ML20154E489
| ML20154E489 | |
| Person / Time | |
|---|---|
| Site: | 07001100 |
| Issue date: | 04/30/1988 |
| From: | ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
| To: | |
| Shared Package | |
| ML20154E462 | List: |
| References | |
| NUDOCS 8805200234 | |
| Download: ML20154E489 (188) | |
Text
.-
1 ENVIRONMENTAL IMPACT INFORMATION COMBUSTION ENGINEERING, INC.
WINDSOR, CONNECTICUT PLANT SITE NUCLEAR FUEL FABRICATION FACILITY NUCLEAR PRODUCT DEVELOPMENT FACILITY s
UNITED STATES NUCLEAR REGULATORY COMMISSION DOCKET NO. 70-1100 LICENSE NO. SNM 1067 APR'l 1988
!!k k0$$k o!oo$ 00 5
ENVIRONMENTAL IMPACT INFORMATION COMBUSTION ENGINEERING. INC.
WINDSOR FACILITY Table of Contents Eftetion Number Descriotion Pace Number
1.1 BACKGROUND
INFORMATION ON THE COMPAFV 1-1 1.1.1 Scope of Company Business 1-1 1.1.2 Location of Company 1-3 1.1.3 Organizational Structure 1-5 1.1.3.1 Nuclear Fuel Manufacturing, Windsor 1-6 1.1.3.2 Development Department (Nuclear Laboratories) 1-8 2.1 THE SITE 2-1 2.1.1 Location of Plant 2-1 2.1.2 Regional Demography 2-1 2.1.3 Regional Wildlife 2-2 2.1,4 Land Use in the Facility Environs 2-3 2.1.5 Land Use On-Site 2-5 3.1 WATER USE IN THE FACILITY ENVIRONS, SITE WATER 3-1 SUPPLY SOURCES WATER UTILIZATION, AND DISPOSAL OF RESULTING EFFLUENTS 3.1.1 Water Use in the Facility Environs 3-1 3.1.2 Sources of Water Supply 3-2 3.1.3 Distribution of Site Water Supply to Buildings 3-3
- 5 and #17 3.1.4 Utilization of Water within Buildings #5 & #17 3-3 3.1.4.1 Process Water 3-4 3.1.4.2 Equipment Cooling Water 3-4 3.1.4.3 Water for Sanitary Purposes 3-4 3.1.5 Disposal of Discharged Effluents from Buildings 3-5
- 5 and #17 3.1.5.1 Sanitary Waste Water Effluent 3-5 3.1.5.2 Industrial Waste Water Effluent 3-5 3.1.5.3 Radiological Waste Water Effluent 3-8 l
l i
Table of Contents (Continued)
Section Number Descriotion Paoe Number i
3.2 Climatology and Meteorology 3-9 i
3.3 Geology /Hydrogeology 3-12 4.1 THE PLANT 4-1 4.1.1 General Description of Site Facilities 4-1 Handling Low Enriched Uranium (4.1% U235) l 4.1.1.1 Fuel Fabrication Facility, Building #17 41 4.1.1.2 Nuclear Product Development Facility, Building #5 4-2 4.1.2 Description of Operations 4-3 4.1.2.1 Fuel Fabrication Facility, Building #17 4-3 4.1.2.2 Nuclear Product Development Facility, Building #5 4-6 4.1.3 Types of Radiological Effluents from Buildings 4-7 i
- 5 and #17; Methods of Treatment and Disposal of Such Effluents l
4.1.3.1 Radiological Waste Water Effluent 48 4.1.3.2 Radiological Airborne Waste Effluent 49 4.1.3.3 Radiological Solid Waste Effluent 4-12 4.1.4 Types of Nonradiological liquid Effluents 4 13 From Buildings #5 and #17; Methods of Treatment and Disposal of Such Effluents t
4.1.4.1 Sanitary Waste Water Effluent from Buildings #5 4 14 and #17 4.1.4.2 Industrial Waste Water Effluent from Buildings 4 14
- 5 and #17 4.1. 4. 3 Liquid Chemical Waste Effluent from Buildings 4-14 and #17 4.1.4.3.1 Alcohol (Isopropyl) 4-14 4
4.1.4.3.2 Hydrochloric Acid 4-14 4.1.4.3.3 Hydrofluoric Acid 4-15 4.1.4.3.4 Aluminum Nitrate 4-15 4.1.4.3.5 Na0H (Caustic) 4 15 4.1.4.3.6 Nitric Acid 4-15 4.1.4.3.7 Detergent Solution 4-16 4.1.4.3.8 Perchlorethylene 4 16 i
4 1.. -
-. - ~ _ - -. -,
Table of Contents (Continued) l Section Number Descriotion PaJe Number 4.1.4.3.9 Freon 4-16 4.1.4.3.10 Machine Coolants 4-16 4.1.4.3.11 Vacuum Pump 011 4-16 4.1.4.3.12 Polyvinyl Alcohol 4-17 4.1.4.3.13 Zinc Stearate 4-17 4.1.4.3.14 Spent Pickling Solution 4-17 4.1.5 Types of Nonradiological Gaseous Effluents 4-18 from Buildings #5 and #17; Methods of Treatment and Disposal 4.1.5.1 Acetone, Alcohol, and Freon Waste Fume 4-18 from Buildings #5 and #17 4.1. 5. 2 Perchlorethylene Waste Fume Effluent from 4-19 from Buildings #5 and #17 l
4.1.5.3 Helium, Argon, and Nitrogen Waste Fume 4-19 Effluent from Buildings #5 and #17 4.1.5.4 Hydrofluoric and Nitric Acid Waste Fume 4-19 l
Effluent from Buildings #5 and #17 i
4.1.5.5 Other 4-20 4.1.6 Solid Waste 4-20 4.2 Spill Prevention Control 4-21 5.1 EFFLUENT AND ENVIRONMENTAL MEASUREMENT AND 4-21 MONITORING PROGRAM 5.1.1 Radiological Effluent Monitoring System 51 5.1.1.1 Liquid Radiological Effluent 51 5.1.1. 2 Gaseous Radiological Effluent 5-3 5.1.1.3 Environmental Monitoring Program for 5-4 Radiological Effluents 5.1.1.3.1 Surface Water 5-4 5.1.1. 3. 2 River Sediment 55 5.1.1. 3. 3 Well Water 56 5.1.1.3.4 Atmospheric Fallout 5-6 5.1.1. 3. 5 Soil 57 4
5.1.1. 3. 6 Vegetation 58
Table of Contents (Continued)
I Section Nurber Descriotion Paae Number 5.1.2 Nonradiological Effluent Monitoring System 5-8 5.1.2.1 Liquid Nonradiological Effluents 5-8 5.1.2.2 Gaseous Nonradiological Effluents 5-9 5.1.2.3 Environmental Monitoring Program for 5-10 Nonradiological Effluents 5.1.3 Maximum Radiological Effluent concentration 5-;l at the C-E Site Boundary and at the Fearest low Population Zone to the Windsor Site 61 ENVIRONMENTAL EFFECTS OF ACCIDENTS 6-1 6.1.1 Classification of Accidents 6-1 6.1.1.1 Class 1 Accidents 6-2 6.1.1.1.1 Facility Power Catage 6-2 6.1.1.1. 2 Loss of Water Supply 6-3 6.1.1.1. 3 Chemical Accidents 6-4 6.1.1.2 Class 2 Accidents 6-5 6.1.1.2.1 Detected Spills of Uranium Bearing Materials 66 6.1.1.2.2 Undetected Spills of Uranium Bearing Materials 6-6
]
6.1.1.2.3 Minor File involving Uranium Bearing Materials 67 l
6.1.1.3 Class 3 Accidents 67 6.1.1.3.1 Potential Sources of Fire or Explosion 6-8 6.1.1.3.2 Explosion in Sintering Furnace 69 6.1.1.3.3 Fire in Fuel Rod Storage Area 6-10 6.1.1.4 Class 4 Accidents 6-11 6.1.1.4.1 Major Fire or Explosion 6-11 6.1.1.4.2 Criticality 6-12 6.1.1.5 Class 5 Accidents 6-17 6.1.1.5.1 Shipments to the Windsor Site 6 18 6.1.1.5.2 Shipments from the Windsor Site 6-18 6.1.1.5.3 Environmental Impact of Shipments 6 19 6.1.1.6 Cla.ss 6 Accidents 6-21 6.1.2 Emergency Plans 6-22 l
A
List of Tables Table Number Descriotion 2-1 Population and Population Density of Towns within 10 mile Radius of Combustion Engineering, Inc.
2-2 Nearest Residents 23 Windsor Land Use Sumary 24 East Granby Land Use Sumary 25 Bloomfield Land Use Sumary 26 Buildings and Support Facilities on the C E Windsor Site 3-la Municipal Water Supplies in the Areas Surrounding C-E 3-lb Private Water Supplies in the Areas Surrounding C-E 3-2 MDC's Largest Industrial Users Within 5 miles of C-E Windsor 33 Water Utilization and Effluent Waste Streams from Buildings
- 5 and #17 3-4 1987 Sumary of Industrial Discharge Date 4-1 Processing Operations - Effluents from Process Steps -
Treatment of Effluents from Building #17 4-2 Laboratory Operations - Effluents from Laboratory -
Treatment of Effluents from Building #5 4-3 Sumary of Radioactive Effluents from Buildings #5 and #17 4-4 Summary of Nonradiological Gaseous Effluents 5-1 Sumary of Daily Composite Samples Liquid Radiological Effluent 5-2 C-E Windsor Site Environmental Monitoring Program 5-3 Surface Water 54 River Sediment 5-4a C-E River Sediment Radioactivity and Uranium Analysis 5-5 Well Water 5-6 Atmospheric Fallout 5-7 Soil (Stations #1-#10 and #16-#19) 5 7a Soil (Stations #20 #27) 5-8 Vegetation (Stations #1-#10 and 816-#19) 5-8a Vegetation (Stations #20-#27) 59 Nonradiological Effluent - Source Water (Stations #11-#17) 5-10 Nonradiological Effluent Well Water (Wells 1, 2, and 3) 61 Off-Site Doses from Criticality Accident
i list of Fioures Fioure Number Descriotion 1-1 Nuclear Fuel Manufacturing Organization 2-1 Plant Site location Within the Tri State Area of NY, MA, RI, and within the State of CT 2-2 Plant Site Location Within the Town of Windsor, CT and Major Transportation Links 2-3 5 mile Radius Surrounding C E Windsor Site 2-4 Nearest Residents (1 mile radius) in 16 Sectors 25 Building #17 Coordinates 2-6 Utilization of Area Within 5 mile Radius of C-E Windsor Site 2-7 Location and Identificatio.1 of Buildings and Facilities on C-E Windsor Site 2-8 Aerial View of the C-E Windsor Site 3-1 Location of Metropolitan District Comission (MDC) Feed Line for Windsor Plant Site and Feeder Lines to Buildings #5 and
- 17 3-2 Sanitary Waste Line Flow for Buildings #5 and #17 and Process Flow Within Site Sewage Plant Complex 3-3 Industrial and Radiological Waste Line Flow for Buildings #5 4
and #17 3-4 Water Balance Diagram for Building 45 3-5 Water Balance Diagram for Building #17 3-6 NPDES Permit 4-1 Radiological Waste Stack location for Buildings #5 and #17 4-2 Building #17 Stacks 4-3 Building #5 Stacks 5-1 On-Site and Off Site Surface Water and River Sediment Sampling 5-2 Location of Fallout Sample Stations Within Combustion Engineering Site Boundaries J
5-3 Location of On and Off Site Vegetation and Soil Sampling j
Stations j
l
1.1 BACXGROUND INFORMATION ON THE COMPANY 1.1.1 Scoce of Comoany Business Combustion Engineering is a diversified company serving electric utility companies, oil and gas producers, chemical companies and general industry throughout the world.
The major pc/ tion of C-E's business has long been steam generation equipar At for electric utilities, and it is one of the largest manufacturers of such equipment in the world.
In recent years the company has diversified j
into related fields while continuing to apply its basic skills and technology.
C-E was first organized as a corporation in 1912.
When considering the companies which have merged into the corporate structure, however, C E's history dates back to the 1880's.
Thus, the organization, as it exists today, has more than 90 years of experience in the design, development and fabrication of steam generation equipment.
C-E has been active in the development of nuclear power for more than 30 years.
The Company's decision to extend its systems to large, nuclecr utility power plants represents a logical development of its previous activities as a supplier of thermal steam generating plants.
i
)
1-1 e
m_.
i l
C-E has organized four major operating groups as noted below:
i 4
i Enaineerina and Construction Groun This group has a
broad international involvement in the design, engineering, and construction supervision of projects in the chemical, petrochemical, petroleum, metallurgical' and other process industries, l
Process Eauioment Group - This group manufactures and markets a wide range of energy related products including oil and gas _ production processing equipment, heat exchangers, and pollution control I
equipment.
i This group provides a full range of I
Industrial products Groun 4
l services in the architectural, engineering, and planning disciplines with recognized special competency in environmental engineering, I
resource recovery and disposal of solid waste, transportation systems and the production of high temperature industrial ceramic materials for lining furnaces and other heat processing auxiliary equipment,
)
t l
Power Systems Groun - C-E Power Systems provides fossil and nuclear fueled steam generating equipment, nuclear fuel and components, and air quality control systems for the electric utility industry, and i
steel transmission structures.
This group also provides industrial i
}
steam generating equipment, fuel burning and auxiliary equipment, and chemical recovery systems and boilers for pulp and paper mills as well as
- heavy, thick walled pressure vessels for the
- chemical, petrochemical and petroleum processing industry, 1
1-2 i
I I
i
7 t
1.1.2 Location of Comoany i
t Combustion's corporate headquarters are located in Stamford, CT.
The regular mailing address is:
i n
900 Long Ridge Road Stamford, CT 06902 3
Combustion's four major operating groups are headquartered in the following locations:
i Maior Ooeratino Grouo Eeoular Mailino Address i
Power Systems Group 1000 Prospect Hill Road Windsor, CT 06095 Engineering and Construction Group 900 Long Ridge Road Stamford, CT 06902 I
j Process Equipment Group 1000 Prospect Hill Road i
Windsor, CT 06095 i
i Industrial Products Group 900 Long Ridge Road 1
Stamford, CT 06902 1
1
)
j 1-3
l Combustion's nuclear activities are concentr.ced in one of the four major operating groups; specifically, the Power Systems Group. Within this operating group are two divisions, Nuclear Power Systems Division and Fossil Power Systems Division, both of which manufacture nuclear products and related components.
Identification of the division, location of the manufacturing plants and products produced at the plant are indicated below:
Division Plant and Product I*
l Nuclear Power Systems Nuclear Fuel Manufacturing Division Windsor, CT Low Enriched Uranium Fuel d
(14.1% U235)* and related nuclear i
components (non-radioactive)
Nuclear Power Systems Nuclear Product Development Facility Division Windsor, CT Development work on low enriched uranium fuel (520% U235) 1
- request for 5.0 w/o limit is pending before the NRC l
1 i
t 1-4 1
\\
t Nuclear Power Systems Nuclear Fuel Manufacturing Division Hematite, M0 Low Enriched Uranium Fuel (54.1% V235)*
6 Nuclear Power Systems Newington Operations Division Newington, NH Internals and Structurals (Non-radioactive) 1.1.3 Oroanizational Structure Production work on nuclear fuel at C-E is carried out by Nuclear Fuel Manufacturing-Windsor (NFM W) and Nuclear Fuel Manufacturing-Hematite
]
(NFM H). Nonproduction work on nuclear fuel at C E is carried out by the Nuclear Product Development Facility located on the Windsor site.
The Nuclear Fuel Manufacturing Windsor (NFM-W) production plant is a low enriched (14.1% U235)* U0 fabrication operation where UF is 2
6 converted to powder and the powder is further processed into fuel pellets.
1 i
- request for 5.0 w/o limit is pending before the NRC I
i 15 i
w-
,,,,,, - - + ~
a-7-,_
,-v---
-,-----,--,-,,,,7,
4 i
The Nuclear Product Development Facility carries out nonproduction operations such as fuel pellet preparation on a laboratory scale, standard chemical
- analysis, metallurgical
- analysis, etc.
All radioactive operations utilize low enriched uranium (5,20% V235).
Organizational information for the Nuclear Fuel Manufacturing-Windsor facility and the Nuclear Laboratories is detailed in the following paragraphs.
4 1.1.3.1 Nuclear Fuel Manufacturina Windsor
)
The General Manager reports-to ths Vice President, Nuclear Fuel and is responsible for the accountability, nuclear criticality safety and radiological safety related to all Special Nuclear and Source Material received by the Nuclear Fuel Manufacturing Facility and used in any manufacturing process.
He assures compliance with federal an.1 state regulations and the requirements and limitations set forth in the license during all phases of manufacturing.
In this position, the General Manager has delegated to the Production Manager and the Engineering Manager responsibility to assure that all a
operations involving nuclear materials have been analyzed to establish l
the required safety limits and controls.
k Before the cognizant engineering supervisor may initiate equipment changes, or before the Production Manager may initiate limit changes 4
1-6 i
i affecting nuclear fuel handling, they must describe the proposal to the Manager, Nuclear Licensing (Manufacturing).
He must review and approve the proposed change or operation and transmit his approval in writing to the cognizant individual.
His approval will incorporate the results of criticality safety and radiological safety reviews and will include recomendations to assure that appropriate controls are implemented.
The individual who performs the initial criticality safety review shall meet the minimum qualifications for a Nuclear Criticality Specialist.
The individual who performs the independent criticality safety review shall be a person designated by the Nuclear Safety Comittee and shall meet the minimum qualifications for a Nuclear Criticality Specialist and shall not be the initial reviewer.
All such approvals shall be recorded in a log maintained under the direct supervision of the Manager, Nuclear licensing (Manufacturing).
The Manager, Nuclear Licensing or the Nuclear Criticality Specialist shall review and approve facility and process changes, equipment 4
rearrangements and additions affecting criticality safety which fall j
within the criteria in License SNM 1067 provided that an independent l
review is performed by the Nuclear Safety Comittee or persons designated by that Comittee.
j!
Written operating procedures are provided by the cognizant engineering supervisor for all operations, including equipment and floor cleanup.
l These include all criticality and radiological safety restrictions, i
1-7 i
I
safety restrictions and limits.
Signs, including criticality limits as approved by the Manager, or the Nuclear Criticality Specialist are posted near the appropriate Nuclear Licensing work station under the direction of the cognizant supervisor and are verified by the Health Physics & Safety Supervisor.
The Health Physics & Safety Supervisor is responsible for the surveillance of all Nuclear Fuel Manufacturing activities in which radioactivity is involved to ensure that the health and safety as well as criticality standards set forth in the license are met. He has the necessary authority to halt any operation which falls outside those limits, and is responsible for indicating what remedial action is necessary to bring the operation within acceptable limits.
- However, if the operation is halted because of criticality safety considerations, the Health Physics & Safety Supervisor will contact the Manager, Nuclear Licensing or the Nuclear Safety Committee who shall determine necessary corrective actions to be taken.
The basic organizational structure for Nuclear Fuel Manufacturing is shown in Figure 1.1.
1.1.3.2 Product Develooment (Nuclear Laboratories)
The Director of Product Development is responsible through the Vice i
President, Nuclear Fuel for the accountability, nuclear criticality safety, and radiological safety related to all Special Nuclear and Source Materials received and used in product development.
)
1-8
Ho assures compliance with federal and state regulations and the requirements and limitations set forth in the license.
In this
- position, the Director of Product Development assures that all operations involving nuclear materials have been analyzed to establish the required safety limits and controls.
The Manager of Nuclear Licensing is responsible for the surveillance of all activities in which radioactivity is involved to ensure that the health and safety standartds set forth in the license application are met.
He has the necessary authority to halt any operation which falls outside those limits, and he is responsible for indicating what remedial action is necessary to bring the operation within acceptable limits.
The basic organizational structure for the Nuclear Product Development Facility is shown in Figure 1-1.
1 b
i i
4 1-9
2
.n s
i e
a a!
8 5
gj 3
il5 il" sa 11:ge a!
2 5
N 5
1 9
l d
I I
t I
,________J l
l l1 121ll, !1 il l
s I.
ei i
r" 2ll 0 h g
=
!3 2
8x p
2.1 THE SITE 2.1.1 Location of the plant Combustion Engineering's low enriched UO fuel fabrication is part of 2
the C E Power Systems Group located at the C-E Windsor Site.
The site is located 9 miles north of Hartford and is shown with respect to the tri-state region of New York, Massachusetts, and Rhode Island in Figure 2-1.
The C-E Windsor site is an 1106 acre tract located in the township of Windsor, CT.
Figure 2 2 illustrates the site location and major transportation links within the town of Windsor.
2.1.2 Reaional Democrachy The area surrounding the C-E Windsor Site is sparsely populated. East Granby is the nearest town to the site.
The town center is leated approximately 3 miles north of the site.
It has a population of 4,290 persons yielding a population density of 240 per square mile. Windsor is the nearest town of any size.
Its town center is located approximately 5 miles southeast of the site.
The town's population is 26,420 persons yielding a population density of 892 per square mile.
The above data is based on 1985 Connecticut Labor Department data.
1 As shown in Figure 2-3, the five towns of Windsor, Windsor Locks, East Granby, Bloomfield and Simsbury are wholly or partly within 5 miles of the C-E site.
Population, population density, town area, distance and direction of the towns from the C E site are given in Table 21.
2-1 i
i Figure 2-3 is a map illustrating the 16 sectors surrounding the C-E site up to a 5 mile radius.
This map is part of the State of Connecticut's Emergency
Response
Plan for both Combustion Engineering's low enriched fuel fabrication facility and General Electric's prototype Naval Reactor Site.
Major roadways, schools and churches have been delineated.
Figure 2-4 is a composite of topographical maps showing the structures surrounding the C-E site.
The nearest residents in each of the 16 sectors within 1 mile are indicated in this figure and sumarized in Table 2-2.
The nearest resident is located in Sector 13, west of Building 17, a distance of 730 meters.
I 1
Figure 2 5 is a map of the Windsor Site which specifically identifies the coordinates of Building #17 to the nearest second.
These coordinates are W 72*-43' 08" and N 41'-52' 56" for the center of Building 17.
2.1.3 Recional Wildlife f
The only endangered species listed as residents of Connecticut by the Connecticut Department of Environmental Protection Wildlife Unit are:
Mammal s:
Indiana Bat i
Eastern Cougar l
Birds:
American Peregrin Falcon Roseate Tern Piping Plover 22
\\
l
.-=
i Fish:
Short Nosed Sturgeon Plants:
Small Whorlod Begonnia
]
Reptiles, Amphibeans, Snails, Clams, Crustaceans, insects: None Site operations impact none of these species for the following reasons:
None of the mammals and two of the bird species listed above have not i
been sighted in Connecticut in over two years.
The other two bird species are found only on off-shore islands. The short nosed sturgeon is found only in the Connecticut River, not the Farmington River.
The small whorled begonnia is found only in the extreme Northwest corner of Connecticut.
The nearby Farmington River is very clean.
It is rated in water quality by the State of Connecticut Department of Environmental Protection as Class A,
its highest rating.
As a consequence, studies on industrial impact on Farmington River aquatic life have not been deemed necessary by the state.
I 2.1.4 Land Use in the Facility Environs
)
l The Town of Windsor covers over 19,000 acres consisting of predominately agricultural and residential areas.
A survey completed i
l at the beginning of 1985 showed the distribution of land use within Jl the town to be as follows:
25.0% residential, 16.8% agricultural, 24.1% vacant land, 19.6% public facilities, 9.3% industrial and 4
j commercial and 5.1% net water (Table 2-3).
i I
j l
23
4 i
t The areas immediately surrounding the C-E Windsor site consists of a i
town-owned sanitary landfill and the Farmington River to the north, and a combination of heavily wooded areas and agricultural fields primarily for the growth of broad leaf tobacco to the south and west.
4 However, recently to the southwest of the site, at the intersection of Prospect Hill Road and Blue Hills Avenue, the Griffin Office Center was constructed by Culbro Tobacco, Inc.
This center presently has approximately 2200 employees from various corporations housed in a 10 building complex.
To the east of the Windsor site, the federal government owns land which is being used by Knolls Atomic Power Laboratory operated by General Electric for the U.S. Department of Defense and Department of Energy.
The laboratory is mainly used for I
the training of naval personnel in the operation of a prototype submarine nuclear reactor.
Other towns within a 5 mile radius of the C E Windsor site are l
Bloomfield and East Granby.
East Granby's land use consists of 38.8%
woodland, 36.6% agricultural and open space, 13.4% residential, and 4
5.8% industrial and commercial (Table 2 4).
The town of Bloomfield consists of 19.9% residential, 7.8% comercial and industrial and 4.7%
f cultivated land (Table 2-5).
Figure 2 6 describes land use within a 5 mile radius of the C-E Windsor site in greater detail.
i h
j i
2-4 i
i l'
i
Four significant industrial complexes exist within a 5 mile radius:
Approx. # of Name Location Emoloyees Distance Sector Hamilton Standard Windsor Locks 10,000 4 miles N/NE Various Windsor (Griffin 2,200 1 mile SW Office Center)
Stanadyne, Inc.
Windsor 1,500 5 miles S/SE Emhart Industries Windsor 250 2 miles E
2.1.5 Land Use On-Site i
Figure 2-7 shows the buildings and facilities presently located on the C-E Windsor site.
There are some 25 structures shown, each one identified as to building number, building name and site location.
Table 2 6 lists the structures by building number, building name and present utilization.
Also listed is the total acreage occupied by each building.
Total area occupied by all structures on site is 17.60 acres.
In addition, some 22 acres of the site are utilized for access roads, parking lots, walkways between buildings, etc.
Thus, out of the 1106 acres available on the site 39.60 or, 3.6 percent of the total is being used for buildings, parking facilities, etc.
The remaining 2-5 4
9
)
i 1066.4 acres, or 96.4 percent of the total available, remain undisturbed and consist mainly of woodlands, water bodies, and open l
spaces.
Figure 2 8 shows an aerial view of the C E W'.ndsor plant tite.
The C-E site is a naturally wooded area and is restricted to huiters and 2
the general public to protect the existing environment.
Arnd guards l
equipped with two way radios patrol the site on a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> basis to enforce this restriction.
l The Great Pond is located in the southwest section of the site and the j
inland wetland located in the southeast end of the site are home for many species of waterfowl and also a stopover point for migratory birds.
Special pumps have been installed, at C E's expense on the south shore of the Great Pond to agitate the water in the winter months to prevent ice formation and to provide open water for the waterfowl that permanently reside in the area.
i i
1 i
l l
1 I
26
\\
1
TABLE 2-1 POPULATION AND POPULATION DENSITY OF AREA TOWNS Approximate Distance of General Estimated Population Town Center Direction Square Population Density Town To Site From Site Miles (1985)
Persons /So Mile Hartford 9
S 18.6 135,200 7,268 Windsor 5
SE 29.6 26,420 892 Bloomfield 5
S 26.9 19,810 736 West Hartford 8
SW 21.6 60,790 2,838 East Hartford 9
SE 18.2 52,320 2,874 Manchester 13 S
27.6 50,660
- 1,835 South Windsor 7
SE 29.2 19,790 577 East Windsor 6
SE 25.6 9,100 342 Windsor Locks 4
E 9.6 12,260 1,277 l
East Granby 3
N 17.8 4,280 240 Simsbury 6
SW 34.2 22,750 665 1/3 Avon 8
SW 7.4 4,170 553 Granby 6
N 10.0 8,600 360 1/2 Suffield -
W. Suffield 6
N 22.0 5,090 236 1/3 Enfield incl.
Thompsonville 8
NE 11.0 14,410 1,271 1/2 Ellington 12 E
17.0 5,145 294 1/3 Vernon 13
>E 6.0 9,650 1,564 TOTALS 333.3 460,445 2-7
i l
i l
TABLE 2 2 NEAREST RESIDENTS (WITHIN 1 MILE RADIUS)
(See Figure 2 4)
SECTOR NO.
DIRECTION DISTANCE FROM BLDG. 17 (METERS) 1 N
i d
2 N/NE 3
NE 4
E/NE 990 5
E 900 6
E/SE 1,225 7
SE 8
S/SE 9
S 1,075 4
10 S/SW 1,465 i
f 11 SW 1,540 l
12 W/SW 1,525 j
13 W
730 14 W/NW 2
l 15 NW 16 N/NW 1,450 1
- Indicates no residents within sector.
Note: Nearest site boundary to Building #17 is 560 meters west (Sector 13),
i See Figure 2-9.
1 i
j 28
TABLE 2-3 WINDSOR - EXISTING LAND USE Percent of land Use Acres Total Land Residential 4,974.2 25.0 Com.mercial 1,315.3 6.6 Industrial 537.2 2.7 Public/ Semi Public 2,534.3 12.7 Agricultural 3,341.0 16.8 Streets / Roads 1,370.6 6.9 Water / Flood Control 1,018.5 5.1 Undeveloped /open 4,791.1 24.1 TOTAL 19,882.5 1007.
29
4 i
a l
TABLE 2 4 i
a j
E. GRANBY - EXISTING LAND USE i
l Percent of Land Use Acres Total land Residential 1,491.1 13.4 l
i i
Comercial 184.6 1.7 j
l Industrial 453.2 4.1 i
l Agricultural 2,529.0 22.7 i
Water / Flood Control 112.5 1.0 Vacant Residential 448.7 4.0 Forest / Woodland 4,373.7 39.3 j
Open 1,543.2 13.0 l
i TOTAL 11,136.0 100 I
I i
4 i
f 1
)
1 I
4 h
4 1
i i
i 4
i 2-10 i
1 l
t
I TABLE 2-5 i
BLOOMFIELD EXISTING LAND USE l
Percent of l
Land Use Acres Total Land l
4 i
Residential 3,426.0 19.0 l
1 Commercial 603.0 3.5 i
Industrial 140.0 4.3 i
1,016.0 5.9 l
Public/ Semi Public l
Recreational /Open 1,859.0 10.8
~
J I
Agricultural 809.0 4.7 l
Streets / Roads 895.0 5.2 l
l Water / Flood Control 981.0 5.7 Undeveloped 6.887.0 39.8 a
i TOTALS 17,216.0 100 1
)
i i
1 3
i I
1 e-i J
i 2 11 i
1 1
i
r P
TABLE 2-6 j
BUILDINGS AND SUPPORT FACILITIES ON THE C E WINDSOR SITE Buildina No.
Buildina Name Present Utilization Acreace Occuoied i
1 Storage Equipment Storage 0.12 2
Test Bldg.
Test Lab and Offices 0.51 3
Kreisinger Development Lab.
Fossil Fuel Testing & Offices 2.50 4
Power Systems Admin. & Eng. Offices 2.40 5
Nuclear Product Dev. Ext Labs and Offices 1.70
+
6 Hot Waste Vault Radioactive Waste Storage and Treatment 0.06 6A Facilities Eng, & Services Maintenance Shops and Offices 0.17 7
Powerhouse & Central Site Heating / Cooling Source 0.45 Chilling Plant 7A Central Receiving Material Receiving 0.05 8
East Guard House Site Security 0.01 9
Cooling Tever Water Treatment 0.02 j
10 Sewage Plant Sanitary Waste Processing 1.50 1
11 Fire Pump House Pumps for Sprinkler System 0.01 12 Nuclear Eng, and Physics Offices 0.57 13 West Guard House Site Security 0.01 14 Dining Facilities Cafeteria and Offices 0.45 145 Shower / Locker Room Facility Locker Room 0.05 15 Facility Eng, and Services Carpenter Shop and Storage 0.15
)
16 Nuclear Product Dev. Ext Labs for Equipment Testing 0.56 17 Fuel Fabrication Building Nuclear Fuel Fabrication 0.83
]
18 Nuclear Product Dev. Ext Labs for Equipment Testing 0.13 19 Administrative & Engineerinq Offices 2.30 1
20 Facility Eng. and Services Maintenance Equip Storage 0.12 21 Nuclear Mfg. Warehouse Nuclear Fuels Storage 0.22 i
22 Fossil Eng, and Simulator Offices and Test Simulator 0.91 23 Fossil Engineering Offices 0.91 24 Administrative & Engineering Offices 0.91 TOTAL 17.60 4
j 2 12
.m ems G
e 9
L**
g
{
I!!i k
!!$,!I s
wk-
$,I}i 4
-i
'7//;/ '
\\=$
g
-e i.
b
/
\\
g i
1 mi 12
- t..
\\
l \\l
. -y
's\\}
- I!!hg-g.
. ~.
E 3
0 Ipl il ' T 2x l. k.
I"* *
.I. A I I
i t
2 - 13
(
20 a..-,
EAST WINDSOR r'
""b "'*
GRANBY i
//
LOCKS l
TN..
d, i
w- -t x,
,r ---
S.\\
m,.
.n.,
s E
EAST i
f l
4}l WINDSOR
[
zo 3 ---.-
_/ _ %[
J s
e.= *
.d
(
tej A41,,/
WINDS l
' C. E. > +s
, -..~ q,jh i
s-
~, -
(
r la m b.. N"'
p
='-a'a*-
l P."r;!-
h y.,
i I
a.....
.,/ r
\\
m ga r
L
.pe r
6 4.,
%mE j
g) a........ c %
c g b
' m.......
=-
si-BLO MFIE L D
- .~~' I
= =- * *= w i~~ m
~
ocuit a
si 4
St fees. 2 g h
..+
u e.m a..
'O e 'as o
si
.n. s x
p.
si.
n a,e m
FIGIRE 2-2 m.
ea.ie 7
(-
a-a m.
e...e so l
g m.
u.i. q.~
-m
f
+
m.e 3 FIFURE 2 - 3 a
e * "M L
[
~
8 i
3eews. Tesw.s.a seem a arvo o
l wbu:EmEst.T,
i y tg w.
_-**'*E'."
t.CCC
~, &.g
. y
.x e
. ~A~.,.J.'-
f 's,, c *.
Q ern.
men.
- 22 &
s
..=. ;.i
.. a..
i
.v...
.., 1 s
.w=
.c.,. ?.
,f
. -e lb 0
't 'l
~~
.+
- a. _ -
,i m
.;.3 g
..e-C
[ - e
i.. y=
/ww
. <- e........
1.o I) j' s.'
Cm-
's
..j
~
<-My 4
.g.5 a.x s J. - (.,7
. ~.! -
, [
, c' ",
(tas*
u y,
A'
" " " ", -.
- e.J'
~
~
N g
,, f", ' -
- h,
~ hf-( :c '
'f e
'\\ F 4.7,
.St w
y y
/
- s
, v. y4
.\\g~.
- * +
M,
)b t
't- /
,s j
.w-P'. -
- /.g:
,e'".
~
/,
f,, et -,,
ij g
, t.,, 4.,7. %
e
. g.
.. \\
/ a 1.--
/~n 7.
s.
+
\\
L, 'h i 4 Y
~
"u ','C-i-
/
u y
?
.(.
/.m s
~%
- .b. "
+
's
.x
,.A.,,k(.
/
' N.
o Q.
s
.w.
- >ff
r V;
li i
k\\'
s, '
, %' M
- i
.,A, s..__
\\
-,,... h'm j, ?.c y
h d,*.
/, /.
, x.,'
Nj 6
~
5 4
7 gi(
.s d.,
ys g.,
.5)
-.f,'
d[
-n.m j
\\ !
OTU
\\
W.i-{',',Q.,h.-Q ' y a'* * - % 7 4 8 g
- h My' y
\\ -. k, v,,,
m(m -se.
,4.w.,
6 a
+..
e p.
e.,
.L b1 J
^
r x
. _8
- m. s,I d_'._:.J.. * :r.
- (E_
a.m i
,,1 i..
h-N
)
j 2 - 15
FirURE 2 - 4 NEAREST RE5iDEt,7 lN SECTOR ( ONE M!t.E RADIUS )
. f..............
- f.., y,Gi.! -
4'"k lh f'h'ky !.!fk..T A
- h..';.{f20':
bf
../ w-/
b
- f. t,i.k ;,..
e w., p..
k'}'.7, {...... > -
~ i,,:
%, '.R.R&h' " fih...
. r..k,/
..,q....,,. Q T ' &.)
.~
_rp
... ;m s:,. -
3...
... 9'%.
q f.. p'%.'
f
&yT1% y jrs'a.Q);y i Q&.d (',.. Jqh 1Qn-1 (y
- ~
') -
.n 1:
%.i :
N.pg.9 m-e,
- f. - ; :Q...
r:
p x. x.Q,yf.3....
e.;.
4 m.
y J
% z, a
p.,,er.
q!, > h.
4
-ps.x%.$x.,,....
.7 i..,. -
i N
.,a.
96 f m.p ~.
.1 r.
~
f*j y
t r.
g\\. =.:~.i
. s.
, ea.
- w. %_ -
.t.
' (
s
- .a e y-b.-
( a..
,, p.:.. '.
r
+,.
..- y.., % 9.,3
~...
u.. y
~,..
.. u c~73.(k.u,4,,,,a.
m i
- r,.
s<.
. c. :/(q". s..
4l i.;
.. e +,
,ag,1 W
<g.. '
e
~,,,
- 3 -
[,
j.
7s..
Q.,
\\ s. s. w,, 1. e. ' 4,,s.
. > 3,e.g, o.
a y
1
'l.O,')Lh;4;<4.
m.w a ~
~
\\:
p+)fI.v.,
w;.*Wr
- .a
,.=
_. ~ q
.:n.ql 9
/x yT jifKEGi.i'9""Q'J.tQ,
- f'"nk..jR
.y;.
1
) } M W l..;'f >y & %. %4
'~
E Q i.j%Q;$"p!2.lle.'
n.
- g.-.@
7 4
- 44. p/ ';
.-d e
c
/%
c"dy.j
.h**,*
.3 N-
...... - iw
! t' E
~#
, ;d( '.4 @ WA
- ist :'.
S
,%i~
- 9-.re
- G, /
Nr 4,
A~N
'(M,,vd(r'I.s.1'a,-
i
%,h
/.
