ML20154C142
| ML20154C142 | |
| Person / Time | |
|---|---|
| Site: | Byron, Braidwood |
| Issue date: | 09/30/1998 |
| From: | Krich R COMMONWEALTH EDISON CO. |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| GL-96-06, GL-96-6, NUDOCS 9810060170 | |
| Download: ML20154C142 (91) | |
Text
._.
Commonwealth Edimn Compan) 1400 Opus Place INwners Gnnc. If. 60515 I
COI11Ed l
September 30,1998 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001 Braidwood Station, Units 1 and 2 Facility Operating License Nos. NPF-72 and NPF-77 NRC Docket Nos. STN 50-456 and STN 50-457 Byron Station, Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN 50-454 and STN 50-455
Subject:
Response to Request for Additional Information Related to Generic Letter 96-06," Assurance of Equipment Reliability and Containment Integrity During Design-Basis Accident Conditions"
Reference:
- 1. NRC letter, " Request for Additional Information Related to the Generic Letter (GL) 96-06 Response for Braidwood Station, Units 1 and 2, and Byron Station, Units 1 and 2," dated April 13,1998.
- 2. Comed letter, " Response to Request for Additonal Information Related to Generic Letter 96-06 for the Byron Station and the Braidwood Station - Notification of Delay," dated June 30,1998.
In the Reference 1 letter, the Nuclear Regulatory Commission (NRC) requested that Commonwealth Edison (Comed) Company provide additional information to allow completion of the NRC review of the response to GL 96-06 for Braidwood Station, Units 1 and 2 and Byron Station, Units 1 and 2. This additionalinformation was to be submitted to the NRC by June 30,1998. In the Reference 2 letter, Comed documented that additional time was required (i.e., by August 31,1998) to respond to the request for additionalinformation.
The purpose of this letter is to provide the additionalinformation requested in the Reference 1 letter. In a telephone conference held between representatives of Comed and the NRC on August 13,1998, it was agreed that the additionalinformation would be provided by September 30,1998.
/
l l
/
l 9810060170 980930
- A0 PDR ADOCK 05000454
\\'
p PDR A Unicum company
. - - _.. ~
I' September 30,1998 U.S. Nuclear Regulatory Commission Page 2 l
Please direct any comments or questions regarding this matter to Marcia Lesniak at 630-663-6484.
Respectfully, 3 So r.
a R. M. Krich Vice President - Regulatory Services Attachments cc:
Regional Administrator - NRC Region til NRC Senior Resident Inspector - Braidwood Station NRC Senior Resident inspector - Byron Station i
l l^
-h-,--a
~
--44<=5, 2-n4in--
-,-A+-r nA.-
b b
L-Ma J4
"-4A-*
r-~mAF
>3 W,A6 ATTACHMENT A Response to Request for Additional Information (RAI) i 1.
If a methodology other than that discussed in NUREG/CR-5220,
" Diagnosis of Condensation-Induced Waterhammer," was used in evaluating the effects of waterhammer, describe this alternate methodology in detail. Also, explain why this methodology is applicable and gives conservative results for both the Braidwood and Byron units (typically accomplished through rigorous plant-specific modeling, testing, and analysis)
Response: A detailed analysis of the Reactor Containment Fan Cooler (RCFC) inlet piping, coils, and exhaust piping was performed using the RELAP5/ MOD 3.1.1 computer code. Stress loads on the piping were developed via post-processing of the RELAP5/ MOD 3.1.1 data to calculate segment wave and thrust force-time history data (Reference 1). The force-time histories were applied to a dynamic piping analysis program, PIPSYS, to determine the effect of the loads on the piping and support structures.
This approach was selected based on the geometry of the RCFC installations at Byron /Braidwood. The RCFCs and their associated piping essentially form a U-shaped geometry with the RCFCs at the low point. Void generation in the RCFC coils during service water pump coastdown will result in heating of the RCFC inlet and exhaust risers. Service water pump restart leads to sweeping of the voids with heated fluid. While dynamic effects are anticipated due to acceleration of a two phase fluid, the conditions leading to condensation induced waterhammer are not present. Therefore, a methodology to conservatively calculate the heat transfer into the coils and track the void generation / movement during the flow coastdown following loss of service water pump flow was needed. The principalloading concern is wave loads and turning loads generated in piping and coil segments due to acceleration of the two phase fluid subsequent to service water pump restart.
RELAP5 was selected to perform the thermal hydraulic portion of this analysis because of its capability to accurately model two phase flow as well as its capability to characterize heat transfer. RELAPS has a significant validation history for a wide range of thermal hydraulic analyses, and has been extensively utilized in the industry for force-time history generation for a variety of piping problems, most notably for the PWR pressurizer safety valve exhaust lines. RELAP5 has also been extensively tested in low pressure / flow conditions as part of the advanced reactor projects. A detailed model of the inlet and outlet piping, as well as the RCFC coils, was prepared for this Page 1 of 10
ATTACHT.*ENT A calculation. Conservatism was built into the model, primarily with respect to heat transfer coefficients utilized on the coil external surfaces, and also with the method of application of choked flow models, with a goal of maximizing the extent of voiding predicted. Boundary conditions were also selected to yield a rapid coastdown in the initial phase of the event, as well as to conservatively bound the pressure surge at the inlet piping due to pump start.
- 2. For both the waterhammer and two-phase flow analyses, provide the following information:
a) Identify any computer codes that were used in the waterhammer and two-phase flow analyses and describe the methods used to benchmark the codes for the specific loading conditions involved (See Standard Review Plan Section 3.9.1). Supplement the information contained in the May 2,1997, submittal as necessary.
Response: The RELAP5/ MOD 3.1.1 computer code, as installed on the Comed Hewlett Packard (HP) Unix platform, was utilized for the thermal-hydraulic portion of the calculations. No specific benchmark calculations were performed as part of this analysis. In the absence of applicable benchmark information to facilitate validation of the model, the model was constructed in a deliberately conservative manner, consistent with applicable user guidelines. A detailed independent review of the modelinputs and results was performed as part of this effort.
The general basis for the use of the RELAP5/ MOD 3.1.1 code is the Development Assessment Problems as documented in NUREG/CR 5535 (Reference 2), which demonstrate that the code performs appropriately over a wide range of conditions. Additional basis for the application of RELAP5/ MOD 3.1.1 is the extensive body of analysis that has been performed with this code by a large number of organizations.
b) Describe and Justify all assumptions and input parameters (including those used in any computer codes) such as amplifications due to fluid structure interaction, cushioning, speed of sound, force reductions, and mesh sizes, and explain why the values so!ected give conservative results. Also, provide justification for omitting any effects that may be relevant to the analysis (e.g., fluid structure interaction, flow induced vibration, erosion). Information that is contained in the May 2,1997, submittal that requires no further explanation need not be repeated.
Page 2 of 10
ATTACHMENT A Response: Attachment B of this submittal contains two figures showing the nodalization utilized in the RELAP5/ MOD 3.1.1 model for the piping and RCFC coils, respectively. In addition, Appendices C and D of the Comed calculation are provided in entirety in Attachments C and D of this submittal.
Appendix C is an input listing of the RELAP5/ MOD 3.1.1 model. Appendix D provides a description of modeling choices and methods philosophy utilized for each element of the model as well as calculation worksheets used to develop key model inputs.
Key features of this modelinclude:
.~ Highly detailed nodalization of % of a RCFC cooling coil arrangement and the inlet / outlet piping, including modeling of 5 coils in parallel (over 200 piping nodes plus 24 nodes per coil).
Flow boundary conditions and modeling assumptions that yield early void initiation, and maximize the extent of voiding predicted.
Heat transfer modeling which includes the effects of the finned surfaces.
Use of the Uchida condensing correlation, and a heat transfer coefficient actually used that is more than double the predicted values.
The speed of sound was of particular concern in this analysis. A very small amount of air was deliberately introduced into the model. This was done for two reasons:
The water properties routines within RELAP5 employ different methods to calculate sound speed in the presence of non-condensable gas. With non-condensable gas present, the sound speed is calculated in a volume based on the static quality. Without non-condensable gas, an equilibrium quality is employed in the expression. This implies that in a subcooled voiding situation, such as is expected as the steam exits the coils into the headers, the sound speed will be calculated more appropriately if non-condensable gas is present.
Since the model was being exercised in very low pressure regions, a small amount of non-condensable gas was found to be beneficial in the numerical stability of the model, helping to prevent pressures from dropping below zero and causing termination of the calculation.
It should be noted that the speed of sound in the headers during the peak load period (following Essential Service Water (SX) system pump start and refr
- RCFC headers) was carefully monitored to ensure that the predicted loads would not be affected by this approach. The sound speed in Page 3 of 10
ATTACHMENT A the headers following refill was approximately 5000 feet per second and remained high throughout the loading period.
Comed has pursued a rigorous and detailed computational model, with emphasis on capturing all relevant physical loads in a conservative manner.
c) Provide a detailed description of the " worst-case" scenarios for waterhammer and two-phase flow, taking into consideration the complete range of event possibilities, system configurations, and
/
parameters. For example, all waterhammer types and water slug scenarios should be considered, as well as temperature, pressure, flow rates, load combinations, and potential component failures. Additional examples include:
-the effects of void fraction on flow balance and heat transfer
-the consequences of steam formation, transport, and accumulation
-cavitation, resonance, and fatigue effects; and
-erosion considerations.
