ML20154D344

From kanterella
Jump to navigation Jump to search
Summary of Startup Testing for Cycle 10
ML20154D344
Person / Time
Site: Calvert Cliffs Constellation icon.png
Issue date: 09/09/1988
From: Tiernan J
BALTIMORE GAS & ELECTRIC CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
NUDOCS 8809150251
Download: ML20154D344 (11)


Text

- -. . _ _ - _ - - _ .

7 9

I c

I 11ALTIMORE CAS AND wt RC11 TIC COMPANY CALVERT CLIFFS NUCl?AR POWER PIANT UNIT 1 Docket No. 50-317 -

License ho. DPR-69

SUMMARY

OF..STARTUP TESTING 1

] SE_QYCl2 TEN J

1 I

i I

s 88091502*i1 3go909 PDR P ADOCK 05000317 dp PNU T \

4

] SUNNARY OF STARTUP TESTING FOR

} CAIVERT Cf.TFFS UNIT ONE CYCi.E TIM i

i 4

I. The following tests were conducted for the startup of Calvert Cliffs Unit 1 i

Cycle 10. These are the same tests as performed in the Unit 2 Cycle 8  !

startup and as described in Reference (1). ,

i

]  :

A. Control Element Drive Mechanism (CEDM) and Control Element Assembly l '

i (CEA) Performance Test

B. Reactor Coolant System Flow Verification i  !
c. Initial Criticality t

{ D. CEA Symmetry Checks  !

l E. Critical Boron Concentration Measurements <

l l 1 F. Isothermal Temperature and Power Coefficient Measurements 1

G. Group Rod Vorth Measurements a 3 H. Power Distribution Measurements l l

3 >

l 1

4 II. The results of these tests and comparison with predictions are as follows:  ;

l i

l 1

A. The proper functioning of the CEDM's and CEA position indication was verified through insertion and withdrawal of CEA's. All CEA's reached a 901 insertion in less than 3.1 seconds at hot, full flow conditions.

The slowest CEA's (63 & 65) reached 90% insertion in 2.47 seconds.

B. Reactor Coolant Flow was verified to be consistent with previous testing.

~ e

)

C. Initial criticality was achieved as described in the Calvert. Cliffs FSAR by boron dilution on July 1,1988, with all CEAs withdrawn except the lead CEA group at mid core.

D. The CEA Symmetry Checks verified that all CEAs were attached to their ,

extension shafts. An evaluation of the quahtitative reactivt'y change for dual CEAs yielded a core verage tilt within the 10% r ceptance limit.

E. Critical Boron Measurement . Tablo 1. ,

I F. Isothermal Temperature and Power coefficients Table 2.

C. CEA Group Worth Measurements T ble 3.

i H. Power Distribution Measurements Table 4. Figure 1 chrough 4.  ;

i Assembiv Power Review Criteria

1. Throvt,h 307 power i

interior 115% exterior t20%;

i 2. Creater than 30% power .

interior 110% exterior 15%

)

Initial comparisons of relative power densities ahowed the center assembly outside the 10% review criteria at 60% power. This was determined to be l due to the slower than antietpated power ascension. New predictions were i

l performed using the actual power history. Further comparisons met =11 i j

] acceptance ano review critaria. >

i

! III. All tests were within acceptance limits.

l i

j 1 i

f

l i

l e

REFERENCES

1. Mr. J. A. Tiernan (BG&E), to NRC, letter dated February 12, 1988, Calvert Cliffs Nuclear Power Plant Unit 1 and 2 Docker No. 10 317 and 50 318.

"Raquest for Amendment, Utit One Cycle Ten License Application, Unit Two Axial Shape Index Region Enlargemant."

i

>- e - -- , .- +w

TABLE 1 CRITICAL BOFDN MEASURFMS Review Measured Predicted Criterig Zero Power All Rods out, 532 F 1750 ppm 1780 ppm ISO ppm Zero Power CEA Groups 1 through 5 Inserted, 532'F 1403 ppm 1411 ppm 50 ppm Full Power CEA Group 5 105" Vithdrawn 1303 ppm 1303 ppm 150 ppm TABIN 2 ISOTilERMAL TEMPF.RATURE COEFFICIENTS AND POWER COEFFICIENTS IT.G Reviev fleasured Ergdig;tj Criteria Zero Power, CEA Croup +0.265x10 +0.222x10'4 10.?x10'4 5 at 100.5 Withdrawn delta rho / F delta rho / .' delta rho / F

@ 1750 ppm i

Full Power, CEA Croup 0.S46x10 0.402x10*A 10.3x10~4 5 at 105" Withdiawn delta rho / F delta rho /*F delta rho / F

@ 1303 ppm EgyER,qgy.FVICI ENT 100: Power, CEA Group .0,904x]O'4 0 PEx10 0,3x10~4 5 at 105" Withdtawn delta rho /"i delta rho / F delts. rho / F l

1 l

l 1

i

i i

< t

! TABLE 3

CEA GROUP 90RTH MEASURIMENTS (

4 i Keasured- Predicted i a

(I delta rb 21 (I delta rho *j r Group 5 0.369 0.388 10.100  !

