575 -2.115 111.7 -17.105 92: CUBOID 3 1 101.15 -22.26 97.575 -22.115 111.7 -17.105 93: END GEOM Figure 2. Input Corrections for Configuration A2 Comparing files BENCHA2.INP and d:\ano-10-1\1-21-9-1\a2new.inp

            • BENCHA2.INP 19: END COMP 20: SQUAREPITCH 1.715 1.2694 13 1.4147 2 CND 21: NUREG/CR-2709, CASE A2 (4. 31% E, 0.675" P, 1030 PPM B)
            • d:\ano-10-1\1-21-9-1\a2new.inp 19: END COMP 20: SQUAREPITCH 1.715 1.2649 1 3 1.4147 2 END 21: NUREG/CR-2709, CASE A2 (4. 31% E, 0.675" P, 1030 PPM B)
            • BENCHA2.INP 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.70735 2.54 0.0 28: CUBOID 5 1 4PO.8575 2.54 0.0
            • d:\ano-10-1\1-21-9-1\a2new.inp 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.64135 2.54 0.0 28: CYLINDER 2 1 0.70735 2.54 0.0 29: CUBOID 5 1 4PO.8575 2.54 0.0
            • BENCHA2.INP 40: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' 41 CYLINDER 1 1 0.63425 93.96 71.10 42: CYLINDER 2 1 0.70735 93.96 71.10 43: CYLINDER 6 1 0.70735 96.50 71.10 44: CUBOID 7 1 4PO.8575 96.50 71.10
            • d \ano-10-1\1-21-9-1\a2new.inp 41: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' 42: CYLINDER 1 1 0.63245 93.96 71.10 43: CYLINDER 2 1 0.64135 93.96 71.10 44: CYLINDER 6 1 0.64135 96.50 71.10 1 45: CYLINDER 2 1 0.70735 96.50 71.10

( 46: CUBOID 7 1 4PO.8575 96.50 71.10

..s...

l

            • BENCHA2.INP

Attachnuatt 4 BFS/NRC 98-007 Page 4 l

71: UNIT 13 72: COM='FRATIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' 73: CYLINDER 0 1 0.63245 93.96 71.10 74: CYLINDER 2 1 0.70735 93.96 71.10 75: CYLINDER 6 1 0.70735 96.50 71.10 l 76: CUBOID 7 1 4 PO . 8 57 5 96. 50 71.10 i

            • d:\ano-10-1\1-21-9-1\a2new.inp l 73: UNIT 13 74: COM=' FRACTIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' 75: CYLINDER 0 1 0.63245 93.96 71.10 76: CYLINDER 2 1 0.64135 93.96 71.10 77: CYLINDER 6 1 0.64135 96.50 71.10 78: CYLINDER 2 1 0.70735 96.50 71.10 79: CUBOID 7 1 4PO.8575 96.50 71.10
            • BENCHA2.INP 78: COM=' GLOBAL UNIT WITH FUE' TANK IN PLEXIGLAS SURROUNDED BY WATER' 79: CU3OID 7 1 79.245 -0.355 75.67 -0.21 117.0 0.0 80 CUBOID 4 1 81.15 -2.26 77.575 -2.115 117.0 -17.105 81: CUBOID 31 101.15 -22.26 97.575 -22.115 117.0 -17.105 1 02: END GEOM ,
            • d:\ano-10-1\1-21-9-1\a2new.inp )

81: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 82: CUBOID 7 1 79.245 -0.355 75.67 -0.21 111.7 0.0 83: CUBOID 4 1 81.15 -2.26 77.575 -2.115 111.7 -17.105 84: CUBOID 31 101.15 -22.26 97.575 -22.115 111.7 -17.105 85: END GEOM Figure 3. Input Corrections for Configuration A3 Comparing 'iles BENCHA3. INP and d: \ano-10-1\1-21-9-1\a3new. inp

            • BENCHA3.INP 19: END COMP 20: SQUAREPITCH 1.715 1.2694 1 3 1.4147 2 END 21: NUREG/CR-2709, CASE A3 (4. 31% E, 0.675" P, 1820 PPM B)
            • d:\ano-10-1\1-21-9-1\a3new.inp i 19: END COMP 20: SQUAREPITCH 1.715 1.2649 1 3 1.4147 2 END 21: NUREG/CR-2709, CASE A3 (4. 31% E, 0.675" P, 1820 PPM B)
            • BENCHA3.INP 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.70735 2.54 0.0 28: CUBOID 5 1 4PO.8575 2.54 0.0
            • d:\ano-10-1\1-21-9-1\a3new.inp 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.64135 2.54 0.0 28: CYLINDER 21 0.70735 2 54 0.0 29: CUBOID 5 1 4PO.8575 2.54 0.3 I

i I

i

l BFS89FK 98-007 Page 5

            • BENCHA3 INP j 40: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' I 41: CYLINDER 1 1 0.63425 93.96 71.10 42: CYLINDER 2 1 0.70735 93.96 71.10 43: CYLINDER 6 1 0.70735 96.50 71.10 44: CUBOID 7 1 4PO.8575 96.50 71.10
            • d:\ano-10-1\1-21-9-1\a3new.inp 41: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' 42: CYLINDER 1 1 0.63245 93.96 71.10 43: CYLINDER 2 1 0.64135 93.96 71.10 44: CYLINDER 6 1 0.64135 96.50 71.10 j 45: CYLINDER 2 1 0.70735 96.50 71.10 j 46: CUBOID 7 1 4PO.8575 96.50 71.10 i
            • I
            • BENCHA3.INP 71: UNIT 13 72: COM='FRATIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE'  ;

73: CYLINDER 1 1 0.63245 79.35 71.10  !

            • d \ano-10-1\1-21-9-1\a3new.inp 73: UNIT 13 74: COM=' FRACTIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' j 75: CYLINDER 1 1 0.63245 79.35 71.10 l l
            • BENCHA3.INP 74: CYLINDER 0 1 0.63245 93.96 71.10 l 75: CYLINDER 2 3 0.70735 93.96 71.10 76: CYLINDER 61 0.70735 96.50 71.10 77: CUBOID 7 1 4PO.8575 96.50 71.10
            • d:\ano-10-1\1-21-9-1\a3new.inp 76: CYLINDER 0 1 0.63245 93.96 71.10 77: CYLINDER 2 1 0.64135 93.96 71.10 78: CYLINDER 6 1 0.64135 96.50 71.10 79: CYLINDER 2 1 0.70735 96.50 71.10 80: CUBOID 7 1 4PO.8575 96.50 71.10
            • BENCHA3.INP 79: COM= ' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 80: CUBOID 7 1 79.245 -0.355 75.67 -0.21 117.0 0.0 81: CUBOID 4 1 81.15 -2.26 77.575 -2.115 117.0 -17.105 82: CUBOID 3 1 101.15 -22.26 97.575 -22.115 117.0 -17.105 83: END GEOM
            • d:\ano-10-1\1-21-9-1\a3new.inp 82: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 83: CUBOID 7 1 79.245 -0.355 75.67 -0.21 111.7 0.0 84: CUBOID 4 1 81.15 -2.26 77.575 -2.115 111.7 -17.105 85: CUBOID 3 1 101.15 -22.26 97.575 -22.115 111.7 -17.105 86: END GEOM

1 \

l Attachment 4 BFS/NRC 98-007 Page 6 l

i Figure 4. Input Corrections for Configuration A4 l Comparing files BENCHA4.INP and d:\ano-10-1\1-21-9-1\a4new.inp ,

            • BENCRA4.INP l 19: END COMP l 20: SQUAREPITCH 1.715 1.2694 1 3 1.4147 2 END 21: NUREG/CR-2709, CASE A4 (4. 31% E, 0.675" P, 2550 PPM B) l
            • d:\ano-10-1\1-21-9-1\a4new.inp 19: END COMP 20: SOUAREPITCH 1.715 1.2649 1 3 1.4147 2 END 21: NUREG/CR-2709, CASE A4 (4. 31% E, 0.675" P, 2550 PPM B)
            • BENCRA4.INP

! 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.70735 2.54 0.0 28: CUBOID 5 1 4PO.8575 2.54 0.0

            • di\ano-10-1\1-21-9-1\a4new.inp 26: COM='END CAP IN BOTTOM POLY TEMPLATE' 27: CYLINDER 6 1 0.64135 2.54 0.0 28: CYLINDER 2 1 0.70735 2.54 0.0 29: CUBOID 5 1 4PO.8575 2.54 0.0
            • BENCHA4.INP 40: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' 41: CYLINDER 1 1 0.63425 93.96 71.10 42: CYLINDER 2 1 0.70735 93.96 71.10 43: CYLINDER 6 1 0.70735 96.50 71.10 44: CUBOID 7 1 4PO.8575 96.50'71.10
            • d:\ano-10-1\1-21-9-1\a4new.inp 41: COM=' FUEL ROD AND END CAP ABOVE TOP TEMPLATE' l

42: CYLINDER 1 1 0.63245 93.96 71.10 43: CYLINDER 2 1 0.64135 93.96 71.10 44: CYLINDER 6 1 0.64135 96.50 71.10 l 45: CYLINDER 2 1 0.70735 96.50 71.10 46: CUBOID 7 1 4 PO. 8575 96. 50 71.10

            • BENCRA4.INP 77: UNIT 14 78: COM='FRATIONAL FUEL ROD HEIGHT IN TOP TEMPLATE' 79: CYLINDER 01 0.63245 71.10 69.83
            • d:\ano-10-1\1-21-9-1\a4new.inp 79: UNIT 14 80: COM=' FRACTIONAL FUEL ROD HEIGHT IN TO? TEMPLATE' 81: CYLINDER 0 1 0.63245 71.10 69.83
            • BENCHA4.INP 82: UNIT 15 83: COM='FRATIONAL FUEL ROD HEIGHT ABOVE TOP TEMPLATE' 84: CYLINDER 0 1 0.63245 93.96 71.10 85: CYLINDER 2 1 0.70735 93.96 71.10 i

i l

i l

1 Attachment 4 -

- BFS/NRC 98-007 Page 7 86: CYLINDER- 6 1 0.70735 96.50 71.10 87: CUBOID 7 1 4PO.8575 96.50 71.10

=****** d:\ano-10-1\1-21-9-1\a4new.inp 84: UNIT 15 85: -COM.' FRACTIONAL FUEL' ROD HEIGHT ABOVE TOP TEMPLATE' 86: . CYLINDER 'O 1 0.63245 -93.96 71.10 87: CYLINDER 2 1 0.64135 93.96 71.10 88: CYLINDER 6 1 0.64135 96.50 71.10 89:' CYLINDER 2 1 0.70735 96.50 71.10 90: CUBOID 7 1 4PO.8575 96.50 71.10

            • BENCHA4.INP 89: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 90: CUBOID 7 1 79.245 -0.355 75.67 -0.21 117.0 0.0 91: CUBOID 4 1 81.15 -2.26 77.575 -2.115 117.0 -17.105 92: CUBOID 3 1 101.15 -22.26-97.575 -22.115 117.0 -17.105 93: END GEOM
            • d \ano-10-1\1-21-9-1\a4new.inp 92: COM=' GLOBAL UNIT WITH FUEL TANK IN PLEXIGLAS SURROUNDED BY WATER' 93: CUBOID 7 1 79.245 -0.355 75.67 -0.21 111.7 0.0 94: CUBOID 4-1 81.15 .-2.26 77.575 -2.115 111.7 -17.105 95: CUBOID 3 1.101.15 -22.26 97.575 -22.115 111.7 -17.105 96: END GEOM Figure 5. Input Corrections for Configuration C1

~ Comparing files BENCHC1.INP and d:\ano-10-1\1-21-9-1\cInew.inp

            • BENCHC1.INP 17: END COMP 18: SQUAREPITCH 1.5621 1.176 1 3 1 27 2 END 19: EPRI-NP-196, CASE C1 (2.35% E, 0.615" P, 0.9 PPM B)
            • ds\ano-10-1\1-21-9-1\cInew.inp 17: END COMP 18: SQUAREPITCH 1.5621 1.1176 1 3 1.27 2 - END

.19: EPRI-NP-196, CASE C1 (2.35% E, 0.615" P, 0.9 PPM B)

            • BENCHC1.INP 28: CYLINDER 2 1 0.635 2.8575 0.3175 29: CUBOID 3 l'4PO.66075-2.8575 0.3175 30: CUBOID 2 1 4PO.78105 2.8575 0.3175 i
            • d \ano-10-1\1-21-9-1\cInew.inp 28: CYLINDER- 2 1 0.635 2.8575 0.3175 29: . CUBOID 3 1 4PO.66675 2.8575 0.3175 30: CUBOID 2 1 4PO.78105 2.8575 0.3175
            • BENCHC1.INP

! 32: COM=' MAIN FUEL CELL' 33: CYLINDER 1 1 0.5588 93.6625 2.8575

            • d \ano-10-1\1-21-9-1\cInew.inp 1

Attachment 4 1

BFS/NRC 98-007 Page 8 32: COM=' MAIN FUEL CELL' 33: CYLINDER 2 1 0.5588 5.08 2.8575 34: CYLINDER 1 1 0.5588 93.6625 2.8575

            • BENCHC1.INP 51: COM=' WATER CELL IN BOTTOM GRID' 52: CUBOID 3 1 4PO.66075 2.8575 0.3175 53: CUBOID 2 1 4PO.78105 2.8575 0.3175
            • d:\ano-10-1\1-21-9-1\cInew.inp 52: COM=' WATER CELL IN BOTTOM GRID' 53: CUBOID 3 1 4PO.66675 2.8575 0.3175 54: CUBOID 2 1 4PO.78105 2.8575 0.3175 Figure 6. Input Corrections for Configuration C2 Comparing files BENCHC2.INP and d:\ano-10-1\1-21-9-1\c2new.inp
            • BENCHC2.INP 16: END COMP 17: SQUAREPITCH 1.5621 1.176 1 3 1.27 2 END 18: EPRI-NP-196, CASE C2 (2. 35% E, 0.615" P, 463.8 PPM B)
            • d:\ano-10-1\1-21-9-1\c2new.inp 16: END COMP 17: SQUAREPITCH 1.5621 1.1176 1 3 1.27 2 END 18: EPRI-NP-196, CASE C2 (2.35% E, 0.615" P, 463.8 PPM B)
            • BENCHC2.INP 27: CYLINDER 2 1 0.635 2.8575 0.3175 28: CUBOID 3 1 4PO.66075 2.8575 0.3175 29: CUBOID 2 1 4PO.78105 2.8575 0.3175
            • di\ano-10-1\1-21-9-1\c2new.inp 27: CYLINDER 2 1 0.635 2.8575 0.3175 28: CUBOID 3 1 4PO.66675 2.8575 0.3175 29: CUBOID 2 1 4PO.78105 2.8575 0.3175
            • BENCHC2.INP 31: COM=' MAIN FUEL CELL' 32: CYLINDER 1 1 0.5588 93.6625 2.8575
            • d:\ano-10-1\1-21-9-1\c2new.inp 31: COM=' MAIN FUEL CELL' 32: CYLINDER 2 1 0.5588 5.08 2.8575 33: CYLINDER 1 1 0.5588 93.6625 2.8575
            • BENCHC2.INP 50: COM=' WATER CELL IN BOTTOM GRID' 51: CUBOID 3 1 4PO.66075 2.8575 0.3175 52: CUBOID 2 1 4PO.78105 2.8575 0.3175
            • d:\ano-10-1\1-21-9-1\c2new.inp 51: COM=' WATER CELL IN BOTTOM CRID'

Attachment 4 BFS/NRC 98-007 Page 9 52: CUBOID 3 1 4PO.66675 2.8575 0.3175 53: CUBOID 2 1 4PO.78105 2.8575 0.3175 Figure 7. Input Corrections for Configuration C3 Comparing files BENCHC3.INP and d \ano-10-1\1-21-9-1\c3new.inp

            • BENCHC3.INP 16: END COMP 17: SQUAREPITCH 1.905 1.176 1 3 1.27 2 END 18: EPRI-NP-196, CASE C3 (2.35% E, 0.75" P, 568 PPM B)
            • d \ano-10-1\1-21-9-1\c3new.inp 16: END COMP 17: SQUAREPITCH 1.905 1.1176 1 3 1.27 2 END 18: EPRI-NP-196, CASE C3 (2.35% E, 0.75" P, 568 PPM B)

Results The corrected benchmark ken results for configuration A and C are presented in Table 3.

Table 3. Results of Criticality Benchmark Calculations Enrichment Fuel Pitch Boron Ave. Fission Case No.