6' i,
p
/
De* *-
. >. s
,.:.:' r ?:,i a-
- :. ;, x,.a1
-@ k
- n. yr -
... a t-1
.,.l. x,b,.. t'
^,
i
- m.,
s.n a
m.
l 4,. s..lr
~
?
y '- *i "f:. A
h.j.y'!;( \\ !y.g, V,, f*4
- ~~ ~
p: \\..
f'\\ [\\ s j-.
g c.,% f'> % '*',,, ' / * 'Q *n.%
S
. lq y l
.- L li +:.
i
- p. k-
,,.t,.. / *
. Q. j?w~v,,.
a.:..: A
- r. t. {.3 w.
. 4;. >,,,,.,> :p.. >pV l'.*,
- w. 7,Q
....c,x...
7 i,..Q-,;,:y$e
.c-l, t,
/r i /
'(
j/
/
Y9 3.
t
%,,7 ' 'q,',') g ' !;
. k.
..U-T-
. W, [ 3.QC:
f, p
4[,
4'
' 4-
\\
' " '.I h(t ' '
_, ~ '"f.:
"' Q y
.f
. }-jf
, ft
/,?
h~'8 J ',l lf{
l
' / '. I k. 1 - f.!..'.g,'I'r,
.' s.,
ef',
I. M '%
)-!
I;, /...
]'
).)I. ' /;.',h.*n,,,,,,U,h *'%Mh'
./f l
Ul
%['.
k *
- f,"_,.,,,h
@ indicates nearest resident 2-M
1\\
[
i l-l
/.
^'
0 I [C 3hhW' N
'h tlI '
\\
e--
/
O C
- g!
i' 4.
s 7
i-1./
.,(
s.
5
/
N y
. _../. _ i 4,,
W l
4 I
n
., y
~
Y.' A L
.~
l
((
5 E
\\}
5 F e-h~
k.
~
. It's' %, v
~
+
, ' ' ~
~.
g w
e-s
. 4y _- %.
., d
/
g e
e ga g
g, ), m,, '
g Q
g
\\Ay!
.( ) =%
e y
n i(
V
)
f p
[h4 1,O'W g q( bta ri
\\\\
"RGDM i
i Dyh 1.a
.sw m
%V.? wwww*%%
~
\\
thelisA A w
r-
\\
A.,,
s (c
.. u w cse p--
s 37,g/
wym i va 4i 7
.r
_N >
)
'R"-ssFU ~th e.M' i T
+ <-
t.', i
- dl Y, ;..,fNrwei t.EYMNI UAIMM_A$.M$1 N i
M{ S m.d.J'
.--ame c.tc i vi c4M rear g\\.v. )
s.. N.
- l 49h gg.g w ~ m m s % x w sar-=..
1 1
~, N - % $
- Pc a
V ]%
_ m M' sC r"
g
~
~11;s 4g c i g-s
.~:s:=.gms4 gg y,u c\\vt v i wy
> y-A
.--.c.
s i..
- y..\\
i V
(_H9 s
3,,,E s
A.\\t Y u *1 G \\\\_.j_ _h e,e $ 's ' ~$:c c
- m j. g* 48, s,h,s. -
- c.n e
~
Se
\\\\' \\\\ % N i\\
Mhi'W W -
i ps -
iv sj6 / "
P
!3 \\\\
li
- G.T T *'
-4 j
~
". 2 1 m
w1
-u
- c. o -
s..
3 u
47
.; 8:;T i'
.. v m o g.sjg,
..x # 2 4 w
. ouzm, x
g
, l, t g
. *p
@ g p.
I Y ff s
IY b'.;,)
.e '
.i
/ g',.-
-y v
s
\\L,,
n
.t l1 2; 't ;
s gW RJ > \\s, ~/
e$:
i Uf L
/,
,aj!
r
[#
}
L I
I
) < t. a, M
x,
,i, II
.. z
.u d.
/
i l,:
,l N
s Ri l
- a u
- l
,i i
t 1
-Al 24 t i lt j
i N
l
!$ *ps..
e W
3 a :s
- 1.. *1
<-k "
wi I
I 1
e.
1
.v i:- *i" 1
B 31 ; e-9v5 o
gg?1 M*
O
&1), v)ss.l*l w5
-'8, :
eaisi f~ :-!
ll$bh!
f 5
Al :
I
" % =*
/
1 i
'Ct:ii:::;....
I il N7 w l
g i
- a.
s.
m
'4 c:
m g 5 4
- k'u.%.
(
":lii!% w se s
p_ _ pi.:.i v._ 4 y: o i uv s
.a Q'.
i: '
'p ' N. N...-d i:
/I f SI k.
8
- ii:.
- 1. p.
=
e r,.,......
I r,
[
4.,.s *. k..h ) ".
y a
v.h,4 as
+
~.. _
pf' l
N 1
4 5
\\
d5YW
\\
c$,w h
1
,n.
,5a5 avws 3
g;9 v$$k
9 1
B
/
=0 l'
~
4/
g
[Em I
P 3
Q y
i i
U b
a@h1 l
=
t DI
~
y_ bW;;"
=
t I
4 l
i I
l
- aW l
~~
}
h C-gs
. [.,
~~
I z
1 L.f 5
i 5.e-S
?
~
a
=
j m
E Igl
%lr S
j,
[
1I]'
mi j }a.}!
h..
'U C 'e 1
l'iil!!!!)!'b 4'//
e t-
~~~
iilli}i!! = s== tan==:3 3 I r fi !} } } }} ill ! i}l}}: / 3* II 5 $5 .15b i ji$ / g 4~ i!Lii'; i ji 41 jjj,]I}idjIf~h !l.Ij i dja,1 hia suis.. s sgas s-as s=*s===:s: December 1987
-l .O ' ': = ~ e... y ,.a j f ~.j # y. f >. o jf.:,[ L ^ R 'f. \\ g A e ,3.y, qq Q Q; m. gy.,;;..o -,.. - as.e t d. =_ - ,e g , z. A w ..c ...-*./..-_ . s 4 .s ~_ ,> \\M j Q .t.: 4 k[) C '. 9 2 ad o# 1 2 ?. 9.
- w. qy gg.
G{ W,;> 5 y ~ c. g-- h), /g s [7-.- 2o o$ > U. ./] j. f,; - h.. : ,. 4 JJ - U '.' i.;f J $8.J f .~5 . [,..,. ft, S3h_ Q# s J W i,e o .-<t o 4 i ,4 f'.. .~6, ,( .?. 8
- 1,
'4 .Ng - .1 '- ~ W {' y . - a \\. . v., g ^ y _ - ), my -. -: s '.. I a . y ., - p - .f- - f i i,.- '. D - \\6 3c r b,. , +p% ~ / 7- . i. g. 1l s m T .. t , 9, t. \\' .'~ 31, Y: { 4 .....; ~f .._. 2' 3 .,., Q, f e y ;., .-5 y .~ 1 ,. g \\} t y 7 y m: ay _1 iv %g:. g v ..[s / g /.' s.F%b ,.3 y . s. s ~ .K.;. 1
- .1 g
' ' k, %.. p Q..y .Tfi
- o. l.
t }'j ' -. j .. Y-T 29 r. -' n% Y 43 3 - = - -
3.1 WATER USE IN THE FACILITY ENVIRONS. SITE WATER SUPPLY SOURCES WATER UTILIZATION. AND DISPOSAL OF RESULTING EFFLVENTS 3.1.1 Water Use in the Facility Environs a) Commercial There are no industrial users of large quantities of water in the general area except for CIGNA in Bloomfield which has approximately 10 wells with a potential yield of 4,000 GPM, used for air conditioning. Other wells in the area which are used for industrial use are: Total Yield Magg Water Use Wells GPM Windsor 1) Combustion Engineering Irrigation 2 600 2) Combustion Engineering Industrial 2 1075 Windsor Locks 1) Hamilton Standard Industrial 2 430 A detailed list of wells in Windsor, Bloomfield and East Granby is available from Connecticut State Department of Environmental Protection, Natural Resources Center. These industries may also use water from a public water supply. MDC Public Water Water Supply information and industries which use the largest amounts of water from the MDC are listed in Tables 3-1 and 3 2. 3-1
b) Recreational The major water bodies in the area are the Connecticut and Farmington Rivers. These rivers are primarily used for recreational boating and fishing. The fishing consists of a wide range of warm water species with shad and trout being the most prevalent. c) Orinking Water The town of Windsor is served by the Metropolitan District Commission of Hartford County (MDC) as are many surrounding towns. The MOC gets its water from a variety of sources with the largest being the Barkhamsted Reservoir which is over 12 miles from the C-E Windsor site. A list of public and private water supplies within the area of the C-E Windsor site is shown in Table 3-1. !J{p1q: The State Department of Environmental Protection, Natural Resources Center has compiled a water use data base for the State of Connecticut. The data base allows easy access to such information as water use by category, town or region. 3.1.2 Sources of Site Water Sucolv l The major volume of water used on the C-E Windsor site is supplied by the Metropolitan District Commission (MDC) through a 12" main. 3-2
Additional water for cooling purposes is supplied by two wells located on site property. 3.1.3 Distribution of Site Water Sucolv to Buildinos 85 and 817 Since Buildings #5 and #17 are the only structures on the C-E site that utilize low enriched uranium (<4.1%* U235) the discussion on site water distribution will be confined to these two structures. Each day, some 600,000 gallons of water are brought into the site through a 12" main that penetrates the South boundary line of the Site at Prospect Hill Road and runs in a northerly direction into site property. Out of the total water input, only 130,000 gallons per day are distributed to Buildings #5 and #17. 120,000 gallons per day are used solely for Building 17 furnace cooling. The remaining 10,000 gallons per day are divided equally between Buildings 5 and 17 for the uses listed in Table 3-3. Figure 3-1 shows the location and direction of the incoming MDC line and the mode of distribution to Buildings #5 and #17. 3.1.4 Utilization of Water Within Buildinos d5 and #17 Table 3-3 indicates the type and volume of water utilized in Buildings
- 5 and #17.
Figures 3.a and 3.s visually illustrate the water balance. Water utilization within the two facilities may be categorized in the following manner.
- a request for 5.0 w/o limit is pending before the NRC 3-3
i 3.1.4.1 Process Water i This is water used in normal processing operations such as cleaning and rinsing of nonradioactive components and assemblies. It also includes water used for general cleaning purposes in the nonradioactive and radioactive processing areas of both facilities. The nonradioactive waste water remains unchanged in both physical and chemical quality and as such it is discharged to the industrial waste system. The radioactive waste water, which is contaminated with uranium residues as a result of powder handling, pelletizing and rod loading operations, is discharged to the radioactive waste system where it is tested before discharge to the industrial waste system. 3.1.4.2 Equipment Cooling Water This is water that is used in the normal operation of the facility for cooling equipment. This water is essentially unchanged in both physical and chemical quality before it is discharged to the industrial waste system. 3.1.4.3 Water for Sanitary Purposes This is water used to service wash sinks, toilets, showers, etc. in the nonradioactive and radioactive areas of Building #5 and #17. 3-4
Nonradioactive Areas - Sanitary waste water containing no solids and sanitary waste water containing solids are discharged directly to the sanitary sewer system. Here solid wastes are removed and processed and the remaining liquid effluent treated before being discharged to the C-E site creek which ultimately discharges into the Farmington River. Sanitary waste water containing no solids is Radioactive Areas discharged directly to the radioactive waste system where it is tested before discharge to the industrial waste system. Sanitary waste water containing solids is discharged directly to the sanitary sewer system where solids are removed and processed and the remaining liquid effluent treated before being discharged to the C-E site creek. 3.1.5 Discosal of Discharaed Effluents from Buildinas #5 and 817 Table 3-3 indicates the type and volume of waste water effluents generated in Buildings #5 and #17 as a result of normal operations. Disposal of each type of discharged effluent is handled in the following manner. 3.1.5.1 Sanitary Waste Water Effluent Sanitary wastes from Buildings #5 and #17 flow into sanitary waste lines which are routed through the C-E site sewage treatment plant. The originating points of the effluents are shown in Figure 3-2 along 3-5
with the path that the wastes follow to the sewage treatment plant. Also shown in Figure 3-2 is the sewage treatment plant with the various treatment points indicated, each of which is explained below. The overall efficiency of the Sanitary Waste Treatment Plant related to B00 removal is 85%. 5 Barminutor Chamber The sanitary waste stream is discharged into this chamber. Here the stream is passed through a cutting and grinding mechanism where the suspended solids are reduced to a particle size more amenable to subsequent treatment. The effluent stream is then passed on to the next treatment step. Primary Settling Tank At this step in the process about 40 percent of the suspended solid waste particles are removed from the waste stream by the settling process. The solids collected at this point are passed on to the digestor while the liquid effluent containing the remaining suspended solids is passed on 1 l to the next operation. Trickling Filter At this step an additional 30 percent of the suspended solids are removed from the waste stream. In addition, this operation removes approximately 70 percent of the 800 (Biochemical Oxygen Demand) from the effluent stream. Secondary Settling Tanks The remaining suspended particles are removed from the waste stream by the settling process. The 36
solids collected at this point are passed on to the digestor while the liquid effluent is passed on to the chlorine contact tank. Sludge Digestor and Drying Beds - The solids collected fiom the primary and secondary settling tanks are routed to the digestor where bacterial action is allowed to take place and further stabilize the sludge. The sludge residue is removed from the digestor where it is spread on sand beds and allowed to drain and dry. The dried residue is broken up and removed to a landfill where it is buried. 3.1.5.2 Industrial Waste Water Effluent Industrial waste water under normal operating conditions is unchanged in both physical and chemical quality and as such it is discharged directly to the C-E site creek via the C-E site industrial drain without treatment. Since the industrial effluent contains no solid wastes, it bypasses the Barminutor chamber, the primary settling tank, the trickling filter bed and the secondary settling tank at the site sewage plant. The originating points of the effluents from both Ruildings #5 and #17 are shown in Figure 3-3 along with the path that the industrial wastes follow to the C E site creek and then to the Farmington River. 3-7
With respect to industrial waste from the site, C-E has a discharge permit pursuant to the National Pollution Discharge Elimination System (NPOES) Permit Program (Figure 3-6.1. Table 3-4 is a summary of the 1987 data obtained to assure compliance with this permit. 3.1.5.3 Radiological Waste Water Effluent All radiological liquid wastes which contain U0 are generated in 2 Building #17 as floor mop water, clean-up water, and water from sinks and showers in the change rooms. These wastes are generated as a result of UO2 p wder handling which is carried out in connection with pelletizing and rod loading operations. All radiological liquid wastes which contain UO are generated in 2 Building #5 by conducting wet chemical analysis of UO materials, 2 cleaning of glassware used in the analysis of UO, and clean-up water 2 used in connection with laboratory fabrication of sample U0 fuel 2 pellets. Radiological waste water effluents flow from Buildings #5 and #17 into the radiological waste l in.es which are routed to Building #6, radiological waste water treatment plant. After testing, the waste water flows into the industrial waste line where it is carried to the C-E site creek and then to the Farmington River. The originating points of the effluents are shown in Figure 3-3 along with the path that the waste lines follow to Building #6 and then to the discharge point in the C-E site creek. 3-8
3.2 Climatoloov and Meteoroloav Climatological data for the area is based mainly on measurements made i at the U.S Weather Bureau Station located at Bradley International Airport, about five miles northeast from the site. The following i information was taken from the U.S. Weather Bureau Local Climatological Data for 1986 for the Hartford, CT area. The mean temperature for the Hartford area since 1905 was 50.0*F. The maximum and minimum monthly mean temperatures were 18.4*F and 83.6'F l respectively, i l The total precipitation for 1986 was 44.32 inches with a maximum of 6.79 inches falling in June. The mean annual precipitation from 1905 to 1986 was 43.07 inches. The maximum monthly precipitation was 21.87 inches in August 1955. 1 l The flood level for the area's worst flood (August 1955) was about 110 feet above mean sea level. Since the Combustion site is located approximately 180 feet above mean sea level, the probability of direct . damage resulting from a local flood is very low. The average hourly wind speed for 1986 was 8.5 miles per hour. The highest recorded velocity was 66 miles per hour in September, 1985. The prevailing wind direction for six months, May to October is South, and for the six months November to April, is Northwest. The average wind velocity at the Combustion site is 11.2 miles per hour. 39
With low-to-moderate wind speeds, inversion conditions may exist from sunset to sunrise. A strong lapse rate exists around noon; the temperature difference is maximum with air flow upward at a maximum rate. As the night approaches, weak lapse conditions occur with low air flow. Hartford's location relative to the continent and the ocean has a significant influence on the area's meteorological and climatological conditions. With the prevailing west-to-east air flow, continental modifications of the air are important.
- However, sudden and oftentimes serious upsets result when storms move north or when other pressure developments produce the strong and persistent northeast winds associated with storms known locally as "coastals" or "northeasters".
Seasonable air mass characteristics vary from the extremely cold and dry continental polar quality of winter to the warm, humid maritime tropical characteristics of summer -- the one type from Canada and other from the Gulf of Mexico, the Caribbean Sea or the Atlantic Ocean, l Local topography also influences the climate. The Berkshire Hills to the west and northwest are a source of summer thunderstorms which, when accompanied by wind and hail, sometimes do considerable damage to the crops in the Connecticut Valley. Frequently during winter, when rain falls through the cold air trapped in the valley, the resultant icing creates hazardous conditions for transportation and utility installations. On clear nights in the late summer or early autumn, cool air drainage into the valley, plus Connecticut River moisture, 3-10
l l produce ground fog which sometimes becomes quite dense through the valley and hampers ground and air transportation. I Tornado and straight wind probability hazards have been calculated in a detailed report prepared by the Institute for Disaster Research, I Lubbock, TX.* The referenced report describes tornado and wind hazard probabilities for a region which encompasses the State of Connecticut, thus including the C-E Windsor site. The tornado hazard probability for this region is 1.0 x 10-6 for a tornado with winds ranging from 140 MPH to 239 MPH. This means that in any one year there is a 1 in 1,000,000 chance of a tornado of this size affecting the C-E Windsor Site. \\
- Mcdonald, J.R.,1980, "Tornado and Straight Wind Hazard Probability for Haddem Neck Nuclear Power Reactor Site, CT",
Institute for Disaster Research, Texas Tech Univeristy, Lubbock, TX. 3-11
i 3.3 Geoloav/Hydroceoloav The surrounding area has been subjected to the actions of glacial ice. All dominant geologic features are a result of erosion and depositions so caused during the Pleistocene era. The State of Connecticut has a favorable earthquake history. Ten earthquakes are listed, the first recorded in 1791 and the last in 1925. All of these with the exception of the first, were local in nature and of moderate intensity. The hydrogeologic structure of the C-E site is contained in the Connecticut Water Resourf.es Bulletin No. 25 (applicable portions, describing well tests on the C-E site are included, see Attachment A-1). Also enclosed is a report on ground water prepared for the town of Windsor sanitary landfill which is directly east of the C-E site (See Attachment A 2). This report provides significant descriptions of the regional ground water flow patterns. 3-12
TABLE 3-la MUNICIPAL WATER SUPPLIES IN Tile AREAS SURROUNDING C-E NUCLEAR FUEL MANUFACTURING-WINDSOR MGD Ave. Source Treatment Name of Supply and/or Utility Towns Served Population Served Daily Cons. Description Used Metropolitan District Com-Hartford 135,080 18.802 Barkhamsted Res. Chlorination, Corrosion mission of Hartford County W. Hartford 61,180 6.534 Nepaug Res. Control, Filtration, (MDC) Windsor 27,040 3.747 W. Hartford Res. Fluoridation
- 2 Bloomfield 20,140 2.803
- 3 Wethersfield 27,410 2.645
- 5 Newington 29,350 3.050
- 6 Rocky Hill 15,550 1.788 Cold Brook E. Hartford 52,180 10.707 Glastonbury 16,600 1.605 Cedar Mtn. Stor.
Chlorination Basin So. Windsor 4,500 0.734 Wickham Hill Stor. Chlorination farmington 1,200 .762 Hanchester 1,000 .038 Filter Plants: (W. Hartford Bloomfield) f0TAL 391,230 k 3-13
i Table 3-lb Private Water Supplies in the areas surroundino C-E Nuclear fuels Manufacturino in Windsor l Population Treatment Town Consnunity Water System Type of Dwnership ' Served Source lised 1 i Bloomfield Grant 11111 Associates llomeowner's Association 160 1 Dug Well #150 ppm t8one l .luniper Club Private Water Company 96 1 Dug Well 15 opm None Kenmore Road Assoc Private Water Company 60 3 Drilled Wells 50 ppm None l Orchard 11111 Assoc flomeowner's Association 40 1 Duo Well 50npm Hone Penwood Assoc., Inc. Ihmeowner's Association 80 1 Drilled Well 70 ppm ttone Sharon lleichts Water Assoc. Ilomeowner's Association 162 1 Drfiled Well 35 ope None 598 East Granby Chelsea Consmns Water Supply Private l'ater Company 132 1 Duq Well 50 opm Pone CTWC Northern Div. 3 Duo Wells pit and Western Private llater Coeoany 77 4 Caisson wells fluorida tion East Granhv Villane Private Pater Company 300 2 Duo Wells 50 opm None Condominiums, Inc. liinlev Villane Private Ifater Comoany 75 1 Duo Well None Metacomet Villane Private Water Company 50 Well #1 Softenino ho2 water only. o Well #2 Softenino hor water only. Old Newnate Ridoe Water Private 'later Company 100 Co., Inc. Turkey 11111 Apartments Private flater Company 300 Orilled Well #1 80 opm Mone Drilled Well #2 60 cpm Pone Drilled Well #3 65 ope None Village Water Co. of Private Water Company 70 Gravel pacl<ed Well #1 Chlorination Simsbury 300 osa and corrosion control 1104 I l Windsor Locks CTWC Porthern Div. Private Water Company 13538 4 Caisson Wells Ph and IJestern 3 Di,q Wells fluoridation 3-14
TABLE 3-2 MDC'S LARGEST INDUSTRIAL USERS WITHIN 5 MILES OF C-E WINOSOR MGD Ave. Industrial User Town Population Served Daily Cons. Source Description Stanadyne, Inc Windsor 3,000 .693 MDC Combustion Engineering, Inc. Windsor 4,300 .468 MDC Kaman Bloomfield 1,200 .181 MDC Connecticut General Bloomfield 800 .165 MDC Taylor Fenn Windsor 300 .143 MDC 3-15
l TABLE 3-3 l WATER UTill7ATION AND EFFLUENT WASTE STREAMS FROM BUllDING NOS. 5 AND 17 Water Utilization in apA Tvoe and Volume of Effluents in ood Equipment Wtier for Industrial Radiological Sanitary Bldg. No Process Water Cooling Water Sanitary Purposes Waste Water Waste Water Waste Water S 800 2500 ?000 2500 800 2000 17 1,200 123,000 Jt:0 123,700 500 1000 1 i i
- 120,000 gpd is used for furnace cooling i
I t i 1 i s' l 3-16 i
TABLE 3-4 1987
SUMMARY
OF C-E INDUSTRIAL DRAIN DISCHARGE DATA Parameter Monitored Sample Frequency Sample Tyng Annual Results/Ranoe Annual Average Total Suspended Solids Weekly 24 Hr. Composite <10 PPM <6 PPM Temperature Weekly 4 lir. Average 50*F - 84*F 67.7*F low high PH Weekly 24 Hr. Composite 6.0 - 8.8 6.9 low high 3-17
4
- f..........
\\ 2 I I
- I,'" ' /
so 3 x CRAT f00 g \\y~~~/.hTEN ,jms vr A ,,a, m..,. 0A b t ./, o e e...a r.c, i, e e a...t m ...c w a sec.; e e LC<ates C# w(f e:My *an orgtt<
- gemewig,cie liaatj aarte f(he=( 704 er=CW a e,4= f $i f (
A4 maf(4 8(C3 V'4% 70 RALO aar. < $ 5 ag il f66wa g 3.e 3 - 18
I i s- / l3 b V* _m os-l1;5 U i i /. / 5 h' lh "!i ) u p 8 w
- h. \\
~ (1 [ 5 I rh 4 \\ f:. n 1 3. s \\ g s \\ 0 t 2 NJ v i ... ~
8 1' i ll, II uj ~ n!,; / I I i1 g ) j E I 3 Y k 5 1 l9 h 1 m @d i I!06 1 l 511 !Ei i.I~s \\ 5 I .n. d n!.l[y.&; \\ \\ 8 o i s i h 1, ^ r
{ la y ) i ) r ) r re 1 ss#52 e 3 aer t t t tt e 5 W 5 i st u n 1 dW aWW 1 1 n S 3 I 3 3 ( ( ( 4 s la s g la 0 a 1 b s 0 x l 1 a n 2 g o x 9 5) 0 0 1
- s 0
1 y .a 6 x gD i l l 0 3 1 1 i n t i I 4 -rk P 4 or L S 1 f o S D L 2 l a l I 3 ia0 I R 3 s Fs M O f r4 f I 11 s 2 ( t I M A 1 a( D. P l f 0 l t 0 o Gs 1 t u t Al s l 1 'l i l es B V l a ca i i f g as l D l l s 0 taa t 1 I ss i a rsi s sb s j x l cA a 0 t 0 g 1 al 1 l 1 Nd 4 x 0 1 29 x 1 IM f. 6 I ) e " 9, 7 s ) ) rl 3 l 1 I" 4 o iy 4 4 r I 1 ra 3 1 I 1 et E' I ( ti 3 3 n ( Wa ( S I I i l j a 3 t
l~lGilRl' jd Wter !!alance Diagraisi for Illdg. #17 can dll AllalladI Ildsis (240 NOrking Oays) Process Industrial W ter Wste 2.1Mt x 10" gals gals Wter (3.1.4.1) (3.1.s.2) tillit111flG #17 081ulimiesit W U""II"3 ~ gals NilCifAR luft. l.20 x 10 gals ltAlalfAClHRING I St" Wier hier (3.1.4.2) (3.1.5.3) IIAllR Fult SANIIARY SANilARY USC WASIE ER 2.40 x 10 gals 2.40 x 10 gals (3. i.4. 3) l (3.1.5.1) 3-22
C.WL SJi J g if 3-FIGURE 3-6 cix STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION Mb - %+ %c# DIVISICN CF ENVIRONMENTAL CUALITY WATER CCMPLIANCE UNIT STATE CFFICE BUILDING HARTFORD, CCNNECTICUT 06106 ' tj j NPDES PERMIT u y Ccebustion Engineering, Inc. 1000 Prospect Hill Road ~ '41ndsce, Ccnnecticut 06095
- g j
Attention: Mr. Evan '4collacott, 3 ~ Vice-President iG -i Re: DEP/'4PC 164-003 Town of 'dindScr Far=ington River '4atershed This permit is issued in accordance with Section 22a 430 (e) of Chapter 426k, Connecticut General Statutes, and regulation adopted thereunder, as amended and Section 402(b) of the Clean Water Act, as amended, 33 USC 1251, et. seq., and pursuant to an approval dated Septe=ter 26,
- 1973, by tne Ac=:.nistrater of the United States Envirer.Jental Protection Agency for the State of Cor.necticut to administer a N.P.D.E.S. per=1t program.
Your application for permit reissuance, subcdtted by Evan Woollacott en Fecruary 3, 19e6, has been reviewed by the Connecticut De part=ent of Envircreental Protection. The Cec =1ssioner of Envircrcental Prctection (h'ereinafter "the Ccccissioner") has fcund that Cc-bustien Engineering, Inc. is in full ccepliance with Crder NO. WC 3054 entsred en May 21, 1981 hereby per=its Cecbustien Engineering, Inc. to discharge sanitary sewage in accordance with the follcwing condit10ns: 1. Insure that all wastewaters described in the above referenced application are collected, treated and/or discharged in accordance with the plans and specifications approved by the Director of ' dater Ccepliance in. November 4, 1971 tegether with assceiated engineering doctraents, correspondence and other data subcitted to cceply with or obtained to verify ocepliance with Crder No. '4C2C22. 2. Ihe discharges described in this permit shall not exceed and shal'. etherwise conf 0r: to the specific terns and general conditiens specified herein: Phone: 3-2) 163 Cmtol Avenue
- Hartford, Connecucut 06106 An Equat 0::enunny Employe
2 A. Discharge Serial No. 001 tescription: Sanitary sewage Code 101011b Receiving Stream-Goodwin Pond Becck Basin Code 4300 Present/ Future Water Quality Standard 3/A Average Daily Flow 40,000 gallons per day Maxisus Max 1=um Average Instantaneous taily Monthly Para:eter Ccde Concentration Concentration Concentration Bioche=1 cal 301 50.0 =g/l 30.0 =g/l 85% Cxygen 'M 5 Total Suspended 614 50.0 =g/l 30.0 mg/l 85% Solfds 1) The discharge shall be required to meet the =cre stringent of the average =enthly concentration or minimum removal etficiency requirements for each parameter. 2) Ee menthly average cencentrations specified above shall be be exceeded by a facter of 15 during the any week. 3) The pH of the discharge shall net te less than 6.5 nor greater than 8.0 at any time (Code 609). 4) 2e discharge shall not centain a visible oil sheen, or ficating solids. 5) The discharge shall not contain more than 0.1 milliliters per liter settleable solids. (Code 610). 6) Re discharge shall not cause visible discoloration er fcaming in the receiving waters beycnd any tene of influence as provided in the "Ccnnecticut Water Quality f r andards & Criteria" as amended. 7) The total chlorine residual of the effluent shall not te less than 0.2 =g/l non greater than 2.0 r.:g/l at any tirae during the period frem May 1st througn Septe=ber 30th (code 503). 3) Be geccetric mean cf the fecal eclifers bacteria values for the effluent sa=ples collected in a pericd of thirty (30) consecutive days during the period frcm May 1st through Septe=ber 30th shall net exceed 200 per 100 =illiliters. (Code 401). 9) Re geccetric =ean of the fecal colifem bacteria values for the effluent samples collected in a period of seven (7) censecu*.ive days during the period fece May 1st thrcugh Septe=ber 30th shall net exceed 400 per 1C0 :llliliters. 1 -27
i 3 j i
- 3) Df.scharge of any new pollutant net authorized by this Pemit which has or
- ay have an adverse impact on the receiving waters is prohibited.
- 4) Tc.e following locations shall be monitored and results reported to the Director of Water Compliance Unit b.
"w 10th of the following month in acco.Mance with the following schedua. A. Monitoring Site 01H (Influent) Minimun Frequency Paraceter Code of Sampling Sample Type 51ochemical Oxygen Demand 301 4 per Month Daily. Composite 5 Total Suspended Solids 614 4 per Month Daily Ccaposite Tes. eure 612 20 per Month Grab F 609 20 per Month Grab L . able Solids 610 20 per Month Grab a) ice emposite samples, record the instantaneous flow at the time of each aliquot sample collection, b) Grab samples shall be taxen during the period of daily peak flow. i B. Discharge Serial No. 001 (Effluent) Minimum Frequency Parametet Code of Sampling Sample Type 31cchemical Cr/ gen Demand. 301 4 per Month Daily composite e 3 Total Suspended Solids 614 4 per Menth Daily Composite Chlorine Residual 503 4 per Working Day Grab May 1st thru September 30th Fecal Coliform 401 4 per unth Grab i May 1st thru September 30th Dissolved Oxygen 605 20 per Month Grab Temperature 615 20 per Month Grab Settleable Solids 610 20 per Month Grab Turbidity 615 20 per Menth Grab pH 609 20 ;er Month Grab a) Recced and report on a daily basis the minimum (code 630), maximum i (code 631) and total (code 626) flow of the discharge. b) Fer ccaposite samples, record the instantaneous flew at the time of each aliquot sample collecticn. c) Grab samples, shall be taken during the period of daily peak flow. d) Samples collected for bacteriological examination shall be collected between the hours of 11 p.m. and 3 p.m. er at that time of day wten the peak hourly flow is nomally experienced. ]
- 1. e e i
j
4
- 5) Menitor and. report to the Director of ' dater Ccepliance the folicwing operational parameters in accordance with the following schedule:
Monitoring Site 03F Minim m Frequency Parameter Code Location of Sampling Sa=cle T'me Te=perature 612 Each Digestion Unit Weekly Grab Alkalinity 602 Each Digestien Unit Weekly Grab Volatile Acids 625 Each Digestion Unit Weekly Grao pH 609 Each Digestien Unic Weekly Grab A) Record the pounds of dry solids discharged to and removed frcm the solids handling system on a monthly basis. 3) Record the chlorine desages in pounds and mg/l en a daily basis during the period feca May 1 thru September 30 each pear. C) Record the percentage of recycled flew en a daily basis. (
- 6) Bypass of the treat =ent facilities or any part therect at any time is prohibited unless such by pass is unavoidable and necessary to prevent loss j
of life, personal injury or severe property damage and trare are no feasible alternatives to the bypass. ] Be Depart =ent of Envircr= ental Protection Water Ccepliance Unit, Municipal Enferce=ent Secticn (Telephone No. 566-5760), the Department of Health Services (Telephone No. 566-1251), and the local Directer of Health, shall be notified i=e:!iately by telephone, and in writing within 72 hours, of each occurrence of an e=ergency diversion or bypass of untreated or partially treated se' age, or failure of any =ajer ccepenent of the treatment facilities which would reduce the quality of the effluent. If the diversion or bypass occurs cutside nortal working hours (3:30 a.m. to 4:30 p.m. Monday through Friday), notification shall be =ade by telephone en the next working day. The written report shall contain: a) to cause of the diversion er bypass or treat::nnt ccupenent failure. b) The ti=e the incident occurred and the anticipated time khich it is expected to centinue cc, if the condition has been corrected, One duration. c) Ee steps teing taken to reduce or minimize the effect en the receiving waters. d) he steps that will be taken to prevent recccurrence of the condition f in the future. j 1 3-26
5
- 7) Dispese of sludge, screenings, grit and other liquid chemicals at *.ocations approved in accordance with the provisions or Chapter 446K and/ar Chapter 446d of the Ccnnecticut General Statutes or to waste haulers lic.ensed under Chapter 446K of the Connecticut General Statutes.
- 3) An alternative power source adequate to provide full operation of all ptmp statiens in the sewage collection system and to provide a minimum of primary treatment and chierination at the water pollution centrol facility shall be maintained to insure that no discharge of untreated wastewater will occur during a failure of the pri=ary power source.
- 9) No new discharge fece a single source to the sewage system of: 1) industrial wastewaters; or 2) cooling waters may be authori::ed without tb4 discharger first obtaining a permit from the Ccemissioner.
- 10) The permittee shall act in a responsible =anner to =aintain flcws ard loads within the design capacity of the treatment works. When flows and/or loads exceed 90% of the permitted capacity the permittee shall develop a plan to evaluate alternative methods to increase the leadings to plant censistent with water quality requirements and treatment requirements.
Dus plan shall also include a schedule for ccepleting the recccmended improvements and a plan for financing the i=provements.
- 11) This PERMIT shall be subject to the following sections of the Regulations of Ccnnecticut State Agencies which are hereby incorporated into this pernit:
Section 22a 430-3 General Conditions (a) Definitions (b) General (c) Inspection and Entry (d)Effect of a Peruit (e) Duty to Ceeply (f) Proper Gperation and Maintenance (g) Sludge Disposal (h)Cuty to Mitigate (i) Facility Modifications; Notification (J)Menitoring, Records and Reporting Require =ents (k)Sypass (1) Effluent L1=itation Violations (Upsets) (s) Enforcement (n)Rescurce Conservation (o) Spill Prevention and Control (p) Instr"rantation, Alar:s, Flow Recorders (q) Equalization 3 - 27
l r 6 i i I 221 430-4 Precedures and Criteria (a) Duty to Apply i (b)0uty to Reapply (c)Applicatien Requirements (1) Establishing Effluent Limitations and Conditions
- l (m) Case by Case Detenninations (o)Pennit Transfer i
(q) Variances (c) Secondary Treatment Requirements 'except as superseded by the following definitions: f "Average Menthly Concentration" means the average concentration 'of all Caily Caposite samples taken in a particular month. "Maximum Caily Concentration" means the maximum cencontration allowed in a Caily Ca posite sample. "Caily Ccmposite" means a caposite sample taken over a full operating day censisting of aliquot samples collected at equal intervals of no more than 60 minutes and cabined pecportienally to flow, or a sample centinuously j collected proportionally of flow, An lieu of a daily caposite sample the permittee may censider a cmposite i I sample to be a sample consisting of a minimum of eight aliquot samples i collected at equal intervals of no less than 30 minutes er no mere than 60 minutes and ccmbined prepetionally to flow, or a sample ecliected j pecportionally to flew cver that same time period provided that duri.4 the sampling period the peak hourly flow is experienced. Any results of such 4 ] alternate caposite samples in excess of the limitations specified in paragraph 2 above shall be censidered pennit violations. I 1 Your attention is especially drawn to the notification requirements of j subsection (1)(2), (1)(3), (j)(6), (j)(7)(C), (j)(8)(C), (D), (E), and (F), (k)(3) and (4) and (1)(2) of section 22a 430-3 i j l I i l i i l i 3-av
9 7 The Commissioner reserves the right to make appropriate revisions to the permit in order to establish any appropriate effluent limitations, schedules of ccepliance, or other provisions which may be authori:ed under the Clean '4atar Act er the Connecticut General Statutes or regulations adopted thereunder, as amended. The permit as modified or renewed under this paragraph may also contain any other requirements of the Clean ' dater Act or Connecticut General Statutes or regulations adopted thereunder which are then applicable.
- 12) This PERMIT shall be censidered as the PERMIT required by Section 402 of the Federal ' dater Pollution Control Act and Section 22a-430 (E) of tra Cennecticut General Statutes and shall expire on June 5,1992.
Entered as a Permit of the Commissioner of Enviretrental Protection this i 5th day of June, 1987. Vh$ ~ fuenn W. Andersen Acting Cccmissioner i NPCES NO. CT0101575 State Application No. 86-041 3 on
4.1 THE PLANT 4.1.1 General Descriotion of Site Facilities Handlina low Enriched Uranium <4.1% U235* 1 4.1.1.1 Fuel Fabrication Facility, Building #17 l The NFM-W fuel fabrication facility is 120' wide x 340' long and 1 contains 40,800 square feet of floor space. The shop section of the fuel fabrication facility is 120' wide x 300' long and contains 36,000 square feet of floor space. It has concrete flooring, corrugated asbestos siding, and a poured gypsum roof deck, approximately 25' high. The 36,000 square feet of floor space is divided into two areas; the first area being utilized for radioactive process work while the second area is utilized for nonradioactive process work. Distribution of floor space within each area is listed below: I J
- a request for 5.0 w/o is Pending Before the NRC 1
r i l 1 4-1
Work Area No. Sa. Fet.t Tvoe Process Work Pellet Fabrication 3,000 Radioactive Pellet Encapsulation 4,000 Radioactive Fuel Rod Fabrication 5,000 Nonradioactive Fuel Bundle Assembly 5,000 Nonradioactive Machine Shop 6,000 Nonradioactive Cleaning, Storage, General Process L.m Nonradioactive Total 36,000 The radioactive area of the shop is air conditioned and humidity controlled and is under negative pressure to prevent the escape of airborne uranium dioxide into the nonradioactive shop areas. The office section of the facility is 40' wide x 120' long and contains 4,800 square feet of floor space. It has concrete flooring, exterior concrete block walls with full windows and a poured gypsum roof deck approximately 11' high. 4.1.1.2 Nuclear Product Development Facility, Building 85 The Nuclear Product Development Facility contains 60,000 square feet of floor space. It is a multiple level structure that has a main bay at one end with three wings located off of the main bay. The wings are identified as the north, central and south wings of the facility. At the opposite end of the building and attached to the central wing is a high bay test facility, 100 feet in height. 4-2
The main bay - and each of the three wings of ' the structure contain office space which occupies a total of 27,000 square feet of the facility. Mechanical testing and research/ development work occupy areas in the main bay, central wing, including high bay area, and south wing and take up some 16,500 square feet of floor space. Work in the areas is evenly divided among activities that require the handling of radioactive materials and activities that require the handling of nonradioactive materials. The electronics testing laboratory, fabrication of special research test fuel, and chemical testing of production nuclear fuel for quality control purposes occupy the remaining areas in the main bay and three wings and take up some 16,500 square feet of floor space. Work in the areas is evenly divided among activities that require the handling of radioactive materials and activities that require the handling of nonradioactive materials. 4.1.2 Descriotion of Ooerations 4.1.2.1 Fuel fabrication Facility, Building 17 The NFM-H facility in Hematite, Missouri contains equipment to convert uranium hexafluoride to uranium dioxide powder suitable for pressing into fuel pellets. The facility also contains equipment to convert the uranium dioxide powder into finished fuel pellets, suitable for 4-3
l l r encapsulating in fuel rods. Shipments of uranium dioxide-powder and pellets are made from the Hematite, Missouri plant to the NFM-W facility in Windsor, CT. The NFM W plant contains equipment to manufacture fuel rod and fuel bundle hardware, finished uranium dioxide fuel pellets suitable for encapsulating in fuel rods, and completed fuel rods; the completed fuel rods are assembled into fuel bundles which are then shipped to the utility's reactor site, t A detailed description of the process used in the Building #17 l facility to convert uranium dioxide powder into finished fuel bundles is noted in the following steps. Powder Blendina - is carried out by first weighing out the required amount of uranium dioxide powder. After weighing, the powder is discharged into a blender. The blended powder is then discharged into a granulator in order to produce a free flowing powder for subsequent use in the pellet pressing operation, l Pellet Pressina - The free flowing uranium diox.ide powder is pressed 1 to the desired "green" density and geometrical shape. Pellet Dewaxina The "green" pellets discharged from the pellet pressing operation are processed through a reducing atmosphere in a dewaxing furnace to remove the lubricating material introduced into the uranium dioxide powder prior to the pressing operation to l lubricate the press die cavities. 4-4 l
Pellet Sinterina The dewaxed pellets are processed through the j reducing atmosphere of a sintering furnace where the final pellet density is attained, i Pellet Grindina - Pellets discharged from the sintering furnace are t ground, inspected for dimensions and density, and transferred to the 4 pellet stacking station. Pellet Stackina - The pellets are aligned in a linear array, each pellet stack being of a length sufficient to fill one fuel rod. i Pellet Loadina - The individual pellet stacks are weighed for record purposes and the weighed stack is loaded into a fuel tube. Final Cao Weld - The final cap weld is made and the fuel rod is passed through rod inspection to ensure integrity of encapsulation and 1 quality of product. Final inspected rods are stored subsequent to ] being assembled into fuel bundles. l Fuel Bundle Assembly - Completed fuel rods and completed fuel bundle hardware, consisting of end fittings and the fuel rod holding cage, i l ] are brought together in the assembly room. The fuel rods are inserted t l ] into the rod holding cage and the end fitting is attached to the end i of the fuel bundle assembly. The completed fuel asserrbly is cleaned, l inspected, packaged into an NRC-approved shipping container and i shipped to the utility's reactor site. 4 i I i 4-s i 1 I
Table 4-1 summarizes the current operations performed within the NFM W building #17 facility and the generation of effluents associated with those operations. Detailed within the table are data on: a) Description of major and minor processing steps; b) Type of major processing equipment used; c) Type and quantity of effluents from each major process step - classified as to
- liquid, gaseous, or solid; and further classified as being radioactive or nonradioactive effluents.
e 4.1.2.2 Nuclear Product Development Facility, Building #5 The Ceramics Laboratory is involved with the development and testing
- f research fuel materials.
The fuel materials are received from various outside sources and processed using different test conditions. The fuel is compacted and sintered in a manner similar to production fuel. The Chemistry Department receives virgin powder and pellets at various stages of production from NFM-W for quality control analysis. The pellets are ground and separated for chemical analyses. This material is then weighed and dissolved or converted to U 0 depending on the 3g analyses to be performed. The analyses performed are to determine the j amounts of impurities and quality of uranium being used. ) 4-6
Ts %tallography section of Nuclear Product Development Facility receives completed UO2 pellets from NFM-W and the Ceramics Laboratory for evaluation. These pellets are sectioned and processed for metallographic examination. The Fuels and Materials section conducts research and evaluation of nonirradiated core materials such as fuel cladding, neutron poison materials, and fuel rod assembly materials. These materials are structurally examined by metallographic techniques, mechanically and chemically tested for various physical and chemical parameters. Table 4-2 summarizes the current operations performed within the nuclear laboratory facilities and the generation of effluents associated with those operations. Detailed within the table are data on: 1) Description of major and minor laboratory operations; 2) Types of major laboratory equipment used; ) 3) Type and quantity of effluents from each major laboratory operation classified as to liquid, gaseous, or solid; and further classified as being radioactive or nonradioactive effluents. 4.1.3 Tvoes of Radiolooical Effluents from Buildina Nos. 5 and 17: Methods of Treatment and Discosal of Such Effluenti 4-7
4.1.3.1 Radiological Waste Water Effluent All liquid wastes in Building #17 which contain UO are generated as 2 floor mop water, clean up water, and water from the sinks and showers in the change rooms. These wastes are generated as a result of powder handling which is carried out in connection with pelletizing and red loading operations. Liquid wastes in Building #5 which contain U0 are generated primarily 2 by wet chemical analysis and cleaning of glassware used in the analysis of UO ' 2 Liquid wastes are collected in Building Nos. 5 and 17 (1300 gpd; refer to Table 3-3) and diluted to 3.0 x 10 5NC/ml before being released to the Building #6 liquid waste tanks. Liquid wastes are drained to any one of ten 2000 gallon retention tanks located in the Building #6 liquid waste system. The tanks fill automatically in sequence. Electronic measuring devices signal that two retention tanks remain in reserve to receive radioactive liquid waste before overflow must be expected. Overflow water is diverted to a sump pit. l Each liquid tank in Building #6 is agitated and circulated to provide for representative sampling. A sampling station is located at the base of each tank. A 500 m1 sample is withdrawn prior to discharge, and forwarded to the radio-chemistry laboratory for gross alpha and beta analysis. If levels are in excess of 10 percent MPC then the y waste liquid is circulated to one of four 5000 gallon dilution tanks where the necessary dilution is achieved. 4-8
Liquid wastes from Building 6 are discharged to the industrial waste line. Here the waste liquid is carried to the C-E site creek which discharges it to the Farmington River. Table 4-3 summarizes 5 years of radioactive liquid effluent data on a semi-annual basis. The six month average for 1984-1987 is 5.50 x 10'4 C1. 4.1.3.2 Radiological Airborne Waste Effluent Airborne wastes are released from Building #17 as a result of UO 2 pellet fabrication processes. To control airborne release, an average negative pressure of 0.04" of water is maintained inside the unclad fuel processing area. As shown in Figure 4-1, there are 4 release points of airborne radioactive materials from Building #17. These systems are described herein: FA-1 Powder Preparation and Pressing - This system has a capacity of 12,100 SCFM and operates and incorporates prefilters and a double bank of 12 absolute filters, each 99.97% efficient at.3 microns. The air exhaust from this system which is either returned to the unclad area or released from the plant it sampled 100% of the time and analyzed each day. The system operates with a total yearly discharge level of 14.2 4C1. fA-2 Furnace H Burnoff - This system has a capacity of 1340 SCFM and 2 i incorporates prefilters and a single bank of 4 absolute filters, each 99.97% efficient. The air exhaust from this system is released from the plant and sampled 100% of the time and analyzed each day. This system operates with a total yearly discharge level of 13.5 4C1. 4-9
M Pellet Grinding and Rod Loading - This system has a capacity of 17,500 SCFM and incorporates prefilters and a double bank of 16 absolute filters, each 99.97% efficient at.3 microns. The air exhaust from this system is released from the plant and sampled I 100% of the time and analyzed each day. This system op'erates with a total yearly discharge level of 12.2 #C1. FA-4 Recycle Powder Area - This system has a capacity of 6000 SCFM and incorporates prefilters and a double bank of 6 absolute filters, each 99.97% efficient at.3 microns. The air exhaust from this system is released from the plant and sampled 100% of the time and analyzed each day. This system operates with a total yearly discharge lovel of 11.1/4C1. The above averages for the FA-1, FA-2, FA 3 and FA-4 systems were derived from the monthly discharges for these systems for the years 1986 1987. f The stack heights, diameters, and velocities for Building 17 are given in Figure 4-2 l Airborne wastes are released from Product Development as a result of airborne activity during handling and transfer of UO powder for 2 chemical analysis purposes, production of special R&D test fuel, and metallographic examination of production fuel and special test fuel. All airborne waste exhausts from Product Development Building #5 via five individual stacks shown in Figure 4-1. The exhaust is continuously monitored whenever operations involving dusting or release of radioactive material are in progress. All stacks used for a 4-10 1
the exhausting of radioactive effluents are equipped with sampling connections. All but one of these stacks have absolute filters. the one exception is the environmental test laboratory stack which is no longer in use. The Building #5 exhaust stacks have the following flows: I M Flow in ft / min 2 Hot Chemistry 3100 3 Emission Spectroscopy 2000 5 Radiochemistry & Env. Labs. 2610 6 Ceramics Lab. 2125 8 Ceramics Lab. 4500 The stack heights, diameters, and velocities for Building 5 are given in Figure 4 4. Air from systems Nos. 2, 3, 5, 6 and 8 pass through absolute filters (99.97 percent efficient for >0.3 micron particles), and are vented to the atmosphere. Continuous sampling is provided immediately upstream from the discharge point and, over a period of a year, the average discharge level has been approximately 1.5 x 10'I4 u /cc-The environmental test lab is connected to System No. 7. However, the system *is not presently being used to exhaust radioactive effluents. Table 4-3 summarizes the past 5 years of airborne effluents for Buildings #17 and #5. 4-11
i 4.1.3.3 Radiological Solid Waste Effluent i Solid wastes containing V0 are generated in Building #17 in the form 2 of rags, paper, reject emptied fuel tubes and other miscellaneous materials generated during normal processing operations. All waste materials are loaded into 55 gallon drums which are placed in the Bulk Assay Counter to determine the U235 content. The assayed waste is transferred to a B25 shipping container which is then sent to a waste disposal contractor licensed by the NRC. In 1987 the waste generated from Buildings f 5 and #17 for disposal was approximately 141 Kg of uranium, containing approximately 4.5 Kg of U235, all of which is contained in some 2450 cubic feet of solid waste. The used absolute filters from the Building #17 stack systems are non-destructive assayed to determine the amount of U235 contained in each filter. Based on the assay values the filter is either sent to burial or disassembled to recover the uranium. The uranium removed from the filter is mixed with other uranium which has been removed from other filters. A representative sample of this mixture is taken i for uranium analysis for recycle purposes. All used filters from Building #17 containing radioactive residues are placed in double plastic bags which are then placed in boxes. Boxed filters are then placed in B25 shipping crates which are sealed for shipment. The sealed containers are then shipped to an authorized i burial site. l 4-12 j l
i l Radioactive solid waste is generated in Building #5 in the form of paper, rags, poly bags and waste bearing precipitated uranium from chemical processes and analyses in solid form. Radioactive solid waste is also generated in the form of scrapped unusable U02 powder in small quantities. i Solid waste is disposed of in B25 shipping containers. Each container has an inventory sheet and all waste is sealed in plastic and logged on I the inventory sheet. When the container becomes full, the inventory sheet is reviewed and filed and the container is transported to the waste storage area and ultimately transferred to an authorized waste disposal contractor for burial. l The filters removed from the absolute filter systems in Building #5 are removed from the filter banks and wrapped in double plastic l coverings and then placed in cardboard boxes and sealed. These boxes l l are then placed in B25 shipping containers and transported to the I waste storage area for ultimate shipment to an authorized waste j disposal contractor for burial. Historically, these filters retain airborne uranium fines in nonmeasurable quantities and a reasonable estimate of their contents is made using an air concentration and i volume flow rate calculation. j 4.1.4 Tvoes of Nonradioloaical Liouid Effluents From Buildinas 85 and 817 and Methods of Treatment and Discosal of Such Effluents l Sources of nonradioactive liquid sanitary wastes are showers, toilets, i sinks, lavatories and drinking fountains. Sources of nonradioactive 4-13
I liquid chemical wastes are solvents used to clean components and 4 f ) assemblies, acid solutions used to clean components and remove residual oxide scale, and degreasing chemicals to remove grease and films from components and assemblies.
- I 4.1.4.1 Sanitary Waste Water Effluent from Buildings #5 and #17 i
J Method of treatment and disposal of this effluent is discussed in detail in Section 3.1.4.1. 4.1.4.2 Industrial Waste Water Effluent from Buildings #5 and #17 i Method of treatment and disposal of this effluent is discussed in detail in Section 3.1.5.2. l 4.1.4.3 Liquid Chemical Waste Effluent from Buildings #5 and #17 4.1.4.3.1 Alcohol (Isopropyl) approximately 1100 gallons used per year, all of which is lost to the atmosphere through evaporation. The material is i 1 used for cleaning purposes. (Refer to Section 4.1.5.1, Gaseous i Effluents.) 4.1.4.3.2 Hydrochloric Acid approximately 5000 pounds used per year in regeneration of demineralizer resins. The material is diluted with process water and neutralized during regenerative operation and i drained through the industrial waste line where it is discharged to i i l 2 ] the C E site creek which ultimately discharges into the Farmington j River. 4-14 1 J
I 4.1.4.3.3 Hydrofluoric Acid approximately 100 gallons used per year. Mixed l with HNO acid and water to form a pickling solution which is used in 3 component cleaning and preparation. Spent acid solution is routed to an outside storage tank for pickup and disposal by a licensed comercial service (refer to Section 4.1.5.4, Gaseous Effluents). i 4 4.1.4.3.4 Aluminum Nitrate - approximately 1200 pounds used per year. Mixed l with process water to form a bath that will stop pickling action of 3 HF HNO pickling solution. Spent solution is routed to an outside storage tank for pickup and disposal by a licensed comercial service (refer to Section 4.1.5.4, Gaseous Effluents). l 4.1.4.3.5 NaOH (Caustic) approximately 1800 pounds used per year in i regeneration of demineralizer resins. The material is diluted j with process water and neutralized during regenerative operation and t drained through the industrial waste line where it is discharged to the C E site creek which ultimately discharges into the Farmington River. 1 4.1.4.3.6 Nitric Acid approximately 800 gallons used per year. Mixed with HF i acid and water to form a pickling solution which is used in component cleaning and preparation. Spent acid solution is routed to an outside storage tank for pickup and disposal by a licensed commercial service i (refer to Section 4.1.5.4, Gaseous Effluents). J l l 3 l 4-15
l l 4.1.4.3.7 Detergent Solution - approximately 900 pounds used per year. Mixed with process water and used as a cleaning solution for components and assemblies. Spent detergent solution is diluted with process water and drained through the industrial waste line where it is discharged to the C E site creek which ultimately discharges into the Farmington river. 4.1.4.3.8 Perchlorethylene - approximately 11,200 pounds used per year, all of which is lost to the atmosphere through evaporation. The material is used for degreasing raw materials prior to their introduction into the production process (refer to Section 4.1.5.2, Gaseous Effluents), j ) 4.1.4.3.9 Freon approximately 110 gallons used per year, all of which is lost I to the atmosphere through evaporation. The material is used for degreasing materials prior to their introduction into the production process (refer to Section 4.1.5.2, Gaseous Effluents). 1 4.1.4.3.10 Machine Coolants - approximately 110 gallons used per year. Mixed ] with process water and used as a cooling solution during machining operations. Spent solution is routed to outside storage containers j where they are picked up for disposal by a comercial service. 4.1.4.3.11 Vacuum Pump 011 - approximately 200 gallons used per year in vacuum l l pumps to achieve low pressure in operational process equipment. Spent 1 l oil is routed to outside storage containers where they are picked up for disposal by a comercial service. I i 4-16 1 3
4.1.4.3.12 Polyvinyl Alcoho1* - approximately 6000 pounds per year utilized in UO2 powder preparation process for preparing powder of the correct flow quality for the powder pressing operation. Burned off during pellet dewaxing operation (refer to Section 4.1.3.2, Gaseous 1 Effluents). 4.1.4.3.13 Zinc Stearate * - approximately 1300 pounds used per year. Used in U02 pellet pressure process for lubrication of pellet die cavities. Burned off during dewaxing operation (refer to Section 4.1.3.2, Gaseous Effluents). I 4.1.4.3.14 Spent Pickling Solution - approximately 6000 gallons used per year. The solution is made up of HF acid, HNO acid and water. This 3 solution is used to pickle zircaloy components prior to their introduction into the production process. The most probable chemical reaction is: 3 ZR + HNO3 + 15 HF A 3 HZr FS+8H0+4NO I 3 which generates zirconium in solution in a fluoride complex ion form with traces of other zircaloy ingredients - tin and iron. This spent pickling acid solution is mixed with the spent aluminum nitrate stop bath solution in a storage tank outside the building for pickup and disposal by a licensed commercial service.
- These are radiological waste streams and are listed here because they j
are the only two chemical effluents that fall in this category. 4-17 j i
4.1.5 Tvees of Nonradioloaical Gaseous Effluents from Buildi < ji c9 f l and Methods of Treatment Airborne nonradioactive chemical effluents arise during pickling l operations, during cleaning operations with volatile solvents, and i from residual inert gases used in production' welding operations. l Table 4 4 lists the annual estimated quantities of these effluents J which are released. Since Combustion Engineering does not sample for the specific chemicals noted in this section, the estimates are j determined by conservatively assuming that the quantities used during the year eventually end up as gaseous effluents. 4.1.5.1 Alcohol and Freon Waste Fume Effluent from Buildings #5 and #17 l Fumes from isopropyl alcohol and freon will be liberated due to 4 l evaporation during solvent cleaning operations. These solvents are ) not specifically covered by Federal Air Quality Standards, but the 1 3 tate of Connecticut Department of Environmental Protection identifies them as photochemically unreactive and limits discharges to 160 pounds in any 1 hour and 800 pounds in any one day. Average yearly use of these materials at C E is listed in Section 4.1.4.3 and illustrates that C-E will be discharging less-than the amount currently permitted 1 i by the State of Connecticut for photochemically unreactive solvents. 1 i i I 4-18 l
L l l 4.1.5.2 Perchlorethylene Waste Fume Effluent from Buildings #5 and #17 l 5 i i Fumes from perchlorethylene will be liberated due to evaporation f l during component and assembly degressing operations. This material is ) not specifically covered by Federal Air Quality Standards, but the i State of Connecticut Department of Environmental Protecticn identifies ] it as photochemically reactive and limits discharges to 8 pounds in any one day. Average yearly use of this material at C E is listed in Section 4.1.4.3.0 and illustrates that C E will be discharging less than the amount currently permitted by the State of Connecticut for j photochemically reactive solvents. E l l 1 l 4.1.5.3 Helium, Argon and Nitrogen Waste Fume Effluent from Buildings #5 and l
- 17 These gases are used in various processing and on going operations.
The gases are inert and are properly dispersed during discharge. The l 1 volumes involved are routinely small with daily discharges of i approximately 3000 cubic feet. Discharge through properly located roof exhausts is considered a sufficient means of dispersal in the i present facilities, i i I j 4.1.5.4 Hyd;ofluoric and Nitric Acid Waste Fume Effluent from Buildings #5 and i 4
- 17 1
i j Acid pickling in Building #17 is performed in one open tank which J j contains a solution of 30 percent nitric
- acid, 3.5 percent t
hydrofluoric acid, and 66.5 percent water. Fumes from the tank are 4-19 i } j 1
vented into a local exhaust system. It should be noted that fumes from the aluminum nitrate stop batch ere also discharged into the same exhaust system. The average concentration of nitrogen oxides in the stack from the pickling operation is 9 ppm and the concentration of hydrofluoric fumes is essentially undetectable. Because of the low concentration the stack is not monitored and the exhausts are not treated prior to discharge to the atmosphere. 4.1.5.5 Q1hgt Contributions to gaseous effleuents from heating and cooling of the facility is minimal. This is based on the use of #6 fuel oil. As required by the State of Connecticut, the content of this oil is 5 0.5Y. sulphur and 5 27. nitrogen. 4.1.6 Solid Waste All solid wastes generated in the unciad fuel (U0 ) handling areas are 2 considered to be radioactive and cannot be released from these areas unless they have been appropriately inspected, surveyed, marked, and labeled. These wastes are only considered as solid nonradioactive waste after the inspection and survey his indicated levels below License SNM-1067 limits for unrestricted release. The wastes generated from other areas cannot contain radicactive materials since the only radioactive material in these areas is UO in zircolay j 2 cladding. Types and quantities of nonradiological solid waste are 1 4 listed in Table 4-1, sheets 3 and 4, under the following ma.ior process i steps, "Preparation of Fuel Assembly Components", "Fabrication of Fuel 4-20 i )
~ I Hardware", and "Fuel Bundle Assembly". As indicated in this table, the solid nonradioactive wastes consist of different types of scrap j metal (zircaloy, inconel, and stainless) and plastic wrappings. The only other solid nonradioactive waste generated is waste cardboard boxes and packaging materials from incoming supplies (nonradioactive). l 4.2 Soill Prevention Control Spill Prevention Control is described in detail for each area at the C E Windsor site in the ' Windsor Site Hazardous Waste Management Plan", dated June 1981. This plan specifically outlines the procedures to be followed for the hazardous chemicals listed in section 4.1.4.3 and as required by the Resource Conservation and Recovery Act (RCRA). [ l i i f l I 4-21
.c i ~ I, .i 7 i, e I I i 4 i X i W i i i ~ i ihl 1"!nl ~ ~ ~ { { j i i </!? i ~is!%} y 3 o t d I 3 3 3 fil l i,a i g ; 8 I I h l;I i Rh.j[ L 4' l i i i i ...i.r .i 1 I
- (
+ l }! 1 2 l ; a e l s 1 1 1 1 1 1 I a 3 - a s a a i s ir h ! 2 8 4 g j 1 i i i i i I w t $ 1 i' f s 5{:I' f. g ,f, ?,l 1 (j v, e u, f ll 1 3 ln1,l 8 r e uz
- 4 i
1 g h ! !I I l ~~f ll I 1 '? l i .i i i 1 i 5., I i, $!I! !l lI li I I i I 2 il { 3 71 l l:'1 i{ J: x I e l e., l g g il i
- h. cL s;i el I if
~j I {s h a i .i g 25 j I a e 1 l .{!si 4 I j I !)<, 1 I j g: w d I 1 1 $1 u.la;.les 1 v s 1
- s ;,
F i l I I, l l I, t = I s l s 1 1 d =g ii f ) l l L i Mt i i i r i I i: i 2 1 ! 1 i jj r! i u! j lnt j j
s ~= .hi. i. = i
- ,11
!jl3 IIl2 lI 0% 3 y v <I 31 i Ci.n,
- z. a e
a 1 i(,u B Is si 6{f' is I: I: e 1 in e_ z e i, h j ? {:1: l: 5: 3 2: s 1. ,7,; 3g VI'Iig U ee , =. e i e cP 1 1 I I Ei.r; y
- 1 n,
( I.3 e:.l se I t i I l I ell: j li N L 4 ,1 3 1 1 iii i 1 I a'., p p g 0 = ~1 t l -,!.E. <r--hl. rl l si la n
- d!
6.. i - i w y1 \\ \\ ,1 i ~ i d c,f y i i .e n s:n mi e i i } tr!yl. 1 %' i l I i
- .o mi y.
!! j. I i i h. 5et . u! 5 i i l t-f { l
- !! Il li 1
f. n 11 ! 11 1 1!to t ,5; I j l l l;. t !! I .i i .l )a n..i' es I ,l 1 ll.y i If 'i il i -v ti is ?' f II
- isi!
!cIe,. 1. d j ir lI.!;i.f I,I i I
m p 8 3 g .I i i I I 1 e~ 2 1 5 s y a a, s D fl 5 ** 83d!l' $ 'll' .= 3 I 3 g i e-et. i i i gm 3-s 'a f 5 5 9 {c: S" 7.smj t Il'b $ l 9 l l j 5 ifs
- 3 53 r
- i
- ! 13 H g:
W 2 1
- l e
- 2 2 9 2
e L i l ?? ; ~; :; l e i,!.! .Il 111 11.!.!! ! -2 ] Yi 3$ $ N f 4 - s x v o. I ] ,- s. ,3 e t i s I k";
- A lJ I i
43 C t' 23 J A l l I I i a 05! i* f I f f Ni I !! j!iI l 2 5 f l I d i s E e li i s i ; ! ! i ;; s n k= t t k *? 2 5 5 ! c; S; i; e r i i ~ s
- r. ; ;;
i! ! !..! i; !. ! !! t I 4 3 TN N ( E '? !! : !! I
- I i
i, 5:5 ; 3 4.= a e 4 sa r:; ff s 4 4l t f .c; i i il i il 45 3 I i 1 lIl 5 i 3l $gr i
- ss
!!_Ls i; s sh 5 5 2 y 4 f eg i ,1 1 s v y2 $b h 52
- Ib E
- l il Kj j 1 gI k
I# !! *{de W l l jj !! 't i j '! 1is 3 11 ) si t ie i i i ! hi 3 4 3 3 e. l1 ' yh!' L y g I!..1, l# } I lll 8 8 8 1: r o i i 3. ' f 1 -.i s 1 g I 3 l., 1 4 j i ee 3d=vi ..I 1_y I af i
- st 3
YY e i 1 5 ( i Di i i 3 i i ip i 1 e 5! j j I! 2 l l3e 3 j t 1 Ii i ) 3 s vi y a i e e r 2 r i s t!ai 3 5!!!I f seat ss T ft i ff*f
- j rj j,
ta
- a
W I Mu, if L hl 5 o N 0w k e d f 6 a 4 Q! s! s e e $I $$ w $ {* $1 e c sw b h3 s, .. !l11 et h h h 4 3 7 8 !I2 1 1 3 ass s = 0 g 7 3 f y g e s - i. r s 5 h 3. h. 3 A a A fE b 5 I Q. 5 g M 5 o d d 5 {r we a fI j N a n,1, :l ~r : ~:
- ~e :e~r
~
- m. 1 a
e r m'{ ,; f 7 E ,7 YT 7 5 9. I d 6 -) I k N 2 f3353 2' 33 33 I] 3 3I Y 35 5 'A s luss s' si si i;f sf 2 3 85 88 g e ! g r$ gg.t r ja~ + = y 2 2 s a 5 5 W. j j 2 83 } },3 4 :3. T 5 6 i e il 3 s = I sw _a 9 O l s$% w w s g + 2G55 5 5 5 41i9 } y s'a F 3 5 lI !)j o b o a s 5 1, e s l e a s, m e gg =, l-3 ty.w 3 y w w g f3 y je*ff y )S!w 5 d a y / g 's W i 11 gli ! !!} 13 h! i 13 st! h s n -d ! l11"lh lj _k 1U 'l C# ff $$$5 fia{i _E si o e,_e = -i s2 11 *s?G $$3 h I 3sl bi > r i -i $ m s 2 18g< j a ) 1 1 e-i 4 isg a a f I O ,E3 3 I4 3 f,i .k lS6
- 3 w
c 3 s v us t 21 3 T'55 3 f r s z a s1 ? EI 33 ll Y l L.
~ 3 : : : a 3: 0 t F 7 7 i ,I I I f. 1 I I I I. a n 3 5 3 s s s s 3 s C +1 <?ss 3 2.. e, a a z 4 a u a 5 f*83" $ Z = w d W d2 1 l 9 1 1 1 1 1 3 1*]lj!,{ 3:- b i si s i E i s s Is'i O ,q. g ! i
- 1
} d!-j
- i E
i ~ 1 1 9 1 i i 1 1 sit _dt_x s s s s ss 3 s Wfue d ~ ~ t i W r J i I! .I I
- f. i.
.I 1 .I i. s i 2 ) I 5 1 3 3 3 s s k T 16 Y $? jj l l l I l l l l 1 I I ,1 4 S 3 L 5 8 ~ t 5 1 I 5 f# f*1 li h I de I 5#
- I..II*
21 I..f f 1..s.t e i g E., I!! 5. sn K l N'S Il 1l 2 2 " I ;i d lll D {l I I I I I I! 5 7 7 I 4 ; e -.i s: r v f
- b b
5 b 5 b W $ h j 1 7 4 I,,' ',. = l = = wi &a u j r e j l r
- r r r r
!! Yj 3 3 1 3 $3 I3 3 e a s a a a is !r s 8 ll ,\\ s a a }s 2 i, i. s 1 l
- e
- =.
1 1 ) i r s i 3 f l + E 3 g 5 5 $I. d I I I 1 1 I I j 3j .I Jg I .$ g.Jo.$ 0 } s, g a .h $ d.k l l ,$3 g s 3 s s l g i t s b N i f n;$! 1"E ,t 1 s 5 3 s! = i I I 3 kA i ) j ~ k A b l. 1 i ) 3 3 I s ~ 5 33 I s 5 3 I l l ;i l i b{i i i s e = = a i 1 3 r<rr5 r r r r .es l: Y l
- W Mli li
u 4 A 1 r 9 Q v 2 1 1 2 1 1 I I I I n 'e 3 W W i W W s s W y ~ !!4-f- ! ! ! l i ' 4 c I0 ib lb Et 3 j lg j E (g ls l 1 ss 5s 13 si g j aa ss e a i S,6 lx% h f ~- s ge a-w. o b $D Nt 3 $D lb h j 55 E! [ g g[ Nk"W$ E5 N t i ~ ~ 2 l l l s e r r 3 I I I I t 8 s W s 4 5 A
- J c
c g'i ( i ~ ae g C k a E 4: q! ? f ig ? I r s I st i f I u toj $
- Q.:;
I '! a ~ s + -c a 2 ~ I k D hl I I I i Y 2 5g ~t t t 5 \\ tM
- [!l 5
5 e e l I i i 2 i e 5 g E y 5 5 8 5 5 3 5 8!$ 3 3 4 0 j y ,51 2 d 3 d x I ilI i i 33 i 2 a II 1 i E g i 1 "r di 35 s II $ h5 9'I $1 3 h l i g 1 8 1 ty g l [ c-m [ ! h,il il j I i i 4 a.g g f b. =.s i k ,3 .3 5 I sl h h y'e s s i I ,+- nf g;ll1
- 11 k
11 1 l g 1] s! lfil i;h13. d ra i .t 58 sWs 2 i l!i l* i Eli l Ej 3!!9 jfI i it.a !;x .rt j
TA8LE 4-3
SUMMARY
OF RADIOACTIVE EFFLUENTS (BLOGS. 5 & 17) Period Covered Airborne Release (C1) Liauid Release (Ci) July 1,1984 - Dec. 31,1984 1.16 x 10-5 8.73 x 10'4 Jan. 1, 1985 - June 30, 1985 3.09 x 10-5 3.98 x 10'4 July 1, 1985 - Dec. 31, 1985 1.77 x 10-5 9.93 x 10'4 Jan. 1, 1986 - June 30, 1986 3.09 x 10-5 4.44 x 10-4 July 1, 1986 - Dec. 31, 1986 2.38 x 10-5 3.10 x 10'4 Jan. 1, 1987 - June 30, 1987 3.00 x 10-5 3.65 x 10'4 July 1, 1987 - Dec. 31, 1987 2.38 x 10-5 6.63 x 10-5 6 months average 2.41 x 10-5 5.50 x 10~4 4-28
J TABLE 44
SUMMARY
OF NONRADIOLOGICAL GASE0VS EFFLUENTS (Estimated by the Quantities Utilized During 1987) Estimated Annual Quantities Gaseous Effluent Tvoe Source of Release Released as Gaseous Effluents Isopropyl Alcohol Cleaning Operations 7,200 lbs. (1100 gals.) Freon Ultrasonic Cleaning Tank 1,280 lbs. (110 gals.) Perchlorethylene Degreasing Tank 12,600 lbs. (110 gals.) 3 Helium Welding Operations 127,000 ft 3 Argon Welding Operations 242,000 ft 3 Nitrogen Nondestructive Testing 170,000 ft (N0 ) Fumes Pickling Operation 9 ppm (Stack Sample) x Hydrofluoric Fumes Pickling Operation Non-detectable i 4-29
l 6 ik5 .I{* m N 55 s 3 e ik a {i e til1 +. i i ~ II / N .il! / .i; k s ,g L 11 N_
finure 4 2 A L n N ---n -- N FA 'l w-FA-3 I I i f FA-1 BUILDiNCa NL \\'T kOFFicE B.O O F AREA ELEVATlON OF STACKS (ABOVE GBOUND LEVEL TO CENTER. OF EKHAUST DUCTS') A DUCT S[z.E STACKVELOC\\TY /' MIN. FA-1 3 ti' E7"# 3OLF3 FA-a 3 5' ' tO"x t 3"DUCT 1 4 B Li-FA-3 34' 'lO"X'lO*00Cr \\'] LF9 FA-LL 35' 2 O"(6 ?_'73 co MOTE; BUILDING'S ROOF 32' ABONE GROUND 43 w ARBJDW \\MOttATES ~ _ -. -.. ~,.. - -. -..
Fiqure 4-3 N 8l 1 m-@-*- 1-y a
- - 3 ->
w-T -> 4 U y g U N V-LU -
- a --
y u_J BUILDINC2 N9. 5 ROOF f w-{-> t. y... k EL ANAT TON OF STACKS (ABOVE GROUND LEVELTO CENTEROF EY.H AU6T oucTs) DUCT Siz.E STACK VELOttTY /64tN. STACK Me.a ELL ' 15Yl'7" DUCT L750 STACK Ne.3 E 'l ' tLL'% 1Lt" DUCT tLVIO STACK N9.5 2 L&' Fl"X Ltt" DOCT LB20 STACK N2.Co 2.'E ED'% E.0"OuCT 'M5 STACK N9.8 E.L f E0~ % 2Or5 o NCifE *. But LDiNCas R.OOF ?_.?] ABOVE. C,ROUND -4 ARROW \\MOtCATES B\\RECTlOM OF AIR Ft Ow
5.1 EFFLUENT AND ENVIRONMENTAL MEASUREMENT AND MONITORING PROGRAM 5.1.1 Radiological Effluent Monitoring System 5.1.1.1 Liquid Radiological Effluent As described in Section 4.1.3.1, all radiological liquid wastes are collected and sampled prior to release from either Building #5 or #17. In Building #5, the liquid is collected in several holding tanks from which 50-100 mi samples are taken. From each of these samples, 10 mi are taken and placed in a sample dish, which is then heated to dryness. The sample is then counted in a gas proportional counter for 10 minutes. For alpha, this counter has a minimum efficiency of 27 percent and a nominal background of 0.3 cpm, providing a gross alpha -8 sensitivity of 9.0 x 10 pCi/ml. For beta activity, this counter has l a minimum efficiency of 17 percent (equivalent to 60) and a nominal -7 background of 2 CPM; providing a gross beta sensitivity of 3 x 10 pCi/ml. In Building #17 the liquid is collected in a holding tank from which a 50-m1 sample is taken. From this sample, 5 mi are placed in a sample dish which is then heated to dryness. The sample is then counted in an alpha scintillation counter for 2 minutes. This counter has a minimum efficiency of 30 percent and a nominal background of 0.8 com, (based on a 10 minute count) providing a gross alpha sensitivity of 4 x 10'7 pCi/mi. 5-1
The low level radiological liquid waste effluents exit B ailding #5 and j
- 17 below ground and flow to a common drain line.