Croup 4 0.521 0.519 10.100 ,

] 0.735 10,110

, Group 3 0.740 l

] Group 2 0.689 0.652 10.100 j Group 1 0.686 0.762 +0.114 j TOTAL 3.005 3.056 .306 i, 1 i i ,

i i 4

TABLE 4 6 s

< t

] POWER DISTRIBUTION MEASUREMtATS l

~

i

{ 971 Power i

l Acceptance l 4 Measured Limits -

j l x If 1.589 $1.700

! 1 i 6 l II 1.583 s1.650 j Upper T y .0038 50.030 4

l lower T q ,0073 30.030 j I

1  :

4 i a  !

j l  !

l i '

i i l )

l L l 2

1 1 4

1 l

1 i

l I a 1

. ASSIIMBLY MRTATIVE POWER DIniSITY M)E 30I POWER 4

UNIT 1 CYC12 10

PREDICTED: 29.21 Power, CEA Croup 5 @ 135 in, withdrawn,14 MWD /T
KEASURED
29.2X Power, CEA Croup 5 9 135 in, withdrawn, 14 MWD /T '

2 FIGURE 1

MEASURED

! PREDICTED 1 DIFF 1 DIFF - MEASURED-PRIDICTED x 100  :

! PREDICTED 1

K 1 M 2 ,

0.4245 0.8553 ,

I 0.4283 0.9248 Y l' -0.89 -7.52 ,

i K 3 M 4 L 5 M* 6 L 7 ,

1 0,4032 0,9342 0.9724 1.1192 1.1515 i f

0.3911 0.9249 1.0167 1.1848 1.2240 Xl I

3.09 -2.17 -4,36 -5. 54 -5.92 (

' K 8 M* 9 L 10 Me 11 K 12 Le 13 i 0.3981 0.9589 1.2298 1.2589 1.0293 1.0883 -

i 0.3952 0.9688 1.2476 1.3040 1.0499 1.0915 W

-1,02 -1,43 -3,46 -1.96 -0,29 .

O.73 14 Me 15 L 16 M* 17 K 18 Me 19 K 20 K

0.3981 0.9275 1.1483 1.2428 1.0056 1.2963 1.1084 i i

0,3962 0.9419 1,1705 1.2643 0.9965 1.2852 1.0900 Vl j

-1.86 0.91 0. 86 1,69 1

0.48 -1.53 -1.90 ,

I 22 L 23 M* 24 K+ 25 Me 26 Le 27 Me 28 K 21 Me J

0.4032 0.9589 1.1483 1.2099 0,8405 1.2490 1.1472 1.3279 l j

O.3896 0.9726 1.1746 1.2005 O.8137 1.2280 1.0664 1.2696 T.

-1,41 -2.24 0,12 3.29 1.71 7. 58 4. 59 I 3.49 1

30 31 Ke 32 M* 33 L 34 Me 35 K 36  !

M 29 L Me 1.2298 1.2428 0.8405 1.1846 1.1362 1,2454 1.0440 l

0.9342 0.9587 1.2572 1.2762 0.8166 1.1722 1.1219 1.1740 0.9793 El q4 -2,54 -2.18 -2.62 2.93 1. 06 1.27 6.03 6.61 l i

39 Me 40 L 41 K+ 42 K* 43 Me 44  !

L 37 Me 38 K 0.7391 1.1115 i

0.9724 1.2589 1.0056 1.2490 1.1342 0.7585 i 1.3129 1.0174 1.2334 1.1216 0.7190 C.7225 1.0786 Rl i K 45 1.0201 1,30 5.49 2.30 3.05 i i 0.4245 -4,68 -4.11 -1,16 1.26 P 0.4280 50 51 52 L 53