(wt. %) (in.) (ppm) Group _

NUREG/CR-2709 Al 4.31 0.675 0 0.9968360.00202 21.10 A2 4.31 0.675 1030 0.9988960.00163 20.57 A3 4.31 0.675 1820 0.9945260.00182 20.25 A4 4.31 0.675 2550 0.9946860.00157 20.02 BAW-1645-4 B1 2.46 0.476 886 0.9852460.00153 19.82 B2 2.46 0.555 1156 0.9865460.00126 -21.49 EPRI NP-196 C1 2.35 0.615 0.9 0.9867960.00164 22.20 C2 2.35 0.615 464 0.9915360.00159 21.92 C3 2.35 0.750 568 0.9961260.00162 23.00 BAW 1231 D1 4.02 0.595 0 0.9887460.00171 21.25 D2 4.02 0.595 460 0.9901060.00179 20.87 D3 4.02 0.595 1152 0.9869560.00168 20.64 D4 4.02 0.595 2342 0.9865660.00157 20.14 D5" 4.02 0.595 3389 0.9865860.00138 19.90 The Core Il configuration in Report BAW-1231, which is better defined than the Core I configuration for the same number of fuel rods was used in the critical experiment.

Attachment 4 BFS/NRC 98-007 Page 10 An updated version of Figure 14 from the ANO-109.001.007 calculation that presents the previous data and the data from the corrected calculations is shown in Figure 8. The linear regression equation obtained using the data from the corrected calculations is shown in Equation 1.

Equation 1. Corrected Linear Regression of k,n versus Rod Pitch k, = (0.0588)(Rod Pitch)+ 0.9543 Based on the corrected linear regression shown in Equation 1. the bias as a function of rod pitch is calculated as shown in Equation 2.

Equation 2. Corrected Equation for Bias as a Function of Rod Pitch Bias = 1.0-[(0.0588)(Rod Pitch)+ 0.9543]= 0.0457 -(0.0588)(Rod Pitch)

The modified calculated ken values are obtained by summing the bias from Equation 2 and the ken for the benchmark as calculated by CSAS25. The modified calculated ken values based on the corrected benchmark calculations are shown in Table 4. Table 4 is an updated version of Table D-1 from the ANO-109.001.007 calculation. An updated version of Figure 15 from the ANO-109.001.007 calculation that presents the previous modified k,g versus rod pitch data and the data from the corrected calculations is shown in Figure 9.

Table 4. Alodified Calculated k,n Values for the 14 Benchmark Experiments Benchmark Case # Initial Calculated k,n I dified Calculated Rod Pitch (in.)

kan bencha1 0.675 0.99683 1.00284 bencha2 0.675 0.99889 1.00490 bencha3 0.675 0.99452 1.00053 bencha4 0.675 0.99468 1.00069 benchbl 0.476 0.98524 1.00295 benchb2 0.555 0.98654 0.99961 benchel 0.615 0.98679 0.99633 benchc2 0.615 J 99153 1.00107 benchc3 0.75 '12 0.99772 benchd1 0.595 .,74 0.99945 benchd2 0.595 0.99010 1.00081 benchd3 0.595 0.98695 0.99766 benchd4 0.595 0.98656 0.99727 benchd5 0.595 0.98658 0.99729 For the corrected benchmark set, the average of the modified calculated kenvalues is 0.99994.

Attachmcnt 4 BFS/NRC 98-007 Page11 For the corrected benchmark set, the average Monte Carlo standard deviation for the modified calculated kenvalues is 0.00163. For the corrected benchmark set, the variance in the code bias

! is 3.55E-6, which yields a code bias uncertainty (standard deviation) of 0.00188.

I Equation 3 presents the formula to calculate the final ken values based on the results of the corrected benchmark set. The CSAS25 code bias values that should be applied to various fuel l types having different rod pitches are presented in Table 5. Table 5 presents the code bias values l based on both the l revious benchmark calculations and the corrected benchmark calculations.

Table 5 is an updated version of Table D-2 from the ANO-109.001.007 calculation.

l Equation 3. Revised Formula to Calculate the Final k,g Values

' 2 f k,fm,,,, = k,fg,o + Bias + (2.566fam +0.00188 l

Table 5. CS AS25 Code Bias versus Assembly Type and Rod Pitch i CSAS25 Code CSAS25 Code I Bias Based on Bias Based on  !

Assembly Type Previous Corrected Uconected- j Rod Pitch (in.)

Benchmark Benchmark E" ""

l Calculations Calculations *""*} I l

B&W 15x15 0.568 0.0115 0.0123 0.0008 CE 14x14 0.58 0.0107 0.0116 0.0009

! _ _ _ _ _ CE 15x15 0.55 0.0127 0.0134 0.0006 l

CE 16x16 0.5063 0.0157 0.0159 0.0002 l W l4x14 0.556 0.0123 0.0130 0.0007 l W 15x15 0.563 0.0118 0.0126 0.0008 W 17x17 0.496 0.0164 0.0165 0.0001 l l Table 6 presents the largest ken values obtained for each fuel type in the criticality analyses used to determine the required minimum soluble boron concentration (re: ANO-109.001.006). The v

k,n alues in Table 6 represent the final kca afler accounting for bias and uncertainty. The bias and uncertainty values used to obtain the previously calculated maximum ken values were based on the previous benchmark calculations. New maximum kenvalues based on the bias and uncertainty obtained from the corrected benchmark calculations are presented in Table 6. Note that a tolerance bias of 0.0012 was used in the calculation of the final kenv alues in the criticality analysis. This tolerance bias of 0.0012 is also used in the calculation of the new maximum ken values.

i

)

Attachment 4 BFS/NRC 98-007 Page 12 Table 4. Corrected Bias and Uncertainty Effects on the Maximum Predicted k,a Values (New Maximum Final Assembly Previous Previous New Corrected Calculated Type Blas' Bias b Maximum Maximum (A Fmal k,n Final k,n y, ,

ken)

B&W l5x15 0.0115 0.0123 0.924260.0018 0.9469 0.9444 -0.0025 CE 14x14 0.0107 0.0116 0.927060.0017 0.9488 0.9463 -0.0025 CE 15x15 0.0127 0.0134 0.924960.0019 0.9490 0.9463 -0.0026 CE 16x16 0.0157 0.0159 0.921060.0017 0.9478 0.9446 -0.0032 W l4x14 0.0123 0.0130 0.922760.0018 0.9462 0.9436 -0.0026 W 15x15 0.0118 0.0126 0.925660.0017 0.9485 0.9450 -0.0026 W l7x17 0.0164 0.0165 0.921760.0016 0.9491 0.9456 -0.0033 The previous bias uncertainty was calculated to be 0.00346.

b The corrected bias uncenainty was calculated to be 0.00188.

Conclusions Conection of the geometry errors in the critical benchmarks resulted in slightly increased bias values and a slightly decreased bias uncertainty for each fuel type. The net effect on the results obtained in the required minimum boron concentration criticality evaluation (re: ANO-109.001.006) was that the maximum predicted final ken value for each fuel type decreased by an average of 0.0028. The decrease in bias uncenainty between the corrected benchmark results and the previous benchmark results is the reason for the resulting net decrease in the maximum predicted ken values. The decrease in the corrected bias uncertainty, relative to the previous bias uncenainty, is due to the tighter spread of the conected benchmark results about the linear regression of ken as a function of rod pitch.

The previously calculated bias and uncenainty values obtained from the benchmark set containing the geometry errors yield conservative results (+0.0028 Aken on average) when used to determine a final ken value for a criticality calculation.

(

Attachmcnt 4 BFS/NRC 98-007 Page 13 Figure 8. Calculated kmversus Rod Pitch for the 14 Critical Benchmark Cases Calculatnd keff vs. Rod Pitch 1.01000 --

~~

i

! i l i  ! l i

l 1

!  ; i 1

1.00500 i--  ;

i -- -

}

4 -- -

' r

~

i '

l i ,

l l i y = 0.0689x + 0.9494 ,j 1.00000 s-

-t-  !

  • 4 -

i

  • a  ! * +  !

= i  ;  ; +  :, -

~

.E "i l j  !

g,,

i  :

" D lii 0.99500 -j - -- - -

- -- - , * - - - g-i i '

! ,? y = 0.0588x + 0.9543 s i  ;

,e '

0 i '

l l ,  ! l i i ,-0 ,

+

i 0.99000

  • i  ! ,d! i

[-

4 t

D i

'. B! o 0.98500 - -

f l 1 i

0.98000 -

1 - + i 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Rod Pitch (in.)

  • Previous Results a Corrected Results - - - Regression of Previous Results _

Regression of Corrected Results !

Attachment 4 BFS/NRC 98-007 Page 14 Figure 9. Modified Calculated keerversus Rod Pitch for the 14 Benchmark Cases Modified Calculated keff versus Rod Pitch 1.01000 l

k l i , i  !

i i'  :

) i 1.00800 -4 -~

? - - - -- - ~

i -*- - -

--J- --

i l  !

l l \

j

+ l 4 l

1.00600 --

q -- - - .

i i i 1 t 0 i i j 1.00400

-- I - - - - -

-4 -

I- - --

3  ! l 3s 0 i O

i j ,

i i j 1.00200 j- --[

  • -+-

0 1 f 3 l 0i U  !

s -

B {' .

] 1.00000 - -- --

m o 8: '

+ t

+ .

0.99800 4 - - -

+! i g-g l-- 7 O; i

+!

0.96600 i j- - *{

i '

  • , r 1

i  !

0.99400 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 Rod Pitch (in.)

~

+ Previous Results O Corrected Results - - - Regression of Previous Results __Regressioriof Corrected Results ! .

Attachment 5 Item 14-2 Revised List of Calculations mm -

l TAB 14 LICENSE AMENDMENT REQUEST 98-01 BURNABLE POISON ROD ASSEMBLIES

, CALCULATIONS: NON-PROPRIETARY VERISIONS t

l l Calculation Revision Description '

i Number Number ANO 109.001.006 3 Required Boron Concentration for Various Assembly Types and Fuel Enrichments in the VSC-24 MSB ANO 109.002.001 5 Weight and CG Calculation i ANO 109.002.004 0 Calculation of Component Dimensions for ANO VSC-l 24 ANO 109.002.007 0 MTC Design Modifications for Weight Reduction ANO 109.002.011 3 Tipover and 5-Foot Drop Accident Condition Analysis I for the VSC-24 ANO 109.002.018 1 Earthquake stresses in MSB For SAR ANO 109.002.019 0 Calculation of MSB Flood Stresses For SAR (C-E Sys80 Fuel with CC and B&W Mark B w/ CC)

ANO 109.002.201 1 MSB-24 Load Combination Evaluation ANO 109.002.202 1 MSB Normal, Off Normal, and Accident Pressure Stress Analysis l ANO 109.002.205 1 30-Foot Drop Analysis of MSB-24 ANO 109.002.206 1 MSB Handling Load Analysis for Normal and Off-Normal Conditions ANO 109.002.304 0 MTC Cover Plate ANO 109.003.001 2 VSC-24 Thermal Analysis WEP 109.001.006 0 VSC-24 Radiation Shielding Properties Summary

\VEP 109.003.018 1 VSC Transfer Cask Thermal Analysis l l

l l

l l

1

1 I

Attachment 6 Item 14-3 WEP-109.003.018 i

i l

5 i

i l

t

l SNC NO.: WEP 109.003.18. Rev.1 CLIENT NO.: WEP-01 DESIGN CALCULATIONS VSC TRANSFER CASK TIIERMAL ANALYSIS Prepared by SIERRA NUCLEAR CORPORATION

~

Approved by: cA m_ Date: 7 /9C l

l

~_ '

  • l l')c-

.: _ r: - .-

1

Title:

VSC Transfer Cask Thermal Analysis SNC No.: WEP 109.003.18 REVISION CONTROL SHEET j l

l FOR DESIGN DOCUMENTS '

l REv a Dalg Reason Affected Pes. Ficoeci Checker Proi. Enc. Affected Documents / Comments

  • l 0 Initiallssue All (1- l-Q

. GAc bat A4 + Ached i E c rp. 1.1 few."d 14 - 16 6 A c. Q[ BA C-l f%be i

l l

SIGNATURES l Responsibility Signature Initials Date l

7EEP Ae f P _ h\ , N o. - NL/ 9fid'16 CN& hE i BAc  % hc -

B. c hes%dg, V s.ey I

l l

l l

l O List affected documents and action taken (or to be taken) or other conunents in this section.

l

, - -. _ - _. . . - - . . . - -- = . . - - . . . . -

SNC Sierra Nuclear Corporation 3.0 TABLE OF CONTENTS I

l SECTION DESCRIPTION SliEET NO.

1.0 COVER SHEET 1 2.0 REVISION CONTROL S11EET 2 1

3.0 TABLE OF CONTENTS 3 l

4.0 OBJECTIVE 4 l

5.0 REFERENCES

4 6.0 CALCULATION 5 7.0 ANSYS INPUT AND RESULTS 17 1

l l

TOTAL PAGES OF THIS CALCULATION : 50 PAGES l

Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Thermal 0 Og gg gc %fg 3 Analysis of Calculation No. WEP 109.003.18 17  ;

SNC Sierra Nuclear Corporation 4.0 OBJECTIVE The original licensing basis thermal analysis for the Multi-Assembly Sealed Basket (MSB) inside the MSB Transfer Cask (MTC) was a two dimensional (2D) heat transfer analysis as documented in Reference 5.1. This analysis conservatively overpredicts temperatures inside the MSB since the effect of axial heat transfer cannot be modeled using a 2D model. The objective of this calculation is to use a three dimensional (3D) model, which considers the effects of axial heat transfer, to more accurately predict maximum temperatures within the MSB. The analysis is performed for the case in which the MSB is loaded with 24 PWR fuel assemblies at I kW each for a total heat load of 24 kW. Maximum temperatures for the fuel and MSB intemals are computed using previous results from the licensing basis MSB thennal analysis (Reference 5.2) and the calculated maximum temperature at the basket shell surface from the 3D analysis.

5.0 REFERENCES

5.1 SNC Calculation No. WEP 109.003.7 Rev.1, MTC Thermal Hydraulic Analysis 5.2 SNC Calculation No. WEP 109.003.5 Rev. 3, MSB-24 Thermal Hydraulic Analysis 5.3 ANSYS User's Manual for ANSYS Revision 5.2.

5.4 " Heat Transfer",6th Edition, by J.P. Holman 5.5 PSN-91-001 Rev. 0A, Safety Analysis Report for the Ventilated Stomge Cask System, SNC, 1993 5.6 " Principles of Heat Transfer",2nd Edition, by Frank Kreith 5.7 PWR Axial Bumup Profile Database - R.J. Cacciapouti, S. Van Volkinburg & L.A. Hassler, 1994 Citnt/ Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Thermal o q[qq g y, 4 Analysis of Calculation No. WEP 109.003.18 17

SNC Sierra Nuclear Corporation 5.8 VSC System Drawings MSB-24-001, Rev.5, MSB-24-002, Rev. 4, MSB-24-004, Rev. 4, MTC-24-001, Rev. 3, and MTC-24-002, Rev. 3.

6.0 CALCULATION 6.1 Introduction

'Ihemial analysis is performed to calculate the temperature distribution of the MTC containing the MTC loaded with fuel. The toal heat load of the fuel is assumed to be 24 kW. The geometry of the Tranfer Cask and Basket is shown in Reference 5.8. A finite element model is generated using the ANSYS program (Reference 5.3). The analysis considers a steady state condition. A description of the ANSYS model is presented in Secdon 6.2. The analysis results are presented in Section 6.3. The ANSYS input and results files are listed in Section 7.0, 6.2 ANSYS Model The ANSYS model uses a 10' slice of the Transfer Cask because of symmetry. The 3-D " SOLID 70" and " LINK 31" elements are used in the model. The model is shown in Figures 1 and 2. The trunnions are not modeled, which is conservative since the trunnions will serve as heat transfer fins and provide better heat transfer in the region in which they are located. The units used in the model are BTU, ft, hr, F, and Ibm.

l CFent/ Project WEP-01 Rev Prepared Date Checked Date Sheet 0 5 Subject VSC Transfer Cask Thermat qld4 6% T[A/1c Analysis of Calculation No. WEP 109.003.18 17

~

l SNC \

Sierra Nuclear Corporation Thermal properties are listed in Table 1. An effective thermal conductivity for the RX-277 material with steel fins is established based on methodology documented in Reference 5.1, as shown in Table 2.

Radiation is considered at all surfaces radiating to the atmosphere, surfaces between the annular air spaces (from the basket shell to the transfer cask inner shell). Radiation is also included at the top and bottom of the active fuel region. The area (Real Constants) for the " LINK 31" radiation elements are calculated based on the location of the elements as shown in Table 3. View factors of unity are used for all radiation elements.

In the interior of the basket, the active fuel region is modeled as a heat generation region using an effective thermal conductivity. This effective conductivity was estimated only to accommodate the solution method employed by ANSYS. The only interest in the basket in this model is the surface heat flux and the basket shell temperatures, which are not govemed by the thermal conductivity of the fuel region. Top and bottom of the active fuel region are model as helium only. No conduction or convection is assumed at the annulus between basket shell and transfer cask inner shell.

The heat generation rates (Btu /hr-ft') for fuel are calculated in Table 4 utilizing the Normalized Axial Bum-up Profile as shown in Figure 3 (Reference 5.7). Twenty four (24) kw is used as the total heat load. As shown in the ANSYS input file, the heat generation is applied as element body forces.

