ML20197C694
| ML20197C694 | |
| Person / Time | |
|---|---|
| Site: | Vogtle |
| Issue date: | 10/31/1986 |
| From: | Bailey J GEORGIA POWER CO. |
| To: | Youngblood B Office of Nuclear Reactor Regulation |
| References | |
| TASK-2.D.1, TASK-TM GN-1144, NUDOCS 8611060354 | |
| Download: ML20197C694 (66) | |
Text
eo Gecrgia Fbwer Company Fbst Office Box 282 Wayntsboro, Georgia 30830 Telephone 404 554 9961 404 724-8114 Southern Company Services, Inc.
Fbst Office Box 2625 Birmingham, Alabama $5202 Telephone 205 870-6011 y
g g gg October 31, 1986 Director of Nuclear Reactor Regulation File: X7BC35 Attention:
Mr. B. J. Youngblood Log:
GN-1144 PWR Project Directorate #4 Division of PWR Licensing A U. S. Nuclear Regulatory Commission Washington, D.C.
20555 REF: MILLER (NRC) TO CONWAY (CPC) DATED 8/29/86 NRC DOCKET NUMBERS 50-424 AND 50-425 CONSTRUCTION PERMIT NUMBERS.CPPR-108 AND CPPR-109 V0GTLE ELECTRIC GENERATING PLANT UNITS 1 AND 2 SER CONFIRMATORY ITEM 12: ITEM'II;D.1, TESTING OF RELIEF AND SAFETY VALVES
Dear Mr. Denton:
Attached is the additional information requested in the referenced letter concerning valve operability and structural analysis.
1 If your staff requires any additional information, please do not hesitate to j
contact me.
Since rely,
.h.
J. A. Bailey Project Licensing Manager JAB /sm Attachment j.
xc:
R. E. Conway NRC Regional Administrator 1
R. A. Thomas NRC Reefdent Inspector j
-J. E. Joiner, Esquire D. Feig
- b. W. Churchill, Esquire R. A. McManus,-
M. A. Miller (2)
L. T. Gucwa B. Jones, Esquire Vogtle' Project File' 3
G. Bockhold, Jr.
7 j
8 0823V i
g
$3611060354 861031
'PDR ADOCK 05000424 4
,y 1
'i'
- - - - ~ - - -
I RESPONSES TO UNRESOLVED QUESTIONS ON THE V0GTLE ELECTRIC GENERATING PLANT - UNITS 1 AND 2 NUREG-0737, ITEM II.D.1 SUBMITTAL QUESTION 1 Safetv valve Rina Settinos What safety valve ring settings are used in VEGP 1 and 27 If these ring settings are different than the " factory recommended" or "as tested" values
(-71. -18 or -77, -18), justification should be provided and operability shown.
RESPONSE
The ring settings used at VEGP$1 and 2 are as follows:
Nozzle Guide Guide Valve Rina Rina Rina level VEGP 1:
N56964-00-0035
-18
-275
-147 N56964-00-0036
-18
-250
-150 N56964-00-0037
-18
-250
-117 VEGP 2:
N56964-00-0041
-18
-275
-156 N56964-00-0042
-18
-280
-154 N56964-00-0043
-18
-250
-148 Please note that the ring settings given above were measured from the
" highest-locked position," as noted in Crosby procedures and in the EPRI reports' " Definitions of Key Terms for Safety Valves".
Ring settings reported by EPRI were measured from the " level position". The guide ring level position is provided as a reference.
These as-shipped settings were established by a method which includes a steam operational test on each valve by Crosby. The Crosby 6M6 valve tests done with " manufacturer's recommended ring position" had ring settings that were established by the same methods. Therefore, while the actual setting value may differ, similar operability results can be expected.
2031n:9/WFG/10-86
QUESTION 2 Safety Valve Bendino Moment What is the maximum bending moment applied to the plant safety valves? If this value is more than 298,750 in-lb, provide information showing proof of operability with the plant bending moments.
RESPONSE
The maximum bending moment applied to a plant pressurizer safety valve is 277 This value is less than the 298,750 in-lbs. moment applied to the,793 in-lbs.
Crosby 6M6 valve ~during the EPRI tests.
I 2031n:10/WFG/10-86
OUESTION 3 PORV Bendino Moment What is the maximum bending moment applied to the plant PORV's? If this value is more than 33,200 in-lb, provide information showing proof of operability 4
with the plant bending moment.
RESPONSE
The maximum bending moment applied to a plant PORV is 91,421 in-lb. This is in excess of the moment applied to the Garrett valve during the EPRI test program. These valves, however, were designed to withstand, and operate with, loads higher than those predicted by the VEGP as-built piping analysis. The maximum design value for loadings used was 103,500 in-lbs.
Operability under these condit{ons was confirmed by analysis. The analysis shows low resulting stresses, well in the elastic range, and that the corresponding deflections in no way restrict valve motion. This is typical for valve designs with limited extended structures. The analysis is available for inspection at Westinghouse Electric Corp., Generation Technology Systems Division, Churchill, PA.
2031n:11/WFG/10-86
4 OUESTION 4 Oualification of Control Circuitry Qualification of the VEGP 1 & 2 PORV control circuitry is required under NUREG-0737.
It is the staff position that in order to demonstrate that the VEGP 1 & 2 PORV control circuitry is qualified to the requirements of NUREG-0737, the design qualifications must be compared to the environment the control circuits will be exposed to.
Provide documentation to show the PORV control circuitry has been qualified under 10CFR50.49, or to allow a complete review of the qualification of the control circuitry for the PORV under NUREG-0737, provide the following:
A.
ProvidealistokallPORVcontrolcurcuitryneededtomitigateNUREG-0737 transients such as the following:
1.
Switchgear 2.
Motor control centers -
3.
Valve operators and solenoid valves 4.
Motors 5.
Logic equipment i
6.
Cable 7.
Connectors 1
8.
Sensors (pressure, pressure differential, temperature, flow and j
lev'el, neutron, and other radiation) 9.
Limit switches 10.
Heaters
- 11. Fans 12.
Control boards 13.
Instrument racks and panels 14.
Electric penetrations
- 15. Splices
- 16. Terminal Blocks B.
For each item of equipment identified in A, provide the following:
1.
Type (functional designation) 2.
Manufacturer 3.
Manufacturer's type number and model number 4.
Plant ID/ tag number and location C.
For each item of equipment listed in A above, provide the environmental envelope, as a function of time, that includes all extreme parameters, both maximum and minimum values, expected to occur during NUREG-0737 transients, including post-accident conditions.
l 0.
For each item of equipment identified above, state the actual qualification envelope simulated during testing (defining the duration of the environment and the margin in excess of the design requirements).
If any method other than type testing was used for qualification,. identify the method and define the equivalent " qualification envelope" s.o derived.
i i
2031n:1/WFG/10-86
4 E.
Provide a summary of test results that demonstrates the adequacy of the qualification program. If any analysis is used for qualification, justification of all analysis assumptions must be provided.
F.
Identify the qualification documents that contain detailed supporting information, including test data, for items D and E.
RESPONSE
A. -1 provides System Component Evaluation Work (SCEW) Sheets for all Pressurizer PORV Control circuitry and related equipment within the BOP and NSSS scope.
B.
The SCEW sheets also provide the following for each piece of equipment:
1.
Equipment Function / Description 2.
Manufacturer 3.
Manufacturer's Model Number 4.
Tag Number (Location ID)
C. -2 provides the environmental conditions and time dependent profiles which represent the expected transients including post-accident conditions.
D.
The SCEW sheets provide a summary of environmental qualification. The SCEW sheets also provide a summary of qualification methods for each program.
The B0P and NSSS test results including margins are maintained in the VEGP qualification files and summarized on the SCEW sheets.
The NSSS test results are documented in the Westinghouse Generic EQ Program (WCAP-8587). The NRC has reviewed and approved-WCAP-8587 and specific supplements to WCAP-8587 (Equipment Qualification Data Packages (EQDPs) and Equipment Qualification Test Reports (EQTRs)), as noted in the SER issued November 10, 1983.
Due to the proprietary status of BOP test reports and profiles they are maintained in the qualification files and available for NRC sudit. The EQ qualification files were recently audited by the NRC.
E.
The summary of test results are provided on the SCEW sheets, which demonstrate the adequacy of the qualification programs.
F. -The qualification documents that contain detailed supporting information, including test data, are identified on the SCEW sheets.
l 1
4
_ _ _ _ _ _ _ _ _ _ _ _ _ _ -1 SCEW Sheets
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 3 OF 3 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
I f
f REFERENCES I QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM AC SYSTEM 480 V I PARAMETER f SPECIFICATION f QUAllFICATION 1 SPEC. t QUAL. I f
IPLANT ID NO.
NOTE 1 I
I I
! SIMULTANEOUS I i
1 OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
TIME I
IENGINEERING I ICOMPONENT 600 VOLTS POWER AND f
I f
f f
! ANALYSIS f
I CONTROL CABLE I
I I
I I
I I
l I
I TEMP.
320 t
455 I
1 1
3 ISIMULTANEOUS I t
I
(*F)
NOTE 2 I
I I
ITEST I
! MANUFACTURER THE OKONITE CO.
I f
f I
f f
I I
I I
I I
I I PRESSURE I
50 I
112 1
1 3
ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
EPR INSULATION I
f f
f f
f I
I I
I I RELATIVE I 100 t
100 1
1 1
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER
! HUMIDITY (%)!
I I
ITEST I
I I
I f
f f
f f
I I
I HsB0s(2000- ! HsB0s +
1 I
t i
1 I CHEMICAL I PPM BORON) + 1 Na:S 03 +
1 3
ISIMULTANEOUS !
SPEC.
NA I
SPRAY 30-35% WT I NaOH(pH-10.5) t I
ITEST I
! ACCURACY DEMON NA I
I NaOH pH =
I + 3-5 PPM I
I I
I I
f f
10.5 - 8.5 t CHLORIDE I
I f
f
't I
I I
I I
I
! RADIATION I 1.8 X 10' I
2.25 X 10' 1
1 3
! SEQUENTIAL I
ISERVICE AC SYSTEM 480V I
(RADS)
I I
I ITEST I
I f
f f
f f
I f
f I
I I
t ISEQUENTIAL 1
I I
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
ILOCATION INSIDE/0UTSIDE CONTAINMENT I
I I
I I
I IENCINEERING I f
f 1
I IANALYSIS f
I I
I I
I I
I I
I ISUBMERGENCE I NA I
NA I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST I
IABOVE FLOOD LEVEL.
YES I
I I
I t
I f
f f
f f
f f
f DOCUMENTATION
REFERENCES:
NOTES:
I 1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
93G, H,J L, M 94G; 838; 839; 83B, C, D, E, F 1
2.
SPECIFICATION #X3AJ02
- 81E, F, H, L, M; Q10; 86E; Q19 A27, A37, A47, A57, A77, A97, AB7, A28, A38, A48, 3.
QUALIFICATION REPORTS: AWV-02-80 AND ER MO. 355 A58, A78, A98, A29, A49, A59, A79, A2B, A3B, A4B, A78, A4C, AE7, A2D, A1J, A1H, A38S, A28S 2.
FOR AN MSLB WITH SUPERHEATED STEAM IN MSIV AREA, VAPOR TEMPERATURE REACHES 422*F (CALC NO. X6CJH.28).
a 0011N-9/ copy 1790m REV 3 10/86
. ~.
(
i SYSTEM COMPONENT EVALUATION WORK SHEET BOP V0GTLE ELECTRIC GENFRATING PLANT-UNIT 1 SHEET 1 0F 2 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES I QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM AC SYSTEM 4160 V f PARAMETER f SPECIFICATION f OUALIFICATION I SPEC. t QUAL. I 1
IPLANT ID NO.
73K, 73L, 73M I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
l l
TIME I
I I
I IENGINEERING I
! COMPONENT 5 kV POWER CABLE ARMORED f
f I
f f
IANALYSIS f
I I
I I
I I
I I
I I
TEMP.
I 400 1 455 l
1 1
3 FGIMULTANEOUS I I
I
(*F)
I I
I I
ITEST I
IMANUFACTURER THE OKONITE CO.
I f
I f
f f
I I
I I
l I
I I
I I PRESSURE I
50 1 114 1
1 I
3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
l IMODEL NO.
OK0 GUARD INSULATION f
f f
I I
f f
I I
I I
I I
I I
I I RELATIVE I 100 1 100 l
1 1
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
l I
ITEST I
I I
f I
f I
f f
I I
I I
I I
I I
I l CHEMICAL I NOTE 1 IH3H.h + NaOH I
1 1
3 ISIMULTANEOUS I l
SPEC.
NA I
SPRAY I
1+ Na:S Os I
ITEST I
IACCURACY DEMON NA I
I
!+ NaOH(pH-10,5) l I
I I
I I
I I+ Chloride I
f f
I I
I I
I I
I I
I I RADIATION I 2 X 10' I 2.25 X 10' I
1 1
3 ISEQUENTIAL I
ISERVICE AC SYSTEM, 4160 VOLTS, I
(RADS) 1 I
I I
ITEST I
I 3 PHASE 60 Hz, GROUNDED f
f I
t i
NEUTRAL I
I I
I I
ISEQUENTIAL i
I I
AGING I
40 YRS I 40 YRS I
2 1
3 ITEST I
ILOCATION INSIDE CONTAINMENT I
I I
I I
IENGINEERING I I
I I
I I
I IANALYSIS I
I I
I I
I I
I I
I ISUBMERGENCE I YES I YES I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST I
IABOVE FLOOD LEVEL.
NA I
I i
1 1
I I
I I
I I
f I
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
H380s (2000 PPM BORON) + 30-35% WT NaOH, pH = 10.5 - 8.5 2.
SPECiflCATION #X3AJ01 3.
QUALIFICATION REPORTS:
AWV-06-80 AND ER No. 355 2
)
0017N-6/ copy 1790s i
9
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOCTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 2 OF 2 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
I t
t REFERENCES t QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM AC SYSTEM 4160 V I PARAMETER I SPECIFICATION t OUALIFICATION I SPEC. t QUAL. I I
IPLANT ID NO.
63K, 63L, 63M i
I i
i ISIMULTANEOUS I l
t
! OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT 5 kV POWER CABLE I
I I
I I
fANALYSIS t
I I
I I
I I
I I
I TEMP.
I 400 1
415 t
1 1
3 ISIMULTANEOUS I I
I
(*F) l I
I I
ITEST I
IMANUFACTURER THE MERITE CO.
t I
I t
t t
t i
I I
I I
I I
I I
I PRESSURE I
50 1
115 l
1 1
3 ISIMULTANEOUS I I
I (psig)
I I
I I
ITEST I
IMODEL NO.
HTK-SPS SHIELDED, FR f
f I
t i
I t
I JACKETED POWER CABLE I
I I
I I
I I
I I RELATIVE I 100 1
100 1
1 I
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)I I
I I
ITEST I
I f
I t
t I
I f
i 1.
t
.I I
I I
I I
I CHEMICAL I NOTE 1 I
HsBos + NaOH I 1.
I 3
ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I
+ Na:SaOs I
ITEST I
IACCURACY DEMON NA I
I I
I I
I I
I I
t I
f I
f f
I I
I I
I I
I I
I I RADIATION I 2 X 10' I
2.2 X 10' I
1 I
3 ISEQUENTIAL I
ISERVICE AC SYSTEM, 4160 VOLTS, I
(RADS)
I I
I I
ITEST I
I 3 PHASE 60 Hz, GROUNDED t
t I
t t
t t
I NEUTRAL I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
ILOCATION INSIDE CONTAINMENT I
I I
I I
IENGINEERING I I
I I
I I
t IANALYSIS I
I I
I I
I I
I I
I ISUBMERGENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST I
IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
I I
I I
t t
t t
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
HsBOs (2000 PPM Boron) + 30-35% WT NaOH, pH = 10.5 - 8.5 2.
SPECIFICATION #X3AJ01 3.
QUALIFICATION REPORTS: 45453-1 0017N-8 copy 1790s REV 2 8/86
O O
O SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 2 OF 15 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
i 1
1 REFERENCES f QUAL.
I I
i 1
I I
I I
METHOD I
ISYSTEM CAELE SYSTEM f PARAMETER t SPECIFICATION f QUALIFICATION t SPEC. t QUAL. t
,,L IPLANT ID NO.