-0.82 Me 46 K 47 Me 48 Le 49 Me K+ MX 1,1192 1.0293 1.2963 1.1472 1.2454 0.7391 1.0009 1.0947 1.0648 1.1635 O.6972 0.9855 1.0711 h M 54 1.1843 1.0507 1.2844 2,20 C. 93 7.74 7.06 6.01 1. 54 0.8553 -5. 50 -2.04

! M 0.9240 58 K 59 Me 60 L 61 K* 62

-7.44 L 55 Le Si K 57 Me 0,8496 t

1.1515 1.0883 1,1084 1.3279 1.0440 1.1115 1.0947 I

1.0915 1.0900 1.2696 0.9793 1.0786 1.0711 0.8089 L 1.2240 3.05 2.20 5.03

-5.92 -0.29 1.69 4.59 6.61 5 6 7 9 11 1 2 3 4 J

- - -- . . - _ . _ _ _ . . _ _ . - _ _ .__ __ ____, _ __. _3 go , _

1 l

AL9EMBLY REIATIVE POWER DENSITY FT)R 601 POWER UNIT 1 CYCLE 10 ,

t i PREDICTED: 59.4% Power, CEA Croup 5 9135 in, withdrawn, 23 MVD/T MEASURED: 59.4% Power, CEA Croup 5 9135 in, withdrawn, 23 MVD/T l l

FIGURE 2 i

4 MEASURED PREDICTED

' K 1 M 2 I DIFF l 0.4211 0.8448 i j I DIFF - MEASURED-PREDICTED x 100 0.4270 0.9111 Y PREDICTED -1. 38 "7. IE  ;

j ,

i - K 3 M 4 L 5 Me & L 7 0.4011 0.9252 0.9654 1.1100 1.1J94  ;

i; 0.3900 0.9415 1.0043 1.1700 1.2007 X 2.85 -1.73 -3.37 ~5.13 -5,73  :

K 8 Me 9 L 10 M*. 11 K 12 Le 13 ,

, 0.3985 0.9508 1.2137 1.2511 1.0260 1.0847  !

0.3953 0.9579 1,2298 1.2892 1.0475 1.091A W  !

i 0.81 -0.74 -1.31 -2.96 -2.OS -0. 58 l K 14 He 15. L 16 Me 17. K is Me 19 K 20 f I 0.3985 0.9222 1.1390 1.2367 1.0054 1.2990 1.1132 l l C.3963 0.9331.1.1582 1.2543 0.9983 1.2855 1.0954 V l

i 0. 56 -1.17 -1.66 -1.56 0.71 1.05 1.61 i

> . [

J i K 21 Me 22 L 23 Me .24 Ke 29 Me 26 Le 27 Me 25  :

J 0.4011* 0.9508 1.1390 1.2377 0. 844 J 1.2457 1.1545 1.3384 l 0.3886 0.9614 1.1621 1.2022 0.320e 1.2333 1.07&& 1,2781 T l 3.22 -1.10 -1.99 0.44 2.92 1. 82 7.24 4.72 j i

M 0.9252 29 L 1.2137 30 Me 1.2347 31 Ke 0.5448 32 Me 1.1934 33 L 1.1463 34 Me 1.2315 35 K 1.0595 36 f 0.9450 1.2300 1.2457 0,8236 1,1906 1.1345 1.1997 C.9960 8  !

-2.10 -2.03 -2,29 2.57 1. 08 1. 04 3.54 6.38 l

l L 37 Me 38 K 39 Me 40 L 41 Ke 42 Ke 43 He 44 I i 0.9654 1.2511 1.0054 1.2557 1.1443 0.7707 0.7594 1.1343 I K 45 1.0075 1.2?77 1.0184 1,2384 1.1342 0.7381 0.7433 1.1009 R l 1.07 3,22 0,4211 -4.15 -3.59 -1.30 1.40 4.42 2.19 P O.4267

-1.31 Me . 46 K 47 Me 48 Le 49 H+ 50 Ke 51 MX 52 L 53 i 1.1100 1.0260 1.2990 1.1545 1.2318 0.7594 1.0250 1.1190 l j M 54 1.1694 1.0484 1.2846 1.0750 1,1784 0.7177 1.0089 1.0961 N  !