Response: The " worst-case" scenario was determined to be a design basis (DBA) loss of coolant accident (LOCA) with a concurrent loss-of-offsite power (LOOP). This combination yields the largest amount of voiding in the system since it combines a rapid flow coastdown with a high containment temperature and high heat transfer coefficient on the outside surface of the RCFC coils. Based on the use of the Uchida condensing heat transfer correlation, situations in which a high vapor-to-air mass ratio exists will yield the highest heat transfer to the coils. This is why, with the modeling methods applied in this calculation, the DDA-LOCA results in higher voiding than the main steamline break (MSLB) inside containment accident. Small and intermediate break LOCA scenarios were also considered, but are bounded by the DBA LOCA scenario analyzed, with respect to the potential for heat input to the RCFC coils.
To provide a description of the phenomena observed in the calculations, the following excerpt from the Results section of the calculation PSA-B-98-13 is provided. (The figures referred to are provided in Attachment E).
" General Information This calculation was performed for the limiting DBA containment temperature profile, which is a double-ended pump suction (DEPS) break with maximum Page 4 of 10 s
ATTACHMENT A safety injection (SI). The calculation employs a conservative heat transfer 2
coefficient of 500 Btu /hr-ft -F to introduce additional conservatism with respect to the heat transfer and maximize the SX coil voiding experienced.
The calculated value of heat transfer coefficient Uchida times the fin effect multiplier was approximately 230 Btu /hr-ft -F. Since the DBA LOCA mass 2
release puts significant amounts of mass into the containment rapidly, in contrast to the MSLB, a maximum value for the heat transfer coefficient (HTC) was employed at a constant value with time.
The overall behavior observed in this analysis was a rapid initiation of voiding in the coils, with the steam generation pushing water out both sides of the coils and the header piping. Following the boiloff of fluid, the system behaves like a manometer with unequallegs, with the exhaust side piping reflooding i
rapidly while the inlet side stagnates. Once forward flow is established by the SX pump, reflood of the entire system occurs and single phase flow is restored. Loads on piping segments were derived for both the discharge side fallback as well as the forward flow acceleration into the inlet piping and coils.
i Boundary Condition Behavior Figure 11 shows the boundary condition pressures imposed at the time dependent volumes defining the model interfaces with the remainder of the system. As noted previously, a five second coastdown in pressure representing the loss of the SX pump starting at 1 second occurs followed by a rapid spike in pressure at 43 seconds simulating the pump restart with a 20 second decay to the steady state pressure. This profile was chosen to yield a
" surge" capable of yielding two phase interactions that would bound the actual plant response. Figure 12 shows the flows at the time dependent volume pressure boundaries resulting from the forcing function defined in Figure 11. As can be seen, the flow decays rapidly following pump trip, and void generation in the coils initiates just prior to 15 seconds. As the void generation continues, fluid is pushed out both sides of the model, until the pump restart occurs. Once boiling in the coils stops, the conditions favor discharge side reflooding. Figures 13 through 17 provide the flows at the entrance and exit junctions of each coil subassembly. These plots clearly demonstrate the flow reversal occurring during void generation, as well as the discharge side reflood prior to pump startup.
RCFC Coil Behavior To facilitate understanding of the dynamic processes occurring in the 5 coil subassemblies modeled, a series of plots were generated, based on the coil nodes at the center of each pass (4 tube passes), which essentially allows a Page 5 of 10
ATTACHMENT A cross-sectional view of each coil. The coils are numbered 120 through 124, with 120 being the uppermost and 124 being the lowest coil in the stack.
Figures 18 through 22 provide the liquid void fractions at the coil center node points.
As can be seen, nearly complete voiding occurs in all the coils. The use of homogeneous equilibrium model(HEM) choking only at the coil exits in combination with the partial vacuum condition following pump trip allows the coils to very nearly boil dry. The coil nodes nearest the exhaust header show some recovery prior to the front side nodes. This is a consequence of reverse flow in the discharge header, which allows some water back into the coils prior to pump restart. Following pump restart, the coils refill and return to single phase liquid flow.
Figures 23 through 27 show the pressure response at the coil center node points. These plots show a double peaked behavior, which reflects the reflood of the discharge header and entry of fluid into the coils, followed by the SX pump start and establishment of forward flow. The behavior is oscillatory and is due to the unsteady generation of steam as well as the acceleration of compressible mixtures. As can be seen in the plots, the maximum pressures calculated are well below the design pressure for the coil. Peak pressures achieved are approximately 110 psig, while the design pressure of the coil assembly is 200 psig.
Figure 28 shows the input temperature profile based on the LOCA containment response, and the surface temperatures of the RCFC tubing. As ct:.n be seen, under the influence of the large heat transfer coefficient, the fluid is heated rapidly and the coils reach equilibrium with the containment atmosphere.
Inlet / Exhaust Piping Behavior Figures 29 through 31 show the void fractions in the inlet header at several locations. The steam generation in the coils results in significant voiding in the supply piping. The vertical supply header is completely voided and water is displaced in the main horizontal supply line (represented by volumes 104010000 through 104100000). Following pump start, the header is rapidly refilled. A significant loading condition occurs as the inlet header fills and water is forced into the coils. Figure 32 shows the pressure response at a point in the middle of the verticalinlet header, with the void fraction superimposed upon the same figure. What is immediately apparent is the pressure spike that the code generates as the vapor void is closed (liquid void fraction goes to 1). This pressure spike is an artifice of the L
computational methods, and although mitigated by the water packing l
Page 6 of 10
ATTACHMENT A modeling option, will yield high frequency loads in the segment force calculations. While the water packing model cption was selected for all hydraulic volumes, the motion of the voids during the pump start transient led to situations in which fairly rapid transition from voided to unvoided conditions were experienced. While judicious selection of time steps limited the 1
pressure spiking considerably, in combination with the water packing model, it did not eliminate the problem completely. This is why the fast Fourier transformation filter method was employed on the developed structural loads, to ensure that "real" phenomena were addressed, eliminating numerical instability load effects that generally occurred at high frequencies incapable of inducing load on the structures.
Figures 33 through 39 show the liquid void fractions in the exhaust header as a function of time. These plots show the rapid expansion of steam out of the coil, pushing liquid out of the exhaust line. At about 43 seconds, the expansion is completed and the water falls back towards the coils. Some oscillations do occur as steam generation in the coils follows the re-introduction of fluid onto the heated coil surfaces. The calculation of piping segment loads is extended to 60 seconds to ensure that they include all possible loads up to the restoration of single phase conditions throughout the system."
d) Confirm that the analyses included a complete failure mode and effects analysis (FMEA) for all components (including electrical and pneumatic failures) that could impact performance o! the cooling water system and I
confirm that the FMEA is docur.seted and available for review, or explain why a complete and fully documented FMEA was not performed Response: Since the analysis performed determined that no items or j
equipment would fail specifically as a result of this event (i.e., LOCA/ LOOP),
the FMEA in the Updated Final Sefety Analysis Report (UFSAR) remains I
valid and appropriate.
e) Explain and justify all uses of " engineering judgment".
1 Response: The primary use of" engineering judgment" other than the model 1
input determination discussed previously in response to RAI 2b, was in the development of the force-time history information. Specmcoliy, civgineering judgment was applied with respect to filtering numerical noisc from the loads before applying them to the structural models. A fast Fourier transfona filter
)
Page 7 of 10 j
l 1
i ATTACHMENT A was utilized to eliminate numerical noise in the loads developed. This noise l
was primarily the result of non-linearities that occurred in the pressure solution as a result of water-packing behavior and rapid switching of the choking models. The applicability of this assumption was confirmed by reviewing the power spectral density plots of the transformed loads to confirm that numerical noise rather than significant power terms were being eliminated. The validity of this approach was confirmed by integrating the i
filtered and unfiltered loads and ensuring that the total impulse remained within 2% of each other. The filtered loads were increased by 2% to ensure that total impulse was conserved.
- 3. Determine the uncertainty in the waterhammer and two-phase flow analyses, explain how the uncertainty was determined, and how it was accounted for in the analyses to assure conservative results for the Braidwood and Byron units.
Response: The uncertainty in the analysis of the two-phase effects performed above was not explicitly quantified. Since a calculation that would conservatively represent the physical behavior was desired for load j
generation purposes, the model inputs were deliberately adjusted to achieve conservative results. The analysis performed was a bounding analysis as opposed to a best estimate plus uncertainty analysis. The bounding analysis has significant conservatism to bound the best estimate plus uncertainty analysis. Some examples of conservatism provided in this analysis are:
Use of high heat transfer rates to the coils, over 2 times the nominal value was utilized for the loads generation analysis. This ensures a high degree of conservatism with respect to the amount of void formation in the coils.
Use of HEM choking models in a limited number of locations to maximize the flow out of the coils.
Use of minimal piping pressure losses, which allows more rapid and extensive voiding than would actually be expected.
Bounding (rapid) coastdown of the SX pump is assumed, which leads to early void generation in the coils and extends the time for void generation.
SX pump restart time is based on the last SX pump diesel generator sequence start time, which also extends the void generation time to the maximum possible.
- 4. Confirm that the water hammer and two-phase flow loading conditions do not exceed any design specification or recommended service Page 8 of 10
1 ATTACHMENT A conditions for the piping system and components, including those stated by equipment vendors; and confirm that the system will continue to perform its design-basis functions as assumed in the safety analysis report for the facility.
Response: An analysis was developed utilizing PIPSYS, Version 2.3 (Sargent and Lundy Computer Program PIP 03702621o) to determine the dynamic load affects of the LOCA/ LOOP concerns expressed in GL 96-06.
The transient evaluation discussed in RAls 1 through 3 above, utilized RELAP5/ MOD 3 to develop the fluid transient forcing functions in the RCFC supply and discharge piping. The output of the transient analysis resulted in a detailed set of force-time histories, which were used for input to PIPSYS.