NA I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT SkV HIGH VOLTAGE HEAT f
I f
f f
t?uALYSis t
l SHRINKABLE TERMINATION KIT I
I I
I I
I I
TEMP.
I 100 1
414 I
1 1
3 ISIMULTANEOUS I i
i 1
(*F) 1 I
I I
ITEST I
IMANUFACTURER RAYCHEM 1
1 I
f 1
t t
I I
I I
I i
I I PRESSURE I
ATM i
28 1
1 1
3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
IMODEL NO.
NMCK8 I
f f
f I
f f
I I
I I
I I
I I RELATIVE I 60 t
100 1
1 1
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
I I
ITEST I
I f
f I
f f
I f
1 I
I I
I I
I I
I I CHEMICAL !
NA I
NOTE 1 I
1 1
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
I ITEST I
IACCURACY DEMON NA I
I l
I I
I I
i 1
f t
I f
f I
I I
I I
I I
I I
I RADIATION I 5 x 10' I
5 X 10' I
1 I
3 ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I I
I I
ITEST I
I I
I f
f I
t t
I l
I I
I ISEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 I
3 ITEST I
! LOCATION AUX. 8LDG. (NOTE 2)
I I
I I
IENGINEERING I i
1 1
I f
f fANALYSIS f
f I
I I
I I
i 1
I ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
I I
IABOVE FLOOD LEVEL.
NA I
I I
I 1
1 I
t f
f f
f 1
f I
DOCUMENTATION
REFERENCES:
NOTES:
1 1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
BORON 6200 PPM HYDRAZINE 50 PPM 2.
SPECIFICATION #X3AJ11 TRISODIUM PHOSPHATE pH = 10.5 3.
QUALIFICATION REPORT:
NO. QP1-V12 2.
WORST CASE - 8RD48 7
0031N-7/ copy 1790m REV 3 10/86 4
O O
O i
SYSTEM COMPONENT EVALUATION WORK SHEET BOP V0GTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 3 0F 15 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
I f
REFERENCES I QUAL.
I I
I I
I I
I METHOD I
I ISYSTEM CABLE SYSTEM f PARAMETER t SPECIFICATION t QUALIFICATION t SPEC. f QUAL. I 1
IPLANT ID NO.
NA I
I I
I I
ISIMULTANEOUS I I
t OPERATING I 1 YR I
1 YR I
2 t
3 ITEST I
I I
TIME I
I I
I IENGINEERING I i
ICOMPONENT LOW VOLTAGE HEAT SHRINKABLE f f
f f
f fANALYSIS I
I TERMINATION KIT I
I I
I I
I I
I I
TEMP.
I 320 I
415 t
1 1
3 ISIMULTANEOUS I f
l t
I
(*F)
I I
I ITEST I
IMANUFACTURER RAYCHEM t
t t
t t
t t
I i
1 I
I I
I I
I I PRESSURE I
50 1
66 1
1 1
3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
IMODEL NO.
NESK t
t t
t t
t t
I I
I I
I I
I I
I I HELATIVE I 100 I
100 1
1 I
3 ISIMULTANEOUS I
)
IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
ITEST I
I I
I 1
1 I
I I
I I
I I
I CHEMICAL I NOTE 1 I
NOTE 2 1
1 1
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
I ITEST I
! ACCURACY DEMON NA I
I I
I I
I I
I t
f I
t t
t t
I I
I I
I I
I I
I I RADIATION I 1.8 X 10' I
2 X 108 1
1 1
3 ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I I
I ITEST I
I I
I f
f I
I t
t I
I I
I ISEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
l ILOCATION INSIDE CONTAINMENT t
I I
I IENGINEERING I I
t t
t I
t fANALYSIS I
4 I
I I
I I
1 1
! SUBMERGENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
181'-2" t
I I
I ITEST I
IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
i t
1 I
1 f
i t
I j
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
H3Bos (2000 PPM BORON) + NaOH 30-35 WT % pH =
10.5-8,5.
2.
SPECIFICATION #X3AJ11 2.
BORON 6200 PPM - HYDRAZINE 50 PPM TRISODIUM PHOSPHATE.
3.
QUALIFICATION REPORT:
NO. QPI-V12 1
0031N-8/ copy 1790s i
REV 3 10/86
O O
O SYSTEM COMPONENT EVALUATION WORK SHEET BOP V0GTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 4 OF 15 I
I I
I I
I EQUIPMENT DESCRIPTION t
ENVIRONMENT I DOCUMENTATION I I
f f
I REFERENCES 1 QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM CABLE SYSTEM t PARAMETER t SPECIFICATION t QUALIFICATION t SPEC. t OUAL. 1 I
IPLANT ID NO.
NA t
I 1
1 I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
I I
TIME I
I I
I IENGINEERING I
! COMPONENT LOW VOLTACE HEAT SHRINKABLE I t
t 1
1 1 ANALYSIS 1
I TERMINATION KIT t
I I
I I
t t
I I
TEMP.
I 320 t
415 t
1 I
3 ISIMULTANEOUS I I
I
(*F)
I I
t ITEST I
IMANUFACTURER RAYCHEM f
f f
f 1
I f
I I
I I
I I
I I
I I PRESSURE I
50 I
66 I
1 1
3 ISIMULTAMEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
NMCK f
f f
f f
f f
I I
I I
I I
I I
I I RELATIVE I 100 1
100 t
1 I
3 ISIMULTANEOUS I
! FUNCTION CLASS 1E POWER IHUMIDITY (%)!
I I
ITEST I
1 1
1 1
1 1
I I
I I
I I
I CHEMICAL I NOTE 1 I
NOTE 2 1
1 1
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
t ITEST I
IACCURACY DEMON NA I
I I
t I
I I
t i
1 1
I I
I I
I I
t I
I RADIATION I 1.8 X 10' I
2 X 108 1
I 3
ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I ITEST I
I I
t t
t t
i 1
1 I
I I
I I
ISEQUENTIAL I
l t
AGING 40 YRS I
40 YRS I
2 I
3 ITEST I
ILOCATION INSIDE CONTAINMENT I
I I
I I
! ENGINEERING I t
i 1
1 I
f IANALYSIS 1
I I
I I
I I
I I
I t
ISUBMERGENCE I YES I
YES I
2 I
3 ISEQUENTIAL I
l IFLOOD LEVEL EL.
181'-2" I
I ITEST I
IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
1 1
1 1
1 1
1 1
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
HsBOs (2000 PPM BORON) + NaOH 30-35 WT %, pH =
10.5-8.5.
2.
SPECIFICATION #X3AJ11 2.
BORON 6200 PPM - HYDRAZINE 50 PPM TRISODIUM PHOSPHATE.
3.
QUALIFICATION REPORT:
NO. QP1-V12 0031N-9/ copy 1790s REV 3 10/86
O O
O SYSTEM COMPONENT EVALUATION WORK SHEET BOP V0GTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 5 OF 15 t
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
I f
REFERENCEG f QUAL.
I t
i I
I I
I METHOD I
ISYSTEM CABLE SYSTEM f PARAMETER f SPECIFICATION f QUALIFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
NA I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT LOW VOLTAGE HEAT SHRINKABLE f f
f f
f IANALYSIS I
I TERMINATION KIT I
I t
I I
I I
I TEMP.
I 320 1
415 t
1 I
3 ISIMULTANEOUS I I
I
(*F) i I
I I
ITEST I
IMANUFACTURER RAYCHEM f
f f
f f
f f
I I
I I
I I
I I
I I PRESSURE I
50 I
66 I
1 1
3 ISIMULTANEOUS I I
I (psig) l I
I I
ITEST I
IMODEL NO.
WCSF-N f
f f
f f
f I
I t
I I
I I
I I
I RELATIVE I 100 t
100 1
1 1
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
ITEST I
I f
1 1
1 f
f f
I I
I I
I I
I I
I I CHEMICAL I NOTE 1 1
NOTE 2 1
1 1
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
I ITEST I
IACCURACY DEMON NA I
I I
I I
I I
I 1
f f
I f
f f
I I
I I
I I
I I
I I RADIATION I 1.8 X 10' t
2 X 10' I
1 I
3 ISEQUENTIAL I
l ISERVICE VARIOUS I
(RADS)
I I
I ITEST I
I 1
1 1
f f
f f
f I
I I
I I
ISEQUENTIAL I
I I
AGING t
40 YRS I
40 YRS I
2 1
3 ITEST t
ILOCATION INSIDE CONTAINMENT t
i I
I I
! ENGINEERING I I
f f
f f
f fANALYSIS f
I I
I I
I I
I I
I ISUBMERCENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
l IFLOOD LEVEL EL.
181'-2" t
t I
I I
ITEST I
IABOVE FLOOD LEVEL.
NA t
i I
I I
I I
f f
f f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3 TABLE 3.11.8.1-1 1.
H3Bos (2000 PPM BORON) + NaOH 30-35 WT %, pH =
10.5-8,5.
2.
SPECIFICATION #X3AJ11 2.
BORON 6200 PPM - HYDRAZINE 50 PPM TRISODIUM PHOSPHATE.
3.
QUALIFICATION REPORT:
NO. QP1-V12 0031N-10/ copy 1790m REV 3 10/86 l
)
0 O
(N p
3 SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOCTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 6 OF 15 t
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES f QUAL.
I I
I I
I I
I I
METHOD I
! SYSTEM CABLE SYSTEM I PARAMETER f SPECIFICATION f QUALIFICATION
- SPEC. I OUAL. f f
IPLANT ID NO.
NA I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT LOW VOLTACE HEAT SHRINKABLE f f
f f
f IANALYSIS I
I TERMINATION KIT I
I I
I I
t i
I I
TEMP.
I 320 I
415 I
1 1
3 ISIMULTANEOUS I I
I
(*F) t I
I I
ITEST I
IMANUFACTURER RAYCHEM f
f f
f 1
f f
I I
I I
I l
i I
I I PRESSURE I
50 I
66 I
1 I
3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
NCBK f
f f
f f
f f
I 1
I I
I I
I I
I I RELATIVE I 100 t
100 1
1 1
3 ISIMULTANEOUS I
! FUNCTION CLASS 1E POWER IHUMIDITY (%)
I I
I ITEST I
I f
I f
f f
f f
I I
I I
I I
t I
1 CHEMICAL I NOTE 1 NOTE 2 1
1 3
ISIMULTANEOUS I SPEC.
NA I
SPRAY I
I I
I ITEST I
! ACCURACY DEMON NA I
I I
I I
I I
i f
f f
I f
f f
I I
I I
I I
I I
I I RADIATION I 1.8 X 10' I
2 X 10' i
1 3
ISEQUENTIAL I
ISERVICE VARIOUS t
(RADS) t I
I I
ITEST I
I f
I f
f f
f f
I I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 I
3 ITEST I
ILOCATION INSIDE CONTAINMENT I
I I
I I
IENGINEERING 1 I
f I
I f
IANALYSIS f
l I
I I
I I
i I
I ISUBMERGENCE I YES I
YES I
2 I
3 ISEQUENTIAL I
I IFLOOD LEVEL EL.
181'-2" I
I I
t ITEST I
I IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
f f
f I
1 I
I f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
HsBOs (2000 PPM BORON) + NaOH 30-35 WT % pH =
10.5-8.5.
2.
SPECIFICATION #X3AJ11 2.
BORON 6200 PPM - HYDRAZINE 50 PPM TRISODIUM PHOSPHATE.
3.
QUALIFICATION REPORT:
NO. QP1-V12 1
6 0031N-11/ copy 1790s REV 3 10/R6 4
A SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC GENLRATING PLANT-UNIT 1 SHEET 11 OF 15 i
t I
I I
i I
EQUIPMENT DESCRIPTION t
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES f QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM CABLE SYSTEM f PARAMETER f SPECIFICATION f QUALIFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
C168, C169, CE6, CL67, t
I I
I I
ISIMULTANEOUS I I
CM67, CO67, CR67, CL67, 1 OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
I HL67 GT67 t
TIME I
I NOTE 4 I
I IENGINEERING I
! COMPONENT 600V INSTRUMENT &
I f
f f
f I ANALYSIS I
i I
SPECIALITY CABLE I
I I
t I
I t
TEMP.
I 320 t
445 I
1 1
3 ISIMULTAMEOUS I I
I
(*F)
I NOTE 3 I
I I
ITEST I
! MANUFACTURER EATON CORP.
I f
f f
f f
f I
l l
I I
I I
I I
I PRESSURE I
50 I
75 t
1 I
3 ISIMULTANEOUS I I
I (psi 9) 1 I
I I
ITEST t
IMODEL NO.
25 MILS XLP0 INSULATION WITH f t
f 1
1 I
f I
HYPALON JACKET SCH. SE-8 I
I I
I I
I I
I I RELATIVE I 100 1
100 I
1 3
ISIMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
I I
ITEST I
I f
I f
f f
f f
I I
I I
I I
I I
I I CHEMICAL I NOTE 1 I
NOTE 2 1
1 1
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
I ITEST I
! ACCURACY DEMON NA I
1 1
I I
I I
I f
f f
f f
f f
I I
I I
I I
I I
f I RADIATION I 1.8 X 10' I
2 X 10' 1
1 3
ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I I
I I
ITEST I
I f
f f
f f
I f
f I
I I
I I
! SEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 I
3 ITEST I
ILOCATION INSIDE/OUTSIDE CONTAINMENT I
I I
I I
! ENGINEERING I I
f f
f f
f IANALYSIS f
I I
I I
I I
I I
I ISUBMERGENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST I
IABOVE FLOOO LEVEL.
NA I
I I
I I
l I
f f
f f
I f
f f
J DOCUMENTATION
REFERENCES:
NOTES:
s 1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1
BORIC ACID (2000 PPM BORON) 30-35 WT % NaOH pH = 10.5-8.5.
2.
BORON 3000 PPM - Na:S Os 0.064 MOLAR 2.
SPECIFICATION X3AJ04 NaOH FOR pH = 9.5 TO 11.5.
3.
FOR AN MSLB WITH SUPERHEATED STEAM IN MSIV AREA, VAPOR 3.
QUALIFICATION REPORT: ISOMETRIC REPORT DATED TEMPERATURE REACHES 422*F.
REFER TO CALCULATION X6CJH.28.
JANUARY, 1980 NTS 558-1088 4.
1 YEAR QUALIFICATION BASED ON CALCULATION X6CJH.37.
SAMOIA REPORT NUREG/CR0275R2 OO31N-16/ copy 1790s REV 3 10/86 I
a
8 SYSTEM COMPONENT EVALUATION WORK SHEET BOP V0GTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 12 0F 15 I
t I
I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
I t
t REFERENCES t QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM CABLE SYSTEM I PARAMETER t SPECIFICATION t QUALIFICATION t SPEC. t OUAL. I t
IPLANT ID NO.
C168, C468, C469, C76, I
I I
I I
ISlMULTANEOUS I I
CB6, CH3A, CM67, CR67, FL67 FV37 I OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
I CL67 GO37, HL67, H03T, ES4D, 1M67 I
TIME I
I NOTE 4 I
t
! ENGINEERING I ICOMPONEN T 600V INSTRUMENT &
t t
t t
t
! ANALYSIS 1
i SPECIALITY CABLE t
t I
I I
I I
I I
TEMP.
320 1
445 I
1 I
3 ISIMULTANEOUS I I
I
(*F)
NOTE 3 I
I I
ITEST I
IMANUFACTURER EATON CORP.
I t
I t
t t
t I
I I
I I
I I
I I
I PRESSURE 1
50 1
105 t
1 3
ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
30 MILS XLPO INSULATION WITH I t
t 1
1 1
1 I
HYPALON JACKET SCH. SE-2 I
I I
I I
I I
I I RELATIVE I 100 1
100 1
1 I
3 ISIMULTANEOUS I IFUNCTION CLASS 1E POWER
! HUMIDITY (%)!
I I
I ITEST I
I i
1 I
f f
f I
I 1
1 I
I I
I I
t CHEMICAL !