An ambient temperature of 75 F is used, which is specified as element surface loads (convection) at top 2

and side surface elements of the model. Convective heat transfer coefficient (2.0 BTU /hr-ft -F)is used per Reference 5.5, Section 4.4.1.2.4. No solar load is used at the surface of transfer cask.

Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Thermal 0 9[,yg Sg %g 6 Analysis of Calculation No. WEP 109.003.18 17 l

i

{ SNC Sierra Nuclear Corporation l I Figure 1 Transfer Cask Thermal Model k l k

~

N N. ( 4

% % 6l

~

) +

r < .,

\\ Yll \l N N \\ IN Al l N ,.

\  % /

\v \\ lill\ l )

/

N '

N NYsAll., /

\ N r

N w ~

%/

i .,,, MTUb6 -

^

N  %/

T @ sa,e b @~

SS UM YAC LM m

.,N' pq @ s-,e 9  % , @ awm as m es

-o %]:gg -

l-Client / Project WEP-01 Rev Prepared Date Cheded Date Sheet 0

Subject VSC Transfer Cask Thermal M 4) 2h6 gAc Yit/94 7

Analysis of Calculation No. WEP 109.003.18 17

_ . a

I l

SNC Sierra Nuclear Corporation f

Figure 2 ThermalModel CrossSection I

41.75 40.75 36.50 32.50 31.75 31.25 30.25

= 15.13 l

l 4-

/ p WNW 2.00

5. 0 s s c

,.c.e ... .-.. . .

n f s

.'s s 3.75 i,

2.00 .c.i.+.<.<.666.e.<.<.<.a.c.i.c.a.w.w.c.e.e.<.<.<.<.<.<.<.<.<.w.w.w www.y/ s.;;;;

..... ..... . . > 2.00 6

5.]O-

/ $

..s 5.00 s t

/ d a, *

".,.s 1

__ t s .. w

~ g, .

(

3t e , ..)

31.00 s j s  %,g ,

/  %  ;'ed' o. t . s

-  ;-; - :-; - ;-; - ;-; - ;-; ;-;-; - ;-;-;-: -  ;-;-;'s

-v-v s

.v-v i

v v-v v -

v v-v.- ' wp'< ,s v v-v v v--- s  %

,,<< s,

- - - - << .< s

-v..v-v V ". V "-Y --"-v e

-v-v-v.v.-.

24.00 - - - - - s  %

s,--v v v v v.. '

-.v v-v.

s

-.v-v-v s -

.,fd'<4 . s sv.-.v v --., .-v -.v v v v--,.'

- - - s

- -- - ---------.v.

m --- -- -

-.-.-.-------------i s

s ;3<<,<

.#a =,t .. .

.s ,

s -- ,.v -- v v - v. sv-v v.-

v . v . v v,,.' js .,

s

,<w, v,.v..v

- -v v v-v v.-. -v - -,.' s  %

-v-v -

- v- v.'  % .

s, v-v.v.v.s .. LEp,EyD v.v---

. s

-v -,.v - v. v .v -,. '

%j; .

24.00 -- v-v-v -- v.v.-- -.v

,, s

- v--.v v-.' '< v<t 4 s

- v.v.s

_v.v -

v.

- v - v - v.v ,.v. v - s' j ,

, s <<f' s

sv.v

. s -

- v_.s_sv

_ v__

- -. /

s ,, ' < -

. s Steel i

j s

s

, ..- , s

,~- ~,-

,.,~-

-~~~-~-~,~-~

, , . 3

~' ~-~ ~.~-~~ / '%

~ ~ ~

24.00 -~-v~v v.

~

- . v

- v

~

ssv.v - v-v y " . * -s r,e<<e','<

< sv .,

v..-.-, v- . .,. -

v -

v,- ssv - ,- ., -.v .: .. . . s 4,%,,- Leod v.v...-v

, ..- , , , , , , s i

-v .-v . .

- v

, v . - v - . -v - - -v.v

. ...s, '</'.'s.

- - - - d - -

v.sv.v v

v

,v-v,v.v -.. ... y s s. sN

' 24.00 v-ssv sv.v.v-v

- v s. v v -v v v-v-v.v.v -

v-v j

j

.a. . Her'um v - -.ssv-v., v --v v

,-- - v - v  : (

- -.~.--------

- - -.~.-

- -.a.-

5

__v.

s ____v, _,_,_,__v__

-ss sv v . v v.-

  • Fuel v.-,

-,-, . = - .,., - . - - ., . - - -

- -,- - - - - ~

v-v--

24.00 v- s " -

s -

s.- '

v.v-sv.s-v sv s.s v v v - v / /* N

.ssv-v.v .

.- v..ssv

.- v.

. v N v..- -.v-v

. - , - s . .--,

-- - - - a -

-- - - - - - - - / *.*.. y v v-v..ssv

. - - . - - . - s

. v-v. - . -

  • , - / .

RX-277 w/

svv v sv v v v-sv * .w Steel Angles ssv v.s-NNNsv-sNNNN NNsNNY.ss

- sv.-v.v -

v

- /

/  % '< .

.. . s ..' s 24.00 s,,sv

- sv.v- . ssv v.v.

v- ssv-v--.sv.

. v.v-v sv. - p  %

'<%v:

v, w *..

s

/ .

RX-277

-sv v ssv. v v.v-v-- .

s Pf.f.f.f.,

-sv.v.ssv.

s ssv

v. p  % r,y'e. .

... ....s

-ssv.v..s_v.

>-_-_ sss_sv.v

_v_v_._v A- vAv_v_

-v v - - p  % ,fe< . <

4.)O Y

% ** '(

0.75 ~ ~ ~ ~ ~ - - ~~~~~ ~ "" '

3. 30

( \Q Ng((k"N([' Z-0 3%0 ( h 3lkhh%

l 3.M N \  %\ N 4 l f Client / Project WEP-01 Rev Prepared Date Checked Date Sheet r

Subject VSC Transfer Cask Thermal 0 Q -

dit/q., y c, 9nh 8 of i Analysis Calculation No. WEP 109.003.18 17

l 1

l SNC i l

Sierra Nuclear Corporation  :

r l l Figure 3 Normalized Axial Burnup Profile for PWR Fuel )

4 I

i l  :

Normalized Axial Burnup Profile  ;

1.,_ .

l 1.1 ................. ... . ........................  ;

i i

y 2 i. ........ ............................................... ...........

l p o.9 ...... .................................................... ........

p o.8 ..... ...................................'.................... ......

- 1

... o.7 x

< o.6 .... ........................................................... .... i

'V o o.5 I

.s -

=. 0. .,. .

1 M .

- o.,. .... ............................................................. ...

o I Z .2 ... .............................................................. ..

  • l o.1 . . . ............................................................... ..

I o

0 ' 10 20 ' 30 ' 40 ' 50 ' 60 ' 70 80 90 '100 Core Height (Percent) l Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject /SC Transfer Cask Therrnal 0 g y 9/g/q4 g,g T[it g 9

! Analysis of Calculation No. WGP 109 003.18 17 1

.. . . - _ . . - . - . . . . . - . = . - . - - . - - - . - . . - . _ . - . - - _ . . - . . .. .- -. .-.

SNC Sierra Nuclear Corporation Table 1 Thermal Properties

'Ihermal Specific Heat Conductivity Density Material Temperature (BTU /lbm 'F) (BTU /hr-ft *F) (ibm /ft') Emissivity' Carbon Steel'32-800 0.11 26.0 490 0.9 Stainless Steel'32-800 0.11 9.4 488 0.9 Lead'32-600 0.03 19.0 710 -

Helium

  • 32-800 - 0.1 --- -

1 Reference 5.6 2 Reference 5.6 3 Reference 5.5 l 4 Reference 5.6 5 Forcoated surfaces i I

l l

l t

Citnt/ Project WEP-01 Rev Prepared Date Checked Date Sheet l

Subject VSC Transfer Cask Thermal 0

@ qlght, PA c, 9/tt/9g 10 i Analysis of ,

l I

Calculation No. WEP 109.003.18 17  ;

SNC Sierra Nuclear Corporation l Table 2 Determination of Effective Conductivity for RX-277 with Steel Angles 15' i

NNNNNXKW N ~

. 5.40 4.25 s s s x

L____ , s s x s l

Ke = Effective Conductitvity of RX-277 with Steel Angles l Kgx = Conductivity ofRX-277 = 0.3 BTU /[(Hr)(Ft)( F)] ,

Ks = Conductivity of Steel = 26.0 BTU /[(Hr)(Ft)( F)] l l Ar = Total Area = (2)(n)(L)[(ri+ro)/2]

, As = Area of Steel = (2)(ts)(L)(n) l Agx = Area ofRX-277 = A7 - As L = Length ofRX-277 and Steel Angles

! T i = Temperature at ri To= Temperature at to W = Thickness of RX-277 = 4.25 in Ws = Width of Steel = 5.4 in ri = Inner radius = 36.5 in t o= Outer radius = 40.75 in

! n = NumberofHeat Transfer Angles = 24 ts = Thickness ofSteel Angles = 0.25 in From Reference 5.1 K, aft-Ti )/W o = KgxAgx(T-T i )/W o + KsAs(T-T i o)/Ws Ar = Au + As K, = Kgx + (As/A T)l(Ks x W)/ Ws - Kgx]

K, = 0.3 + (0.0495)[(26.0 x 4.25)/5.4 - 0.3] = 1.296 BTU /[(Hr)(Ft)(*F)]

A K, value of 1.264 is conservatively used in the analysis l

Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Therrnal 0

@ 9ft2l36 p c., 'I/dt/g 11 of Analysis

(

l Calculation No. WEP 109.003.16 17 i

.- _ .-- . - . . . . .- ~- . . = _ - _

SNC i

Sierra Nuclear Corporation i

I?

l l

l Table 3 Area Calculation for Radiation Elements

! Radius (R) (ft) . __ Factor (2*pl*R*10/360*(1/2))

l RMSB 2.604 (Radius of MSB shell) 0.227 (1)

RMTC 3.479 (Radius of MTC outer surface) 0.304 (2)

Rad elem from MSB shell to MTC inner shell (1) Rad elem at MTC outer surface (2)

Node Z (ft) Area (fta2) Real No. Node Z (ft) Area (fta2) Real No.

65 0.063 0.052 301 161 -0.750 0.038 201 66 0.396 0.265 302 162 -0.500 0.114 202 67 2.396 0.455 303 164 0.000 0.085 203 68 4 396 0.455 304 165 0.063 0.060 204 i 69 6.396 0.455 305 166 0.396 0.354 205 70 8.396 0.455 306 167 2.396 0.607 206 71 10.396 0.455 307 168 4.396 0.607 207 72 12.396 0.521 308 169 6.396 0.607 208 73 14.979 0.341 309 170 8.396 0.607 209 74 15.396 0.066 310 171 10.396 0.607 210 75 15.563 0.123 311 172 12.396 0.696 211 76 16.021 173 14.979 0.455 212 l 174 15.396 0.089 213 Atotal 7.282 (2*@Pl*RMSB'16.021*10/360) 175 15.563 0.073 214 176 15.875 0 098 215 177 16.042 Atotal 10.196 (2*@Pl*RMTC*16.792*10/360)

Radiation Element at Top of MTC/MSB Rad Elem at Top and Bot. of Activo Fuel Region Node R (ft) Area (ft^2) Real No. Node R (ft) Area (fta2) Real No.

16 0 0.035 401 12 0 0.035 501 36 1.261 0.146 402 32 1.261 0.279 502 76 2.604 0.133 403 52 2.604 97 2.646 0.047 404 6 0 0.035 601 137 3.042 0.111 405 26 1.261 0.279 602 177 3.479 0.064 406 46 2.604 Atotal 1.056 (3.479^2*@Pl*10/360) Atotal 0.592 (2.604^2*@Pl/36)

Note:"MTC" = Transfer Cask: "MSB" = Basket l

Client / Project WEP-01 Rev Prepared Date Checked Date Sheet l

Subject VSC Transfer Cask Thermal 0 9/gg S qc, T/sth 12 Analysis of Calculation No. WEP 109.003.18 17

l.

l SNC .

Sierra Nuclear Corporation l Table 4 Heat Generation Rate for Fuel Region (Based on Axial Burnup)

!- Average Normalized Relative q"'

Z (inch) Z (inch) Source btu /hr-ft^3)  ;

12 8 1.00 341.9 >

36 25 1.10 376.1 60 41 1.10 376.1 84 58 1.09 372.7

, 108 75 1.06 362.4 .

132 91 0.90 307.7 Q 81912 (24*3413)

V 413964.5 @Pl*30.25^2*144 QN 341.9 (

Note:

1. Average Z is from the bottom of fuel region to the Centroid of element
2. Normalized Z = Average Z
  • 100/144
3. Relative Source is obtained from Figure 3
4. Heat Generation Rate (q'") = (QN) * (Relative Source)

Note: "MTC" = Transfer Cask; "MSB" = Basket 1

l l

l l

l Client / Project - WEP-01 Rev Prepared Date Checked Date Sheet l

VSC Transfer Cask Thermal 0 Subject 9ltt k FAc M*[% 13 i Analysis of Calculation No. WEP 109.003.18 17 l

l SNC l Sierra Nuclear Corporation

! 6.3 Analysis Results The maximum temperatures from the 3D analysis for the two cases run are as follows:

MSB Backfilled with Helium MTC 270 *F (Node 88)

MSB Shell 404 F (Node 69)

RX-277 in MSB Shield Lid 258 'F (Node 14)

Vacuum Inside MSB  !

MTC 270 F (Node 88)

MSB Shell 404 *F (Node 69)

RX-277 in MSB Shield Lid 262 *F (Node 14)

The first column below shows the previous results of a thermal analysis of the MSB internals (Reference 5.2). This analysis was based on the 2-D model of the hottest section of the basket and used a conservative peaking factor of 1.2. Since the 1.1 peaking factor is actually applicable to the  !

VSC design basis fuel [ Reference 5.7], the second column adjusts the Ref. 5.2 results by linear {

scaling. This approach is valid because convective and conductive mechanisms of heat transfer are i linear and the radiation, although non-linear, is not going to deviate significantly from a straight line b over such small heat load change. The following formulae are used:

Tpi,,, = (Tyr,,u - Tu +Tu T,,,,, = Tp ,,,, - (Tpi ,,u - T,,,,,u)

1. MSB Backfilled with Helium (125* Ambient Max. Thermal Load)

MSB Shell 325'F Fuel Cladding 730 *F 696 *F @

MSB Internals 720*F 687 *F

2. MSB in MTC Backfilled with Helium (Steady State)

MSB Shell 463 *F Fuel Cladding 848 F 816'F g MSB Internals 838'F 807 *F l

l Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Thermal 0 TJW 9/12/96 BAC 9/12/96 14 I Analysis 1 g,g 10/17/96 .)p 10/17/96 of Calculation No. WEP 109.003.18 17

SNC Sierra Nuclear Corporation I

3. MSB in MTC With Vacuum Inside MSB MSB Shell 463 *F
Fuel Cladding 882 *F 847 *F @

MSB Intemals 872 *F 838 *F l

The maximum fuel clad temperature and the maximum basket temperature corresponding to the shell temperature from the 3D model are calculated by straight line interpolation between the two shell temperatures listed above for the helium case as follows:

Ts = Shell Temperature for Which Fuel Temperature Tp is to be Calculated = 404 *F Tm = Fuel Temperature to be Calculated for Helium Case for Shell Temperature Ts Tsi = Shell Temperature for Case 1 above = 325 *F i Tri = Fuel Temperature for Case 1 above = 6% *F O

l l Ts2 = Shell Temperature for Case 2 above = 463 'F Tr2 = Fuel Temperature for Case 2 above = 816 *F @

l Tra = Tri + [(Tr2 -Tri)/(Ts2 -Ts:)](Ts-Ts:)

Tm = 696 +[(816 - 696)/(463 - 325)](404 - 325) = 765 "F @

For the vacuum case, the fuel and basket temperatures which correspond to shell temperatures from the 3D model are calculated based on the difference between the fuel temperatures for the helium and vacuum case as follows:  !

l l

i l

Trv = Fuel Temperature to be Calculated For Vacuum Condition at Shell Temperatme Ts l Tp3 = Fuel Temperature for Case 3 above (Vacuum Case) = 847 *F l

i i I

! l Client / Project WEP-01 Rev Prepared Date Checked Date Sheet l Subject VSC Transfer CaskThermal 0 TJW 9/12/96 BAC 9/12/96 15 I

i Analysis 1 gg 10/17/96 1W17/96 of Calculation No. WEP 109.003.18 17 p

SNC l Sierra Nuclear Corporation l

Tn = Fuel Temperature for Case 2 above (Helium Case) = 816 F i

l Trv = Trn + [Tn - Tr2]

(D .

Trv = 765 + [847 - 816] = 796 *F l From the results of cases 1 through 3 above, it can be seen that the maximum basket temperature is 9 F less than the corresponding maximum fuel temperature. I The results of these calculations are summarized as follows: l 1

MSB Backfilled with IIelium (Steady State)

MSB Shell 404 *F Fuel Cladding 765 *F MSB Internals 756 *F O

Vacuum Inside MSB MSB Shell 404 'F Fuel Cladding 796*F MSB Internals 787*F O

Client / Project WEP-01 Rev Prepared Date Checked Date Sheet I

Subject VSC Transfer Cask Thermal 0 TJW 9/12/96 BAC 9/12/96 16 Analysis 1 Bgc 10/17/96 10/17/96 of Calculation No. WEP 109.003.18 17

SNC ,

Sierra Nuclear Corporation 7.0 ANSYS Input and Results  !

Geometry File NOD.SELMT.OUT I

. Helium Case j 1

Input i MainInput File: MTCT_HE.INP j Design Parameter File: MTCT_HE. DES Results Results File MTCT_HE. SUM Vacuum Case Input Main Input File: MTCT_VAC.INP Design Parameter File: MTCTVAC. DES Results Results File MTCT_VAC. SUM I

l 1

l Client / Project WEP-01 Rev Prepared Date Checked Date Sheet Subject VSC Transfer Cask Thermal 0 9j,jg g&c, 9/A[g 17 Analysis of Calculation No. WEP 109.003.18 17 l

N00SELMT.0UT Page 1 cf 7 Tranfer Cask Thermal Analysis N00E X Y 2 THXY THYZ THZX 1 0.00000E+00 0.00000E+00-0.75000 0.00 0.00 0.00 2 0.00000E+00 0.00000E+00-0.50000 0.00 0.00 0.00 3 0.00000E+00 0.00000E+00-0.25000 0.00 0.00 0.00 4 0.00000E+00 0.00000E+00 0.00000E+00 0.00 0.00 0.00 5 0.00000E+00 0.00000E+00 0.62500E-01 0.00 0.00 0.00 6 0.00000E+00 0.00000E+00 0.39583 0.00 0.00 0.00 7 0.00000E+00 0.00000E+00 2.3958 0.00 0.00 0.00 8 0.00000E+00 0.00000E+00 4.3958 0.00 0.00 0.00 9 0.00000E+00 0.00000E+00 6.3958 0.00 0.00 0.00 10 0.00000E+00 0.00000E+00 8.3958 0.00 0.00 0.00 11 0.00000E+00 0.00000E+00 10.396 0.00 0.00 0.00 12 0.00000E+00 0.00000E+00 12.396 0.00 0.00 0.00 13 0.00000E+00 0.00000E+00 14.979 0.00 0.00 0.00 14 0.00000E+00 0.00000E+00 15.396 0.00 0.00 0.00 15 0.00000E+00 0.00000E+00 15.563 0.00 0.00 0.00 16 0.00000E+00 0.00000E+00 16.021 0.00 0.00 0.00 21 1.2604 0.00000E+00-0.75000 0.00 0.00 0.00 22 1.2604 0.00000E+00-0.50000 0.00 0.00 0.00 23 1.2604 0.00000E+00-0.25000 0.00 0.00 0.00 24 1.2604 0.00000E+00 0.00000E+00 0.00 0.00 0.00 25 1.2604 0.00000E+00 0.62500E-01 0.00 0.00 0.00 26 1.2604 0.00000E+00 0.39583 0.00 0.00 0.00 27 1.2604 0.00000E+00 2.3958 0.00 0.00 0.00 28 1.2604 0.00000E+00 4.3958 0.00 0.00 0.00 29 1.2604 0.00000E+00 6.3958 0.00 0.00 0.00 30 1.2604 0.00000E+00 8.3958 0.00 0.00 0.00 31 1.2604 0.00000E+00 10.396 0.00 0.00 0.00 32 1.2604 0.00000E+00 12.396 0.00 0.00 0.00 33 1.2604 0.00000E+00 14.979 0.00 0.00 0.00 34 1.2604 0.00000E+00 15.396 0.00 0.00 0.00 35 1.2604 0.00000E+00 15.563 0.00 0.00 0.00 36 1.2604 0.00000E+00 16.021 0.00 0.00 0.00 41 2.5208 0.00000E+00-0.75000 0.00 0.00 0.00 42 2.5208 0.00000E+00 0.50000 0.00 0.00 0.00 43 2.5208 0.00000E+00-0.25000 0.00 0.00 0.00 44 2.5208 0.00000E+00 0.00000E+00 0.00 0.00 0.00 1 45 2.5208 0.00000E+00 0.62500E 01 0.00 0.00 0.00 46 2.5208 0.00000E+00 0.39583 0.00 0.00 0.00 47 2.5208 0.00000E+00 2.3958 0.00 0.00 0.00 48 2.5208 0.00000E+00 4.3958 0.00 0.00 0.00 49 2.5208 0.00000E+00 6.3958 0.00 0.00 0.00 50 2.5208 0.00000E+00 8.3958 0.00 0.00 0.00 51 2.5208 0.00000E+00 10.396 0.00 0.00 0.00 52 2.5208 0.00000E+00 12.396 0.00 0.00 0.00 53 2.5208 0.00000E+00 14.979 0.00 0.00 0.00 54 2.5208 0.00000E+00 15.396 0.00 0.00 0.00 55 2.5208 0.00000E+00 15.563 0.00 0.00 0.00 56 2.5208 0.00000E+00 16.021 0.00 0.00 0.00 61 2.6042 0.00000E+00-0.75000 0.00 0.00 0.00 62 2.6042 0.00000E+00-0.50000 0.00 0.00 0.00 N00E X Y Z THXY THYZ THZX 63 2.6042 0.00000E+00-0.25000 0.00 0.00 0.00 64 2.6042 0.00000E+00 0.00000E+00 0.00 0.00 0.00 65 2.6042 0.00000E+00 0.62500E-01 0.00 0.00 0.00 66 2.6042 0.00000E+00 0.395E3 0.00 0.00 0.00 67 2.6042 0.00000E+00 2.3958 0.00 0.00 0.00 68 2.6042 0.00000E+00 4.3958 0.00 0.00 0.00 69 2.6042 0.00000E+00 6.3958 0.00 0.00 0.00 70 2.6042 0.00000E+00 8.3958 0.00 0.00 0.00 71 2.6042 0.00000E+00 10.396 0.00 0.00 0.00 72 2.6042 0.00000E+00 12.396 0.00 0.00 0.00 73 2.6042 0.00000E+00 14.979 0.00 0.00 0.00 74 2.6042 0.00000E+00 15.396 0.00 0.00 0.00 75 2.6042 0.00000E+00 15.563 0.00 0.00 0.00 76 2.6042 0.00000E+00 16.021 0.00 0.00 0.00 81 2.6458 0.00000E+00-0.75000 0.00 0.00 0.00 82 2.6458 0.00000E+00-0.50000 0.00 0.00 0.00

N00SELMT.0UT Page 2 cf 7 l

l 83 2.6458 0.00000E+00-0.25000 0.00 0.00 0.00 )

84 2.6458 0.00000E+00 0.00000E+00 0.00 0.00 0.00 85 2.6458 0.00000E+00 0.62500E-01 0.00 0.00 0.00 )

86 2.6458 0.00000E+D0 0.39583 0.00 0.00 0.00  !

87- 2.6458 0.00000E+00 2.3958 0.00 0.00 0.00 88 2.6458 0.00000E+00 4.3958 0.00 0.00 0.00 89 2.6458 0.00000E+D0 6.3958 0.00 0.00 0.00 90 2.6458 0.0000DE+00 8.3958 0.00 0.00 0.00 91 2.6458 0.00000E+00 10.396 0.00 0.00 0.00 92 2.6458 0.00000E+D0 12.396 0.00 0.00 0.00 93 2.6458 0.00000E+00 14.979 0.00 0.00 0.00 94 2.6458 0.00000E+00 15.396 0.00 0.00 0.00 95 2.6458 0.00000E+00 15.563 0.00 0.00 0.00 96 2.6458 0.00000E+00 15.875 0.00 0.00 0.00 97 2.6458 0.00000E+00 16.042 0.00 0.00 0.00 '

101 2.7D83 0.00000E+00-0.75000 0.00 0.00 0.00 102 2.7083 0.0000DE+00-0.50000 0.00 0.00 0.00 103 2.7083 0.0000DE+00 0.25000 0.00 0.00 0.00 104 2.7083 0.00000E+00 0.00000E+00 0.00 0.00 0.00 105 2.7083 0.00000E+00 0.62500E-01 0.00 0.00 0.00 i 1D6 2.7083 0.00000E+00 0.39583 0.00 0.00 0.00 l 107 2.7D83 0.00000E+00 2.3958 0.00 0.00 0.00 l 108 2.7083 0.00000E+00 4.3958 0.00 0.00 0.00 l 1D9 2.7083 0.00000E+00 6.3958 0.00 0.00 0.00 110 2.7083 0.00000E+00 8.3158 0.00 0.00 0.00 111 2.7083 0.00000E+00 10.396 0.00 0.00 0.00 112 2.7083 0.000 DOE +00 12.396 0.00 0.00 0.00 l 113 2.7D83 0.00000E+00 14.979 0.00 0.00 0.00 l 114 2.7083 0.0000DE+00 15.396 0.00 0.00 0.00 {

115 2.7083 0.00000E+00 15.563 0.00 0.00 0.00 '

116 2.7083 0.00000E+00 15.875 0.00 0.00 0.00 117 2.7083- 0.00000E+00 16.042 0.00 0.00 0.00 121 3.0417 0.00000E+00-0.75000 0.00 0.00 0.00 122 3.0417 0.0000DE+00-0.50000 0.00 0.00 0.00 NODE X Y Z THXY THYZ THZX 123 3.0417 0.00000E+00-0.25000 0.00 0.00 0.00 i 124 3.0417 0.0000DE+00 0.00000E+00 0.00 0.00 0.00  !

125 3.0417 0.D0000E+00 0.62500E-01 0.00 0.00 0.00 l 126 3.0417 0.00000E+00 0.39583 0.00 0.00 0.00 1 127 3.0417 0.00000E+00 2.3958 0.00 0.00 0.00  !

128 3.0417 0.00000E+D0 4.3958 0.00 0.00 0.00 129 3.0417 0.00000E+D0 6.3958 0.00 0.00 0.00 )

130 3.0417 0.00000E+00 8.3958 0.00 0.00 0.00  !

131 3.0417 0.00000E+00 10.396 0.00 0.00 0.00 l 132 3.0417 0.00000E+00 12.396 0.00 0.00 0.00 l 133 3.0417 - 0.00000E+00 14.979 0.00 0.00 0.00 l 134 3.0417 0.00000E+00 15.396 0.00 0.00 0.00 l 135 3.D417 0.00000E+00 15.563 0.00 0.00 0.00 136 3.0417 0.00000E+D0 15.875 0.00 0.00 0.00 ,

137 3.0417 0.00000E+D0 16.042 0.00 0.00 0.00 l 141 3.3958 0.00000E+00-0.75D00 0.00 0.00 0.00 l 142 3.3958 0.00000E+00-0.50000 0.00 0.00 0.00 143 3.3958 0.00000E+D0-0.25000 0.00 0.00 0.00 144 3.3958 0.00000E+D0 0.00000E+00 0.00 0.00 0.00 145 3.3958 0.00000E+00 0.6250DE 01 0.00 0.00 0.00 .

146 3.3958 0.00000E+00 0.39583 0.00 0.00 0.00 l l

147 3.3958 0.0D000E+00 2.3958 0.00 0.00 0.00 '

148- 3.3958 0.000 DOE +00 4.3958 0.00 0.00 0.00 149 3.3958 0.0000DE+00 6.3958 0.00 0.00 0.00 150 3.3958 0.00000E+00 8.3958 0.00 0.00 0.00 151 3.3955 0.00000E+00 10.396 0.00 0.00 0.00 152 3.3958 0.00000E+00 12.396 0.00 0.00 0.00  ;

153 3.3958 0.000 DOE +00 14.979 0.00 0.00 0.00 154 3.3958 0.00000E+00 15.3 % 0.00 0.00 0.00 155 3.3958 0.00000E+D0 15.563 0.00 0.00 0.00 156 3.3958 0.000 DOE +00 15.875 0.00 0.00 0.00 157 3.3958 0.0000DE+00 16.042 0.00 0.00 0.00 161. 3.4792 0.00000E+00-0.75D00 0.00 0.00 0.00 162 3.4792 0.00000E+00-0.50000 0.00 0.00 0.00 163 3.4792 0.00000E+00-0.25000 0.00 0.00 0.00 164 3.4792 0.00000E+00 0.00000E+00 0.00 0.00 0.00

..-_ _ _ _ _ . _ _ _ . _ .__m _ __ __ _ _ __m_., _ __ _..m __

NODSELCT.0 LIT Page 3 of 7  !

165 3.4792 0.00000E+00 0.62500E 01 0.00 0.00 0.00 166 3.4792 0.00000E+00 0.39583 0.00 0.00 0.00 167 3.4792 0.00000E+00 2.3958 0.00 0.00 0.00 168 3.4792 0.00000E+00 4.3958 0.00 0.00 0.00 169 3.4792 0.00000E+00 6.3958 0.00 0.00 0.00 170 3.4792 0.00000E+00 8.3958 0.00 0.00 0.00 171 3.4792 0.00000E+00 10.396 0.00 0.00 0.00 172 3.4792 0.00000E+00 12.396 0.00 0.00 0.00 173 3.4792 0.00000E+00 14.979 0.00 0.00 0.00 .

l 174 3.4792 0.00000E+00 15.396 0.00 0.00 0.00 l l 175 3.4792 0.00000E+00 15.563 0.00 0.00 0.00 l 176 3.4792 0.00000E+00 15.875 0.00 0.00 0.00 177 3.4792 0.00000E+00 16.042 0.00 0.00 0.00 300 8.0000 5.0000 8.0000 0.00 0.00 0.00 l NODE X Y Z THXY THYZ THZX

! 301 1.6667 5.0000 19.167 0.00 0.00 0.00 l 421 1.2604 10.0000 -0.75000 0.00 0.00 0.00 '

422 1.2604 10.0000 -0.50000 0.00 0.00 0.00 423 1.:.604 10.0000 -0.25000 0.00 0.00 0.00 424 1.2604 10.0000 0.00000E+00 0.00 0.00 0.00 425 1.2 6^.,4 10.0000 0.62500E-01 0.00 0.00 0.00 426 1.2604 10.0000 0.39583 0.00 0.00 0.00 427 1.2604 10.0000 2.3958 0.00 0.00 0.00 1 428 1.2604 10.0000 4.3958 0.00 0.00 0.00 l 429 1.2604 10.0000 6.3958 0.00 0.00 0.00 430 1.2604 10.0000 8.3958 0.00 0.00 0.00 431 1.2604 10.0000 10.396 0.00 0.00 0.00 432 1.2604 10.0000 12.3 % 0.00 0.00 0.00 433 1.2604 10.0000 14.979 0.00 0.00 0.00 434 1.2604 10.0000 15.396 0.00 0.00 0.00 435 1.2604 10.0000 15.563 0.00 0.00 0.00 436 1.2604 10.0000 16.021 0.00 0.00 0.00 441 2.5208 10.0000 -0.75000 0.00 0.00 0.00 l

442 2.5208 10.0000 -0.50000 0.00 0.00 0.00 443 2.5208 10.0000 -0.25000 0.00 0.00 0.00 1 444 2.5208 10.0000 0.00000E+00 0.00 0.00 0.00 l 445 2.5208 10.0000 0.62500E-01 0.00 0.00 0.00 l

446 2.5208 10.0000 0.39583 0.00 0.00 0.00 447 2.5208 10.0000 2.3958 0.00 0.00 0.00

'448 2.5208 10.0000 4.3958 0.00 0.00 0.00 449 2.5208 10.0000 6.3958 0.00 0.00 0.00

.450 2.5208 10.0000 S.3958 0.00 0.00 0.00 451 2.5208 10.0000 10.396 0.00 0.00 0.00 452 2.5208 10.0000 12.396 0.00 0.00 0.00

, 453 2.5208 10.0000 14.979 0.00 0.00 0.00 l 454 2.5208 10.0000 15.396 0.00 0.00 0.00 455 2.5208 10.0000 15.563 0.00 0.00 0.00 456 2.5208 10.0000 16.021 0.00 0.00 0.00 461 2.6042 10.000 -0.75000 0.00 0.00 0.00 462 2.6042 10.000 0.50000 0.00 0.00 0.00 463 2.6042 10.000 0.25000 0.00 0.00 0.00 464 2.6042 10.000 0.00000E+00 0.00 0.00 0.00 465 2.6042 10.000 0.62500E 01 0.00 0.00 0.00 466 2.6042 10.000 0.39583 0.00 0.00 0.00 467 2.6042 10.000 2.3958 0.00 0.00 0.00 468 2.6042 10.000 4.3958 0.00 0.00 0.00 469 2.6042 10.000 6.3958 0.00 0.00 0.00 470 2.6042 10.000 8.3958 0.00 0.00 0.00 471 2.6042 10.000 10.396 0.00 0.00 0.00 472 2.6042 10.000 12.3 % 0.00 0.00 0.00 4 73 2.6042 10.000 14.979 0.00 0.00 0.00 474 2.6042 10.000 15.3 % 0.00 0.00 0.00 475 2.6042 10.000 15.563 0.00 0.00 0.00 476 2.6042 10.000 16.021 0.00 0.00 0.00 481 2.6458 10.000 0.75000 0.00 0.00 0.00 NODE X Y Z THXY THYZ THZX 482 2.6458 10.000 -0.50000 0.00 0.00 0.00 483 2.6458 10.000 0.25000 0.00 0.00 0.00 484 .2.6458 10.000 0.00000E+00 0.00 0.00 0.00 485 2.6453 10.000 0.6250CE-01 0.00 0.00 0.00 l

I

N00$ ELM 1.0UT P:g) 4 of 7 486 2.6458 10.000 0.39583 0.00 0.00 0.00 487 2.6458 10.000 2.3958 0.00 0.00 0.00 488 2.6458 10.000 4.3958 0.00 0.00 0.00 489 2.6458 10.000 6.3958 0.00 0.00 0.00 490 2.6458 10.000 8.3958 0.00 0.00 0.00 491 2.6458 10.000 10.396 0.00 0.00 0.00 492 2.6458 10.000 12.396 0.00 0.00 0.00 493 Z.6458 10.000 14.979 0.00 0.00 0.00 494 2.6458 10.000 15.396 0.00 0.00 0.00 495 2.6458 10.000 15.563 0.00 0.00 0.00 I 496 2.6458 10.000 15.875 0.00 0.00 0.00 497 2.6458 10.000 16.042 0.00 0.00 0.00 )

501 2.7083 10.0000 0.75000 0.00 0.00 0.00 1 502 2.7083 10.0000 -0.50000 0.00 0.00 0.00 I 503 2.7083 10.0000 -0.25000 0.00 0.00 0.00 5 04 2.7083 10.0000 0.00000E+00 0.00 0.00 0.00 505 2.7083 10.0000 0.62500E-01 0.00 0.00 0.00 506 2.7083 10.0000 0.39583 0.00 0.00 0.00 507 2.7083 10.0000 2.3958 0.00 0.00 0.00 l 508 2.7083 10.0000 4.3958 0.00 0.00 0.00 '

509 2.7083 10.0000 6.3958 0.00 0.00 0.00 i 510 2.7083 10.0000 8.3958 0.00 0.00 0.00 511 2.7083 10.0000 10.396 0.00 0.00 0.00 '

512 2.7083 10.0000 12.396 0.00 0.00 0.00 513 2.7083 10.0000 14.979 0.00 0.00 0.00 514 2.7083 10.0000 15.396 0.00 0.00 0.00 515 2.7083 10.0000 15.563 0.00 0.00 0.00 516 2.7083 10.0000 15.875 0.00 0.00 0.00 517 2.7083 10.0000 16.D42 0.00 0.00 0.00 521 3.0417 10.000 -0.75000 0.00 0.00 0.00 522 3.0417 10.000 -0.50000 0.00 0.00 0.00 5e3 3.0417 10.000 -0.25000 0.00 0.00 0.00 524 3.0417 10.000 0.09000E+00 0.00 0.00 0.00 525 3.0417 10.000 0.62500E-01 0.00 0.00 0.00 526 3.0417 10.000 D.39583 0.00 0.00 0.00 527 3.0417 10.000 2.3958 0.00 0.00 0.00 528 3.0417 10.000 4.3958 0.00 0.00 0.00 529 3.0417 10.000 6.3958 0.00 0.00 0.00 530 3.0417 10.000 8.3958 0.00 0.00 0.00 531 3.0417 10.000 10.396 0.00 0.00 0.00 532 3.0417 10.000 12.396 0.00 0.00 0.00 533 3.D417 10.000 14.979 0.00 0.00 0.00 534 3.D417 10.000 15.396 0.00 0.00 0.00 535 3.0417 10.000 15.563 0.00 0.00 0.00 536 3.0417 10.000 15.875 0.00 0.00 0.00 537 3.0417 10.000 16.D42 0.00 0.00 0.00 i N00E X Y Z THXY THYZ THZX 541 3.3958 10.000 -0.75000 0.00 0.00 0.00 542 3.3958 10.000 -0.50000 0.00 0.00 0.00 543 3.3958 10.000 -0.25000 0.00 0.00 0.00 544 3.3958 10.000 0.00000E+00 0.00 0.00 0.00 545 3.3958 10.000 0.62500E-01 0.00 0.00 0.00 546 3.3958 10.000 0,39583 0.00 0.00 0.00 547 3.3958 10.000 2.3958 0.00 0.00 0.00 548 3.3958 10.000 4.3958 0.00 0.00 0.00 549 3.3958 10.000 6.3958 0.00 0.00 0.00 550 3.3958 10.000 6.3958 0.00 0.00 0.00 551 3.3958 10.000 10.396 0.00 0.00 0.00 552 3.3958 10.000 12.396 0.00 0.00 0.00 553 3.3958 10.000 14.979 0.00 0.00 0.00 554 3.3958 10.000 15.396 0.00 0.00 0.00 555 3.3958 10.000 15.563 0.00 0.00 0.00 556 3.3958 10.000 15.875 n.00 0.00 0.00 557 3.3958 10.000 16.042 0.00 0.00 0.00 561 3.4792 10.000 -0.75000 0.00 0.00 0.00 562 3.4792 10.000 0.50000 0.00 0.00 0.00 563 3.4792 10.000 -0.25000 0.00 0.00 0.00 564 3.4792 10.000 0.00000E+00 0.00 0.00 0.00 565 3.4792 10.000 0.62500E-01 0.00 0.00 0.00 566 3.4792 10.000 0.39583 0.00 0.00 0.00 567 3.4792 10.000 2.3958 0.00 0.00 0.00

NODSELMT.0UT P:si 5 ef 7 568 3.4792 10.000 4.3958 0.00 0.00 0.00

'569 3.4792 10.000 6.3958 0.00 c.00 0.00 570 3.4792 10.000 8.3958 0.00 0.00 0.00 5 71 3.4792 10.000 10.396 0.00 0.00 0.00 5 72 3.4792 10.000 12.396 0.00 0.00 0.00 1 573 3.4792 10.000 14.979 0.00 0.00 0.00 1 574 3.4792 10.000 15.396 0.00 0.00 0.00 5 75 3.4792 10.000 15.563 0.00 0.00 0.00 576 3.4792 10.000 15.875 0.00 0.00 0.D0 577 3.4792 10.000 16.042 0.00 0.00 0.00 j

LIST ALL SELECTED ELEMENTS. (LIST NDDES) l Tranfer Cask Thermal Analysis ELEM MAT TYP REL ESY NODES 1 1 1 1 0 21 421 1 1 22 422 2 2 2 1 1 1 0 41 441 421 21 42 442 422 22 3 1 1 1 0 61 461 441 41 62 462 442 42 4 1 1 1 0 81 481 461 61 82 482 462 62 5 1 1 1 0 101 501 481 81 102 502 482 82 6 1 1 1 0 121 521 501 101 122 522 502 102 7 1 1 1 0- 22 422 2 2 23 423 3 3 8 1 1 1 0 42 442 422 22 43 443 423 23 9 1 1 1 0 62 462 442 42 63 463 443 43 10 1 1 1 0 82 482 462 62 83 483 463 63  :

11 1 1 1 0 102 502 482 82 103 503 483 83 l 12 1 1 1 0 122 522 502 102 123 523 503 103 13 1 1 1 0 23 423 3 3 24 424 4 4 14 1 1 1 0 43 443 423 23 44 444 424 24 15 1 1 1 0 63 463 443 43 64 464 444 44 16 1 1 1 0 83 483 463 63 84 484 464 64 17 1 1 1 0 103 503 483 83 1 04 504 484 84 18 1 1 1 0 123 523 503 103 124 524 5 04 104 19 1 1 1 0 1 04 504 4 84 84 105 505 485 85 20 1 1 1 0 124 524 5 04 1D4 125 525 505 105 21 1 1 1 0 144 544 524 124 145 545 525 125 22 1 1 1 0 164 564 544 144 165 565 545 145 23 1 1 1 0 105 505 485 85 106 506 486 86 24 1 1 1 0 165 565 545 145 166 566 546 146 i 25 1 1 1 0 106 5 06 486 86 107 507 487 87  :

26 1 1 1 0 166 566 546 146 167 567 547 147  !

27 1 1 1 0 107 507 487 87 108 508 488 88 i 28 1 1 1 0 167 567 547 147 168 568 548 148 29 1 1 1 0 108 5D8 488 88 109 509 489 89 30 1 1 1 0 168 568 548 148 169 569 549 149 31 1 1 1 0 109 509 489 89 110 $10 490 90 32 1 1 1 0 169 569 549 149 1 70 5 70 550 150 33 1 1 1 0 110 510 490 90 111 511 491 91 34 1 1 1 0 170 5 70 550 150 171 571 551 151 35 1 1 1 0 111 511 491 91 112 512 492 92 36 1 1 1 0 171 571 551 151 1 72 5 72 552 152 37 1 1 1 0 112 512 492 92 113 513 493 93 38 1 1 1 0 1 72 5 72 552 152 1 73 5 73 553 153 39 1 1 1 0 113 513 493 93 114 514 494 94 40 1 1 1 0 173 5 73 553 153 1 74 574 554 154 41 1 1 1 0 114 514 494 94 115 515 495 95 42- 1 1 1 0 174 574 554 154 1 75 5 75 555 155 43 1 1 1 0 115 515 4 95 95 116 516 496 96 44 1 1 1 0 1 75 5 75 555 155 176 576 556 156 45 1 1 1 0 116 516 496 96 117 517 497 97 46 1 1 1 0 .176 576 556 156 177 577 557 157 47 9 1 1 0 125 525 5 05 105 126 526 506 106 48 11 1 1 0 145 545 525 125 146 546 526 126 49 9 1 1 0 126 526 5 06 106 127 527 507 107 50 10 1 1 0 146 546 526 126 147 547 527 127 ELEM MAT TYP REL ESY NODES

-. . __ _ . . _ . . _ . . . _ . = . _ _ . _ _ . _ . _ . . ._m__.___. ._ __.m_ ,__m...___._.

l NODSELMT.0UT. Page 6 af 7

51. 9 1 1 0 127. 527 507 107 128 528 508 108  !

52 10 1 1 0 147 547 527 127 148 548 528 128 53 9 1 1 0 128 528 508 108 129 529 509 109 ,

54 10 1 1 0 148 548 528 128 149 549 529 129 i 55 9 1- 1 0 129 529 SD9 109 130 530 510 110 )

56 to 1 1 0 149 549 529 129 150 .550 530 130  !

57 9 1 1 0' 130 530 510 110 131 .531 511 111 58 10 1 1 0 150 550 530 130 151 551 531 131 '

59 9 1 .1 0 131 531 511 111- 132 532 512 112 4 i

60 10 1. 1 0 151 551 531 131 152 552 532 132 61 9 1 1 0 132 532 512 112 133 533 513 113 1 62 10 1 1 0 152 552 532 132 153 553 533 133 63 - 9 1 0 l 1 133 533 513 113 134 534 514 114 l 64 10 1 1 0 153 553 533 133 154 554 534 134 l 65 10 1 1 0 154 554 534 134 155 555 535 135 l 66 10 1 1 0 155 .555 535 135 156 556 536 136 67 11 1 1 0 134 5 34 514 114 135 535 515 115 65 11 1 1 0 135 535 515 115 136 536 516 116 69 1 1 1 0 136 536 516 116 137 537 517 117 70 1 1 1 0 156 556 536 136 157 557 537 137 71 2 1 1 0 24 424 4 4 25 425 5 5 72 2 1 1 0 44 444 424 24 45 445 425 25 73 - 2 1 1 0 64 464 444 44 65 465 445 45 74 5 1 1 0 25 425 5 5 26 426 6 6 75 5 1 1 0 45 445 425 25 46 446 426 26 76 4 1 1 0 26 426 6 6 27 427 7 7 77 4 1 1 0 46 ~ 446 426 26 47 447 427 27 78 4 1 1 0 27 427 7 7 28 428 8 8 79 4 1 1 0 47 447 427 27 48 448 428 28 80 4 1 1 0 28 428 8 8 29 429 9 9 81 4 1 1 0 48 448 428 28 49 449 429 29 82 4 1 1 0 29 429 9 9 30 430 10 10 83 4 1' 1 0 49 449 429 29 50 450 430 30 84 4 1 1 0 30 430 10 10 -31 431 11 11 85 4 1 1 0 50 450 430 30 51 451 431 31 86 4 1 1 0 31 431 11 11 32 432 12 12 87 4 1 1 0 51 : 451 431 31 52 452 432 32 88 5 1 1 0 32 432 12 12 33 433 13 13 89 5 1 1 0 52 452 432 32 53 453 433 33 90 2 1 1 0 33 433 13 13 34 4 34 14 14 91 . 2 1 1 0 53 453 433 33 54 454 434 34 92 11 1 1 0 34 434 14 14 35 - 435 15 15 93 11 1 1 0 54 454 434 34 55 455 435 35 94 2 1 1 0 35 435 15 15 36 436 16 16 95 2 1 1 0 55 455 435 35 56 456 436 36 M 2 1 1 0 65 465 445 45 66 466 446 46 97 2 1 1 0 66 466 446 46 67 467 447 47 98 2 1 1 0 67 467 447 47 68 468 448 48 99 2 1 1 0 68 468 448 48 69 469 449 49 l 100 2 1 1 0 69 469 449 49 70 470 450 50 l ELEN MAT TYP REL ESY NODES j 101 2 1 1 0 70 470 450 50 71 4 71 451 51 102 2 1 1 0 71 471 451 51 72 4 72 452 52 103 2 1 1 0 72 472 452 52 73 4 73 453 53 1 04 2 1 1 0 73 4 73 453 53 ~ 74 474 454 54  ;

105 2 1 1 0 74 474 454 54 75 475 455 55 106 2 1 1 0 75 4 75 455 55 76 476 456 56 i 107 1 1 1 0 141 541 521 121 142 542 522 122 l 108 1 1 1 0 142 542 522 i 22 143 543 523 123 109 1 1 1 0 143 543 523 123 144 544 524 124 110 1 1 1 0 161 561 541 141 162 562 542 142 til 1 1 1 0 162 562 5'2 142 163 563 543 143 ,

112 1 1 1 0 163 563 543 143 164 564 544 144 1 201 3 2 201 0 161 300 ,

-202 3 2 202 0 162 300 l 203 3 2 203 0 164 300 1 204 3 2 204 0 165 300 205 3 2 205 0 166 300 206 3 2 206 0 167 300-207 3 2 207 0 168 300 I

- . - . . _ . .. - - . _. - . - - _ .- ~

NCOSELMT.0UT Pige 7 sf 7 208 3 2 208 0 169 300 209 3 2 209 0 170 300 210 3 2 210 0 1 71 300 211 3 2 211 0 172 300 212 3 2 212 0 1 73 300 213 3 2 213 0 174 300 214 3 2 214 0 1 75 300 215 3 2 215 0 176 300 301 3 2 301 0 65 85 302 3 2 302 0 66 86 303 3 2 303 0 67 87 3 04 3 2 304 0 68 88 305 3 2 305 0 69 89 306 3 2 306 0 70 90 307 3 2 307 0 71 91 306 3 2 308 0 72 92 309 3 2 309 0 73 93 310 3 2 310 0 74 94 311 3 2 311 0 75 95 401 3 2 401 0 16 301 402 3 2 402 0 35 301 403 3 2 403 0 76 301 404 3 2 404 0 97 301 405 3 2 405 0 137 301 406 3 2 406 0 1 77 301 501 5 2 501 0 5 6 502 5 2 502 0 25 26 601 5 2 601 0 12 13 602 5 2 602 0 32 33 603 3 2 201 0 561 300 6D4 3 2 202 0 562 300 ELEM MAT TYP REL ESY NODES 605 3 2 203 0 5 64 300 606 3 2 204 0 565 300 607 3 2 205 0 566 300 608 3 2 206 0 567 300 609 3 2 207 0 568 300 610 3 2 208 0 569 300 611 3 2 209 0 5 70 300 612 3 2 210 0 571 300 613 3 2 211 0 572 300 614 3 2 212 0 573 300 615 3 2 213 0 5 74 300 616 3 2 214 0 5 75 300 617 3 2 215 0 576 300 618 3 2 301 0 465 485 619 3 2 302 0 466 486 620 3 2 303 0 467 487 621 3 2 304 0 468 488 622 3 2 305 0 469 489 623 3 2 306 0 470 490 624 3 2 307 0 471 491 625 3 2 308 0 4 72 492 626 3 2 3D9 0 4 73 493 627 3 2 310 0 4 74 494 628 3 2 311 0 4 75 495 629 3 2 402 0 436 301 630 3 2 403 0 476 301 631 3 2 404 0 497 301 632 3 2 405 0 537 301 633 3 2 406 0 577 301 634 5 2 502 0 425 426 635 5 2 602 0 432 433

. _ _ _ . _. _ _ . _ . _ _ _ . . . . . ~ . . . ..._ _ _ _ _ . - . _. _ . . . _ _ _

I MTCT,HE.INP page j of 7 I

i

/com stet,he. f ry .j

/com

/COM STEADY STATE THERMAL ANALYS!$ FOR TRANSFER CASK

/COM CLIENT: PGE

/COM PROJECT: PGE 01

/COM

/COM UNITS: BTU,FT,HR,F,LBM j

/COM l

/ filename,mtct,he l

/ ann, dele

/tlab, .95,.95, Design Cases %casex

)

/com

/com macro for design parameters I

/com l

/ input,mtet he, des .

/COM

/com generates the following files: i

/com " case".mda listing of model data

/com " case". sum analysis result summary

/com " case".ptt plet file

/com Note: " case" is defined in design paraneter file

/COM

/ PREP 7 ANTYPE,0 TOFFST,460 ET,1,50 LID 70 ET,2, LINK 31

/com

/com Material Properties

/com

/com Material 1 = Carbon Steet

/com Material 2 = Steintess Steel

/com Material 4 = Fuel

/com Material 5 = Hellun

/com Material 9 = Lead

/com Material 10 = RX 277 (with Angles)

/com Material 11 = RX 277

/com

/com Carbon steel l MP, DENS,1,490 MP,KXX,1,26 MP,C,1,.11

/com Stainless steel i MP, DENS,2,488 l MP,KXX,2,9.4 i MP,C,2,.11

/com Active Fuel i MP,KXX,4,1.358 l MP,KZZ,4,2.308 '

/com Hellun MP. DENS,5,6.Se 3 MP,KXX,5,0.1 MP,C,5,1.24

/com Lead MP, DENS,9,710 MP,KXX,9,19 MP,C,9, 031

/com RX 277 (Neutron Shield with Angles)

MP,KXX,10,1.264

/com

/com RX 277 (Neutron shield)

MP,KXX,11,0.3

/com

/ VIEW,,,-1 I

N,1.,,TD00R N,2,,,Z2 N,3,,,21 N,4 N,5,,,(0.75/12)

N,6,,,(4.75/12)

N,12,,,(148.75/12)

MTCT NE.!NP Pcoe 2 ef 7 FILL,6,12,5 N,13,,,(179.75/12)

N,14,,,(184.75/12)

N,15,,,(186.75/12)

N,16,,,(192.25/12)

NGEN,2,20,1,16,,RF1 NGEN,2,40,1,16,,RMS81 NGEN,2,60,1,16,,RMS80 NGEN,2,80,1,16,,RMTCI N,95,RMTC1,,(186.75/12)-

N,96,RMTCI,,(190.5/12)

N,97,RMTCI,,(192.5/12)

NGEN,2,20,81,97,, TINNER NGEN,2,40,81,97,,(TINNER +TLEAD)

NGEN,2,60,81,97,,(TINNER +TLEAD+TRx277)

NGEN,2,80,81,97,,TNTC I

CSYS,1 NSEL,U,N00E,,1,16 NGEN,2,400,ALL,,,,10 N,300,8,5,8 N,301,(20/12),5,(230/12)

N,700,8,5,8 N,701,(20/12),5,(230/12)

NALL i

TYPE,1 MAT,1 E,21,421,1,1,22,422,2,2 E,41,441,421,21,42,442,422,22 EGEN,5,20,2 EGEN,2,1,1,6,,8 EGEN,2,2,1,6

/COM EGEN,2,1,17,18 EGEN,3,20,20 EGEN,13,1,19,22,3 EGEN,2,1,20,,,8 EGEN,2,1,21,,,9 EGEN,9,1,47,48 EGEN,3,1,64 EGEN,2, 20,65,66 EGEN,2,20,45 EGEN,2,20,69 EGEN,2,1,13,15 EGEN,2,1,71,72,,4 EGEN,2,1,74,75,, 1 EGEN,6,1,76,77 EGEN,2,1,86,87,,1 EGEN,2,1,88,89,,-4 EGEN,2,1,90,91,,10 EGEN,2,1,92,93,,-10 EGEN,12,1,73 NALL

/COM Modify elements for appropriate material met,1 EMODIF,P50x 7

EM001F,P50x 8

EMODIF,P50x 9

EMODIF,P50X 10 EMODIF,P50x 11 EMODIF,P50x 12 met,11 ENODIF,P50X 48

i MTCT_NE.INP p,,, 3 ,9 7 EMODIF,P50x  ;

65 ,

EMODIF,P50K  !

66 EMODIF,P50K >

68 I met,9 EMODIF,P50x 67 i mat,1 emodif,p50x

  • 92 emodif,p50x 93 i '

esel,s,P50X ,

3 18 12 6 i EGEN,3,20,ALL

/C0M,++++++++++ MODIFYING LIO ELEMENTS MATERIAL TO RX-277 ++++++

esel,s,,,92,93 esel,A,,,67,68 l l

emodif,alI, mat,11 eset,s,,,65,66  :

emodif,att,mnt,10 esti nelL l

csys,1 nsel,s,1oc,x,0,resbo+.01 nsel,r, toc,z,0,192.6/12 esin,,1 eset,r, mat,,1 l l type,1 rest,1  ;

mat,2  ;

j amod,a11 eall l nell ,

l /com )

/com Real Numbers for Radiation Elements

/COM Outside MTC R,201,0.038,1.0.0.9,1.714E 9 I R,202,0.114,1.0,0.9,1.714E 9 R,203,0.085,1.0,0.9,1.714E 9 R,204,0.060,1.0,0.9,1.714E-9 R,205,0.354,1.0.0.9,1.714E 9 R,206,0.607,1.0,0.9,1.714E-9 R,207,0.607T1.0.0.9,1.714E 9 R,208,0.607,1.0,0.9,1.714E-9 R,209,0.607,1.0,0.9,1.714E 9 i R,210,0.607,1.0.0.9,1.714E 9

l. R,211,0.6%,1.0,0.9,1.714E 9 R,212,0.455,1.0,0.9,1.714E 9 R,213,0.089,1.0,0.9,1.714E 9 R,214,0.073,1.0,0.9,1.714E-9 R,215,C.098,1.0,0.9,1.714E 9 i /com Gap betw MP8 and MTC i R,301,0.052,1.0,0.9,1.714E-9 i' R,302,0.265,1.0.0.9,1.714E-9 R,303,0.455,1.0,0.9,1.714E 9 R,304,0.455,1.0.0.9,1.714E-9 R,305,0.455,1.0.0.9,1.714E-9 R,306,0.455,1.0.0.9,1.714E 9 R,307,0.455,1.0,0.9,1.714E 9 l R,308,0.521,1.0,0.9,1.714E 9

.i R,309,0.341,1.0,0.9,1.714E 9 R,310,0.066,1.0,0.9,1.714E-9 i

l CTCT,NE.!NP pg'ge 4 of y R,311,0.123,1.0,0.9,1.714E 9

/com Top of MTC ,

! R,401,0.035,1.0,0.9,1.714E 9 l R,402,0.146,1.0,0.9,1.714E-9 l R,403,0.133,1.0,0.9,1.714E 9 R,404,0.047,1.0,0.9,1.714E-9 R,405,0.111,1.0,0.9,1.714E 9 R,406,0,064,1.0,0.9,1.714E-9

/com Bot of fuel region R,501,0.035,1.0.0.9,1.714E-9 R,502,0.279,1.0,0.9,1.714E 9

/com Top of fuel region R,601,0.035,1.0,0.9,1.714E-9 R,602,0.279,1.0,0.9,1.714E 9

/COM TYPE,2 MAT,3 i

/com

/com Radiation elem outside MIC

/com use macros mtink.mac

/Com

  • crest,elink,mac REAL,ARG1 .

EN,ARG1,ARG2,ARG3

  • end I

I I MLINK,201,1t.1,300 MLINK,202,162,300

/COM

  • DO,1,164,176 E1=l+39 MLINK,E1,1,300
  • ENDDD

/com

/com Red elem betw MSS & MTC

  • D0,1,65,75 E2=l+236 12=l+20 MLINK,E2,I,12
  • ENDD0

~/COM

/com Red elas at top of MTC MLINK,401,16,301 MLINK,402,36,301 MLIK,403,76,301 MLIK,404,97,301 MLINK,405,137,301 MLINK,406,177,301

/COM

/com Red eles at Helium Region MAT,5

/com bottom of fuel region MLINK,501,5,6 MLINK,502,25,26

/com top of fuel region MLINK,601,12,13 MLINK,602,32,33

/COM ESEL,5, TYPE,,2 ESEL,U,ELEM,,401,601,100 EGEN,2,400, ALL EALL NUMMRG, NODE

/'on

/out,mtctje,mde aplist,att rList, alt days,1 niist,att.

doys elist,all

.m__... _ _ . _ _ _ _ . . . . . _ _ . _ ._ ._ _ . . . . . _ . _ . _ . __ ._.

! l l

MTCT_HE.INP pyg, 5 of 7

/out 1

- FINISH

/ Solu i D,300, TEMP,TAMB D,301, TEMP,TAMB

/COM BFE,76,HGEN,1,01 BFE,78,HGEN,1,Q2 BFE,80,HGEN,1,03 i BFE,82,HGEN,1,04 l BFE,84,HGEN,1,05 l . BFE,86,HGEN,1,06 BFE,77,HGEN,1,Q1 i BFE,79,HGEN,1,02 l BFE 81,HGEN,1,Q3 l B FE ,83, HGE N,1,04 l - BFE,85,HGEN,1,05

[ BFE,87,HGEN,1,06 l'

/com CSYS,1 j TOL=0.1 I inch NSEL,5, LOC,X, RMTCO-(TOL/12), 5.0 NSEL,A, LOC,Z, (192.25 TOL)/12, (192.5+TOL)/12 l SF,ALL,CONV,2,TAMB NALL 1

/com l AUTOTS,0N I NSUBST,10,20,2 l KBC,0 CNVT, TEMP,2,0.5 CNVT, FLUX,-1 CSYS,0 SOLVE FINISH

/ con l

/ POST 1

/show,% case %, plt,1

/num,2-csys,1 nset,s, loc,y,0

/ title, Transfer task Thermal Analysis plns,teg nell i plot temperature distribution for etc portion  !

t esys,1 nset,s, toc,x,0,rmsbo  !

nset,r, toc,r,0,001,20  !

noel,inve I nset,u, node,,300,301 i nset,r, toc,y,0  ;

/ ratio,,3 l Ptns,tenp l /retto

! natI eall l' csys,0

. 1 I DEFINITION OF PARAMETERS I 1 i aside : total area of radiation eles at etc side 1 stop : total area of radiation eles at etc/msb top I agap : total area of radiation elem from msb to etc liner I aftop : total area of radiation elem at top of fuel region

-l afbot total area of radiation elem at bottom of fuel region I tshell maxima temperature at asb shett (outer wurf ace)

.t

/com Check area for radiation elements

noet.s.,,300'

MTCT ,NE.INP P:gt 6 cf 7 estn note etable, area 31,nnisc,3 soum

  • get aside,ssum,, item, area 31 I

nset,s,,,301 estn nsle etable, area 31,nmisc,3 stum

  • get, atop,ssum,, item, area 31 I

nsel,s. node,,65,75 nsel,a, node,,465,475 esin esel,r, type,,2 nsle etable, area 31,nmisc,3 saun

  • get,agap,ssum,, item, area 31 I

nset.s node,,12,32,20 nsel,a, node,,432

, estn esel,r, type,,2 note etable, area 31,nmisc,3 soum

  • pet,aftop,ssum,,itam, area 31 l 1 i

nsel g ,.ede,,6,26,20 nsel,a, node,,426 esin eset,r, type,,2 l nsle etable, area 31,nmisc,3 sous

  • get,afbot,ssum,, item, area 31 eelt nett

/com

/com max. msb shell temp (outside surf ace of msb shell) l /com

! noet s. node,,65,76 nsort,tany

  • get,tshett, sort,, max natt eall

/com

, /com temp distribution across etc well I tpath,68,168 pdef, temp, temp

/ view,,,,1

/autab,y, Temperature (F)

/extab,x, Distance from basket shett (ft)

/ grid,1

/ title, Transfer Cask Through-Wall Temperatures (Node 68-168) pipath,tenp (path,69,169

, pdef,tonp,tesp

/ title, Transfer Cask Through-Wall Tenperatures (Node 69-169)

PI Path,tenp

/com

/com

/out,et et,he, sun i t Result sunenary from MTC thermat analysis - mtet he
  • stat

/com

/com through wall temperature nsel,s, node,,68,168,20 Pens,tenp

l l ,

1 MTCT_HE.INP P:ge 7 of 7 l nsel,s. node,,69,169,20 l

prns, temp l i /com

/com temperature at center line of cask nset s, node,,1,16 prns,tesp

/com

/com temperature at outside surface of msb shett i nsel,s node,,65,76 l prns,tenp

/com l

/com temperature at inside surface of etc inner sheLL '

nset,s. node,,BS,97 prns, temp

/com

/com temperature at outside surface of mtc outer shett nse t . s. node,,161,177 1 prns, temp nall l

/out esti natt

/ title, Transfer Cask Thermat Analysis

/show, term

/num

/ edge

/ view,,,-1 SAVll,mtet_he,db finish 1

1 I

i l t

l l

I 1

l

. _ _ . _ _ _ - . _ _ _ ._ _ _ _ . _ . _ . - . . . _......_...m

_ .-.._~.m _ _ . - _ . . . . . . . - . .

j l

MTCT_NE. DES ~ Pagt 1 cf 1 i l

I stct_he. des 1 Design paramtera and boundary condition deta i for MTC thornet analysis I dimensions are in FEET, F, BTU, HR case ='atet_he' I Id for this run, appears at the top I of each plot and is listed in the i suusary file (=mtet he .ssum)

/ TITLE.Tranfer Cask Thermal Analysis TAMB=75 1 amb. tenperature F outside of vec I

RMse0= 31.25/12 I outside radius of msb shell RMssis 30.25/12 I inside radius of msb shett RF1= RMsBI/2 i radius for fuel element i

RMTCl= 31.75/12 I inside radius of MTC inner shell TINNER = 0.75/12 I thickness of MTC inner shell TLEAD= 4.00/12 I thickness of Lead TRX277= 4.25/12 I thickness of RX 277 TOUTER = 1.0/12 I thickness of MTC outer shell TNTC= TINNER +TLEAD+TRX277+ TOUTER I thickness of MTC Wall RMTCOs RMTCl+TMTC i outside radius of MTC outer shelt i

TD00R= -9/12 21= TD00R/3 22= TD00R*2/3 I

I I Heat generation rate (BTU /HR-FT**3) 1 Q1= 341.8 02= 376.0 03= 376.0 04= 372.6 05= 362.3 06= 307.6 I

i l

- . - . . . ., .-. . . = . . - - - . -- - - .- .

i j

l- MTCT ,HE. SUM Page 1 ef 5

)

i PARAMETER STATUS- ( 32 PARAMETERS DEFINED)

NAME VALUE TYPE DIMENSIONS I l AFBOT 0.593000000 SCALAR

{

AFTOP 0.593000000 SCALAR '

AGAP 7.28600000 SCALAR l ASIDE ' 10.1954200 SCALAR I ATOP 1.03700000 SCALAR CASE mtet_he CHARACTER E1 215.000000 SCALAR E2 311.000000 SCALAR l

1 75.0000000 SCALAR 12 95.0000000 SCALAR c1 341.800000 SCALAR C2 376.000000 SCALAR Q3 376.000000 SCALAR 04 372.600000 SCALAR 05 362.300000 SCALAR i 06 307.600000 SCALAR l RF1 1.26041667 SCALAR RMSBI 2.52083333 SCALAR RMSB0 2.60416667 SCALAR RMTCt 2.64583333 SCALAR RMTCO 3.47916667 SCALAR TAMB 75.0000000 SCALAR TD00R -0.750000000 SCALAR T!NNER 6.250000000E 02 SCALAR TLEAD 0.333333333 SCALAR TNTC 0.833333333 SCALAR TOL 0.100000000 SCALAR TOUTER 8.333333333E 02 SCALAR TRX277 0.354166667 FCALAR TSHELL 404.111690 SCALAR 21 -0.250000000 SCALAR Z2 0.500000000 SCALAR through wall tenperature SELECT FOR ITEM = NODE COMPONENTS IN RANGE 68 TO 168 STEP 20 6 NODES (OF 284 DEFINED) SELECTED BY NSEL DOMMAND.

PRINT TEMP NODAL SOLUTION PER NODE 1

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 *****

ANSYS/LinearPlus ANSYS/Therdet 18304 PC/LT 5.0A VER$1DN=PC 386/4B6 05:05:05 DEC 11,1995 CP= 233.000 ,

FOR SUPPORT CALL PHONE FAX  !

Transfer Cask Through-Watt Temperatures (Node 69-169) 1

          • POST 1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEPS 1 SUBSTEPs 6 TIME = 1.0000 LDAD CASE = 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL C00RDINATES .

l NODE TEMP 68 400.54 88 269.80 l 108 268.85 128 263.09 148 189.22 168 158.53 MAXIMUM VALUES NODE 68

-. , .. -, . . ~ .- .- - . -.

l

)

i GTCT,HE. SUM Pega 2 of 5 l l

l l VALUE 400.54 j i SELECT FOR ITEM = NODE COMPONENT =  !

IN RANGE 69 TO 169 STEP 20 i l

l 6 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND. l PRINT TEMP NODAL SOLUTION PER NODE 1

          • ANSYS a ENGINEERING ANALYS!$ SYSTEM REVISION 5.0A 1 ***** I i

ANSYS/LinearPlus ANSYS/ Thermal l 38304 PC/LT 5.0A VERSION =PC 386/486 05:05:06 DEC 11, 1995 CP= 233.050 FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Wall Tenperatures (Node 69-169)

          • POST 1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP = 1 SUBSTEPs 6 TIMES 1.0000 LOAD CASES 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP l 69 404.11 1 89 268.90 I 109 267.90 129 261.27 149 168.67 169 167.63 MAXIMUM VALUES NODE 69 VALUE 404.11 tenperature at center line of cask SELECT FOR ITEM = NODE COMPONENT =

IN RANGE 1 TO 16 STEP 1 16 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND.

PRINT TEMP NODAL SOLUTION PER WODE 1

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 ***** l ANSYS/LinearPlus ANSYS/ Thermal j 05:05:06 DEC 11, 1995 CP=

~

38304 PC/LT 5.0A VERSION =PC 386/486 233.110 FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Wall Temperatures (Node 69 169) )

I

          • POST) NODAL DEGREk OF FREEDOM LISTING *****

LOAD STEP = 1 SUBSTEPs 6 TIMES 1.0000 LOAD CASES 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 1 247.34 2 247.99 3 249.78 4 252.21 5 253.67 6 424.12 7 720.13 8 846.41 9 863.35

CTCT.,,NE. SUN Pag) 3 cf 5 to 825.02 11 686.29 12 416.53 l 13 265.48 14 257.85 15 139.82 16 129.86 MAXIMUM VALUES NODE 9 YALUE 863.35 tenperature at outside surface of msb shell SELECT FOR ITEM =WODE COMPOWt2Tm IN RANGE 65 TO 76 STEP 1 12 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND.

PRINT TEMP NODAL SOLUTION PER NODE 1

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 *****

ANSYS/LinearPlus ANSYS/Thermet 38304-PC/LT*5.0A VERSION =PC 386/486 05:05:06 DEC 11, 1995 CP= 233.220 FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Watt Tenperatures (Node 69-169)

          • POST 1 NODAL DEGREE OF FREEDOM LIST!kG *****

LOAD STEPS 1 SUBSTEPs 6 TIMES 1.0000 LOAD CASES 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 65 213.73 66 284.47 67 362.73 68 400.54 69 404.11 70 387.55 71 341.97 72 250.56 73 158.54 74 156.42 75 140.20 76 127.17 MAXIMUM VALUES NODE 69 VALUE 404.11 tenperature at inside surface of etc inner shett SELECT FOR ITEMsNODE COMP 0t:ENT=

IN RANGE 85 TO 97 STEP 1 l

! 13 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND.

l PRINT TEMP NODAL SOLUTION PER FR E l

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 *****

ANSYS/LinearPlus ANSYS/Thermet 38304*PC/LT 5.0A VERSION =PC 386/486 05:05:06 DEC 11, 1995 CP= 233.270 FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Watt Tenperatures (Node 69169) l

(:

i l

MTCT_NE. SUM Ptga 4 ef 5 '

I l ,

          • POST) NODAL DEGREE OF FREEDOM LISTING ***** I l
l. LOAD STEP = 1 SUBSTEP= .6 ,

l-TIMES 1.0000 LOAD CASE = 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN OLOBAL COORDINATES

  • I NODE TEMP  :

85 202.81 86 205.29

, 87 242.05 I 88 269.80 i 89 268.90 l 90 250.95 91 215.39' '

92 166.11 93 119.72 94 116.36 95 111.95 i

% 100.42 i 97 98.711 i MAXIMUM VALUES' NODE 88 VALUE 269.80 )

temperature at outside surface of etc outer shell j SELECT FOR ITEM = NODE COMPONENT =

IN RANGE 161 TO 177 STEP 1 17 NODES (OF 284 DEFINED) SELECTED 8Y NSEL COMMAND.

j PRINT TEMP NODAL SOLUTION PER NODE 1

l l

l

          • ANSYS
  • ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 * **

ANSYS/LinearPlus ANSYS/ Thermal

'l' l

38304-PC/LT 5.0A VERSION =PC 386/486 05:05:06 DEC 11, 1995 CP= 233.270  ?

FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Wall Tanperatures (Node 69-169) l

          • POST 1 NODAL DEGREE OF FREEDOM LISTING *****
~ LOAD STEP = 1 SUBSTEP= 6 TIMES 1.0000 LOAD CASE = 0 l

l THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES l

NODE TEMP 161 187.33 162 186.42 163 186.56 164 180.12 l 165 178.02 ,

166 159.01 t i 167 156.08 l 168 188.53 i 169 *i67.63 170 '159.07 i'

, 1 71 142.68 172 120.44  !

1 73 101.12 174 97.043 i '175 95.892

, 176 94.525 177 94.164

[ MAMINLM VALUES 1

1 l

MTCT ,HE. SUM prg, $ ef $ l l

WODE 168 l

VALUE 188.53 1 i

i 284 NODES (OF 284 DEFINED) SELECTED SY NALL COMMAND.

I l

i i

i 1

l l

i l

1 i

l l

l l

. - _ ._ .. __ . . . . . .___._.m _ _ _ . . . _____ __ _.

MTC_VAC.!NP P:g:n 1 cf 7

/com stet _vac.Inp

/com

/COM STEADY STATE THERMAL ANALYSIS FOR TRANSFER CASK

/COM CLIENT: PGE

/COM PROJECT: PGE-01

/COM

/COM UNITS: BTU,FT,HR,F,LBM '

/COM

/ filename,mtet_vac

/ ann, dele

/tlab, .95,.95, Design Case %se%

lcom

/com macro for design parameters

/com

/ Input,mtet_vac, des

/COM

/com generates the following files:

/com " case".ada listing of model data

/com " case". sum analysis result sumary

/com " case".ptt plot file l

/com Note: " case" is defined in design parameter file

/COM

/ PREP 7 ANTYPE,0 TOFFST,460 ET,1,50 LID 70 ET,2, LINK 31'

/com

/com Material Properties

/com

/com Material 1 = Carbon Steel

/com Material 2 = Stainless Steel

/com Material 4 = Fuel

/com Material 5 = Vacuum l

/com Material 9 = Lemi i

/com Material 10 = RX-277 (with Angles) j

/com Material 11 = RX-277

/com

/com Carbon steel MP, DENS,1,490 i

MP,KXX,1,26  :

MP,C,1,.11

/com Stainless steel MP, DENS,2,488  !

MP,KXX,2,9.4 l MP,C,2,.11 l

/com Active Fuel 1 MP,KXX,4,1.358 MP,KZZ,4,2.308 1 i

/com Vacuum

! MP, DENS, 5, 0.1e 17 MP, KXX, 5, 0.1e 17 MP, C, 5, 0.1e 17

/com Lead ,

MP, DENS,9,710 i MP,KXX,9,19 MP,C,9,.031

/com RX 277 (Neutron Shield with Angles) l MP,KXX,10,1.264

/com i /com RX-277 (Neutron shield)  !

! MP,KXX,11,0.3 l- /com

!- /VI EW, , , - 1 1

N,1.,,TD00R N,2,,,Z2 N,3,,,21 i N,4 N,5,,,(0.75/12)

N,6,,,(4.75/12) r N,12.,,(148.75/12) l

_ . mm __. . _ __ _.. . _ . _ _ _ _ _

MTC_VAC.!NP Page 2 cf 7 FILL,6,12,5 N,13, , ,(179.75/12)

N,14, , ,(184. 75/12)

N,15,,,(186.75/12)

N,16,,,(192.25/12)-

MGEN,2,20,1,16, ,R F 1 NGEN,2,40,1,16, ,RMSBI NGEN,2,60,1,16,,RMSB0 NGEN,2,80,1,16,, RMT CI N,95,RMict,,(186.75/12)

N,96,RMTCI,,(1PO.5/12)

N,97,RMTCI,,(192.5/12)

NGE N,2,20,81,97, ,TI NNER NGEN,2,40,81,97, ,(T I NNER+TLE AD)

NGEN ,2,60,81,97, , ( T ! NNER+1 L E AD+ T Rx277)

NGE N,2,80,81,97, , TMT C I

CSYS,1 NSEL,U, NODE,,1,16 NGEN,2,400,ALL,,,,10 N,300,8,5,8 N,301,(20/12),5,(230/12)

N,700,8,5,8 N,701,(20/12),5,(230/12)

NALL I

TYPE,1 MAT,1 E,21,421,1,1,22,422,2,2 i E,41,441,421,21,42,442,422,22 EGEN,5,20,2 EGEN,2,1,1,6,,8 EGEN,2,2,1,6

/COM EGEN,2,1,17,18 EGEN,3,20,20 EGEN,13,1,19,22,3 E GEN ,2,1,20, , ,8 i E GEW ,2,1,21, , ,9 EGEW,9,1,47,48 EGEN,3,1,64 EGEN,2,-20,65,66 EGEN,2,20,45 EGEN,2,20,69 EGEN,2,1,13,15 E GEN,2,1,71,72, ,4 E GEN,2,1,74,75, , 1 EGEN,6,1,76,77 E GEN,2,1,86,87,,1 EGEN,2,1,88,89,, 4 E GEN,2,1,90,91, ,10 E GEN,2,1,92,93, ,-10 E(EN.12,1,73 NALL

/COM Modify elements for appropriate material met,1 EMODIF,P50x 7 )

EM00!F,P50x 8

EMODIF,P50X 9

EMODIF,P50X 1 l

i 10 l

, EMODIF,P50X 11 EMODIF,P50X i 12 ]

not,11 ENODIF,P50K l 48 I

i l

, - ~_ - . - - . . . . , . - . - - . - .- - ~. . --

MTC_VAC.INP Prge 3 cf 7 EMODIF,P50K i 65  :

EMODIF,P50x EMODIF,P50x.

68 mat,9 EM00lF,P50x 67 mit,1 emodif,p50x <

92 l emodif,p50x I 93 i

esel,s,P50x 3

18 12 6

EGEN,3,20,ALL

/C0M,++++++++++ MODIFYING LID ELEMENT 5 MATERIAL TO RX-277 ++ m +

esel,s,,,92,93 esel,A,,,67,68 emodif,ali, mat,11 eset,s,,,65,66 emodif,all, mat,10 estt nel1 i

csys,1 nset,s, toc,x,0,rmabo+.01 nset,r, toc,z,0,192.6/12 estn,,1 eset,r, mat.,1 type,1 real,1 mat,2 emod,ait eatt natt I

/com

/com Real Numbers for Radiation Elements

/COM Outside MTC R,201,0.038,1.0,0.9,1.714E-9 ,

R,202,0.114,1.0,0.9,1.714E 9 l R,203,0.085,1.0,0.9,1.714E-9 R,204,0.060,1.0,0.9,1.714E-9 R,205,0.354,1.0,0.9,1.714E 9 R,206,0.607,1.0,0.9,1.714E 9 l l

R,207,0.60771.0,0.9,1.714E-9 R,208,0.607,1.0,0.9,1.714E 9 R,209,0.607,1.0,0.9,1.714E 9 R,210,0.607,1.0,0.9,1.714E-9 R,211,0.696,1.0,0.9,1.714E-9 R,212,0.455,1,0,0.9,1.714E 9 R,213,0.089,1.0,0.9,1.714E-9 R,214,0.073,1.0,0.9,1.714E 9 R,215,0.098,1,0,0.9,1.714E-9.

/com Cap betw MPB and MTC R,301,0.052,1.0.0.9,1.714E 9 R,302,0.265,1.0.0.9,1.714E-9 R,303,0.455,1.0,0.9,1.714E 9 R,304,0.455,1.0,0.9,1.714E-9 R,305,0.455,1.0,0.9,1.714E-9 R,306,0.455,1.0,0.9,1.714E-9 R,307,0.455,1.0,0.9,1.714E 9 R,308,0.521,1.0,0.9,1.714E 9 R,309,0.341,1.0,0.9,1.714E 9 R,310,0.066,1.0,0.9,1.714E-9 l

l

. . . _ . , . . - - . - --- - . . . _ . - ~ . ~ . - - - _ _ - _ ~ . ~ _ . . .

t l MTC VAC.INP p g3 4 ng 7

! R,311,0.123,1.0.0.9,1.714E-9 ,

L /com Top of MTC ,

l R,401,0.035,1.0,0.9,1.714E-9 l R,402,0.146,1.0,0.9,1.714E 9 ,

R,403,0.133,1.0,0.9,1.714E 9 5 R,404,0.047,1.0,0.9,1.714E-9 R,405,0.111,1.0,0.9,1.714E 9 R,406,0,064,1.0,0.9,1.714E-9

/com Bot of Fuel region R,501,0.035,1.0,0.9,1.714E-9 l R,502,0.279,1.0.0.9,1.714E 9

/com Top of Fuel region R.601,0.035,1.0.0.9,1.714E 9 R,602,0.279,1.0,0.9,1.714E 9

/COM TYPE,2 i MAT,3 l /com

/com Radiation elem outside MTC

/com use macro
mlink.mac l

[ /com

  • crest,mlink,mac REAL,ARG1 L

EN,ARG1,ARG2,ARG3

  • end i

I MLINK,201,161,300 MLINK,202,162,300 ,

/COM  ;

  • DO,!,164,176 E1=l+39 MLINK,E1,1,300
  • END00

/com

/com Red elem betw FSB & MTC i

  • D0,1,65,75 l E2=l+236 i I2=l+20 MLINK E2,i,12
  • ENDDD

/COM

/com Red elom at top of MTC MLINK,401,16,301 MLINK,402,36,301 MLINK,403,76,301 MLINK,404,97,301 MLINK,405,137,301 MLINK,406,177,301

/COM

/com Red elam at Hellun Region MAT,5

/com bottom of fuel region MLINK,501,5,6 MLINK,502,25,26

/com top of fuel region MLINK,601,12,13 MLINK,602,32,33

/COM ESEL,$, TYPE,,2 ESEL,U,ELEM,,401,601,100 EGEN,2,400,ALL EALL l NUMMRG, NODE l /com

, /out,mtet_vec,mda j splist,all I riist,all dsys,1 nlist,all days ellst,all l

l

I.

MTC.VAC lNP pagy $ og 7 i

l /out I I flNISH

/SQLU D,300, TEMP,TAMB D,301, TEMP,TAMB

/COM BFE,76,HGEN,1,01 BFE,78,HGEN,1,02

, BFE,80,HGEN,1,03 l

BFE,82,HGEN,1,04 BFE,84,HGEN,1,05 BFE,86,HGEN,1,06 BFE,77,HGEN,1,01 BFE,79,HGEN,1,02 BFE,81,HGEN,1,Q3 BFE,83,HGEN,1,04 L BFE,85,HGEN,1,05

! BF E ,87, HGE W,1,06 ,

/com )

CSYS,1 TOL=0.1 I inch NSEL,$, LOC,X, RMTCO-(TOL/12), 5.0 NSEL,A, LOC,2, (192,25-TOL)/12, (192.5+TOL)/12

f. SF,ALL,CONV,2,TAMB

[ NALL

/com l AUTOTS,0N

! NSUBST,10,20,2 KBC,0 i CNYT, TEMP,2,0.5 CNVT FLUX,-1 CSYS,0 SOLVE FINISH

/com

/Posf1

/show,% case %, pit,1

/num,2 csys,1 l nset,s, loc,y,0

, / title, Transfer Cask Thermat Analysis l pins, temp pal 1 I plot tagerature distribution for etc portion csys,1 nset.s loc,x,0,rmabo nset,r, Loc,r,0.001,20 nset,inve teet.u, node,,300,301 nse. r, toc,y,0

/ ratio,,3 pins, teep

/ ratio

!- natt eelt csys,0 I

f DEFINITION OF PARAMETERS I ,

1 aside tctal area of radiation elam at etc side I stop : total area of radiation elem at etc/msb top I agap : total area of radiation elem from msb to etc liner I 'uftop : total area of radiation elem et top of fuel region

f. afbot : total area of radiation elem at bottom of fuel region
I tshett
maximum te m erature at meb shell (outer surface)  ;

I

/com Check area for radiation elements nset,s,,,300 l

- __-.._ - . . _ . . . - ~ . - - , . . - ~ _ _ . . , - - - ~ ~ . ~ -. . . _ ~ ~ ,

i MTC_VAC.INP Pcee 6 c.f 7 ,

I estn {

nsle  ;

etable, area 31,runisc,3  ;

soum

  • set,aside,ssum,,itam, area 31 .

I I noel,s,,,301  !

. estn 1 nele -

etable, area 31,nmisc,3 soum .

  • set,atep,ssum,, item, area 31

~

'l I. .

l' nset,s, node,,65,75 nsel,a, node,,465,475 j estn i eset,r, type,,2 )

nsle i etable, area 31,relsc,3 )

saum

  • get, agap,ssun,, item, area 31 i

noet,s, node,,12,32,20 nsel,a, node,,432 esin eset,r, type,,2 i nsle I etable, area 31,nmisc,3 /

ssum

  • set,aftop,ssum,, item, area 31 i

noel s. node,,6,26,20 noel,a, node,,426 l

esin' e0eter, typen2 nele l etable, area 31,nnisc,3 ssian

  • set.af bot,ssum,, item, area 31 eall i noti  !

/com

/com max. mob shell temp (outside surface of mob shell)

/com nset.s. node,,65,76 noort teep

  • set,tshell, sort,, man nati eall

/com

/com temp distribution across etc well (path,68,168 pdef,tenp, temp

/ view,,,,1

/extab,y, Temperature (F) i

/axlab.x, Distance from basket shell (ft) j

/ grid,1 )

/ title, Transfer Cask Through-Wall Tenperatures (Node 68168) pipath,tenp I Lpath,69,169 i pdef, temp,tsup i / title, Transfer Cask Through-Wall Tenperatures (Node 69-169)  !

l plpath, teep j

( /Com l i

( /com

/out,mtet_vec, sun

, i Result suunary from MTC thermat analysis - mtet_vac

  • stat i

, /com j

/com through wall te p rature nset,s node,,68,168,20 Prns, teep l

o l .- y _

_- _ . - - - - - .. ~,

MTC.VAC.!NP Pagt 7 of 7 i I

nset.s, node,,69,169,20 1 Prns,teny .

/com )

/com temperature at conter line of cask

  • neet,s, node,,1,16 Prns,teny

/com

/com tenperature at outside surface of msb shett

( nset,s. node ,65,76 pms,tesp

/com

/com - tenperature at inside surface of etc inner shell nset,s, node,,85,97 prns,tenp

/com

/com tenperature at outside surf ace of mte outer shelt nset,s node,,161,177 l Prns,tenp nell ,

/out l- eelt I natt

/ title, Transfer Cask Thernet Analysis

/show, term

/msn

/ edge

/ view,,, 1 SAVE,mtet,vec,db finish i

l-l 1

l l

1 l

I l

l

(:

I I

4 I

l

~. _ ,. -. .- _ _ . _- , _ -

- .. . . - - - ~ . - . . . - . . . . . . .-, - .~. . . . - . ...- , - . , - - - . -

i 1

i

!- MTCT VAC. DES page i cf 1 i i 1 t

I: ~ mtet_vac. des  ;

i Design paracters and boundary condition data ,

I for NTC thermal analysis  ;

i- i dimensions are in FEET, F, BTU, HR i case ='atet_vac' I Id for this run, appears at the top  !

I of each plot and is listed in the i i supunary file ("mtet_vac". sun) l i.,TLE,Tranfer Cask Thermal Analysis - t l TANS =75' I anb. temperature F outside of vec l l RMS80= 31.25/12 I outside radius of msb shett l RMS81= 30.25/12 I inside radius of msb shelt  !

RF1= RMstI/2 i radius for fuel element ,

i 1 l- RMTC1= 31.75/12 I inside radius of MTC inner shell .l TINNER = 0.75/12 I thickness of MTC inner shelt  !

TLEAD= 4.00/12 I thickness of Lead i TRx277= 4.25/12 I thickness of RM 277 TOUTER = 1.0/12 f thickness of MTC outer shett i TNTC= TINNER +TLEAD+TRM277+ TOUTER I thickness of MTC well RMTCOs RMTCI+TMTC 1 outside radius of MTC outer shett I  ;

TD00R= -9/12 I Z1= TD00R/3 22= TD00R*2/3 f

l 1 '

I  !

I Heat generation rate (BTU /HR FT**3)  !

l  !

01= 341.8  !

02= 376.0 l 03= 376.0 t 04= 372.6  !

05= 362.3 '

06= 307.6 t

1 I

]

I I

l l

l 1 - .. ,

I i

f 1

-- . .-. _ _ . - .. . - .- ~. - _ - . . . . -

I l CTCT ,VAC. SUM Prge 1 cf 5 PARAMETER STATUS- ( 32 PARAMETERS DEFINED) i NAME VALUE TYPE DIMENSIONS '

Af807 0.593000000 SCALAR AFTOP 0.593000000 SCALAR ,

AGAP 7.28600000 SCALAR '

ASIDE 10.1954200 SCALAR ATOP 1.03700000 SCALAR CASE mtct_vac CHARACTER E1 215.000000 SCALAR ,

E2 311.000000 SCALAR l 1 75.0000000 SCALAR i 12 95.0000000 SCALAR Q1 341.800000 SCALAR l Q2 376.000000 SCALAR '

Q3 376.000000 SCALAR l 04 372.600000 SCALAR I 05 362.300000 SCALAR i 06 307.600000 SCALAR '

RF1 1.26041667 SCALAR RMSBI 2.52083333 SCALAR RMSB0 2.60416667 SCALAR RMTCI 2.64583333 SCALAR RMTCO 3.47916667 SCALAR TAMS 75.0000000 SCALAR TD00R -0.750000000 SCALAR TINNER 4.250000000E 02 SCALAR TLEAD 0.333333333 SCALAR TNTC 0.833333333 SCALAR TOL 0.100000000 SCALAR TOUTER 8.333333333E-02 SCALAR TRx277 0.354166667 SCALAR TSHELL 404.223208 SCALAR 21 -0.250000000 SCALAR 22 -0.500000000 SCALAR through well temperature SELECT FOR ITEMrNODE COMPONENT =

IN RANGE 68 TO 168 STEP 20 6 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMANO.

PRINT TEMP NODAL SOLUTION PER NODE 1

          • ANSYS
  • ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 *****

ANSYS/LinearPlus ANSYS/ Thermal 38304 PC/LT 5.0A VER$10N=PC 386/486 07:04:35 DEC 11, 1995 CP= 230.850 i FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Wall Temperatures (Node 69-169)

          • POST) NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEPS 1 SUBSTEPs 6 TIMES 1.0000 LOAD CASE = 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 68 400.76 l i

88 269.98

! 108 269.04

128 .263.27

! 148 189.33 l

168 188.64 i MAK! MUM VALUES l NODE 68 -

. . . .~ - .-. - - ~ . - . - - . - - - . - - . . - _ - - . --- . . . - - . . = . . - - - - - . .-

MTCT_VAC. SUM Pcgi 2 of 5 5 i

t l

l VALUE 400.76  !

I

, SELECT FOR ITEM = NODE COMPONENT =

IN RANGE 69 TO 169 STEP 20 i i

6 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND. l PRINT TEMP NODAL SOLUTION PER NODE  !

1 g

l ***** ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 **"* i ANSYS/LinearPlus ANSYS/ Thermal 1 38304-PC/LT 5.0A VERSION =PC 386/486 07:04:35 DEC 11, 1995 CP= 230.960 l FOR SUPPORT CALL PHONE FAX  !

l l Transfer Cask Through-Wall Temperatures (Node 69-169)  ;

l

  • "** POST 1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP = 1 SUBSTEP= 6 TIME = 1.0000 LOAD CASES 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 69 404.22 89 269.02 109 268.01 129 261.39 149 168.73 169 167.69 MAXIMUM VALUES NODE 69 VALUE 404.22 temperature at center line of cask

- SELECT FOR ITEM = NODE COMPOWENT=

IN RANGE 1 TO 16 STEP 1 I

16 NODES (0F 284 DEFINED) SELECTED BY NSEL COMMAND.

PRINT TEMP NODAL SOLUTION PER NODE 1

1

  • "** ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 ""* I ANSYS/LinearPlus ANSYS/ Thermal 38304 PC/LT*5.0A VER$!0N=PC 386/486 07:04:35 DEC 11, 1995 CP= 231.020 FOR SUPPORT CALL PHONE FAX l 1

Transfer Cask Through-Wall Tenperatures (Node 69-169)

    • "* POST) NODAL DEGREE OF FREEDOM LISTING ***** l LOAD STEP = 1 SUBSTEP= t.

TIMES 1.0000 LOAD CASE = 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES l l l NODE TEMP 1 246.46 2 247.09 3 248.83 4 251.10

( 5 252.39 6 432.05 7 721.55

( 8 847.04 9- 863.61

ETCT ,VAC. SUM l P:ge 3 cf 5 i l 10 825.33 l 11 687.26 I l 12 422.45 i- 13 269.87 l 14 261.90 L 15 140.68 130.56 MAXIMUM VALUES WODE 9 VALUE 863.61 temperature at outside surface of msb shelt

' SELECT FOR ITEM =WODE COMPONENT =

l- IN RANGE 65 TD 76 STEP 1 i

l 12 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND.

l

l. PRINT TEMP WODAL SOLUTION PER WODE 1
          • ANSYS ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 ***** -

I ANSYS/LinearPlus ANSYS/ Thermal J l 38304 PC/LT 5.0A VER$10N=PC 386/486 07:04:35 DEC 11, 1995 CP= 231.070 i

FOR SUPPORT CALL PHONE FAX Transfer Cask Through-Wall Tenperatures (Node 69169)

          • POST 1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP = 1 SUBSTEPs 6 TIME = 1.0000 LOAD CASES 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 65 213.26 66 286.32

. 67 363.25 68 400.76 l l 69 404.22 1

70 387.66 71 342.18 L 72 250.01 73 157.92 74 156.35 1 75 - 140.30 1 76 127.34 i I

MAXIMUM VALUES l NODE 69 1 VALUE 404.22  :

I temperature at inside surface of ste inner shell SELECT FOR ITEM = NODE COMPONENT =

IN RANGE 85 TO 97 STEP 1

' 13 NODES (OF 284 DEFIhED) SELECTED BY NSEL COMMAND.

. PRINT TEMP WODAL SOLUTION PER NODE l 1  ;

l  !

l

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISION 5.0A 1 ***** '

ANSYS/LinearPlus ANSYS/Thermet 38304 PC/LT-5.0A VERSION =PC 386/486 07:04:35 DEC 11, 1995 CP= 231.130 FOR SUPPORT CALL PHONE FAX j..

i Transfer Cask Through Watt Tenperatures (Node 69169) l

._ _ _ . . ..__.m . _ _ _ _ . . _ . _ _ _ _ .

CTCT,VAC. SUM Page 6 of 5

          • POST 1 NODAL DEGREE OF FREEDOM LISTING * **

LOAD STEPS 1 SUBSTEPs 6 TIMES 1.0000 LOAD CASES 0 '

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES NODE TEMP 85 202.48 86 205.27 87 242.29 88 269.98  ;

89 269.02 i

90 251.03 91 215.45 .

92 165.90 >

93 119.54 94 116.21 95 111.84

% 100.34 97 98.637 i MAXIMUM VALUES NODE 88 VALUE 269.98 temperature at outside surface of ste outer shell SELECT FOR ITEM = NODE COMPONENT =

IN RANGE 161 TO 177 STEP 1 17 NODES (OF 284 DEFINED) SELECTED BY NSEL COMMAND.

PRINT TEMP N00AL SOLUTION PER NODE 1

I

          • ANSYS - ENGINEERING ANALYSIS SYSTEM REVISIDW 5.DA 1 *****

ANSYS/LinearPlus ANSYS/ Thermal 38304-PC/LT 5.0A VER$10N=PC 386/486 07:04:35 DEC 11, 1995 CP= 231.180 FOR SUPPORT CALL PHONE FAX l

Transfer Cask Through-Wall Temperatures (Node 69-169) l

          • POST) NODAL DEGREE OF FREEDOM LISTING *****  ;

1 LOAD STEP = 1 SUBSTEPs 6 j 1.0000 LOAD CASES 0 TIMES THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN CLOBAL COORDINATES NUDE TEMP 161 187.00 162 186.10 163 186.26 164 179.85 165 177.77 166 158.90 167 156.16 168 188.64

'169 167.69

, 170 159.11 l 171 142.69

[ 172 120.36 173 101.04 174 96.971 175 95.824 176 94.462 177 94.102 MAKINJM VALUES I

MTCT_VAC. SUM Pig) 5 of 5 i

NODE 168 ,

VALUE 188.64  !

284 NODES (OF 284 DEFINED) SELECTED BY NALL COMMAND.

l l

i i

1 l

1 I

I 1

l l

l

I i

l i

Attachment 7 Item 14-3 Revised Figure 1 for WEP-109.003.018 i

I i

i i

a l

I j

l h

l l

I l

i

i Transfer Cask Thermal Model

- A4/d tou/%s b

p gff \rr7 l/ 76 97f /17 IS f f Ld" i R t///

'+

y. .. . //. y & jy/,::;. ;*

/5 q)3 /. . .. ,

/ ~/

+ N7z,' -  !

/n_ -

d

. fz ' -

  • 5.

/ .' /j Q%  ! I': =p ll ,

D *

  • s M

,i

/ru/~ '*

N.

l'syp) 9 k

k/ ,.

y' / 's -

$ e n a /,  : e

.. ~.f ' .. . .

, .. p

,r . .- . ... /.; '

J$ $ $ *

'/

% .( .

. 67, i

j .j, l . ..

f

./ 4

u. .i - .. ,

6 . < .

.....fg AS g

, , -- J. .!l-l , .

/,s

/

1 l

o O @ /

gj 4{ 4/ N M /t/ M/ /61 k- - -

Attachment 8 Item 16-la ANO-109.002.218 Copy of References I -

T ANO-109.002.218 ,

Revised Reference 4 i

I 1

I i

i l l l j

)

I

\

1 l

4 4

8

-=.:=- ENTERGY 5"IsL#"" "*"""

Raesrc.pa raoi ,

Td 501853-5000 January 21,1999 ANO-99-00066 Mr. Edward Fuller BNFL Fuel Solutions 1 Victor Square Scotts Valley, CA 95066

Subject:

B&W Fuel Pin Growth Due to Irradiation

Dear Mr. Fuller:

The purpose of this letter is to provide information relating to the fuel pin axial growth due to irradiation of B&W 15x15 fuel assemblies. Previously the information provided addressed CE fuel and applied to overall fuel assembly growth. Since our CE unit has a higher power density and longer fuel this was considered to be bounding for the B&W unit.

For fuel pin growth information this topic has been discussed with our fuel vendor (Framatome Cogema Fuels - FCF) to verify the correct growth that should be assumed in your evaluations. It was explained that the use of the number related to determining the j displaced volume of a fuel assembly in the cask. Based on FCF's work in this area it is '

expected that over the fuel assembly lifetime the fuel pins will grow approximately 2" in length for fuel pin bumups up to 60 GWD/MTU. The document cited for this conclusion is: BAW-10186P-A, Extended Burnup Evaluatior., June,1997. This document has been approved by the NRC and is FCF proprietary.

If you need more information relating to this topic please let me know.

Sincerely yours, d L c. A/Lk.

Charles H. Turk PJW/pjy l cc: D. Ropson

J. Willoughby l L.Hu M. Lalor (BFS)

DFS File l

l

M ,M,-,_am& ,.MA A e m4'4* 4 m .s-im2-n.Kaa,M,.- ---Mea-4 -J,-m - aa.,um--<a- - &meooeseoe 4 4 a,L.mw

.n, a i

1 ANO-109.002.218 Reference 9 4

1 i-1

' SIERRA .%CCLEAR CORPORATION' Date necewea 0I'"O' DAE Arne 9,1997 Filing Numbct: M # 0" "

oistnbution. # 4/ 8^ ' >

TO. Jun Hopf(SNC) , , ,

FROM: Patrick i -

tergy/ANO)

SUBJECT:

Qtuntity of B"in the Unit 1 BPRA rods Per ora disemsion today I have m= 2 died the irtforuntion fos our BPRA mds pertairnng to Borun 10 corwent, p!ern=n volume and inetal fill gas. These me linutmg values which shotild

ew as imuufug inputs for ANO-1 fuct The amount of B"in the limiting Unit 1(D&W) BPRA nxi is.

Density of B4Al&3 mixture - 3.7589ffem' Brcakdown ofmicure:

Constxtuent Wtsht Percent B" 0.37 B" 1.6625 ,

l O 45.85 Al 51.54 C 0.5655 I

Lcogth ofmrcture m rod: 339.6336 - 19.59 cm )

i Radiusofmixtmeinitxt 0.4318 cm i

Thus: i Q39.6336 - 19.59)n(0.4318)'

  • 3.7589 g/cn/
  • 0.0037 = 2.61 B" j Thee are 16 rods per BPRA for a toud B" loading of 41.76 gm B" In aW the pienim vohrme (net free vokane in the rod)is 1.6034 in' and the fill gas pressure is less than 400 pdg Ifyou have any addamani questions about this pkase let me know.

l l

l E

s l

A..amA4-d4*AE_4.M&. DJad A -W# A.Malm .M-M EaILad s aEL444peerm 6 hMSa m -

^ ^ "&@.6M M d AMm e hwd r.rM- '.e i

ANO-109.002.218 ,

Reference 14 i

?

1 I

I I

P

+

4 l

t k

r

- *