The critical physical parameters of the individual cooler configurations were reviewed. This review determined that the fluid transient loads developed for the Braidwood cooler 1VP01 AD piping arrangement would be a conservative representation of the loads at all 4 units. Also, since the piping arrangements are very similar, the resulting dynamic response of the piping would be representative of the response that would be experienced in the other cooler piping arrangements. The analysis included piping stress and support loads, valve flange loads and accelerations, cooler nozzle stresses, cooler anchor bolt stresses, RCFC enclosure supporting steel, and containment building structural steelloads. The following describes the results of the evaluations performed for these areas:
Piping Stress - The piping stresses are vary small, and meet the normal stress allowables without an increase in allowable for faulted conditions. All but eight pipe supports had loads which were enveloped by the existing design loads. For the eight pipe supports which had load increases, all loads were within Faulted condition allowables.
Valve Flanges and Accelerations -Valve flange loading was small compared to normal allowables. Additionally, the valve accelerations were well within the limits which the valve could withstand, based on the vendor qualifications.
Cooler and Cooler Nozzle Loads - As described in the response to RAI 3, the maximum pressure in the cooler coils is ! ass than the design pressure of the coils. The calculated nozzle loads exceeded the vendor allowables.
However, the vendor allowables were unreasonably low, with values that were less than 0.1 times the yield strength. Using the new loads, and using l
the same method of qualification as the cooler vendor, the nozzle stresses were shown to be below normal condition stress allowables for the nozzle material. The loads were then combined with operationalloads and cooler Page 9 of 10
ATTACHMENT A deadweight and transferred to the cooler anchor bolts, which were shown to meet normal condition allowables. The attachment loads were then compared to the loads used to qualify the cooler support steel. The new loads are less severe than the cooler loads that had been used to qualify the steel. Thus, all elements in the cooler load path were shown to either meet normal allowables (with faulted condition loads) or result in loads less than those previously used in the qualification, i
Structural Steel Loads - As noted above, eight of the individual pipe supports had loads which exceeded existing design loads, but met the faulted condition allowables. For completeness, the building structural steel affected by these supports was re-analyzed. For the re-analysis, the new PIPSYS loads associated with this transient were input to the Braidwood Station structuralload analysis model. Concurrent with this review, an evaluation of i
the structural steel for Byron Station, Units 1 and 2, and Braidwood Station, Units 1 and 2, confirmed that the Braidwood Station structural re-analysis is applicable to all four units. The results of the above re-analysis confirmed that the structural loads associated with the subject transient are within existing design bases limits.
The evaluation discussed in this RAI (RAl 4) has confirmed that the LOCA/ LOOP loads placed on the SX piping, pipe supports, valves, coolers and associated supports, and the containment structural steel supporting these items are within design bases limits. Consequently, the above review confirms that the system will continue to perform its design-basis functions as assumed in the safety analysis report for Braidwood Station, Units 1 and 2, and Byron Station, Units 1 and 2.
- 5. Provide a simplified diagram of the system, showing major components, active components, relative elevations, lengths of piping runs, and the location of any orifices and flow restrictions.
Response: Piping and equipment elevations are provided in Attachment F of this submittal.
References
- 1. " Thermal Hydraulic Behavior of RCFC System During LOCA/ LOOP for Byron and Braidwood Stations," PSA-B-98-13 rev. O, September 28,1998.
- 2. NUREG/CR-5535, "RELAP5/ MOD 3 Code Manual Vol Ill: Developmental Assessment Problems," June 1990.
Page 10 of 10
ATTACHMENT B NODALIZATION FIGURES
[ Response to NRC RAI 2.b))
i l
l l
PSA-B-98-13 Rivision 0 Figure 1 Diagram of Hydraulic Model 4:
e-1-
e c.
t e.
k3 a
.1, T
T
- 8:
a a
"o Al'r,1110l *l 21 *l'1 t; ti tltl?1:1
- s j
N i
-3 1
t 5 _, -,
g, r 1111 e
7 i.
r 2
i t
i i
t m..
T v. 1; t ;- -2 ;;
I l
- t; tv 5
iT ti r
I e
s.
il (II d il 2
T 1
3 o
e t
e e
I T
T 5
Y T
T T
r
_N 5 s
s T
T
,e Y
Y V
Y Y
?
Y T
Y Z
T T
i i
i' i i
i t i 1 0T T IT t;
- T ;;
7 :
p T
v ;v ; r.T 17 p
y 7
T 7
7 T
V T
r T
T E
7 T
T T
7 7
7 7'
T_. ;
n h
.1' T-
,t, t
T.
.t
=
eiei-ie, m i e i. i e i r. i aiat i.
I t I !!
.2 =-
1 t., i.
m.3
~
i F
6 of 63
PSA-B 98-13 Rivision 0 Figure 2 Diagram of RCFC Coil Model Nodaliation of RCFC Coil Typical of uptunes 120-124 b s si, 5x in
's i /, ',
's i //,
's i /,',
's i /,,
)
120-1
_130-F 120-3 170-4 130-5 120-6 WN"
'/ / /i>
'/ / //,
'/ / fi,
'/s/,,
120-11 120-10 120-9
_130-9 120-7 Tubes'120'. 60 per pass
'///i>
'f r //,
'/ # /i>
'/ / /, ~,
'/ s /, ',
170-14 ff0-f5 180-16 140-17 130-19 o,Ut SX
</ss,,
</is,,
</s/,,
</,/,,
</,/,,
s sa0-ad trO-r3 1rO-re tro-e1 trO-r0 tat-t, Plenuns Duter surface modelled as specified htc coupled to LOCA/MSLB Containment Temperature Profile l
i I
I 1
1 l
7 of 63 2
i b
1 ATTACHMENT C 4
APPENDIX C TO CALCULATION PSA-B-9813 LISTING OF MODEL l
[ Response to NRC RAI 2.b)]
i i
av.
e styees reft es andel
- this deot has teen esed6f ted te esfleet the gw6desse LS teed).3 insiese se ebesteg
- 1814 doen karaudee the no $sen pipiseg pine scenetenees age pro tesment e
e ita britseh haltish toe 94, l et.
let the S&S ee eeeeee eeeee ee eeeeeeee e ee eeeee eee ee e e ee ee eeeeee e e e ee e e o
e e.
4&oe eter eerde e
e seeeeeeeeeeeeeeeeeeeeeeee esoseeeeeeeeeeeeeeeeeeeeeeeee one etene - dt oes opt ere maj retre t
l 3e1 ts.e s d.1
- 9. e1 3 ace goes seee 3 D3 59 8.d-?
.005 3 ete 4ste 409e 393 39 449
- e. tet e See 4006 esas 394
, 4 3.
1 d.1-e. Set 8
000 4039 4000 See.
de.
1,49' ~ 0 tel 3 3 2000 30ee See -
71.
1.41
- 6. eel 3 See bese 300 -
egel B ee.
1, s.7
- 6. Set 3 le 3946 2006 e
s eesseeeeeeee eeee eeeeee ee seee ee e ee ee ee e eeeeee ee eeee ee ee e
a e
' agney edig yeggeygge e
e e
eseeeeee eeeeeeee eeee eeee ese s eecoeeee eeeeeee eee ee ee eeeee e
let veldf 1300etees 303 we&de 186319e00 e
' 343 woldf 13449000s 104 ve&dt 184314980 384 y 13ee90ste see p 1349eeeee Set aflow) 3 elegetes
- 194 esseev.le41100ee 8300 Leeeev 19416000?
830s teseev lle t tetet ele 7 teseev ID430e004 eles teseev 184330000 e tt ve&df 308e40000
- ee eflow) 334enetet see we6eg 146stette 806 weide 33946e800 894.,idg iew, 3.e.0Leeet 13.eetet we e.i e..e e e e e e s. e e e e s.* e e s. e e e e. e.e ee e e e e e e e e e e e e e e.e e e e e e e e e e e e e e e s e.
e tytp esede e
e e
trip ident&fler e
.Sen.
sereo e69 net.se pump trip.etese generator mese f eed eed esas etese eutist t rip Sea Anttiete power deoey eurve e
- ~ tea pesamure trip fee et and shorgtee inistetten e
5 64 ei and eherghet laittetten s&th 9 e see delay e
sos aus f eed flew lettaation wsth it.e see delay e
- . See bseek tene Aetion e
tot
- t. tee sore trip Ese e*e***********e**e e
e 509 e perv trip losse e o
e een e
e e
803 e * *
- oe'e * * *** e s e e se e
8 603 perv trap 8
4Le duemy trip fee sets etese toeletten valves e
3g3 eeeeeeeeeeeeeeeeeeeeeee e
513 e
e e
e est e sue feed trap togte e See e o
e e
604 e
e e
e
- eey see eeeeeeee e eee ee e eee ee o
948 sue f ood trip e
e e
e 550 epreoles etep
'8 000 e eerde e
seeee eeee eee e eee eeeeeeee ee e eeeeee eeeeeeee ee e e e e eee e seeee e ee eee eee ete t h ee e te null e
19 4 1
ese $le e
e o n e se e e e e e e e e e e e e e e e e e e e e ee e e s e e ne e s ee e e e e e e e e e e e e e e e e e
e hydrodyneess.
nt e e
e e
esseeeeeeeeeeeeeeeee seeee sosa s s e e eeee e e e eeeeee eeee e ee b
e a
esee 100000e eseupply tedyvel flows &
von est l en t da sougn hyd fe 190e191 1.e3 3.0 8.4 0.0 0.0 0.0 0.0 e.e le e
ett 1000200 4 e
t h ee press t oep quel leee301 0.0 34.14 100.0
.00001
- 80003e3 1.