0.8448 -5. OS -2.16 1.12 7.40 4.31 5. 54 1. 40 2.00 [-

M O.9:03

-7.20 L 55 Le 54 K 57 Me 58 K 59 Me 40 L 61 Ke 62 f 1.1394 1.0847 1.1132 1.3384 1.0595 1.1343 1.1180 0.5476 j 1.2007 1.0910 1.0954 1.2781 0.9960 1.1009 1.0961 0.3335 L j -5.73 -0. 58 1. 41 4,72 6.38 3.22 2.00 4.09  ;

1 2 3 4 5 -

6 7 9 11 s to j .

l

i

  • l ASSEMBLY REIATIVE POWER DENSITY MR 851 POWER ,

I I

UNIT 1 CYCLE 10 PREDICTED: 851 Power, C'A Croup 5 9 135 in, withdrawn, 68 MWD /T l 4

MEASURED: 85.01 Power, CEA Croup 5 6135 in, withdrawn, 6816'D/T  !

?

FICURE 3 s

MEASURED PREDICTED M 2 7 K 1 t j 1 DIFF O.4193 0.8309  ;

0.4274 0.9003 Y ,

1 DIFF - MEASURED-PREDICTED x 100 -1.90 -7,71 j I PREDICTED i

3 H 4 L 5 H+ & L 7 K

0.3992 0.9141 0.9553 1.1003 1.1321 I 0,3903 0.9301 C.9948 1.1584 1.1974 X f l ' 2.28 -1.72 -3.T7 -5.02 -5.45 l f

8 Me 9 L 10 He 11. K 12 Le 13 )

! K 1.0801 0.4005 0.9420 1.1954 1.2413 1.0197 i 1

0,3966 0.9488 1.2143 1.2761 1.0473 1.0929 W!

-0.72 -1. 56 -2.73 -2.44 -1.17 l 0. 98 ,

L 16 M6 17 K. 18 Me 19 K 20 l K 14 Me 15 0.9165 1.1271 1.2294 1.0059 1.3004 1.1164 l 0.4005 0.9999 1.2848 1.1005 V l

0.3976 0.9259 1.1475 1.2468  ;

' "'3 -1.02 -1.78 -1.40 0. 60 1,21 3.44 [

i i

~

i 24 Ke 25 He 26 Le 27 He 29 i K 21 M* 22 L 23 Me i

1.1271 1.2042 0,8493 1.2610 1.1601 1.3469 l l 0.3992 0.9420 1.2364 1.0850 1.2831 T 0,3888 0.9520 1,1511 1.1960 0.3277 .

J

-2.08 0.49 2.49 - 1. 99 e. 92 4.97 j 2. 67 -1.05 31 Ke 32 Me 33 L 34 Me 35, K 36 f l M 29 L 30 Me 1.2559 1.0717 0.9141 1.1954 1.2294 0,8483 1,1997 1.1526 f 1

O.9333 1.2227 1.2555' O.8304 1,1849 1.1449 1.2006 1.0092 S l

1. 08 0.67 4.41 4,19 l

-2,04 -2,23 -2.OS 2. t o l . f 1

39 Me 40 L 41 Ke 42 Ke 43 Me 44 '

L 37 Me 39 K I

1.2413 1.0059 1,2410 1,1526 0.7807 0.7778 1.1582  !

O 9553 0.7543 C.7620 1.1176 R1 1.1445 K 45 O 9977 1.2839 1.0194 1.2412 3.43

-3.32 -1,32 1.60 0. 71 3.23 2. 07 0.4193 -4.25 lP j -

0,4270

-1.80 M*

44 K 47 He 48 Le 49 H+ 50 Ke 51 MX 1.0471 52 L 1.1394 53 1.1003 1.0197 1.3004 1.1601 1.2559 0.7778 l 1.0479 1.2937 1.0833 1.1897 0.7362 1.0264 1.1149 N 1 M 54 1.1578 5. 54 5.65 2. 02 2,20 I ,'O.3309 ~4.97 -2.69 1.30 7.Of M' ' O.SY95 55 Le 54 K 57 Me SS K 59 Me 60 L 61 Ke 62

-7.63 L 1.1582 1.1394 0.9843

) 1.1321 1.0801 1.1864' 1.3469 1.0717 0,8543 L 1

1.1974 1.0929 1.1005 1.2831 1.0092 1.1176 1.1149 i 1,44 4.97 4.19 3. 63 2.20 3. 51 i ~5.45 -1.17 i

5 6 7 9 11 j 2 3 4 1 a 10

__m.-_,_.-__ -_ -.-_ . - -.- -.--. _ --__

. ASSFABLY REIATIVE POVFR DENSITY FOR 100% POVFR UNIT 1 CYC12 10 PREDICTED: 97% Power, CEA Croup 5 @ 105 in, withdrawn, 176 MVD/T MEASURED: 97.4% Power, CEA Croup 5 @ 105 in, withdrawn, 154.2 MVD/T FIGURE 4 MEASURED PREDICTED I DIFF K 1 M 2