NOTE 1 I
NOTE 2 1
I 3
ISIMULTANEOUS I I
SPEC.
NA I
SPRAY I
I I
I ITEST I
! ACCURACY DEMON NA I
I I
I I
I I
I 1
1 f
1 I
t 1
I I
I I
I I
I I
I I RADIATION I 1.8 X 10' I
2 X 10' 1
1 3
ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I I
I ITEST I
t 1
1 i
f I
f f
1 I
I I
I f
! SEQUENTIAL I
I I
AGING I
40 YRS t
40 YRS I
2 1
3 ITEST I
ILOCATION INSIDE AND oui IDE CONTAINMENT!
! ENGINEERING I t
1 1
1 t
I tANALYSIS I
I I
I 1
1 I
I I
I ISUBMERGENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST I
!ABOVE FLOOD LEVEL.
NA t
I I
I I
i 1
I I
t I
t t
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1
BORON ACID (2000 PPM BORON) 30-35 WT % NaOH pH = 10.5-8.5.
I 2
BORON 3000 PPM - Na:Sa0s 0.064 MOLAR 2.
SPECIFICATION X3AJO4 NaOH FOR pH = 9 TO 11.
)
)
3.
FOR AN MSLB WITH SUPERHEATED STEAM IN MSIV AREA, 3.
QUALIFICATION REPORT:
ISOMETRIC REPORT DATED JUNE, 1978 TEMPERATURE REACHES 422'F.
REFER TO CALCUuATION X6CJH.28.
I ISOMETRIC REPORT DATED JANUARY, 1980 4
1 YEAR QUALIFICATION BASED ON CALCULATION X6CJH.37.
SANDIA REPORT NUREG/CR0275R2 OO31N-17/ copy 1790s REV 3 10/86 i
(
V SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 13 OF 15 I
I I
I EQUIPMENT DEScalPTION I
ENVIRONMENT I DOCUMENTATION I I
f i
I t
REFERENCES t QUAL.
I t
I I
I I
METHOO I
ISYSTEM CABLE SYSTEM I PARAMETER t SPECIFICATION I QUAllFICATION 1 SPEC. t QUAL. I t
IPLANT ID NO.
CL67H, C169H I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
I I
TIME I
I NOTE 4 I
I IENGINEERING I I COMPONENT 600V INSTRUMENT &
1 I
I t
t IAMALYSIS f
I SPECIALITY CABLE I
I I
I I
I I
I I
TEMP.
I 320 1
375 t
1 I
3 IslMULTANEOUS I I
I
(*F) i NOTE 3 I
I I
ITEST I
IMANUFACTURER EATON CORP.
I t
t t
t t
t i
I I
I I
I l
t I
t PRESSURE I
50 1
75 I
1 I
3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
30 MILS FR-EPDM INSULATION 1
1 1
I f
I W/ HYPALON JACKET SCH. 3P-6 I
I I
I I
t t
I I RELATIVE I 100 1
100 1
1 1
3 IslMULTANEOUS I IFUNCTION CLASS 1E POWER IHUMIDITY (%)!
I I
I ITEST I
I I
t t
t t
t I
I l
1 1
I I
I I
I I CHEMICAL I NOTE 1 NOTE 2 I
1 3
ISIMULTANEOUS I I
SPEC.
NA 1
SPRAY l
I I
ITEST I
IACCURACY DEMON NA I
I I
I I
I I
I t
t t
I I
I I
I I
I I
I RADIATION I 1.8 X 10' I
2 X 10' I
1 3
ISEQUENTIAL I
ISERVICE VARIOUS I
(RADS)
I I
I I
ITEST I
I I
1 1
I I
t t
i I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 I
3 ITEST I
ILOCATION INSIDE CONTAINMENT I
I I
I I
IENGINEERING !
I t
1 1
I t
IANALYSIS f
I I
I I
I l
t ISUBMERGENCE I YES I
YES I
2 1
3 ISEQUENTIAL I
I IFLOOD LEVEL EL.
VARIOUS I
I I
I I
ITEST t
IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
t t
I t
t t
t t
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 1.
BORIC ACID (2000 PPM BORON) 30-35 WT % NaOH pH = 10.5-8,5.
2.
BORON 3000 PPM - Na:S,0s 0.064 MOLAR 2.
SPECIFICATION X3AJO4 NaOH FOR pH = 9.5 TO 11.5.
3.
FOR AN MSLB WITH SUPERHEATED STEAM IN MSIV AREA, VAPOR 3.
QUALIFICATION REPORT: NTS 558-1088 TEMPERATURE REACHES 422*F.
REFER TO CALCULATION X6CJH.28.
SANDI A REPORT NUREG/CR0275R2 4.
1 YEAR QUALIFICATION BASED ON CALCULATION X6CJH.3T.
D031N-18/ copy 1790s REV 3 10/86
O O
O SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 14 OF 15 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
I f
REFERENCES f QUAL.
1 I
I I
I I
I METHOD 1
ISYSTEM CABLE SYSTEM t PARAMETER f SPECI FICATION f QUALIFICATION f SPEC. f QUAL. I f
IPLANT ID NO.
VARIOUS I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR t
2 1
3 ITEST I
t TIME I
I I
I IENGINEERING I ICOMPONENT ELECTRICAL CONDUCTOR SEAL f
f f
f f
IANALYSIS f
I ASSEMBLY I
I I
t i
I I
I t
TEMP.
I 320 I
432 1
1 1
3 ISIMULTANEOUS t I
t
(*F)
I I
I I
ITEST I
IMANUFACTURER CONAX f
f 1
f f
f f
I I
I I
t t
I I
t
-1 PRESSURE I
SG I
69 I
1 1
3 ISIMULTANEOUS I I
I (psig)
I t
ITEST I
IMODEL NO.
7A57-11000-01 THRU -20 f
f f
1 I
f f
f AND N-11119-01 I
I I
t i
I I
I I RELA TIVE I 100 1
100 1
1 I
3 ISIMULTANEOUS I IFUNCTION IN-LINE CONDulT TO ELECTRICAL IHUMIDITY (%)!
I I
ITEST I
I ENCLOSURE SEAL AGAINST f
f f
f f
f f
I ENVIRONMENTAL CONDITIONS I
I I
t I
I I
I CHEMICAL I 2000 PPM BORON I HsB0s + NaOH + t 1
I 3
ISIMULTANEOUS I I
SPEC.
NA t
SPRAY t PLUS 30-35 WT% ! NaSsOs ITEST I
! ACCURACY DEMON NA I
I NaOH TO ACHIEVEl pH = 10.5 I
I I
I I
f f DESIRED pH f
f f
f f
f i
I I
I I RADIATION I 1.8 X 10' 1
2.21 X 10' i
1 I
3 ISEQUENTIAL I
ISERVICE ELECTRICAL CONDUCTOR I
(RADS)
I I
I ITEST I
I ENCLOSURE f
f f
f f
f f
I I
I I
I I
ISEQUENTIAL I
I I
AGlNG 40 YRS t
40 YRS I
2 I
3 ITEST I
ILOCATION CONTAINMENT (1B-R-A01) 1 I
I I
I
! ENGINEERING I I
f f
1 f
f IANALYSIS f
f I
I I
I I
I I
I ISUBMERGENCE I HA I
MA I
NA I NA INA I
IFLOOD LEVEL EL.
NA I
I I
I I
I I
IABOVE FLOOD LEVEL.
NA I
I I
I I
I I
f f
f f
f f
f f
D0CUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SFECIFICATION X3AB03 3.
TEST REPORTS: 1PS-1044 (X3AB03-98-6) 1PS-798 (X3AB03-89-3) 1PS-1079.1 (X3A803-173-1) 0031M-19/ copy 1790m REV 3 10/86
l 1
l l
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOCTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 22 OF 84 1
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
REFERENCES 1 QUAL.
I i
l I
METHOD I
ISYSTEM ELECTRICAL PENETRATION SYSTEM f PARAMETER t SPECIFICAIlON f QUALIFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
11818H3P22 I
I t
ISIMULTANEOUS I
! OPERATING I 1 YR I
1 YR I
2 1
3 ITEST I
i t
I TIME IENGINEERING !
ICOMPONENT PENETRATION f
f I
f f
fANALYSIS f
I I
I I
1 1
I I
1 TEMP.
I 320 t
, /4 1
1 3
ISIMULTANEOUS I I
(*F)
I I
I ITEST I
IMANUFACTURER CONAX CORP f
f f
f f
f f
I I
I I
I I
I PRESSURE I
50 t
75 t
1 1
3 ISIMULTANEOUS I I
I (psig)
I ITEST I
IMODEL NO.
TYPE 2 LV POWER f
f f
1 f
f f
l I
I I
t I
I I
I RELATIVE I 100 1
100 1
1 3
ISIMULTANEOUS I
! FUNCTION CONTAINMENT PENETRATION
! HUMIDITY (%)!
I I
ITEST I
I f
I f
f f
f I
I I
l I
I I
I CHEMICAL I 2000 PPM I 6200 PPM BORON !
1 3
ISIMULTANEOUS I I
SPEC.
NA I
SPRAY
! BORON 30-35 I HsBOs + N H.
I ITEST I
I
! ACCURACY DEMON NA i
! WT% NaOH I + Na PO.
I t
s I
f I DH = 10.5-8.5 1 pH = 9.23 f
f f
f I
t I
I I
I t
! RADIATION I 1.8 X 10' 2.23 X 10' I
1 3
! SEQUENTIAL I
ISERVICE ELECTRICAL PENETRATION I
(RADS)
I I
ITEST t
ASSEMBLY t
f f
f f
f 1
1
! SEQUENTIAL I
I I
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
l ILOCATION CONTAINMENT (1BRB10)
I I
I
! ENGINEERING I I
f f
I f
IANALYSIS I
I I
I I
I
! SUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
f I
f f
f f
f DOCUMENTATION
REFERENCES:
NOTES:
1 I
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICATION X3AB03 3.
TEST REPORT IPS-473 IPS-585.3 0093N-7/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 24 OF 84 I
I I
t I
EQUI PMENT DESCRIPTION 1
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES I QUAL.
t I
I I
I METHOD
! SYSTEM ELECTRICAL PENETRATION SYSTEM f PARAMETER 1 SPECIFICAT_ ION f QUALIFICATION f SPEC. t QUAL. f f
IPLANT ID NO.
11818H3P24 I
I I
I I
ISIMULTANEOUS I I
I OPERATING 1 1 YR f
1 YR I
2 1
3 ITEST I
I I
TIME I
I I
I
! ENGINEERING !
! COMPONENT PENETRATION f
f f
f f
fANALYSIS f
f I
I TEMP.
I 320 1
374 1
1 3
ISIMULTANEOUS I I
I
(*F) 1 I
I t
ITEST I
! MANUFACTURER CONAX CORP f
f f
f f
f f
I I
I I
! PRESSURE I
50 t
75 1
1 3
ISIMULTANEOUS I I
I (psig)
I I
I ITEST IMODEL NO.
TYPES 4, 5 INSTRUMENT CONTROL f f
f 1
f f
f f
I I
I I
I I
I I
I RELATIVE I 100 1
100 1
1 1
3 ISIMULTANEOUS I
! FUNCTION CONTAINMENT PENETRATION
! HUMIDITY (%)!
! TEST I
I f
I f
f f
f f
I I
I t
I
! CHEMICAL ! 2000 PPM I 6200 PPM BORON I 1
3
! SIMULTANEOUS I I
SPEC.
NA SPRAY I BORON 30-35 t HsBOs + N H.
I I
ITEST I
IACCURACY DEMON NA I
I WT% NaOH I + NasPO.
I I
f f pH = 10.5-8.5 t DH = 9.23 1
f f
f I
I I
I RADIATION I 1.8 X 10' I
2.23 X 10' t
1 1
3 ISEQUENTIAL I
I ISERVICE ELECTRICAL PENETRATION I
(RADS)
I
! TEST I
I ASSEMBLY f
f f
f f
f f
I
! SEQUENTIAL I
I I
AGIhG I
40 YRS I
40 YRS I
2 1
3 ITEST I
ILOCATICN CONTAINMENT (1BRB10)
I I
I I
! ENGINEERING I I
f I
f f
I 1 ANALYSIS I
I I
i ISUBMERCENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
I I
I IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
f f
f f
I f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICATION X3AB03 3.
TEST REPORT IPS-473 IPS-585.3 OO93N-9/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 39 OF 84 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION !
I f
f f
REFERENCES I QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM ELECTRICAL PENETRATION SYSTEM f PARAMETER I SPECIFICATION f QUALIFICATION f SPEC. ! QUAL. f f
IPLANT ID NO.
11818H3P39 I
I I
I I
ISIMULTANEOUS I
! OPERATING !
1 YR I
1 YR I
2 1
3 ITEST I
f I
TIME I
I t
I
! ENGINEERING I ICOMPONENT PENETRATION f
f f
f f
fANALYSIS f
I I
I t
I I
I TEMP.
320 1
374 1
3 ISIMULTANEOUS I I
I
(*F)
ITEST I
IMANUFACTURER CONAX CORP f
I f
f f
I I
I I
I I PRESSURE I
50 t
75 t
1 3
ISIMULTANEOUS !
! (psig)
I
! TEST I
IMODEL NO.
TYPE 3 CONTROL 1
I f
f f
f I
I I
I I
I I
I I RELATIVE I 100 1
100 1
1 1
3 ISIMULTANEOUS I IFUNCTION CONTAINMENT PENETRATION
! HUMIDITY (%)!
! TEST I
I f
f f
f f
f f
I
! CHEMICAL I 2000 PPM
3 ISIMULTANEOUS I I
SPEC.
NA I
SPRAY t BORON 30-35 I HsBOs + NsH.
I
! TEST I
IACCURACY DEMON NA I WT% NaOH I + Na PO.
I I
I t
s I
f I pH = 10.5-8.5 t pH = 9.23 I
f f
f f
I I
I I
I t RADIATION I 1.8 X 10' 2.23 X 10 1
3
! SEQUENTIAL 8
ISERVICE ELECTRICAL PENETRATION I
(RADS)
I I
I ITEST ASSEMBLY f
f f
f I
f f
I I
I I
I I
! SEQUENTIAL 1
1 I
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
ILOCATION CONTAINMENT (1BRB10)
I I
I
! ENGINEERING I I
I f
f f
f fANALYSIS I
I I
I I
I I
I ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
IABOVE FLOOO LEVEL.
YES I
I I
I I
f f
f f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICATION X3AB03 3.
TEST REPORT IPS-473 IPS-585.3 OO93N-24/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 57 OF 84 I
I f
1 I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
REFERENCES f QUAL.
I I
I I
I I
I I
METHOD l
ISYSTEM ELECTRICAL PENETRATION SYSTEM f PARAMETER f SPECIFICAT_ ION f QUALIFICATION f SPEC. f QUAL. I f
IPLANT ID NO.
11818H3P57 I
I I
I I
ISIMULTANEOUS !
I OPERATING t 1 YR I
1 YR I
2 1
3
! TEST I
I t
TIME I
I I
I
! ENGINEERING I
! COMPONENT PENETRATION 1
1 f
f f
fANALYSIS f
I I
I I
I I
I t
I TEMP.
320 I
374 1
1 3
ISIMULTANEOUS I I
I
(*F)
I I
I ITEST I
! MANUFACTURER CONAX CORP f
f f
f f
f f
I I
I I
I I
I I
I I PRESSURE I
50 1
75 1
1 3
ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
4 IMODEL NO.
TYPE 2 LV POWER f
f f
f f
f f
I I
I I
I I
! RELATIVE I 100 t
100 1
1 1
3 ISIMULTANEOUS I IFUNCTION CONTAINMENT PENETRATION
! HUMIDITY (%)!
! TEST I
I f
f f
f f
f I
I I
I I
I I
I I
I I CHEMICAL I 2000 PPM I 6200 PPM BORON I 1
I 3
! SIMULTANEOUS I I
SPEC.
NA I
SPRAY
! BORON 30-35 I HsBOs + NsH.
I I
ITEST I
! ACCURACY DEMON NA I
I WT% NaOH I + Na PO.