34.14 100.0
.00001 4 9ee303 e.
14.7 lee e 00008 18803 e4 43.
14,1
.100.9
.00001 leee396 44.
34.74 lee..setet leee3 De 19e.
30.14 lee..Looen e
s tee prese s eep past 1000101 0.0 37.3699 lee. e
.00061
- leetael, 1
37.3694 148.4
.40001 309034 4.
14.9 290.0 6ees.
I 1808384 43.
14.1 140.0 feest 1000305 44.
54.5 104.0
< e9001 1300384 F4.
31.38 e 9 100.0
.00001 1989391 198.
31.3eet l ee.
.96401
- 1 ewer the peeeeuree t s ee press t emp quel
- 1890301 e.e 19.01 104.9
.00001 eteeS403 1.
le.e?
lee.e.. t0081 -
10e0361 S.e J19 460,0
.seSe1 i
+
C 2. -
186 303 i.
ai.e i st.e 91 Seesses G.
e.S tee.e
.eepen.
L ee63 04 el.
4e lee.
e setet 1954399 se,
to 5 144,6
.essen 1869300 49 61,0 190.8 00441 54e43 e4 84.
19 07 3 $9 e eeten necess?
194.
19.91 184_
,00941 I
letelet 64.
St.e 100.9.eeeen leP9307 let.
31.9 S ee,.
.Seati sf es eteady etete vele ea4y
- $ es430%
e.8 al.
1 00.8
. 4e40 8
- 19eelta 1
33 104.0
.se643
- 18eeJe3 11.
33, 18e.e
.eeast
- 16083e3 16.
4S 100 0 6etet s
eeen e
141e884 esees se eng1)=e telegen Sesseeste lettestee
.5415 e,e ee steet eedd smell seekstenee te kdv jumetten se mieutete 64 18 &non espacet
- l41e141 tesestate 3e4eeeese
.teit 0.0 1.e seese 1e101e3 leseesset 3D49eeste
.5479 4.0
. I.e33 00439 1910461 19ee84844 36080040s 1.36e4 0.9 3 ett e9039
- 18eresse losese by 16 se 18 Leek header to secouns for etaev emeter flewe 191e181 Itteessee 164eeeeee
- 1. 34e4
- 9. 5 30.46 eesat 1818101 leteetete 104044090 1.3800 36.44 18.44 01040 flag if tee vflew &ntoefece flee 1810361 1
103 16 0.9 c.9 l
eitieset -
3,.e.
e
,j.e
. G ewe
.e e,s.
- 1410181 tesseeeee 304eeeece
.3475 e
flag e1640300 8
e 0 4 ee allow vf lew int f low I
- 19103s1 0.0 i.103,16
. e. s
. 4 9.0 I
- 3. i.
e.e eien.e303 i.
e i.1 243 6
ie.3i.
e 0.0 elettate 11.
1.0319 9.9 9e
- len43 64 31.
e.4 4.9 0.8
- 1918306 33.
0.0 4.0 8.
- 1st eJ 04 43.
e.0 e.e 6,
e 1010391 44 103.15 4.4 4,
- Renesse lese.
143.19 e.e e.
e es... seeees...
He dd la le inen ptping leg a
t e4eest Line pipe e
av 3 64ee61 33 f lows av letenen 1.3eet - se 4e40193
.7479 33 1engte av 1840301 13.8 30 1644303 0e in 194e343 3.000 17 19403e4 3 31870 31 164 e 364 1.81 33 Ameline engte no iteesel 5.0 11 164e693 + 0s.4 33 e
tough hyd die av lateest
- s. teens e.e 33 e
- set f juni f )unt n) 1640403 e.
9.
0 1648903 4.5
- 1. 0 le 164ee03 8.
9.
31 e
fe ww 1941661 de 33 f reake ej -
1e41141 0000 3%
- deactivate eef t andel en tieers 1841191 eelsee 9 1941483 esse 38 10 1941403 441904 al e
flag y t
e dummy av 1941384 4
se, los.e
- e. 80sel S e 13 1 D413e1 4
34. 3 100.4 0.00001 e e 33 3
1641341 e
36.7 108.8
- 4. sees t e 9 In 1841393 4
35.0 16e.8 0.09001 e e 23 e
flag 1 1be/see 164130e.1 e
lilow vflow interf eso flee h) 1841301 143.15 0.0 e.e 31 9
1100804 eetvent englius 119eten 164180043 henessees
. Seat e.5
- 1. 0 01000
.. flee aflev vflew intersees flee llocast 1 34.63 S.e 8.0 1140944 seaweet eng!)un 111e1e4 ' flog iglow vt low interf ees flew 194146403 lettesete
.0844 e.8
- 1. 6 slese 11183st 1
86.43 e.e 0.0 ee 113 eses est eens engl jun 1134101 1843e0001 101000004
, e e st ee 1.0 elect flag Iflev vf low interf ace flew 1139381 1
34.63 8.4 0.0 e
1139006 est vent sneline 1130101 1 >4310003 10e 000006
. seet f.e i.e
$1006 flag af tew vf low interf eee flow i
1139301 1
36 43 0.0 e.
l.
e llettet entwent engljun liteten 144J 30003 18e440000
.0084 0,9 3.e elete fisg aflow ' vflow tesertoes flew e
1544391 1
34.e3 f.e e.
e 1060600 time phpe e
ny letteel 19 e
f lows av 166e181
.4444 15 20ee103 '. eelJe le l
(
.=e e
length av seenedif sed weesten 1 stele 6 s.34 - e teste4A S.523 la R es e 383 8
10
- ente e d asse welues eststreetly env44*d Ifeelee
.343 le 1840346
.5 to e thae length as appeemanate e
taeline sagte av lasse 41 4.8 le e
rough hyd die av 184eest e.Geelt e,e le e
o set d jumf fjuer ej leseees e.e e.e e
e lettede 4 31 e 3?. e
- 49 des band 1968e43 ee 4.0 th a
t eles44 9.6 4.s la e td end othew e
leteteg ee e.e la t elsese e.40 e.16 El
- reeuees telete?
e.e e.e 17 e
Lessees 9.s e4 to e assume atendeed redine etwee eo av 145 teen se la e
echo ej lestien t eos 14 1661103 643e il teelle3 Lees il one ehese les11e3 less la e
flag y e
a sammy av 16s 43 e1 4
30.
104.0 e steel ee$
1991301 a
30, 146 e e.sesel e e le e
flag teles/see 1eS130s 5
e Iflow vflew laterfees ties ej 19e13en.
34.43 4.0 e.e la e
Resee 64 line pipe e
av lesseen te e
fleme av tesenet
. eas4 18 lesenta. et t 3e le e
lengt h nw
- reced&& sed wereten 166e341 e.as a
18e0344 0 Set 13 19e03e3 1.
Il e this sad meet weluse oreitrarily divided 1946304
.303 te leesset
.5 le e this length he approeteate
&as!Lae engle av 1960e03 e.e le e
rough hyd die av neeseen e.eests e,0 to e
901 fjuni f juns aj leseest e.e e.e s
e leestea G.37 e.39 e
- 45 des tend 19e6003 e.e e.s 11 e
1644e04 e.5 el is
- ete eed einew leatees e.e e.4 14 e
1848904 e.45 S.15 le a reg,eeg lesseet e.e e.e 17 e
lesseee e4 et le e eneuse etenderd redaus elbees a
de av teeleet es le e
..he ej sostlet lose se
. 14ellet esse il leelled leet 19 e ao shoke les1863 4004 le e
flog y a
e dummy av 1441391 4
38.
I te. e 0.006e1 eey leslael e 39.
loo.e e e#991 e e le flag 3*1he/see e
1 51300 1
e iflev vf new interf ees flow sj 4081301 B4.63 e.e e.e la e
seisees line pape 8
av 197ecen no e
flowe av le101e1
.eeet Il nettleJ
.4513e le length nw
=
areneenisad wereken leveses e.as e
1stessa s.nas 13 taisses n.
13 e thse and neet volume artstreetly divided note 3ee
.ses te ne7elet 4
Le e that length 4e approssante e
inelano enete av seteset o.e to e
rough hyd die av le7esen e.econe e.e is a
e een f junt
( j une of g -.
leveest ee o.e t
teseosa s.31 e.37 e
'4e deg bend 1stsee3 e.e e.e 11 se Meet
- 9. s e.e 13
- ste red eibwe leieses e,e ee se e
seteses e.15 e 15 18
- redueer 1910001 e.e ee 11 le?otee e.e e,5 le e assume stondeed redtue steen e
te av t e?s ten se to e
eene aj te?ttet 1000 to 1612103 esse as sett aea a cce la e me ehene s e716e3 n oes ne 4
e flag p t
a deoey av s s7130s e
30.
n oe.e o seact eoe t e113st a
31.
s ee.e
- e. 0000 t e e le e
flag 18thetese 141133e 1
If tew vflow anterfees flew nj let1304 te.4 3 4.e c.e le e
([
3ene64 lie...e.
e av n oeseei 14 e
flawe nw lesen et
.sede le 18 0103
.4 13e le e
lengte av e
ed.issed eersio.
e 1431 a.es e
1444343 e.ge s 13 10 e303 1.
le e this end nose welwme are11rerhiy 4&vided p ee430s
.345 Le lesales e
le e late length te oppreelsete e
anehine engte av 14 0661 e.G to e
euwgh hyd die av 10e0881
- 4. eee15 0. 8 le e
f just f jene of o
5 04. eel 001 e.G e.e S
e lessee 3 0.37 e.37 g
see 6eg bend 1808063 e.e ae 11 e
leteste e.5 a.e 13
- ete red elbow 1409905 e.e 0.e le e
1969004 0.16 0.19 1e
- redueer leteest 4.6 ee 11 e
3 0st eet 0.8 a.S la e sessene steaderd redlue othew e
fe av laaleel se le a
seke #1 tee ttet lees le see!!sg 0034 Il tee t n 's leet 15 ene three 19e 1109 tesa e*
e flag y t
a duemy av 1041308 6
3e.