% DIFF - MEASURED-PREDICTED x 100 G.4151 0,8130 PREDICTED O.4216 O.87e4 Y

-1.54 -7.23 K 3 M 4 L 5 Me 6 L 7 0.4044 0.9171 0.9491 1.0786 1.097.1 0.3954 0.9284 0.9846 1.1272 1.1512 X 2.28 -1.22 -3.61 -4.31 -4.69 K 8 M* 9 L 10 Me 11 K 12 L* 13 0.4086 0.9526 1.1978 1.2395 0.9981 0.9601 0.4051 0.9568 1.2151 1.2652 1.0190 1.0063 W O.86 -0.44 -1.42 -2.03 -2.05 -4,59 K 14 Me 15 L 16 M* 17 K 18 M* 19 K 20 0.4086 0.9306 1.1389 1.2411 1.0056 1.2912 1.0992 0.4059 0.9381 1.1590 1.2545 1.0029 1.2697 1.0771 V O.67 -0.00 -1.73 -1.07 0.27 1.69 2.05 K 21 H+ 22 L 23 Me 24 K+ 25 Me 26 L* 27 Me 28 O.4044 O.9526 1.1389 1.2200 O.6602 1.'2733 1.1638 1.3542 0.3938 0.9599 1.1625 1.2106 0.8428 1.2400 1.0927 1.2850 T 2.69 -0.74 -2.03 0.78 2.06 2.03 6.51 5.39 M 29 L 30 Me 31 K+ 32 Me 33 L 34 Me 35 K 36 0.9171 1.1978 1.2411 0.8602 1.2182 1.1660 1.2490 1.0851 0.9314 1.2231 1.2628 0.8453 1.2059 1.1644 1.2179 1.0250 8

-1.54 -2.07 -1.72 1.76 1.02 0.14 2.55 5.86 L 37 Me 38 K 39 He 40 L 41 K+ 42 K* 43 M* 44 0.9491 1.2395 1.0056 1.2733 1.1660 0.7940 0.7944 1.1813 K 45 0.9874 1.2727 1.0218 1.2524 1.1640 0.7775 0.7823 1.1392 R O.4151 -3.88 -2.61 -1.59 1.67 0.17 2.12 1.55 3.70 P O.4212

-1.45 He 46 K 47 M* 48 Le 49 Me 50 K+ 51 MX 52 L 53 1 1.0706 0.9981 1.2912 1.1638 1.2490 0.7944 1.0675 1.1536 l M -54 1.1266 1.0196 1.2686 1.0910 1,2071 0.7563 1.0464 1.1333 Nl O.8130 -4.26 -2,11 1.78 6.67 3.47 5.04 2.02 1.79 M O.8757 l

-7.16 L 55 Le 56 K 57 Me 58 K 59 Me 60 L 61 Ke 62 1.0972 0.9601 1.0992 1.3542 1.0851 1.1813 1.1036 0.8652 1.1512 1.0063 1.0771 1.2850 1.0250 1.139P 1.1333 0.8518 L 4,69 -4.59 2.05 5.39 5.86 3.70 1.79 1. 57 1 2 3 4 5 6 7 9 11 ,

8 10 i

_ _ _ . _ _ _ .~.m _ . . . , . _ . . __ - _

t ,

4 . BALTIMORE I l OAS AND i WLECTRIC j l

CH ARLES CENTER

  • P. O. BOX 1475 c BALTIMOR E. MARYLAN D 21203 I l

JostPM A.TitRNAN .

L v.c a P. ..e s =,

N wCt:Am Entaty September 9, 1988 l U. S. Nuclear Regulatory Commission  !

Pashington, DC 20555  ;

t I

ATTENTION: Document Control Desk I

SUBJ ECT: Calvert Cliffs Nuclear Power Plant Unit No. 1. Docket No. 50 317 i l

Recort of Startun Testing for Unit 1 Cvele 10 Centlemen:  ;

Startup testing for Calvert Cliffs Unit 1 Cycle 10 was completed on July 11, f 1984. A summary of the results from those tests is enclosed. ,

Very truly yours, l f'

\

i

{hWsf M.- l

, JAT/CVD/cev .

I \

Enclosure cc: D. A. Brune, Esquire J. E, Silberg, Esquire R. A. Capra, FRC S. A. McNeil NRC

! U. T. Russell, l'RC D. C. Trimble/V. L. Pritchett, NRC T. Magette DNR l

, i l t

~ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _