ML20199F429

From kanterella
Jump to navigation Jump to search
Reactor Containment Bldg Integrated Leakage Rate Test, Final Rept
ML20199F429
Person / Time
Site: Clinton Constellation icon.png
Issue date: 01/31/1986
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20199F422 List:
References
NUDOCS 8606240326
Download: ML20199F429 (85)


Text

e 3

\ /

lilinois Power Company i

3 Reactor Containment Building Qll Integrated Leakage Rate Test Unit 1 Final Report January 1986 Bechtel P6wer Corporation 88861888R8888s%61 PDR A

s .;

-M ILLINOIS' POWER COMPANY CLINTON POWER STATION UNIT 1 REACTOR CONTAINMENT BUILDING INTEGRATED LEAKAGE RATE TEST FINAL REPORT 9

1 NRC Docket No. 50-461 )

Bechtel Power Corporation , l January 1986 SU-091/001/1 l

t ,

l l

TABLE OF CONTENTS 3

SECTION Page

1.0 INTRODUCTION

1 2.0 TEST SYNOPSIS 2 3.0 TEST DATA

SUMMARY

4 4.0 ANALYSIS AND INTERPRETATION 11

5.0 REFERENCES

13 APPENDICES A. Bechtel ILRT Computer Program Summary B. ILRT Stabilization Summary Data C. ILRT Summary Data D. ILRT Calculations Mass Point Analysis Total Time Analysis Trend Report E. Verification Test Su= mary Data Mass Point Analysis Total Time Analysis F. Plots - Stabilization, ILRT, and Verification Air Mass Temperature Pressure Vapor Pressure

- ILRT Air Mass Mass Point Leakage Rate and UCL Total Time Leakage Rate and UCL

- Verification Air Mass Mass Point Leakage Rate Total Time Leakage Rate

- Temperature Sensors RTD 12 RTD 13 RID 11 RTD 14 SU-091/001/2 11

O > ,,

TABLE OF CONTENTS (Cont'd) 4 i s-3 APPENDICES (Cont'd)

G. ILRT Calculations and Plots with Temperature Sensors 12 and 13 Deleted H. Instrument Selection Guide Calculations I. Drywell Leakage Rate Test i

J. Drywell Bypass Leakage Rate Test K. Type B and C Leakage Rate Test Results i

.1 j SU-091/001/3 111 i

I f

5 I

1.0 INTRODUCTION

w Successful preoperational Integrated Leakage Rate (ILRT), Drywell Leakage Rate (DLT) and Drywell Bypass Leakage Rate (Bypass) Tests were conducted on the Clinton Power Station Unit 1 reactor containment building between December 28, 1985 and January 2. 1986.

These tests were performed to demonstrate that the contairaent leakage, drywell leakage and drywell bypass leakage rates do not exceed the allowable values specified in the Clinton Power Station Unit 1 FSAR (Reference 1) and Clinton Power Station Technical Specification (Reference 2).

The ILRT, DLT and Bypass tests were conducted in accordance with the requirements of the ILRT procedure (Reference 3), SIT and DLT, procedure (Reference 4) Appendix J to 10CFR50 (Reference 5), ANSI 56.8 (Reference 6), and BN-TOP-1 (Reference 7). Test pressures for the ILRT, DLT and Bypass tests were 9 psig, 30 psig and 3 psig respectively. Test results, which satisfied all acceptance criteria, are summarized below.

Test Results Allowable ILRT Mass Point Leakage Rate

  • 0.265%/ day 0.4875%/ day ILRT Mass Point UCL* ,

0.272%/ day 0.4875%/ day ILRT Total Time Leakage Rate

  • 0.282%/ day 0.4875%/ day ILRT Total Time UCL* 0.351%/ day 0.4875%/ day Verification Mass Point Rcte 0.830%/ day 0.703 to 1.028%/ day Verification Total Time Rate 0.826%/ day 0.719 to 1.044%/ day Drywell Leakage Rate 1,358 sefm 13,640 scfm Drywell Bypass Leakage Rate 273 scfm 4,312 scfm Note: UCL is 95% Upper Confidence Limit Includes penalties for nonstandard system alignment and water level changes (see section 4.2).

A suc=ary of the test events and test chronology are presented in Section 2.0, Test Synopsis. Plant information, technical data, test results, and measurement system information are presented in Section 3.0, Test Data Su==ary. Test results are compared to the acceptance criteria in Section 4.0, Analysis and Interpretation. Referenced documents are listed in Section 5.0, References.

SU-091/001/4 1

i

2.0 TEST SYNOPSIS I

Prior to performing the leakage rate tests, all pressure, temperature humidity, and flow sensors were calibrated and the temperature and humidity sensors installed in the drywell and containment at the

! locations tabulated in Table 1. An in-situ check was performed on ,

j all sensors per the requirements of ANSI /ANS 56.8 - 1981. Per the '

, requirements of the 10CFR50 Appendix J, the containment was isolated  ;

by aligning systems in specified post-accident mode, with the i i exceptions listed in Section 3.C.12.

Pressurization for the Dryvell SIT began at 2325 on December 27, 1985. The Drywell Leakage Rate Test was performed between 1553 and 2344 on December 28 at a test pressure of 30 psig. A drywell leakage rate of 1,358 scfm was calculated as the time weighted average of the leakage rates obtained during five pressure decay tests. The calculated leakage satisfied the acceptance criteria of being less j than 13,640 scfm. The data and pressure decay leakage rate j calculations are presented in Appendix I. Following the leakage rate 4

test, the drywell was depressurized.

The Containment SIT was performed from 1624 on December 29 to 0426 on December 31. Following the SIT the containment liner inspection indicated that no structural deterioration had occurred. Containment pressurization for the ILRT began at 1414 on December 31. Per the requirements of ANSI /ANS 56.8-1981 containment pressure was less than ,

i -s 85% of ILRT test pressure for at least 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to the start of l the ILRT.

l ILRT test pressure of 9 psig was reached at 1745 on December 31.

Following a 4.25 hour2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> stabilization period, a 9.25 hour2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> ILRT was I conducted from 2200 on December 31, 1985 to 0715 on January 1, 1986.

The mass point calculated leakage rate was 0.207 %/ day with an upper confidence limit of 0.214 %/ day. The total time calculated leakage rate was 0.282 %/ day with an upper confidence limit of 0.351 %/ day.

Both upper confidence limits were less than the allowable leakage rate of 0.4875 %/ day (75% cf La). The total time calculations i satisfied all short duration test requirements of BN-TOP-1 and the

mass point calculations satisfied all short duration test requirements of ANSI /ANS 56.8-1981.

i Due to instability in the readings of one of the two pressure sensors during the verification test, all leakage rates are calculated using only the stable pressure sensor. The instability on the one pressure sensors was due to verification flow across the sensing line.

The verification test was initiated at 0730 on January 1 by i

continuously venting 13.44 scfm (101% of La) of air from tha j containment through a flowmeter and allowing test conditions to  ;

stabilize for one hour. A 5-hour verification test was conducted from 0830 to 1330 on January 1. The mass point calculated and total i time calculated verification leakage rates of 0.830 %/ day and'O.826 4

%/ day, respectively, were within the required range to verify the

, performance of the ILRT instrumentation.

! SU-0091/001/5 2 i

i l

_ _ _ _ . _ . . . _ _ . - . . . . - . . _ . . _ , , _ _ __ . . _ . ._ _ _ _ _ _ _ _ , . . . _ , _ . _ ._, - _ . _ ,_ m , _, _ _ _ . . _

l During the ILRT verification stabilization period temperature sensors T 12 and 13 indicated respective temperature drops of 0.60 and 3.08 deg. F over a 15 minute data interval. Temperature versus time plots for sensors 12 and 13, and adjacent sensor 11 and 14 are included in Appendix F. Since temperature trends after the shift were consistent with the trends before the shift, the decision was made to continue to include the sensors in the leakage rate calculations.

, ILRT and verification leakage rates with sensors 12 and 13 deleted are presented in Appendix G for information only. The volume fractions for sensors 12 and 13 were reassigned to sensors 11 and 14, respectively. Air mass and leakage rate plots are also presented.

Following the verification test the drywell was depressurized to 3 psig and the containment to O psig. The Drywell Bypass Leakage Rate Test was performed between 2140 on January 1 and 0210 on January 2 at a test pressure of 3 psig. A drywell bypass leakage rate of 273 scfm was calculated as the time weighted average of the leakage rates obtained during the three pressure decay tests. The calculated leakage satisfied the acceptance criteria of being less than 4,312 scfm. The data and pressure decay leakage rate calculations are presented in Appendix I. Following the leakage rate test, the drywell was depressurized.

During containment entry following depressurization it was determined that the temperature shif ts indicated by temperature sensors 12 and 13 were caused by water leakage into the amphenol connectors of the two temperature sensors.

Subsequent to the ILRT a hole was discovered through the containment liner plate. The hole was identified on NCR-40031 and CR l-86-01-119. After repair the hole was retested utilizing a leak chase channel and bubbler per XTP-00-07. The retest showed zero leakage.

SU-0091/001/6 3

c o

3.0 TEST DATA

SUMMARY

A. Plant Information Owner: Illinois Power Company Docket No.: 50-460 Plant: Clinton Power Station, Unit 1 Location: Clinton, IL Containment Type: Mark III, BWR NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 2, 1986 B. Technical Data

1. Containment Free Air Volume
a. Drywell Free Air Volume 246,500 cu. ft.

(Normal weir wall water level, 731'-5")

b. Containment Less Drywell Volume 1,550,800 cu. ft.
c. Total Volume 1,797,300 cu. ft.
2. Containment Design Pressure 15 psig Containment Design Temperature 185*F
3. Peak Accident Pressure, Pa 9 psig Peak Accident Temperature 185'F
4. Containment ILRT Average 40-120*F Temperature Limits C. Test Results - Type A Test
1. Test Methcd Absolute I I l 4 2. Data Analysis Techniques Mass Point Leakage Rate l Per ANSI /ANS 56.8-1981; 1 Total Time Leakage Rate per BN-TOP-1
3. Test Pressure 9 psig
4. Maximum Allowable Leakage Rate, La 0.65%/ day l ,
5. 75% of L a 0.4875%/ day j l

SU-091/001/7 4

--a

6. Integrated Leakage Rate Test Results Leakage Rate UCL*

Mass Point Analysis 0.207 %/ day 0.214 %/ day Total Time Analysis 0.224 %/ day 0.293 %/ day

  • 95% Upper Confidence Limit
7. Imposed Verification Leakage Rate 0.658 %/ day (13.44* SCFM)
  • Average value during verification test.
8. Verification Test Results Leakage Rate, %/ day Mass Point Analysis 0.830 Total Time Analysis 0.826
9. Verification Test Limits: Test Limits, %/ day Mass Point Analysis Upper Limit (Lg+ Lam +0.25La ) 1.0275 Lower Limit (Lg&L am-0.25La ) 0.7025 Total Time Analysis Upper Limit (L +a Lam +0.25L,) 1.0445 Lower Limit (Lg+L am-0.25La) 0.7195
10. Report Printouts: -

The Report printouts and data plots for the ILRT and verification test calculations are provided in Appendices B through F.

11. Containment Water Volume Changes During The ILRT.

Drywell Equipment Drain Sump 10.13 cu. ft.**

Containment Floor Drain Sump 8.79 cu. ft.**

Containment Equipment Drain Sump 17.79 cu. ft.**

RPV O cu. ft.

Suppression Pool O cu. ft.

    • Change measured from 0 psig (start of pressurization) to O psig (end of depressurization).

l su-091/001/8 5 l

l

. . .- . .-. - .-- ..-- . - _ ~

12. Penetrations not in Post-LOCA Alignment during ILRT
a. The following penetrations have been repaired and local leak rate d

tested.

Penetration System Leakage Rate I

IMC-58 Instrument Air Relief Valve 4850 SCCM IMC-206 Instrument Air Relief Valve 3860 SCCM IMC-210 Post Accident Sample (3 of 5) 2.54 SCCM IMC-210 Post Accident Sample (4 of 5) 4.43 SCCM IMC-81 Fire Protection 2110 SCCM I b. The following penetrations were utilized during the ILRT and were

! retested subsequent to the ILRT.

. Penetration System Leakage Rate

, IMC-67 Containment Pressurization 81.43 SCCM 1MC-152(1) ILRT Instrumentation 4.0 SCCM f 1MC-152(2) ILRT Instrumentation 62.1 SCCM IMC-152(3) ILRT Instrumentation 6.75 SCCM

c. The following penetrations were not vented on the outboard side of the outboard isolation value.
Penetration System Leakage Rate 1MC-17 RHR C LPCI "C" Injection 40 SCCM i 1MC-35 HPCS Injection 56.8 SCCM j 1MC-36 LPCS Injection 506.6 SCCM i

The other ECCS system penetrations (RHR "A", "B", and RCIC) were not lined up in post LOCA configuraton. However, the outboard 1

portion of the system was drained and vented which is conservative.

SU-091/001/9 6 i

t s

- - , , , -..,-.c. ,, . - . . - , - , . y_.m .

,,y . v..... ,_-.<.r ,_. , ,r--m~, . - - --

D. Test Results - Drywell Leakage Rate Test

1. Test Method Absolute
2. Data Analysis Technique Pressure Decay per Procedure PTP-SIT-01, Appendix A
3. Test Pressure Drywell 30.0 psig Containment 0.0 psig
4. Maximum Allowable Leakage Rate 13,640 scfm
5. Calculated Leakage Rate 1,358 scfm
6. Report Printouts The report printouts for the Drywell Leakage Rate Test are ,

provided in Appendix I.

E. Test kesults - Drywell Bypass Leakage Rate Test

1. Test Method Absolute
2. Data Analysis Technique Pressure Decay per Procedure PTP-IL/DW-01, Data Sheet H -

r

3. Test Pressure Drywell 3.0 psig Containment 0.0 psig
4. Maximum Allowable Bypass l Leakage Rate 4,312 sefm
5. Calculated Bypass Leakage Rate 273 scfm
6. Report Printouts The report printouts for the Drywell Bypass Leakage Rate Test are provided in Appendix J.

F. Test Results - Type B and C A su= mary of preoperational local leakage rate test results is provided in Appendix K.

1 1

SU-091/001/10 7

C. Integrated Leakage Rate Measurement System Instrument (No. of Sensors) Descripton Date

1. Absolute Mensor Quartz Range: 0-30 psia Pressure Monometer Accuracy: 0.0036 psia (2)* Model No. 10100 Sensitivity: 0.0003 psia Repeatability: 0.0003 psia Calibration Date: 10/1/85
2. Drybulb Volumetric 100 ohm Range: 60-100*F Temperature Platinum RTD Accuracy:** 0.22*F (24) Type A Model 385 Sensitivity: 0.0l*F Repeatability: 0.Ol'F Calibration Date: 11/18/85
3. Relative Phys. Chem. Research Range: 10-100% R.H.

Humidity Accuracy: 2*F dew point (9) Sensitivity: 0.5*F dew point Repeatability: 0.1*F dew point i Calibration Date: 9/12/85

4. Flow Meter Brooks Range: 0-17 scfm (2) Model No. 316 Accuracy: 1% F.S.

Sensitivity: 1% F.S.

Repeatability: 1% F.S.

Calibration Date: 9/18/85 Only one absolute pressure sensor was used for ILRT calculations.

    • Accuracy is for the measurement system including the Fluke 2280B Data Logger used in the 3 wire accurate mode.

Drybulb and dewpoint temperature sensor locations and volume fractions are provided in Table 1.

The calculated ISG for the test is 0.032%/ day.

~\

l SU-091/001/ll 8 l

l

-r -

l TABLE 1 Drybulb and Relative Humidity Sensor Location and Volume Fractions DRYBULB TEMPERATURE Di' stance From itTD Elevation Feet Azimuth Degree Center, Feet Volume Sensor (to nearest ft) (to nearest deg) (to nearest ft) Fraction 1 895 3 25 0.070 2 900 180 25 0.070 3 867 95 31 0.070 4 868 272 31 0.070 5 854 0 31 0.046 6 851 180 40 0.046 l 7 842 0 0 0.046 8 839 92 40 0.046 9 839 273 44 0.046 10 811 6 47 0.010 11 815 317 50 0.046 12 814 120 43 0.046 l 13 788 55 46 0.041 l 14 789 225 55 0.041 <

l 15 763 136 53 0.041 16 764 316 53 0.042 17 744 50 54 0.042 18 745 223 53 0.042 19 785 0 25 0.033 20 772 123 30 0.033 21 749 185 23 0.033 22 735 268 23 0.033 23 726 203 1 0.004 24 814 359 9 0.003 RELATIVE HUMIDITY

  • 1 Humidity RID ** Elevation Azimuth Distance From Volume Sensor Sensor (s) *** Feet *** Degree *** Center, Feet Fraction 1 1,2,3,4 895 3 25 0.140 l 2 1,2,3,4 867 95 31 0.140 ,

3 5,6,7,8,9 852 180 31 0.116 l 4 5,6,7,8,9 838 273 44 0.116 5 11, 12 814 91 45 0.094 6 13, 14, 15, 16 789 225 55 0.128 7 16, 17, 18 744 50 54 0.128 8 19, 20, 21, 22 785 0 26 0.069 9 19, 20, 21, 22 749 185 23 0.069 Vapor Pressure = (% R.H.)(Saturation pressure at drybulb temperature)

DrybulbTe=perature=}]ptt{]hi T/ Ti = RTD Temperature

  • i = RfD Volume Fraction
      • Elevations and distances to nearest foot; azimuths to nearest degree.

SU-091/001/12 9 i

H. Information Retained at Plant The following information is available for review at the facility:

4

1. Access control procedures that were established to limit ingress j to containment during testing.
2. A listing of all containment penetrations, including penetration size and function.
3. A listing of nor=al operating instrumentation used during the leakage rate test.
4. A system lineup (at time of test), showing required valve positions and status of piping systems.
5. A continuous, sequential log of events from initial survey of-containment to restoration of all tested systems.
6. Documentation of instrumentation calibration and standards.
7. The working copies of test procedures that would include signature sign-off of procedural steps.  ;
8. The procedure and all dcta that would verify completion of local leakage testing (type B&C tests).
9. Computer printouts of Integrated Leakage Rate Test Data.
10. The Quality Assurance audit plan or checklist that was used to monitor ILRT with proper sign-offs.
11. A listing of all test exceptions.
12. Description of sensor malfunctions.

i 13. Descriptio.. of method of leak rate verification of instrument measuring system (superimposed leakage), with calibration information on flowmeters.

14. The P& ids of pertintnt systems penetrating the containment or affected by ILRT.

SU-091/001/13 10 i

-r-

, - - , , - . - - .g --.- , , . , , . . _ -

, -- w _,- .-n .- m ,

4.0 ANALYSIS AND INTERPRETATION 4.1 ILRT Test During the ILRT, the following penetrations were not in post-LOCA alignment. The penetrations together with their Type C leakage rates are given below:

Penetration System Leakage Rate 1MC-58 Instrument Air 4850 SCCM IMC-206 Instrument Air 3860 SCCM IMC-210 Post Accident Sample (3 of 5) 2.54* SCCM IMC-210 Post Accident Sample (4 of 5) 4.43* SCCM IMC-81 Fire Protection 2110 SCCM IMC-67 Containment Pressurization 81.43 SCCM

1MC-152(1) ILRT Instrumentation 4.0 SCCM IMC-152(2) ILRT Instrumentation 62.1 SCCM l 1MC-152(3) ILRT Instrumentation 6.75 SCCM IMC-17 RHR C LPCI "C" Injection 40 SCCM IMC-35 HPCS Injection 58.6 SCCM IMC-36 LPCS Injection 506.6 SCCM TOTAL 11584.65 SCCM (0.4091 SCFM) 1
  • New isolation valve ILRT Addition . (0.4091)(2400)(60)(23.9) %/ day (1,797,300)(14.7)

= 0.053%/ day The following containment water volume changes were measured during the ILRT.

Drywell Equipment Drain Sump 10.13 cu. ft.

Contair;=ent Floor Drain Sump 8.79 cu. ft.

Containment Equipment Drain Sump 17.79 cu. ft.

Total 36.71 cu. ft.

ILRT addition =

(36.71)(2400)  %/ day (1,797,300)(9.25)

= 0.005 %/ day

  • Based on conservative assumption that entire water volume change occured during the 9.25 hour2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> ILRT period.

SU-091/001/14 11

4.2 The total leakage rate correction for penetrations not in post-LOCA alignment and water volume changes is 0.058%/ day.

The calculated leakage rates during the ILRT were 0.207%/ day (mass point) and 0.224%/ day (total time). The calculated 95% upper confidence limits were 0.214%/ day (mass point) and 0.293%/ day (total time). Adding the total leakage rate correction for penetrations not in post-LOCA alignment and containment water volume changes yields the corrected leakage rates as follows:

Leakage Rates, %/ day Mass Point Total Time Leakage Rate UCL Leakage Rate' UCL ,

Calculated 0.207 0.214 0.224 0.293 Corrections 0.058 0.058 0.058 0.058 Corrected 0.265 0.272 0.282 0.351 Since the corrected 95% upper confidence limits for both mass point and total time are less than 0.75La (0.4875%/ day), the test results demonstrate that the leakage through the primary containment and systems and components penetrating primary containment does not exceed the allowable leakage rate specified in the Clinton Power

- Station, Unit 1, FSAR and Technical Specifications.

1 l

SU-091/001/15 12

5.0 REFERENCES

1. Clinton Power Station, FSAR.
2. Clinton Power Station, Technical Specifications.
3. Clinton Power Station, Preoperational Test Procedure PTP-IL/DW-01, Revision 1, Integrated Leak Rate Test.
4. Clinton Power Station, Preoperational Test Procedure PTP-SIT-01, R2 vision 1, Structural Integrity Test and Drywell Leakage Test.
5. Clinton Power Station Special Test Procedure XTP-IL-01, Rev. O,

! Performance Test of Containment Integrated Leakage Rate Test Data Acquisition System.

6. Code of Federal Regulations, Title 10, Part 50, Appendix J, Primary Reactor Containment Leakage Testing For Water Cooled I

Power Reactors.

7. ANSI /ANS 56.5-1981, Containment System Leakage Testing Requirements.
8. Bechtel Topical Report BN-TOP-1, Testing Criteria for Integrated  ;

Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants, Revision 1, 1972.

)  :

i j

I

\

l l

SU-091/001/16 13

APPENDIX A Bechtel ILRT Computer Program Summary m

SL'-091/A/l .

  • e i

APPENDIX A s

DESCRIPTION OF BECHTEL ILRT COMPUTER PROGRAM A. Program and Report Description

1. The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.

The program is used to compute leakage rate based on input values of time, free air volu=e, containment atmosphere total pressure, drybulb temperature. and dewpoint temperaturel (water vapor pressure).

Leakage rate is computed using the Absolute Method as defined in

ANSI /ANS 56.8-1981, " Containment - Sys tem Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Tes ting of Primary Containment Structures for Nuclear Power Plants".

The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational methods,

yielding three dif ferent report printouts.
2. In the firs t printout, the Total Time Report, leakage rate is con-puted from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time. These individually computed leakage rates are statistically averaged using linear re-gression by the sethod of least squares. The Total Time Method is the computational technique upon which the short duration test criteria of SN-TOP-1, Rev 1 " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear
Power Plant," are based.

1

3. The second printout is the Mass Point Report and is based on the 1

Mass Point Analysis Technique described in ANSI /ANS 56.8-1981, i

" Containment Sys tem Leakage Tes ting Requirements." The mass of dry i

air in the containment is computed at each data point (time) using

' che Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air. Contained mass j is " plotted" versus ti=e and a regression line is fit to the data {

3 using the method of least squares. Leakage rate is determined from )

i the statistically derived slope and intercep': of the regression line. '

l 4

The third printout, the Trend Report, is a summary of leakage rate values based on Total time ar.d Mass Point computations presented as a function of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.

l

5. The program is written in a high level language and is designed i l

for use on a micro-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae i DH-103 g,y 1

Relative Humidity sensors were used at Clinton 1

____ ,, ,,, . _ _ .-- - - -_- -- - - - -- - - - ~ ~ ~ - - ~

used for leakage rate computations, and program logic are provided in the following paragraphs.

B. Explanation of Program

! 1. The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.

l,

2. Information loaded into the program prior to or at the start of the test:
a. Number of containment atmosphere drybulb temperature sensors, i dewpoint temperature (water vapor pressure) sensors and pressure gages to be used in leakage rate computations for the specific test i

i b. Volume fractions assigned to each of the above sensors

c. Calibration data for above sensors a
d. Tes t title
e. Test pressure i f. Maximum allowable leakage rate at test pressure *
3. Data received from the data acquistion system during the test, and used to compute leakage rates :

, a. Ti=e and date

b. Containment at=osphere drybulb temperatures
c. Containment atmosphere pressure (s)
d. Containment atmosphere dewpoint tempe ratures I
e. Containment free air volume.

4 Af ter all data at a given time are received , a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option command) is printed.

j 5. If drybulb and dewpoint temperature sensors should fail during the

) test, the data from the sensor (s) are not used. The volume frac-

tions for the remaining sensors are recomputed and reloaded into
, the program for use in ensuing leakage rate computations.

4 DR-103 A-2 i

- ..._ ~ , , . . _ _ - .___ ,_ , _ , . ,_.__ _

.__ __. . .- _m ..

e. s C. Leakage Rate Formulae

! 1. Computation using the Total Time Method:

4 a. Measured leakage rate, from data:

PV1 t = W 1RT1 (1)

PVi i = WiRTi (2) 2400 (W1-W) i f L 1

=

(3) 1 att W1 1

Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:

1 2400 / TPV1ii t1 = 1 1- (4) a et ( TPVi1i

where, W,Wi 1 = Weight of contained mass of dry air at times ti and
ci respectively, lbs.

1 l T,Ti 1 =.Containcent atmosphere drybulb te=perature at times ti and ti respectively, 'R.

P,Pi 1 = Partial pressure of the dry air component of the con-tainment atmosphere at times ti and ti respectively, psia.

V,Vi 1 = Containment free air volu=e at ti es ti and ti respec-i tively, (constant or variable during the test), f tJ.

[

l ti, ti = Ti=e at 1st and ith data points respectively, hours.

i ati = Elapsed time from ti to ti, hours.

i R = Specific gas constant for air = $3.35 f t.lbf/lbm.*R.

1 Li = Measured leakage rate computed during time interval ti to ci, wt.7./ day.

In order to reduce truncation error, the computer 4 program uses the following equivalent formulation:

i

-2400 aWi )

j Li= j 3 ati W/

l I

J DH-103 ^~3 l

i

, , - .,,n- .,-- -. - - ~ - .-., - - . . . . , . . . , . -.,. ,

v.

r e where, i

i AWi Wi-W1 "I W1 apt AVt APi aVi ATt

! + + -

Pt V1 PVti T1 1

=

Ti

1+

Ii api =Pt-Pt AVi=Vi-V1 ATi=Ti-Tt 4

b. Calculated leakage rate from regression analysis, i

L = a + b ats (5) where:

f L = Calculated leakage rate, wt.%/ day, as determined from the regression line.

i

] a = (ILi - brati)/N .(6) i N( Li att) - (ELt )(Zatt) b= (7) j N(ratgA ) - (rati)d N = Number of data points N

I=E i=1

c. Calculated leakage rate at the 95% confidence level.

] L95 = a + b acN + S_ (8) i L where:

L95 = Calculated leakage rate at the 95% confidence level, we.%/ day, at elapsed time Atg.

I

{

DR-103 g,4 t

., 6 For atN < 24 S_ = to.025;N-2 [(ILt2 - arLt - brL atg)/(N-2)]1/2 i x [1 + t_+ (3g _3g)27 (9,)

L N (rat1 2 - (nati)2f3)ji/2 1

where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;

N-2 (N-2)-

For at3 > 24

. S =t 0 025;N-2 ((rtt 2 - arLt - brLi ati)/(N-2)]1/2 x [1 +(at3 - It)2/ (9b)

L N

(ratt 2 _ (g gi)2/N)]1/2 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where, t0 025;N-2 =

I (N-2)2 + 1.2209(N-2) - 1.5162 It = calculated leakage rate computed using equation (5) at total elapsed time att, */

. day.

__. Ziti at =

N t

2. Computation using the Mass Point Method
a. Contained mass of dry air from data:

4 Wi = 144 P1yg RTi (10) where:

All symbols are as previously defined.

b. Calculated leakage rate from regression analysis, W = a + b at b

i II = -2 400 - (11) a l

where:

l i II = Calculated leakage rate, wt.7./ day, as determined from the regression line.

)

l

.I DH-103 i A-5 '

. 6 a = (twi-bu t t)/N (12)

N(IW i ae1) - (IW 1 )(net) d N(U tt ) - (Ut i)2 att = Total elapsed time at time of ich' data point, hours N = Nu=ber of data points

Wt = Contained mass of dry air at i th data point, Ibe, as computed f roct equation (10).

N

E=E i=1 4 i

In order to reduce truncation error, the computer program uses the following equivalent formulation: -

1

{ AWi b 2

a= Wt 1 + (I E act )/N W1 W1

~ -

aW i AW t N (: att) - I Iat g Wt Wi b= Ng , ,

N(U t t ') - (E t i)' ,

), ,

s l AWi j waere, is as previously defined.

W1

c. Calculated leakage rate at the 95% confidence level.

-2400 595 = (b - Sb) (14) a where:

E95 = Calculated leakage rate at the 95% confidence level, we.%/ day.

4

0H-103 A-6 l

2 e

r e 1/2 SN Sb"C0 025;N-2 [NIAti d - (D t t)dl l/2 (15) where, t0 025;N-2 . 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602 (N-2)2 + 1.2209 (N-2) - 1.5162 1/2

'IlWg - (a + b a ti)]2 N-2 ri

= '4 ,

1 E6'Ji /W 1 )2 _ [g(3g i fg 1 ))2fg . .

N-2 s -

2 1/2

[ICaW 1 /Wt ) a et - E(aw t 1/W )(ni t )/N1 '

z IGet ) - (I a c )d/N t

s J

l l

l DH-103 A-7 l l

1 I

l l

P I

I

6 o -

~

f D. Program Logic x

1. The Bechtel ILRT computer program logic flow is controlled by a set of user options. The user options and a brief description of their associated f unction are presented below.

s OPTION COMMAND FUNCTION Af ter starting the program execution, the user either enters. the .name of the file containing previously entered data or initializes a new data file.

' ~

DATA Enables user to enter raw data. When CNe system requests values of time, volume, temperature, pressure and vapor pressure, the user enters the appropriate data.' Af ter completing the data entry, a summary is printed out. The user then verifies that the data were entered correctly. If errors are detected, the 4

user will then be given the opportunity to correct the l errors. After the user verifies that the. data were entered correctly, a Corrected Cata Summa ry Report of time , data, average temperature , ' partial pressure ' of dry air, and water vapor pressure is printed.

, ~

' TREND A Trend Report is printed.

i TOTAL A Total Time Report is printed.

t MASS A Mass Point Report is printed.

TERM Enabics user to sign-of f te=p'orarily or permanently.

All dataJ is su'v ed on a file for restarting.

CORR Enabigs u,s,er. ,to correct previously entered data.

LIST A Summary Data Report is printed.

READ Enables the computer to receive the next set of data from the data acquisition system directly.

PLOT Enables user to plot summary data, individual sensor data or air mass versus time.

DELETE Enables user to delete a data point.

INSERT Enables user to reinstate a previously deleted data point.

! VOLFRA Enables user to change volume fractions.

DH-103 A-8 1

o t OPTION COMMAND FUNCTION TIME Enables the user to specify the time interval for a report or plot.

VERF Enables the user to input imposed leakage rate and calculated ILRT leakage rates at start of verification test.

E. COMPUTER REPORT AND DATA PRINT 0LT MASS POINT REPCRT The Mass Point Report presents leakage rate data (wt%/ day) as deter-mined by the Mass Point Method. The " Calculated Leakage Rate" is the value deter =ined f rom the regression analysis. The " Containment Air Mass" values are the masses of dry air in the contain=ent (lbs).

These air casses, deter =ined from the Equation of State, are used in the regression analysis.

TOTAL TIME REPORT The Total Ti:.* Report presents data leakage rate (ut%/ day) as deter-sined by the Total Ti e Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The " Measured Leakage Rates" are the leakage rate values determined using Total Ti=e calcu-lations. These values of leakage race are used in the regression analysis.

TREND REPORT The Trend Report presents leakage rates as deter =ined by the Mass Point and Total Time =ethods in percent of the initial contained mass of dry air per day (wt%/ day), versus elapsed time (hours) and number of data points.

SLTdARY DATA REPORT The Su= mary Data report presents the actual data used to calculate leakage rates by the various =ethods described in the " Computer Program" )

section of this report. The six column headings are TIME, DATE, TEMP, PRESSURE, VPRS, and VOLUMI and contain data defined as follows:

1

1. TIMI: Time in 24-hour notations (hours and minutes).

l

2. DATE: Calendar date (month and day).
3. TEMP: Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).

DH-103 A-9

4. PRESSURE: Partial pressure of the dry air component of the con- ,

. tainment at:nosphere in absolute units (psia).

5. VPRS: Partial pressure of water vapor of the containment atsosphere in absolute units (psia).
6. VOLITME: Containment free air volume (cu. ft.).

1 l

l 9

1 l

DH-185 A-10

+ . ,

APPENDIX B ILRT StaM.lization Sumary Data SU-091/A/2 l

9

CLINTON ILRT TEMPERATURE STABILIZATION FROM A STARTING TIME AND DATE OF: 1745 1231 1985 TIME TEMP ANSI BN-TOP-1 (HOURS) ( R) AVE T AVE T DIFF AVE T (4 HRS) (1HR) (2 HRS)

.00 529.09

.25 527.78

.50 527.14

.75 526.78 1.00 526.57 1.25 526.41 1.50 526.29 1.75 526.21 2.00 526.11 -1.493 2.25 526.04 .869=

2.50 525.99 .576=

2.73 525.93 .424=

3.00 525.88 .345=

3.25 525.84 .283=

3.50 523.80 .247=

3.75 525.76 .224=

4.00 525.72 .842 .153 .69 .192=

4.25 525.69 .523 .152 .37= .178=

= INDICATES TEMPERATURE STADILI2ATION HAS BEEN SATISFIED -

. o APPENDIX C ILRT Summary Data e

SU-091/A/3

. . i I

i CLINTON ILRT

SUMMARY

DATA ALMAX = .650 VOLUME = 1797300.

TIME DATE TEMP PRES 5URE VPRS VOLUME i 2200 1231 525.687 23.6735 .3006 1797300.  !

2215 1231 525.653 23.6719 .3004 1797300.

2230 1231 525.627 23.6699 .3002 1797300.

2245 1231 525.604 23.6682 .3001 1797300.

2300 1231 525.570 23.6668 .3000 1797300.

2315 1231 525.548 23.6654 .2999 1797300.

2330 1231 525.518 23.6639 .2996 1797300.

2345 1231 525.504 23.6620 .2997 1797300.

O 101 525.463 23.6603 .2996 1797300.

15 101 525.442 23.6585 .2995 1797300.

30 101 525.410 23.6573 .2992 1797300.

45 101 525.401 23.6558 .2991 1797300.

100 101 525.385 23.6543 .2988 1797300.

115 101 525.376 23.6531 .2988 1797300.

130 101 525.367 23.6520 .2987 1797300.

145 101 525.358 23.6507 .2988 1797300.

200 101 525.344 23.6498 .2988 1797300.

215 101 525.347 23.6484 .2992 1797300.

230 101 525.336 23.6477 .2991 1797300.

245 101 525.327 23.6465 .2991 1797300.

300 101 525.304 23.6451 .2990 1797300.

315 101' 525.295 23.6443 .2988 1797300.

330 101 525.287 23.6435 .2987 1797300. '

345 101 525.270 23.6424 .2989 1797300.

400 101 525.264 23.6417 .2986 1797300.

415 101 525.250 23.6409 .2985 1797300.

430 101 525.237 23.6401 .2984 1797300.

445 101 525.235 23.6393 .2986 1797300.

500 101 525.224 23.6386 .2985 1797300.

515 101 525.214 23.6378 .2983 1797300.

530 101 525.201 23.6369 .2983 1797300.

545 101 525.195 23.6361 .2982 1797300. 1 600 101 525.185 23.6351 .2986 1797300. I 615 101 525.177 23.6342 .2983 1797300.

630 101 525.169 23.6337 .2982 1797300.

645 101 525.162 23.6327 .2982 1797300.

700 101 525.150 23.6320 .2981 1797300.

715 101 525.142 23.6309 .2983 1797300.

9

, _ _ _ _ . _ y. _ _ . ., , ... . _ _ . . _ , - , , . - , _ _ _ . _ _ _ _ _ _ _ . .,. ., _

e .

APPENDIX D ILRT Calculations Mass Point Analysis Total Time Analysis Trend Report e

I l

l l

SU-091/A/4 l

e .

CLINTON ILRT LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 2200 1231 1985 TEST DURATION: 9.25 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (LBM/HR) 2200 525.687 23.6735 .218466.

2215 525.653 23.6719 218466. .5 2.1 2230 525.627 23.6699 218458. 7.8 16.7 2245 525.604 23.6682 218452. 5.9 19.0 2300 525.570 23.6668 218453. .9 13.3 2315 525.548 23.6654 218449. 3.9 13.8 2330 525.518 23.6639 218448. 1.5 12.5 2345 525.504 23.6620 218436. 11.4 17.2 0 525.463 23.6603 218437. .7 14.7 15 525.442 23.6585 218430. 7.1 16.2 30 525.410 23.6573 218432. -2.0 13.8 45 525.401 23.6558 218422. 9.8 16.1 100 525.385 23.6543 218415. 7.5 17.3 115 525.376 23.6531 218408. 7.1 18.1 130 525.367 23.6520 218401. 6.9 18.8 145 525.358 23.6507 218393. 7.9 19.6 200 525.344 23.6498 218390. 2.9 19.2 215 525.347 23.6484 218376. 13.4 21.2 230 525.336 23.6477 218374. 2.5 20.6 245 525.327 23.6465 218367. 7.3 21.0 300 525.304 23.6451 218363. 3.3 20.6 315 525.295 23.6443 218360. 3.4 20.3 330 525.287 23.6435 218355. 4.4 20.2 345 525.270 23.6424 218332. 3.3 19.9 400 525.264 23.6417 218349. 3.1 19.6 415 525.250 23.6409 218348. 1.5 19.0 430 525.237 23.6401 218345. 2.3 18.6 ,

445 525.235 23.6393 218339. 6.6 18.9 500 525.224 23.6386 218336. 2.4 18.6 515 525.214 23.6378 218334. 2.6 18.3 530 525.201 23.6369 218330. 3.7 18.2 545 525.195 23.6361 218325. 4.6 18.2 600 525.185 23.6351 218321. 4.6 18.2 615 525.177 23.6342 218315. 5.7 18.3 630 525.169 23.6337 218314. 1.1 17.9 645 525.162 23.6327 218308. 5.7 18.1 700 525.150 23.6320 218306. 2.4 17.8 715 525.142 23.6309 218299. 6.7 18.1 FREE AIR VOLUME USED (CU. FT.) =1797300.

REGRESSION LINE INTERCEPT (LBM) = 218468. j SLOPE (LBM/HR) = -18.9 )

MAXIMUM ALLOWABLE LEAKAGE RATE = .650 754 OF MAXIMUM ALLOWABLE LEAKAGE RATE = .487 THE UPPER 95x CONFIDENCE LIMIT = .214 THE CALCULATED LEAKAGE RATE = .207 l

e .

CLINTON ILRT LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL TIME ANALYSIS i

TIME AND DATE AT START OF TEST: 2200 1231 1985 TEST DURATION: 9.25 HOURS TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE 2200 525.687 23.6735 2215 525.653 23.6719 .023 2230 525.627 23.6699 .183 2245 525.604 23.6682 .208 2300 525.570 23.6668 .146 2315 525.548 23.6654 .152 2330 525.518 23.6639 .137 2345 525.504 23.6620 .189 0 525.463 23.6603 .161 15 525.442 23.6585 .178 30 525.410 23.6573 .152 45 525.401 23.6558 .177 100 525.385 23.6543 .190 115 525.376 23.6531 .199 130 525.367 23.6520 .207 145 525.358 23.6507 .216 200 525.344 23.6498 .210 215 525.347 23.6484 .233 230 525.336 23.6477 .226 245 525.327 23.6465 .231 300 525.304 23.6451 .227 315 525.295 23.6443 .223 330 525.287 23.6435 .222 345 525.270 23.6424 .218 400 525.264 23.6417 .215 415 525.250 23.6409 .209 430 525.237 23.6401 .205 445 525.235 23.6393 .208 500 525.224 23.6386 .204 515 525.214 23.6378 .201 530 525~.201 23.6369 .200 545 525.195 23.6361 .200 600 525.185 23.6351 .200 615 525.177 23.6342 .201 630 525.169 23.6337 .197 645 525.162 23.6327 .199 700 525.150 23.6320 .196 715 525.142 23.6309 .199 l MEAN OF THE MEASURED LEAXAGE RATES = .193 MAXIMUM ALLOWABLE LEAKAGE RATE = .650 75** OF MAXIMUM ALLOWABLE LEAKAGE RATE = .487 '

THE UPPER 95x CONFIDENCE LIMIT = .293 I THE CALCULATED LEAKAGE RATE = .224

  • e CLINTON ILRT TREND REPORT TIME AND DATE AT START OF TEST: 2200 1231 1985 NO. END TOTAL TIME ANALYSIS MASS POINT ANALYSIS PTS TIME MEAS. CALCULATED UCL CALCULATED UCL 4 2245 .208 .231 .766 .222 .360 5 2300 .146 .200 .596 .177 .265 6 2315 .152 .187 .465 .164 .219 7 2330 .137 .171 .397 .149 .189 8 2345 .189 .186 .371 .172 .210 9 0 .161 .183 .345 .169 .198 10 15 .178 .187 .331 .175 .199 11 30 .152 .180 .314 .167 .188 12 45 .177 .183 .306 .172 .190 13 100 .190 .189 .303 .180 .198 14 115 .199 .196 .302 .189 .207 15 130 .207 .203 .303 .198 .216 16 145 .216 .211 .306 .207 .225 17 200 .210 .215 .306 .212 .228 18 215 .233 .224 .310 .222 .239 19 230 .226 .229 .312 .227 .244 20 245 .231 .234 .314 .232 .248 21 300 .227 .238 .315 .235 .250 22 315 .223 .240 .315 .236 .249 23 330 .222 .242 .315 .236 .248 24 345 .218 .242 .315 .236 .247 25 400 .215 .242 .314 .234 .245 26 415 .209 .241 .313 .232 .242 27 430 .205 .239 .312 .229 .238 28 445 .208 .238 .310 .227 .236 29 500 .204 .237 .309 .224 .233 30 515 .201 .235 .307 .222 .230 31 530 .200 .234 .305 .219 .227 32 545 .200 .232 .304 .217 .225 33 600 .200 .230 .302 .215 .223 34 615 .201 .229 .300 .213 .221 35 630 .197 .228 .298 .211 .219 36 645 .199 .226 .297 .210 .217 37 700 .196 .225 .295 .208 .215 38 715 .199 .224 .293 .207 .214

O o APPENDIX E Verification Test Summary Data Mass Point Analysis Total Time Analysis i

l SU-091/A/S

o &

CLINTON ILRT

SUMMARY

DATA ALMAX = .650 VOLUME = 1797300.

TIME DATE TEMP PRESSURE VPRS VOLUME 730 101 525.140 23.6293 .2980 1797300.

( 745 101 525.136 23.6272 .2980 1797300.

J 800 101 525.128 23.6248 .2980 1797300.

815 101 524.961 23.6235 .2965 1797300.

830 101 524.959 23.6217 .2965 1797300.

845 101 524.951 23.6193 .2964 1797300.

900 101 524.943 23.6168 .2965 1797300.

915 101 524.937 23.6145 .2965 1797300.

930 101 524.925 23.6117 .2968 1797300.

945 101 524.925 23.6094 .2967 1797300.

1000 101 524.916 23.6069 .2967 1797300.

1015 101 524.911 23.6049 .2966 1797300.

1030 101 524.899 23.6026 .2965 1797300.

1045 101 524.896 23.6001 .2965 1797300.

1100 101 524.884 23.5981 .2961 1797300.

1115 101 524.870 23.5961 .2960 1797300.

1130 101 524.865 23.5938 .2958 1797300.

1145 101 524.867 23.5916 .2960 1797300.

1200 101 524.867 23.5892 .2959 1797300.

1215 101 524.861 23.5866 .2961 1797300.

1230 101 524.850 23.5846 .2960 1797300. .

1245 101 524.851 23.5821 .2960 1797300.

1300 101 524.847 23.5795 .2962 1797300.

1315 101 524.848 23.5770 .2963 1797300.

1330 101 524.840 23.5748 .2963 1797300.

A a CLINTON ILRT l LEAKAGE RATE (WEIGHT PERCENT / DAY) l MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 330 101 1985 TEST DURATION: 5.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (LBM/HR) l

- - - - - - - - - - _ - _ . = = = = _ = - - - - - - - - - - - - - - - - - - - - - - - - . _ _ - - - - - - - - - - - - - -

830 524.959 23.6217 218291. .

845 524.951 23.6193 218272. 18.5 74.0 900 524.943 23.6168 218252. 19.8 76.6 915 524.937 23.6145 218233. 19.3 76.7 930 524.925 23.6117 218213. 20.3 77.9 945 524.925 23.6094 218191. 21.8 79.7 1000 524.916 23.6069 218172. 18.9 79.0 1015 524.911 23.6049 218155. 16.7 77.3 1030 524.899 23.6026 218139. 16.4 75.8 1045 524.896 23.6001 218117. 21.7 77.0 1100 524.884 23.5981 218104. 13.6 74.8 1115 524.870 23.5961 218091. 12.2 72.4 1130 524.865 23.5938 218072. 19.4 72.8 1145 524.867 23.5916 218051. 21.4 73.8 1200 524.867 23.5892 218029. 22.0 74.8 1215 524.861 23.5866 218007. 21.3 75.5 1230 524.850 23.5846- 217993. 14.1 74.3 1245 524.851 23.5821 217970. 23.5 75.5 1300 524.847 23.5795 217947. 22.4 76.3 1315 524.848 23.5770 217924 23.8 77.3 1330 524.840 23.5748 217906. 17.0 76.8 FREE AIR VOLUME USED (CU. FT.) =1797300.

REGRESSION LINE INTERCEPT (LBM) = 218290.

SLOPE (LBM/HR) = -75.5 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.028 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = .703 THE CALCULATED LEAKAGE RATE = .830 X

o .

CLINTON ILRT' LEAKAGE RATE (WEIGHT PERCENT / DAY)

~. TOTAL TIME ANALYSIS TIME AND DATE AT START OF TEST: 830 101 1985 TEST DURATION: 5.00 HOURS l

l TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE 830 524.959 23.6217 845 524.951 23.6193 .813 900 524.943 23.6168 .842 915 524.937 23.6145 .844 930 524.925 23.6117 .856 945 524.925 23.6094 .875 1000 524.916 23.6069 .869 1015 524.911 23.6049 .850 1030 524.899 23.6026 ,.834 1045 524.896 23.6001 .847 1100 524.884 23.5981 .822 1115 524.870 23.5961 .796 1130 524.865 23.5938 .801 1145 524.867 23.5916 .812 1200 524.867 23.5892 .823 1215 524.861 23.5866 .830 1230 524.'850 23.5846 .817 1245 524.851 23.5821 .830 1300 524.847 23.5795 .838 1315 524.848 23.5770 .849 1330 524.840 23.5748 .844 MEAN CF THE MEASURED LEAKAGE RATES = .835 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.044 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = .719 THE CALCULATED LEAKAGE. RATE = .826 1

l

~

e

-, n,- ---- - - - - - - - >- - - .

wwww . www, w .u--r ---

0 9 s

APPENDIX F Plots e

i SU-091/A/6 i

f i

a o Stabilization, ILRT and Verification Air Mass Temperature Pre ssure Vapor Pressure l

SU-091/A/7

CLINTON ILRT AIRMASS LBM X 1000

~

218.56 ~

. ILRT ,_, VERIFICATION STABILIZATION 218,39 l

\ s., STABILIZATION STABILIZATION 218.21 O.75 ta Ns N 218.94 N s 217.86

\

217.69 . . . . . . . . . . . . . . ....

1745 1231 1330 101 CLINTON ILRT TEMPERATURE DEGREES F 70.000 69.000 I

68.000 67.000 'k N.

66.090

._.__--~

65.000 . . . . . . . . . . . . . .  ?.. ..

1745 1231 1330 101

c ,

CLINTON ILRT '

PRESSURE PSIA (DRV AIR) 23.800 23.75'O 23.700

' \s ~,,

. '~,

~ ._w 23.650 23.600 5 23.550 . . . . . . . . . . . . . . . . . . . .

1745 1231 1330 101 i

CLINTON ILRT UAPOR PRESSURE PSIA

.330

.320

.310

.300 - -

~~~~

3 .

' I

.290

.280 . . . . . . . . . . . . . . . . . . . .

1745 1231 1330 101 1

l

o e ILRT Air Mass Mass Point Leakage Rate ard UCL Total Time Leakage Rate and UCL SU-091/A/8

CLINTON ILRT AIRMASS LBM X 1000 .

I 218.50 218.49 N,.

-, Regression Line 218,3G 218.20 N

218.10 218.00 . . . . . . . . .

I 2200 1231 715 101 i CLINTON ILRT MASS POINT LEAXAGE RATE AND UCL - z/ DAY

.750 '

.600 0.75 La I

.450 4

.300

\ ^

Q

.150

.000 I . . . . . . . . .

2200 1231 715 101 j

1

- . j l

RT kT${0fIMELEARAGERATEANDUCL~ypppy ,

)

i

.750 l

. 1

.600 /

0.75 L" I

.45e A

.300

.159 i

.eee i ' ' ' - , , ' '

2200 l231 15 1g1 l l

. 1 I

9

6 #

l l

I Verification Air Mass Mass Point Leakage Rate Total Time Leakage Rate SU-091/A/9

4 CLINTON ILRT (verification)

AIRMASS LBM X 1000 218.30

. s 218.20 s s,

- s pper Limit

  • 218.10 -

Regression Line -

218.90 Lower Limit * - ,

- I 217.90 N

-

  • Limit on Regression Line i 217.80 . . . . .

830 101 1330 101 CLINTON ILRT (vertricatien)

MASS POINT LEAXAGE RATE - x/ DAY 1.500 1.300 1.100 UPPER LU!IT*

.900 - - - - , _

.700 LOWER LDf1T*

  • Limit on Leakage Rate 830 101 1330 101

CLINTON ILRT (vertrication)

TOTAL TIME LEAEAGE RATE - X/ DAY 1.500 1.300 1.100 ureER tutIT*

.900 - -

LOTIER LIMIT *

  • LIMIT ON LEAKAGE RATE

.500 . . . . .

830 101 1338 101

- l l

- m Temperature Sensors RID 12 RTD 13 RTD 11 RTD 14 SU-091/A/10

CLINTON ILRT TEMPERATURE SENSOR 12 DEGREES F 65.500 \

65.000 .,\w 64.500 64.000 63.500 63.000 . . . . . . . . . . . . . . .

2200 1231 1330 101 CLINTON ILRT '

TEMPERATURE SENSOR 13 DEGREES F 67.000 N __

66.000 ___

65.000 I .

l '

! 64.000 63.000

~ __ ..

62.000 . . . . . . . . . . . . . . .

2200 1231 1330 1 01

' O CLINTON ILRT TEMPERATURE SENSOR 11 DEGREES F 66.500 66.000 65.500

/~ '\.r-+.,,

65.000 vvv 64.500 64.000 . . . . . . . . . . . . . . .

2200 1231 1330 101 CLINTON ILRT TEMPERATURE SENSOR 14 DEGREES F 66.500 66.000 65.500 N_ _

s_._

p ,

65.000 64.500 64.000 . . . . . . . . . . . . . .

2200 1231 1330 101

__ _. - - _ . _ - - . . _ . - _ _ , _ _ . _ . . . -_ _._s... , - _ - . , _ - . .

a .

Appendix G ILRT Calculations and Plots with Temperature Sensors 12 and 13 Deleted l

\

SU-091/A/11

e .

s CLINTON ILRT (RID'S 12 AND 13 DELETED)

LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 2200 1231 1985 TEST DURATION: 9.25 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (LBM/HR) 2200 525.656 23.6738 218482.

2215 525.622 23.6722 218481. .8 3.4 2230 525.595 23.6702 218474. 7.0 15.6 2245 525.574 23.6685 218467. 7.3 20.1 2300 525.538 23.6671 218469. -2.4 12.7 2315 525.513 23.6657 218466. 2.9 12.5 2330 525.482 23.6642 218465. .9 11.0 2345 525.466 23.6623 218475. 10.3 15.3 0 525.431 23.6605 218453. 2.3 14.6 15 525.410 23.6588 218446. 6.8 16.0 30 525.379 23.6576 218447. -1.3 13.9 45 525.373 23.6560 218435. 11.8 16.9 100 525.363 23.6545 218425. 10.0 18.8 115 525.357 23.6533 218417. 8.8 20.1 130 525.351 23.6521 218408. 8.5 21.1 145 525.343 23.6508 218400. 8.5 21.9 200 525.330 23.6499 218397. 3.1 21.3 215 525.336 23.6485 218381. 15.5 23.7 230 525.326 23.6477 218378. 2.9 23.1

( +

245 525.318 23.6465 218371. 7.2 23.4 300 525.291 23.6452 218369. 1.4 22.5 qg5 525.287 23.6443 218363. 6.4 22.6 330 '525.279 23.6435 218359. 3.9 22.3 345 525.262 23.6424 218356. 3.5 4 22.0 400 525.257 23.6418 218352. 3.6 21.6 415 525.246 23.6409 218349. 3.3 21.3 430 525.234 23.6401

  • 218347. 2.2 20.8 445 525.233 23.6393 218340. 7.1 21.1 500 525.224 23.6385 218336, 3.7 20.9 515 525.213 23.6378 218334. 2.2 20.5 530 525.204 23.6368 218328. 5.0 20.5 545 525.196 23.6360 218325. 3.8 20.3 600 525.188 23.6351 218319. 5.8 20.4 615 525.180 23.6341 218313. 5.5 20.4 630 525.174 23.6336 218311. 2.3 20.1 645 525.165 23.6327 218306. 5.0 20.1 700 525.151 23.6319 218305. .9 19.6 715 525.148 23.6308 218296. 9.2 20.1 FREE AIR VOLUME USED (CU. FT.) =1797300.

REGRESSION LINE INTERCEPT (LBM) = 218486.

SLOPE (LBM/HR) = -21.3 MAXIMUM ALLOWABLE LEAXAGE RATE = .650 754 OF MAXIMUM ALLOWABLE LEAKAGE RATE = .487 THE UPPER 95x CONFIDENCE LIMIT = .243 THE CALCULATED LEAKAGE RATE = .235

  • a l l

l CLINTON ILRT (RTD'S 12 AND 13 DELETED)

LEAKAGE RATE (WEIGHT PERCENT / DAY)

TOTAL TIME ANALYSIS i TIME AND DATE AT START OF TEST: 2200 1231 1985 TEST DURATION: 9.25 HOURS TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE 2200 525.656 23.6738 2215 525.622 23.6722 .037 2230 525.595 23.6702 .171 2245 525.574 23.6685 .221 2300 525.538 23.6671 .140 2315 525.513 23.6657 .137 2330 525.482 23.6642 .121 2345 525.466 23.6623 .168 O 525.431 23.6605 .160  ;

15 525.410 23.6588 .175

~

30 525.379 23.6576 .152 45 525.373 23.6560 .186 100 525.363 23.6545 .207 115 525.357 23.6533 .221 130 525.351 23.6521 .231 145 525.343 23.6508 .241 200 525.330 23.6499 .234 215 525.336 23.6485 .261 '

l 230 525.326 23.6477 .253

,  ! 245 525.318 23.6465 .257 300 525.291 23.6452 .247 315 525.287 23.6443 .249 330 525.279 23.6435 .245 345 525.262 23.6424 .241 400 525.257 23.6418 .238 415 525.246 23.6409 .234 430 525.234 -

23.6401 .229 445 525.233 23.6393 .232 500 525.224 23.6385 .229 515 525.213 23.6378 .225 530 525.204 23.6368 .225 545 525.196 23.6360 .223 l 600 525.188 23.6351 .224 )

615 525.180 23.6341 .224 630 525.174 23.6336 .221 645 525.165 23.6327 .221 700 525.151 23.6319 .216 l 715 525.148 23.6308 .221 MEAN OF THE MEASURED LEAKAGE RATES = .209 MAXIMUM ALLOWABLE LEAKAGE RATE = .650 75M OF MAXIMUM ALLOWABLE LEAKAGE RATE = .487 THE UPPER 954 CONFIDENCE LIMIT = . .335 THE CALCULATED LEAKAGE RATE =- .256 t

I s CLINTON ILRT (RTD's 12 and 13 deleted)

LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS POINT ANALYSIS TIME AND DATE AT START OF TEST: 830 101 1985 TEST DURATION: 5.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS AVERAGE MASS (R) (PSIA) MASS (LBM) (LBM) LOSS (mBM/HR) 830 525.121 23.6203 218210.

845 525.115 23.6179 218191. 19.1 76.4 900 525.109 23.6154 218170. 21.2 80.5 915 525.104 23.6130 218150. 20.0 80.4 930 525.091 23.6103 218130. 19.9 80.2 945 525.090 23.6080 218109. 20.7 80.7 1000 525.084 23.6054 218088. 21.0 81.3 1015 525.085 23.6033 218068. 19.7 80.9 1030 525.065 23.6011 218056. 11.9 76.8 1045 525.064 23.5987 218034. 22.5 78.2 1100 525.054 23.5966 218020. 14.5 76.2 1115 525.036 23.5947 218009. 10.4 73.0 1130 525.036 23.5923 217988. 21.7 74.2 1145 525.036 23.5901 217967. 20.7 74.8 1200 525.035 23.5877 217945. 21.6 75.7

. 1215 525.029 23.5852 217924. 21.3 76.3 1230 525.020 23.5831 217909. 15.0 75.3 ,

1245 525.018 23.5807 217887. 21.8 76.0 1300 525.013 23.5781 217865. 22.3 76.7 1315 525.013 23.5755 217842. 23.3 77.6 1330 525.008 23.5733 217823. 18.2 77.3 FREE AIR VOLUME USED (CU. FT.) =1797300.

REGRESSION LINE

  • INTERCEPT (LBM) *

= 218208.

SLOPE (LBM/HR) = -75.8 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.055 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = .730 THE CALCULATED LEAKAGE RATE = .833 i

i O

,m----.

,. , , - , , -.e-. ,, -

-- n

e .

CLINTON ILRT (RTD's 12 and 13 deleted)

LEAKAGE RATE (WEIGHT PERCENT / DAY)

. TOTAL TIME ANALYSIS TIME AND DATE AT START OF TEST: 830 101 1985 TEST DURATION: 5.00 HOURS TIME TEMP PRESSURE MEASURED (R) (PSIA) LEAKAGE RATE

_ _ _ _ _______ _ _ _ .-= _______________

830 525.121 23.6203 845 525.125 23.6179 .841 900 525.109 23.6154 .886 915 525.104 23.6130 .884 930 525.091 23.6103 .882 945 525.090 23.6080 .888 '

1000 525.084 23.6054 .894 1015 525.085 23.6033 .890 1030 525.065 23.6011 .845 1045 525.064 23.5987 .861 1100 525.054 23.5966 .838 1115 525.036 23.5947 .803 1130 525.036 23.5923 .816 1145 525.036 23.5901 .823 1200 525.035 23.5877 .832 1215 525.029 23.5852 .839 1230 525.020 23.5831 .828 1245 525.018 23.5807 .836 1300 525.013 23.5781 .844 1315 525.013 23.5755 .853 1330 525.008 23.5733 .851 MEAN OF THE MEASURED LEAKAGE RATES = .852 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT = 1.076 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT = .751 THE CALCULATED LEAKAGE RATE = .827 l

  • 6 CLINTON ILRT (RTD's 12 and 13 deleted)

AIRMASS LBM X 1000 218.50

' \s m.

~\.

Regression Line 218.49

.\ ,

' N -

218.3g -

.75 L,

,'N.

218.20

\

218.10 218.00 . . . . . . . . .

2200 1231 715 101 CLI NTON I LRT (RTD's 12 and 13 deleted)

MASS POINT LEAMAGE RATE AND UCL - X/ DAY

.750 i

.600 0.75 L a

.450 g .

("._

.000 . . . . . . . . .

2200 1231 715 101

CLINTON ILRT (RTD's 12 and 13 deleted)

TOTAL TIME LEANAGE RATE AND UCL - x/ DAY

.759

.600 .

0.75 L a k

.459

\

\ - -

.3OO _ ___.

l _

.150

.999 . . . . . . . . .

2200 1231 715 101 CLINTON ILRT (verification - aro's 12 and 13 deleted)

AIRMASS.LBM X 1999

. . . v -

218.15 s N

- Upper Limit

  • N, w 218.95

\s% g~~k. '~~~' -

Q- egression Line

\s\ \ ~

217.95

. ,"N .~'

Lower Limit * - ,\ ~.

217.85

\

  • Limit on Regression Line -

217.75 . . . . Ds.

830 101 1330 101 4

o

.4- _m., - - - . - - _ _ _ , _ _ , , _ _ . - , , -

,,77 y 9 -,,---e __-__,,-.,-_._,__.,,..-,--,..-,eg.<v,-, 9---e .way-

CLINTON ILRT (verificaeton - ara's 12 ana 13 aetetea)

MASS POINT LEAXAGE RATE -X/ DAY 1.500 l

1.300 Upper Limit *

~

.900 w_

.700 Lower timit*

  • Limit on Leakage Rate g

830 101 1330 101 1

CLINTON ILRT (verification - aro's 12 and 13 deletea)

TOTAL TIME LEAHAGE RATE - X/ DAY 1.500 I l

1 1.300 .

Upper Limit

  • 1.100

.900 -x

.700 tower timit* l 1

  • Limit on Leakage Rate l

830 101 1330 101 l l

a .

l Appendix H Instrument Selection Guide Calculations SU-091/A/12

s ISG CALCULATION

( ANSI /ANS 56.8 - 1981 )

- - - - - - - - - - = - - - - - - ------=- ==_____________-- --=-----=

CALIBRATION DATA

  1. OF SENSORS SENSITIVITY (E) REPEATABILITY (r)

TEMPERATURE (T) 2h 0.0100 deg. F 0.0100 deg. F PRESSURE (P) 1 0.0003 psia 0.0003 psia VAPOR PRESS (Pv) 9 0.5000 deg. F 0.1000 deg. F Length of Test (t) 9.25 hrs Test Pressure (P) 9.27 psig ==> 23.97 psia From Steam Table 0.01065 psi /deg. P (at 65 deg. F)

La 0.6500 vt%/ day

<- - --- a INSTRUMENT MEASURDEiT ERRORS 2 2 1/2 1/2 eT = [(ET) + (rT) } /[# of sensors]

eT = 0.0029 deg. F 2 2 1/2 1/2 eP = [(EP) + (rP) ] /[# of sensors]

eP = 0.000h psia 1 2 2 1/2 1/2 ePt= [(EPr) + (rPt) ) /[# of sensors]

ePv r 0.0018 psia INSTRUXENT SELECTION GUIDE 2 2 2 1/2 ISG = 2h00/t[ 2(eP/P) + 2(ePv/P) + 2(eT/T) }

ISG = 0.0285 vt%/ day 25% of La 0.1625 vt%/ day

============================================================