100-9 e. s teel eee Seelaen a St.
109.8 e.gesel e e is e
flag 1elbe/soe 1901300 1
Af tew ve low laterf eee flow h) 19e13e1 34.41 0.e 6.0 le o
e leteece line pape e
kw leseest le o
f l eme av Lees 191
. se te le lesetel
,selle le e
length av etened11eed wereien 14 0301 0.35 e
109e303
- e. gel 13 tee 0363 1
le o ehle and nose volume orbitrer11y divided Leseles
.343 le leessee
.5 le e thke teneth La espresinate ine1&ne engte av e
lessett ee le e
sough hyd die av 1996601 4.eee19 0. 8 le e
e eS L f luni f juar Sj lesseet 6.8 0.0 e
e 14eeee3 0.31 6.37 4
- ee seg bend Leset03 c.e e.e 11 10 488e 9.8 e.e la eetd red elbow lessete e.o e.0 14 e
letteet 6.19 0 le il e rogueer 1998801 e.e e.e 11 e
108090s ea 6.e le e eseuse et enderd redaus elbow e
le av leeleet te le cohe ej teellel toes le lee 1103 seae 15 1991183 neee le e no eheke
. Lee 1143 1904 10 e
f l og y e
a dummy av 1e41301 e
3e.
lee e e.eesel eee lettast e 31.
106.8 e eee01 e e le flog 181be/see leelles I e
iflow vflow interf ace flow n}
1e91301 34.43 9.8 a.e le o
e 13eeees entlin engl jun t aselet lee 41eees 13cesesse
. es 13 1.e
.s slees e
flag aflow vf lew Interf ace flow 13ee201 1
- 34. e 3 9.0 0.0 se 131efoe enll te eng1)un 1118191 14eelsees 131900ee9
. e613 1.0 e
sleet e
flag iflow vflow Interf ace flom 13163 8 3
34 ' &
e.0 e.e e
e 133eese ent lin englian 113e181 levetease 133e000ee
.0911 3e
.5 41000 e
flag Aflow vf lee intee f ece flow
,1330201 1
St.43 ee e,
1330600 eellte emel tua 13 301e1. 19eetease 131e0000e
,5513 1.e
.e elete l
flog iflow ve low intertese flow i
1330301 1
34.61 ee 9.
I l
13eeees rollin ang1)en I.
13e4101 Lee 01eees 1340eeeee
. e413
- 1. 6 6
c 1000 flog iflow vf low intertoes flou 13463e1 1
34.43 e.e e
e 1300000 reti p t po e
av IJeteel Be e
flees av 1309101 satte 1
1396103 000e840 11 134e3 03
. 311 e 13
yy
..a.
,n.
cf
. 130e1 4 e
.se 33 latelft elite 3d 1ength ev 1)##341 e
,1 i
13.30 13.56893 3
11 stee3 3. 4 le
, th1e d. set vote er.Ler.,11, di ieed j
3, 23-13.e3es e
24 e thte 1e.,th le.,,..si te e
nnettne eagle av 1349een O.e he roug% hyd das av 1300001 0 04610 4.9 1
1396403 4.se016. 643911 3 4
)
Lateses, ses t s e,e 1:
i30s. 4 0.04e1.
.. 3e13 33 13estes
,0 615 4.s 3e I
t 901 f jwas f june el lletest.
e.0 1.4 1
- ube the laeteet.
's.4 4,6 13 st ehoe 13eesta 1.6 e9 11
- tube one 1340ss4 -
0.0 0.0 13 13eetes e.S 1,9 13
- sume en lateses e.O e.e 33 s t ubee
- latevef 1.0 4.3 38
- tube ett e
to av 13e1561 - et 34 eeke e) 13s11e1 ' lose 3:
laellet esas &
8341193 1984 14 13811e3 - esse in 1341104 1000 13
' 1301104 telt 13 L3411e4 ' lete 33 13e11e? ette 34 e
f leg y e
a dummy av 1331341 4
30.
100.0 e.eete.t e e 34 1301381 e 23.1 19e.9 9.900 1 0034 e-flag 3.ths/see 13813ee 1 181ew vflew interfees flow sj 1381361 Jo.43 0.4 -
8s 33 hyddie bote e e al 1361491 e.3elle-3. e.
1.
1.
Ja e
1819964 sett ylee e
av 1818991 to fle,.e 1
- 133.iei
.3 it i
131e103
. seceeds 11 331e193
.3116 13 1314194
.estseet 33 13191 st 3118 34
, length av 131 301
,6 1
13143e3 3 31 1310393 5
. 13
- thae and aest welume arbitrarily envided 131e384 3.
33 131430s
.0 34
- lhte length to appraaleete e
lee 11ae engte av
~ 1310001 e9 J4 tough hyd die my 1816088 0.08010 S O 3
1310803 e.9ett$
.e4 3917 13 1319e03
.40615 e9 13 1310064
- 0. 00e18 r 64 3,17 3)
' 1310808
. Seelt 4.8 24 s
- - een. f jual f }unt a) 1319est e.S 1.4 1
- tube eht 131 003 e.0 e.0 10
- tubes 1310903 1.9 G.S 13
- tube she -
131e004 9.e e.5 13 131e40s e5 1.4 13
- tube eh 13109e4 O.e 4.0 32
- e ubee 1314ee?
- 1. e 4.5 33
- tube sat e
fe Rw 1allest es 34 e-eens n1 13111o1 leve 33 1311141 4034 1 13111e3 lese le 1313145 s9Je 11 1311194 nees 13 1311105 e039 13 181115e 10 A0 33 1811107 eaae al e
flag a t
a dummy av 1811301 4
30.
100.e e. 00001 4034 1311391 4
34, tes.e 4.00001 e e 24 e
fing 1.lbs/eee 1311380 1
if tew vflew interfece flew mj 1311381 3e.e 3 0.4 e.e 23 e
hyddie bote e p A) 1311481 4.3911*43 e.
1.
1.
33 13J0099 Dell PLP*
nw 133Seet 34 f
e.
flows av 1J3elet 3114 1
' 1330193
.edetet 11 4
1330163
,341s 13
' 1330164
.6eesee 23 8
133e198 3?te 34 e
length av 1330381
,5 1
1330303 3.
11 6.
gggg3g3
,g 33 e thte and nest Wolume arbstternly ingsded 1830364 3.
23 13343e8 8
J4
- tels length Le approsisate ineline engle sw e
1336401 ' o e 24 tough hyd d6e av 1336e01 4.estit G.e 1
13Je003 0.00616 04 3e19 11 F.
I I'
i
a e
e ~.
l i 330s.3
.seene e6 13
' 3230044 4 Seth5 e4telt se 13340ee. ',eeCle e.e 34 j
e saa. Set f )wa.f f )*me ej sen 0.
s.e
.t ent i
1
{
133ese3 ee ee s
.t e.
j 1230 eel 1.0 0
1.e
.e..
j ii *..be sat salese.
e.0
.e ia 421eete 4.5
- 1. 0 13
- tube en 133000s 6.0 4.e 33 s a ubee l
1330001 n.0 8.5 33 e tube one 9
fe av 1831901 se 34 e
e n n)
]
13311es sees 33 13311e1 etas 1 1311883 t ece le 1331183 esac 11 LJ318 e4 lese 13 14 3110e esas 13 1331144 Lees 33 kJ31101 e420 33 flag
- I a
hamy ny i
1338341 4
Is.
10s..
e.00003 e a 24
)
1331301 4
34.0 360.0 e.00001 e e 34 flag 1 lbe/see e
13 3110e 1
3.f lev vf tee - interf ace flee n)
I
,ial Sei
.e3 9.e e.e 33
,,441.
>.t. e.
.)
1&S leen 4.3911 3 9.
1.
L.
33 124 000 eo11 pip.
e nw 134eedt 34 flowe av 1346141
.311e 3
1340103
.eestes 11 134e193. 5118
&B 134e304
.coeces 33 124etes
.3718 24 length av 13445el
,s t
134 ele 2 3
in A3403e3.. e 13
- thie and nest malene esbatrettly d6vneed 1344304 3
33 2
534e3el
.6 84
- thne length le approotsete incline angle.av i34 ei c.e 4
i
,e n. di.
r
+
latesel 6.40615 e.0 1
1240 43 6.ees15.e43el t 11 134eGel
.40013 e.e 11 13404e4 0 06619.e41411 3 3 -
1349400
. cell 4,e to e
I 90 f }unt f jwar ej
' 134.ee.1 1
e.l 1e n
- tube ens 134 e43 e.e 0.8 10 e t weee 1344903 1.6 eA 11
- tube ont.,
I 134e994
.e o ee la
.i 1.e is
- t e en i34 ecee 414eeed e.e 6.0 33
- t wees 1243 De c 1.9 e.e 23 8 tube sat
c7 1
i
-s le sw 1341 eel et e4 6dDO el 1341341 14ee 33 1341141 s4Je 1 8 3411 eJ ltee le 1341163 8030 El 8348164 leet 13 1341104 6334 13 134110e Lees 33 13411e7 8038 ft f lag g 4
e egeoy my s
1341361 4
39.
bee e
- e. ecet t e e 34 1341301 4
39.8 lee e
- 64001 e e 34 f j eg.141bs/see 1348888 8
Illow wf iee interf ace flow my 1341361 St.e3 0.e e.e 33 e
hydd bete e e ej 4 361,ae.
