ML20197H969
| ML20197H969 | |
| Person / Time | |
|---|---|
| Site: | Callaway |
| Issue date: | 09/30/1990 |
| From: | Kapil S, Pogorzelski N UNION ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20197H964 | List: |
| References | |
| NUDOCS 9011200285 | |
| Download: ML20197H969 (15) | |
Text
-f.;
q j
c l
4 Callaway Cycle 5 key. 0-
)
i Callaway Cycle 5 Core Operating Limits Report Septader, 1990 r
Reviewed by:
8 5' i
N. A. Pogorzelski-Core Design E f
Approved by:
44 St.K. Kapil, Manager Core Design E Page 1 of 15 90112002e5 903114 fDR ADOCK 0500o4g3 PDC
Cl411away Cycle 5 Rev. 0
- 1. 'O CORE ~ OPERATING LIMITS REPORT This Core Operating Limits Report. (COLR) for Callaway Plant Cycle 5 has been prepared in accordance with the requirements of Technical Specification 6.9.1.9.
j
-The. Core Operating Limits affecting the following Technical Specifications are included in this report.
3.1.1.3 Moderator Temperature Coefficient 3.1.3.5 Shutdown Rod Insertion Limit 3.1.3.6 Control Rod Insertion Limits 3.2.1 Axial Flux Difference i
- 3. 2. 2 -
Heat Flux Hot Channel Factor 3.2.3-Nuclear Enthalpy Rise Hot Channel Factor t
P V'
t j !
lu l'
i t-Page 2 of 15
Callaway Cycle 5 Rev. 0
' 2. 'O OPERATING LIMITS
.The cycle-specific parameter limits for the specifications. listed in-Section 1.0 are presented in the subsections which follow.
These limits have been developed using the NRC-approved methodologies specified in~ Technical Specification 6.9.1.9.
2.1 Moderator Temoerature Coefficient t
I (Specification 3.1.1.3)
I 2.1.1 The Moderator Temperature-Coefficient shall be less positive than the limits shown in Figure 1.
These limits shall be referred to as the Beginning of Cycle Life (BOL) Limit.
The Moderator Temperature coefficient shall be less negative than -41 pcm/'F.
This limit shall be referred'to as the Endsof Cycle' Life (EOL)' Limit.-
-2.1.2 The MTC 300 ppm surveillance limit is -32 pcm/*F (all rods withdrawn, Rated Thermal Power condition).
J l
K l
1; I
l l
l l
Page 3 of 15 i
t FIGURE 1 I
MODERATOR TEMPERATURE COEFFIC!ENT VS POWER LEVEL
-1.r.......................................................................
4
- 7..,
mAas opeunON.........................,-
l a............. L.
3,70, 5..
l t
i.
.i
.i p..................................,............................,......,t 2
4
.i
].
3,;......................................................................-
L.:
r- -
i ACCEPTARE OPE % DON
,o 1
............'.........:.............................................!.5 4 }r-I L
- 3 4
g................,.............,......,......
...y
~.
.\\
(
.t m.
4
- g.......................................................................
l-"T-r- ' ~
r r T-- r-i Tri
- r-T j
i 10 20 30 il 50 il il 11 il 100
% OF RATED THERMAL POWER L
l l
PAGE 4 OF 15 vv-.,
,-,-a v-e-
};;_
-Callaway Cycle 5 Rev. O 2.' 2 Shutdown Rod Insertion-Limits (Specification 3.1.3.5)
The shutdown rods shall be withdrawn to at least 225 steps.
- 2. 3' Control Rod Insertion Limits (Specification 3.1.3.6)
The Control Bank Insertion Limits are specified by' Figure 2.
i
.,i, s.
Page 5 of 15
-I, *,
t
.y..
.~
FULLY WITHCRAWN (725 steps or hi;ter) 225 ~
. L'ELWKEE
^
220
.'A N -
~
i
~
(I..