Frcm the common drain they are carried to the liquid waste building, ruilding #6, where they are discharged into the radiological retention aed dilution system tanks. Each liquid holding tank in Building #6 is agitated and circulated to provide for homogeneous sampling. A 250 mi sample is withdrawn from the tank before liquid discharge and forwarded to the chemistry laboratory. A 100 ml portion of the 250-m1 sample is processed in accordance with C-E Chemistry Procedure Nos. 14 and 15. The sample is then counted in a gas proportional counter for 10 minutes. For alpha, this counter has a minimum efficiency of 27 percent, and a nominal background of 0.3 cpm, providing a gross alpha sensitivity of 9.0 x -8 10 pCi/ml. For beta, this counter has a minimum efficiency of 17 percent and a nominal background of 2.0 cpm providing a gross beta ~7 sensitivity of 3.0 x 10 Ci/ml. The noted sensitivities are sufficient to ensure that release levels -5 do not exceed federal discharge limits of 3 x 10 pCi/mi as listed in Title 10, Part 20 of the Code of Federal Regulations. Uranium concentrations for the holding tank samples are also determined by fluorometric analysis to estimate uranium loss in the liquid effluent. In addition, composite samples are collected daily at the location shown in Figures 3-2 and 3-3 and analyzed for gross i alpha and gross beta activity. A gamma spectra is also performed on a j 5-2 _g
monthly composite of these samples to identify any unusual radionuclides which may be present. Table 5-1 is a summary of this data for the years 1982-1986. 5.1.1.2 Gaseous Radiological Effluent Radiological gaseous effluents from Buildings #5 and #17 are in the form of dust and vapor aerosols being discharged from hoods, processing equipment and furnaces as described in Section 4.1.3.2. Each of the effluent release points noted in Section 4.1.3.2 and shown in Figure 4-1 for Building #3 and #17 is continuously monitored using a sampling system which meets the specifications set forth in ANSI-N13.1-1969, Appendix A. Within Building #17, the samples from each station are collected once each day, and counted after a sufficient time has elapsed to permit the decay of radon daughters. Using typical sampling rates of 30 liters per minute, a minimum sensitivity of 10'4pCi/cc is obtained. Counting is performed using the alpha scintillation counter previously described in Section 5.1.1.1. With Building #5, the samples are collected as required whenever the stations are in use, and counted after a sufficient time has elapsed to permit the decay of radon daughters. (It should be noted that l 5-3 s a .,_.e .,.-,n
unlike Building #17 the Building #5 stations are not in continuous use because of the nature of laboratory operations). Using typical sampling rates of 65 liters per minute, a minimum sensitivity of -15 1x10 pCi/mi is obtained. Counting is performed using the gas proportional counter previously described in Section 5.1.1.1. The noted sensitivities are sufficient to ensure that release levels -12 do not exceed federal discharge limits of 4.0 x 10 pCi/mi as listed in Title 10, Part 20 of the Code of Federal Regulations. 5.1.1.3 Environmental Monitoring Program for Radiological Effluents A comprehensive environmental program has been in effect on the C-E Windsor site throughout the time period that low enrichment UO has 2 been handled as part of C-E's product line. The purpose of this environmental program is to provide continuing evidence, both to C-E and the appropriate agencies, that the environmental burden of radioactivity on the C-E site, or its immediate environs, is not being increased as a result of handling this radioactive material. The required evidence is derived from the following sources. Table 5-2 summarizes the environmental monitoring program, j l i i 5.1.1.3.1 Surface Water Each quarter grab samples are collected from seven sampling points - four from locations along the Farmington River, one at the confluence of the site brook and Farmington River, one from the Great Pond on 5-4 ,,s
site and one from the small pond near fallout Station #1. (See Figure 5.1). The river collection points are located both upstream and downstream from the mouth of the site brook. All samples were analyzed for uranium, alpha radioactivity, beta radioactivity, pH, fluoride and nitrate levels. Table 5-3 summarizes the analytical results from this program for the years 1982-1986. No unusual levels of uranium, radioactivity, pH, fluoride or nitrates were noted during 1986 and comparison to the four previous years' results 'encicate no apparent trends in any parameter measured. Gamma spectra were performed on selected samples and no unusual nuclides were noted. 5.1.1.3.2 River Sediment River sediment samples are collected each quarter at Spoonville Bridge, upstream from the site brook, and at the Rainbow Reservoir and Poquonock and Windsor bridges, downstream from the site brook. Five samples are collected along approximately the last 50 feet of the I site brook prior to its entrance into the Farmington River. Results for Station #15, plant outflow, are the averages of these five
- samples, i
Additional samples are collected on site from the Great Pond and the small pond near fallout Station #1 (See Figure 5-1). All samples are analyzed for uranium levels and alpha and beta radioactivity, 5-5
Table 5-4 sumarizes the analytical results for the years 1982-1986. Gama spectra are performed on selected samples and no unusual nuclides were noted. A comparison of 1986 averages and ranges with similar data for the four previous years indicates no significant changes in measured levels have occurred. 5.1.1.3.3 Well Water The two site wells are sampled quarterly and analyzed for pH, fluoride, nitrate, uranium, and alpha and beta radioactivity levels. (See Figure 5-2). None of the site wells are in use for drinking water purposes. Table 5-10 tabulates all fluoride, nitrate and pH analytical results. Periodic gamma spectra are also performed and only naturally occuring radionuclides were noted. ' A comparison of average levels and ranges have remained relatively constant over the last five years as shown in Table 5-5. 5.1.1.3.4 Atmosoheric Fallout I Precipitation and fallout is continually collected over the collection period using eight (8) inch diameter stainless steel beakers. 5-6
Fourteen (14) sampling stations are located around the Windsor site. Samples are collected four times a year and analyzed for uranium and alpha and beta radioactivity. (See Figure 5-2). Results for the ten routine sampling stations are listed in Table 5-C. Four stations were added in 1978 around Building #2. Ranges of results for 1986 appear normal compared to the previous four years' results. Gamma spectra are performed on selected samples and no unusual radionuclides were noted. 5.1.1.3.5 Soil Soil samples are collected semi-annually from the ten routine on site sampling stations and the four off-site collection points. (See Figure 5-3). Alpha and beta radioactivity and uranium levels were determined on all samples. The results of these analyses are listed in Table 5-7. 1986 averages and ranges for all analyses show no significant changes have occurred compared to the previous four years. Soil samples were also collected from four stations surrounding Building #2 and from four points around Building #17. These results are tabulated in Table 5-7A. These additional sampling locations were added in 1978 to complement the existing environmental monitoring program. All values compare favorably with data reported in Table 5-7. Gamma spectra are performed on selected samples and no unusual radionuclides were noted, i 5-7 i
5.1.1.3.6 Vegetation Vegetation samples are collected seni-annually from fourteen routine sampling stations, ten on site and four off site. (See Figure 5-3). Uranium, alpha and beta radioactivity analyses were performed on all samples. Table 5-8 lists the results of all analyses. A comparison of the 1986 averages and ranges with similar data for the four previous year's indicates no unusual changes in any measured parameter is evident. Additional vegetation samples are collected on site from four stations encircling Building #2 and four samples from the grassy areas surrounding Building #17. The results for these samples are listed in Table 5-8A. These additional sampling locations were added in 1978 to complement our existing environmental monitoring program. Averages and ranges of the analyses performed are comparable to the other sampling stations listed in Table 5-8. Periodic gamma spectra are performed on selected samples and no unusual radionuclides were noted. 5 1.2 Nonradiological Effluent Monitorina System 5.1.2.1 Liquid Nonradiological Effluents As described in Section 4.1.4 all nonradiological liquid effluents are classified as to sanitary, industrial or chemical waste streams. Sanitary waste streams are treated as described in Section 4.1.4.1; 5-8
industrial waste streams are treated as described in Section 4.1.4.2; and chemical waste streams are treated as described in Section 4.1.4.3. Waste water effluents from the sanitary sewage treatment plant and the industrial waste line are discharged into the C-E site creek at the same point as noted in Figures 3-2 and 3-3; this creek ultimately discharges into the Farmington River. Daily composite samples are taken from the creek at the approximate point noted in Figures 3-2 and 3-3. The composite samples are tested for pH and suspended solids. Temperature readings are obtained every 4 hours. Results of the tests are summarized in Table 3-3. From the point where the composite sample is taken to the point where the creek empties into the Farmington River is a distance of approximately 1500 feet (see Figures 3-2 and 3-3). Since the buffering capacity of the creek is substantial, the impact of any high and low pH is diminished further by the time it enters the Farmington River. Additionally, the flowing creek dilutes any high range solids effluent by a factor of 4 by the time it enters the Farmington River. Essentially, the effluent is being returned to the Farmington River in about the same condition, purity wise, that it was originally received rom the MDC input line. 5.1.2.2 Gaseous Nonradiological Effluents As described in Section 4.1.5 all gaseous effluent output from { l Buildings #5 and #17 can be classified into two categories: 5-9 )
a) Effluent concentrations that are considerably less than state or federal requirements; b) Effluent concentrations that are of such;a small magnitude that their impact on the environment is imperceptible. For the reasons noted, there is no day-to-day sampling of the Buildings #5 and #17 operations since the data indicates that such monitoring is not necessary. 5.1.2.3 Environmental Monitoring Program for Nonradiological Effluents The environmental program for nonradiological effluents has been in effect for over 12 years and has indicated that the operations from NFM-W have had no detectable effection the environment. i The program consists of quarterly monitoring of the surface water and well water for pH, fluoride, and nitrates at the locations described in Sections 5.1.1.3.1 and 5.1.1.3.3. Table 5-9 summarizes the results for surface water samples and Table 5-10 summarizes the results for the well water analysis for pH, fluorides, and nitrates at the indicated sampling locations for the years 1982-1986. In addition, as described in Section 5.1.2.1 daily composite samples are taken at the location shown in Figures 3-2 and 3-3. These samples are analyzed for pH, and suspended solids. Temperature readings are also obtained every 4 hours. Table 3-3 is a summary of these results for 1980 to assure compliance with our NPOES discharge permit. 5-10 1
Gaseous effluents are not monitored for the reasons noted in Section 5.1.2.2. l 5.1.3 Maximum Radiological Effluent Concentration At the C-E Site Boundary and at the Nearest low population Zone to the Windsor Site As noted in Section 4.1.3.2 stack discharge levels from Buildings #5 and #17 range from 2.7 x 10 pC1/cc to
- 1. 5 x 10'14pCi/cc.
These -13 -12 values are well below the 4 x 10 pCi/cc limit specified in 10 CFR 20. The radiation dose to an individual located at the nearest point on the site boundary and to an individual located in the nearest low population zone as a result of exposure to the stack effluents, is described below. Maximum Site Boundary Yearly Dose The maximum site boundary yearly doss has been calculated for the stack effluent from Building #5 and #17. The measured U234 and U235 yearly release from the buildings is 31.6pCi. (See Table 4-3). The site dose was conservatively calculated by assuming the atmospheric condition for the entire year was Pasquill Type F, the wind speed was 1 meter per second and the wind direction was blowing toward the nearest boundary of the C-E Windsor site which is almost due west of the Fuel Fabrication Building. Since the time span is over a year, it was assumed the plume spread uniformly over a 22.5 sector. It was 5-11
further assumed that the entire 43.3pCi was released from Building #17 which is closer to the site boundary than Building #5. The distance to the nearest site boundary from the end of Building #17 is 560 meters. The X/Q at this distance for the above atmospheric conditions -4 3 is 4.0 x 10 sec/m. A factor of 1.5 was taken for the turbulent wake effect of the building using the minimum cross-sectional area of 2 334 m for the Fuel Fabrication Building. ~4 3 The resulting X/Q is 2.69 x 10 sec/m. The inhalation dose for someone standing at the site boundary the entire year under these extremely conservative assumptions is only 0.05 mrem. Maximum Low Population Zone Yearly Dose As noted in Table 2-1, East Granby, CT is the nearest town to the C-E site, being 3 miles away and having a static population of 4,280 people, based on the 1985 Connecticut Labor Department data. The low population zone dose was conservatively calculated by assuming j the following combinations of atmospheric conditions and wind speeds, each combination occurring at least one-third of the time: Pasquill Type C with a wind speed of 3 meters /sec; Pasquill Type 0 with a wind speed of 3 miles /sec; and Pasquill Type F with a wind speed of 2 meters /sec. In addition, it was further assumed that the wind blew in the direction of East Granby at least one-third of the time and in a 22.5 sector. The inhalation dose for someone standing in the center of the town of East Granby, CT for the entire year under these ~4 extremely conservative assumptions is only 1.6 x 10
- mrem, 5-12
TABLE 5-1 Sulf 1ARY OF DAILY COMPOSITE SAMPLES LIQUID RADIOLOGICAL EFFLUENT GROSSALPy) GROSS 8 ETA uCi/ml (x10 7) uCi/ml (x10 1986 Average 0.73 2.02 1985 Average 0.72 2.01 1984 Average 0.72 2,03 1983 Average 0.70 2.06 1982 Average 0.79 2.26 1986 Range <0.7 - 3.1 <2.0 - 4.8 1985 Range <0.7 - 3.6 <2.0 - 3.4 1984 Range <0.7 - 2.4 <2.0 - 4.0 1983 Range <0.7 - 1.1 <2.0 - 6.3 1982 Range <0.7 - 20.7 <2.0 - 26.4 Note: Composite samples obtained at location shown in Figure 3-2. n f 4 5-13 l
TABI.F 5-2 C-E ENVIRONMENTAL MONITORING PROGRAM SAMPLE FREQUENCY LOCATION ANALYSES VOLUME 1. Farmington River Quarterly In March, four locations on the farm-Gross Alpha and 1.25 Liters Surface Water, Indus-May, August and ington River, the site Beta, Nitrate, trial Stream and Site November ponds and industrial Stream Fluoride, pH, Ponds Total Uranium 2. Well Water Quarterly In March Each Site Well Gross Alpha and 1.25 Liters May, August and Beta, Total Ura-November nium, Nitrate, Fluoride and pH 3. Sediment from Farm-Quarterly In March, Some Locations as Surface Gross Alpha and One Pint Ington River, Site Ponds May, August and Water Beta, Total tnd Industrial Stream November Uranium 4. Vegetation On-Site Semi-Annually in May Each Fallout Station loca-Gross Alpha and One Pint of Pack-and September tion and Four Locations in Beta, Total aged Vegetation Grassy Area Surrounding Uranium Building #17 Four Locations around Bldg. 2 added in 1978 Of f-Si te Semi-Annually In May Tobacco Fields on N,S.E.A Gross Alpha and One Pint of Vege-and September West Site Boundary Beta, Total tation, Tobacco Uranium leaves at end of Harvest 5. Soll Semi-Annually In May Same Locations as Vege-Gross Alpha and One Pint and September tation Beta, Total (Upper Inch) Uranium 6. Fallout Quarterly In March, 14 Locations on Site Gross Alpha and Total Continuous May, August & November Beta, Total Collection Uranium 5-14
' TABLE 5-3 i SURFACE WATER URANIUM GROSS ALPHA GROSS BETA (ppm) (pCi/1) (pCi/1) 1986 Average 0.002 1.9 3.0 1985 Average 0.001 1.6 2.3 1984 Average 0.001 1.7 2.8 1983 Average 0.002 1.6 2.2 i 1982 Average 0.001 1.6 1.8 1986 Range 0.001 - 0.018 1.6 - 7.8 2.0 - 14.6 4 1985 Range 0.001 - 0.004 1.6 - 2.0 1.6 - 3.7 1984 Range 0.001 - 0.002 1.7 - 1.9 2.0 - 6.6 1983 Range 0.001 - 0.008 1.6 - 2.1 2.0 - 5.6 1982 Range 0.001 - 0.001 1.6 - 1.6 1.6 - 3.9 i 1 i 5-15 I 1 e \\
TA8LE 5-4 RIVER SEDIMENT URANIUM GROSS ALPHA GROSS BETA (ppm) (pCi/gm) (pCi/gm) s 1986 Average 1.14 2.9 5.1 1985 Average 0.80 3.8 5.2 l 1984 Average 0.99 4.8 9.8 1983 Average 1.40 4.4 8.5 f 1982 Average 0.90 3.1 8.3 i 1986 Range 0.2 - 7.8 1.0 - 19.9 2.0 - 18.3 1985 Range 0.1 - 2.6 1.0 - 15.3 2.0 - 26.6 1 1984 Range 0.1 - 3.9 1.0 - 39.8 2.0 - 43.8 ) s j 1983 Range 0.5 - 6.5 1.0 - 26.7 2.6 - 48.3 i 5-16 i d i
TABLE 5-4A C-E RIVER SEDIMENT RADICACTIVITY AND URANIUM ANALYSIS STATION LOCATION YEAR MONTH URANIUM GROSS ALPHA GROSS BETA 4 ppm pCi/gm p Ci/grn
============================================================
11 FARMINGTON RIVER-1982 April 0.56 3.1 9.3 WINDSOR BRIGE June 1.23 2.5 8.7 August 0.76 4.3 8.9 Nov. 0.54 2.9 6.9 1983 April 1.50 4.9 16.7 June 1.00 3.7 7.7 August 1.80 4.9 5.5 Nov. 2.00 1.8 S.4 1994 April 0.99 4.9 11.4 June 2.47 3.7 11.0 August 0.85 4.9 7.3 Nov. 0.97 1.3 10.6 1985 April 1.00 4.5 7.3 June 0.60 4.0 2.6 August 1.00 3.0 3.8 Nov. 0.80 2.0 3.2 1986 April 0.67 4.2 5.5 June 0.94 3.3 7.6 i August 1.03 1.6 5.3 Nov 0.75 2.1 6.3 12 FARMINGTON RIVER-1992 April 0.63 2.2 6.5 P00VONOCK BRIDGE June 1.02 2.1 5.2 August 0.38 (1.0 <2.0 Nov. 0.98 3.3 10.5 1933 April 0.70 3.2 5.0 June 1.40 5.2 19.0 August 0.80 3.4 11.9 Nov. 1.70 2.9 8.7 1934 April 0.66 2.0 6.2 June 0.24 3.9 9.6 August 1.01 3.0 7.3 Nov. 1.79 5.6 22.0 1935 April 0.60 4.6 10.7 June 0.70 3.9 2.? August 0.70 1.7 2.5 Nov. 0.30 4.7 6.3 1996 April 0.26 0.9 2.5 June 0.74 3.2 4.2 August 0.53 1.3 5.6 Nov. 0.56 1.4 6.4
===============h=====================================$2=====
5-17
l TABLE 5-4A C-E RIVER SEDIMENT RA0!OACTIVITY AND URANIUM ANALYSIS STATION LOCATICN YEAR MONTH URAN!UM GROSS ALPHA GROSS BETA ppm pC1/gm pCi/gm
=============================================================
13 FARMINGTON RIVER-1982 April 0.45 <1.0 3.5 RAINBOW DAM June 0.54 2.0 15.9 August 0.59 1.0 3.0 Nov. 0.32 1.4 3.3 1983 April 0.70 1.0 2.6 June 1.40 3.4 7.2 August 0.90 1.8 4.9 Nov. 1.70 1.0 7.0 1984 April 0.69 1.4 6.2 June 1.22 1.9 3.4 August 0.21 1.0 <2.0 Nov. 0.59 1.5 7.4 1985 April 0.40 2.3 7.6 June 1.00 2.0 <2.0 August 0.40 (1.0 <2.0 Nov. 0.10 2.6 <2.0 1986 April 0.20 1.0 2.7 June 0.97 2.6 3.3 August 1.07 2.0 3.7 Nov 0.93 0.3 2.2 14 FARti!NGTCN RIVER-1982 April 1.71 2.9 3.6 SPOONVILLLE BR. June 0.44 1.9 3.9 August 0.33 1.5 5.7 Nov. 0.44 2.3 4.6 1993 April 1.00 2.0 2.6 June 1.00 3.4 2.7 August 0.40 1.0 4.2 Nov. 1.20 1.0 4.4 1 1994 April 0.53 3.1 4.3 June <0.10 3.1 6.0 August 0.75 1.5 4.3 Nov. 0.43 1.2 4.2 1985 April 0.80 3.0 9.2 June 0.40 2.9 <2.0 l August 0.80 2.0 2.1 Nov. 0.40 2.2 2.G l 1986 April 0.60 1.7 <1.0 June 1.25 4.0 9.0 August 1.01 2.4 4.7 i Nov. 1.15 2.2 4.1 )
=
...........................====.r===......=................=...=== 5-1S b
TABLE 5-4A C-E RIVER SEDIMENT RADICACTIVITY AND URANIUM ANALYSIS STATION LOCATION YEAR MONTH URANIUM GROSS ALPHA GROSS BE.TA e ppm DC1/gm pCi/gm
=============================================================
15 FARMINGTON RIVER-1982 April 3.36 10.4 24.0 PLANT OUTFLOW June 1.59 7.4 15.0 August 3.38 11.7 24.5 Nov. 0.71 5.v 12.7 1983 April 1.80 11.3 21.6 June 6,50
- 26. 7 3.3 August 3.40 12.0 26.2 Nov.
3.70 6.5 16.2 1984 April 3.89 39.3 43.3 June 1.49 6.3 10.3 August 2.22 15.2 27.3 Nov. 1.03 4.9 10.7 1985 April 2.60 15.3 26.6 June 2.10 3.5 3.1 August 1.70 6.7 1.7 Nov. 2.40 10.6 4.3 1996 April 7.73 15.9 13.3 June 3.17 4.2 5.6 August 1.93 6.7 6.2 Nov 2.43 6,9 5.3 r 16 GREAT PCND-1992 April 0.59 1.2 6.4 CE SITE June 0.57 2.3 7.3 August 1.11 1.1 7.0 r Nov. 0.19 1.5 1.6 1933 April 0.50 2.3 10.6 June 0.60 4.3 5.9 August 0.30 2.9 11.9 l Nov. 0.30 1.2 "1 1954 April 0.33 9.9 3.7 June 0.25 1.9 7.5 August 0.90 2.1 6.5 Nov. 0.49 3.6 6.9 19?5 April 0.60 2.1 6.0 June 0.50 1.9 2.0 August 0.30 <1.0 <2.0 Nov. 0.10 1.4 <2.0 i 1936 Aorli 0.36 1.3 2.7 June 0.43 1.5 2.3 August 0.43 1.2 5.3 Nov. 0.44 0.6 2.7 saamansummusamassamanaussamassamm=ussmaamassumsmanussmassaammassassassamma 5-19
TABLE 5-4A C-E RIVER SEDIMENT RA0!OACTIVITY AND URAN!UM MJALYSIS STATION LOCATIC) YEAR MONTH URANIUM GROSS ALPHA GROSS BETA e ppm pC1/ m pC1/gm 9
================r==============================================
17 SMALL PCND 1982 April 0.57 1.3 2.3 CE SITE June 1.00 4.0 9.4 August 0.99 2.2 9.8 Nov. 0.25 1.6 3.3 1983 April 1.90 2.2 11.2 June 0.70 3.9 3.9 August 1.40 2.5 14.1 Nov. 0.60 1.1 4.4 1984 April 1.62 2.3 7.8 June 0.61 2.3 5.9 August 0.50 1.0 4.5 Nov. 0.41 2.5 4.0 1985 April 0.40 2.0 9.2 June 2.10 9.9 13.2 August 0.50 1.1 < 2.0 Nov. 0.20 1.6 1.7 1996 April 0.62 1.8 5.5 June 0.51 1.5 4.7 August 0.53 1.0 4.1 Nov 0.57 1.6 3.9 t 1 a f a 1 l l 5-20
TABLE 5-5 WELL WATER i i URANIUM GROSS ALPHA GROSS BETA (ppm) (pci/1) (pC1/1) 1986 Average 0.001 1.7 2.0 1985 Average 0.003 1.6 2.0 1984 Average 0.001 1.9 2.6 1983 Average 0.001 1.6 2.0 1982 Average 0.004 1.5 1.7 1 1986 Range 0.001 - 0.001 1.6 - 2.7 2.0 - 2.0 1985 Range 0.001 - 0.008 1.6 - 1.6 2.0 - 2.3 1984 Range 0.001 - 0.002 1.6 - 2.9 2.0 5.2 1983 Range 0.001 - 0.001 1.6 - 1.6 2.0 - 2.0 1982 Range 0.001 - 0.009 1.5 - 1.5 2.0 - 2.1 2 i l 5-21 j l 4
't C TABLE 5 6 1 ATMOSPHERIC FALLOUT URANIUM GROSS ALPHA GROSS BETA 2 2 2 (ugm/m) (pC1/m ) (pCi/ra ) 1986 Average 20.8 65.3 1423 i 1985 Averrie 25.2 131.4 1174 1984 Average 22.5 63.1 1306 1983 Average 26.1 55.8 1139 1982 Average 20.1 56.1 2042 i 1986 Range 18.5 - 95.6 50 - 178 198 - 5510 1985 Range 18.5 - 72.3 50 - 408 278 - 3249 1984 Range 18.5 - 68.4 50 - 207 188 - 7882 1983 Range 18.5 - 82.6 50 - 103 252 - 2469 1982 Range 18.5 - 37.9 50 - 177 260 - 14022 I i 5-22 t 4 ^
TABLE 5-7 SOIL
- URAN!UM GROSS ALPHA GROSS BETA (ppm)
(pC1/gm) (pCi/gm) 1986 Average 1.13 3.1 7.3 1985 Average 0.85 4.0 6.2 1984 Average 0.87 3.8 17.7 4 1983 Average 1.13 3.4 8.4 1982 Average 0.78 2.8 11.2 l I 1986 Range 0.44 - 2.58 2.0 5.6 3.2 - 12.4 1985 Range 0.15 - 1.93 2.4 - 5.5 1.3 22.6 1984 Range 0.21 - 2.52 1.0 - 14.7 8.1 - 30.8 1983 Range 0.21 - 1.75 1.6 - 6.6 2.1 - 18.3 1982 Range 0.15 - 1.87 1.0 - 4.6 6.1 - 23.5
- Stations #1 - #10 and #16 - #19 9
4 5-23 j m i i I i h . ~. ,,,., _.. - ~, _, _. -.. -. - - -
i TABLE 5-7A SOIL
- URANIUM GROSS ALPHA GROSS BETA (ppm)
(pCi/gm) pCi/gm) 1986 Average 1,32 3.4 8.7 ' 1985 Averag: 1.22 4.1 6.2 1984 Average 1.12 4.1 15.8 1983 Average 1.33 3.6 10.6 1982 Average 0.88 2.9 9.8 1986 Range 0.67 - 2.63 2.1 - 4.9 3.6 - 14.6 1985 Range 0.63 - 2.41 3.0 - 4.8 1.3 - 12.6 1984 Range 0.66 - 2.11 2.4 - 5.3 9.5 - 26.4 - 1983 Range 0.65 - 2.12 2.4 - 5.0 7.3 - 13.7 1982 Range 0.45 - 1.49 1.7 - 4.1 2.9 - 13.9
- Stations #20 - #27 (Areas around Buildings #2 & #17).
5-:24
i TABLE 5-8 1 VEGETATION
- I URANIUM GROSS ALPHA GROSS BETA (ppm)
(pci/gm) (pC1/gm) 1986 Average 0.05 0.18 16.3 1985 Average 0.08 0.25 14.4 1984 Average 0.03 0.20 14.6 1983 Average 0.04 0.21 17.6 1982 Average 0.02 0.18 14.8 1986 Range 0.02 - 0.27 0.18 - 0.25 2.0 - 78.6 1985 Range 0.02 - 0.32 0.18 - 0.55 7.1 - 30.3 1984 Range 0.02 - 0.34 0.18 - 0.44 5.5 - 29.6 1983 Range 0.02 - 0.14 0.18 - 0.73 10.3 - 33.0 1982 Range 0.02 - 0.03 0.18 - 0.18 2.7 - 28.9
- Stations #1 - #10 and #16 - #19.
1 1 l 5-25 ]
- i
.i l
i TABLE 5-8A VEGETATION
- URANIUM GROSS ALPHA GROSS BETA (ppm)
(pCi/gm) (pCi/gm) 1986 Average 0.06 0.18
- .5 1985 Average 0.08 0.28 11.8 1984 Average 0.04 0.35 14.7 1983 Average 0.06 0.18 15.1 1982 Average 0.03 0.18 15.4 1986 Range 0.02 - 0.18 0.18 - 0.18 3.5 - 57.0 1985 Range 0.02 0.16 0.18 - 0.50 4.2 - 21.6 1984 Range 9.02 - 0.09 0.18 - 0.96 7.6 - 20.6 1983 Range 0.02 - 0.20 0.18 0.22 5.9 - 28.7 1982 Range 0.02 - 0.04 0.18 - 0.18 4.7 - 29.6
- Stations #20 - #27.
5-26 4 I i
TABLE 5 9 NON RADIOLOGICAL EFFLUENT SURFACE WATER pH FLUORIDE NITRATE (ppm) (ppm) 1986 Average 7.0 0.17 4.7 1985 Average 7.2 0.19 7.9 1984 Average 6.9 0.12 7.0 1983 Average 6.9 0.16 5.4 1982 Average 6.8 0.27 10.6 1906 Ringe 5.8 - 7.6 0.1 - 1,48 1.0 - 19.0 1985 Range 6.3 9.6 0.1 - 0.80 1.0 - 36.8 l 1984 Range 5.8 - 8.8 0.1 0.41 1.0 - 26.3 1983 Range 5.7 - 8.8 0.1 - 0.88 1.0 - 34.5 1982 Range 6.4 - 8.2 0.1 - 0.50 1.0 - 36.5 4 5-27 l I 1 =. .-.=, -, -,-.-,.,..,_,__w,,_.,.
TABLE 5-10 r NON-RADIOLOGICAL EFFLUENT WELL WATER 'l pH FLUORIDE NITRATE (ppm) (ppm) 1986 Average 7.0 <0.10 7.5 1985 Average 7.6 0.10 13.9 1984 Average 7.7 <0.10 20.7 1983 Average 7.6 <0.10
- 8. 4' 1982 Average 7.1
<0.10 26.2 i 1986 Range 7.3 - 8.1 <0.10 5.3 - 9.1 1985 Range 7.1 - 8.1 0.10 - 0.12 5.2 - 28.8 1984 Pange 7.6 - 7.8 <0.10 12.0 - 33.0 1983 Range 7.4 - 7.8 <0.10 7.0 - 12.3 1982 Range 6.8 - 7.6 <0.10 13.0 - 42,0 J 5-20 j k 1
i 6.1 ENVIRONMENTAL EFFECTS OF ACCIDENTS i 6.1.1 Classification of Accidents 4 The NRC has issued guidelines for the consideration of accidents in the NEPA reviews of nuclear power reactors. Nine categories of postulated accidents, ranked in order of severity from trivial to very
- serious, have been identified.
These nine categories are characterized by reactor hardware systems. In general, accidents in the high potential consequence end of the ranking have a low probability of occurrence. The NRC has not published guidelines for the consideration of accidents in fuel fabrication plants or relateu facilities such as the nuclear laboratories. A spectrum of accidents which is possible in connection with the operation of Buildtag #5 and
- 17 of the Windsor facility has been postulated and classified into six categories ranging from minor (Class 1) to catastrophic (Class 6).
Class 1 - Minor accidents with no radioactive release within the facility. J Class 2 Accidents which could release some radioactivity inside the plant but with no release to the environs. i Class 3 Accidents which could release small amounts of radioactivity outside the plant. I 6-1
Class 4 - Accidents which could release radioactivity offsite. Class 5 Radioactive material shipping accident. Class 6 - Natural phenomenon 6.1.1.1 Class 1 Accidents Class 1 accidents may be expected to occur several times in the plant lifetime but the consequences are small. Accidents in this class originate from: outage of plant utilities, equipment failure and chemical accidents. 6.1.1.1.1 Facility Power Outage C-E receives electric power from the Hartford Electric Light Company (HELCO) and backup power is provided for critical services automatically, by means of an onsite diesel power-driven alternator. Complete power outages are infrequent. Voltage fluctuations of a few cycles duration are fairly frequent and require the use of isolation transformers and buffers of various ki.id s for power supplies, computers, delicate instruments, etc. Fluctuations of longer duration, such as low voltage lasting long enough to result in loading and cause circuit breakers supplying motors to open, or frequency v fluctuations to affect ordinary equipment rarely occur. i 6-2
In the unlikely event that HELCO power suffered an outage and the emergency alternator failed to pick up its load, all ventilation exhaust systems would stop operating. Air pressure in the buildings would equalize with the atmospheric pressure, and any backflow through the exhaust system would be so low that a'irborne uranium-bearing material would not escape from process hoods. The U02 processing sections of both Buildings #5 and #17 are designed-to have low air infiltration rates and the HEPA ventilation filters prevent any spills of contamination to the environs through the exhaust system. 6.1.1.1.2 Loss of Water Supply Water supply to the Windsor site comes from a 12" main fed by the Metropolitan District Commission (MDC). In the event of a complete failure of the fire protection supply line a 425,000 gallon supply of water, in two pumped storage tanks, is maintained at all times for fire fighting purposes. ] In the event of total water supply failure from some unforeseen occurrence, damage to some of the water cooled process equipment could occur. There is no water cooled equipment in the UO facilities in 2 j which a coolant loss would result in a release of uranium into working areas or, for that matter, into the environs. i i l 4" 63
6.1.1.1.3 Chemical Accidents Anhydrous Amonia - Anhydrous Ammonia is stored in two tanks (8000 gal. & 6000 gal.). The tanks were pressure tested at 250 psi and equipped with dual pressure relief valves. The tanks are mounted on reinforced concrete piers surrounded by concrete Jersey barriers and are located within a fenced area to preclude accidental damage by trucks, fork lifts, etc. The exposure of the tanks to an intense fire would result in operation of the relief valves, designed to bleed overpressure. The release would cease as f% fire was extinguished. Amonia vapors could reach high concentrations but it is felt that the vapors would be rapidly dispersed and have no permanent effect on personnel or the imes. ate environment. Liouid Nitrocen - Liquid Nitrogen is stored in a 5000 gallon insulated tank permanently located on a reinforced concrete pad. The tank is equipped with dual pressure relief valves which automatically dump nitrogen gas to the atmosphere when the tank pressure reaches 245 psi. The likelihood of a significant tank leak is extremely remote. In any i j
- case, nitrogen is nontoxic and nonflammable.
Liquid nitrogen
- l evaporates upon exposure to the atmosphere and is quickly dissipated into the environment.
I l i 6-4
Scent Acid - Spent acid solution is stored in a 2000 gallon tank. The tank sits inside a 4 foot high concrete berm and is located away from the general traffic flow of the building to prevent accidental damage by a truck or fork lift. The tank is emptied periodically by a licensed trucking concern and transported to an EPA-approved disposal facility. 6.1.1.2 Class 2 Accidents Accidents in Class 2 have lower probabilities of occurrence, are less frequent than Class 1 accidents and result in the release of radioactive materials to secondary confinement with no release to the environment. The consequences of a Class 2 event might require operational downtime to make repairs or to replace damaged equipment and effect decontamination within plant structures. The risk is acceptably small because of design considerations which provide engineered safety features such as the multiple high efficiency particulate filters and redundant plant services to achieve reliability. Accidents in this class originate from: detected spills of uranium-bearing materials, undetected spills of uranium-bearing materials, and minor fires involving fuel. i 6-5
-. ~ 4 6.1.1.2.1 Detected Spills of Uranium Bearing Materials i Spills of uranium-bearing materials are considered readily handled 4 l incidents. The main requirements would be detection, containment and l immediate cleanup. In all such cases, the gross quantity of. material 3 would be cleaned up and the area surveyed to be sure cleanup was i complete. 4 Standard health physics procedures would be followed to prevent and/or evaluate any personnel exposures. These procedures include notification of Health Physics, immediate monitoring, insurance of respiratory protection, if required, removal and analysis of air d samples taken in breathing zones during cleanup operations, followed by completion of the decontamination and personnel decontamination as i needed. Spills of uranium would release small amounts of uranium to the working area but should not result in a significant release of i ) uranium to the environs since the HEPA filtration system would filter 4 i out all but 0.1 percent of the uranium. Spills in this class which i i are defined as immediately detected and cleaned up, have only small potential for even minor injury to employees or damage to the j environment. l 6.1.1.2.2 Undetected Spills of Uranium-Bearing Materials I i i For undetected solid or liquid spills of uranium-bearing materials, a maximum of 4 hours would elapse before such a spill would be detected. l l This time period is based on the frequency of the surveys conducted in ) I j 6-6 i i 1 l l t
=_. = 1 1 the facilities. Prior to the end of each work day (or shift change) a survey of all control areas is conducted. Contamination could spread to uncontrolled areas of the building, but would be detected before it could be spread to the outside environment. It should be noted that this is a worst case incident and assumes that the personnel involved q in the incident ignored the monitoring devices installed at the exits .l j of all controlled areas, and in addition, failed to observe protective clothing requirements. Because personnel practices require clothing change and personal cleaning before leaving the control area, none of the contamination is expected to be tracked out to the environs. t 6.1.1.2.3 Minor Fire Involving Uranium-Bearing Materials t Minor fires involving uranium-bearing materials could release airborne i uranium inside the building but release of uranium to the environs is improbable because of the HEPA filtration system, the size of the j building, the availability of portable fire ' extinguishing equipment, l the extensive sprinkler system, and the training of personnel in fire l protection. Airborne uranium released within the building as a result i of a fire would be handled in the manner indicated in Paragraph 6.1.1.2.1. l 6.1.1.3 Class 3 Accidents l Class 3 accidents include a fire or explosion. Accidents of this type i have a very low probability of occurring, but may result in the release of some radioactivity to the immediate vicinity of the plant i 6-7 l 1 i
environs. The probability of a fire with release of radioactivity from either Building #5 or #17 has been minimized through carefully engineered safeguards, strict control of combustible materials, and protective measures to control a fire if it does occur. The safeguards that will protect against fire include extensive sprinkler systems, fed through an 8" loop and augmented by a 425,000 gallon storage tank with backup pumping capability. Portable fire extinguishers are properly located within the buildings. In addition,- a constant liaison is maintained with the local fire departments. 6.1.1.3.1 Potential Sources of Fire or Explosion Flamable Solvents - Alcohol is contained in safety cans equipped with flame arrestors. Solvents are stored in grounded drums located outside the buildings. Zirconium Fines - Zirconium used for fuel encapsulation is machined, forming chips and fines. Administrative controls limit the accumulation of chips and other fines at a machine location. The chips are covered with water at all times while they are stored at each machine location. The chip material is collected periodically and placed in 55 gallon drums which are sealed and shipped to a zirconium recycling vendor. 6-8
t Nitric Acid Nitric acid is used in pickling operations. The combination of nitric acid and organic materials forms highly combustible substances such as nitrocellulose. Organic materials are kept well separated from nitric acid. Hydroaen Exolosion - Hydrogen is used as a reducing atmosphere in the sintering furnaces. In case of power failure, loss of exhaust fans, or excessive temperatures, the flow of hydrogen gas is cut off. Past experience has demonstrated that sintering furnace explosions may occur due to the presence of oxygen during furnace startup as a result of incomplete air purge. Preventative measures include burnoff of waste hydrogen gas, automatic sprinkler system, continuous personnel training, and availability of portable fire fighting equipment. 6.1.1.3.2 Explosion in Sintering Furnace An explosion of the magnitude postulated for this analysis is considered incredible, but has been analyzed to show that, even for extreme conditions, the derived safety standards are not exceeded. For purposes of this
- analysis, it is hypothesized that all precautionary steps fail and an explosion occurs in one of the furnaces.
It is assumed that the furnace contains a maximum of 280 kilograms of uranium oxide in the form of pellets. It is assumed that all of this uranium oxide is blown into the pellet shop. With a filter efficiency of 99.9 percent, the calculated release from the building to the external environment is 280 grams of uranium oxide J 6-9 )
~ 1 ) (6791C1 if enriched to the maximum 5.0 wt% *V235). This is an 4 extremely conservative estimate of the UO reaching the external 2 atmosphere, since much of the U0 released would be in the form of 2 pellets. The dose to the nearest resident, which is 730 meters from Building
- 17 in Sector 13, was calculated assuming that the atmospheric stability condition was Pasquill Type F and the wind speed was 1 meter per second. The dose equivalent was calculated to be 10.6 mrem to the lung and.016 mrem to the bone assuming a breathing rate of 5 x 10'4 3 per second with a retention factor of 25% for this m
insoluble (Class Y) material. These doses are only 0.014 and j 0.000011% of the derived standards for lung and bone, respectively. 6.1.1.3.3 Fire in Fuel Rod Storage Area In spite of the above precautions, a fire in th fuel rod storage area has been evaluated. Tests of fuel rod integrity versus temperature have been done which show that the maximum loss of uranium is about 60 I mg per rod. Based on this, if a fire occurs in a fuel rod storage area, the activity released would be 0.141Ci per rod (if enriched to 1 the maximum 5.0 wt% U235)*. Assuming a fire does occur, it is J estimated that the maximum number o.f rods which could rupture would be 300. (Maximum number of rods in a fuel storage container). This I could result in the release of 42.01C1. Since the rod storage area l has no HEPA filters, it is conservatively assumed that the total ) 42.01Ci of uranium is released from the building. It is further J
- a request for a 5.0 wt% limit is pending before the NRC 6-10 i
assumed that the atmospheric stability conditions is Pasquill Type F and the wind speed was 1 meter per second. The wind direction was assumed blowing toward the nearest resident which is 730 meters from the edge of Building #17 in Sector 13. The dose equivalent was calculated to be 1.37 mrem to the lung and.0194 to the bone using a breathing rate of 5 x 10'4 3 per second with a retention factor of 25% m for this insoluble (Class Y) material. These doses are only 0.0018% and 0.000013% of the derived standards of lung and bone, respectively. 6.1.1.4 Class.4 Accidents This category may be described as accidents that occur onsite that subsequently release radioactivity offsite, including a criticality accident without a fatality, or a major fire or explosion which destroys an entire building. 6.1.1.4.1 Major Fire or Explosion A major fire or explosion that would destroy the entire building, including the building exhaust filtration system and HEPA filters, could release uranium oxide to the atmosphere. However, a major fire / explosion which involved an entire building is considered to have an exceedingly small probability by virtue of extensive engineered safeguards against fire and control of fire if it occurs. The (1)
Reference:
(VI 7) Environmental Report, Alabama Nuclear Fuel Fabrication Plant, Pg 5 A. Docket No. 70-2909, December 1979. 6-11
i safeguards that will provide against fire include extensive sprinkler systems, fed through an 8' loop augmented by a 425,000 gallon storage tank with backup pumping capability. l Engineered safeguards are incorporated to minimize the probability of fire such as use of noncombustible and fire resistant materials; strict control of solvent and flammable liquid inventories; strict I control of combustible materials; fire resistant filters, and use of covered metal containers for combustible waste. The combined safeguards for both prevention and control of fires makes the l probability of an unchecked fire remote. l 6.1.1.4.2 Criticality Since the amount of U235 onsite is greater than the minimum mass necessary to achieve criticality, it is necessary to consider the possibility of a criticality incident. While such an accident is theoretically possible, it is highly unlikely because of the l administrative and operational controls established by C-E over the receipt, use and storage of the enriched uranium. In the 1 history of the fuel fabrication industry, there never has been a criticality accident associated with fuel preparatiert or fabrication. There have been four criticality accidents in scrap f recovery operations, but all of these involved wet chemical processing. The operations performed on the Windsor site do not involve wet chemical processing, h 4 i 6-12 l l 4
Fortunately, criticality accidents have occurred so rarely + hat no statistical analysis of the probability of such an accident has been attempted. Criticality events that have occurred have had no significant environmental impact. Radiation injuries were restricted to individuals directly involved. Fission products were effectively confined to the processing building in which the event occurred. Prompt evacuation of employees upon a criticality alarm would assure no more than minor radiation doses to all except those in the immediate vicinity of the accidents. Encaosulated Uranium Oxide - Moderated A sufficient quantity of production assemblies, to sustain a nuclear chain reaction when covered with water, could theoretically but inadvertently be accumulated. This could occur in a special zone where exclusion of water is required to maintain the system suberitical. In the above case, the first spike of the nuclear chain reaction could 16 exceed 10 fissions, ejecting the moderating water as steam in a sufficient quantity to render the system suberitical. The release of fission products is not expected because the enriched uranium is encapsulated in zirconium tubing which is designed to withstand a reactor environment. i 6 13
Moderated Uranium Oxide - Unencaosulated t Unencapsulated enriched uranium such as fuel powder, fuel pellets or 4 fuel sludges could be accumulated, through inadequate administrative a
- controls, in sufficient quantities for a criticality accident.
Similar accidents have occurred in the past with uranium solutions as 15 18 previously noted. From 10 to 10 fissions could be expected from a i single burst releasing fission products. Resultina Doses to the Environs - Cloud Dose The whole body and the surface body doses were calculated assuming a 18 criticality accident that produced 10 fissions. This is equivalent to the release of about 32 megawatt-seconds, which is a much larger I excursion than could be expected in any system in the Fuel Fabrication i Facility. To attain an excursion of this magnitude, a very rapid increase in reactivity would be required which is not credible in the l 1 systems in this facility. The fission product isotopic release and the average energy used in this analysis were taken from Regulatory l Guide 3.34, dated July 1979. The distances to the nearest site i boundary and resident ara 560 and 730 meters, respectively. The atmospheric conditions assumed for the dose calculations were very conservatively chosen to be Pasquill Type F with a wind speed of 1 ] meter per second and the wind blowing directly at the nearest site 'E boundary or resident. 1 i a 6-14 i w
The gama and beta dose was calculated assuming a semi-infinite cloud surrounding the individual with a radioisotopic concentration equivalent to the center line of the plume. Since the Pasquill Type F atmospheric stability condition produces a very small plume, the gama dose is overestimated by about a factor of 8 as a result of the semi-infinite cloud assumption. In the calculation of the cloud gamma and beta dose, credit was taken for the delay time between the time of criticality and the arrival of the cloud at the nearest site boundary. The delay time was calculated as 16.8 minutes. This delay is composed of two components. One is the delay in the Fuel Fabrication Building and the other is the transit time from the building to the nearest residence. The delay time for the building is 7.5 minutes. This is the minimum delay for the building in that it has been assumed the criticality accident occurred in the pellet shop which has a volume of 291,000 cubic feet ard a ventilation rate of approximately 37,000 cubic feet per minute. The other areas of the Fuel Fabrication Building have no forced external ventilation so the delay time wou'id be substantially longer. The delay after release is 9.3 minutes based on the transit time of the cloud moving at 1 meter per second for 560 meters. The only other credit taken was the wake effect of the building which is only 1.5. This is based on the miiimum external area of the Fuel Fabrication Building which is 334 square meters. The resulting whole body and body surface dose from the cloud are shown in Table 6-1. 6-15 i
1 4 Promet Gama and Neutron Oost The prompt gama and neutron dose was calculated for the nearest residence using the method shown in Regulatory Guide 3.34 dated July i 18 1979. 10 fissions were assumed for the criticality accident and the distances were 560 and 730 meters for the nearest site boundary and
- resident, respectively.
No credit was taken for structural attenuation. Thyroid Dose The doses to the thyroid from the inhalation of radioactive iodine were calculated for the nearest site boundary and resident to the Fuel Fabrication Facility. The results are shown in Table 6.1. This source assumes 50% release from the fuel and 50% plate out inside the Fuel Fabrication Facility. The same atmospheric conditions were used i to calculate the concentration of iodine as used in the whole body dose calculations. It was assumed that the breathing rate was 3.47x10'4 cubic meters per second which is the breathing rate characteristic of the active portion of the normal work day. No decay was assumed for the transit time from Building #17 to the nearest site ] boundary or resident. The thyroid dose per iodine curie inhaled was taken from Table !! in TID-14844. 6-16
Conclusions The doses shown in Table 61 were calculated using extremely conservative assumptions. Even using these conservative assumptions, the resulting doses at the site boundary are 1.0 percent, and 3.5 percent of the derived standard values of 300 rem (thyroid), and 25 rem (whole body). 6.1.1.5 Class 5 Accidents This category is described as accidents that occur offsite that subsequently release radioactivity off site. An accident typ1 falling into this classification is a radioactive shipping accident. Transportation of radioactive materials takes place both to and from the Windsor plant site. The uranium shipped to the Windsor site is principally UO2 p wder and pellets in Model UNC 2901 and C E 250 2 shipping containers. Shipments from the Windsor rite will be p:incipally unirradiated fuel assemblies, made up of rods filled with UO2 pellets encapsulated in zircaloy tubes, in Model 927Al and 927C1 shipping containers. Fuel shipments from the Windsor site are made using exclusive use trucks. All such radioactive shipments are regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission, and are in full compliance with state and federal regulations governing the safe l shipment of hazardous materials. 6 17
I 6.1.1.5.1 Shipments to the Windsor Site The majority of the material shipped to the Windsor site will consist l essentially of uranium oxide (U0 ) in the form of powder and pellets. 2 This meterial will be shipped in CE 250 2 shipping containers under i ) USNRC Certificate of Compliance #9022. An average of 260,000 Kg of i UO in the fore of powder and pellets is received each year at the j 2 Windsor site. This material is shipped in exclusive use trucks and approximately 45 shipments are received annually. Shipments, on
- receipt, are completely surveyed for damage and radioactive contamination and the truck is surveyed before it is allowed to lecye I
r 1 the plant site, l i ) 6.1.1.5.2 Shipments from the Windsor Site l l J The majority of the radioactive material shipped from the Windsor plant site consists of finished fuel assemblies. The assembl ies, 3 1 ] consitting of fuel rods containing fully encapsulated UO2 pellets, ) will be shipped in specially designed and tested Type 927Al or 927C1 i l Jhipping containers under USNRC Certificate of Complianco #3078. An f average of 200,000 Kg of UO in the form of encapsulated U0 E'II't3 2 2 in fuel assemblies is shipped each year from the Windsor site. The assemblies are shipped in the containers in exclusive use trucks and approximately 35 shipments are made annually, j J f l J l 6-18 i
In addition to fuel shipments, quantities of radioactive materials in the form of papers, rags, filters, and metals are also shipped from the Windsor site to an NRC licensed burial site. Approximately ten such truckloads of material are removed from the Windsor site to the approved burial ground location each year. The increased number of i shipments for burial is because of recent burial site allocation l I requirements. The actual volume of waste has decreased significantly j over the past 2 years. All such shipments are made using approved steel drums on exclusive use trucks. All containers and the transgrt i i vehicles will be completely surveyed for proper loading, absence of i defects that could effect container integrity, and for levels of 4 radioactive contamination before off-site shipment. l 1 q 6.1.1.5.3 Environmental Impact of Shipments 4 l All shipments of radioactive material to and from the Windsor plant l i site will be made in accordance with the stringent regulations of the 00T and NRC. These regulations specify container integrity under severe conditions. The CE 250-2, UNC-2901, 927Al and 9270) I ] containers are designed, manufactured, and maintained to provide j containment of their contents and remain subcritical when subjected to i L the following hypothetical accident conditions. l l .1 j A 30' drop onto an unyielding surface in the most damaging ) i orientation, followed by 6 19 1 ]
A 40" drop onto a 6" diameter steel rod, striking in the most vulnerable spot on the container, followed by A 30-minute fire at 1475'F, followed by Submersion in water to a depth of 3' for 8 hours. In addition to the stringent performance standards for shipping containers, C-E imposes administrative control over the exclusive-use truck transport vehicles. The number, type, and contents of the containers loaded on each truck will be controlled to ensure that all vehicles will remain nuclear-safe under normal transport and accident conditions. ho transportation accident resulting in a criticality has ever occurred. In addition, container performance standards and vehicle loading controls are provided to ensure that a vehicle will remain nuclear-safe even during the hypothetical accident conditions. For this reason, it is extreniely unlikely that a nuclear criticality could result from shipments to or from the Windsor site. Should a shipping package be breached, the impact on the environment would be, low because the nuclear materials would be in solid form and would not be readily dispersible. Due to the low radiation levels of the uranium i
- involved, the radiological impact on the environment from a
transportation accident would not be significant. ) i 6-20 1 1
6.1.1.6 Class 6 Accidents Accidents of this type are the naturally occurring events such as flooding, wind damage, tornados and earthquakes. Flooding is not considered credible because the high water level for the area's worst flood (August 1955) was approximately 110. feet above mean sea level. Since the Windsor site is located approxicately 180 feet above mean sea level, the probability 7 direct damage resulting from local flood is very low. The average hourly wind speed for 1986 was 8.5 miles per hour. The prevailing hourly wind speed for 6 months, May to October is south and for the 6 months, November to April, is northwest. The average wind velocity at the Windsor site is 11.2 miles per hour. The highest recorded velocity was 66 miles per hour in September 1985. The buildings on the Windsor plant s'.te are designed to withstand steady wind levels on the order of 100 miles per hour. The torns hazard probability for this region is 1.0 x 10-6 for a tornado with winds ranging from 140 MPH to 239 MPH. This means that in any one year there is a 1 in 1,000,000 chance of a tornado of this size affecting the C-E Windsor site. The Windsor plant site lies in a region classified as Zone 1, corresponding to Intensity VI on the modified Mercalli scale of 1931. The plant is structurally adequate for Zone 2 earthquake loads which are more severe that Zone 1. It is evident from the above that there is a very low probability of release of radioactivity from the facility by Class 6 accidents, j 6-21 .__, - i
6.1.2 Emercency Plans Combustion Engineering has established plans to effectively cope with emergencies that might arise from a radiation type accident or fire. The purpose of these plans is to protect the health of the employees and the public and effectively deal with the emergency. C-E is required to have an alarm system to immediately detect an excursion and to have an emergency evacuation procedure. A summary of the required action should a criticality incident occur includes: accounting for all personnel, administrative first aid and evacuation of injured, collecting personnel dosimeters, notifying appropriate authorities, establishing the magnitude of the incident and existing
- hazards, and initiating post accident recovery and re-entry operations.
Copies of the ' Eme rgenc'.- Procedures For Facilities Covered by License SNM-1067" which gives more detail on the above procedures are available at the C-E Windsor site. The "Emergency Plan for Facilities Covered by License ShM 1067" was submitted to the NRC and included as a part of License SNM-1067. 6-22
TABLE 6-1 0FFSITE DOSES FROM CRITICALITY ACCIDENT Site Boundary Nearest Resident Tvoe Dose (Rem) Oose (Rem) Whole Body 0.883 0.565 Surface 1.53 0.984 Thyroid 2.87 1.86 i r 6-23
'~ ATTACIOiENT A-1 5 TATE OF CONNECTICUT DEPARTNENT OF ENVIRONMENTAL PROTECTION Hydrogeologic data for the upper Connecticut River basin, Connecticut BY Robert S. Ryder and L. A. Velss Prepared by the U.S. Geological Survey in cooperation wich the Connecticut Depare.ent of Environmental Protection CONNECTICUT VATIA RESCURCES SULLETIN NO. 25 1971 ...,,.. ~ _._.
CONTENTS Fage 1 Introduction 4 Numbering and location systems 5 References ILLUSTRATIONS Ffgure 1. Sketch litustrating well and test hole location numbering 4 system... Plate A. Locations of data-collection si tes............ (back pocket) TABLES 6 Table 1. Records of walls 19 2. Logs of selected wells 3 Logs of selected test holes................ 31 4. Re co r ds o f p umc I ng t es t s o f we l l s............. 49 5 chemical analyses and physical characteristics of water from wells 51 6. Chemical analyses and physical characteristics of water from streams 52 7 Temoerature and soecific conductance of water from streams 54 0
I UNITED STN1'ES G EO LOGIC.it SUlWEY I i e g /.s .~
- --~..
q'!.* -- ------ ~ ~ ~- -f EXPLANATION l. 9.Y, m.. f g '"t lillE 19118481 111 31 g 1 4,, * - ,8 ei -A i.; J.* l*..:,,C /..* *$.] I'\\*e. I '.,t.i w. $19 11118 1111:481 111111 i '
- g i *)
.-t% r ? --
- /
f G., M
- f M;*: +-x.
k
- J
?. i f'. N.h #'.' y-i. A'. t. - PittlPlfiftti ut!!IstMIRT
- n. n..
e l-te sunn y.s- ,.,l ,s [, ~ t}..u { b... n. e. d i-l ns sist., f r.e tie tati..sf f.sti., t.rii.. ...,.s>.,,,, LI* k.! '- u.i*.. M,- 'm l .il).6} N*t ** ':.:'..'f
- f. 8 8
Catfillfl1.IIC818 If ttlu.titist !T4 fits t
- . R.~3...? L'g,,. l 9.. w w
V...., .a e P PLillit lttttl If tllu.4841st Ifif tlB t,'. ' '. "..','J',g# (t'.I'.d , A.,,'"MN. g i g - r
- ~p )....;.s; & '~, )",'-
?. r 9 1'i.M... \\. $ o c.s..s..r y .,,s .. c .: ci :4. t.-c-4 T! sk, suntt uni inun innu r.o q.d:.. g. ./...;.9 ( 8.. in,r.,.no ..,, u,. n...in in onnu
- , i s c-. 7.-s no nn n noon..
..f.i-...:. ..A. ., ',y inni..o nn in.nn. p.g c.nrinn unu n nnnn n nn,.no e i.,iin.,n,i.,in. i,.i 5 . f. F. m t ) :..c.s 4. t -t
- s. i.n n n, s u,..n n o o n
.'. i'y 1 9;.l..- j. I -D4 * ~k. s . b.,,,. *.( -
- s. i n o n in n a n o n n j.l --
T P.,l..i. t.s.., stir seas.,....t: I4,. j . ti -o m ..t. s n, n,, u. 4 't;, J,...m.#.;,. u ,c;' :-<:., u. ;.-
- c/' :. : '-
a. e.90.,,, % s, = ~4.-o a p i.c m.,- -,. - Y *... .,.<SI s f:7., 3.;. 4... %,5'- @: ; 5..., y, %, j ufn ettt < w..r .f /.Ar-- ,s i in, n,.n n..n n n.i n, o n n...n n u.. 1 d.,f f. E @$. ' [. G 1 A M 1.' ~,r r, o n n o u n in,n..o n n in.n n.. T p s .',.'<g.;r-tj,.i l' i '.li..] Y. f&5.T; e. 1 (ll- .l.,3a,,- ;. ']... ns! nu 1 .a.3.. n e.. . 't j' .>.s: . h. [, -p'c. '. ui n.,n.n n, nn n. . i Y. "".r.,y g.r, l./g.V /",/./. lN' in n n o.n.. n i,...i... n. n n.. in nin o i.n.n,.n.ni..n. v f 3*#*,
- g. '
j@r. l.thi n, < t .' v .,>,..,#,.,..,6..- ~ i.f as i.ua ,i 9 i 'f ' of '., M,,,.*.* s o. e tesi H 1 m se as u. se. 44 n yI( h. mu..,,, k 4 l(;8 i.it i ., / ,1 WI $f II SIlIlt(gg.ggg l1
- .. t l:, -
.<' r*.; }. n!. / p v,. 4./ ,/ i r** a,,- i f 3 s. j ~
- t. ;.:u..p. n.; a.a.,.
irmy. e,..,.. s... ,,,: e..... ..,r...,.,.. < v, + y. y.~ .; y '- f rs.,I, Wf'<! ','d, y;. - Y- 'O f . g,/,, y,,. g.... .f I' f, / f.,, /. ,3: .;,.,.p .a r,.- p, 7,,, .~..,.c w w: %,. -- - n 's. s , e c ...,. a,. .i e... ~. 9, f.. ~ ,.e. .,. c, v ; ' .s 8,. ~. "'. e -- - -.-- ' : "==. * :/_ _.. \\ II ,J r ,,?*
- P e
i .,. / g 3, 8
- 4 p
,:c h' %.),:..?, $,;. T.'_
- }7-g+ : '.. j.9 ;.? T;s.ly.:,e M-= a e 4. -:
o 7* 8 N
- .d ih.a.
,v 33 1 g, 9, 4 e %. J ..*'s .d
- ' N,g 4 *f-g.e d " ",
47.No * # I.' w,, b i <.1 *. k. ',/ '7 '/ '8 t, eg,q', 9*.', *
- a*, ide t ' #
f.,it 7.r.f.d,g. $ 3e g, t ss .g
- j
.- =
- : h. ' s ~..-
i 38o., q' o., n...... s I "U., '.s.t /, <,re ... u .J - a .t. <08 e N, .O.,.p... .y 4- ..p ,t ..e)., /.,,. 4 N* y/,:%'/'yy h w,., g, ,..ti, ,k.-*+
- ^ 3 m
._o.., s
- v..n. >.w~. ~.. -..
- g
,1 c.. s,, ::..,... u. .s . 4.. -x,, r,g ;.~ -..... t. .,c.c p,... le o :. _ .\\r... %, i n-c e ~ m ~~~,.; C ' - ' 's. . e. -\\.. d- . m. u. T .d R.#MW*,dQ','0~ , :' p b $G:R A M B. W
- llc/
i EW..t. r -- - c S W.e: il
- W" 5~:],;. D,)..:
v=;$ -..'! W @ 3 % tQ 8.F. ' .', f Ql3. /$ i,.:. o1['" m l
- s-~
- ,. [#. i.e p.' s g
'd.~S'SYNTEj0 9 I S '* *el.c*b,~ ~ M 5=* Q ~'L G~ ~ & w.,'
- I
. ?,5 ' .: o
- .~$. 'm.m%.%j t
+ - } %' L*. l; . O l J " D d *,, h,*o QT 4s? '4 9,:: g e t- @We e e
- t. g,.,# g' - '
c'-- g __.,-.3, c*-*"'.**" W:: -C" ' T 9.Jo. P N-u - "'9, ei f/ y.. T l'; '.E. / -- o. - n. I ! e*' f hh:::s.-?k -J p,.. - , wst,Y. t 'I-'Yq..d N;* 7" s.w Iif j' 710?. ! = = m. w ;S&+>,,,;%,.aw$m -w-a :. M. L LSSt.'!! J --r.,v- >.: --- e. f,!c t< ~9 .,/ oq, - s- (- ~.::::c. .a. '- I %y:r.e" we- -eW..n $ '?..) g\\ %; k Q; f,': I C'i %:\\t ~' v.. ~ t-P::: M.A L.,. Db..l
- I
' lo A s. g.M t t%~ ' ' '.9't--S+cp,-?.r--*.., y z.c-t.., ~. c m ~~~ $ o ~ s < ;., 'W.k..,. <.s c t":. a -<r s 'Y.D$?. [_@Lf'I'M M:rl/ M [' W ).. -.s zaj. <. -. m >i'M.'4'@ l s .4 a s ~. k,L Cr.S.A 4.901 \\ hrp! 4R,Q:...i.;;e..,. .%.> J,R+_~.3..C..., ., v@G). n.,: 3 ",.Q. v..
- . r'.,
R >t I,.,@../f.g-r! M.. - l v v. m ~. /-?. r :-- '.4%. _.. ~. r s . ?/OMM' '.g '%. 'wC 9'% 't.. '*1 - 9 ~T N @M 4 '.'MC '[s:.7 %.? ' r' din-,M$@M': I',% :' '2k%n..r@c. ' u-s w = % y '.M s,. 2 g 4'si ri. y' c1 y '4 h, W:,.v '::&;r.W+~. 'ly % d.,77.4,. h. )f., 3 ~. 3 v/.b. e' M.t. a.. y % :.L.*'q k:. %- ( ' ::~Q.f..f~', %.
- .P i
.u .%::&gQ;q.. ,,*. ^ :%...w;- > :;..u -m md ;::. ;? Y %;<y.: -w w.v q.3.y.x. x0,,,v.:47y w
- p. '.3-'E ;4:g g:....
- , x ;
- - r S.%- k.. qq>'2p
- a(.
.u-~ +.c:-u. c.-.. nrc.-.-/' p a ~
- r, ~~ct;.
.o & ;....,;,s. c..:,,.5 a..a..y. z. y.= Y. s -,. a,a:.--o~tm.b..rp~ v;j%w..,.e .v,,, :. p::;7: :- -' M z ? h. 2 .g, '*% 4.. :-,,,, u.... ..o,'.3 1 .r ..;a. :.&,. y n.-,. s e.. ::...'. m : %,. :.c ; f..w..L y; m3q 9 ,L,;; y
- .. L-
'k 'M-l .v,25:<s,} '<f.'.'- 1 'T y o.' q(~ :.. u,,,Y 4 Q.,.,c.. % p.. D M, s.ds, o p,arP' A..$ +:....,.lgl D '[',4 M ', M*vb.n,W Ls <j.' '.t 9'%. {.v,CJ k 4,. '/ 2 ? ~ f s '. " :~ .,.m.. ::: - i,
- %.e.,e. 5.,. v,. : ~..'.gt,.
...e,,.N".-Q~4M 5l . -N. .?' ,i E, .'Q',,.J... s. J T y t. l d e.$ -., 1 o,,. y.-
- m,. \\
.. y yu.g ts:-y.,. -:n,: *,I ~- y .t.,,j,9 N s -la d. .g r w. e.f.:s p;.,s,,g..x i 5,,,, f.,<y,. ~.r p,...y; '.s i '9 ' s n }.:s e ~ q.,..ci\\ .m.
- _. s.;
.L., o *),'8'o.O. y:so y.a, r- &y>. s %s, -my eg.i : .sa. +. s .... ~,., 7 - x f,;. >.,,h...L., '~,,. ' i - e n .S 'kYf f._..h'.~. -{ {' k,d' h* j . Q ~,.' m,, lp.1. :,,) I WJWO',@g ~,. m p.?+ &@Q y%,;;+7;7o a.'i -'~& :q%:y[x /t,;+ .q'C p -i}.? -% ~ ';- T - Q.>h: .j ~- i. Q.N,y.7.% ' '+u .z. $ f. 9 y' 'id, "F?.. R.. W: .,,-.r r.d, ..y. q. Q ' ' W.-m 4.g.:(-& 5h. W W gY'. h i $. 1 a. >.6:.y.,.,.%.J
- s. - m.
. n..y &.. p s-r:=~.-w'i g~A. m.'Q.:.5,20;3[ %'*.l,.% 3 c. .4 i .w. s J.- g g,,m 3_.,f %f., :: M 6 ., t. c.k.., @ 5 &'WY.,h"'-L }y.:f. 4 (..,., s#..k*WL. S,.Y.. '.' e' $. Q h.@ ? ' &.'y b .isu i., q, y-+:Q.4%.2.s, :,.f.,i.-- .- -- %..f. '% Y ; ?&, I.Q. . l,.-.y;ga. yi. g, 7,..s:~ v.,.. .M y /
- c..
u... i (..:. / ~.._,..-...,. -. g.. ... +. i,3 Q,* :lj ( )Y90}'.....hl.*.;'*:*-)*jj5-?****.*, .c. ~ s. 3... l .. v, .o - ,. :.,'< geni ~,l - . w..,. s /,f. '\\( .'3.%q, 1 /,),. ,./, % n,gi,, ,N,, s, /., j, t., m-s r if c, . y, ---. a 1 eo ..e, ;,, ( .-0 i- ?.:.g.. ie. r* fr p'.,,t b,.; ' %.,,/]. g*;?'~y ~~~*' { - "' J,.'V ', e s., - p.t]. 4- ,.., $4 pie Nf I. / ., L .,,,4 e '.)..-: h ~,, l W .,. m',=.-. n, m'3 ..... ~. l .f A 4 / a;" '.' a :. Y $ $.e 1 0.. ~ 3
I NTR000 Cil0N ] This report contains geologic, ground-water, and cuality-of-water data col-lected and compiled for a water resources investigation of the upper Connec:Icut River basin, Connec:Icut by the U.S. Geological Surve.y in fic.ancial cooperation wi th the Connec:Icut Department of Environmental Protection. These data, together with surface-water data, were collected at si:es shown on plate A and are, wl:h exceptions discussed below, presented herein. The interpretation of these data will be published separatnly in Connecticut Water Rescur:es Sulletin No. 24. As defined for this Investigation, the upper Connecticut Alver basin is a 508-square-mile area in north-cantral Connecticut (see front cover and plate A) drained by the Connec:Icut River and I:s tributaries, including the Farmington alver downstream from the community of Tariffville. The basin includes all or parts of the following 30 towns: Avon, Bloomfield, Sol ton, Cromwell, East Granby, East Hampton,. Eas: Hartford, East Windsor, Ellington,, Enfield, Farmington, Glas tonbu ry, Hartford, Xanchester, New Bri tain, Newington, Plainville, Por:lano, Rocky Hill, Simsbury, Somers, South Windsor, Stafford, Suffield, Tolland, Vernon, Vest Hartford, Vethersfield, Windsor, and Windsor. Locks. The data comoiled for this Investigation consist of those collected specif!- cally for :he study during the period July 1967 - Decemoer 1969 and those collected during previous investigations. Many records of wells and test holes in this report were published in Connec:Icut Water Resources Sulletin No. 4 This report is out of print, therefore these previously published records, :ogether wl:5 newer ones, are published in this report to provide a readily available source of greund-water infonnation. Previously published well numoers have been retained and are those published in this report. However, tes: holes previously puolished as wells have been assig.ed test-hole numbers; the former well number is noted in table 3 i
i Chemical analyses of water from wells and systematic measuren:ents of ground-water levels during the period of the investigation are published in "Vater Resources Data for Connecticut" 1968 and 1969 Older choralcal analyses of ground water are in table 5. Chemical analyses of water from streams are 'i published in the reports listed in the following table. Publications containing surface-water quality records (l.ocations of sampling stations are shewn on place A.) VRDC, Vater Resources Oata for Connecticut; U.S. Geol. Su rvey pub l i ca t ions : CIR, Circular; VSP, Water-Supply ? aper. \\ Water i year Tvee of da'ta of ) Chemica l Suspended j record Pub l i ca t ion cualitv sediment Temeerature i 1953 VSP 1290 X X 1954 VSP 1390 X X 1955 VSP 1L00 X X X 1956 WSP thgo X X 1957 VSP 1520 X X X 1958 VSP 1571 X X 1959 VSP 1641 X X X i 1960 VSP 1741 X X 1961 VSP 1881 X X 1962 VSP 1941 X 1963 WSP 1947 X 1964 VSP 1954 X 1965 VSP 1961 X 1966 VROC (1966) X 'l X 1967 VRDC (1967) X X ?! 1968 VRDC (1968) X X X 1969 VRDC (1969) X X X The source and significance of water properties and constituents published in this and other reports are discussed by Hem (1970). Records of streamflow collected at stream-gaging stations in the basin are published in the recorts listed in the following table. No streamflow records are published in this recort. f 2
Publications containing streaeflow records (Locations of stream-gaging stations are shown on place A.) VROC, Vater Resources Data for Connecticur.; U.S. Geol. Survey publications: CIR, C!rcular; Vif, utar-Supply Paper, Daily-01scharge Data Year of ' record a/ Publ ication Year of record A/ Publ i ca tion 1896-99 VSP 35 1943 VSP 971 and 1301 1900 VSP 47 1944 VSP 1001 ?901 WSP 65 1945 VSP 1031 1902 VSP 82 1946 VSP 1051 1903 VSP 97 1947 VSP 1081 190h VSP 124 1948 VSP 1111 1905 VSP 165 1"49 VSP 1141 1906 VSP 201 1950 VSP 1171, 1301, and 172! 1907-08 WSP 241 1951 VSP 1201, 1701, and 1721 1919-20 VSP 501 and 1301 1952 VSP 1231 and 1721 1953 VSP 1271 o 19 21 WSP 521 1954 VSP 1331 1928 VSP 661 1955 VSP 1381, 1701, and 1721 1929 VSP 681 1956 VSP 1431 1930 VSP 696 1931 VSP 711 1957 VSP 1501 1958 VSP 1551 1932 VSP 726 1959 ' S P 16 21 1933 VSP 741 1960 WSP 1701 1934 VSP 756 1961 VSP 1901, VRDC (1961) 1935 VSP 781 1962 V5P 1901, (1962) 1936 VSP 301 1963 VSP 1901, (1963) 1937 VSP 821 1964 VSP 1901, (1964) 1938 VSP 351 1965 VSP 1901 (1965) 1939 WSP 871 1940 VSP 891 1966 VROC (1966) 1941 VSP 921 1967 VROC (1967) 1968 WRoC (1968) 1942 VSP 951 1969 VRDC (1969) Stage-Of scharge Data for Major Flcods VSP 162 VSP 636-C (1927) VSP 798 (1936) WSP 847 VSP 867 (1938) VSP 966 (1938) VSP 1420 (1955) VSP 1779-M (History of Fleeds) CIR 155 i CIR 377 1 l a/ Calendar year 1896-1908, water year 1919-1969.
it'se' n'ss'so n'as' '44' ci = \\ i 4i'4/so' l l 9-n' = 'sl l .a < fay l. 1 4i'4a'so' FIGURE 1 SMETCH ILLUSTRATINi-AND TEST HOLE NUMBERING SYSTEM A THE t.CCATION NUME. J WELL EH2715 414718N723512.1 NUMBERING ANO LOCATION SYSTEPS in Connecticut each well ano test hole inventoried by the U.S. Geological Survey is assigned a sequential numcer based on the town in wnich it is located. A seoarate sequence of serial numbers is used for wells and test holes. An alphabetical prefix is used to designate the town name, and the suffix "th" is used to designate test holes. For example: EH 3 is the number of a well in the tcwn of East Hartford, whereas EV 3th is the number of a test hole in the town of East Windsor. A li-character location number, based on latitude and longitude, is also assigned to each well and test hole. The flest seven characters consist of six digits representing degrees, minutes, and seconds of latitude at 1 the well or test-hole site and the letter N Indicating north latitude. The next seven enarac-ters are digits reoresenting degrees, minutes, and seconds of longitude, and the last is a decimal number assigned in serial order to wells or test holes within 4
the same' one-second square tract of land (about 100 x 75 f t) defined by the latitude and longitude number. An example of this numbering system is shown in figure 1. Stream-gaging and surface-water quality stations are assigned a numoer in conformance with the standard downstream order of listing such stations used by the U.S. Geological Survey. The number 15 made up of a four-digit integer, wl:h or without a decimal fraction, that increases serially downstream. For examole: stream-saging station 1842.8, Scantic River near North somers, is upstream fran station 1845, Scantic River at Broad Brock. REFERENCES Cushma n, R. T., Ba k e r, J. A., Me i k l e, R. L., 1964, Records and logs of selected wells and test borings and chemical analyses of water in north-central Connect i cut: Connecticut Vater Resources Bull. No. 4, 27 p. Hem, J. O., 1970, Study and interpretation of the chemical characteristics of natural water, 2nd ed. : U.S. Geol. Survey Vater-Sucply Paper 1473, 363 2 Ryder, R. S., Olin, O. A., and Weiss, L. A., in precaration, Water rescurces of Connecticut, part 7, upper Connecticut River basin, Connecticut: t Connecticut Water Rescurces Sull. No. 24 U.S. Geologi cal Survey, 1966, Water rescurces data for Connecticut 1966. 1967, Water resources data for Connecticut 1967 1968, Water resources data for connecticut 1968. 1969, Vater resources data for Connecticut 1969 U.S. Public Health Serrice, 1962, Orinking water standards, 1962: U.S. Pub l i c Health Service Pub. 956, 61 s. i 5
.wmw.-. Geese 6.- seasses er esag t east essene e. tes eaa8 een e messeeateem es menneestet totese amo paaet e sepees to 4essetes teeDet Gesee Megas se eat et St eamse af sett R A te Se 4040 See GS8 40 tee. eetene s ees Bestes3. t ek ee see. See esse see aesteenatees se seeastase esseeeeest telete, easee eeste ame pees esoteeems teatet messa teest ses eseg essee em goe Geese e ste temeeste 9. sett este5. ease er esatesseast el enessates se tteeste me s tee Game temente estese es esses Se te se #Se t seese assetse GestaeEs es ease. esame Se e as eta. SSIseerse seese gerateatest empt enegges te og sesoames senseget, e ss e e. eene ease seeemese es gesasse te see et anestB enesteess 84648 teses e edusett fearten BetB te Santees ese seensIs. ea gemme seeseee.
- e. see Sefemse e. emees es aesheeses (, desse eesen e
- p. ens 6e F. ese psadettemme W. Setodet e. eateen See sa gtst.
esaamanaisee essesseese Messas ese -easurese6 Seests messe teste asse masse agese se See af reerlan6 Sete se sees. east se een. eteetnes moete of esse en ege t essee ease einseese. Deeseen F480een etette elf #esmatet ee 68 Se semet, Sa64e6 em e teen Messe er passesse es en esse settet se eas t seeems c ame need es t. esseeest ese goes 64 ease meno penseeeses te See8080 satees, meet ess e
- e. eeteneeseene 4. Bess enese, u. emastete es. metanosee escene
- 8. 305esesse seest mes setaesse test esaf ts.
eas t e ste nsee toes me ereseen essas teanest eeSammee me masse to essa. ete e# esteeee 6 ete Gemee95esseente 4. 441suessa gas
- 9. #85085456e ee SeeflSe SSt8eBS e494 &eamat mese 49ea89, 6. SaeGet
- 4. See64ageeene en. GemeetB48es e e, seen gt seape g e es. Gesett04 e ef een eteest eDest efe4880 m. esseSement Se4BeSe en sa ng( $aeg e, t SIM4 Seartog e#Ge See Settate 9. Hafe844ee se 9600000 Salgast. 6. Sitatee
- 9. Se8900es Beems e e. essestas.
a 5 Essecaso estos ee meet Petees m. eeeeSe se esseet ette efee-88e4543 f tSeettems. ee8&c. Ste G. SendMt4 estas esteede ESIBSeest es ceases te
- 4. 4eeessas sema9648 aus Wasse S ee Desen tessse se essee Seteneses eBause F64eSeest estatess e e, este esent.
Data des SeessSE 44 fee stee. Beste t o tesS eit See68 3 dateeGee4543 484 mag &#ff ee esseSo, p. Pesertes east essa een gossa to e. eestee84 esagge-teest eneses assessee ca. estaa t ta seateemeo et, essessessense genteese ems eastedeesh05 seesttense se eatse estesad88 se84 #ee demeS(gedet Stoe aese edepetse 46 8884884 66e ee8808 e4. 88464 88.18tlede8eeB edesagte 4969. Sea. 4858eas Meem. esesseemse seen. panete eraan, esteepnee past. agefesatsee eff t. e49entlee es. Sages stem 4d&4ees see. 38Masegaste og. EssoaE8 0884648. ate SteSe $68 ease samsteemas tea. genes. enece ases-a s seam
- e emese ea se sees -
es sene eg en-ess e 4
- teeb essa en een semite.
ese ne e sses emee. eeee een east eene se te a cu es tene gemas es e.g as 39 S te stSe e d e $380 ed e te 8480s f lee te see4#Ge ease $ 8eSt 4408 e tee s eene Hates
- 44 W
menad e g e s me t es t.4 gee.e get.e 38 3.3 Sf t.6 SF S.8 ea st. S S#et 399.3 gesente estee se esee g ) Eelse Se mi smane tta a 'S"S "se* es p se u e e na es e, 4-ee mese assees. a. e ess eeeeed sten.e a t een tes es et e se s e e se M8 Ge 3 otestseesteste.$ G eet e SeteGeg 0958 499 4 4 S ee e SS S8 4-88 9 tee e e en t ste**enseest6e _3 e 3 easse gese ese 4 4 S ee te e el to 4 3 -se 64 3 e et es e e t tessenessa te. g ee*64ede eessee est 8 e 9e3 0' 'I OO 88 08 ~ ~
- 88 'O' 4888* *80*
es se seeeeeeeeamete.4 6 e e=eneenst ag tes 6 G 9t 88 H 08 e 4* es to me te eeeeeess ee. e esta me6een e **
- s te 4
e se 4 ee Se ee-se se
- =
e as
- 5. este Be to #S.4.ge Matem 46-eg og me 8e ee tt esees se tes.g a 9 es ales t on e See E
e
- *4 000 0
00 00* 00
- 00 00 80 et SS at teettees e eke.$
este & Seetteem ee4 9 S BS 4 4 G Be 88 8 U 08 0 bOI N IO ~ 8 8 1 as de es otteeeed e p te.8 e & e mete esse see S 4 3as e#6 e et see to 8
- De 4
e e 6. es at e gee 649e#3* e**.a seeste a essete tese 469 4 4 48 Se e 48 3e
== 99 +=
== e e d. en de eseesteeseeste.e emme pee eems se test es 4 e See ese e et See et 68-e4 de .s.es
== e e em Se s ee tt etetiet#4. 5 ebett 3 a tenee gest see 4 4 43 33 e et 33 $3 4H 3 e e Sete se H.S #8 te-te stee M esas. en at o p tseeses po t e s.3 eeeest e sense g oe s see 4 4 est 0 8 80 0 I* 88 3 8 E*O"IO8 00'estao fetee-3B4 90eGes eete as se es tettoesisee t. 8 e mese s e meesset
- ee e
Get 88
- 8 88 88 I'
- 0*
8 Se to ot tee famessesse.g e e eate goes $ be e og a e et e Se =* $3 e e 4. 49 e et te se 4 - 6e See eso et e a es se senetemessesse.e e ssee es e 4 00 e e ste S ee a se
- *e e
85 H t-43 44 48 Se g, east tashees ama esee aseemee. es et ee nesesse #ee he.S Seese 6ee e seg +- See 4 e S ee Sa De eteeteenee f e me 5.e dease See e  Seet SSS 8 Se ete et a 64
- e es 4 - Se See S4 Se e
e
- 6. esat Gespose ens e6ee emetaes.
I et 6 see 44 686 as e 48 84 88 8-99 4 54 e e e 44 #0a eMe ne. .es. ettet ennes#eeJa. 4 e e..*ee*sene t.es # $.e4 4 6 .e
- e. tene.se sse. e
. es a e a a e on H e e a. Sa .e es teleeSo,*ee... Se 48.su.eae.ee .ses e .se a e a a e ~ u 6. e a et se ee lg eesueesesta.4 e e eenesesse 4468 s ee 4 4 G bt 'O 8 H
- 8 o'0 0 ' U" O
- 8 8
es se geneesteedet#e.e Geseene o ssee se tes t e se 4 4 Ga4 00* O 00 00 0 0 80 8 8 e et se 4 64 *eme** 44 9te. e de stesse enemmeen ge be a ne 8 e S ee et e e 4 he se-te se to e e S es eg. estae g. Se et ete et tsef f sete.5 See e setembte 59e8 est 4 4 804 89 e a Se 34 9-H eSe e 8 e e#SS 40seMe se Se8444. 00 0 0 ' N" 0 8' O' en as st ees sames s ante.s eeseses e Saeeans, tese see 4 4 4 *e O' E OI OI N O 00
- 8
~ E en 49 4 0 649 esses t aat e. g estee40 Este 4988 See 8 e 3.ee S 6 ' && 3 33 e 34 De 40 4 -= 8 e g. s eece. B este*4 6 e Bas ee Sete tee 4 e seta temee.Setet 8 en et e 840 eces Seemesteest essnes e ste 809 8 4 98 00 8
- 4 II I"
O84 O
- Se
. Os et en se opeteteeseeste.4 fasen G meem 8984 Set 6 ese et e et SS S 4-4 e e se es se t e===ess e eet. e m e es tee e*4e see 4 e toe a te e 66 Set te
- 9 e
e es es esoee&ue88etee.8 4
- Gede s te e See 4
6 S ee II 00 80 08 ~ 8 es se aes tie ses #ethe.$ emeet a t o g e toe te#9 e tt S 4 848 80 8 00 80 00
- 8*
00 0" em to 44e6#eeee4 =tse.3 e & eeeeee toeg est 4 e 6 94 08 E OO II Se 0 II 00 ~ 8 E d ee $$ ettes teneelese t.S e e maleetate sede e $ 3e 48 G H to e-M 4 M e e e$a4 poemt. semen eages 33 acentes. en se seeee equeedness.g 4emme es ese see seem ese 4 te Det et a et e se -49 See a te a e et t.OS644ennene sea t pee enSte geagg. et De seest eeneef os ee.$ S esee &G e g $e g e ste 306 4 44 See SD e el 48 50 e-se S BS ett M e e te,osaa seesse See esse emetense. et me e te es snes eesse.4 Seee 68e esse e ete Get 4 09 S40 3e e og 3e e e-se 484 See se e a g et et e sse neees see# #.0 teme 64e 48e8 Sett 949 4 Be S te 90 e
- I 8e SS S4 446 Ste Se W
& Gast steemt.asese watese et messeman. '08-84 Ga se 49 es peeet ess38.3 Spee 68e 4888 GGet g B4 le 4e4 SS S e6 40 48
- S 000 Se e
e 40&& tes444 ees esse emessnes.
8I f l a g.t 1 s 1 { :' i 8 1: 1 ., I 2
- =
E ::* i
- E 8
I .I 1 I i. I I* d =. .- l'l' i a : .s I I i, .s i si 1a i
- 44 I
a
- ]
i e 44 3 .- a a 1 aI 1 I jj .J : .e.
- g I 55.1
.;.4;; ;.;;; : ;;. ;; a 1:1 it .is: 1; ,:... n... ,n n n,n r,n,..,, nn,.n.,.., n,,nn 6 e
- =. ::::: ::::: ::::=
.:::..........::: = ::::: :::: ::::: :- ., a :5.:.::
- .::=
ll 33 :- : t-
- .:. ::n :
- gg ;;;;g 333
-
- ;: ;sggs :-
sq.;
- :::: ::::= :::::
- : ::::: ;:iii :.4 '
- ::::: :: :: :;; 4 6g a4a,:4 i::i 44e44 44..e Ag..j aae..
'4444 44 4444 i a444. s'. ea:.: .t
== !g- - := ::::= ::::: ::::- i ::= :: : ::: -:n- ::::- :4 - :: ::: ::::: x.: .l
- siji. ]..
- ::'s: ::::: :::::
- = ::::: ;;:= ::=.
i
- -:: ::: - :::- :: ::=. :::
g ] [:. I
- I l 33333 :: !
fai 3 23333 s : iti :333 :3333 :333 23333 :3333 trit: at.233 21333 a = 3 s 1 3.: s.................... .................. 6 = .................. J... d 33 .i .!: i
- = ::::= ::::: :::::
- = ::.:: ::::: :::: : :: :: ::::: ::=== ::
2-
- =. ::::: ::::: :::::
- :::::.... a :....... : ::::: ::::: ::::: ::
- =. ::::: ::::: :::::
13. gj g g. .g... ..gg ..gg. aj; is pa
- : 2:::: ;::..:.:.::.:.:
. j..s 3.::= ::::: 3 .s.... ............,...s.i.t.s
- =.::.::.:
....=.. :: :: .....=.. :: ::::: :: ,3. 8:i:i.51131:.11iit 8:: 14 sea.8i::,: II:!i.! !)':s
- i.1l.jji111J 1]
1 s. is !!)1.!!] i. I !!sjjji. g::i.I} ~ t
- .3::1}.
3 13. . 11
- l.. -..
)-. llj:,:, 2. 13, ;;1.1:gl:.s}.,j,.,g,.33 g..t: igt : ] . i.s.j l. :::: j!!.....f.ti.:.si.{- . 11
- . }. 222..
- !. l j.:
. f:i g.: .......a :.... 1g a it . j ;s.,! 1g: g .,3 3 i si. --n t---e 2---- 2-3 3 es--e.--.- .e-- e 2 e,-
te-e te tes--
1.::li. i: ;; i;;::5 sfi : 9.2 :g :
- ::i:s; 1::
- :::::::::.i; 1:: ::!::::
- 11
. I.::...... :. 1: 8 1: 3:
- ::::= ::::: :::::
- j::::::::!!!!!!!!!11:':=1j}}:)
- ]:]=-:j:g::1]::.]::
!j!l:}}l:1
- = :::::
i j!!!}: !!!!! 111!! !!!!! }ll!!]jy]::): s ]t 1
- i.::.
.........: :::i::.......::::
- ::g :::
g:::= 2:::= ::.:
- 4::::
s: I
- ::::= ::::= ::::
22::: ::::: ::::
- j 17
\\ 8 1 1,
- = 1 s:
n 3 a3 8g: l b.::.t. !a I.I II : I af}I i i i 8 d.:..... (,,..
- g =:;
i:4:1 !si j i: ! i di
- ::a:
5 ;;iin*** 3 inna ] . s. :. i !!l::::....:=:!.:I .I !!is : 83 8: : i 55 ] a
- 2 2 a, na :
- s s'*
- 2 2 a, na :
':'a:2.$... 11 (2:I k.d.44 3........ .i..i.t i iss' ie i.j e.3.3.4.. .... 112.;..
- i. *3 a-ing
...........:....:..................g..... =. =... " = "..........=.. jg t*-!i r i n i : n :: :: n n n - : :-..-- -..... -* ::: :
- n :::n :::-
- in :: n Ir.v s.
335:3 ::::: :: n n n : ::::3 3::g
- !!:::: :*:n ::::: nn 5:e n ::!: 8
{ 8:51: !!! 2 *ni * *:i n s i:38
- -*:- s tg gg;:: ::::: :-
.I h ag.a
- ::::: ::::: ::::: ::::: ::::: ::::: :::43: :??:: ?":: ::~ 8 i:::: : it i:li e-: : t :i et in iiii-.ti'e
'-e gg.
- = :* := ---...=~3
- === :::: :::: 2: * -- : ::::: ::"*: :::: :::::
jejjj j:11:1::::: 5:1 : ":'] :: !g : 35 at:53 1:33::. 2"! ':" i ': si :: !:! : 8 i i. g I. g ::::: ::::: :::: :::: ::::: ij ja:::: ::::: ::::: ::::: ::::: ::::: ::::: :::::: 5 3 ........................................ 4...... 3 ji. 4 ,:. I 2 .p
- 13:: ::::: ::::: :::::..::::.: ::.:.:: ::.::..: !::: 3 ri::! ::::: !*::: :!::: ::!::
1
- ::::: ::::= ::::: ::::: ::::: ::::: :.::::. ::::: ::::: ::::=.. ::: :::.::
!:g; ...:3 :..." *-*-* ***** ***** ***** ***::= :: '* *:::: ***** ** : 2**!: l': 34
- ::::=..:.::..: ::::: ::::: ::::: ::::: :::::t
!!!!! !!!!! 1*;1: it!!! !!!! v)a.-; ::- .......................... 1.1.... 33:: ]. '..;;. : 1.... ::: I.!.:. I..i i sv.vs .! i 12 .v i s.t i..e.s.vii 8 .t
- Il....
....!.. ::= 3:.33:g i :. !.:3 3 .i. .33 j
- :.I..
1..I.gaIl.i.:.)2181}:. 1 a1..**2
- t 3:
ri 8,.g g.ill s . l- }..a g I. . 11, 13 1 .s. 1.::: = i 35 e 2 .I.l.l.i.3 '=g =g =g. =! :g *:. : =.11.1i Ins:11:ti.2.,.11: 11 i st'- = c ......1.;.je 1;.::3: s 3.. .l. :::ll.gg < g .. :I ....i t---- ,--- 2 2-2 --,--,,-- ,e--- s*;;::
- !.::-: !:::: :!::!: :::: ;s::::
- l:::::
- i.g
- :::::g.:
31.. 1 :: i !!!::. --!: :Il!Il lls!! ::!!!$ !!ill!
- g: !
III!!Il111lIll!IIIl:111!!!!!!!!!:11]l:iff:!! .:::: ui:::
- :. := :::: ::I : ::::: ::::: ::::= 3:::::
........................=............:::::
- = ::::: ::::: :::: ::::: ::::: ::::: ::::
- 228:: :::" :::*:
....................................... 1
- :::: ::::: ::::: :: sis It w
fanee tc.4een w eseeens emele i meer esse e. ore.re Ireee.eu ene ionesses es=w, esser see artiler. 8es semessee essen. eee s.e raus art ilers' ieus.s.eee ese senesias asmarsag weeems are esseses se tee eme. i# es= as 'h a s. la.use
- es )
Se.e < *.e. 6 < e.e l -) e on nl
- mma af Hemiete se.e e,
& M. SeeableF3e68.4. Geen. Joe. U fo see. am. A 119. e 6446 )efina 94. l. J.e,e, 4 h I. Suure h & 18. use guergendt.l.
- 4. a. eseemseee.
- 8. 8. Onore b s
t,ase ems eme t pre s t s eg he s ee. } 'esame t 9* I t fie me 1 eeroes e.e grooms........... Cf ee. rue..............
- 4. *8 47 Qee me sena. Pf en
> ?4 tem, s'ee, se en emee,..........
- s. it Graeme (as usesel e...
.......,e gg.ase 1. it. 5 8 8
- 47. e4 4
tene fl ee.............. enrems...... it. p 4 E I t), et te90se?fte rF.l. Stemetese temel.e se.e. aree............ 12 8y ItsJ meeg,ee............... eaa. me re ees t ?g
- eete. Case. SoHee erese6es eoel 6. i ns.
11'e= 4 71 g f ee.o9
- 9
& 48. 664e9BISPPtMel. % C. Esme, ema, ces............. m som, een,.mo asese.... -.... 179. t.57 *t Cte groo........
- e. i t 257. et
=4 eeressen. ore.mes, roe......... shood. Pee............... N9. It$ 3 se ..... s g. It a l kneus. Pee es tem tem, res.......... 139.e tt t t? soeum. e............... en fe 90 these res.............. e .e.1e. ese%e ef est e...... 3 ). og e l merg e.ee.... 44 Clee....
- tbaH FB wass. esseum. **e ese es ee......
.e-e4 =# eurens............... St. 97 6F eaa. dee edaus esa here tres 461M 13 9 P= 4 34 17 ?ree eteos se e.sede ene 66ese qu',. Bessees% rue........... l le* tfl 47 &th 68 9 58urf14 79 8.1. d.4. aet. lor =e.. tore....e............ flee 94$ el 4.4. femme, n rees. B Jh. Esmebs ergene).1.
- enn. am. U se its. b a gh. needtysprpmeg.J.
sen, see, g re s ea. A
- 8. B. Sure h tese. H.e ( eas t e.6a.........
h n. Sure h 1. I tem amee s .e ss me senesee. 'esef t e...... p. 3 em 3 3 te.. etan, es.mo me.see.eas. =er..
- eemi. toe l es..............
anrema. ei er............ > 14 8 8 t t " o same trees senes ee....... > 9 Cl au. leen. Pf en. ene saar la 't 17 Sene..ere Flee te rien. es see esis ' em If J enream. essee s............ f9= tt it litt se use empense. gremoe.......... 1 %. 9 4 p'S. m j eaa. cou. Plassag sg ge e 30 pt testeere aus eareas J 6.s ts 11 . $4 +- rem. res.............. Pe. In j the6e.,em. Fiep684 JS ps e III P1 Pee I !>i PG ll % II$. N $IIT 4BII%897.I..eRANS lease. 1 Anm
- es......
- nee, hs6g s'ee l Jum p( 111 eere.e g geeig, MG 31 9e.g 36em O.orel. Nessag ;j ge e Ile= 6 >
M theng mee I,*$et................ . % 171 lW
- eresse Asm. see.............. S p e64 38 thode. Blem. dese se m slate.....
It).e IS !?
- 6. d e
ths.g erenn....., sheee.
- ee...............
I te*
- E Il been, see.............
t Se Jee
- 1 Dramasemen rieu.et llace. Hem etees le goe e em rt
.G. to ft t le 1 M r es hode. see "see
- 66..
ee m traersum < et..e1 tea 4 eareer e.n aereert f38-eel T1
- % gros..............
- ss=*. 4 lie se
- 1 m mees serene...
6=e4 $hete. see. esaus esas teuere se tres ak f7. 644413stpu l.i. Casas team W Pe tea. A RtW 64 titsseF1eos.t. 4 t. seeeeeen.
- 1. b gare h su erov enede.......... e64-ene 13 een fame b
& 36. W W83BTPan9.4.
- e. 8. enseme=
- eme l................
S= 4 1 emmmuu. meese to d d nom. ereo se **e........... > r4
- e I.essemense e.. ore. erenen e......
I ts S 9 ehm44 .46 See....e..... Besen semen ea se........ e.. 3
- 12 F
% 399. b.4Wm?14t}$.J. Caen. Areaterg > es he es
- enremum.........
.o. la 13 3.a, ces
- 13. ege
( gg s ee.
- f. 6. Deres an.
g., ree, es,g.,.,,,,.,,,. i 9e. l yg ng . *ee ......s f >l t3
- t ama, ces.............
I T> l t e 44 d e, one e s I e. aos........... 3 94 4 E e% ungtrwrpe(1.1 teere B. tenure = Seeg ears Hase.......... 114* ime 3 laneseene, ese............. 73= tpA 25. eauente tem sie............... Pe= F M uhan a mm % ren, agre g g .,,g g g g $%Dee $ l lL I bb bl g jeEs f% llf.j. OWeer O. figeEFg 'repfem tem. ase 41=*
- bIIt I 3$
gem ee..ee..,e............ lemassema, aos 9s.4, s 11>.4e 8 t pennee ee, en e.een p teme.................. si, 64 44 f13sef>4 as.l. euro.e 8. neues. ll.ea, gree in 9 1 tem e liete, wome ineree f'e'e'*.ff t 4ef '4
- resse................
3D* 1 4 f 13 tenmeeen. see.............
- t.e93 il7 llame, you, ens trearem If>esh 31 e rese one esteere u
a= 2 N & tel. w f11mme91=4 31.1. . sus. same er tes tem ?res................ Ne ma Me
- t. 3 3marga an.
30 9. 644M11W6.1 L. auseum.
- f. 6ame
& 47 64f168efftenbl. %ensus tires. 6 ten. 38** '981 e' " "' ** **' L*" ssenen e., es, e,re,,,,......
- 3. is gg earmen................
'k 14 't iema..soete. O f re tom. ame h ee 'd tamm................ to 11 11 taan, ame, retten Je* es M 1*me. mee ..e fe 41
- 4
?reeren. les 'reepen, no.ee........... IS* *ee 29 tie !) 1I emen, m.m. gr'ev Heeg le. see m f)'= #1 ?19 Ib F1 j$ ......... ' ge=
- W le
- me af auseing f E 64. 664dtepsreg 36.1.
eerse C.111 Peen. E f ft W 9mb teefille41 .amaan tereen.
- i. e. t,per, a yms. u;gIspo7tl9es.1 gegweiest #are eiee eeer We. 4 4. Seemme es.
be4 ear Der.................. S= 97 ff taceae.e.............. 8= 44 to
- geweessa, tem as :s see.........,...
37 8*6 =4 tre=*e Pill tem,ame..... 1* t I ab #8 223 E 's9, u gleest pq}}.J.
- a. a. ns ee.
nausee, emerse. seeer=eese...,......, 8 <4 1 gj ee, pro,..,.... &N W44tesm7 3=43tel e
- 4. 4. ed lier.
- annumme, f ae......
I 8. !? '9 i l*=e one tessee case, see 21.* A 4 1 euroes ese es.4es's.......... > If H e tem, ces { enrose. emese.... k f1 f1 3b4 33 fg a 264 =a ?Heeef t!ss9.8 A e. nessete. ) een.,ee.............. fl.s ig m
- t. f. La teena.
sL tie, utleaseteg32.8 neimme - E *t. u net 7 erp7.e.a. se hoe ese m lese.......... D ' *9 99
- e h
- 8. 8. M ist.
me.e. rue....... Leppeess ....... 99 171 3 b f tem. mort enrumme to H 11 la 38 11 3 Ill. *
- mese sealer.
lies Jr..l?e64711894.1 Trances tea. e 11 894 !67
- g.a gg 37 H lag La amm -se..............
i tt. rht tia g i gl. u gemenetna jm.s. s e
- reereen..............
- 64= 640 et eepee we,ans to.s. etas. ene nemessese...grosee.........
m to 64
- 34 E *f.
hi h49714 Frat 9.3. Lama. Senere4 ............ 'see d f 4 $2 W Pe 6.m. Ga. le B. 3more 4 lame.................. to 60 to 3 :ti. W M6tuett: Ell l. le.s e Larad io. anrees................ he. 64 6 81 ase 4M i t s *9 aer9. 'eese l............... le ! I
- enes...............
> t2 N & !!1. u tq 4bes t14We i. ellite 4. e4*dh. tom. red. ene tesessene........ Ibl99 lij tem. tese een sies ............e b *f ?! She s e, "es.............. 8.h 41
- 4 see.....
6 9= *80
- 4 een..ee..............
'se. 44 37 3 29b. 414 pas Pt ?ll f.i. 4 e. es.,eas g cae.... 3.s vg l yg 4xa. that% *ee 64.l*4 11 4een aes 5het e, ces, et eos es te try.,.see.e. ; gen se g 11 lagma te 6 lhet e fr6e. e.see ee th.org.ere d e, ree. er, g 11g. u g ygpgggge g g. septtmeerg. esses t t a l t... emees to te te tre............... jt %m 41 4 mesmenn. C ee. se%.eep eae telet thode. *en. %are to. 41 21
- $ b.86
- 6 teorme..eesseese.a fee.....
98 8e. eare............ utsees t 19 93* 41 teeren, see am eNeen. Joerfleme ne one.e gles.....,...,........
- g. e og g ye the d % fro..............
.e teget it tem,,ma ................ 11 730 21 9 Ibete, e pe ces ).rel 944= le l ?1 fts 47 21 Ehe8 % gro ase t s.......... f814e9 6 the4 % enre see.nared....... JJeden 11 19
se Ossee 8 gspo ed teseulee one1e emmeieene N. e. 't. en. t.ese. ea.n.os.a les.se. I ese. ! le.s.se.e.eg ,. 4 m. 'e .e t ' o e 103. eettilefpli .s.* lseam.m Itese 44as seee er,l.l. fIE e4 9217efTe l#.4. erimme f%sene h a e i as. as
- P. ad s
- 1. 6. Store La.
- s. t$
I.f gr 85. e.49temBfMtif.I. 4EL88. S. e4 og tems, tense, nrene., tema, eser e, et.as 13 64 e sl ee. * *eea.......... 4 3. suuren A Lee. Pf an. seese........... e4 59 it 44 71 at
- lame,
- 1 aos............
n.as sestee.......... ff. et f ?$. le f 6 F F lemme t$ ee. *eie.... e......... to. 9e
- e merases -ee..............
f= *e6 M Clap.................. h *88 29 8ee=4 9 il eerese................ 90* f 3 I trumme ter% *ere............ lasseeena. rue.......... ImaN ."5 the64. pPee.............. las.e.e.se 68 I N.elT jff 8 pea se se
- II*4ee 89 e ' 5.
.a f Nt.l. taimmseeles taosamarten laese. es............... leestehme, re.......... nme6e.8 80 t o teasemme...... leie=est =6 4 me. k Desses (e. ti ttafe F1*t& l. 4te t.4 6ames. W '.41. lassesse =se...........
- as.ees set s art ill ag Ga., a an.
S. IG 89 , 64.1. det e Lama, namn tres........... f t.13 Il p#% -. __ le 4. aure Os. tems. empres.............. 8 4 6
- esare Geb.
trened................. tb *E 19 lame, eneros see les.......... In =e
- 3
- > 90 4
anemen................ 3= 6 6 ces tore................. les 6l Il mese ese seemeeman..ee e.se emme aus stee.............
- 6. :4
'O tema, esser eear.es.ee...... t b. W
- eeereoferoeemete.........
4. 89 64 enrems............... Seme, empree.. seer ert et...... 14 13 1 me.e. aus............. D. 3 6
- 3. *4 Il et& esf tsgefpth.l.
.mmene s es f.me. aeon as, e ist. elf 331mpfsteel.l. Sn4 H er.eri e. 'resse.............. Serge s. (mene. tre.sseems e e en. A t. Sammen se.
- b. ao Ine e. blee............
- 8. he 40
.e 6 6 fF S. 64 4 tee eenen.............. treseete......... ..e. 6 6 og 4 tema. eress.............. le. 99 79 00 "B f tems slas. spee............ +4 64 17 lame so.e............. insee. erow............. 7e.4 81 If 6b e4 4 eeremme................ wo.meense n= 19 1 4ee. estt. aos............ 119 44 H "b 93 le tromme, emmesan aus.......... las e. ter% 41em........ leen, ensa m.............. t> to 4 e tasee. ase............. 9e=.89 9 a is9 6ts 16 e f 37. 64 tgasstP taf.l. Casseeles tas.ammme. s ge, w tstestsbit?.l. ese I.amm. inom nere. 6 ee......... tre liert commen. tremessene............. Ilf.e W 17 4 4 E. Seemse Gem mese. 4mpe 66ee......... 4 g i tema. >4 e. ye==d...........
- 3. It it I W.66e 3
seee. rus............. 19 69 1 % 642 26 ta=a. nam, eress........... t eh4 F4 9 lasm emese. arme..........
- p. s f it lose ame preuse............
1 IS see if i t. te f teme.................. meee. us............. ift.itF 18 tems, rf as.,,..,........ 4 ht+9 as to. It it me.e. aos............... mene, eere, etee......... '87**94 9 tevene smeree..eeer eemetag.....
- 19. Se 11 me6e aus.............
'96. 99 3 tems. H.e............... ft. te le e '91 befft'teft!73 8. .seems strums. '_ressee.............. 99= tf1
- S lesen emeree estur**er.ag......
le. B99 3 Lesease ares.. s an. I'9. C1J e unreme..............e.
- 2> tas f
Lasse................. 199 431 is
- s. I i
heesee ..e........... nes t. nesse.............. 1 se.a;6 6 Se =e la Ut= art 1t e 191 ma talusfD t14.4. Conseales tossauer.am
- ise..................
lemmeanna, ces........... tema.................. =e.i pe t re 1
- 57 a64 isu. 4 s. Assume ca.
meet more, rev..........
- ma L1 9
- Jo. pl
- 4 liens. emmesa, erame..........
s 16 'e e '9 8, espetustietts.t. es ities to o. me+e. aue............. i ts :s a sei s tart ammansa. sne+e. eres............. ?resrae.............. pla }it 3 lam. n em te o. lee..........
- p. :
4 tamm. f t e se ese.ee.......... .es...............
- 9. I t it sf ??f. 44486DuBftt4 88.3 esaperoM ese tema, see.e..............
- p me 8
Cl.es. .e= 4 8 le m. *s as...............
- 13. :s og sana, emaeus..mo apoil groene.....
4 11 tummer? Deh.
- 8. 8. 3mr.e &
.e. 84 8 D ee. aue............,.. S* 19 19 Same. nee...............
- 54. te 6
teemse e.e meresee..........
- 4. ff 54 namn. He as telte..........
enreemb............... te. 67 ? Lesa, eart. ces............ 19= 48 0 119 baan, n en. mo ere=oe......... team, nam. Ile if 4 se apare gre ama...... th ** f snese, aus............. It Il 4 %. ($ W 98). .4 (1 Mett't3 !7.t. ed it 9. mum sed f mete merg Heen........ 1hele, see............. 11 .3 i &ame. H as............... We 91 amarge. leerge n. Lage..
- 2. l1 l
lame. 81ee. e. l et........... meet me.'e. 96ee......... me6e gree............. Igi, el sedoest................ es 33 S. 4 as Cow.................. eh 96 4 eI& uf pmasTttlit.l. tammeetsee teenaamp aq. moremme...,............ .d.4 N te
- ad f
3864 res............ L 3e. 4Je 164 Isam. ese............... the6e. gree............ me6e. te% tlaan........ 9.e en Is f ee. b t. 3asmes :e. the F1 ? 9 644. *ee.....
- 3. I f it v f 94.eastenerta l t. l. Lemmes edleen.
f t.1 7 tema, ausroe. tres..........
- 17. M f
- f..asse 6 sea.
mese. more. 94em....... ammen, see H as presee....
- se lh 6
namen Doet ree.............
- p. 5$
,4 the 89 6 less, uproe,.ms grotee........ b 's es'e Ibe64 mer% Nee......... 'D= la lt tems amese.............. 98= 94 8 C ee,.mase.............. t e as lens H am. ene s. ore greeee..... it 9 I ca,........ me6e. *ee............ l es.441 &g 4 661 5 e $1 tem. aos............... mese. mar % D6ean......... 8 te*ema................ th alt lhe4% aos. me*e. aere. n..... 119 4 2e 11 f re.J )# } v l p. 64 f34tenfle tp. l. Osumess.en Lee. ser =e. e 195 ma gtgusf't3 3 1. el pres sier .e,.. ee......... '1113 4 s ea.
- 4. L. asamme Ga.
6 merge 6. tesse. meeg aue............. Mode. more, steen......... ! !P.4 93 !)
- 9. I t ff t ema. M as...............
- a. :(
13 Inesev gree........... i s t.e ft I tema, enten. eress......... e t !$ 13
- ee, ese.............
- 3. is
.g mese. res............. mese. ere mere, es sa....... I f9 e f t it tema, emarte, one H an grouee..... 0.s te me 4 ae.............. I f1.t rl t same one ere=es............
- 3 66
- s
.same. .emme................ i rs.s ts y Cl ee. .eano........... se et
- s me6e. aus...........
team, " am. I TI. set 13 3 neen, nos............... ' ts.s he 3 'aures 39e, 47 n ei ese emere grosse...... laummeau.a. we.......... % til i4 87 4tbat6 3 eedeces................ e '99 64 f122e7Ptse.le Jumeros ar ae.ee. L'e8 6 aus............ It4= tJe 't tam ter%, pos 2Je= 471 68 W IW. *altf31stPp9.l. Gammuneses Laelesereme.
- 9. Seuse 6 lee.
most gro............. I,fh pg S I een 4 6 3emens fia.
- m.,1s 38
'09 fressee.............. tem 6 emel e.............. n :r
- i. :s s ear.as................
$=me. e==ree. ire o.......... 117. tt$ 44 .aa.ac.m.mu tilt. usede hame, een tresse of tiev t= en et tem.................. id= to is 8 it. 64 f190e?p d e.l. Dortes a. emusenemen. nemmes, eeres. res. ase 6ese..... etiiIen seri e res.,e 41il6e.fteet1. name
- 5. Laee,
mammme. 9 Im *4tleastStse.l. ismoesses toe.eene..g. 3.s g 13 i me. L. 4. Sammes W
- 3. f 3 fe lese, smaae to emnete...
less................ tem.*=e.............. Impf $1 Se 13 tt romed to esse............ 5M !q teme, emurse neene.......... 44 415
- g tema. aussen. asen one ervoet...
- 1. *e 4
r eo................. name. ausrea, ree, ene gremot one es. eare 6 75 3 eermee................ l i g.. ma
- g 8 ede bilt11eeftte tt el. teerg de meneresse tem, emet, ree........... nue= t99 as ammma.
311g til y tee. e4f13pst1stit.l. Lemme64 ee La94*'ert ate s.13. si g )sheefB t31.3. :em.osen toer.. Less..,.........,.. tea.*=e.............. 111 191 36 t ee.
- 4. t. Semmes A tm
- 1 33 8E 64111.Puttt31E l.
J. see.ere. lame. yee. ese gresee......... I '8 tems. '8 an. erme........... $= 19
- 1 name, amerne..............
k it t &remos. suores. *ee......... 5 19 ja
==emme. name one ye me growed.. f t 64 9 ben, emerte.a Ib. to. s.ese..me..e.roe.ee........... 4 es se a a to.e ame y,=e l...........
- n. 18 2
el b .re.oe. me..m. A=.44 111 Seme, a.merne..............
- 64. el r'g tese. eet ses smaa l vrvoon......
e== 't 4 U se. seat. *ee............
- em.=ee............
44.a t t %1 8 meteoes.............. 8 99. SillMetttles.l.
- 1. llamet, lane seet...............
< t 4.
- l 7
- P
% la '4 teme one stee........... tone..ere, one soil. enero yvees.. 11 Fool I
- =use.
sense.............. tiftgees7tje j).1. *hemmere es ene rome.
- t %, tres.
9 :en. 63 925 teerts t16.3.
- senees ee leer..
- s. 11 ll Le t t......,,...,,,..
- .*ee..............
- 11. Il la are i e.
- e. L. Dessee &e.
- 3. i es t es s.
g -g g!.,,e,,..,................ 'T*
- d it2?er71t ihe.l. mermee 'emesse w
, ge. pg gg g,,,, gt, r,e,....,..,,
- 9. 't rI gg
%.6. % w neo es. nearne...........
- 4. (4
- 1 hans, ase e.............
s
- 14. It
!I tems. amarse..,.........
- 3. M le tema, esorte.............
et 88 %***. H ee............. fem 54 76 eseesee............... se es 's U **................ 5*"% eenroe. ene eiew....... es. og
- g og d
78 Bee le*=heet of an6estse endlemodemelemme .. e. w em N** tesen e.sas Bes.en am.es Du..pab emas.l ses g .d ' ame l a .a t ' am 4 26. M f f a.- Teest.L. eums.tes itsmunre Ole. A 4. 64 flh.u-s.t. 11mer se6en. 8'mW art tilag Jane . e,,, g. y ame s. mas 48 8e0 MfWof t.
- l. 6. Amee Ga.
g S. W de e p., 4417$16714218.1. tenensies tegr
- t. e th Dee see same............
13 eeum, res.............. 66 173 ltg Sems. emme............... "P. 79 tem .en e
- a. t Chesume Ga.
Dee...e.............. Pe 39
- 9. he
- G 8eesee..... e...........
4 64. til1 ETWF1te t1.3. Steee of gene. H ee.,es.... e.... e.. me. 64 23 Caisuggleng. Set, of aereneglen, 4> to 6 4 11. M lj 3GFjel )he l. emmelges (gesageg $4e, t t.o are.=*se.........*.. 4.8. Samens h g. sie, mes......,..... 64 45 13 'es tes Mewef t. Saf fiert to le 's lem H% aus grouse........ t= 36 S te e..serse Em 90 ll tro.e4. emmses........ee.. lead.................e .&. ne g e4 $1 t en )) tj t i l t. H ee..me e s se.......,, ,eeems................ Clw.................. 6 34 6 lamb Hee....... f). et 98 U M. H et emove gresed....... ame W 6 lem Has to amnesh aos gremel ees e etem.m. Lees tromme................. je. f) } eraens et stee.........., go. 19 g g e. . 4(geest3=ce6.1. Stees ed (san team se $1 3r****..aere. 8as also....... ?). N 1 enregne................ og 33 to 8. h h kames................. befosse............... .e aereamssow 8 71 19 4 W. 44991DSF184 ts.k immelten llanumps tee. 4 *E. W IIM88PI'814. le Archese Seel i tese. He...........e.. $ 49 M e88 488 &leweft. tr* l let f eats en. Gene. eseseeareessee oest am.. r en. Cl ee, ese.........e.... tresee. essene ,e....... ... Ofwet se e. it pg. It ph
- 2 lama. M en..............
- s. sg 3
Seue.................. g !.
- 1111sst 3=e11.8 Steae of 'm lea.
tea.. ope Han............ e4 eer em s se. 4 I. 3emane das glas..,.....,......,,,
- 38. pg
}; lais............,.,,. .e. aeg yg 3remee................. 98 4e3 st Use.................
- se.e 33 JS se 188 3re*e4. end ue............
I ll.s t l 4 to) tge est 8 40 GB eeressa .....e.... .....e tee aos.............. !.se e.e st ee............. 3De ses
- s
., les.l as N A 3. H tf1 W7188 30.3. eens leen f aammare se e. re e................. A #7. half 1EmBF3eale.4. eessiten Stesmere Ste. treme# ese w........ tremos............... 4 3B= 411 13 sem ses adewett. trollerg an. Las ea rwett. tre llers emmann, ... Ill*em jeg 6 10 1b N See. steam. *ee ...e. ..e. N Je bass................. 3 31 33 less. omne e.............. See. See. 'l an. Imme............ H ee. est ti ll.......... 30m M 2t lese. H an.............. }l. M rg S tees of bees. W litteBFfee t.). l.$. h CoJmann. 4 l. Se= t Use..e.............. 3e= f f ef teremede st. L Gee.................. 8= ft It 4 ed. =# f f restfe# II.I. em. lese Iteneure sie. tems. H am. Ness e e.....e.. eeresse................ ?> me it 4 35. W 9te FWP1JB96.4. tramos 6 uurea. ass tes assernet. art 8 6 erg - ene as J6
- 8. beans 6 nene nreme4 amores............
A m.
- fitf srimet).4. taaes es genen tems.
t.en, rtes...............
- 3. p
,g less.................
- 3. g g p.4 3 1
lass. H en..............
- 3. pn e
Je= 17 Clee..................
- 33. 15r3g se a emense en.
L. 4. Sammme Ca. I33 33 m name, were fles........... age.................. ctee................. 4 IF. e4919esFtD$t. A. kertue 6. maten, e.e. tromme................ rje *3 3 gene. Ham. W enn........... 9 33 33 Clee.....
- 3.
- t g
4 's, 481905ePymag l.
- l. teatemn.
8.8. amme. tue.sp. og ;g mereens.............,. teentes see s art ill eg Ga.. een. 'e$ Se l$ la88. emnet te emerab......... 19e 5
- 3. $$
g tema. mesen emel eereus....... .. Je #el 60 lene. anseen to aeros.........
- .9= *T p
Some ......e... ....e at till ens stee. gree ........e.
- P.8 4 9 A
... I 11.=41% Cloe.............. u enre.e, s................ 13 9 3m s ty tae aus l i I 4 I M eV ,.__,__,_,.mm_,_m. _,.,,m
e ene s. mage w aw.aus one e== s ,ee, e e.e. ou,o -- o.e.a. er ie.s,eeen-u ne, m mea.a.iem.eeee . s. .e. i ex oe e.H.ee u ue e-. e-. -.w.a. e-ar.=i . ee ..e ee.e ,,ee.ae.e i-oes -em i. ese av e e nei=
- e.-- e, een-.
e.e e, ,me,0 e, e.,.e.,
- e.,,e,,.e.es - - -. - e.
I me e,, ..s .e, j e. n e.en. .e l en.- e .e e e.e e ,,,u,::,,geg,,, eeen - -.He :ye : :::'.a- , ey,2 y,,,:e. e eeo,,e.e.k,oe.e,e n.een.ee.. s.e se se eg. -== e. is. o.ee,s ee e ee s e.ee. io. a s ,a-e.e. e sie e.- w c.e. sea.. amm.asse
- aree of Ice.eWre see me.ee seedle eseWesees l
FrenesW9eef se ene e.&. e84 = t w== i = ,,,,e, ,e e e. 4,s e l I I ,,,ees.s.som eu.a.m, ee eos.e e e m eg.ee,s. e.es.ee w.e e, eereneir eaa e-m u.a. ineresess se esse =4. es _e-,,e,,, g ies.smu.e. ( *6 s f ees savesen. aumeen imme.e 18 esse v - e og .e met ereilles ap get carees ammeresame se 6 eeesesse M eeer o gayes.o.f leel f.m. j a'====g== samee=== in. eses me.. . I e ease. ease emen g webes af enre eteer.eese kom af tems enese erelles av er 8W ete e.4. g ~ -,,, l 1 e,,ssesse, lme rees. Genummelee Ge.eremme of ressumyse.s.sen.eee.e.&. eses. q le ese . e e-e -.ee.e. neme,. i e ee e..e e re - - ase e 6..e n.e. re-. - - eene = en nere. - .e I ' e,.e e gay are rearremese fer es.Peene? es erummeselee, f emmen amm tussen ame l e ee-l peas ese ) feae emme Mas aume g .e Mas ese } us9 enas ease ( ete m a i ne, sue,ee _I M* ' ese m ' l It se fuse e e i eben n ae 4 ide. Te e. Tee. m M
- Wee M enes
$W eu.amal ' ' eme ) ' rems t ' ' mea l '
- emo reema)
- em of StamW' eta G I Go al lF71NPIS S.I.
Creemmet Ptee $les CR Il..et. h4 3716ertH..R.Creamel Flas emme Game. letIles steb eIea rees let Pt. 44 e. enew see. nr IIes itek. eieieens & 8 m. ef fillWFle=M.I.
- em. Res ed kee se sem
- 00 fe, kse av 4
- 4. Samme 's.
^ age se esey 4 0'95F. . : en. are t tee es eleses th famillt Mas se M afene ease see edle Su 19 lI 14 4. M.E. Pen, one ele 9 .e 0* II II 14 sh lamm. #1as to someen. emme. ase se ee.. I 9 29 I nome. ed itv. ame, one esso.... 31e % el ee se *Ime,.ed le cens Lese. eerv Man. seesse sete ese stee 3= IS 9 Dee, seet, aos............ bft 9 tem. enr.emme Mae 9re.ee 6 j j lema..e4P Nee. ereEEe Hle ese eley) (Ie9, EBfe, reE. gas eseal @ere ground 8). PG P it sele t$. 69 4 eedmeet.............. es $4 lane, enree es Pf ae. beesti lleele ese ease.e eent... rt es ere=ee............ la it 9 name..or, riese meestes scene
- nes en.
Lane. *t an. seeaes er==i erees e4Ie i s= ;8 '8 eness uae em aiav.......... 64 ein tf J It m e417tte 7Ue96.1. *ressee a et,e a ssie u te.. Je= p tems..orv Hase sale ese elevi treme es ue s t ee.9 4e. A s s. emee same. *Iem. eenem ent.e ireen H is st es.. eew s,ee. name. Man. ereo are. gr. $i, i3 esos grouse.............. pe. to e les Ph we e
- a. g. aasens w ute.
- eses se weet taesse s sleet trees H ee eene..........
go. 43 13 e f an. es !717es713777.1 treenne t f r ee as se name. H am. aus............ k p1 11 gale n=ess es enemme treess e6 sn eet meer ease. en s ies 946 utsames is re. tema. H ies. *=e. m ee secesse e# use. II. 14 4 II so 6 .ao e, essen. c es, esse. roe ne-99 9 aremme=# sense Hee esse.... ees 44 It G eo. N am. *ee
- 9 a tt 83
==ams ee eres...... S ee, erwoe one ell e........ 43 tt $1 ee. M an. ees. eas mos t emeco tremot i11.MS - ) E i m. *4fleenstlefte.l. femme aere. enemaet. as 3 ochnee .....g.... .e ' *J Irelles tit. Hes smee ite 'e. lesse is seene I F *e. .se e, t. 8. Semree to. 34m W petesft3FM.I. tressel noe eles 2 11 e. W lff lastt1980. 1 tresnesi et,e iPeepie ak 9I4 esmur toe. treiIes '946 4ies esen i6 es. H es esser tone. nr I s se 94m, u eieees 'erees I............... e. 3 3 koe se dem. to et hoe e, a. 3. Sensee A less................ > 'e i lase. M an el aos.......... es 31 11 Same, ear, Mme. esent el i e....... to @ 23 kame.............. 3m i 3 see. M an. ea rn......... Ile e name..we Pf ae. prees His ese een naan. H am. een. ene seere erosee
- t..g i3 3. 15 2
9 3= 10 name. ta in, aee. Dee, ame........... i t. 4 2 ansree,emme tase. He em 'esere ed siee... 2 14 2 noes..er Plan es meree, erwet asse Hao CI ee. 4 8e. **e
- 4=
to 3
- 90. as 84 womm
- 30. $
u se. Ham. ree. ese n=ece trovee Te= 4e 4 st eg ame............. lane..e................. taue Man ese edee........ ee.e l f $$ ers ##ae se Mw seasse een to*=ee d......... et th enree ese............. > 13 tt 'em at tat tan heuene................. as f1 a it e. es )64f ettJett.4.
- rs==e 6 tt ee ti es enter iet.
le. H es.94e. 4iei eees 80 3 9. Hede lasttL.=0.3
- me of 3 9 m b4 MW37.1. *rumme t p as es se,.
$4re, bege,4.3. pasameca. eseummeter, seter lee. Br iles s til. smner Game. Ire lles 967 .M es esse 6 94 re. i eteleone 544 re. kao w l.4. aere 4. ames to esear ed th.se av.40s. base.................. 9 I 3 1es% N am. Pee. eat meal emere gre.et ..t 0 I .a ir imme. H.e is e.oree........ n i,. - n.e to nw,ee. - est u se. a s se ime............... es le His..................
- b. 2
~3 U se. mere. *es. e.se stree g ed emere lame, messe se eseree eiene. *esel ene erasee............. M. 1 '6 j
- ame of reue i l tren...............
30m 13 l eedmeet......... et a l i lame. adde e enroe. esses es.eeemet 3 i m. u m nerteele.i. u eewe te oneHae e me.e -.
- 13. A
$ - *R if e.
- 06f1Gf tMS.I.
trueed U*e v i se. set iIes 944. eneaesse i!$ re. tamm. essene se ensree, reens es.ermet sa se.. eser same.
- p. I i ee Sea. eiei rose less to enter e re. ese to amerieme treme ed Hee seeme4 Je= =0
't 65 th beg M e. t. Semmes w net itleg te. see. tems, sessen se murm sammes ease 9resse ese Mas aeseMee ed=.4 f '. ass.................. a. I t lane. reae se emodem ese vroued. Same. Mas ee asseum. sense e.teame
- 4. It taan. 't w ree see eles.......
3 58 9 eroen u s e 9 3 I nose were Mme ecomm u te. len.tl g) u se. 7t re, aos............
- 11. Il 43 nees. eende to ensaw ese noe c oe, ete, ces. ese esece gro ee
- p..#
to !* '1 t) 3 IG m. bd !?ghef tj W. I. tromme.1 P'r ee ti es., tedeast.............. presee, e i es t e s t i e....... te d lema. *erT H es, ese elle ..... ' 9= ft 57 esser esee. &#t 4 les 967 en tie,ee t =0 co. begav d68. CR 16 te. 441716 dei!*est.!. treamsa l H ag 3 $ m. el)IIeGftM.8 trenmedi Ptpe glee,, e.ee geoe, in 11 es egg. elti egee 88ee.. useer teet. W' H ee ites. etel* name, messe te marm eeeed es eenset H e se. seeen to eet er 't 't. weg re e. 8. t'eme 00 fe. *8e se '446. ereas ed Hee grenet.......... $. W W 3hemsee te. lame. emelem. "seed es.oreme. M es grosse 'essed l ese ease..wg Hae se H an, ese u i g......,......... .p. 33 g gene one slee, emeese see, ese energ e*ee............... S. I t it tone. me,d,se to ammew stese, eresse. $= ft !: s,, eens,.............. rt.11 seen wouse leen..e'e Han es esses. enese i t. tg ie H e er.ee.......,.
- ,s. yg g
. H se..se me.1 were e e=ee 4 9 Lees, team es mes,sene see Fl ee,..,. Some. M ae M
- ears samme es t e one
.e. 9 ee..
- e. ;j l
neas. H.e. li gne pee. e,se esse slee. H et. t$. Je I
- 5. El 13 tame. Has to.or H an, resse es.eemise tene. H ae. see, ese sie tema.
er,.......M an, saamme es te ese eies ;e..e >e ,me H an etened....... !$-44 t$ tema.,Hi ev. roe. e ne seress e ed **e Le's. *ur9 H ee. erest elle ese elese lame, fles ee. erg fl.a. remed eemeenseg
- 1 84 M
ego.....,,...,. age =$ 7 een Ptas yemed one sais....... 48 1% U *e. tere. Pee, ese sees t. i i4 4e6 ) ese amaree eene........ esfeeee.............., ee op ogeoes;,,,,,,,,,.,..... .e. u i n i
- ebee $. eee af eseamme Isas emeess.4melemmt
% e. 'n. m. w e. te..e. t .ene e been emme t.ese ' ' ena l ' 'ena l esse .ma i e .a t ' em) o ff m 64etI DetrtJeft.l. Lauen tese. e# e9m neenusf1Jpme.t. tema. seu ed
- w or neueendais essalemme f*esm es s en.
ert iles 1913. An tiemme fossesyses s ee, welles 1996 ea ts aue 'l % l'ereer's e 1898 w, ee. wei seert ? pes.t. temen tee. ed
- S % tase to =eser $ f t.
we ** fpm $h $re l l-IM NIOM WO4 MM 8% kkN0s tems................. 6 6 6
- b th less. Pte es ensree, trese 64 tt...
8= 19 it d ev.ereas. trov.......... to '4 le l'a ' 9* l' De% **r***** 8" :S aseseur............... see, essees ne rien neemme une marea 39 Je f les=*8 =ase e4 it, esov (nesienne,.
- > p
........... 6 8 8 ame................. esse................. es je is nee uit
- gni, ps.,,,,es,ess tream enres se team, ame, of 64 smensfu.eht.
o.e.ames trees nas yemme serem d 18 m 8 t% 6**emimer:39m.s. .m. sees. ## t tem. er IIes itsf. aa tt omus wie use one uit......... > 18 'O f-11 ft. sees av - - eC '* anli e ha. 44Heese u se act in.,es useer 9,em*t., s,ee,ne gt,. ese u s e..es-eremi trous sesee er % iswam e usa t> is a rio. se. me,es............ .e n.e D. p p less esseem. eram......... se it et .eremme treme omres list. times. ee # tee ese.ereas wee use ese setti tema. Pt ee, asu,m.e.,.......... . tree er !=* IS il u s% ermee. ersi........... l b -6 )e .........eresse. vrene ri os esse........... te. 31 13 see, massen, e
- 9 7 11
> 95 ff De% *** *".e'e* erov 9 7* u e 13 ces, wem nesse ame o riese one esesse e4Its name ene weene, seen........ see.'en name, murse t 9> i8
- ereen It* :$
e ass 6 tem................. es He ......... eremos...... 3> et f enrese ese emeemre......... e se He eene I l > i tt is ese................. e el m weaneertml. toen tea. ed tem. ame. af *"*e'es se t es. are ties i9fl. af st eese e.,e Naren=aeetDWPtJ8's.a. e s en. 3st iles 49es, els s tems ams of Y'.um IO *I* i#e'eur.o e lit) e il et. nous as eseer 3 Pt. e i en. oeeell ef t30EB.J. Leon. asse ed > g g taae. sa le ene ele,......... 6 I I framesureecen. are ties tpfe. u tlemme D e'..er***. tree.......... > ft bl .esce t mo tem........... sese, amerse to stem seems treme s% 0 8% *****. .e $ > 16 )e esorte te l t............. >I IO 16 94 13 e. 4 tene. 8% salt, elev W D S., si l e4, trang tree flee esmo fameed l. Se l ee............
- 3. J g 4
noen................e se M .or.us e.te ed it ene esset. tree Ples 3>.4 as ti.le s treme eens........... t b. 6 4 6 enresa, ease, tate salt g., rises e s g,ema proommes.... it as t e 't m 64 90'487tJPff e l. tem tee. ed
- ese...............
ties ans salt. ree eeuse, treme rien tre H.e4,este semann sene ereen e e sae.ee selts trees less er u lessee..........
- = 13 3
I'*'eemen en. Jereert e tit) ustemme ist % n.e same............ ed f1 i m taedhsee Geen. tese. ed Cl ee, enn. aos-eresse trees flee eens e t.emesem u ses.rtjsH.l. ta's. sa t te sa a.
- a. L3 u
n e% *e8*e. pre........... o art e see 1996. ae tlemme .erem was cowee sales trama Hee s t> :s it same............... Ib 41 1e e% tesse to esser e Pt. C ao..or==. me.......... 1> ss a se. $4 sp 3 liie. Messo, aos=orgues trees meeen s= 4 e armes. asse, sale....... ee fine esse............ 4 > 49 6 asser................ 64 3 e 9 1
- ermes...............
pe u sew ago.ere=4 treme enres tame, emeres to emesse........ > $4 61 to N== esse ereas ** * ***=== 64 4 tt use.am uit............ utsee amarge to flee esses estese ene................. n 34 e 'l 5.
- 8 9tteWTtJPflel.
- sun ame, ad
- *ememure ss a an.
eri t t ens eseo essensa,. emes se to M ae tresee........ Ap. 'e f tI t. es ease, ces.ormes emme - to e1m weesgert3ht. tasm pen. ed &JtIesse 1as % Jeemuree e itol Hee esmos amo sesses to stes %essmereessen. see eles it96 M e s amme tems. elle. ene el se.........
- t. 12 23
?en 'l 9
- t.
6een so emner 1 pt. p ee, eeroom. aus.......... 'N 3 / eresee.se............... 36
- eoet.
.se se et es, resserese em 3.e. 18 marse to H ee menos little stesse tems esseems se etae......... s. I f Gerees............... }g p #g g eum................. 't. Ob t, n noe egen n,e i4 es at.............. ya,.no g4 igg iie ie gros e4 e t!I t. u ease. =es.oremme ese eerse J e. 23 .) e Ib N elfleeWFtW.I. team. Dat ed to flee names seus emedem to ries geeeeen..,.,....,..
- u. ;3 3
?.. - ;u s en. as.s t ee '913. 64 ts ames vresee............... D. it 8 taese espe............. op % Jemmerie e est)
- re.ee. essene to H an, see erese emerse to Hee same 4f ette onesse e o m e.t entorpent.f. Geme. sees. et
> st 13 .. i t................ Ib 96 f*emecerm.ee. We lles twit. aita ease tene. eserte. eene......... 1= 13 's tese. Seems. ese.em armee s41... tae.e.=====............. pe..e5 It It g U se. se it ese name, i e.=ree..... ry s3 as j p 54 3 e. l l enreen............... .eenes t
- li m w u e1 w?Uggl.a. tem. sea.
i s i t yo,,,.,,.,...... w e ) .e, ea se.......... ed 'aoateemoeien. trities tes. at t l eese e 9 6 e 6 9 **. *193.3s371 3 s1.1
- eum. Suse ed 4 84.
3 esse te emner I %
- ,sme e.,
- gremes,
,smo, g 3g...., se ie i ts i6 6 resse $7iiles a99). 468 i esse
- gene, seet ease, emotes ed og
'g p g.ss'ses.en. Iremoi ,g,,,, ge ug g ( , pe.ger s, e 16 64 IIIt. 4 8 8"*% ase amene es Nam, poen
- "" *eana nues messe te M.e sese, e,en....,,....,,
.en 33 g t ees. M as.............. > fI '? > f f
- ,,essee e,es.eems euen, u n aere=
vow 6............... id t 3= }} e Ue .ormen. -me 18 ' t. s i e=or. e.e amorte M ff am. **ma non................ "*""****8 eens,...,.........,, jy og 'e ice. same. se n t se es se.....
- p m it
'"e*8 * *e Se in' esse to Hee erseee ese................. .e yo swt truse Han .ame e...............
- f. t1 18 e f m edeggteytp54. teen see. af e la S.
- ian*=e ft?011.1 eme See. **
lHI. s i e==% res=**e==4 trees eerse te '. _ ;eu es. semes 194e u n eese
- es,es.
sei e r ee r ease.n. Hee tems ieeres e4eh sann esort
- 3 ag.
as ettese :s % s 7enseet, e i rf) 'ree -> 29 13 tro.*. s H ee maae........... t:ie, y, ,me, epoes n en es,e ame . seer *e to H es, eemme iie 6e > 3 g s. 3 3 se t e.. ore seem,,,e nae e 19 enames.'e Hee esses tree smee e414 31. ed ei e,e,e e....,., t i l l eserte............ )* f I .4. pg 3 g g g g, ,e meess Pesmeremme trees 1 ee eme.e.............. ). 7 e lame.
- l et. ecene ese tree......
d ' l te. edes11asttjgit.l. toman base she.e. sett, meet 898 louert flee li t t..serte eene ese gree, are ftse F. 17 't tems................ > 13 3 et f asensureet sen,. grelles 19es, u gigues sa t tsomme............. Hao wome. ese,ee, seems little tems, eine es 4% 6es en te esee 9 % 1h :8 6 W6m u eMustrEf. l. tema bene. et 141 t. erenes e. eere perg ases.... In 3 l Preseamm se I en. SetiIes i9%. u aiseen 11 I t. 8'oeme*emei fIetIe ease see tros=4 I ts 23 e asee ***esene s.......... tese to. emn.er i. %... 1881. St a='a. Pee eeenet tree asetst e n, e" 5 I snese ame samenene, ine;- see
- ee to Hee sese, ese e ee, seen eneer
- **.* sl i t s s i t t l e amus es ee H ee some, n.e is e
,,e, i omme, ,,,,1 ane gree.............. tb ;t se
- 9. 's it tro**
............... > 6 e trees se u s e yenee...,, 6 13 g e i f re. u ti l i es tt)fE l. 4.3. aree a ***"*
- e H ee. aes eresa, one tale ses eie% seet. ee eeem....
- 'w tt H ee seast tross to eletse
- eres ed tweews. aci d ent sees mesee.
la it., seel es,a.e.ses. a gp p g eq u.es s ,t. sees es ower a et. me me=+emme esse mee sm=ute.............
- e. gt is ens,
Je==rie e i n fl ha*4 **en. teme........... Ik 31 to tintites, ie sete ese enese # ese,e Leme................. h I l t,e,enes, eart een. ensresen je. u
- q ttee..
- 3. ;,g rp d '1,m
- ie T111se F13917.1 tone. asse.
.e.,,ee cog.ee......,...,.,
- 9. gi
- g e8 ' emes **e e t l es.
$N 1 t es P9es. 44 tienes e 8t. teses te esser 1 % e f w. u neaumftp fl.4. tee. Dees. W e ',l,,,m,,,sa f,,t ligrt,,2ftt.,l,.,,,J.s.,,ase, f ees,seert es ue. aeo lles '9es. se tt eese g,,,, g, t one. H an, e,e esig....,,., g, i9 39 g,g g, u t a r.co i et. 2 4etoeenere % 58*u. *ee .............. :9e le j So 9 1 Jer"e'if a d ' 4 3 Eround one eier........... e p
- 9. i g g
gene...,,,,,,,,,..,,. 3 d ' e t *. Cofilet t1899 4 f.ese. See. m,,,,,,,,,,,,,,,, . pg ,3 t,ees,e sien...,,.,,... 58 P'easee*4 u lee. WII tes '9e4 u ti emme t% sea *e ower if % e a m. u,iones,3 ss.i. te.a. Saee. W s e.,i.e,,,,.........,
- s. :.
e 41 t i tises teen..... m,....,,.... et :q f ***essee s,t,t,en.,,,M,i ll es ,',9 %,. ,**e.t..... .,,..,,., 3 g 3 9e g g, ,,, y e.,9,,,ee.,,.i g i ts e,e,t gj p f, s.,e.,3.,4, e ,.e, 4 a,ee 1*as
- =e'=* 's Hen. ligne seemme tree g.,,,
3,, i i 3, ig ,g a v.e,. g,, e.,,,,%... 2 9 3 in g g go, " ee u i t......... n,,,,,,,W,,
- eree to " en, e, emes i.,..,uigg g,e, se,,e,,.,,,,,,
g,,,g i,,,,,, g e,,,,, ip gg sg 5"*- e. "***"as**me........,.
- p. gj to go,,,,,,e,,e,,,e,,,,,,,
- g. gf g
4=* to H ae. peset te ee e4 sts n,eise,,,,,,,,,,,,,,,,,
- f. ;g g
is.e,,,,,,,,,,,, w, n eee"** ee g p,, ig gg,,,,,,,,,,,,,,,,,,, p ;e .g ............. gy ;3 33 ge,,,,,,, ,,,,eg,,,, ,,,,e,eeg ,,og g
- ee to H am. aes.eeems.ee nn,p,,,g,
. g. og gp 4*** 68 4 : esse mees ee to H ae e,e, e,,, **4 Hilli............ 3 17 I t ili s tem, ate............ e9e 'e I '"*. ***"*s ese........... }f of 't -.m
o fase )..=e,ses of ee6 eses teos es es=4misamme s. Q e. m. se - se.s t tes.e.n are. ) ese u.ml >e e s,mareas,31sistin114.3. tammee.s e. s e15, _m** 96eleJ N ilt. l.,m. l.e,e..e .i m --as-4missamme sit tema tae me, m nee e,* H eese r eee. w o o.e. e e e.ae , g, ca. 6495f tlBPWbrble fameeseen 11$ % base to =. ear ? %.se se 158 's. 4'*'"er 's 't f*8 ere s asummme Gamurene Mie W s7esomrie e t65) g asween, iamohee e,see t9ts. tea. .=4 e ce ee.ree....,,..
- 3., e aatleumIm %
- s. L. asumme h as t 8
te% H.e............... t i... Sam name.............. ( p e#3e4............. > 3 ) tem amerne.............. s o. ;n seas. amee 9= 73 Il tasm flam. pause ese emesmere 2 =e t namn. He. ese sareas er esse..... 93 C3 t=% N am. t r ees e. s e......... b. e e tema. rt e.............. tema, flee..ame o n e......... e. ase =4 8 taan. # tam. =we emsase s grs==e.mo tems. esseres ye.es........ team. H.st trees es pt gaan. Pf an, asem, esosaurus enero elette eser............. Jo d le tems. H en, trees e.se......... as e r..es
- 4. $1 7
assess................ .e se poses..... 83. H it tema. f l ee, s eems eJ e.......... yemas...... nom, erumm. ene enas,......... . es.. namen flame por........... e4= f 3 8 e W sh. b8(WDWft28 4.
- mum ans of te% asse ss.............. ' 31.. y a
tsua, sa l e, e............. ?1m et 8 f. a an. treIIee 1996. aJ tlemas team. H ae..se se i t.......... e it. s e s $%. 4 $$ Ph (7eeup49 e 1879 Seame eerne, ame gr ause........ 1 H.s 14 lame flame out empo yWund..... namen flee, sa let........... ope f f e t i l e s sena, ano............. i 5.e. 6 tufgesi......... e...... 88 19 leII. aam to flose little se oss to it 14
- mse ed C eaar ama n enree me Neo elle.........
' G 98 se g g3 m hitMf9.1. Omeestles 1884 sus eJee, erse..ermes......
- M8/18 71' 8 86.1.
team. n.sv. ed 4 3 m.ase* lee. Oso. ta lto. ame som frow es H ee esmet emme times, s.et amerse gossametee. 'ee. SPflies it& .ee se a. 4. mesmes 4'994.
- efe Sri l l es
.It s e ee s et it, t el.ame Sees to =aser 3, N setlese IF9 % sa. to 0
- 7epawe e set) eumsas es rtae ge*=ee wg se b t. Samus Ga.
li t.emmen. yons,,........,, tem 71 ) tese. H ee..............
- 5. i j
- 9. W W
tame, ansees............. noen, n.a. yee........... J0m el 3 eWW ee g pd eetty tg.a.
- ema, ame. e#
ce, se ges.ee........... Ik 1 e t= ee 3 f resseertas s en. trellas it% ac ti ewee same. Hee...............
- > 3 namn. Mae, am
-._ yvuet... 11 tous se esser 10 % i Pereur'T servees .e 3 tem to 3 e.3 % nemme ft.a ee....... abi g g3 m htffffuSf1eM.I. Lassnes ten taan me6e es Hom. trees emerne se 4 l es. e4 MJAmBF1te11.1 Emma. los. e# An d lie aweenpe r m M llee '994, alti erte ITO f t. H e tale. ti l t aus es se. isosaareas tea. 3re ties 4916. aa tt emme et=e e $6 beg or 4. 8. Demons 4 ermee......... as sh emme es esene 13 % t.ee se esumme emmree mie h i7ereer**
- teme la th esesses emme M ae some......
'80 806 6 tems, emesee.............. > 11 lit % eessees.ese flee esses littee flee !at*4 F4 10 Cee..................
- 81. f I tara f emme..............
to I t youes............... name smofon omre. mas name eromet.. > ti t9 ti l teems. ecume............ l itet ti i te% 8las............... 1)= 1 Re8eset................ .e ;g ten eusses, mere, reos preseaa troes er e 6ee............... IN 5 f Tl a. bef 3tfeef t3fEl.
- 4me. Seme. ef imms.meaum, nere, rene ene same f.
w en. spellee t9% as es amme 4 6 ts. 41965me ? N 19.3.
- ema. Sene. et a ronsmeise. &Ps slee e9& aa s s emes i tt %
poses............... 2> 0 1:3% tem se seep 12 % t ro=ers t e name, amarse. mere aus grouse.... p A 4 e tell bag se L. 4. Sammen 4 namn. nae. nere..se Iles te este... ;6. =e e tems, enroe se Pf eng teams Plas grease 9 f f tame. Mm mere. areas er eJee ame tema, et ae............... > 4 3 5114. fi ae............... 9, i l s t rale as as............. sta et f tema, eram se # tans treen fles geweee to it t if ee.................. I F 11 s es.ea.,.........,,,. .e g e 1ame, ftan, em llette esas.......$= 't Il team, emeaue se Ham trees se it.... i t. 34 tt e nm% nosest ees _ ersoms, tem, rf asi stette se ts........
- 4. f r rf 3s wgpa aetN M. A.
- eme. a.ne. e#
A.wena. immaere, ens trums e# ease.....
- 4. de t
h ammes to n ee.......... J > 64 ) me l es. 4 4 fe. . ales esse se sene 68.as 3 losee es esear 4) *t.triilee '9.ee ee.6es tese t tedsmet................ .s es litt. greet 61rtie Hae eens emene seen
- 6. 4..Nomme es.
ga lg. erene trees.re......... f as emme aeroes.eae e in m ug1tte7pse4.1. *smusess es Lae eman as, ian, are n t es.9th aa t s tems sa lev use............. ene s )e Je tese. H as..............
- a. I t H+ 4 tem.e, c.u.s,m,,,ee,, rt en, si e,et f 8 le.ee.e esse 46) a a eum messes ea tese se = seer 3 %
.e n ie w 'somer.e, see ing) in ch 41s.e ie 6 be
==esen.......... , u rgte seie..... seemme emerees 13 5 teemm evem............ t he.. g g asemees................ .e, g teme lemme.............. to ! t 4.erememe.e flJessF P4 5 1. ai e.esee et 4m tame. S eet. lee, amarea. tere..ame resee.... > l 6 e !3 s. ea tuttett !91m. t.
- ssa. see. of a es.
3ei e f ee,9% Je .t. Lama. amme.m. eere, nee, treene see P. .es s ee. sei e i se '9 % u ee e, Fwimme.,ee noen to esser N.S. .es os 8. 4. Seemse I t ell e es se............. la 14 9 23 *e. seen se esser i % taans amadan, amaness, grosos ese tres e sba as, am 3 3 af es se............... ' bs > 18 .es. emse.............. )= M > 3 lit t e% es. es............ lema, omstem. ng emmasa, grouse.. >= 4 6 ti le g ese N as eene.,......... 1114. yee, d epose. re.eceae te u g ge tils ame esse......
- 'im. ti Lama, enroe. =w9 emuseet. groso, ese
- f e.).
888 N 44 ee................ It8 l$ il IP e'e4 seNEse............ mobeere.............. e*? te8eest................ .e M lilb edesse. coseesema. a. es.esen ee %efesee e..,............ =mr== or
- 4= f 3
- f gigg,,es.e,se ies eas=oreme eie.
e f ps 17.8.
- 8 94*4'ses e i sese.en. tese e.
$> l9 L2 4*. tre.ma, ses te n es of H as tresse e 5.m ht fit instpaha.J. :mmmmee ses ,og gre weg e, s. 8. sammen w'9 A eito e iI #e. omrenee i es. l et mum en ei Lae emeeme. ian. see iIes 99e. ei e i en.se .se isesse enres es n ae. ems..,., =3. se g 'is % amen es esser ^e % .rereen,see 'fu niin, em ecomme u teis n e woe as to-a Camree mie w te. es p use.................. to 4 ., 1 trees emene se nas see..... i Ha 9 % 79 't in e t.me e. e .e et nene to
- i es..4muernm.i.
- ees. e, l
8= '.t teen, see a se,e, e.teses.e.n i e.... Lam Man. Iema =w 6ee....... se n% ie.o............ M e em. lee t t ee t .s e s seee
- ee to =eser =.it.
99 04 11 P-nee. N g ! amen. little esse one e.e i on 11 Z3 see nae ye.e4.......,,.. n euren. :eem.......... ;p.e se Illtsang tsese............ 0 6=4 36
- s
' 66.t. e. lama name, meres ve amore. emeses. ases lean, ens.=e to N%.es les..... 3 ' pr**ee oms emes aure.........
- d. F1 g
e is m saf 5eseft19 AI. :eme. 3es. e8 . :2 it tone. H mm. e lemmec.ess..... g,e s s e seg .4 ei s,se taeum4........,.,,.... .: 73 - s ee, e .g ,9 lema, n ee, e e e. s e.... il ese hansa se esser e % g .e seen, n ei, e,emeg.e. s. : e,,.,, p. m e.se p i t t t r.no si e, e e t e. e 't m ta ttlemerp as.g. sammetales e en g g team. H % L* ***Fi % i ate artile i1W eis t eem esser................. ee W% hases to esser wee tresee, amares te H am..me enres to H ae ti t e. aesseen.e. e es se.*e=ee L*=oru teurese Mie w't %Jessure,see s52) em > in f
- eresen. ees..............
- 9. n 1818.s u ttle amarte to n em s. is... L es ;$
3 tilt e re% **e............. Ib.6 % me ease............. l 8'% aned em, anse s.......... to e a litt, esesses litsle eneree te Han henne 5'8% ameems tremed......... e g e li ttle te ese H ae geesee......
- $. PB 11 4 ' t ".ib o
- eas. :en ed
'eseeeert er'9*4 teettif 5 4. ..i n t.ee 5*% 'I m e*me........... to 3 18 t a==- enres e n ans eneses to time o.N . ea. le* t l es 9 se e
- 19. so i
!1 't. Jense to meeer t. eroema s n i e t t,,e,e e,meo e.,i t.. .,e.,o. 5*% "ureHas............ 3= 23 8 gg g g, gg e,e,g er,e e n oe g )s t name, emples.....,,......
- g. g g
tems. flee to ematus, one ti elle sees. l$e )) 4 ese ame e se flee youed...... tem *% 13 Leme H ea t a l t s t e ed it....,...
- 't li st eae 48 ee.
.****8 18'a. morse............, gi. e6 ig gl g g e gene,,,ma............ 4 49 lJ le. e.le.t.see H ae to ese se e**ve L le% amerne. a.e eromee....... .e se > = = see ene............ ga gh4 tiertt,1g e t. l.Soma, gees es .e. te g epm tone, emese ame a n gs t e.esee..... 3 i s t ee 911. at ti emee tee.................. =** u tems. n ae..es t i et t e..e,,,...
- p. n it
?1.resesygee s ee,Joseerte an. ;ti ....... % "1 e 4 f t. 1 mas one,ea. ese grenet
- e% 1=e. et w wgese t t1. M g. l.
4 it en, poses,.ere esseem.,,., 73 4 g 3r s i es iem .ie i soee P P P'easeeet es t en. ................ se 4 tese, f t ae............... a.s '*****8 t 8 't. Seeie 'e e* 8 it. e g; m.~-ni,emem,.i. to ne e. seen. n.e,s............... .., I,t tema. Hee. emme uit......... n 4 .m e, U. L, i e
- e.,.e.
- n e 1, .in e.ee t
- e. e.
e,s e.se......... ft at Lo's, eenene..m.ae eet w.=e *... I% te =m8 er 44 't. .se se tema. H et, ese e s i t.......... 58* fli s ese es se is.s.een t.6es. e ie.eme eser.. Genwee Mie w Jweari, e 1581 same. M ee............... 'd it te e la it one. ei se. ibitt N tema. Plos een salt......... ' e* I ,**"I*............... to t I p* *=e 4 > 6t? g liit aeeis.......... tens une te st, 4.eme. mesi.ee e**=e* IIIe.mo eso............. e7 413 g % me'en 6..... > 6 6 /** ' 3 19 9 'e'eed d e l Le% assie Cl eo..erene,...,,........... i s t.4es
- g. v g e
II* p toes.............. % "% e.e gsguee i> 3 tj i i.p. teme, nee, .e es s-o. ~. ee e........... 3, .i e s.e. nete.e..e,............ s.o...,, e -e. " % - i.e.e...... e. e e.......... . li. .i.e. 3 3.4.
- e. n o
- I 8h IIIII e 88 ee....... 148 I$
g 'll t glead ed, senerene,,...... I g be gj e llettere lle. .a. g.e 46 ptW g. W tie - Ni. '*"*' " *e.==e I t s e l e e. es...... f > e6 11 ein tese 6 3 f t. Semen t o ess e* ' l ' t. M "*e. *est preund een 'e 8= "
- ' M *e..............
...... 'ee 't 4 tems.................. !s.
- N% ene groome......,. To et tg gene,.t es..............
'8*** (Iso.............. et 91 09 1
Q ATTACIDiLYr A-2 Octceer 4, 1971 Mr. Albert G. Ilg, Town Manager Tcwn of Windser Windsce, Cennec:teut RE: SOLIO WASTE O(SFCSAL STUOY HUCKLESERRY RCAO SITE TCWN OF WINOSCR Cear Mr. Ilg: In acccedance with your July 7, 1971 autacetzatten we have completed an investigation and study of the Hucklacer&/ Road site for use as a solid waste disposal area. We are transmit:tng herewith thlety coctes of a recer whten summart=es cur findings and conclustens. The stucy an raccc: is '.crgsly a resu!: cf the et"cru cf Mr. Lacnard Jahnke and Walter Fuas. The stucy anc reccc: cf gecicqt-cat and hycregeotegical investigattens, wnten are concatnec in this recort, were cerformec uncer tre sucervisten of Mr. Gecrge Wilsen Of Garagnty & Miller, Inc., consul:teg ground water geolcgists. Please acca;:t cur accreciatten for the ceccc: uni:y of ::erforming 1 this service for tre Tcwn cf Wincscr. Very truly yours, g C0A/y m S].v u n =f e. Ar s s,'s., 3. '4 I g Wa ter S. Fuss k.'
- 1
.,c. m, g WS F:w ^cf I
- j-
1 TABLE CF CCNTENTS Letter of Transmittal and Acknowledgments Table of Centents Report Summary Page No. CHAPTER I - INTRCCUCTICN A. Authert:stten 1 S. Scepe of Services 1 CHAPTER [I - PRCPCSEC SUE A. S(*a Cescripeten 3 S. Geclegy 4 C. Hydregaclegy 5 O. Existing Water Cuattty 9 E. Extsttng Weits to F. Farmingten River 12 G. Climatology 13 , CHAPTER III - PCPULATICN AND REFUSE PRCJECTICNS A. Peculaticn 15 S. Refuse Projections 16 CHAPTER IV - ALTERNATE CISPCSAL Mt:. i HCOS A. General Cescriction of Cisposal Methcds 17 1. Genertl 17 u_
Page No. 2. Otsposal Matheds Ccnsidered 18 a. Sanitary Landfill 18 b. Central Incineracten 18 c. PulvertzMg er Shredding 20 8. State Laws anc Regulations 22 1. General 22 2. Public Act No. 845 23 3. Puctic Health Code - Section 19-13-824a - O tspesal of Refuse 28 CHAPTER V - GENERAL CCNSIDERAT!CNS A. Refuse Character and Recycling 29 8. Site Develcoment 32 1. Lancftli Volume 32 2. Initial Expencitures 36 s. Land 36 b. Site Access 36 c. Fencing 37 d. Water System 38 e. Mentter Wells 39 f. Initial Sita Precaration 39 g. Miscallaneous 40 3. Other Constcarattens 41 a. Excess Excavated Material 41 b. Existing Land Use 42
Page No. CHAP ER VI - THE VALUATION Cf: O(SPCSAL ME*HCC ALTERNATES A. General 43 S. Preposed Matheds of Development 43 1. Sanitar/ Landfill 43 a. Transfer Station and Garage 44 b. Garage, Scale House and Locker Suticing 45 c. Eculpment 46 2. Central Incineraticn 47 3. Pulvertzing 50 C. Annual Cacital and Cperating Cest Ccmpactsens 53 C. Site Volume Utilizatten 55 t E. Envirenmental Effects St
- i. Leachate and Gasses 81 1
Leachate 62 2. Gasses 57 3. Alternate Otscesal Meteccs 69 4 Leacnate Sarriers and Gas Ventilaticn 73 l G. Fr ture Land Use 79 u CHAP ~ER VII - RECCMMENCEO ALTERNATE AND CCST A. Raccmmendaticn 79
- 1. Capital and Cperating Cests 79
- 2. Site Volume Uttit:stien 80 I
e
\\ Page No. 3. Enviccnmental Ef"ects 81 4 1 vture Land Use S3 8. Cecital and Cperating Costs 63 1. State Grants 83 2. Capital Cests 34 3. Cperating Costs SS 4 Tctal Costs 86 CHAP ~ER VIII - WINOSCR-OLCCMP*IELO JOIN CPERATICN A. Peculatten and Refuse Projections 91 1. Peculation Projecticn 91 2. Refuse Projecticn 92 3. Alternate Ciscesal Met.Y.,d Reevaluatten 92 4 Site Volume Utilizatten 95 5. Recommendaticn 97 S. C. spital and Ccerating Ccsts 97 a. State Grants 97 b. Capital Costs 98 c. Cperating Cost 99 d. Tctst Cests 99 l l
TABL.ES f ctlewing Table Page No. , No. 1 Analyses of Water Samples fecm Cbservation Wells 2CS anc 207 9 2 Analyses of Water Samples - Windser Sanitar / Lancftll Test Scrings 9 3 Refuse Materials by Kind, Ccmpesitten and Sources 1S 4 Ccst Ccmpartsen of Alternate Otspcsal Methocs 79 PLATES Plate Nc. 1 Area Mac 2 Hycregeolcgic Mac 3 Peculatten Projection - Tcwn of Windscr P~cjected Refuse Genersticn - Tcwn of W'.ncscr 15 4 Lancftll Plan 5 Transfer Area anc welgn Statten 44 S Plan of Transfer Statten 44 7 Sectien' of Transfer Statten 44 S In Place Volume Reduction vs. Discosal Metnce SS 9 Typical Cecss-Sectic.s 74 to Populatten Projection - Tcwn of 910cmfield Projected Refuse Generatien - Town of 31cemfield 92 Lccatec in cocket en rear ccver
AP PENO D< i ir ttewing e Page No. Acceedix A-1 A Studge Ar.alysts A-2 E Scring Legs A-8 C Water Quality Standarcs - Intar.d Waters A-13 O Pubite Ac, No. 845 A-22 E Depreciatten and Annual Ccsts A-23 F Cpere, ting Lacer Cests A-24 G Elbliegract y a e l 1 1 i i l l l
\\ --a l rou w e;:: g i v o s o it 5 AN /TA9Y I A N O DI.t / I 1 I s...P ..-~. d, .~ n l l 1 .e.,,.= C %-. D e, (. 2 Tec ' !'.0 wing see: ens cafinc anc,:cscett:a all ;ciatincn: cacc :, ;/ ; 'w Orc:csc: st:0 as ;; new axis.s. 'n/ccmc::en was gs:ncroc frem .,.ny scure:s anc inciucec n-st:c exemt.ms: ten cr.c ax;ter:: ten /.a rQ.c. c.u d60sur'sca ::nct: ens of sci; anc ge:une wa:ar ecgimes as.'.c.. . r. - ves::ca:: ens of c:ver f. ws ar.c c!! mat:lcg csi ca:2. A = c rir ; O r c er..- was Or.cuc:ac := aic.n :ra si : surface ar.alysts of fae: Ors a: '.y.*g
- , ;ra
~': e "te Of Garagn:y anc Mil'.er, :nc., censu.:'.r.; ge:ar.0-w :ce s t:a. gecicqts:.s, was angsga: :: sacervisa :.a cri. g Or gram c. : :t a ro s.. : Of : ete invas: ga: ices .cc aicw, =rtmarily in 34c::Or.s Oc...e 3 w::* ;ac! gy, cyce:gaciegy, exts r.; wa:ar alt:y a.c ex ts:te.g.'.i.'s. n. .s.= e.. +=, = -. m. 1 ~ .r,...... s.. a. s. . a e as., s. a ,.. a.=, e.... m../..,.,. 2 . p..w e g. .. e...,., a.., ~v ,,,.y. .:... s,y,. ..2 ......a c . e ..,, ~. ..s.,.,. =. ...as ..,.3, .4 . ~. <,, a.,. ~ ,.3... .......w...w Sirenwccc area. Tra si:a is en a .a:-::::ac r'.'.' .v. ::e :. :
- 2. : ;,
. a.,..,<a r.. .. a,.. e s... r. ,.. s. a .4,. c.. a ,. s.,,.....,...,. ~ $ w~ L * *.. w'w r
- C.*.*., '.. d. c... d c'.'/
a' '...'.'...a'.'.*. ,.'..'..".,'tt.. ./ , 3 m, ., 3 s. ... t.. r 3,. , c. 33 ..a3.3,. a .. v, s w.. yar s .,a a .,r = . a 4........w.... ...w Cem n issi n. An ana'.ys is Of 4 a.~f.cs 0.' ..a =..cc: :.m.r. a.: ...'s . e a. a.,.. ..... %.,< e., a r .,...t.- ...- e s. . c. ..s e. e. .,.s .s..... 4. a
- a...,. a..<.
J w.. .s..d, .aa .s.
l ) Aisc :caverstng tra prepar:y is a fif:y fec: eign:-of-nay fee =cwur ] itna weec by va. arming:en River Powar C mpany. '"hace are a :::al of 173 aceas en Sa pec ace / cf wnten 31 ::cas i 'o : d ner:Saas
- enar will Oc sat astca fee an ::an accc anc censarva: ten acaa (Pis:a No. 2).
In acet: ten, altmtes:ter. Of v:cie. Ouf'ar :enas anc e.su::a:La areas will maan a escuc: ten ey :..:: nae 29 aceas. Buffer :enas incluce a minimum 1CO fec: ste:0, n ::re v.; 5:a a recu!eaman:s, arcunc a ;arga par: Of ma ;c::eer/ as we. l as a 3CC fec: stet a!=h; :na = arming: n Atvec, wnten was encsa.. i for reas:c.s Of vist titr/ anc :::cgra:ny. L'aa:!a a reaga, : an, :::c'.a
- ust sr.ce
- Of 113 ar.c wt:n acet::enal cacuc: tens fee c:a ways, ut'.:'.r.gs anc
.ar ue.castea=la tacas : a crac:t:al :::al wil'. =a a::c:xima:a'.y 1 *J aeras. Cwe.aer.:!y : a rest ancas neares; :e.a Oce csac st:a ses : sd ace:Js n
- ca e'.ver wet'.a a num ae Of east ancas en '.ac.; R:a:
a.: . acs:40: .-tt'. Reac are witetn tCCC faa: Of tre 31:4. Cu:.stca Of :r.a Oe::eet/ Owrec ey Cem=us: ten iiEnginaaring :na majectr/ Of :. a suercue.:'. ; '2: : is wcccac ce osac fee ageteult.es'. pue::sas wette a sma;'. : c:::n :: t i
- na nectnwas: :s u: tit:ac as a : m:tng area fer Scy 50:u::.
i I --v= v s. --v 7: a surft:tal matarial a: 4
- ca sita : nsis:s petmarity Of O'.; tai::ana
=aitate ca :st:J: ye','. wiss sanc, w;:n s:- a s t!: i an: s.- a'.' r : v a *.. 4 t
- a3 L:naas:aen : ener,.ca-cer..a:: s:catttta: cett: iJ.~.. ;: :' ; c.
~ e.s i 4 1
== i [ -y .y..,,--m----, .--,,---vr --v ---wee-----* +-vw-e-wmw----m'---- --T T 'w--== =w--*--
5 [ i is cutte simt'se in : xtace :o :no cei:..;tc acctmen:., nJ uwe c.ye:c:a.i:c ceiuvice would :ts: ac uimilar. i u n c e :a c y m y c u O c e.:.tc o si =tngle unt:. The cetf; m:y cx: enc for cmc dis.:nce nvau' th: 6 col: sic caccotts, cut :nts woulc to / n: 1.~ : rte.nce in m.. nn.cu w - t l !:ste :n ly=ta. Thase surface me:artsts are u. car!ain Oy :t!!, an cssar.;;:.Hy ;mpwe-i mascic, : mpact, ;ccely-sce::c mtx:are of O!:y, st;;, se.e.c, cc:vW anc ce e!as. This in :uen lies Otrectly en v.a caccccR, Te!:ss,!: ari<ca t S ae.:s:ce.e. The :t!! surfsca is tecegular, 6: cics generally ::
- .4 c.ce:n cr.c ns.*
wes: cenaar. 7.a pe :erty. Scrings : arc 5 in=ica:a a :t'.; surfae .v a e v.an v.a Of ra Taeming::n. River, cu: 1: is saltava:. etsa ag:.tn :n Ou: Orc: n:4 stae: s! es aceva : a e ver. Thars mus: als
- o a 4
- t: :: : e se u r., ar.: : e :enfigues: ten Of :na surface :a: wean :34 s w:.r*:
se.: :ra sca:naastern ::ca.ar Of :re Oe::ar?/ :s :e=a:ar-tes:4 en :c asts Of extst.ng infor ma: ten. 7:94 :t!! surfa a cas ne: ce=3 ::e.::..*. 4 . On Pla:a N. 2, since (; was Oce.stecec: :na: ca:1 w een :ncac:...a f e r' i a meantegful ca:r csanta:t n. w. .-v. e e. v, y Tha acuifar or.cor-ly:ng :na Ot:a 0:nsts:4 Of :.'.c. '. a t.5::::. a.....c.;; ] cacest:s plus any s:e:::fice ceif: :.*a:....... c Orcscn:,..... -.: :;. 4 4 '10:ing as an assen:1:lly L:*: r*nes !n f. :.*. 00 I.*a : t* 04ai Of ; '.s i 1 invas*Qa:t n :.a scu;fa.* s 006.".:: as ! !'.;Ws t a l j .= i -. _ -.,..-~ -
\\ . - - sm. -w 4 a) T o inc ncr* n, tna ca!! ate c00ct,;;G Oic Out tnto a :11'. 0:ntc.c: ,.ccy: cne-cuetr-tar mile fr cm the cr ccer ty 'inc. Q) .. c :n c c.' u, :nc ncr".ncr n,1cr* tCn iG OcunGi'c Oy ;;.
- r n
.ns. .w6.. .i en
- cr*;* n ' y a gr*
- Lt.c-W31.cr* civt
- J.
O
- )
~~c :na scu:n, Gcccwin.3:nc ar.c c craei< c! :nseg nc - m :n..r.
- n
- 0.na.- ar-m,.ng::n.x,.ve r act as a mer e cr.ess cor.0,e:,
r.y:e:- Icgic Ocuncar y. ~~ hts may Oe ccmplementac 'Oy :.e ::.1.
- )
70 :Pe wes:, :.e ar --tng::n Alver :s an a sciu:a .yers.'0;'.: Ocur. car"j .g 3 o.v.. e, q, <.., gg <3 . e. < v.. .. 1.... ..g This :cuncary is cascribec pic::r:a.y en.:'.a:e NO.
- will :e ec:ac : a: net all Of tr.ese : cur car tes are a:sciu:a, O r :::-.-
- te
- tiy cefinec.
~~l'.. cen: acts ar.c :r.e river ars a scia.e, Or: :..a sc :.'arn
- cur.caraj secu'.c
- s fatriy et'ac:ive, wt:. :re :rses ac:.n; as 1 :r1;r ':e
..e a. a..,rs....e .r.. ar. a sw.u.. .3%, .s.. a......,..., 1 ..g .. '. '. a.... a.*.*.... '. v r*.ses.c 1.. '.,,. ~. a.'..., . a s w w.. e.-. ..- a.-.' e
- 4 aves ne scute.arn Oce
- ! n of :.e eas;ern :: Gr. car / as. ::
0.s : .s..., l .3 V e 0 u..s.... V 3 .y r*....k.. w,.r%.. ...,/../........ e ....,J r'.
- 3... p.
s... 3 .'v e u. g..o...,., i .w 3.3...'.t.a.. .v. .4
- e.,. r. '.
.,j o. .,.s. s 4. n w .ww 1 V 4 =........ s .... c a..J, .g .'uly ar.: wgua:, 137I, wer*e 01FSc!a: :: e sta:!;s.-'..".3 :. e 0 0.* d.*'. .,,.. u. w g. g g. .s'..g.,, 3..
- s. a 3 <.. 3...... yg g 3.. ~.,,..,. e
..g ,. g.. ce: Cst:3 as a 0 :4.". '.a! & v' f a r.
a 1 3ccings No. :-J shown en Plata No. 2, wce: : : e rtc c de/..-n t....;; was encoun:ce c, :: wnten time a optit-sucen semaic wa. : ; n. A seccan ce sic:::c pt=a wed then sa: at :ca Oct: m Of inc =cen.cas'. sec:1:n, :nc :h t::etng wea cie-pun pec un:t! :. e :c::cn::..!vi w :..e i sampla w.ns
- ainac.
L. qs fee these stx occings see given in A;::ce-b
- ix 5.
An a: t:tensi reta unsucarvisac Occie.gs (N:s. 7-0 wara e :.:.
- es:acitan a= t:tenal :t!'.-surfaca anc wa:ar-::. ' a alava:::c s.
Tw: mera cen:-c! ; in.s were ;ccvt:ac =y : cie.gs W-2C5 ar.c W-207, ins:si'.ac ey.no T wn Of Winesse in Cc:::ar, 1G70. Tra casui:.s cf ease invas:tga: tens sea ;'. ::ac en.:'.&:a.No. 2 wnic.. sr. ws :na secunc.va:ae cen::ves cvar va majer'.;/ Of va si:c; ma alava: ten Of me ::= cf me :11'. in me scetngs; ar.: :ca sac esta: r.: <- 4 c.as s Of ra sar.c. O:n:rci Over mes: Of :na st:a is ;;:c, se.: i: ts
- c.at: arac :na: ma con: vetng :s accurata, weera sa wn as 50.;
. ;r.. J. Tra :=-.ac '.ines sea mare Oc ' ass ie.farrec, cu: feil w ;eneca'. -j:e - .:st
- nst: ara : ens.
- e examela, : a ex:anstena :: r.4 3 0,.:. - :/ :
s!:a ara cacciac accue.: : f '.1 w :ca garaes'. ::: ge. ry, :n ..: c s:. 3am a: i:s in:arsac: ten wt:n :
- erasecccing ::: ge:.0.'.i
(!.a., ma '40-f :: ;r:Le.c-wa:ac cen::ur 'r ce:3 :.c s:ec e :: vs cin: as 004s re : c0-fac: ::: Gen nic cen::ve). 1 4 Tre infacca: ge:Le. -watar civice, la sr.swn, ta in ::a:t.: f. : a 4 : v c er. ~ s: 3 0.-.r. = 4
- e
- Of : a si:a =y ra simi'.ar'.7/ Of wa:a r-:2.a a'.ava:t:..
a l e =.. .., l a c a . a r.. a'.....,-.. a s c.~. a.-......+..., '... '..v '. v e. 1 . e.. e, 4 1-l .e I 4 ., ---. = ,----..---ne,- - -~ --- -
Of ::mplo:aly unsecac::cla 00molextty. In Oc ncet.c. n ;ce:iun, Os '.ecc sw.mo mua: cischsego cecund wa::e :: :nc we.=:, Occ:.u w c:'.n. ganceally-os:cullahdc crcun -we.:ce con: ves; One -10 Orcaume.ciy
- :nc aast, 'Occ usa of :nc wc!!-ccfinac surf :: :estn co. NO ;c::.:
accur:cy in ma 1 cs: ten / :na civtca !s claimas,
- wuvwe.
Tc ma aas: Of ma civt:4, cc cen::urte.; has cacn a:: cme::.:, J;nce vara is cnly a single con:ect-;;tn: in m : aras. The t'. w w.", Of a vese, =a ganaea!!y : ma aas:. marga : secue. -wa:ae will cccue svar.na an:tra si:a, an: a=;;.can: mara. The af'ac:iva rac.acga area fecm wnien gneun: ws: e meve. e.- ea st.a t.salf is a=:rexima:aly 0.2 s0. mt. Assa.~.ing ar. cvar:.g: .:earga rats of 0.5 mg: par sc. mt. :.a catiy :tsen rga fe:m ma J :a will ca acco: 150,C00 ;;c. The cacnarga is nc cons an.: Ovac :na ya..e, ar.: t'.uc:ua:::ns Of a==u: a faa in wa:ac '.avais may 04 4x: a c:a c; : o e *..0J as me n as 5 faa: alces ma civt:a. The cent:ues en 1 :a.NO. 2, ..cq
- asa: veen wa:ar level ca.a :akan in Se::am:ar, sneul: en:casan: an average '. w.
C' avels ecul: = a s:ill 1 w a r in s e c u g n: yeses'.. Ire acutfar :aneam :ca si:a as no signtft:an: ::::d e,t s'. : 09.... ;.,. ytel: is sm:11; less
- .e. n :ca :::ecxtma:aly 150,000 g;
- .*.: " v..
1 mecugn ::. Tha volume Of wc:ce in 3:ce go is .s s m:;;.,
- .e. -
- t.... -
1
- ea:ac :ntee. ass Of :na sar.: ts naca:La:a fee pe: L:: ten
.c.'.4 ..e e a:peectaclo ::c: ten of ma acas. No t.. ucac tefti ea:::e fe:.-t r = arming::n Rivac.~.ay :s ox:ac:a, 3:nca aa f:e 14 ::.e. ;;.0:.e-4 4
- a R* Vee is tsela*a fe m m a acu;fa r :y -111.
i 1
I Ar.0:ner c:nstcers: ten of scme imcar:cnce in t=crin
- w
!... u :. l Ocastela a30: cf ':na caciliar y fr v.gc. In : a :y;c cf semin n. a anceuntarac a: ma presen: s ;.0,. Mis fr-tr.ga will P.0: nce m ally u ;:nt 6 more ;*.an :na foo 10cve we wa:ar- :n:La. I O. 04:STINO WATIR OUA W ??a pr esen cuali:y cf wa:ar in :na acut.'ar car aa:. : a 4;:a is of interas; for avaluating :na.cc:antial valua cf va a:utfar fer we.:ar i su A!y; f r pecucing cancnmark ca:a far- :.a f :ur s; c.c f r ;c44 :; avalva:icn Of tr.a af"ac,. Of :na stucga cum en wt: ara cucli;/. Samples of gecunc ws:ar were coitac:ac ar.c ma'.y=ac Oy va Ocr.r.a::.-
- ,.: 5:a:a a:ar.r.an: cf Heal:n en Ncvamcar S, ;G7C, :: t.vsa:tsc:3
- .a af'ac: cf laacna:4 fr em :na s! cga cuc c.
? ?.a an a'p s a s a.* a s r. w n
- n 7:.=la Nc.
NO:awcr : y are gr css a :aar anca, ::' ce, .. :::::j, tren, e mganasa, granci, :ine, ar.c nitecgan ::r.s::.an:s. As.a::r:::, l
- C:n sar Clas.*act asan. wa:ar* c.a wcui: 04 u s ac '. a f r*
.-*.L.. '. 0 ; cl
- 3. ' './
i nly af.ar ex:anstva : raat.-.an:, arc wculc ac: r.ct-a.'.y :a 0:ns;.ces. f:r* Sven usa. Mewaver, in vtaw cf c a 3&r clit*-
- 04..6
, a!.;.? .s...v t.. . n.. g ga..,,
- p. p.,.
.t . 3..., e .g a..... 4 g ....y,...,, 2........ . a s s. ,l 3 a. ("n. . no..G s .,. /. s r a a., .,. e.V&..a I Vlaw a :aar*3 ;Q Og 00 n f(p*= a g gy.pg f..)gy,;3. g.,3 ; gg .p 3,,,,, ; t I ' rem Tas: 5ct-ir.gs 3 anc : 'Ta:La Nc. 2), Ocm Of.. ;03.cs. 3 0;;3ar ,..l. w~. . am ..a. ..a s. ..,.a a. .......,.,3... o,....., i 3 (,. s <.,.... .,..., a . s =..... a.- '. ' '....-....-. '. /. /. . a a... .v.*. = ...r-..',... -,. s '. A.< '...... - "......, i
I. TAS LT NC. t ANAlYS25 Of: WAT E.T. S AM c LE. S :.T.C 3.'. CESERVATICN WE' S 203.'. 107 e Rasults given in ;::arJ. car mil'. ten, excac: as tr.ctca:cc. i<,,.. t 4 v.,, ... o.. ..t ..s. Gecss Acpearanca. Cicucy C', cur y Cc!ce L:. S:esw E e:,..9 . wec tet..y '.w
- a..c.,cs
.C0 w., .s 4 vels:tta 40 10 '.x ac
- 60 J, ~. 0 Suscancac Sclics 70 ICO 4
Mycccgan-ten Ccncen:ca:d.cn pH 7.0 7.4 .lcr'cas, as u. =. w. .s. Aira!!ntr/, as CaCc 40 0 3 Nt:ea:a 5.0 d.: l N t...a i~ Nt:r:gan, as N n.. w 4.,. em...ta ! . 1. w .a .w.. I i Crgante ' O.500 0.: Iren, as.Te
- 3 Manganese as.'.'.n
- .0 PnCS;.*a*.3 as SCO -
1. .~ .=. 4.,.c.l 3..: w.ww. ) C w... J P, = .s v w..w C h r 0 m N.'"., 13 C r* 0.00 .". t..e. w., o b. .~ l ~b af'" 0! ac Ncv0.-* c." O, -'370, A.a.c, j:: g,. ;y Carn,,,c;.,,,,; $ :::; ;, 1 ) i I
=w O" = t e e e 9 4sJ 9 4 84 84 ,O dI4 m w w .g g w g w w = N w = ,/ N.d ~.~, .4 = .=. s. s o. we s .e 1 e s w m C s4 g 4 -e. TI i Y ..I. =6 s o. w s e e a = = s 5) ~ 1 i -1 .p s E' .". 1
- 4 a.
=l .e. M.,
- =*
e e e e =- = sd O e m = w w w e 4 d' =g V .%. 1 "I 1 .e s' .ei sJ..) e e e e,t -l 8 es =.=.t t .=! v i ,l ,i i + 4 m s, s, w l i ,i I e pe a p m ,;. l t %8 4 2" ,A 4 = f w _I 1 4 w ~ v e, wI 6 k,. l -g ~: * ..I ,l g i N .= w e. a.-! .e .e .e .e
- J D' !
4l' a .u. .== w w w = j s; .4 .O e = I e) .ei W' w. .s 35 Y ..e .t e 3; i g i \\
== l -= A* w .i l ) . '
- N
^ w-e; C W ') T. w o. .i Y I 't y .h
==-- .s
== w
== == w = g i s .a. v ,s "= 5 =
== = = =. P -=" i y =, e 1 =. i \\". l e 4 .m. w J = l 1 L ------ i 4
Io a t o grasan: 0:nsts:a Of aan an: st'.:, sus :: tr.: mels;a 0:avc.tc.:,n. :.n: Of ma :ast teca. [ From rasa analysas 1: is 20:arant :ne: taa ntyn ve.!v:s. r :v: vely. - 1 1
- atna: !:e 201:e an: tren, :: te:.a:, were avts:n::y cacciac.a;. :: L.-
4 sampling cf assan:tst'.y 4agnar.: water wt:ntn e.4 staal 00 !n<,. Cne 4 is avt:an:!y a normsi m :non: Of :na 1:0st greu..0-w..: r. T e. '. ...v
- nanel an ::ssibly me.gt.icsa as :na enty ::meonen:. :.'..: us s.e....-
4 sty) signift an:ty af' acta: cy :na stusga. Cvo.a. visa :.ac :=n ;;st:icn Of ma secune wa:ar is unremarka '.c. Fe m a cr.amical s::r.:::te: *:.. 0,.. :
- s sui:a:la, wita mangar.ase remeval, for munict:a! su:;!y an: f r rr incuatetal usas.
Tha parats:an: presenca Of =in: is tr.:ar2J:ing ca: or. - tm: etant, sinca tr.a 0:n=ar.:ra: tens an cun:are: were a :ar..r. Or '. ass Of 4 ra USPHS escommanca maximum Of 5 ;:m. 1 i ) %LA. O -....N o. .sa3 L. i 'l A: Las::en cas artsen regarcir.; ma :: sat:ta :en smins:t:n Of wi.'4
- ..re:
anc :: ara:a Oy Cemeus: ten Er.gtnaaring, Inc., :: ma 40.,. Of 3:::..... sen: (Plata NO. 1). A tas was carria: 06: fee 1: 2ys in '.a:a 0 0;:..,- an: 4arly Nevamcar, ;;70, gun ete; in:aemt:.ar.:'.y fe::r 00ms, a u.- Enginaartng's "P r::::y;a" wat'., an: :sking ree:r:a: :.. :.ws c.e..a. sarve: ten w,:114 W-2C6 (15CO fe : Ots:an frem :.30 ;:ve :... w;...~ ; 1) W-2C7 (27CO faa: cis:On:). -*ba maximum t',. :us:t:: ::= : m,:....L m any Osy was 0. 025 feet. Ext-.tr.s: ten Of :ra ese:ecar en u 4 v :. ::Aa
- )
""ri4 ::st we.s 4,
- ev'.400 Oy :.ia V $. O 40' g10. $..ev,. ;.
.M 4 - ~ - - - - - - ~ - -- ~ ~ ~ ~ ~ ' ~ ~ ~ ~
.e--- ~ ~~ ~ 1 ne cen !vsten can Oc tnua r : cru c:cucing any cffec: 0.' v.
- ns:
pecing w !! cn :na ws:.se lovels in L'
- acev..: ten wet;.
O.. ce 1"
- nsicara:ter s inctcs:a me: suca r. ??"Oc: w v!: 20 virtur.!!y in -
- satola.
ln r.a first 010.00, e: closas: cosceva:.cn wel'. !;, :. 00 faa: cia: nt, 'n a ws:ct- ::bla
- vifce, r.: OO " P rc:::y.00" er...
<< c.. naver ::un.pa: fer mer a : nan 4 t cur s in v.y One
- .y, 3.n: L.cr. in d
increm r. a cf si:cu: an hcur, wt:n r-ac very ::Or tced ':c :".v an. Tec: Ons wcu!: ca se f'.u.r,.a:icns in a we!'. 4: !s:ar.: is impr ::: '.a in va extrame. ln :.*a secen placa, Gec win Per.c '.144 :a*.'se n :r &
- vmeac wet'. anc :*.e c:serva: ten well, ar.: un'. ass :34 ::: :m J ir.-
t
- ermaa la :*e pen: wout: Ocr.stt:ute a tsc arga Oc ncary.
1 -.:. van ::est:ar ing an ex:rama essa, wt:n : a :en cry an: ar..n a.:....y { S av./ u 4., or-.. a,, e r*..csa .ac.... 4.. a. s... .. a s. .i .y. ~
- r.r'aa :: 00m:ustien Ergtr. ear :ng's we;'.s.
Cn'y a vary s.~.s'.'
- r:::.
I l a a...a..... ca s.a,. a...a.., e,ee.. w... . a .a ..a .aa... 4..s. n f ar.: ma: wcul: : e fa r m ar : t'...a : :y r ac*sega frem esinfs.'. r:r; i:4 s'. w Or egr*tssa : :* 4 cu."cleg wall. i .'1*.Xgg.. g gn"'6g f.g g. s. d. 34. g. . Ja I .y
- .g
,s.-...g .l
- 4... 4 ~i r '.
...'.*. 4.* r '..* M, a '. *.*~* u.*.*. s a"...*.". "..*.* s a c ". *..*.'*..*..* d. '. ' s ,pg.. i. g......5 ,. r,..a. .3 . g. g 4. 4,..., . '.< 3 v u, w L.iS sr'ta *: :*Q aid; *as * :a.*.;ial aJ a r* d ' O r-a
- u'.f 3.*, 0.* '" t -. ' *.. :
Of r. wal'.ftal we,.: = a r ** : c::.r-m u ir*u.~ Or ::
- t n w.:.. *:. ;r.. ; r
,.f...,....e............ e.,.. ~.. .g s.g ,.ao... 3 t.g, .. v 4. s. ..3 9
O f scu;roastern scencr Of ma cr::Or:y 00: lies oss: ef :r.: :. tv. ' ur ~;. o ect ba usa: for *.ar.cft!! pancing sc en.ul tten af ir.fer-acti;n en Ow w.v;: Of f;M cn i,rcuns w::ar custity over :nu r ss: ef :n si::.. a C. . AR.WNGTCN R:VI_R 4 T c irarming::n River, wnien Oct car s :na wes: stea of :.*: 1 c :r.. c.. st:0 is an im;;r-un: censicar :: ten fer - cny r ::.sens. ' cfse r... !y n ar y Of mam are unsafica:!a cr fc!'. ir.:: tea r s:'.m of :: er..~e.:acc. weien are g:verna: :y ;u:gmar.: sa jas; :: vae: u ax:aensi assor :s. 7: e cr in at y enforceacta s:ancare, weten in i.salf 14 te, ma '.a::4r-ca:agst y aseve, is :na stream !assifica:icn sa: feet. sy : a Ocr..se:ica: Wa:ar Rescuecas Cee.mtssten. 7: a arming:en River, tr. mu c3 ace., is :!assifia: in "Wa:ar* Gali;/ Star.carca" as a Class E :.nlar.:. it:a r-weten, :: :60:a tre 5:ancare is: "Swi.as'.a f:r caming, :: et-recrea:tenal cur sas, age: uir.r s'. uses, car tain incua rial ;recassas ar.: :::.i..g; ax:silar.: 'is e a.n wti:!!fa r.act:a:; ;;;c sast a:i: valua; a :a:.1 '.a
- r : :.'i:
i \\ wa:ar sesiy w :n 10:r c;r ta:a irsa:.~. ant." I .mw...
- 4.. a :.
s.24.n... n .e.. i s =..< a.. a s.. a..:...... a. j w&:Cr S is tr.;'.ca
- i.. ng f.2 ;f. ;f p(3
- 3. g f..
3 g ;,.. 3er. nc .,.a4. s. 4 n #.3 r.,Ve, 3...... . a.. e. m . g...y
- 4 F:r ming :n RiV3r.
l* is 00 st. a la != k.; W :.* 4 #.007 5 :,'..;... ;. - r-a t./.,.. a..v..~.. '. a a....., ' '.. : s s. '..~. '...v ^.. ~ ' '..a....a..,.,...- wet. ..g n./ og.4..... cg 3 . a. .a ..,.a ..4
1 O in :no a ra!y 1900's, :na f.ccc Of r 40'Jr c :Ock placc i.- AvCv : .' t 'J. 0. } M:xtmum f,cw curing :ns: scrtec in tist: Oce: ten of t.nc '4tver wc.. 4 : r mince := tac 30,.C0 cuot: facc i.:ct-soc 0nc. The nex; iiOncL: e '.. ] cf cw cc:ur rec in Cc:: cr cf ::1o scmc yc:e :.nc ::::ilec .*..y
- c. TCO cusic.' cat par sacenc st-Or cxims:Oly cna-i*. !! cf ;rs AW'
.',4 f'. :w. a No crar .:: nas sure:.asa 30,CCO cu lc fac: =ar sa::n:..- :n.; I i eaaen of vc
- rm;rg::n sc i: is s A*a := assuma :.9:: v.a 0 r...:1:n
- vete.g A ugu.s: Of 1355 was y far :Ma wer s:.
Easa: 0.9 :na.'.'.a:re: '.i: - f e Ota vle: eleva: ten ca:Lm, ma: wnten is usac en -.1:s in :-i.3 e s:O r*:, I J re maximum alava: ten r sace.ac Oy ma Rivara c Jeining :..a ;r ::ar ?/ a + t was 103. 7. 7:.is cccurrac a: :na scL n er.: Of :. a Oe::ar*?/ :.c wcLI nave acreasac in va 0:wns: ream, er e.ct rar!y, ciras:::... a.. l,f n..(s e.ava.< n.: e a.. ..a....,a.1 . a..a.4., .4.. .w .w1 .4 .s 5 o } v.a Atver,.: is ne:ac ra: r a m s.x t.- u m n er :: : n::.! a n e r : : e n.- c r.: cc es i j a: re ner-.r.ar-. ;r c ar?/ lina an is a:;r cxima:.aiy GO !sa:. ~r ts
- 4. :
t n . a ra..... s. v. t..... a.a 4 a. a.-,.s.s .a. . a..< /o 4 .... a .4 cis::sa'.~ ay.1M pisca. 1 a. w.. w. . a~. t . 3. a a r.' a....-. a r...' e '. '........ '....,. '.... :. ... c4 a.........- t ena cagesa cr :..c:rar en.ra sa of :..a ;rce as: c.:a :: .:...: : c...
- ,s..,..
4.r,w...n.,,.. V.i. ..,/...V4 1..*,..a....... A r a.,.. .t w.. ..s e ..r,,.. s.. e s.xa,., . s 4. 4......... 4.a.e4.. .,4.. l ....s, 1 Jct' c nct::Oras. 0 01: wa:, 3r 4."a:;a ax::v:;,;,,.. f ;;.,;. I f** s
- 3 r* t a'..
i 1 I
l i } -o t..r t*"*. ...n. r* 3 S a n., C . f* 3 u.. .w ,W S J. s...... .-(*.,. -. s... 73.., .w J . a. .w (" J. . f* . 3 ta s.a.. e. w. a ..w
- r..
2 w t".
- 3..-/... L..,
..w .~... a .W....
- 4.......n 4n w...
V ..J, .. J w. . i ?.y r". o ?.. 1 .....s,, ...w J ..4 e.py...n y.q..,y.
- n i.,
- a..
g g W g.,. .i. .w L w... r*.r*'..'..'..'.'/' .',*.'.'*.3 SCUL.WOd; With an 3V3f* CQ V3 loci?/ O f 00 CVO Q i ge.; t'". d d 0 " 4 t* '06t*, 4 '.. ". L"3 Wi..03.*
- P.6 y va.***/.# *0 9..0 ta t.*W3 3; Oc t*Clat**303; 3; 1.a avw:';; 3 t
i d ValCC'?/ Of 2.CL; 1* ."n ii. as., a ta..O u t*. 4 b Jve.a .s ar. c. .,8..-'..'..1-'..c",, v -w...s '.. a.e s.- '.. 3 8 e. '........, s., a-44-*..~.......
- Os 42. ", irce.as 03r* yea. s: Sca ;4y.=(ai:
r.: 4.'. 2... r.a
- de y,ase o
3 ::,. 3., f..= i. a 'a w, *
- c '. ca.'., V a r* *. a.'.. e.s a....-. *.,- -
' ca ' .. 3.*.4.
- &X a.,.~.n 6a'6 o
. F.,.. i. a... 4.,. a,. 3 r* <. 3. <. a..3 a S& w. 1 ., z.a W f. 4 .3 . c t,.......... s. 2- ..., L. &,. 4.,v.- :.. 44. . e.. ....j .r*S Ca. ..a... 4 mw, 3.a. a.1..s,
- s.....: <
... 44, .4 ~
- 0 r" 1 24 Oura ::ar* ice was 12.12 tr.Or.as On Avg 4: 's, 355.
A S.- C. i ...a...a.-'...d...'..... un d.... ....=.y s 4 e.......=.V a.....' a.. a a.- '..,,.-".. o ..a... y.. '. 3 .. s. '. t. g. '. 3. g ( ;3 ..g t ., 3.,.,
- p....g
- g..,u. w t c 45,
.#.*..**.9 ~ m w '.'3'.
- ..*.' w*.*..'%*. V 4.**.*..$..a
. d. ".,9..#.*.. w + ,66 ..C ... t* S ..r.6 S w. t. ., 3 s. 3,..i. , < u,.,.. 3.,.....a .s.N.... wi ....~ .d 5 4..Le. .a..... F .3 4 X.,/... 1.. .V,s. ....a... ,. a w.. ___... _ _}}