- 3e146, e.
e.
- i. i. 33 nietee
-u-t e.gous 13 Sele!
13961eeet 140600ees
.0e13 S
1.6
- 1000 e
flag Illow vf inw laterfees flew 1360301 1
le.s t e.e e.e se lleeste eenloue engl )an 13461e1 18161040# 1410edete
.ella
.e
- 1. e eteet
' flag illow vf l ow laterf ome flow 13403e1 5
34.43 -
e.e e-o e
Inteest eet t sut angliun 133e1e1 13361040s 143004460
.e513
.5 1.6 siete e
flag lines eflow baserieve flev 1314381 1
34.4 3 e.e e.
s e
63eesse eenlout eng!)um 13ee101 133616eet 14eesteet
. el13
.e
- 1. 6 elete flag 1(low vf low leverfeee fles 1984301 1
36 43 e.e G.
e e
lleeces ee11ews engt pue 3 30 sten 134 010066 14 e e00ese
,0833 5
5.6 e' tees flog iflom vflow Interf ace flow 13eesel 1
3e. e 3 4.s e
e 14eeste llae pape mv 1400e4%
14 e
11s ny needlen. ell 30 4 146414.3
.6444 14 1ength hw 14083e1
.6 3
- thne length le approelmete 18e4343 1, l e e
- thae and poet relene arbittertly divided 14 0 ele) 3.$
3 1400394 3.6 4
14ee361
.5 1
- thie length he approelmeto 14eea03 e.3ess 4
- tale and aest volone orbitrathly diented 1460303 1.141 7
1460304 0.416 la 14 603 e8 1 4 e 6316 14 e thne longen le approsteet inet tne engle av 14eeeen e.e 13 14004e3 -se.e 14 rough hyd die av Rosesel e.4ests G.e 14 e
e
- 01 g junt f luer nj 140esel e.5 e.S 1
e eneuse standard vedtse elbow 14044e3 0.0 e.e 3
1400963 6.15 e.it 4
- reducer 14 69ete 6.0 0.6 e
1440645 0.9 e.S T
- ete red elbow 14eeted ee e.e la 14e4e97 e.e e.5 13
- ste red elbow a
fe av 14e1001 00 14 e
eene at 14ellel teet
'l 1401163 e&Ee e lee 11eJ 1e00 4 stors of f ekohnng at seducee to 14eit eedilletion 1461101 t ote 13 e
flag y a
a duemy av 1441301 4
17.
100.3 0.00001 e e 14 e
flag Reibe/see 1401380 3
e liteu vf low interf ace fles n)
- i4ei34, ie.63 G.e 0.0 il 1416ece 11ae p.pe 4
nw 1410001 11 f l ows av 1410341
, ell as e 1410103
, use4 13 1ength pv 141e301
.5 1
- thne length he opbrenneste 14 8 e.103 1.1 e 3
- tete and nest valene arbksterfly divteed 1410803 3.6
)
4419144 3.6 4
1410301
.5 1
- ehte lengen le approatsete 3416303 e. 3 613 4
- into end neat volves artst reetly divided 1410393 1.161 9
1410304 e.41e 13 laeline eagle av 3418ett e-o 13 e
e seei.hyd die omsyn av t
i41eeel Ge i3
. eti
( 3.nf f,uor no teest 8.8 ei 1
- essene atendard redsue elbow 3410913 ee G.e 3
1410001 8.16 e 15 4
- reducer 161e#44 0.e ee 4
1416e09 e$
e.5 1
- ste tad elbow
u i.. -... _..
2 2
I
[
b t
I p ipes e.e e.e 13 e
. fe ey le t teen se 13 e
esas ej 14111e1 ' nees 3 1415153 ee3e 4 1411103 Rese 4 e ao shotang to seescer 1411103 leet la '
t het p t
a dummy av 14113e4 4 te r
&#e. e 0.49401 e # 19 flag lethe /see e
t 1411399 4
i if tee vi tew intesfece flew of i
14113e1 30.43 0.0 0.0 13 8
e le asese line pape av 143ece!
13 e
f some av 1
n3stes
,et:38 4 14301e3 esse it 1ength - av I
143elet
.e 1
- this loneth le appresseste s43 ele 3 e.Se33 4
e take end nest welame arbstrorsly enwseed i
' 143 ele 3 1.149 7
543 ele 4 6.419 13 Laessne eagle av teateen e.e il reueh hyd die av 143esel e.eeele e.e la e
e set itenf Ijoss op 143esel ea s.0 1
e eseuse eteneerd redtwo othew 1436983 9.e 0.0 3
1430sel
- 4. le e.19 4 e ro6as.or 1434904
- 9. 8 e.e e,
l ineste e.0 e.e
. e,e. einew 1430904 e.e e.e ia e
fe av 1431 eel et 13 -
e sehe ej 1431 n 01 ' esas la 1431181 leet 3 leJ11e3 Ge3e e 14311eJ 1ese 4 ene ensee 14314 e B 1984 13
- a flag y t
a dummy av 14313e1 4
19.3 106.0 e seeet e e 13 e
flag talhe/see 1431300 1
e I f lev vflew &aterf ace flew e) 1431341 3e.93 0.9 9.9 13 e
e 1434600 11ee pipe e
av 14 3ee01 13 e
flowe av 1439101
.9913e 4 le3 ele 3
. ee4 13 e
l engt h av 1430361
.e 1
- thie length to appresteete 143e303 9.3933 4
- thne end neat volues orbitseelly dsended 1434303 1.16?
?
' 14 303e4 8 41e la 4
taci1ne engte av 145esel 5.0 1B
<e rough hyd die av 14 3esel e.eeste e.e 13 e
o ett f juni f )unt a) telesel e8 -
8.0 1
- emesme etenderd redaue 41bew 1410ees ee e.e 3
143ese3 9.4e e.Le 4 e requece 1416e04
- 0. e -
e.o e.
p 30e00 e.e e.e
.es. red.1-
.4,0004 e.e e.e
,3 e
fe av inieu et n e
eehe sj nanu Gut a 1431151 1000 3 iunu Gut 4 iu n u itse e e-eme s
tune 3 lose la t
flag y e
a dumey av l
1431301 4
11.
lee.e e eeeen e e 11 flag leibe/see e
t ellies 1 e
iflev vf lew Interf ace flow at 1431301 34,63 9e e.e 13 e
e 144eece line pipe e
av 1440061 13 e
flowe av 144 stet. ell 3e 4 i
144 ele 2
.0004 13 length av e
344e301
.e 1
- tate lengts te appresseste 144eje2
- e. 3013 4
e thne and neat wolves arbitternly diended 14443e3 1.157 1
5440304 0.41e 13 e
inen-entie av n4uu 9.9 n
reu,h hyd die av e
1440401 0.secte e e 13 s
e Te1 f)unf
$ jEnf n!
k44etes e.9 ee 1
- enouse etendeed sensus elbow 4
1440e03 e,e e.e 3
144ee03 e.le 4.11 4
- reducet nueo4
..e 0.9 t
1440008 e.G ee e
sete red elsew 144eece F.e 6.0 13 e
fe av 1441093 ee 13 e
teht sj
c7 i
1441144 eele 13 I
l 14414e1 late $
j i
14t1103 ee8e 4 l
1641103 1ese 4 see ehmte t
1441303 leet 13 e
flag
.p t
e. duesy sov 14413e1 4
33.
nes.4
- e. seets e e la I
e fleg lanee/see l
1441394 1 l
e
, 34 63 ee 4.0 33 a flee wilow toteef see flee a) 4441381 e
e e
30.e800. esiie.e en,ii 1460446 14e01960s 150900004 east 1.0
.e theet flog I. flow vflow latertees flew j
. e.03 e.0 e.e i
. 69301 -
44eeece osalows engilva
.ee s t 1.9 3
elete I
14delen 14 010044 194044943 1
flag & flee vflow anaerfees flee j
1489303 - L 36.0 8 8.4 4e et 14?etes eetious eng1)en 4419101 143elseGG 160030003
- i. e444 1.e 5
eteed
,le, ifie.
.f l e.
erf ee.,ie.
1
.4,035, l
,4.63 e.0 e.e I
144 esse e as taus emeijwa steenen teleteses tseeleses
. ee st n.e
.6 entes 1
e flag ifles vinew interfose fles
]
lete391 1 38.03 0.0 e.
e 14essee - eetleue enellen 140enel 1e4014000 49eneeses
. eese 1.4 4.5 91849 flee Iflow vflew interiese flem I
1499348 3
3e.43 4.s o.
es
- 1De0383 3.045 t
- l be elel 3.31410 14 819443e4 5 66 13 I
1804000 lbne pape.
i e
av 15e6091 31 e
fleet av 194e141
.447s 31 1404143 1.3e44 31 8
lenett av ettetaan 1.4847 8
'lleenen 4 88039 3
- t tee 343 3.31418 4
- 1540304 - L. 44 315 9
lleslet 3.31475 3
1560303 5.68 4
18493 J3 L.4 6
188e344 0.8 il lleelet
- 1. 9 31 1980386 14.0 31 e
lee 1&ne engle av 4500481 468.4 e
1860643 ee 11 1940403 et.e 31 1 A404 e4 e.e 31 eeugh hyd ele av Ll#Geel e.seelt e.e 97 e
e een tjunt f juns af 180o003 9.
e.
4 19800e3 0.30 e.34
$ ele elbow
- 15eessa 4.0 e.e 5 *neglese vestatence llesee3 6
8.