200
^
- .J ::1:T 180-
^ ~
.__.-. p _
l
' *
- m,-
_. L x-e 5
140
' r u ;;.-
l-3
~~
.I 120
.. ~
g g.
100
~
,t e.
'IO
, ' F A M r'.
t 2
'i
=,. '
^
30-
-i-
-a C
W
~
~~
l
{
5t0Lii1 i
_4g 7
.20-
~
v
(
- w = cM 0
20 40 60-80 100 PULLYINSERTED RATED THERMAL POWER (Percent) l FIGURE 2
\\
ROD BANK INSERTION LIMITS VERSUS RATED THERMAL POWER - FOUR LOOP OPERATION CALLAWAY - UNIT 1 Th ta 6.3 C 15
~.
1 Callaway Cycle 5 Rev. 0 2.4-Axial Flux Differe,ngs (Specification 3.2.1) 2.4.1 The Axial Flux Difference (AFD) target bands
- are, a.
+3%,
-12% for Normal Operation b.
13% for Restricted AFD Operation 2.4.2' The Acceptable Operation Limits are'shown in-Figure 3.
2.4.3 The minimum allowable power lggel for Restricted AFD Operation, APL is 90% of RATED THERMAL POWER.
s Page 7 of 15
AXIAL FLUX O!FFERDCE LIMIT 5 A5 A Fu c7 ten of a m s THU Wu POW U
,_.8
- s
. ====
n
-., 2._
[, Bhr.JslWrillE-.=hg:. grt a
g jl=
ram =
q3=
' p. :
E UNACCEPTABLE it.11.901:
- (11, 901 5! UNACCEPTABL2 lE'=
CPERATION
~
=
~
s j E OPERATION 7
\\,
_,=
-g w
g.
30
,4
\\
e
-\\-
,/
-g y
=
f ACCEPTABLE OPERATION==\\,
o i
/
f 5
s i
i g
f-g.
m.nor g
i.n. e -
w E
~
n l
1 t
1 3
i 1
.a
.e
.a 29 10 0
10 3
3 E0 0
R.UX OtFFERENCE ( AD%)
CALLAIAY - UNIT 1 FIGURE 3 L
Page 8 of 15
.. ~
9
? '
Callaway Cycle 5 Rev. 0 x
~
2.5 Heat Flux Hot Channel Factor - Fg(Z)
(Specification 3.2.2)
RTP' F
F (Z) 5 S---
-* K(Z) for P > 0.5 9
P RTP F
i F (Z) 5 9---
- -K(Z) for P $ 0.5 g
0.5 THERMAL POWER where: P = -------------------
RATED THERMAL POWER-2.5.1 F RTP = 2'.50 g
2.5.2; K(Z).is.provided in Figure 4.-
2.5.3
' The W(z)- functions: that are to be used ' in -
Technical Specifications 4.2.2.2, 4.2.2.3, and 4.2,2.4 for F surveillance are shown in 0
Figures 5 through 8.
Because significant margin exists between the
. analytically determined maximum F z)*P
' values'andtheirlimit,Restricteh(AxiaI*hlux Difference (RAFDO). operation is not expected to be required;for Cycle 5.
For this reason, no W(z)RAFDO values are suppliedLfor Cycle 5.
The Normal Operation W(z): values, W(z)Ug, have been determined.for three specifi burnups in' Cycle 5.
-This permits determination of W(z) at any cycle burnup through the use of three point interpolation.
The W(z)Uherates with the CAOC strategy and values were determined assuming Cycle 5 uses-a +3%, -12% delta-I band about the-target flux difference.
Also included is a W(z)$21 Cycle 5 burnups. function that bounds the W(z)Ngound curve for Use of the W(z)5o 'urve will be conservative for any c
Cyc1 5 burnup, however additional margin may Page 9 of 15
a
\\
FIGURE 4 1
K(Z);- NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1
\\
{, g.r......................................................................
.s
.g,g.1.............,......................................,................,l 6, 1.0 4.
.$.0','
0.91.
i s
< ga 1.
J.
.i Q,g3,.................
\\
l.
0.7 - '.
s
- 0. 6.-..............................................................
V 0.5-
..s..u.s-s-
I l
4 I
L 0.4-g y.
- M,3 f :...........;......;...........................:..........s.....:.....
/
0 0.2 l
0.1s<
i..<
s<
0.0 -
iiiiii iiiiiiiii i
i i
i.
c i.i 0
1 2
3 4
5 6
7 8
9 10' 11 12 CORE HEGHT (PT)
PAGE 10 OF 15 1
w
.y
. _............._......_ i _ - -
't e
r 9419ff SQL 1.30
' 28 i."0000 0.000 i
ii i i'
i i
I e 0.18?
1.0000 6
l I e 0.333 1.0000 ii
.i, i i i*
i; li.
il1 l l t I ! '
I I I
8 t
i.t 0.500 1.0000 6 I 0..
?
$.0000 i
ll
!i, l
..i I
lli Ili ll ii i
l
.i
. 0.e33 uo=
i e 1.000 1.0000 Ill l.
. t.iet
- 1. m=
i ll lli 1i',
1' i
1' i
e 1.333 1.0000 5.0000 i 300, i ;
i i.
I,.
,Ii.
l i
i i
i t
i i
t.
1.0000 1 15 i.en i. itu tI
- il lI
,i
!i!
I I
i tii i. itu 3.000 3.1 7 1.n l
ll lll Il'I
!ll l!!
I l
I 3*883 I*1787 t
3.900 1.1937 i
j 8 887 1.1713 ll
'{j lli l ll l t !'
t i l
3.e33
- 1. tees i
e i i l
l 3.000 1.1877 iI s
3.181 1.1096 3.333 1.1939 l
3.900 1.1006 1
a t
3.881 1.1941 1*20 s
3.933 1.1964 I
4.000 1.1633 4.197 1.1449 4.333 1.1491 4.500 1.1404 4.047 1.1384 agiggOA 4.033 1.1331 g
dig 5.000 1.1374 4
8.187 1.133t A 4 5.333 1.1164
^
A S.900 1.1110
'.1.15 N
i.**7
$.104*
"A S.433 1.0077 E
6 0,000 1.0006 A
S.187 1.1041 4
0.333 1.1076 8.900 1.1104
!a i
6.067
- 1. u M i
g 8.833 1.1148 Adb8A 7.000 1.1168
&g$
1 i
A A
A T.187 1.1164
~
A" 4
1.333 1.1183 l
6 1.10 I
A A
O 1.1183 7.800
..?
5.un
.. e t 1 1
A 4.033 1.1100 r t 0.000 1.1076 l{;
j I
- Ag l
S.197 1.1031 l
'hg
,g 8.333 1.0005
.. 00 i.0eie i *.
,i.
i i 1 g,ge?
1,0egt i
I t
.. 33 i.un i : t i
i t tii
- i
. 000,
- 1. - 30,
. 1.
1.0.
i.04.i.
i
- i, 1 i i iii
- Ii i
i i
. 3n t
+
.i 1*05 I.**3
\\'.E' i-i i Il t }I
!II I i 3
!Ii 1!i Ii'i i
I!l i ii 5 0tts 10.000 i
i Ill lli i II i!I II lr
,t
- 1 10.iet t.0te?
'}l i i!
i
. 10.333 1.0000 5ll lll j,j llf lll lll l\\l
. l l l
. l
}j
- 10.900 1.0000 e 10.087 1.0000 i l lll llf Il'i i -
' I' l!I I'I
\\jl I I I
e 10.833 1.M
.ll ll{
f e
< l
- 11.000 1.0000 til iti il l til I!!
lil i ll II' i ll I!i 11 1
!! l l l173 1:""
1.00 u. **
i. 00=
0 1
2 3
4 5
6 7
8 9
10 11 12
.u.=7 i.==
- 11.033 1.0000 80TTOM COREHEIGHT(FEET)
TOP FIGURE 5 CALLAWAY UNIT 1 CYCLE 5 W(Z) AT 150 MWD /MTU NO Top and bottom 15% excluded as per Tech Spec 4.2.2.2G Page 11 of 15
i e
e 1
<r <t>
vizi
!Ii 1: 1 it.
'l i
li Ill lit lit 0 0=,
u=0
. 0.ie i. 0=0 ll
!ll lil til
- :2 111 ii lli 1.1 ill I;.
i ii l
i lil li il)
!!l lil tii l'l i
l i l' 111 11I ilI
- lE I:E e
1.000 1.0000 li i li ll' lit til til ill i
I Ili ill lit 111
- i.iet i. a=
- 1.333 1.0000 I'!
Ii iI iiI
'II iI iII 1
iii ilI I'l
'II
'"a 1*25 1
i ili i!i Ill i! !
li!
l Ill l
I li!
lil j%
l%:
i.,e, 1....,
il6 I.!
!II I
l hlI I
Iil
'I III I
8 8.00 88 1 1M1 3.
- 1. in i lii il ll1 lll Ill I!
ill
.I lit lll ll!
ill l%
- l;j I
li l%
1:1Ml j
li Ill I L!
i' t !
!'t I!I iIi i
ii l2 l:12 i i
!I i
i t
i i
8 =2
$ '*zo 1.20
}
[ l 3.433 1.1 02
- ll llj i
4.000 1.1671 A
4.187 1.1538
,t g
ijt 4
I I
4.333 1.94e4 i
4.e00 1.1457 JL 1.1412 iI 4.001 1.13 4 d
4.433 1.1312 l
5.000 A
I 5.1 7 1.1295 g
i i 6.333 1.1104 e
o i
N 4
s 600, 1.1143 w.1.15
-A
)
5.e33 1.1034 es i.ipe3 g;
g e.000 1.icts i
s.is1 1.tcee i &
j e.333 1.1100 I l
. 800 1.113e l'
g I '
l
- e. set 1.11e4 "gg O e.833 1.11st d
0 a
a e
A
'fI.
I
?.000 1.120e l
I t
4 4
?.1st 1.1313 A
fI il{
1.333 1.1812 t
gd A
?.600 1.1203 b
j*en 1.007 1.Sted
= IV g
l '
'.l 1.433 1.1 t es :
a
!'i I,l t
j
=
4.000 1.1120
.iI
!ll
.t 11
. g 8.1e7 t.1073 l{
% I**"-
i i 12:
i.,
iil i>
1.08 til ill lii i,
Ill
,!i
- =
i
. 0,2
..,e2
.: 1
. 3n i
i.
Iil i !
i o
til ill i.i i.0 0.
a. ac 5. o'a 1.05 1.i i
il
- +1 111 ill i ll 11 li lli ill l%
- gl 111 iil lil lli li!
!!I ll ill i
I l*%
l:Mi:
ill ill ill I
lil 11!
i ll ill l'l ill ll2 I:EE e io. n1 i. 00m l i l:
ill lli il{
l I
til ill i ll ll!
! 'i I!!
'.0000 e 11.000 1
lij ill ill ill lli II:
I!i lil I
lit
- :::g;
.00 0
1 2
3 4
5 6
7 8
9 10 11 12 l ll%.n l:EE
. ii.
1.0000 TOP 80TTOM COREHEIGHT(FEET)
FIGURE 6 CALLAWAY UNIT 1 CYCLE 5 W(2) AT B000 MWD /MTU NO
- Top and bottom 15% excluded as per Tech Spec 4.2.2.2G Page 12 of 15
i
.\\
Mr son tot
.Ftt7 wi31 0.000 1.0000
( l-
'il I
- }
l1 lll 1l1 llI IIi l'.!
. O tat 1.0000 I 'l l l l !!
I
!l l !I f!3 lll ll4 i!
!ll 0.333 t.0000 0.500 1.0000 i
. 0.H7 1.0000 i
.li lii i i I
i
- i. li.
i.!
li!
'. w"0
,'. 0 a t
til 111 0
l l l ii til lli
- ll i
I lit i,
I!!
l ld l:lll"
. i. uc
- i. = 0
.II II,
,iI ii l l1 IiI II i
. i.u?
- i. m o i
i i,
1*25
. ll lit
'.*n 5 sia
,:i i ! t.
' i. t iii Il'.
i 3. 0=,
$.sia i
i.3 m..
3.i.
i il I,.,
I,
,I
- ii i !!
,i,
>li
- 3. m
- i..
i.
4 i
e
- 3. m, i..u.
3..
i.i
<: t iI ilI
!lI i I
!II 1ii
- 3..n i!
l t
n
- i. m.,
3.000 il i>
l 4
i
- j i;i
- i. m.84
- 3. so i
3.333 i.1 8
3.600 1.1434
)
l l
[
0 3.087 1.1016 1.20 3.n3 i. iu.
I 4.000 1.1580 t
g 1.158 4 tot "g
l l 4.333 1.1835 4,600 1.1608 db 4
i 4.847 1,1478 I
A 4.433 1.143 5.000 1.13 7 4
i S.187 1.1354 44 S.333 1.1307
^
d S.500 1.1336 N
1*15
'e S.833 1.1363 V
&g
'0 O
c3 4
4 S 000 1.1334 4
O S.187 1.1364 a.
4 O
O S.333 1.1401 d
d' 0.800 1,143 16 9 S$7 1 1447 0
4.433 e tatt 1
A 1.000 I
1,147 1
i 1.333 1.+
1.900 g.-
i' g
1.10
' a2 '
5 m.
,j
'O=
i v !
l 1.433 1.13tt i
4 t
i O
t '
- i i 4 lg
8.000 1.1383 A
4.107 1.1184 i
I 1
1 I
-1 I
,,EA-l f A
8.333 1.1104 i
4.800 1.1020 l l i
I
[s ifii I
4.087 1.0031
, I i
4 833 1.0884
..0.,
i. 0.,.1 i
i ;
- i. i:
i ; ;
it i
.1 i.0 l::=
i
- 4 1
!!i li li-i ll i
i S
1.05
.-7 1.0 4
,!I I
ll lI S.833 1 0078
- I
'lll
!I i 1 l ll i !l II l
.l l
10.000 1.0006 III l$l I
i l
l
?
l
!s 5
"I*
. '10.'.33 3
'l '
t 5
1.0000 lI lll
- lj i,I ll ill llI l l-lll I, l
I
- 10. m.7
- 1. M00 l,'
I t
i i
. 10.
.000e i
i ;
. to $33 1.0000 I-i liI III i i !-
ti!
ll l!I i,
!i!
l!I II.I II!
. n.=0 i.==
. n. in i. 0mo Fil il I FI il
'!I til ill i'l 11!
lil
!! I li!
. n.82$
i. a=
1*00 0
1 2
3 4
5 6-7 8
9 10 11 12 lll:%
BOTTOM COREHEIGHT(FEET)
TOP FIGURE 7 CALLAWAY UNIT 1 CYCLE 5 W(Z) AT 19200 MWD /MTU NO
- Top and bottom 15% excluded as per Tech Spec 4.2.2.2G Page 13 of 15
y 4,
et!Dff as43 (Fit?)
tit 3 )
1.30 0.000 1.0000 ilI
!lI
!II IiI Ii
!l
. 1!
I,!
II.
0.1s7 i
i l
i.0000 0.333 1.0000 ilI
- ! I I
IIi I hl I !l llI II ll llt jll l'll
- 0. M 1.0000 e
. 0.887 1.0000 lli Ill i!
I,
- 1-li!
Ill ll i ll lli
!il
!ll l t:8" l:=
ill
!ll i'i l'
.il l'!
111 i ll
!!I Ili Ill l l:!U I%*
. i. m i.0000
'l I!!
i
!- l
'l
!il Ill ill ll!
!ll i.=7
- 1. 00=
1.25 5 **2
'*'a l
11 ill ill l
ill lil lil Ill i:t" l:y" 11 ill i
ll!
II I
it' ll Ili lil ll lll li!
lll
- llllU, 3.
1.1..
- I!
I l!
i!i
!ll ll lll l!i ill lll 3.e33 1.ies3 i!!
'Il 3.000 i.ista l-l lA
'l
'!i ilI l 'l l l
'ii
'i1 ill 3.ist i. nes 3.333 1.17e3 l :
ll 3,u?
g.iset 3.800 1.1734 1
I ;I i }
s t '
' l i
1.20
- 3. n3 i. i=3
. g i
j
{ j+
l!
4.000 1.1833 l
i 4.187 1.1997 "4
j j
4.333 1.1 MC di 4.900 1.1918 8
4.907 1.1475 i
t 4
i 4.833 1.1439 g&
S.000 1.1394 A
t.187 1.1394 dh 8.333 1.1307 S.600 1.1336
^
g t
t N t oc A
s.u?
1.1303 v
'*8d 5.833 1.1383 0AUA D
,4 g
4.000 1.1334 A-e 4.167 1.1364 4.333 1.1401
^
dl 0.000 1.1434
^
A S.H7 1.1447 0
'g, S.433 1.14M I i 2
A 7.000 1.14M y
I 7.147 1.1447 i
i i
7.333 1.1437 I
I 7.000 1.1384 i
i
'f i
f 1.10
- 1. ' *"11 t
i i 7.833 13 l
, e I
i i i
4
..A 8.000 1.1363 A'
4.187 1.1164 lI ii
.,4 A
s.333 1.1104
- II
!l; I
i It
! l i
i 4
gg a
a.e00 1.1030 II
!'i
,lt s, set 1.0est
.}l l
ll!
i !l I l 1
lll l
4.433 1.0003
!II lI l
l I f
!1l 1II
!I l
l I
ll l
i i
L
!il lit I
j i 1i Ill til t il ill ill i'l
'll l%
l%'
1.05
..-7
- 1....
I
+!i i ll ill lli 11 lil I!!
lit lli s.us
- 1. = 7
- lil lli i
10.000 1,0006 l '
ll Ill til
!i lli Ill 111 Il ill lil ill ill
. l*E l:M Il til Irf it lit lil til ill ill ill ill l ll#
l:=
t !.
l i
10.833 1.0000 l
Ill I!!
i ll ill ill ill lli
!Il ill lli Ill
. u. 0.=7 l
u=c
.u.i u 000
'l lil ll i: t 111 Ill Ill ill Ill ill lil l'l
' "ao
~
1'00 l
O 1
2 3
4 5
6 7
8 9
10 11 12 l ll%
l:"000 0
13.000 1.0000 BOTTOM COREHEl0HT(FEET)
TOP i
l:
I FIGURE 8 L
l CALLAWAY UNIT 1 CYCLE 5 BOUNDING W(2) FOR CYCLE 5 NO
- Top and bottom 15% excluded as per Tech Spec 4.2.2.2G Page 14 of 15
,j
,7,;.<-
-.a l
. Callaway Cycle 5 Rev. 0 be gained by using~the burnup dependent W(z)No values.
The W(z) values are provided for 73 axial points assuming the core height boundaries of 0 and 12 feet and intervals of.167 feet between the core boundaries..
[
i N
2.6 ' Nuclear Enthalov Rise Hot Channel Factor -
FAH (Specification 3.2.3)
~F
" 's - F (1 + PFg(1-P)]
i g
g where:
THERMAL POWER p....................
RATED THERMAL POWER 2.6.1~
F
- 1.59 g
2.6.2 PF
- 0.3 g
2.7 'Refuelina Boron Concentration (Specification 3.'9.1) 4 2.7.1 The' refueling boron concentration to maintain k,ff $ 0.95 shall be 2: 2000 ppm.
Page 15 of 15
_