I I
I s
I f
f DH = 10.5-8.5 1 DH = 9.23 I
f f
I I
I I
I
! RADIATION ! 1.8 X 10" I
2.23 X 10' t
1 1
3
! SEQUENTIAL t
ISERVICE ELECTRICAL PENETRATION I
(RADS) 1 I
I I
ITEST I
I ASSEMBLY f
f f
f f
f f
I I
I I
I I
ISEQUENTIAL AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
! LOCATION CONTAINMENT (1BRB10)
I I
I I
! ENGINEERING I I
f f
f f
f fANALYSIS f
I I
I I
I I
I
! SUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I f
f f
f f
f f
f DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICATION X3AB03 3.
TEST REPORT IPS-473 iPS-585.3 0094N-22/ copy 1790s REV 3 10/86
SYSTEM COMPONENT rVALUATION WORK SHEET BOP VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 64 OF 84 I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
t t
t REFERENCES t QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM ELECTRICAL PENETRATION SYSTEM t PARAMETER 1 SPECIFICAllON f QUALIFICATION ! SPEC. t QUAL. 1 I
IPLANT ID NO.
11818H3P64 I
t f
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR 1 YR I
2 1
3
! TEST I
I I
TIME I
I
! ENGINEERING I
! COMPONENT PENETRATION t
t t
t t
IANALYSIS t
I I
I I
I I
I I
I TEMP.
320 I
374 1
1 3
ISIMULTANEOUS I
(*F)
I
! TEST I
! MANUFACTURER CONAX CORP I
I I
I I
I I
I I
I PRESSURE I
50 t
75 I
1 I
3 ISIMULTANEOUS I
! (psig)
I I
I ITEST I
1 IMODEL NO.
TYPE 3 CONTROL 1
1 1
I t
t t
I I
I I
! RELATIVE I 100 t
100 t
1 I
3 ISIMULTANEOUS I
! FUNCTION CONTAINMENT PENETRATIO!1
! HUMIDITY (%)!
ITEST I
I I
t t
I t
I I
t
! CHEMICAL t 2000 PPM t 6200 PPM BORON I 1
1 3
ISIMULTANEOUS I I
SPEC.
NA I
SPRAY
! BORON 30-35 I H 803 N H.
I I
ITEST
+
3 3
! ACCURACY DEMON NA t
! W1% NaOH I + M8sPO.
I I
I I
t 9 pH = 10.5-8.5 t pH = 9.23 t
t t
i I
I I
I I
I I
I I RADIATION I 1.8 X 106 I
2.23 X 10' 1
1 3
ISEQUENTIAL t
ISERVICE ELECTRICAL PENETRATION I
(RADS)
I I
I ITEST I
I ASSEMBLY f
f f
f I
t t
I I
I ISEQUENTIAL t
AGING I
40 YRS I
40 YRS I
2 1
3 ITEST I
ILOCATION CONTAINMENT (1BRB10)
I I
I I
! ENGINEERING !
1 t
t 1
1 1 ANALYSIS f
I i
I I
I I
1 1
ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" I
t I
I IABOVE FLOOO LEVEL.
YES I
I I
I I
I i
1 1
I f
f f
I t
DOCUMENTATION
REFERENCES:
NOTES:
^1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICAT10N X3AB03 3.
TEST REPORT IPS-473 IPS-585.3 OO96N-9/ copy 1790s REV 3 10/86 j
SYSTEM COMPONENT EVALUATION WORK SHEET BOP VOCTLE ELECTRIC CENERATINC PLANT-UNIT 1 SHEET 65 OF 84 I
I I
I I
I EQUI PMENT DESCRI PT ION I
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES' I QUAL.
I I
I METHOD I
ISYSTEM ELECTRICAL PENETRATION SYSTEM f PARAMETER f SPECIFICATION f QUALIFICATION f SPEC. t QUAL. 1 1
IPLANT ID NO.
11818H3P65 I
I I
I I
ISIMULTAMEOUS I I
I OPERATING I 1 YR I
1 YR I
2 I
3 ITEST I
t I
TIME I
I I
I IENGINEERING I I COMPONENT PENETRATION f
f f
f f
IANALYSIS f
f I
I t
I I
I TEMP.
I 320 1
374 1
I 3
! SIMULTANEOUS I I
I
(*F)
I ITEST IMANUFACTURER CONAX CORP f
f f
f f
f f
I I
I I
I I
I I
I I PRESSURE I
50 1
75 t
1 3
ISIMULTANEOUS I I
I (psig)
I I
ITEST I
i IMODEL NO.
TYPE 3 CONTROL f
f f
f I
I I
I I
I RELATIVE I 100 1
100 1
1 1
3 ISIMULTANEOUS I
! FUNCTION CONTAINMENT PENETRATION
! HUMIDITY (%)!
ITEST I
I f
f I
f f
f f
f I
I I
I I
I I CHEMICAL I 2000 PPM
1 3
ISIMULTANEOUS I I
SPEC.
NA I
SPRAY
! BORON 30-35 I HsBOs + NsH.
I I
ITEST I
IACCURACY DEMON NA I
I WT% NaOH I + Na:PO.
I I
I I
I I
f pH = 10.5-8.5 t pH = 9.23 f
I f
f f
I I
I I
I I
I RADIATION I 1.8 X 10' I
2.23 X 10' I
1 3
ISEQUENTIAL I
ISERVICE ELECTRICAL PENETRATION I
(RADS)
I
! TEST I
I ASSEMBLY f
f f
f f
f f
I I
! SEQUENTIAL I
I I
AGING 40 YRS I
40 YRS I
2 1
3 ITEST I
! LOCATION CONTAINMENT (IBRB10)
I
! ENGINEERING !
I I
I f
f f
fANALYSIS f
I I
I I
I I
I I
I
! SUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" 1
I I
I I
I I
!ABOVE FLOOD LEVEL.
YES I
I I
I I
I I
f f
I f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR CHAPTER 3, TABLE 3.11.B.1-1 2.
SPECIFICATION X3AB03 3.
TEST REPORT IPS-473 IPS-585.3 0096N-10/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUAT!34 WORK SHEET NSSS VOCTLE ELECTRIC GENERATING PLANT-UNIT 1 l
SHEET 5 OF 99 I
I I
I I
I EQUI PMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES f QUAL.
I t
t t
1 I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER f SPECIFICATION I QUALIFICATION f SPEC. t QUAL. f t
IPLANT ID NO.
1TE413A 1
1 1
I t
ISIMULTANEOUS I I
I OPERATING I 4 MONTHS I
4 MONTHS I
4 1
2,3 ITEST I
I I
TIME I
I I
I IENGINEERING I
! COMPONENT RESISTANCE TEMP DETECTOR f
f f
f f
fANALYSIS f
I WELL MOUNTED I
I I
I I
I I
I TEMP.
t 320 t
420 I
1 I
2,3 ISIMULTANEOUS I f
I I
('F)
I 1
I I
ITEST I
IMANUFACTURER RDF f
f I
f f
f f
I 1
I I
t I
I I
I FRESSURE I
50 t
75 I
1 1
2,3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
21205 i
f f
f f
f f
1 1
1 I
I I
I I
I I
I RELATIVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I
! FUNCTION PAMS IHUMIDITY (%)!
I I
ITEST I
I 1
1 1
I f
f f
f 1
I I CHEMICAL. 1 I
I I
I I
I NOTE 1 1
2750 ppm I
1 2,3 ISIMULTANEOUS I f
SPEC.
0*F DEVIATION AT I
SPRAY I
- t H3 boa /NaOH I
I ITEST I
! ACCURACY DEMON O'F QUALIFIED TEMP. I I
t pH = 10.7 I
I I
I I
1 f
I f
f f
f I
i 1
1 I
I I
I I
I RADIATION I 3 X 10' 1.5X10[T) i NOTE 2 1
I 2,3 ISEQUENTIAL I
ISERVICE TH WR TEMP LOOP #1 HOT LEG t
(RADS)
I (S)I I
I ITEST I
I f
f f
f f
f f
i 1
1 1
I I
ISEQUENTIAL I
I I
AGING t
40 YRS I
10 YRS I
1 1
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) I I
I I
I IENGINEERING I I
f f
f f
I fANALYSIS I
I I
I I
I I
I I
I ISUBMERCENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I t
I I
I IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
I f
f I
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON)
PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 TO 35 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 2.
TIP 2.47 X 10' (T): CABLE 1.15 X 108 (T) CABLE 9.23 X 10' (S) 4.
FSAR TABLE 3.11.N.1-1 0107N-10/ copy 1790s REV. 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 6 OF 99 f
I I
I I
I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
I I
I REFERENCES I QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM I PARAMETER f SPECIFICATION I QUALIFICATION I SPEC. t QUAL. I I
IPLANT ID NO.
1TE413B t
t I
I I
ISIMULTANEOUS I I
I OPERATING 1 4 MONTHS I
4 MONTHS I
4 I
2,3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT RESISTANCE TEMP DETECTOR t
t i
1 1
1 ANALYSIS 1
I WELL MOUNTED I
I I
I I
I I
I I
TEMP.
I 320 1
420 1
1 2,3 ISlMULTAMEOUS I l
I I
(*F) t I
I I
ITEST I
! MANUFACTURER RDF t
t I
f f
1 t
I I
I I
I t
I I PRESSURE I
50 t
75 I
1 1
2,3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
21205 1
I t
i f
I t
I I
I I
I I
I I
I RELATIVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I ITUNCTION PAMS IHUMIDITY (%)!
I I
ITEST I
t t
t t
1 f
I t
t I
I I
I I
I I
I I CHEMICAL I NOTE 1 1
2750 ppm I
1 1
2,3 ISIMULTANEOUS I I
SPEC.
O*r DEVIATION AT I
SPRAY f
I HsBOs/NaOH I
I ITEST I
! ACCURACY DEMON O*F QUALIFIED TEMP. I I
I pH = 10.7 I
I I
I I
I 1
1 f
f 1
I I
I I
I I
f I
I I
I RADIATION I 3 X 10' 1.5X10{T)
NOTE 2 I
1 2,3 ISEQUENTIAL I
ISERVICE TC WR TEMP LOOP #1 COLD LEC I
(RADS) 1 (S)!
I ITEST I
I t
t t
I t
t t
t t
I I
t I
! SEQUENTIAL I
I I
AGING t
- 40. YRS I
10 YRS I
1 1
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1 ARB02) t I
I I
IENGINEERING f I
I I
i 1
1 1 ANALYSIS t
t i
I I
I I
I I
f ISUBMERGENCE I NA I
NA I
NA I MA INA I
! FLOOD LEVEL EL.
181' 2" I
I I
I I
1 1
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
f f
1 1
I t
_t DOCUMENTATION
REFERENCES:
NOTES:
1 FSAR TABLE 3.11.8.1-1 1.
CHEMICALS - SPRAY SOLUTION, son sC ACID (2000 ppm BORON)
PLUS SUFFICIENT SODIUM HYDROXIDE SOLUTION (30 TO 35 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 2.
TIP 2.47 X 10' (T): CABLE 1.15 X 10' (T) CABLE 9.23 X 10' (6).
4.
FSAR TABLE 3.11.N.1-1 1.5 x 10' *?)
0107N-11/ copy 1790s REV. 3 10/86
.--.._m__4._-____._-d.
E'
_.u_-s..
- s b
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATlhG PLANT-UNIT 1 SHEET 11 OF 99 I
I I
I f
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I t
f f
I f
REFERENCES f QUAL.
I I
t i
I I
I METHOD I
ISYSTEM REACTOR COOLANT SYSTEM t PARAMETER f SPJCIFICATION I QUALIFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
ITE423A I
t i
I I
I I
I I OPERATING I 4 MONTHS I
4 MONTHS I
4 I
2,3 ISIMULTANEOUS I I
1 TIME I
I I
I ITEST I
! COMPONENT RESISTANCE TEMP DETECTOR f
f I
f f
f
__1 i
WELL MOUNTED I
I t
t t
I I
I I
TEMP.
I 320 t
420 I
1 1
2,3 ISIMULTANEOUS !
(*F) 1 I
I I
ITEST I
IMANUFACTURER RDF f
f I
f f
f f
h-1 I
t i
I I
I f
1 PRESSURE 1
50 1
75 t
1 1
2,3 ISIMULTANEOUS t I (psig) t I
I I
ITES1 I
I mow *
- J.
21205 f
f f
f f
f
__L I
I t
t I
I I
I I
I RELATIVE 1 100 1
100 1
1 1
2,3 ISIMULTANEOUS I IFUNCTION PAMS IHUMIDITY (%)!
I I
ITEST I
I f
f f
f f
f f
f I
I I
I t
t t
I I CHEMICAL I NOTE 1 1
2750 ppe i
1 1
2,3 ISIMULTANEOUS t i
SPEC.
O'F DEVIATION AT I
SPRAY I
I HsBOs/NaOH I
I ITEST t
IACCURACY DEMON O'F QUALIFIED TEMP. !
I I
pH = 10.7 I
I I
I I
t I
f f
f f
f I
I I
I I
I I
t i
! RADIATION I 3 X 107 1.5xto{T)
I NOTE 2 1
1 2,3 ISEQUENTIAL I
g ISERVICE TH Mt TEMP LOOP #2 HOT LEG (RADS)
I (8)!
I ITEST I
I f
1 f
f f
f f
I I
I I
i 1
ISEQUENTIAL I
I I
ACING 40 YRS I
10 YRS I
1 1
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) !
I I
I I
! ENGINEERING t I
I f
f f
f IANALYSIS
__L I
t I
f I
I I
I ISUBMERGENCE I NA I
NA I MA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
I I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
I f
f f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppe BOFON) 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 PLUS SUFFICIENT SODIUM HYDROXIDE SOLUTION (30 TO 35 Wi% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 2.
TIP 2.47 x 108 (T): CABLE 1.15 x 10' (T) 4.
FSAR TABLE 3.11.N.1-1 9.23 x 10' (S) FOR CABLE 0107M-16/ copy 1790s REV. 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 12 0F 99 l
I I
I I
I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
I t
I t
REFERENCES f QUAL.
I I
I I
I I
I METHOD I
ISYSTEM REACTOR COOLANT SYSTEM t PARAMETFP t SPECIFICATION t QUALIFICA'lON 1 SPEC. t QUAL. I t
I PLANT ID NO.
1TE423B I
~ t I
I I
ISIMULTANEOUS I I
I OPERATING I 4 HONTHS I
4 MONTHS I
4 1
2,3 ITEST I
I I
TIME I
I I
I IENGINEERING !
ICOMPONENT RESISTANCE TEMP DETECTOR t
t t
1 1
1 ANALYSIS t
I WELL MOUNTED t
I I
I I
I t
i I
- TEMP, t
320 1
420 I
1 1
2,3 ISIMULTANEOUS-t,
I I
(*F) t I
I I
ITEST I
IMANUFACTURER RDF t
1 1
I t
1 1
I I
I I
I I
I I
I I PRESSURE t
50 t
75 t
1 1
2,3 ISiMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
21205 t
t t
t 1
I t
I I
I I
I '
t I
I t RELATIVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I IFUNCTION PAMS
! HUMIDITY (%)!
I I
t ITEST I
I t
1 1
1 I
I t
I 1
I I
I 1
1 I
I CHEMICAL I NOTE 1 1
2750 ppm I
1 1
2,3 ISIMULTANEOUS I I
SPEC.
O'F DEVIATION AT t
SPRAY I
HsBOs/NaOH I
I ITEST I
! ACCURACY DEMON O'F QUALIFIED TEMP. I I
I pH = 10.7 I
I I
I I
t 1
1 I
t t
t I
t 1
I I
I I
! RADIATION I 3X10'{T) t NOTE 2 I
1 1
2,3 ISEQUENTIAL I
ISERVICE TC WR TEMP LOOP #2 COLD LEG I
(RADS)
I 1.5 x 10 (S)!
I I
ITEST I
I I
1 1
I I
t t
I I
I I
I I
! SEQUENTIAL I
I I
AGING I
40 YRS I
10 YRS I
1 I
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) t I
I IENGINEERING I I
f I
t t
t IANALYSIS t
I l
I I
I I
I I
! SUBMERGENCE I NA I
NA I NA I MA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
I I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
I f
f f
I f
f f
DOCUMENTA710N
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppe BORON)
PLUS SUFFICIENT SODIUM HYDROXfDE SOLUTION (30 TO 35 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 2.
TIP 2.47 x 10' (Y): CABLE 1.15 x 10' (Y) 9.23 x 10' (8) FOR CABLE 4.
FSAR TABLE 3.11.N.1-1 0107N-17/ copy 1790s
~
REY. 3 10/86 9
~~
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 17 OF 99 l
t i
I I
I I
EQUIPMENT DESCRIPTION f
ENVIRONMENT I DOCUMTNTATION I I
i 1
i REFERENCES I QUAL.
I I
I I
I I
I 1
METHOP I
ISYSTEM REACTOR COOLANT SYSTEM t PARAMETER t SPECIFICATION 1 QUAllFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
1TE433A t
t t
t i
ISIMULTAMEOUS I I
I OPERATING I 4 MONTH $
I 4 MONTHS I
4 1
2,3 ITEST I
I I
IlME I
I I
I IENGINEERING I
! COMPONENT RESISTANCE TEMP DETECTOR t
t t
t t
IANALYSIS t
I WELL MOUNTED I
I I
I t
t I
I I
TEMP.
I 320 t
4PO I
1 1
2,3 ISIMULTAMEOUS I I
I
(*F)
I f
I I
ITEST I
IMANUFACTURER RDF 1
I t
I t
t t
i I
I I
I I
I I
I
! PRESSURE I
50 1
75 1
1 1
2,3 ISIMULTANEOUS I I
! (psig)
I I
ITEST I
!MODEL NO.
21205 t
I f
f I
t t
1 I
I I
I I
I I
I I RELATIVE I 100 1
100 t
1 2,3 ISIMULTANEOUS I IFUNCTION PAMS IHUMIDITY (%)I I
I I
ITEST I
I f
f I
t t
t t
1 I
I I
I I
I I
I I CHEMICAL t NOTE 1 2750 ppe i
1 2,3 ISIMULTANEOUS I I
SPEC.
O'F DFVIATION AT I
SPRAY H BO3/NaOH I
ITEST t
3
! ACCURACY DEMON O'F QUAllFIED TEMP I I
I pH = 10.7 I
I I
I I
t t
t t
t t
t 1
I I
I I
I I
I I
I RADIATION I 3 X 10' 1.5X10[T)
I NOTE 2 I
1 2,3 ISEQUENTIAL I
! SERVICE TH WR TEMP LOOP #3 HOT LEC I
(RADS)
I (S)I I
t ITEST t
I t
t I
f f
1 l
1 1
I ISEQUENTIAL I
I I
AGING t
40 YRS t
10 YRS I
T I
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) 1 I
I I
I IENGINEERING I I
i 1
1 i
f
! ANALYSIS f
I I
I t
t I
I t
! SUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" I
I I
I IABOVE FLOOD LEVEL.
YES t
i I
I I
i 1
t t
i f
f f
f 1
4 DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 2.
TIP 2.47 X 10' (T): CABLE 1.15 X 10' (T)
CABLE 9.23 X 108 (S) 4.
FSAR TABLE 3.11.N.1-1 0117N-7/ copy 1790m REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 l
SHEET 18 OF 99 t
I I
I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I t
t I
I f
REFERENCES f QUAL.
I I
I t
i 1
1 METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER f SPECIFICATION I QUALIFICATION f SPEC. t OUAL. I
_1 IPLANT ID NO.
ITE433B I
I I
ISIMULTANEOUS I I
I OPERATING I 4 MONTHS I
4 MONTHS I
4 1
2,3 ITEST I
I I
TIME I
I I
I
! ENGINEERING I ICOMPONENT RESISTANCE TEMP DETECTOR t
I f
I f
fANALYSIS I
I WELL MOUNTED I
I I
I 1
I I
1 1
TEMP.
I 320 I
420 1
1 1
2,3 ISIMULTANEOUS I l
t I
(*F) 1 I
I ITEST I
! MANUFACTURER RDF f
f f
I f
f f
I I
I I
I I
I I
I I PRESSURE I
50 1
75 I
1 1
2,3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
IMODEL NO.
21205 i
f f
f f
f f
f I
I 1
I I
I I
I I RELATIVE I 100 1
100 I
1 1
2,3 ISIMULTANEOUS I
! FUNCTION PAMS
! HUMIDITY (%)!
I I
I ITEST I
I f
?
1 I
f I
f I
I I
I I
I I
I I
I CHEMICAL t NOTE 2 1
2750 ppm I
1 1
2,3 ISIMULTANEOUS I I
SPEC.
O'F DEVIATION AT I
SPRAY I
HsBOs/NaOH I
I ITEST I
IACCURACY DEMON O'F QUALIFIED TEMP !
I pH = 10.7 I
I I
t I
1 1
f f
f f
f I
t I
I 1
1 I
t
! RADIATION I 3X10'{T)
NOTE 1 1
1 2,3 ISEQUENTIAL I
ISERVICE TC WR TEMP LOOP #3 COLD LEG (RADS)
I 1.5 X 10 (S)!
I ITEST I
i 1
1 1
f f
f f
I I
I I
I I
ISEQUENTIAL t
t I
AGING I
40 YRS I
10 YRS I
1 1
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) I I
t I
IENGINEERING I I
f f
f f
f IANALYSIS f
I I
I I
I I
I I
I ISUBMdRCENCE I NA I
NA I NA 1 NA INA I
IFLOOD LEVEL EL.
181' 2" t
i 1
I I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
i f
I f
f f
f f
DOCUMENTATION
REFERENCES:
NOTLS:
1.
FSAR TABLE 3.11.B.1-1 1.
TIP 2.47 X 10' (T): CABLE 1.15 X 10' (Y)
CABLE 9.23 X 10' (S) 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 2.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROXIDE SOLUTION (30 3.
WCAP 8587 METHODOLOGY REV 6-A TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
4.
FSAR TABLE 3.11.N.1-1 0117N-8/ copy 1790s REV 3 10/86
l l
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 23 OF 99 l
t I
I
" ' "I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION t I
f 1
f REFERENCES f QUAL.
I 1
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER f SPECIFICATION f QUALIFICATION 1 SPEC. t QUAL. f f
IPLANT ID NO.
1TE443A I
I t
t t
ISIMULTAMEOUS 1 I
I OPERATING t 4 MONTH $
I 4 MONTHS I
4 I
2,3 ITEST I
i 1
TIME I
I I
I IENGINEERING I
! COMPONENT RESISTANCE TEMP DETECTOR f
f f
I f
IANALYSIS f
I WELL MOUNTED I
I I
t t
t t
I I
- TEMP, t
320 t
420 1
1 I
2,3
! SIMULTANEOUS I I
I I
(*F) i I
I I
ITEST I
l
! MANUFACTURER RDF I
f f
f f
f I
I I
I I
I I
I I
I PRESSURE I
50 t
75 t
1 2,3
! SIMULTANEOUS I I
I (psig) i I
! TEST I
IMODEL NO.
21205 f
I f
f f
f f
f I
I I
I t
I t
I RELATIVE I 100 1
100 I
1 1
2,3 ISIMULTANEOUS I IFUNCTION PAMS
! HUMIDITY (%)!
! TEST I
I f
f f
f f
f f
1 I
I I
I I
I I
I I CHEMICAL I NOTE 2 1
2750 pon I
1 i:
2,3 ISIMULTANEOUS I I
SPEC.
O'F DEVIATION AT I
SPRAY I
HaBOa/NaOH I
I ITEST I
IACCURACY DEMON 0*F QUALIFIED TEMP t t
I pH = 10.7 t
I t
t I
1 f
f t
f f
f I
I I
I I
I I
I I
I RADIATION I 3X10'[T) !
NOTE 1 I
1 2,3 ISEQUENTIAL I
ISERVICE TH WR TEMP LOOP #4 HOT LEG t
(RADS)
I 1.5 X 10 (S)!
I ITEST I
f f
f I
f f
f 1
I I
I I
I ISEQUENTIAL I
I I
AGING 40 YRS I
10 YRS I
1 1
2,3 ITEST I
! LOCATION CONTAINMENT BUILDING (1ARB02) !
I
! ENGINEERING I I
1 f
f f
f fANALYSIS f
f I
I I
I t
I I
! SUBMERGENCE I NA I
NA I MA I NA INA IFLOOD LEVEL EL.
181' 2" I
I t
i 1
1 IABOVE FLOOD LEVEL.
YES t
I I
I I
I f
f I
f f
f f
f DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
TIP 2.47 X 10' (Y): CABLE 1.15 X 10' (Y)
CABLE 9.23 X 10' (S) 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 2.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYOROXIDE SOLUTION (30 3.
WCAP 8587 METHODOLOGY REV 6-A TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
4.
FSAR TABLE 3.11.N.1-1 l
0117N-13/ copy 1790m REV 3 10/86 l
I
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 l
SHEET 24 OF 99 t
I I
I I
EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
f 1
f REFERENCES f QUAL.
I I
I I
I I
I I
METHOD I
! SYSTEM REACTOR COOLANT SYSTEM f PARAMETER I SPECIFICATION f QUALIFICATION f SPEC. t QUAL. I f
IPLANT ID NO.
1TE443B I
I t
t t
ISIMULTAMEOUS I I
I OPERATING I 4 MONTHS I
4 MONTHS I
4 1
2,3 ITEST I
I I
TIME I
I I
I IENGINEERING I ICOMPONENT RESISTANCE TEMP DETECTOR I
I f
f f
IANALYSIS f
I WELL MOUNTED I
I I
I I
I I
I I
TEMP.
320 t
420 1
1 1
2,3 ISIMULTANEOUS I t
I
(*F)
I I
I ITEST I
! MANUFACTURER RDF f
f f
f f
f f
I I
I I
I t
I I
I PRESSURE I
50 1
75 1
1 2,3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST I
IMODEL NO.
21205 1
f f
f f
f f
I I
I I
I I
I I
I I RELAllVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I
! FUNCTION PAMS IHUMIDITY (%)I I
I I
ITEST I
I I
f f
f f
f f
I I
I I
I I
I I
I
! CHEMICAL t NOTE 2 t
2750 ppm I
1 1
2,3 ISIMULTANEOUS I I
SPEC.
O*r DEVIATION AT I
SPRAY I
I H3BOs/NaOH ITEST I
! ACCURACY DEMON O'F QUALIFIED TEMP I I
I pH = 10.7 I
I I
I I
I f
f f
f f
f I
I I
I I
I I
I t
1 RADIATION I 3X10'[Y) i NOTE 1 1
1 1
2,3 ISEQUENTIAL I
ISERVICE TC WR TEMP LOOP #4 COLD LEG I
(RADS)
I 1.5 X 10 (8)!
I I
ITEST I
I f
f f
f f
f f
I I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS I
10 YRS I
1 1
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1 ARB02) !
I I
I I
IENGINEERING I I
I f
f I
f fANALYSIS f
I I
I I
I I
I I
I ISUBMERGENCE I NA I
NA I NA I MA INA I
IFLOOD LEVEL EL.
181' 2" 1
I I
I I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
I f
f f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
TIP 2.47 X 10' (T): CABLE 1.15 X 10' (F)
CABLE 9.23 X 10' (8) 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-6 REV 5 2.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 3.
WCAP 8587 METHODOLOGY REV 6-A TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
4.
FSAR TABLE 3.11.N.1-1 0117N-14/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 32 OF 99 l
t I
I I
I EQUI PMENT DESCRI PTION I
ENVIRONMENT I DOCUMENTATION I I
f f
f REFERENCES 1 QUAL.
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER ! SPECIFICATION f QUALIFICATION f SPEC. f QUAL. I f
IPLANT ID NO.
IPT455 I
I I
t t
ISIMULTANEOUS I I
I OPERATING !
4 MONTHS I
4 MONTHS I
5 1
2,3 ITEST I
I I
TIME f
f f
I IENGINEERING I
!COM PONENT PRESSURE TRANSMITTER f
f f
f f
fANALYSIS f
f QUAL GROUP A I
I I
I t
t I
I I
TEMP.
t 320 t
420 I
1 1
2,3 ISIMULTANEOUS I I
(*F)
I I
I ITEST I
IMANUFACTURER VERITRAK I
I f
f f
f f
I I
I I
I I
I I
I I PRESSURE I
50 t
57 I
1 1
2,3 ISIMULTANEOUS I I
I (psig)
I I
I I
ITEST I
IMODEL NO.
76PH2 f
f I
f f
f f
I I
I I
I I
I I
I I RELATIVE I 100 1
100 I
1 1
2,3 ISIMULTANEOUS I IFUNCTION REACTOR TRIP, ESF, AND SAFETY IHUMIDITY (%)!
I I
I ITEST I
I GRADE COLD SHUTDOWN f
f I
f f
f f
I I
I I
I I
I I
I I CHEMICAL I NOTE 1 I
2500 ppm i
1 2,3 ISIMULTANEOUS I I
SPEC.
110%
DEVIATION I
SPRAY I
I HsB0 /NaOH I
I ITEST I
3 IACCURACY DEMON 110%
POST DBE I
I I
pH = 10.7 I
I I
I I
f f
I f
f f
f I
I I
I I
I I RADIATION I 3X10'{t) 1 5 X 10' (Y) I 1
1 2,3 ISEQUENTIAL I
ISERVICE PRESSURIZER PRESSURE I
(RADS)
I 1.5 x 10 (8) !
9 X 10' (S) !
I ITEST I
I f
f f
f I
f f
I I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS 7.4 YRS I
1 I
4 ITEST I
ILOCATION CONTAINMENT BUILDING (1BRB03) !
I I
! ENGINEERING I I
f f
f f
f IANALYSIS f
I I
I I
I I
I I
I ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" I
I I
I I
I IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
f 1
I f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - CPRAY SOLUTION, BORIC ACID (2000 ppm l
BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-1B REV 1 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A
{
4.
WCAP 8587 EQDP-ESE-1B ADDENDUM REV O
{
5.
FSAR TABLE 3.11.N.1-1 0120N/8/ copy 1790m REV. 3 10/86
~ _ - - - -
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 33 OF 99 i
i I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTAT*0N t t
f f
f REFEPrnCES f QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER f SPECIFICATION f QUALIFICATION f SPEC. t OUAL. I f
IPLANT 10 NO.
1PT456 1
I t
t t
ISIMuLTAMEOUS 1 I
I OPERATING I 4 MONTHS I
4 MONTHS I
5 t
2,3 ITEST I
I I
TIME I
I I
I IENGINEERING I
! COMPONENT PRESSURE TRANSMITTER f
f f
f f
1 ANALYSIS f
I QUAL CROUP A I
I I
I I
I t
I TEMP.
320 t
420 f
1 f
2,3 ISIMULTANEOUS I I
1
(*F) 1 I
I I
ITEST I
IMANUFACTURER VERITRAK f
f f
f f
f f
f I
I I
I I
I I
I I PRESSURE I
50 1
57 I
1 1
2,3 ISIMULTANEOUS I 4
I I (psig)
I I
I ITEST I
IMODEL NO.
76PH2 f
f f
f f
f f
I I
I f
I I
I I
I I RELATIVE I 100 t
100 f
1 1
2,3 ISIMULTANEOUS I j
! FUNCTION ESF, REACTOR TRIP, AND SAFETY IHUMIDITY (%)!
I I
ITEST I
I CRADE COLD SHUTDOWN f
f f
f f
t f
1 I
I I
I I
I I
I CHEMICAL I NOTE 1 1
2500 ppm 1
1 1
2,3 ISIMULTANEOUS I i,
I SPEC.
f10%
DEVIATION I
SPRAY I
I HsBOa/NaOH I
I ITEST I
IACCURACY DEMON 110%
POST DBE I
I I
pH = 10.7 I
I I
I I
f f
f f
f f
1 1
1 1
I I
I I RADIATION t 3X10'[Y) f 5 X 10' (T) I 1
1 2,3 ISEQUENTIAL I
ISERVICE PRESSURIZER PRESSURE I
(RADS)
I 1.5 X 10 (SI I 9 X 108 (S) !
I ITEST I
I f
f f
f f
f t
1 i
I I
ISEQUENTIAL i
1 AGING I
40 YRS I
7.4 YRS 1
I 4
! TEST I
ILOCATION CONTAINMENT BUILDING (1BRB03) !
I
! ENGINEERING I j
I f
f I
f fANALYSIS f
I t
I I
I I
I ISUBMERCENCE I NA I
NA
! NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
I I
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
f f
f f
f f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 I
2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-1B REV 1 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 4.
WCAP 8587 EQDP-ESE-1B ADDENDUM REV O 5.
FSAR TABLE 3.11.N.1-1 0120N/9/ copy 1790m REV. 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOCTLE ELECTRIC GENERATING PLANT-UNIT 1 f
SHEET 34 OF 99 f
I I
I I
EQUI PMENT DESCRI PTION I
ENVIRONMENT I DOCUMENTATION I I
f f
I f
REFERENCES f QUAL.
I i
1 I
I I
I METHOD I
ISYSTEM REACTOR COOLANT SYSTEM I PARAMETER f SPECIFICATION I QUALIFICATION f SPEC. t QUAL. 1 I
! PLANT ID NO.
IPT457 1
1 1
I I
ISIMULTANEOUS E I
I OPERATING !
4 MONTHS I
4 MONTHS f
5 1
2,3 ITEST I
I t
TIME l
1 I
I IENGINEERING I ICOMPONENT PRESSURE TRANSMITTER 1
f f
I f
fANALYSIS f
f QUAL GROUP A I
I I
I I
i 1
1 TEMP.
t 320 t
420 1
1 1
2,3 ISIMULTANEOUS I I
I
(*F)
I ITEST I
l MANUFACTURER VERITRAK f
f f
I f
f f
1 I
I I
I I
I I
I I PRESSURE 1
50 1
57 1
1 2,3 ISIMULTANEOUS !
I (psig)
I I
I I
ITEST I
IMODEL NO.
76PH2 f
f f
I f
f f
I I
I I
I I
I I
I I RELATIVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I IFUNCTION ESF. REACTOR TRIP. AND SAFETY IHUMIDITY (%)I t
1 1
ITEST I
l CRADE COLD SHUTDOWN f
f f
f I
f f
I I
I 1
1 I
I I
I CHEMICAL I NOTE 1 1
2500 ppm 1
I 2,3 ISIMULTANEOUS I I
SPEC.
110%
DEVIATION I
SPRAY t
HsBOs/NaOH I
I ITEST I
IACCURACY DEMON 110%
POST DBE I
I I
pH = 10.7 i
I I
f f
f f
f f
f f
I I
f f
I
! RADIATION I 3X10'[Y)
I 5 X 10' (T) I 1
I 2,3 ISEQUENTIAL I
ISERVICE PRESSURIZER PRESSURE I
(RADS)
I 1.5 X 10 (8) !
9 X 10' (8) I ITEST I
I 1
1 1
f f
f 1
I I
I I
I
! SEQUENTIAL I
I AGING 40 YRS I
7.4 YRS I
1 1
4 ITEST
! LOCATION CONTAINMENT BUILDING (1BRB03) !
I IENGINEERING !
1 1
1 I
f IANALYSIS f
f I
I I
I I
t t
t ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
I I
I I
I I
IABOVE FLOOD LEVEL.
YES I
f f
I I
I I
f f
f 1
I f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROXIDE SOLUTION (30 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-1B REV 1 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 4.
WCAP 8587 EQDP-ESE-1B ADDENDUM REV O 5.
FSAR TABLE 3.11.N.1-1 0120N/10/ copy 1790m REV. 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 35 0F 99 1
1 I
I EQUlPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
i 1
f REFERENCES f QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER I SPECIFICATION f QUALIFICATION f SPEC. t QUAL. f f
IPLANT ID NO.
1PT458 1
1 I
I I
ISIMULTANEOUS I I
I OPERATING I 4 MONTHS I
4 MONTHS I
5 1
2,3 ITEST I
I I
TIME I
I I
f
! ENGINEERING I ICOMPONENT PRESSURE TRANSMITTER f
I f
f f
IANALYSIS f
I QUAL GROUP A I
I I
I t
1 I
1 1
TEMP.
t 320 t
420 1
1 1
2,3 ISIMULTANEOUS I l
l t
(*F)
I I
I ITEST I
l l MANUFACTURER VERITRAK f
f f
f f
f f
I 1
I I
I I
I I
I I PRESSURE I
50 1
57 1
1 2,3
! SIMULTANEOUS I I
1 (psig) i 1
I I
ITEST I
IMODEL NO.
76PH2 1
f f
f f
f f
f I
I t
t i
1 1
1 RELATIVE !
100 1
100 f
1 2,3 ISIMULTANEOUS I IFUNCTION ESF, REACTOR TRIP, AND SAFETY IHUMIDITY (%)!
I I
ITEST I
I GRADE COLD SHUTDOWN f
f f
f f
f f
I 1
1 I
I t
I t
! CHEMICAL !
NOTE 1 1
2500 ppm i
1 1
2,3 ISIMULTANEOUS I I
SPEC.
110%
DEVIATION I
SPRAY t
t H2B0 /NaOH t
1 ITEST I
3
! ACCURACY DEMON
+10%
POST DBE I
I I
pH = 10.7 I
I I
t I
I I
f f
f f
I I
I I
! RADIATION I 3 X 10' (Y) 1 5 X 10' (Y) I 1
1 2,3 ISEQUENTIAL I
ISERVICE PRESSURIZER PRESSURE 1
(RADS) 1.5 X 108 (S) !
9 X 10' (S) i I
ITEST I
t I
f f
f f
f f
I 1
I I
f
! SEQUENTIAL i
I AGING 40 YRS 7.4 YRS 1
I 4
ITEST I
ILOCATION CONTAINMENT BUILDING (1BRB03) 1 I
I
! ENGINEERING I I
f 1
f f
IANALYSIS f
f I
I I
I I
I I
t ISUBMERGENCE I NA I
NA
! NA I NA INA I
IFLOOD LEVEL EL.
181' 2" i
1 1
1 I
!ABOVE FLOOD LEVEL.
YES I
I I
I f
1 1
1 f
I I
I DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACsu (2000 ppm BORON) PLUS SUFFICIENT SODIUM HYDROXIDE SOLUTION (30 2.
WCAP 8587 SUPPLEMENT 1 EQOP-ESE-1B REV 1 TO 35 Wi% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 4.
WCAP 8587 EQDP-ESE-1B ADDENDUM REV O 5.
FSAR TABLE 3.11.N.1-1 0120N/11/ copy 1790m REV. 3 10/86 1
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS V0GTLE ELECTRIC CENERATING PLANT-UNIT 1 f
SHEET 51 OF 99 I
I I
t i
I EQUIPMENT DESCRIPTION.
I ENVIRONMENT I DOCUMENTATION I I
f 1
f REFERENCES I QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM f PARAMETER f SPEClflCATION I QUALIFICATION f SPEC. t OUAL. I f
IPLANT ID NO.
1PV455A I
t I
i i
ISIMULTANEOUS I I
I OPERATING I 1 YR I
1 YR I
4 I
2,3 ITEST I
1 1
TIME I
I I
l
! ENGINEERING I
! COMPONENT SOLENOID OPERATED PILOT f
f I
I f
IANALYSIS f
f VALVE AND POSITION I
I t
i I
I I
I INDICATION DEVICE I
- TEMP, t
320 t
420 1
1 1
2,3 ISIMULTANEOUS I I
I
(*F)
I I
I ITEST I
! MANUFACTURER GARRETT f
I f
f f
f f
I I
I I
I I
I I
I I PRESSURE I
50 t
70 1
1 1
2,3 ISIMULTANEOUS I I
I (psig)
I I
I ITEST IMODEL NO.
3750014 f
f f
f I
f f
I t
i I
I I
I I
I I RELATIVE I 100 I
100 1
1 2,3 ISIMULTAMEOUS I
! FUNCTION RCS PRESSURE BOUNDARY ISOLATION IHUMIDITY (%)!
I I
ITEST t
I AND SAFETY GRADE COLD SHUTDOWN f f
f f
f f
f f
i I
I t
i i
1 1 CHEMICAL I NOTE 1 1
2500 PPM I
1 1
2,3 ISIMULTANEOUS I I
SPEC.
N/A I
SPRAY HsBOs/NaOH I
I ITEST I
! ACCURACY DEMON N/A I
I I
pH = 10.5 I
I I
I I
i f
f f
f f
f 1
1 I
I I
I I
I I
I RADIATION I 1.8 X 10' I
2.07 X 10' t
1 1
2,3 ISEQUENTIAL I
I I
I ITEST I
I I
f f
f f
f f
I I
I I
I I
ISEQUENTIAL I
I I
AGING I
40 YRS t
40 YRS 1
1 2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1BR110) !
I I
I I
! ENGINEERING t I
f f
f f
f IANALYSIS f
I I
I I
1 I
I I
I ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" I
t t
I I
j '
IABOVE FLOOD LEVEL.
YES I
I f
I f
I I
f f
f f
f f
f f
j DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 PPM BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 l
2.
WCAP 8587 SUPPLEMENT 1 EQDP-HE-9 REV 1 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
i 4
3.
WCAP 8587 METilODOLOGY REV 6-A I
4.
FSAR TABLE 3.11.N.1-1 0121N-11/ copy 1790s REV 3 10/86 l
i
SYSTEM COMPONENT EVALUATICN WORK SHEET NSSS VOGTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 52 OF 99 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I i
1 I
t REFERENCES !
QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM I PARAMETER I SPECIFICATION t QUALIFICATION 1 SPEC. t QUAL. f f
IPLANT ID NO.
1PV456A I
I I
I I
ISIMULTANEOUS I I
I OPERATING I 1 YR 1 YR I
4 I
2,3 ITEST I
I I
TIME 1
I I
I IENGINEERING I ICOMPONENT SOLENOID OPERATED PILOT f
I f
f f
fANALYSIS t
VALVE AND POSITION I
I I
I I
1 1
INDICATION DEVICE I
TEMP.
I 320 t
420 1
1 1
2,3 ISIMULTANEOUS I l
t I
(*F)
I I
I I
ITEST I
I IMANUFACTURER GARRETT f
f f
f 1
1 1
1 I
I I
I I
I I
I I PRESSURE I
50 1
70 I
1 1
2,3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
IMODEL NO.
3750014 i
f f
I t
t t
t I
I I
I I
I
! RELATIVE I 100 1
100 1
1 1
2,3 ISIMULTANEOUS I
! FUNCTION RCS PRESSURE BOUNDARY ISOLATION IHUMIDITY (%)!
I I
I ITEST I
I AND SAFETY GRADE COLD SHUTDOWN f f
I f
f 1
1 1
I I
I I
I I
I t
! CHEMICAL I NOTE 1 1
2500 PPM i
1 2,3 ISIMULTANEOUS !
SPEC.
N/A I
SPRAY HsB03/NaOH I
I ITEST I
IACCURACY DEMON N/A I
I I
pH = 10.5 I
I I
I I
t f
f I
f 1
I I
I I
I I
I I
I RADIATION I 1.8 X 10' 2.07 X 10' t
1 1
2,3 ISEQUENTIAL I
! SERVICE PZR PORV I
(RADS)
I I
I I
ITEST f
I I
1 t
t t
I t
i I
I I
t ISEQUENTIAL t
I AGING I
40 YRS I
40 YRS I
1 I
2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1BR110) I t
I I
IENGINEERING I I
f f
f f
f IANALYSIS I
I I
I I
I I
I I
I ISUBMERGENCE I NA I
NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" t
t I
1 1
I I
IABOVE FLOOD LEVEL.
YES I
I I
I I
I I
1 1
f f
f f
1 1
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
CHEMICALS - SPRAY SOLUTION, BORIC ACID (2000 PPM BORON) PLUS SUFFICIENT SODIUM HYDROX1DE SOLUTION (30 2.
WCAP 8587 SUPPLEMENT 1 EQDP-HE-9 REV 1 TO 35 WT% NaOH) TO ACHIEVE THE DESIRED pH.
3.
WCAP 8587 METHODOLOGY REV 6-A 4.
FSAR TABLE 3.11.N.1-1 l
0121N-12/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS V0GTLE ELECTRIC CENERATING PLANT-UNIT 1 SHEET 65 OF 99 I
I I
I I
I EQUIPMENT DESCRIPTION ENVIRONMENT I DOCUMENTATION t I
f I
f REFERENCES f CUAL.
I I
I 1
I I
I t
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM I PARAMETER t SPECIFICATION I QUALIFICATION f SPEC. t OUAL. 1 f
IPLANT ID NO.
PT403 I
I I
I t
i I
t t OPERATING !
NA I
NA I
4 i NA INA I
I I
TIME I
NOTE 2 I
I I
I I
ICOMPONENT PRESSURE TRANSMITTER f
f I
i 1
1 f
I QUAL GROUP A I
I I
I I
I t
1 TEMP.
I 120 I
420 1
1 I
2,3 ISIMULTANEOUS I I
I
(*F)
NOTE 1 I
I I
ITEST I
IMANUFACTURER VERITRAK f
f f
f I
f f
I 1
I I
l t
I I
I PRESSURE I
17.7-13.2 1
57 I
1 1
2,3 ISIMULTANEOUS I I
I (psig) 1 I
I I
ITEST I
IMODEL NO.
76PH2 i
f f
1 I
I I
I t
I I
I I
I
! RELATIVE I 50 1
100 1
1 I
2,3 IslMULTANEOUS I IFUNCTION COMS (COLD OVERPRESSURE IHUMIDITY (%)I I
I I
ITEST I
I MITICATION SYSTEM) t t
t t
I f
f I
I t
I I
I I
I 1 CHEMICAL I NA I
2500 PPM I
1 I
2,3 ISIMULTANEOUS I I
SPEC.
110%
DEVIATION I
SPRAY HsBOs/NaOH I
I ITEST I
IACCURACY DEMON 110%
POST DBE I
I I
pH = 10.7 I
I I
t I
t i
f I
t i
I I
I I
t t
I 1
1 I RADIATION I 2 X 10' I
5 X 10' (T) I 1
2,3 ISEQUENTIAL I
ISERVICE LOOP #1 HOT LEG WR PRESS I
(RADS)
I 9 X 10' (S) 1 I
ITEST I
I I
f I
t t
1 1
1 I
I I
I I
ISEQUENTIAL I
t AGING t
40 YRS I
7.4 YRS 1
2,3 ITEST I
! LOCATION CONTAINMENT BUILDING (1BRB03) !
I I
I I
IENGjNEERING I I
t 1
1 f
I fANALYSIS 1
1 I
1 I
I I
ISUBMERCENCE I NA I
NA I NA
! NA INA I
IFLOOD LEVEL EL.
181' 2" t
I NOTE 1 I
1 1
I I
!ABOVE FLOOD LEVEL.
NO I
I I
I I
I I
t t
I f
f f
f I
DOCUMENTATION
REFERENCES:
NOTE 3:
1.
FSAR TABLE 3.11.B.1-1 1.
THIS DEVICE IS REQUIRED FOR NORMAL ONLY 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-1B 2.
NOT REQUIRED FOR POST ACCIDENT 3.
WCAP 8587 METHODOLOGY REV 6-A 4.
FSAR TABLE 3.11.N.1-1 0122N-13/ copy 1790s REV 3 10/86
SYSTEM COMPONENT EVALUATION WORK SHEET NSSS VOGTLE ELECTRIC GENERATING PLANT-UNIT 1 SHEET 66 OF 99 I
I I
I I
I EQUIPMENT DESCRIPTION I
ENVIRONMENT I DOCUMENTATION I I
1 I
f REFERENCES f QUAL.
I I
I I
I I
I I
METHOD I
ISYSTEM REACTOR COOLANT SYSTEM 1 PARAMETER f SPECIFICATION f QUALIFICATION f SPEC. t QUAL. f f
IPLANT lD NO.
PT405 I
I I
I t
t t
I I OPERATING I NA I
NA I
4 I NA INA i
1 TIME I
NOTE 2 I
I I
I I
! COMPONENT PRESSURE TRANSMITTER f
f f
f f
f f
I QUAL GROUP A I
I I
t I
I I
TEMP.
120 I
420 1
1 I
2,3 ISIMULTANEOUS I I
(*F) i NOTE 1 I
I I
ITEST I
IMANUFACTURER BARTON I
f f
f I
f f
I I
I I
I I
I I
I I PRESSURE I
17.7-13.2 I
57 I
1 I
2,3 ISIMULTANEOUS I I
I (psig)
I I
I I
ITEST I
IMODEL NO.
763 f
f f
f f
I
~
f
+
I I
I I
I I
I I RELATIVE I 50 1
100 t
1 1
2,3 ISIMULTANEOUS I IFUNCTION COMS (COLD OVERPRESSURE
! HUMIDITY (%)!
t I
ITEST I
I MITIGATION SYSTEM) f f
I f
f f
f I
I I
I t
i I
I I
I CHEMICAL !
NA I
2500 PPM I
1 2,3 ISIMULTANEOUS I I
SPEC.
110%
DEVIATION I
SPRAY t
i H3BOs/NaOH I
I ITEST I
IACCURACY DEMON 110%
POST DBE I
I pH = 10.7 1
1 I
I I
f I
f I
f f
f f
I I
I i
I RADIATION I 2 X 10' t
5 X 10' (Y) I 1
1 2,3 ISEQUENTIAL I
ISERVICE LOOP #4 HOT LEG WR PRESS i
(RADS)
I 9 X 10' (S) !
I ITEST I
I 1
I f
f f
I f
I I
I I
I ISEQUENTIAL t
I AGING 40 YRS 1
6 YRS I
1 2,3 ITEST I
ILOCATION CONTAINMENT BUILDING (1ARB02) !
I
! ENGINEERING I I
f f
f f
f IANALYSIS f
I f
I i
I I
I I
! SUBMERGENCE I NA NA I NA I NA INA I
IFLOOD LEVEL EL.
181' 2" NOTE 1 I
I I
I IABOVE FLOOD LEVEL.
NO I
I I
I I
I I
f 1
1 1
I f
f f
DOCUMENTATION
REFERENCES:
NOTES:
1.
FSAR TABLE 3.11.B.1-1 1.
THIS DEVICE IS REQUIRED FOR NORMAL ONLY 2.
WCAP 8587 SUPPLEMENT 1 EQDP-ESE-1A 2.
NOT REQUIRED FOR POST ACCIDENT 3.
WCAP 8587 METHODOLOGY REV 6-A
- 2 10, l
0122N-14/ copy 1790m REV 3 10/86 j
i -2 Environmental Qualification Requirements
O O
O O
O O
O i
TABLE 3.11.B.l-1 (SHEET 1 OF 84)
ENVIRONMENTAL CONDITIONS NOTE: This table replaces the previous 17 pane versson of this table in its entirety. Previous amendments to this table include amendment 9. 8/84. and amendment 19. 9/85.
RELATIVE NORMAL ABNORMAL TEST (I)
OBA/ POST-0BA(2)
EstIDIIY MAX l27 (5)
NORMAL DBA ENVIR.
TEfr INT.
TEMP
'F TEMP INT.
DESIGNATOR UNIT
- F PRESS DOSE-RADS MAX / MIN PRESS
],,,,,
PHE,5,5,,,
DOSE-RADS j
I.
SPRAYE0 VAPOR REGION l
IB-R-301H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-302H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-101H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 18-R-102H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IS-R-103H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IS-R-104H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 23 27 $!
IS-A-105H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 c3 IS-A-106H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100
'f 18-R-111H 1/2 120 17.7-13.2 psia 2 x 1C6 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 m
IB-R-A01H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 2.
L50SPAMED VAPOR LEGION IB-A-107H 1/2 120 17.7-13.2 psia 2 x IC6 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 I Nt-108N 1/2 120 17.7-13.2 psia 2 x It' 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 Is-R-110H 1/2 120 17.7-13.2 psia 2 x it' 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-115H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 27
-l 18-R-A02H 1/2 120 17.7-13.2 psia 2 x IC6 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-A03H 1/2 120 17.7-13.2 psia 2 x it' 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100
,IE-A-A04H 1/2 120
,17.7-13.2 psia 2 x 1C6 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 1
IB-R-A05H 1/2 120 17.7-13.2 psia 2 x IC6 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 3401t H = Harsh envirenannt foote: If any one of the folleuing condition exists, the ream is classified as in harsh environment.
gg 1.
Temperature increates due to the pipe break.
mo DD 4
D' f' 2.
T.I.0 > 1 x 10 rad CONTAIINEENT bJILDING(3)
NN i
4W (Sheet 1 of 3) i a
O O
O O
O O
O TABLE 3.11.B.1-1 (SliEET 2 OF 84)
IELATIVE NORML A8 NORM L TESTIII D8A/ POST-CBA(2)
MJMIDITY MAX l27 ENVIR.
TEFF INT.
TEMP
'F TEMP INT.(5)
NORmL 08A OESIGNATOR LBIIT
- F PRESS DDSE-RADS MX/ MIN PRESS J
gSS DOSE-RADS 1
IB4-A06H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-A07H 1/2 120 17.7-13.2' psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IS-R-A08H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-A-A09H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-803H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 27 IS-R-812H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB-R-810H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB4-813H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB4-814H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 IB4-415H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 9 Sheet 11 1.8 x 108 50 100 23
?
F M
3.
St9P REGION
~x
- IA-R-801H 1/2 120
.17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100 g
- IA-R-802H 1/2 120 ' 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA-R-804H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA 4-805H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA q 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA4-807H 1/2 120 17.7-13.2 psia 2 x los 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100 p
- IA4-800H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA-A-809H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA 4-811H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100 lIA4-416H 1/2 120 17.7-13.2 psia 2 x 106 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108
$o 100
- IA4-003H 1/2 120 17.7-13.2 psia 2 x 105 120/60 C3 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- IA-R-CION 1/2 120 17.7-13.2 psia 2 x 165 120/60 60 psig Sheet 10 Sheet 11 1.8 x 108 50 100
- If equipmo.t is Ioested abover flood level, Figure 9 sha11 be used for temperature (Flood level is 181'2")
H. H.,s, _, _ 6 CONTAINENT BUILDING (3) yN (Sheet 2 of 3)
Lbb em
O O
O O
O O
O TABLE 3.ll.B.1-1 (SilEET 3 OF 84)
L l
NOTES 1.
The contairement test pressure is 60 psig.
2.
Includes normal doses.
Chasicals - spray solution, boric acid (2000 ppm Boron) plus sufficient soditse hydroxide solution (30-35 wt% NaOH) 3.
to achieve the desired pH.
4.
Spray Exposure The containment building consists of three general regions, these regions are defined as:
toO e Sprayed vapor Roeien
- That area above the operating deck that would be exposed to the direct effects of the 23 m
k spray system.
in
- p Oc Unsprayed Vapor Recion - That area of containment that is below the operating deck and above the contairunent e
flood level that may be exposed to the indirect effects of the spray system.
w e
Sune Roelon
- That area of contaltunent that would be flooded post-accident.
.e Sprayed and unsprayed - Time = 0 - 100 mins - 10.5.
vapor region pH Time = 100 mins - 24 brs - 8.5 e sump region pH
- Time = 0 mins - 24 hrs - 8.5.
- 5. Integrated dose - 3 x 107 rods ( E )
27 1.5 x 108 rads ( e )
gg (D (D 3401t cc 44 CONTAINNENT BUILDING (3)
(Sheet 3 of 3) yw
-a w Ob
]
NN mm
)
mm I
t
3 TABLE 3.11.B.1-1 (SHEET 8 OF 84)
RELATIVE NORPML ABNDRPML TEST DRA/ POST-CSA RMIDITV MX ENVIR.
TEW INT.
TEMP
- F TDP INT.
NORPML DRA DESIPHT0ft imIT
'F PRESS DOSE-RADS MAX / MIN PRESS
,,'T,
PRE,5,5 00SE-MDS LEVEL D (Cont)
VIII-R-040H 1/ M 100
- atm 5 x 105 120/40 atm 1 x 108 U)
VIII-R-04) 2 100
- atm I x 103 110/40 ata 5 x 103 E3 100 VIII-R-042H 1/(I)R 100
- atm 5 x 104 120/40 atm Sheet 5 Sheet 6C 5 x 104 60 VIII-R-043H 1/ CUM 100
- atm 1 x 103 120/40 atm Sheet 1 Sheet 6C 1 x 103 60 100 1 x 103 60 VIII-R-044 1/CDM 100 rata 1 x 103 120/40 ata VIII-R-0454 1/Ctfl 100
- stm 5 x 105 102/d0 atm Sheet 2 Sheet 6C 1 x 108 60 100 4
VIII-R-D66H 1/ 2 100 Fatm 5 x 105 120/40 ata 1 x 108 60 23 m
VIII-A-047H 1/ 2 100
- atm 5 x 105 120/40 atm Sheet 2 Sheet 6C 1 x 108 60 100 0
5 x 107 EO E
- VIII-R-048:1 1/00M 100
- ats 1 x 107 100/40 ata
- VIII-R-DOH 1/00M 100
- atm 1 x 107 100/40 ata 5 x 107 60 tn VIII-R-050H 1/C04 100
- atm 5 x 105 I?O/40 atm 1 x 108 60 VIII-R-051H 1/CI)M 100
- atm 5 x 105 120/40 atm 1 x 108 60 w
VIII-A-05?H 1/00M 100
- mtm 1 x 103 115/40 atm Sheet 2 Sheet 6C 1 x 103 60 100 VIII-A-D53H 1/CrM 100 Katm 1 x 103 110/40 atm Sheet 5 Sheet 6C 5 x 103 60 100 VIII-R-054H 1/COM 100 sats 5 x 105 120/40 atm Sheet 5 Sheet 6C 1 x 108 60 VIII-R-055H 1/ CUM 100
- atm 5 x 105 120/40 atm Sheet 5 Sheet 6C 5 x 105 60 100 VIII-R-D5eJI 1/00M 100
- atm 1 x 103 110/40 atm Sheet 5 Sheet 6C 1 x 103 60 100 VIII-R-057H 1/00R 100 sata 5 x 105 120/40 ata 1 x 108 60 VIII-R-058H 1/COM 100 sata 5 x 105 120/40 atm Sheet 5 Sheet 6C 1 x 108 60 3401t
- Indicates rooms that are served by Class IE envircnmental support systems.
k Aftthin negative pressure boundary.
H = Harsh environment (L
AtIIILIARY BUILDING U
(Sheet 3 of 40) a m
S66 C88
)
///
)
2 940 N
1 1
O O
NT F
937 ROG O
122 OIE FTR 9
A l
ddd SCR T
l l
l nnn NIO E
F l
eee OFP E
W l
mmm IIA H
O l
AAA TLV S
IA(
(
1 DU l
NQT 1
O N
R2, CLE 1
1 j
]
ETN B
1 RNI 1
UEA l
1 TMT l
O 1
ANN I
ROO 3
n ERC i
l PI E
MVE R
END U
s, TEI G
l E=3 i
S I
l N
F l
I I
l l
^"
\\
1 h
l l
S
^
1 1
O ss O
O l
E l
C S
c" l
E E"#
e t
L U
T
\\
l l
3, G ' "'
O I
V" Ii2 l
l l
r F
I e
- 0 w
33 a
o l
e P
l s
l a
l i
/
g 8s3 I
o r
O l
e l
G
/ )
l
'o l
i 1
1 I
O I
1 I
- o i
3 oo
=
3 a
O
. I !l":aE5 9
3 3
4 r!
1
OVESTION 5 Assumed Fluid Condition in Thermal Hydraulic Analysis A.
In the thermal hydraulic analysis of the VEGP 1 & 2 safety valve and PORY piping system, several valve actuation cases were investigated. The analysis conditions included the steam discharge through safety-valves.
the steam discharge through PORV's and the water discharge through PORV's.
In order to demonstrate that the fluid conditions used in the analysis would encompass the maximum overpressurization events-expected at the plant, the Licensee should provide additional information to define the fluid conditions assumed in each case. Therefore, provide the analysis parameters such as the valve opening pressure, the valve opening time, the fluid state at valve opening, the peak pressure reached at the valve inlet and the pressurization rate, etc.
Provide additional I
information as required to fully describe the computer simulation of these transients. Justify that the piping forces generated by the analysis would bound the forces produced in all of the expected overpressurization transients.
B.
The thermal hydraulic analysis included a water discharge condition i
throVgh the PORV's which simulated the cold overpressurization event. Did this-water discharge condition contribute to the maximum fluid loads in i
any portion of the piping?
RESPONSE
Various fluid transient analyses were performed for the pressurizer safety and relief valve piping system. Operation of the safety valves during power operation, operation of the relief valves at power operation and actuation of the relief valve to mitigate cold overpressurization were cases evaluated.
In 4
general, the three safety valves opening simultaneously and discharging without f0RV flow and the two PORV's opening simultaneously without safety valve flow are the limiting design cases. A combination of the cold overpressurization water solid case and relief valve discharge at power case are limiting for the piping section near the relief valve. Typically, the i
wo'rst case valve discharge case (SOTp) is the triple safety valve discharge transient for the safety valve piping, including the inlet, outlet and common region piping and the double relief valve discharge transient for the relief valve inlet and outlet piping. The initial conditions for the safety valve water slug discharge included:
P (Upstream)
= 2575 psia 9
h (Steam, Upstream)
= 1130 Btu /lb T (Water, Upstream)
= 200 degrees F i
P (Downstream)
= 14.7 psia The pressurizer conditions were held constant for the transient at 2575 psia and 1130 Btu /lb.
\\
2031n:3/WFG/10-86
The initial conditions for the relief valve slug discharge case included:
P (Upstream)
= 2350 psia h (Steam, Upstream)
= 1162.4 Btu /lb.
i T (Water, Upstream)
= 175 degrees F P (Downstream)
= 14.7 psia
)
The pressurizer conditions were held constant for the entire transient at 2350 psia and 1162.4 Btu /lb.
The valve setpoints for the cold overpressurization mitigation system are below 800 psia. Consequently, the PORV system will not be armed without a steam bubble in the pressurizer at pressures above 800 psia. The initial conditions utilized for the water discharge case included:
P (Upstream)
= 800 psia T (Water, Upstream)
= 120 degrees F P (Downstream)
= 14.7 psi The pressurizer conditions were held constant for the transient at 800 psia and 120 degrees F.
The effective linear valve opening time used was 0.07 seconds.
The adequacy of the thermal-hydraulic analyses can be verified by the comparison of analytical and test results for thermal-hydraulic loadings in safety valve discharge piping for EPRI Tests 908 and 917.
In that evaluation, node spacing and time-step size were selected on the basis of stable solutions of the characteristic equations and matching of test data.
The safety valve full open flow area of 0.022 ft2 was used in the model. This area is j
slightly smaller than the Crosby M-orifice area of 0.025 ft2 for the tested valve, but results in a good analytical match of the tested fully open valve Tiow rate. Appropriate water temperatures were used. All pertinent data, including friction factors, loss factors and flow areas were based upon representative calculations and the system layout. Modeling of the water was conducted with the water seal upstream of the valve prior to transient initiation. At time = 0+,
the transient was initiated and the slug position was analytically calculated during and subsequent to valve opening.
The VEGP 1 & 2 plant specific thermal-hydraulic analysis was conducted taking the same approach as was taken for the comparison to test data.
Node spacing was picked consistent with the comparison and varied with pipe size and location. Valve opening times, 0.040 seconds for the safety valves and 0.025 seconds for the relief valves, were based upon actual data. Valve flow areas (0.025 ft2 for the safety valves and 0.0174 ft2 for the relief valves) were selected based upon actual valve data with appropriate margins; applied to account for flow rate uncertainties. All pertinent data, including friction factors, loss factors and flow areas were based upon representative calculations and the system layout. Modeling of the water slug from a
temperature profile, considering initial location and movement post-transient initiation, was consistent with the comparison study. The pressurizer pressure was held constant through the transient at initial values. Choked flow is checked internally and automatically every time-step to ensure the proper formulation is applied at every flow path. The highest pressure at the respective valve inlet was less than or equal to the pressurizer pressure for the two slug discharge cases and the cold overpressurization valve opening Cast.
2031n:5/WFG/10-86
=,
J OVESTION 6 Thernal Hydraulic Analysis Model Thermal hydraulic analysis models are presented on Pages 4-11 through 4-14 of to Reference 1 for the safety and relief lines.
Force 9 and Force 11 through 18 on the safety line are not shown in Figure 4-1 on Page 4-11.
Indicate where Force 9 was applied. The note at the bottom of the figure states that Forces 11 through 18 are components of Forces-10, 33 and j
8.
Clarify the relationship between each force and its componentsv Also j
provide sketches to show the forces acting at the junction of the circular header with the downcomer tail pipe for both the safety line and the relief line.
RESPONSE
The segment length that Force 9 is applied to is 104.75 inches.
Force 9 is applied 21 inches from the end of the segment (See Figure 6-1.
Figure 6-1 also illustrates the components of Forces 10, 33 and 8.
At any given time:
Fo=F11 + F12; F33 = F13+F14 + FIS+F163 l
F8 = F17- + F18 For safety valve discharge F33 and F25 were applied to the structural model at the run side and branch side, respectively, of the tee.
For relief valve discharge, Force 24 and Force 21 were applied to the structural model at the run side and the branch side, respectively, of the tee.
l 2031n:6/WFG/10-86
25 33 13 g
15 16 h
-1 25 !
~~
- V 17 3/
12 24 22 20 6
4 23
~/
7 8
19 2
5 6
K 10 1
2 18 28 27 11 31 29 26 y
0 9
Force 9 applied here FIGURE 6-1: SAFETY LINE UPCOMER HYDRAULIC MODEL NOTE: The numbers correspond to force locations.
l i
1
OUESTION 7 ADDlication of Hydraulic Forces on Structural Model A.
The submittal states that the time-history hydraulic forces determined by FORFUN were applied to the piping system lumped mass points. Since each pipe segment may contain more than one mass point and there was only one force calculated for each pipe segment, it is not clear where the hydrodynamic forces were actually applied. Explain how the force application points were chosen and justify that the location of-the fluid forces are appropriate for the structural analysis.
B.
What was the range of structural frequencies (cut-off frequency) considered in the structural analysis and state how the mass point spacing in the structural model was determined to accommodate the highest analysis frequency?
RESPONSE
The modeling approach used for the comparisons to test data was also utilized for the Vogtle specific structural analysis.
For a given segment, a mass point was chosen such that the hydrodynamic force would be applied along the
. axial center-line of the segment. In general, the mass point nearest the I
center of the segment was utilized. The range of structural frequencies j
considered in the Vogtle specific structural analysis was from approximately i
5 HZ to approximately 1000 HZ.
This approach is substantiated by comparisons of analytical results to test data. A discussion of the methodology utilized in performing a safety valve discharge structural analysis and comparison of analytical results to i
structural test results is presented in the following article:
L. C. Smith and T. M. Adams, " Comparison of Analytically Determined Struetural Solutions with*EPRI Safety Valve Test Results", 4th National Congress on Pressure Vessel and PiDina Technoloav, Portland, Oregon, June 19-24, 1983 PVP-Volume 74, pp. 193 - 199.
Additionally, the Vogtle Unit 1 PORY system was tested during hot functional testing. Test results were shown to match analytical results.
i i
l I.
2031n:7/WFG/10-86
i OVESTION 8 Structural Model A.
Node points 125,150,160, 225, 300, 340 and 365 are listed in the piping stress summaries on Pages 6-8 through 6-34 in Attachment 2 to Reference 1.
These nodes were not found in the structural mode] on Page 6-35 through 6-37 in the above reference.
Indicate the locations of the above nodes in the piping model.
B.
On page 6-2 of the above reference, it is stated that the discharge piping circular header, consists of a 6-inch Schedule 160 portion and a 12-inch Schedule 100 portion.
Indicate which part of the circular header is 6 inch Schedule 160 and which part is 12-inch Schedule 100. Also give the size of the downcomer tail pipe which is not indicated on Page 6-2.
RESPONSE
Figure 8-1 illustrates the relative locations of node points 125, 150, 160, l
225, 340 and 365 in the circular header upcomer section of the structural model. Referring to Figure 8-1, the circular header consists solely of 12-inch Schedule 100 piping. All valve outlet piping _ feeding into the 12-inch circular header is 6-inch Schedule 160 pipe. The downcomer tail pipe is all 12-inch Schedule 80 pipe except for two approximate 1 foot sections. A small section near support H003 and a small section downstream of support H028 are 12-inch Schedule 80S pipe.
2031n:8/WFG/10-86
6 4
Not to Scale 125 [50 1
,60 3220 4000 225 i
I 2250" 0
4500 7000n 125 9003 FIGURE 8-1:CIRCULAP. HEADER STRUCTURAL N?DE NUMBERS w
e w
r-
QUESTION 9 Pipina Support Loads Piping support loads were not addressed in the submittal.
Provide a sumary of the support loads which should include at least the following information.
A.
List the load combination equations and allowable stresses considered in the support evaluation.
Indicate whether different load equations and allowables were used for upstream and downstream supports.
B.
Identify the structural code governing the support design.
Explain the f
acceptance criteria used for evaluating the support loads.
Indicate whether the supports were designed to resist the highest reactions resulting from the load combinations for the normal, upset, emergency, and faulted service conditions using the basic allowable stresses (or loads) as the design limits.
In~this case, the basic allowable stress is considered to be the stresi limit specified by the applicable design code for normal service condition. The basic allowable load is the support design load based on the above stress limits.
For standard components, the allowable load is the manufacturer recomended maximum support load for the component.
If the piping supports were not designed according to the 'a'forementioned standards, explain how the allowable stresses (or loads) were determined for each of the four service conditions stated above.
C.
Present a table containing the worst case load (or stress) in each support compared with the applicable design load (or allowable stress) and indicate the associated load combination equation. Also indicate in the table the support number, support type, and support location with respect to the piping model (i.e., node number).
RESPONSE- -
The PSARV system consists of a Class I header piping / support assembly and a B3 1.1 class downcomer pipe with 19 supports.
Pipina SuDDort Loads (Upstream Supports)
The supports for the upstream portion of the pressurizer safety and relief valve piping consist of the structural elements that transmit loads from the circular header piping to the pressurizer. All other supports for the system are located on the downcomer and attach to the building structure.
For the upstream supports, the load combination equations and allowable stresses considered in the analysis are provided in Tables 9-1 and 9-2.
The structural code governing the upstream support design is the ASME ' Boiler and Pressure Vessel Code Section III, Subsection NF.
The allowablir stress limits are defined by the Code based on a working limit for Service Level A (called normal operating condition in Table 9-2).
Appropriate increases are identified for Levels B, C and D; these are called out as upset, emergency and faulted, respectively in Table 9-2.
j 2031n:12/WF6/10-86
l Table 9-3 contains the worst case stress for the upstream supports.
1he location of the member that contains this stress is identified as "B" in Figure 9-1.
The operating condition that produces this stress is a faulted condition. The type of stress is shear in a weld.
Figure 9-1 schematically shows the support members that transmit load from the circular header pipe to the pressurizer. The worst case stress occurs in the members that provide the interface between the support and pressurizer.
PiDina SuDDort Loads (Downstream SuDDorts)
Figure 6-1-B on page 6-37 of the submittal illustrates the support locations with respect to the piping model for the design analysis. Supports H007 and H027 were deleted from the system between the design phase and the as-built phase because ofclarge margins in the analysis. This resulted in a minimal impact on the discharge piping stresses.
Figure 9-2, attached, illustrates the support locations and. node _ numbers of the as-built discharge piping and support model. >
l The (19) downtomer supports were evaluated and found to be acceptable based on l
analysis criteria set forth in the Vogtle Design Manual Section DC-1017 entitled " Pipe Stress and Pipe Supports Analysis Criteria", Revision 5 dated 3/19/86, and the ASME Boiler and Pressure Vessel Code,Section III, Subsection NF,1974 Edition including Summer 1975 Addenda.
.The support loads for each. loading type (i.e., deadweight, thermal, etc.) were taken from the piping system analysis and combined into maximum and minimum values for each normal, upset, emergency and faulted loading condition. The load combinations used are in accordance with Table 2 of DC-1017. and are shown in Table 9-4.
Each support structure was evaluated using standard engineering calculation techniques for linear type supports. As per DC-1017, the allowable stress limits for the normal and emergency loading conditions are the same as the stress limits for the upset and faulted conditions, respectively. Therefore, since the upset and faulted loads for all supports envelope, in magnitude, the I
normal and emergency loads, respectively, the supports have been evaluated for I
_ upset and faulted loads, only.
The resultant support stresses for the faulted loading condition are compared to the normal / upset allowable stresses taken from ASME Subsection NF and DC-1017. Supports which meet this conservative criteria are qualified. The remaining supportsihave normal / upset stresses compared to normal / upset allowables and the emergency / faulted stresses compared to emergency / faulted allowable stresses to complete the qualification.
Evaluation of standard components are conducted in the same manner.
The faulted component load is compared to the manufacturer's Load Capacity Data Sheet (LCD) specified normal / upset allowable.
For components which do not qualify with this conservative approach, normal / upset loads and emergency / faulted loads'are compared to the upset and faulted allowable loads, respectively, specified by the manufacturer's LCD.
5 2031n:13/WFG/10-86
Table 9-5 provides the results of the Final Design Verification reconciliation of the 19 PSARV downcomer supports. The attachment lists the support tag number, the support type and the corresponding piping model node number.
Supports which were evaluated using faulted loads versus upset allowables will have the corresponding max / min faulted load and controlling interaction ratio provided. Supports which require a comparison of upset and faulted loads to upset and faulted allowables, respectively, will have the corresponding max / min loads and the controlling interaction ratios provided for 60th the upset and faulted conditions.
All supports are shown to be adequate.
i 1
1 2031n:14/WFG/10-86
TABLE 9-1 SUPPORT LOADING COMBINATIONS AND OPERATING CONDITIONS Combination Load Combination Operating Condition 1
DW + T,
r DW + T Normal N
y 2
r Upset U
DW + TN + SOT,
r Emergency E
DW + Ty 4
DW + TN + SSE + SOT, or Faulted p
l NOTES:
(1) Use square root-sum-of-the-squares for combining dynamic loads (i.e., OBE, SSE, and SOT).
(2) See next pages for definitions of load abbreviations.
~
(3) Thermal loads due to valves being open are not postulated-in concurrence with the thrust load due to a valve opehing, thus 2 sub-combinations must be looked at for each combin-ation (i.e. use the maximum of the 2 for each combination).
2054s 10/101546
TABLE 9-1 (Cont.)
DEFINITIONS OF LOAD ABBREVIATIONS Deadweight DW
=
Thermal normal operating T
=
N Thermal valve operating T
=
y System operating transient (i.e., valve discharge)
SOT
=
Relief valve discharge 50T
=
U
- Safety valve discharge SOT
=
E Max (SOT, SOT )
SOT
=
U E
F Operating basis earthquake OBE
=
=
J 20Ses 10/10 See l
TABLE 9-2 SUPPORT STRUCTURE LOAD COMPONENTS AND STRESS CRITERIA FOR NORMAL, UPSET, EMERGENCY AND FAULTED CONDITIONS Operating Loading Stress Limit Condition Combination Linear-Type Supports Normal Thermal expansion Working limits
- Weight Operating pres'sure Upset Thermal expansion 1.33 x working limits
- Weight
($ 0.42 S forshar) u Operating pressure OBE Relief valve discharge thrust Emergency Thermal expansion 1.50 x working limits * ($ 0.7 S )
u Weight
($ 0.42 S forshear) u Operating pressure Safety valve discharge thrust Faulted Thermal expansion 2.00 x working limits * (5 0.7 S )
u Weight (1
42 S frshear) 0 u
Operating pressure SSE Max (relief, safety) valve discharge thrust Member compressive axial loads must be 5 2/3 times the critical buckling load of the member.
- working limits - allowable values contained in subsection NF of the code.
20Hs 10/1027H
TABLE 9-3 MEMBER GROUP B RESULTS Allowable Maximum Stress Stress Factor Stress Actual (Operating Ratio of Type
' IStress Case)
(Interaction)
Safety Tension or 2.30 ksi_
19.07 ksi (U) 0.12 8.29 Compression 2.76 ksi 22.40 ksi (F) 0.12 8.12 Bending 16.07 ksi 22.29 ksi (U) 0.72 1.39 18.38,ksi 27.94 ksi (F) 0.66 1.52 Shear 1.16 ksi 13.51 ksi (U) 0.09 11.65 1.64 ksi 15.24 ksi (F) 0.11 9.29 Compression /
0.84 1.0 (U) 0.84 1.19 bending 0.78 1.0 (F) 0.78 1.28
- interaction i
i Base weld 17.32 ksi 22.02 ksi (U) 0.79 1.27 shear 22.33 ksi 24.84 ksi (F) 0.90 1.11 h
2054s 10/102444
TABLE 9-4 LOM COMBIETION EQlATIONS Normal =
Deadweight + Thermal Upset Normal +/- SRSS (OBE and Relief Thrust)
=
Emergency =, Normal +/- Safety Thrust F:11ted =
Normal +/- SRSS (SSE and Maximum Thrust
)
[1] Maximum of Relief and Safety valve thrust loads.
l l
TABLE 9-5 PSARY DOWNCOER LINE FINAL REC 0K;ILIATION StPPORT SLMMARY WORST CASE LOAD STRESS INTERACTION RATIO (KIPS)
SUPPORT NO.
TYPE NWE NO. UPSET FAULTED F/U LIN^
F/F V1-1201-064-:
E13 E13 H001 SNUB.
9035 16.3 41.2 0.34 0.62 H002 CNST.
9050 3.6 0.73 E13 E13 H003 SNUB.
9075.
ll.6 27.9 0.45 0.74
~
H004 STRUT 9105 ~
7.3 12.6 0.29 0.34 H006 RIGID 9145 9.3 0.61 H008 RIGID 9180 5.1 0.26 E13 E13 H009 SNUB.
9185 1.5 9.0 0.13 0.52 H010 RIGID 9230 4.5 0.75 E13 H0ll SNUB.
9245
'7.l 0.45 E13 E13 H012 SNUB.
9265 2.7 5.2 0.55 0.69 H013 CNST.
9270 4.5 0.56 1
H014 SNUB.
9290 3.0 0.60 H015 RIGID 9330 3.6 0.99 H020 RIGID 9440 3.0 0.87 H022 SNUB.
9360 4.3 0.66 H024 VSPG.
9435 1.8 0.73 M025 SNUB.
9135 1.8 9.5 0.14 0.41 E1]
~H026 SNUB.
9340 7.7 0.99 1
H028 SNUB.
9460 8.0 0.50 Notes: [1] Max. Load per snubber for tandem snubber support
[2] SNUB.: Snubber CNST.: Constant Force Hanger RIGID: Double-Acting One Way Rigid VSPG.: Variable Spring
[3] Interaction Ratio = Actual Stress / Allowable Stress F/U = Faulted Loads vs Upset Allowables U/U = Upset Loads vs Upset Allowables F/F = Faulted Loads vs Faulted Allowables
+
o o
x A
'N
! 8 Member Group B
" Plugged" Stanchion 10" SCH 160 Pipe and 8 1/2 Dia Shaft SA-106 GR.B NF 2307 650*F P
Member Group B. Data Figure 9-2
f 125 0
-160 150 3220
'4000 H002 I
l 9050 225 9075 340 H003 00 4
12 000 Og 9035 H006 9145 M@
/ H008 9180 918 H009 H013 4 010 H014 L
9290 H0ll 9270 9245 g
H012 FIGURE 9-2. 00WNCOMER PIPING MODEL 9265
] H015 9330 NOTE:1. Supports H001 H003, H009, H011 H02 9340 H012, H014, H026 and H028 are all double-anned assemblies.
)
9360
- 2. This sketch is not to scale.
j 9435 H024 I
020 9440
' i Snubber Rigid H028
- d Vertical Spring RELIEF TANK