' ne 18e8604 c.36 e.20 11 ola elbow e160ee44 ee e.e 11 *eeg1eet elbow reeketence 1500989 8.
e.-
3e e
fe hw 1501es1 es 31 e
eens af 1seniet sete 3e s ed ref t opston e
' 1661104 9e1000 34 1931363 006038 et l' en t e $ seleet se flas y t
e eummy av totiet 4
30.
nes. e e. seest e e 33
$4385 4
to.
lee.e 8.00001 e e IT flag nelbe/see f 501340 3 kilow vi t ew interf ace flaw n) 1901301 403.15 e.e 0.0 36 4
9410000 a n nt t edpwon flowe 3 vol ett Anel de rough hyd le 3050101
- 1. e3 1. s ee e.e 0.9 0.0 e.e e.e le
- Dt 3650300 4 t hee eenp quell 3090391 4.e 23.3044 100.4
.40001 3664303 18ees. 33.35ee 106.9
.e0001 Seteaen e.e 16.3 104.9
. Sees t 1964303 lee.
n4.3 10a.e
. 0000 t a 3elese3 6.
14.3 100.0 8 34403e4 45.
14.3 lee. e
'804430s 44.
3J. 3et e lee.e 8 304e304 nese.
23.3609 100.0 e
e 3elleet mus es re engliga 3816191 leestsees 301606000 5415 e.9 e.4 estos 301elop 1900:0400 346400000
.4415 35 0.4 00039 3010141 theeletee 18Se00ee8 1.3604 41 4.5 0e020
. Jelenet 19e010000 344e60000 1.3604 41 e.5 41600
- edd reverse flew losese se mell on discharge enJe
+ 3 ele 151 15e010000 3980600o6
- 1. J4 64 41.
- 13. e4 41099 9
flag tilow vflee taserfees flew 1816301 1
les 15 -
e.e 0.e ee e
.. hose scruotere Amput e
opener 44 dose
,a..=
(
l e
en e,
,ee 8.
100t.eeed.
)1341969 39 11 J
1
(.83195433 e..................
i e.ea $1ses s
l Loreta.e ele eers.a flee.
I 45341169 4
3
- e e4 6ets eeen toterven ist 8 1134Il01,00640433 le e.........................
..oe,eett ien date I
ene,. s let e 1
i 41301891 4-10 e.................
Sheet dietettutten dets 8
eeute.e 1st.8 staelse
.e.
4 I
i siettien teoreretu,e t.
i to.
s e..
i t...
1 j
s..iati.1.....
81ef t be eerde Dv1 1
t ype es curt 6 33 e2 e.1.ee 1
su.r f eyl.ht/are 113etsei is. e43 i.
1 aia iset 13 14... lose 1 e
1a.
3 as e............................
- right be eerde ice t,,e eu,f tyi bt et rue..
11301441
+l 99954 3003 e
19.436 le 41291 93 1 0800 3003 6
19.836 at
- 11291491 l theet 1991 4
10.838 10
- 11201443
- 1 $904 1961 e
19,438 39 e.......................................
- sentee data e
nousee munt Idh a dh struet.
113417e1 4
e.e e.5 S.4 as e...............................
- 1ef t hadery eerde beh oe bli hir gridt grade greneef grdneet Inf struct 8 18301 61 e,
19.8 14.0 1.5
- 1. 8 0.8 4.0 5.
38 e..........................................
- raght boundary eerde bdine h1f har ge hdf grids ged;est grdlear lei esswet 6 14341301 e.
1 e e e e e e e e e e e e e..e e.9.9eee e eeeeee e 0.e e ee.e.8.e.e.8 16 1
1 0.0 5.5 1.
39 e
eeeeeees.eeeeeeeee e
agenere! da.te e
e.
lef t.31. 8 3 3 e,
,ee se
.ee r..
I i s tii.e.
3 11 3
1 i
d
' seek flage 1oestion fit fesses f'.ag 11311186 e
3 e.............
emoeh dete eeen latervel tat 4 11311191.00640433 18 e.......................
^ time date 8
eney. $
tat 8 11311301 1
19 a.........................
ehest dastettutten date oeuseo nnt g 41341301 S.6 19 s.........................
- 1alttel toeperature date t oep.
Anu e 11311401 138.0 11
- 1ef t be eerde Dv1 ine t r,*
eurf ey! ht/are struet 8 11311601 12103008 e
14.6642 10 1311440.4 leset 1 11311683 4 lette 1 0
14.3563 at e.........................................
evagne be eerde e
twe les t ype eurf tyi he st reet 9 11311401
-1 scene 3esa e
19.e36 is 11313403
-l etet 3002 0
19.53S 24
'11313691
-1 Gedet 1894 4
19 434 10
- 11211493 1 9096 teel 0
19.835 at
- eauree date eeutee eult Idh rdh et tuat 8 11311181 e
6.0 0.0 0.0 at e......................................
- lef t boundary eerde e
bda me hit kle gridt gener gedloof grdleer Abd st rust 9 I
1 81211464 4.
10.0 10.0 1.6 1.6 9.4 0.8 1.
30 e......................................
- right boundary earde bdi se bli ble gradt grier g dleet grdleer Ibf struet a 31311991 S.
10 1
6.e e..e e s e.e.... e e e.0.e e e e e e.6. 5ee eeee.e e eee.e e s.9. 8e e e e e e e e e e.0. 0 1.5
- 1. S 1.
It e
i e
i
- genotel date nh ny goo se left enerd.
11331ece le 11 3
3 3, e2196e 33 l
- esen fit ge 8
Leestion flg f ormat flag i
114311e6 e
3 l
e.........
Someh det.
seen intervet ist 8 11331163.68649633 le e,.....e......................
e.e p ogggen date t.
eemp. g ges 0 11231261 1
14
- looet distribution d te
- e. urge gag g 41221301 9.e le e........................
- tnitten see,.reture este l
i
m
_m Ce tI e
too,..
i.e.
1133140%
354.9 18 emeeeee
..eeeeeeene ee m..
ewe....
6me nee.eeeee mose.e meeeee.meeeeen.eeeeeenee..eee e1636 b6 e&#de e
, bwl
{se t ype aget ff! bt/are etrust 9
-81331601 133436094 18046 &
3 46.5843 te 11331543 133144494 leged 1 0
14.5563 36 ee mee.e.ee
.eu.....mm enee.me
.e.ee.
f esight De desde hwr Lee t ype egef syl ht. etriset S 31331441 3 Setee 8093.
6 19.434 le 11333663 31 Stes 3003 4
19.635 34
- 113314#1
-1 008se 4004 e
19.435 19 e 11331683 19408 - &#es 6
19.839 as ese.ee mee...mesee
.ee.m.meme ee.neeee.
- se.
. mm
.eeese.eemee.
meeeemm.se.
e.e esenerse date e
eenesse assit idh seh st reet 8 11333906 e.
6.3 ss 3.s at e
..eeeepee.
esommem..w.m..
..mme,..
elef t beundary earde e
hdies bli
' ' hi t gradf gr&dr greloof gedioer Ibf struet S 11331891 8.
10.0 18.9 R.5 1.8 90 9.4 1.
30 e eu....ee eeem,u e.
e
..ee
.eme. nee.....
.e o ight benandery eerde r
e hd14e h15 h!r gridf grier gedleef greiser 1bf otswat 8 11331961 e.
48.8 14.0 6.5 3.9 50 0.0 1.
30 g e eee ee eeeeee e eee eeeee e ee e eeeeee eeeeeen e eee e eeeeeeeee eeeeeeos egeneren date i
e na np gee se lef s weerd.
11391890 as El 3
1 0.93196633 e.. eosseeeeeeee.. eeeme
...m..
eeeen flage -
e looetten fle format flag 1133418e 4
3 e.e e.e.
..m...
ee....m.o...
eeeen date a
meeh intervel 1st 8 18331188.00944433 19 e.
ee.....
.eeeee ee.mese..m e
- 44ee data e
esep, 8 Let 9 11333391 1
10 e eeeeeeeeee.w
.ee o.ee.a.e mne..
eheat dietethulten date 1
e eeutee het 4 1
11331341 0.4 la
]
e..m..,.....ee.....meom....m,ne see
)
. lett i. temper.t.o te e
.ee,.
Lone.
lian4 1 no..
1 e..ee.ee ee eee..
.......e.....o.
.e...ee e......mem.........e e
..me e...
. ene.
...m.e elett be eerde e
bv1
&ne t ype eurf syn ht/are struet 9 i
11331901 13 3936e95 10000 1 9
14.5643 15 I
11331993 183140004 19004 1 8
16.5543 39 i
ene...neen.
m
..e.e.aeeme....
e.eee
..eem m.
ettsht be eerde
)
e e.,
t.e t y,e auf eys ht
.trun s
$ 13 31601
.4 90009 3063 0
19, d 3 S 30 11331493
) esse 3003 4
19.535 Se
- 11331661
+1 00000 lef t 5
- 18. 8 )$
le ell 33ne03
+1 Sete 1991 0
19,635 30 en.ee....ee....ee.........m.....mee.....
e......een...
.me e..
..m.
mmne....
...eme eeuures dose l
e eeutee eiunt '
Idh rdh steuet 9 11334901 e
0.9 9.0 0.0 34 em.m
....e eme.ee........e e.u me e eme elett honandery eerde e
hdian hit hir gradi ' grade grdleaf godlear th! ettwt 0 1135140n 4.
18 0 le 8 1.9 1.l S.9 4.0 1.
Je e a ma em...mee n....ee......mm.......mee
.e s
- right boundary earde hd a ae his h1r gendt gr ade grdleet grenser Ibf struet 8 11331981 4.