- - . . ,. . _, ,,, , - . - . .. , , . , , - .n . - - -, .

e .

t Appendix I Drywell Leakage Rate Test i

l l

l 1

X SU-091/A/13

t ,

.DRYWELL LEAKAGE RATE TEST (DWLT1) -- DECEMBER 28, 1985 START 15:53 END : 16:44 t (HRS) : 0.850 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE 33==E==3===E3 333333333333333333333E3=E33333333B=3E=E 5353=E333SEE=3 INITIAL TEMPERATURE Ti VFi Ti X VFi T19 = 69.67 0.033 2.29911 T20 = 68.34 0.033 2.25522 T21 = 67.22 0.033 2.21826 T22 = 66.83 0.033 2.20539 T23 = 66.10 0.004 0.26440 T24 = 67.92 0.003 0.20376 l

SUMS ==> VFi = 0.139 Ti X VFi = 9.44614 WT AVG T1 = 527.96 DEG R OR 67.96 DEF F

========================================================

FINAL TEMPERATURE Ti VFi Ti X VFi T19 = 68.04 0.033 2.24532 T20 = 67.20 0.033 2.21760 T21 = 66.52 0.033 2.19516 T22 = 66.06 0.033 2.17998 T23 = 65.22 0.004 0.26088 T24 = 67.00 0.003 0.20100 SUMS ==> VF1 = 0.139 Ti X VFi = 9.29994 WT AVG T2 = 526.91 DEG R OR 66.91 DEF F

=====33 32333333333333333333333333553333535E3333E333333==3233==55 3B II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2)

=E3E3E23===EEB333333333333333333333343333333333333E33E33M53==33E=3 INITIAL FINAL P1 = 43.640 (COUNTS) P2 = 39.401 (COUNTS)

M = 1.0039353 M = 1.0008608 C= -0.0103 C= 0.1122 i P1 = 43.801436 P2 = 39.547116

..E..==..===============. ====.=============.... .======. =.======== ,

I III. DRYWELL LEAKAGE RATE CALCULATION j

===========E======================================================== '

LL = (P1 / T1 - P2 / T2) X ( V Ta / 60 t Ps) ,

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T) i 1

l LL = 1373.0 SCFM <====

============d================,======......... 3,,,,,,,,,,,,,,,g,,,,,

i l

i 1

t .

DRYWELL LEAKAGE RATE TEST (DWLT2) -- DECEMBER 28, 1985 START 17:37 END : 18:42 t (HRS) : 1.083 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE

========================================================

INITIAL TEMPERATURE Ti VFi Ti X VFi T19 = 72.48 0.033 2.39184 T2O = 70.58 0.033 2.32914 T21 = 69.16 0.033 2.28228 T22 = 68.38 0.033 2.25654 T23 = 68.85 0.004 0.27540 T24 = 71.13 0.003 0.21339 SUMS ==> VFi = 0.139 Ti X VF1 = 9.74859 WT AVG T1 = 530.13 DEG R OR 70.13 DEF F

========================================================

FINAL TEMPERATURE T1 VFi Ti X VFi T19 = 67.94 0.033 2.24202 T20 = 67.11 0.033 2.21463 T21 = 66.46 0.033 2.19318 T22 = 66.03 0.033 2.17899 T23 = 65.15 0.004 0.26060 T24 = 67.04 0.003 0.20112 SUMS ==> VFi = 0.139 Ti X VFi = 9.29054 WT AVG T2 = 526.84 DEG R OR 66.84 DEF F

========================i===============================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2)

========================================================

INITIAL FINAL P1 = 44.777 (COUNTS) P2 = 39.229 (COUNTS)

M = 1.0039353 M = 1.0008608 C= -0.0103 C = 0.1122 P1 = 44.942910 P2 = 39.374968

========================================================

l III. DRYWELL LEAKAGE RATE CALCULATION

==================================================================== l LL = (P1 / T1 - P2 / T2) X ( V Ts / 60 t Ps)

LL = (P1 / T1 -

P2 / T2) X ( 130,152,000 / 882 T) ,

1 LL = 1367.8 SCFM <====

========================================================

l l

l

_ _ .r- - -

r- ,

DRYWELL LEAKAGE RATE TEST (DWLT3) -- DECEMBER 28, 1985 START 19:28 END : 20:32 t (HRS) : 1.067 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE

=E==E==mEEE=EEmmamana33333333ER=manaas=Emamm=333mmm3=a=33==3mm=3333a INITIAL TEMPERATURE Ti VFi T1 X VFi T19 = 72.63 0.033 2.39679 T20 = 70.57 0.033 2.32881 T21 = 69.19 0.033 2.28327 T22 = 68.52 0.033 2.26116 T23 = 68.78 0.004 0.27512 T24 = 71.35 0.003 0.21405 SUMS ==> VF1 = 0.139 Ti X VFi = 9.7592 WT AVG T1 = 530.21 DEG R OR 70.21 DEF F

================..==========...................============== ......

FINAL TEMPERATURE Ti VF1 Ti X VFi T19 = 67.91 0.033 2.24103 T20 = 67.04 -

0.033 2.21232 T21 = 66.42 0.033 2.19186 T22 = 65.97 0.033 2.17701 T23 = 65.10 0.004 0.26040 T24 = 66.88 0.003 0.20064 SUMS ==> VFi = 0.139 Ti X VFi = 9.28326 WT AVG T2 = 326.79 DEG R OR 66.79 DEF F

==============- ========a========.....==================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2) 323==B===33S==E33333333B=333333333333333333B==E====33E==3E33 33EEBB=

INITIAL FINAL P1 = 44.755 (COUNTS) P2 = 39.266 (CQUNTS) l M = 1.0039353 M = 1.0008608 C = -0.0103 C = 0.1122 P1 = 44.920824 P2 = 39.412000 l

........................=...........................................  !

III. DRYWELL LEAKAGE RATE CALCULATION

=............========........===========================

LL = (P1 / T1 - P2 / T2) X ( V Ta / 60 t Ps)

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T)

LL = 1370.1 SCFM <==== 1 1

szammass=s ssanss=s====s-s-s.sss= mas m.assmamm== sass nssammassmas=

j i

c s DRYWELL LEAKAGE RATE TEST (DWLT4) -- DECEMBER 28, 1985 START 21:15 END : 22:02 t (HRS) : 0.783 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE

========================================================

INITIAL TEMPERATURE Ti VFi T1 X VFi T19 = 71.54 0.033 2.36082 T20 = 69.54 0.033 2.29482 T21 = 68.43 0.033 2.25819 T22 = 68.06 0.033 2.2459E T23 = 67.78 0.004 0.27112 T24 = 70.02 0.003 0.21006 SUMS ==> VFi = 0.139 Ti X VF1 = 9.64099 WT AVG T1 = 529.36 DEG R OR 69.36 DEF F

========================================================

FINAL TEMPERATURE Ti VFi Ti X VFi T19 = 67.95 0.033 2.24235 TOO = 67.09 0.033 2.21397 T21 = 66.48 0.033 2.19384 -

, T22 = 66.08 0.033 2.18064 T23 = 65.19 0.004 0.26076 T24 = 67.00 0.003 0.20100 SUMS ==> VFi = 0.139 Ti X VFi = 9.29256 WT AVG T2 = 526.85 DEG R OR 66.85 DEF F

========================================================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2)

========================================================

INITIAL FINAL P1 = 44.225 (COUNTS) P2 = 40.217 (COUNTS)

M= 1.0039353 M = 1.0039353 C= -0.0103 C= -0.0103 P1 = 44.388738 P2 = 40.364965

========================================================

III. DRYWELL LEAKAGE RATE CALCULATION

========================================================

LL = (P1 / T1 - P2 / T2) X ( V Ts / 60 t Ps)

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T)

LL = 1364.2 SCFM <====

========================================================

C >

DRYWELL LEAKAGE RATE TEST (DWLT5) -- DECEMBER 28, 1985 START 22: 42 END : 23:44 t (HRS) : 1.033 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE

========================================================

INITIAL TEMPERATURE Ti VFi Ti X VFi T19 = 72.45 0.033 2.39085 T20 = 70.40 0.033 2.32320 T21 = 69.77 0.033 2.30241 T22 = 69.31 0.033 2.28723 T23 = 68.67 0.004 0.27468 T24 = 71.39 0.003 0.21417 SUMS ==> VFi = 0.139 Ti X VFi = 9.79254 WT AVG T1 = 530.45 DEG R OR 70.45 DEF F

========================================================

FINAL TEMPERATURE Ti VFi Ti X VFi T19 = 67.79 0.033 2.23707 T20 = 66.94 0.033 2.20902 T21 = 66.43 0.033 2.19219 T22 = 66.02 0.033 2.17866 T23 = 65.06 0.004 0.26024 T24 = 66.91 0.003 0.20073 SUMS ==> VFi = 0.139 Ti X VFi = 9.27791 WT AVG T2 = 526.75 DEG R OR 66.75 DEF F

========================4===============================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR OM-2040, P2)

========================================================

INITIAL FINAL P1 = 44.506 (COUNTS) P2 = 39.205 (COUNTS)

M = 1.0039353 M = 1.0008608 C= -0.0103 C = 0.1122 P1 = 44.670844 P2 = 39.350947

========================================================

III. DRYWELL LEAKAGE RATE CALCULATION

========================================================

LL = (P1 / T1 - P2 / T2) X ( V Ta / 60 t Pa)

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T)

LL = 1358.2 SCFM <====

========================================================
d. t>

4 DRYWELL LEAKAGE RATE TEST

SUMMARY

-- DECEMBER 28, 1985

- _ _ - - - - - - - _ _ _=----------- ---------------_--

PHASE LEAKAGE RATE DURATION RATE X DURATION SCFM HRS SCFM-HRS DWLT1 1373.O O.850 1167.050 DWLT2 1367.8 1.083 1481.327 DWLT3 1370.1 1.067 1461.897 DWLT4 1364.2 O.783 1068.169 I

DWLT5 1358.2 1.033 1403.021

- - _ - _ - - - - - - - - _ _ - - - - - - - - - - - - - _ = = - - - - - =---

SUMS ==> 4.816 6581.463

--_ . _ _ _ _ = - - - _ _ - - _ _ - - - - - _ - _ - - - - - - - - - - - - - -_ ----

WEIGHTED AVERAGE LEAKAGE RATE ==> 1358 SCFM ,

l 1

I

c o Appendix J Drywell Bypass Leakage Rate Test

(

SU-091/A/14

ct DRYWELL BYPASS LEAKAGE RATE TEST (BPLT1) -- JANUARY 1, 1986 START 21:40 END : 23:05 t (HRS) : 1.417 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE

========================================================

INITIAL TEMPERATURE Ti VF1 Ti X VFi T19 = 69.70 0.033 2.30010 T20 = 68.92 0.033 2.27436 T21 = 68.89 0.033 2.27337 T22 = 68.76 0.033 2.26908 T23 = 68.25 0.004 0.27300 T24 = 67.79 0.003 0.20337 SUMS ==> VF1 = 0.139 Ti X VF1 = 9.59328 WT AVG T1 = 529.02 DEG R OR 69.02 DEF F

3===========================================================

FINAL TEMPERATURE Ti VF1 Ti X VFi T19 = 69.00 0.033 2.27700 T20 = 68.42 0.033 - 2.25786 T21 = 68.26 0.033 2.25258 I_ T22 = 68.22 0.033 2.25126 T23 = 68.14 0.004 0.27256 T24 = 67.14 0.003 0.20142 SUMS ==> VFi = 0.139 T1 X VFi = 9.51268 WT AVG T2 = 528.44 DEG R OR 68.44 DEF F j ==============================d=====================================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040. P2)

========================================================
INITIAL FINAL P1 = 58.554 (COUNTS) P2 = 53.857 (COUNTS)

M= 0.3028064 M = 0.3019438 I C= -0.0068 C = 0.0402  !

P1 = 17.723725 P2 = 16.301987  :

========================================================

III. DRYWELL BYPASS LEAKAGE RATE CALCULATION

========================================================

LL = (P1 / T1 - P2 / T2) X ( V Ta / 60 t Ps)

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T)

LL = 276.4 SCFM <====

========================================================

l

(

DRYWELL BYPASS LEAKAGE RATE TEST (BPLT2) -- JANUARY 1, 1986 START 23:20 END : 00:40 t (HRS) : 1.333 I. WEIGHTED AVERAGE DRYWELL TEMPERATURE 333SBBB3BBBE3333333maaEa3333333EEEE53EE3ESEEEE33333EE33SE3EEEEEEEEE3 INITIAL TEMPERATURE Ti VFi Ti X VFi T19 = 71.61 0.033 2.36313 T20 = 70.17 0.033 2.31561 T21 = 69.88 0.033 2.30604 T22 = 69.81 0.033 2.30373 T23 = 69.41 0.004 0.27764

! T24 = 69.83 0.003 0.20949 SUMS ==> VFi = 0.139 Ti X VFi = 9.77564 WT AVG T1 = 530.33 DEG R OR 70.33 DEF F

mEE=======================================================

FINAL TEMPERATURE T1 VF1 Ti X VFi T19 = 69.13 0.033 2.28129 T20 = 68.49 0.033 2.26017 T21 = 68.37 0.033 2.25621 T22 = 68.34 0.033 2.25522 T23 = 68.25 0.004 0.27300 T24 = 67.20 0.003 0.20160 SUMS ==> VFi = 0.139 Ti X VFi = 9.52749 WT AVG T2 = 528.54 DEG R OR 68.54 DEF F ESSSEEEEEE2E2SEEEEEE33EBBBB355'EBBBBBBBBBBB3E353333EEESEEEE3ESEES3333 II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2) 33SSSEEESSEEE33333 MERE 3EEEE5EEBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB33SE3333 l

INITIAL FINAL i

____________________________....._________________ ..__..___________ l P1 = 58.316 (COUNTS) P2 = 53.810 (COUNTS) ;

M = 0.3028064 M = 0.3019438 C= -0.0068 C= 0.0402 P1 = 17.651658 P2 = 16.287795 l

sssssamm===ssssssssss====sss==============================

III. DRYWELL BYPASS LEAKAGE RATE CALCULATION

=====================s====================================3sas

LL = (P1 / T1 - P2 / T2) X ( V Ta / 60 t Ps)

LL = (P1 / T1 - P2 / T2) X ( 130,152,000 / 882 T)

LL = 273.2 SCFM <====

I massassassassassasss-asssammassamassanssamassamassmussamassmussasssa

e ,

l DRYWELL BYPASS LEANAGE RATE TEST (BPLT3) -- JANUARY 2, 1986

~

START 00:55 END : 02:10 t (HRS) : 1.250 i

i I.

  • WEIGHTED AVERAGE DRYWELL TEMPERATURE  !

....an=4 ..========================================================= j INITIAL TEMPERATURE l Ti VFi Ti X VF1 T19 = 72.08 0.033 2.37864 T20 = 70.54 0.033 2.32782 T21 = 70.36 0.033 2.32188 T22 = 70.11 0.033 2.31363 i T23 = 69.78 0.004 0.27912 T24 = 70.~19 0.003 0.21057 i

____.__._.________ ______....______ ________________________________ l SUMS ==> VFi = 0.139 Ti X VFi = 9.83166 WT AVG T1 = 530.73 DEG R OR 70.73 DEF F

=============================================.===============.......

FINAL TEMPERATURE Ti VFi Ti X VFi T19 = 69.22 0.033 2.28426 T20 = 68.56 0.033 2.26248 T21 = 68.44 0.033 2.25852 I T22 = 68.42 0.033 2.25786 T23 = 68.33 0.004 0.27332 T24 = 67.26 0.003 0.20178 SUMS ==> VFi = 0.139 Ti X VFi = 9.53822 WT AVG T2 = 528.62 DEG R OR 68.62 DEF F

==========3B=========3==$===============================

II. ABSOLUTE DRYWELL PRESSURES (MENSOR QM-2040, P2)

=====================================..........====== .........a

INITIAL FINAL P1 = 58.316 (COUNTS) P2 = 54.127 (COUNTS)

M = 0.3028064 M = 0.3019438 C= -0.0068 C= 0.0402 P1 = 17.651658 P2 = 16.383512

==================.................=====================

III. DRYWELL BYPASS LEAKAGE RATE CALCULATION

==========================..............===========.................

LL = (P1 / T1 -

P2 / T2) X ( V Ta / 60 t Ps)

LL = (P1 / T1 -

P2 / T2) X ( 130,152,000 / 882 T)

LL = 267.5 SCFM <====

===================.................==============================..

a .

DRYWELL BYPASS LEAKAGE RATE TEST

SUMMARY

-- JANUARY 1, 1986

____ _______-__=- -- ---=_- ----_____

PHASE LEAKAGE RATE DURATION RATE X DURATION SCFM HRS SCFM-HRS BPLT1 276.4 1.417 391.659 BPLT2 273.2 1.333 364.176 BPLT3 267.5 1.250 334.375

- - - - - - - --=_______ --___________

SUMS ==> 4.000 1090.209

__________-- - --___=== ---- ___________ - ---________________

WEIGHTED AVERAGE LEAKAGE RATE ==> 273 SCFM

-3 l

l I

i

- - - - -. m. - _ ,- _ 3 .,7 r . _-.,--._7 . -- - _r--

a .

Appendix K Type B and C Leakage Rate Test Results

)

i SU-091/A/15

_ _ .. _ _ . _ . m

a. .

I 1 ,

1 Local Leakage Rate Test Results Penetration Description Type Leakage Rate Tolerance a

Jumber Test seem seem l i

j 1MC-1 Equipment B 0 .026 )

Hatch  :

?

1MC-2 Personnel B 1610 20 Lock (Lower)

Dic-3 Personnel B 51h 20 Lock (Upper)

IMC-h Fuel Transfer B 115.6 10 i

Tube 1MC-5 Main Steam C! 9190 202 1MC-6 Main Steam C! 5930 222.5 1MC-7 Main Steam C! 825 27.6h

1MC-8 Main Steam C! 1730 27.6h  ;
DiC-9 Feedvater C 551 , 25.14 J 1MC-10 Feedvater C 3220 202 i DiC-lh RER C 39.3 2 l

j 1MC-15 RER C h10.03 20.2 D!C-16 BHR C 2510 202

) DIC-17 RER C h0 10.28 1MC-18 RER C 270 25.7 1MC-19 RER C 25 10.28

, DiC-20 RER C 5 10.28 i

j  ! MSIV not included in .6 La 1

2 i

j l

4 4

t i

4

___ _ - ~ _ . _ - - - - - .

Incal Leakage Rate Test Results Penetration Leakage Rate Description Type Tolerance Number Test seem seem 1MC-2h RHR C 20 5.14

1MC-26 RER C 20 5.1h DiC-27 RER C* 2510* 202*

DIC-31 RHR C 20 2 IMC-33 HPCS C h0 5.14 UtC-3h Suppression C 20 10.28 Pool Cleanup D:C-35 HPCS C 56.8 h.0 D!C-36 LPCS C 506.6 22 1MC-h1 RCIC C 20 5.1h D:C-h2 RCIC C h0 10.28 i

,- 1MC-h3 RCIC C 2h600 h02 lv.C-kh RCIC C 1350 hk DiC-h5 Main Steam C 160 T.1h 1MC-h6 Component C 1382 22.7 Cooling Water

  • Included with DIC-16 a

L

,O

, . . , . , , s ..- .3- -

.dr N Local Leakage Rate Test Results Penetration Description Type Leakage Rate Tolerance Number Test seem seem DiC-h7 Component C 215 10.28 Cooling Water IMC-h8 Shutdown C 500 22.5 Service Water IMC-h9 Breathing Air C 95.5 2 1MC-50 Condensate C 2.0 0.2 Storage IMC-52 Fuel Fool C h800 201 Cooling &

Cleanup 1MC-53 Fuel Fool C h0 h Cooling & '

Cleanup 1MC-56 Fire Protection C 71.5 2.2 1MC-57 Instrument Air C 133k 20

,. 1MC-58 Instrument Air C h850 223.5 1MC-59 Service Air C 230 5.1h

~1MC-60 RWCU C 560 22.5 D:C-61 RWCU C 107.9 h 1MC-62 Combustible C 880 2h.5 a

Gas Control IMC-63 CRD C 75 10.28 1MC-6h RWCU C 55 10.28 D:C-65 Radvaste C 20 5.1h I

DiC-67B Containment C 81.h3 2.2 l Pressurizatier l 1

IMC-68 (1 or 5) Process Sampling C 25 5.1h i

DiC-68 (2 or 5) Process Sampling C 20 2 D:C-68 (3 of 5) Process Sa=pling C 25 5.1h D C-68 (h of 5) Process Sampling C 20 2

, e- .% s l

Local Leakage Rate Test Results Leakage Rate Penetration Description Type Tolerance Nu=ter Test seem sec=

D:C-68 (5 of 5) Process Sampling C 20 2 Dic-69 Equipment Drain C 50.9 2 i

DiC-70 Floor Drain C 70 5.1h 1MC-71 Hydrogen C 185.h h Recombiner 1MC-72 H:rdrogen C 1130 27.6h ,,

i Eecembiner DiC-78 Component C 5 0.h Cooling Water D!C-79 Supression C 117T 25.1h Pool Cleanup

  • D!C-81 Fire Protection C 2110 202

, 1MC-82 Fire Protection C 250 7.1h

! Cycled Condensate 1MC-85 C . 20ho 202 D:C-86 RWCU C 1h0 5.1h 3:C-87 RER C h10.03* 2.02*

1 D:C-38 Co=ponent C 287.3 h Cooling Water 4 i

l DiC-101 Contairment HVAC C 7920 202 1MC-102 Dryvell Purge C 716 22 DIC-103 containment C h5 5.1h ~

Chill Water DiC-10k Contain=ent C 28 2 Chill Water IMC-1C6 Containment H7AC C h0 h 1MC-107 Dryvell Cooling C 50 5.1h Chill Water Included with IMC-15 i

. _- ~ _ _ _ - _ - - ,_ . . . . , -- ,, - - , , . ..

.= N l

Local Leakage Rate Test Results Penetration Description Type Leakage Rate Tolerance Number Test seem seem 1MC-108 Drywell Cooling C 29.h 2 Chill Water 1MC-109 Dryvell Cooling C h99 20 Chill Water

1MC-110 Dryvell Cooling C 78.5 2 Chill Water 1MC-113 Containment EVAC C h0 h IMC-116 Standby Liquid C 60 6 Control 1MC-152 (1 of 3) ILRT C h .2 j Instrumentation

4C-152 (2 of 3) ILRT C 62.1 2 Instrumentation 1MC-152 (3 of 3) ILRT C 6.75 .2 Instrumentation 1MC-153 (1 of 2) contain=ent C 20 2 Monitoring 1MC-153 (2 of 2) Containment C h0 h Monitoring 1MC-166 Hydrogen C 1620 27.6h Recombiner

.! 1MC-169 (1 of 2) Containment C 368 20 t

Purge i 1MC-169 (2 of 2) Containment C 326 20 Purge i

1MC-173 (1 of 2) Containment C 5.h5 0.2 Monitoring

IMC-173 (2 of 2) Containment C 138.2 2 Mcnitoring

$ 1MC-20h Shutdown C h5 5.1h

! Service Water

)

l j

j

- . . - . _ . . , --. .. . . . , , _ _ , . . . - . , _ _ _ _ . _ , _ . _ . . _ - . .,m_-- ._. ~- -

p

[ c  %

Local Leakage Rate Test Results Penetration Description Type Leakage Rate Tolerance

. Iiumber Test seem seem l

DiC-205 Shutdown C 20 5.1h Service Water l

1MC-206 Instrument Air C 3860 223.5

1MC-208 Shutdown C h0 3.6 j Service Water 1MC-210 (1 of 5) Process Sampling C 20 5.1h 1MC-210 (2 of 5) Process Sampling C 20 2.0 1MC-210 (3 of 5) Process Sampling C 2.5h 0.2 i

1MC-210 (h of 5) Process Sampling C h.h3 0.2 l

1MC-210 ( 5 of 5 ) Process Sampling C Sh.T 2 1P1B-1 RR-A B 0 0.026 1P23-1 RR-B B 0 0.026 -

1PlB-2 Balance of Plant B 0.0h 0.2 1P1B-3 Balance of Plant B 0 0.026 1P2B-3 Balance of Plant B 0 0.026 1P13-h Balance of Plant B 0 0.026 l 1P23-h Balance of Plant B 0 0.026

.1 1P1E-1 Engineered B 0 0.026 Safety 1 1P2E-1 Engineered B 0 0.026 Safety 2 1P2E-2 Engineered B 0 0.026 Safety 2 1C1B-1 Infor=ation B 0 0.026 1C23-1 Infor=ation B 0 0.026 i

1C13-2 Information B 0 0.026 1C23-2 Infor=ation B 0 0.026 i

l

. . _ . ~_ _, . _ _ _ . - . _ .

.; x

(

Local Leakage Rate Test Results i ,e

! Penetration Description Type Leakage Rate Tolerance Nu=ber Test seem scen 1C1B-3 Information B 0 0.026 i 1C2B-3 Information B o 0.026 i

j 1C1E Reactor B 0 0.026 i Protection j System 1 1

i 1C2E Reactor B 0 0.026 4 Protection

! System 2 i

j 1C3E Reactor B 0 0.026 Protection i System 3 1ChE Reactor B 0 0.026 I

Protection System h

1K1E-1 Control Rod B 0.05 0.2 1

- Indication 1 l 1K2E-2 Control Rod B 0 0.026

i Indication 2 1K3E Instrument 3 B 0 0.026 l 1KkE Instrument h B 0 0.026 1K1B-1 Instrument B 0.09 0.2 1K23-3 Instrument B 0 0.026 i

1K1E-2 Instrument-1 B 0 0.026 I 1K2B-1 Instrument B 0 0.026 l 1K1B-2 Instrument B 0 0.026

'\

1K2B-2 Instrument-1 B 0 0.026 1K1'i Neutron B 0 0.026 Monitoring

. Syste= 1 l

j 1K2E-1 Instrument 2 B 0 0.026 j 1C2E-2 Engineered B 0 0.026 l

Safety 2 i

i

j. 4 -. A P

t Local Leakage Rate Test Results

(

i Penetration Description Type Leakage Rate Tolerance Number Test seem seem 1

1KkN Neutron B 0 0.026

! Monitoring i'

1P1B-5 Balance of Plant B 0 0.026 1P1E-2 Engineered B 0 0.026 Safety 1 1P2E-3 Engineered B o 0.026 Safety 2 1K2N Neutron B 0.22 0.2 Monitoring

! System 2 1K2N Neutron B 0 0.026 Monitoring a System 3 1K1B-3 Testing B 0 0.026 Instrument I 1K1B-h Testing B 0 0.026 j Instrument 1SP-1 Spare B 0 0.026 1 1K1E-3 Instru=ent 3 3 0 0.026 l 1SP-3 Spare B 0 0.026

! 1EEh6E Co=munication B 0 0.026 Lighting 1EEh7E Communication B 0 0.026 Lighting l

1EEh8E Cc==unication B 0 0.026 Lighting i

, IEEk9E Communication B 0 0.026 ighting i

! ~

4

es t

Local Leakage Rate Test Results

Summary

( Leakage Rate Tolerance sCCM SCCM Total B + C 75181.73 720.356 1' .(excluding MSIV and water tests)

Total MSIV 17675 303.0h81 Total Water Tests h.h79 GPM i

SUMMARY

OF HYDRAULIC LEAKAGE SYSTD! LEAKAGE (GPM) i RHR A System 1.886 GPM RER A Suction 0.093 GPM RER B Fyste 0.0858 GPM I

RHR B Suction 0.093 GPM RER C Syste: 0.208 GPM -

I RER C Suction 0.093 GPM LPCS System 0.086 GPM

, (~ LPCS Suction 0.093 GPM ,

FPCS System 0.093 GPM RCIC System 1.hh6 GPM i RCIC Suction 0.093 GPM I

RCIC Exhaust 0.1156 & 0.0936 GPM j 4.h79 GPM i

t I

i a

I i

i i l

)

i f

i

)

_ _ _ _ _ _ _ _ _ . . . - _ - _ _ _ - _ _ _ _ - .- -_ ----- ____ - . _ _ . . -