10.0 16.4
- 1. 6 85 4.8 0,0 1.
3e e ee eee e e ee ee eeee e e eeeeeee e ee ee eee e e eeeeeee eeeeee eee e ee e eeee es
- generet date nh ap g.e se lef t esord.
11341406 30 11 3
3 4.83194533 e e.e eee.......me m..e
..e m.....
seesh flage leesttee flg forest flag e
1134115e e
3 e.......m.ee...eem....m...
- mesh date e
seen latervel 1st 8 11341101.50840833 18 e.e.ee.
nee.e.eee..................
esempnestnen date e
eeep. 0 A nt 8 11341301 1
10
- me..m....mm een em mewmee.
eheet dietr14etion date eeusee int 8 1134139%
0.0 19 eee.eee
..neeeeeeme e....une m..
ennat141 temperature der.e e
g eop,
int g 11341491 130.8 11 e ee e.e..eeeeee..eemoeemose.emeeeeeeeee.....e ee..
u..
e es se...o.eeeeeeeeeee..
ee...
e...eesse.eese.eeeeee eeee elef s be eerde e
tv!
& ne t ype surf eyt ht/are street f 11341591 1340390GG 100001 5
46.5443 le 11341868 134140000 10000 1 9
16. l$4 3 at eenee...me...............mose....e oright be eerde evt A ne t ype surf ey! he etruct 8 11341481 1 se 648 3003 9
19.e ll 15 6
11341603 8 9966 3903 0
19.63S 30 e 11341633 1 043e4 feet 6
19.436 10 ella4lsea 3 6094.%961 S
19.838 38 -
- ee.......m..e e meeno m e...es....eee.e e.......eme e e...mem.m.
m....mm
- eourse date e
sauree eult idh edh strust e 1814179%, e s.O eG G.4 30
c:; i 13.
ee....e..............e.e.....e.e..
elsis bowedery esteo.
hit gendt ' geser ged3eef pee 3ess ter otrwet a besee. Als 1434%$81 9
38.0 8,6 4.8 8.4 '
4-0 1
34 e e....... 4 0. 0
.......e.........e........e...
- stynt ^
y verde e
besee elf 44 t genef grier ' geeleet gr61eer 1bf st reet e bl34L995 ' 4 89.4 10.9 1$
- 1. B.
- 9. 4 '
9.8 1
30 eee e e eeeee ee eeeee e eeeeeeee eeee eeeee eee e eeee e eee eee e e e eeee e ees e
e+
n heet eraustere theneel peeperty date e
e80ep tatece type esed dets f @reet e
sete*6el type fief flag 3914416e set / tens 1
1 341s4101 331.31 34199101 '
45.4 36194181 30.9 seu.41 b/ht-i-f t 39104184 8 ~ 53174e-3 ese.ab b/see-0-f t 241481h4 S n,8488 see.....
.....e.e.
es.............................e
- t ehnee seeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen seeeeeee 36308199 t eep 39340181 9.
lle.
593e8103
- 1. 8 14 9.
36300143 3.8 let a5 303e4104 e.9 330. 7 30368166 4.6 339.8 34366104 St. 341.3 39360L97 al. 303.5 34306189
- 34. 354.1 39309199 31, 365.8 Statelle 8 9. 36d.9 30309111 5. e4 363.T e
3e340344 hte-t 34304388 6.
3.171e. n 34390303 1.e4 3.711e.6 est360301 9 3.717 834396303 1.e4 3.777 e39360351 9.
3.717e 4 -
e36280303 1.ee 3.777e-6 elet 9/heef L3 has 30364441 4.
1.34443-4 34304393 3.e4 8.3446e-I este b/hr f t3 hee e38399361 4.
S. e P44e-1 e34398303 1.e4 0.4 6444-5 seeeeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeesesse se e
o e er.d of input doet
- pr*bles eq e
e e
eses seeee eee ee e e eee ee ee ee eee e eee s te sese ee ees see
+
I
~_
(
ATTACHMENT D i'
1 APPENDIX D TO CALCULATION PSA-B-98-13 1
MODEL INPUT DESCRIPTION AND SUPPORTING CALCULATIONS
[ Response to NRC RAI 2.b)]
I R
i i
i l
i I
l l
PSA-B-98-13 Revision 0 Appendix D - Model input Description and Supporting Calculations i
a J
\\
61 of 63
6/
Byron /Braidwood RCFC SX RELAPS Model Description Volume =100000000 Type =TDV
==
Description:==
This volume represents the SX pump / piping system up to the 16 inch piping feeding the 10 inch inlet side header which feeds the fan cooler, A TDV is used to provide an appropriate pressure boundary condition allowing back flow to occur during void formation in the RCFC coils. Experience during the development of this model has demonstrated that this pressure boundary condition is essential to prevent numericalinstabilities from occurring. Use of a TDJ in conjunction with this boundary leads to an apparently too-stiff matrix that is unstable even at extremely low time steps. Therefore a pressure boundary was utilized in conjunction with a normal junction to initiate flow coastdown and simulate pump start later in the event.
Key Features: The pressure is set at 21.9 psia at the initiation of the event. This was determined by trial and error to yield the desired steady state flow of 1325 gpm through the system. Pump trip and coastdown is simulated by linearly reducing this pressure to 6.5 psia at 6 seconds, starting the decrease at 1 second. [6.5 psiis based on 14.7-(409'-390')*0.4335] Pump restart is simulated by raising this pressure over a 1 second interval, at 43 seconds (time of SX restart per vendor containment analysis timelines). To ensure a rapid void closure, this pressure is raised to the nominal pump discharge pressure corrected for elevation head and allowed to decline to the steady state pressure over a 20 second interval. This value was selected to yield a pressure sufficiently high to cause rapid flow and void collapse, and then decay to demonstrate that single phase flow would be re-established. Note that the nominal outlet pressure of the SX pumps is 180 feet of head, and flow through the RCFC is regulated by throttle valves. This model deliberately ignores the throttle valves for two reasons,1) voiding is initiated earlier by starting at the lowest pressure possible, and 2) voiding is maximized by simulating the least resistance in the connecting piping. Calculations supporting the pressure are provided in the following Mathcad worksheet.
D7 Definition of SX Pump Startup Forcing Function This worksheet provides the calculations and logic used to define the TDV pressure history utilized in the RCFC load calculation. The basic approach that is used is to take the rated pump head and correct for elevation losses and pressure drop through the strainerr. The resulting pressure is then used as a peak value in the inlet header pressure specification. Since the modelis developed to maximize voiding and doesn't include pressure drops associated with throttle valves, the maximum pressure is specified and reduced to the nomimal pressure used to balance the model at design conditions. This reduction is performed over an interval of time sufficient to ensure that the dynamic effects are t>ounded as well as to demonstrate that single phase conditions will prevail following the return to nominal flow condition i
'Z
= 333 feet elevations from attached sheet sxpump Zlake 2390 feet Zrefchdr :409 feet Pphead :: 180 rated pump head in feet, ref. Byron SX system description, ch 20 Strioss :3.5 psi strainer loss at normal flow,' ref. Byron SX system description, ch 20 p :62.4 density of water at standard conditions (Z lake - Znpump)'P gg;p = 180 p _ 3 gg
_ (Zrefchdr-Z sxpump)'P g 144 144 144 1ORP = 80.967 psia j;
i
B 2_ A BRAIDWOOD PIPING AND EQUIPMENT ELEVATIONS 1.eaend OUTSIDE CONTAINMENT.
INSIDE CONTAINMENT CONTAINMENT PENETRATION DIMENSIONS ROUNDED TO NEAREST INCH
& REPRESENT TYPICAL ELEVATIONS 10" 7r EL 397-5" EL 395'-5 $4"
}-f $~
4-
/
/\\p 7
4-EL 395'-5"
-f S-4-
4-EL 397-4" EL 3970" Y
EL 395'-2ss" EL394'-2' EL392'-21a"
/\\f Essential
}7 4-4-
EL 392'?
4-J f
4-EL 394'?
Cooling
~EL391'c EL 3890 #
l7 l7 4-4 -- EL 380' 0" 4-7 4-EL 391#
ELEVATION EL 387M EL386'M
_ 390'#
(_
/
f 4-EL 385'-9" 4-p 4-EL 387-9" EL384'-T EL 382'-6" 4 ---
/
4-EL 387-6" 4-
/
4-EL 384'-7" j---
E5380'-00" Service Water Coile EL 380'-00" Service Water Coils y
1VPO1AB & 1VPO1AD 1VPO1AA & 1VPO1AC Typical right Hand Assembly Typical Len Hand Assernbly EL 388'-8" O
EL 387 Note:
- Pum, EL 384'-0"
'j It apples to both Units 1 and Unit 2 isxcep
,7
.7 l EL 387-T EL 384'-0" j
AFW Engine Driven Cooling Water Heat Exchangers Pump l ' 1SX01K & 1SX02K
~
EL 387-7" EL 387'-7" T
l f
EL 386'-5" EL 386'-5" Condenser &
Condenser &
Cooler 1 WOO 1CB Cooler 1 WOO 1CA l
EwTu[.wvces W ACQmponent Coo 3}ientEs l
w.
EL 330'-7" l
l EL 335'-0" p N
EL 339' 0" EL 332'-10" EL 330'-10" Essentral Service Water Strainers Essential Servce Water Pumps
b3 Junction: 101000000 Type: Single Junction
==
Description:==
This junction provides the connection to the inlet supply header piping. Loss coefficients were calculated for this junction to represent the minimum number of fittings in the -
shortest run of piping. Since this piping run is shared by three other coils,'a multiplier to account
)
for the pressure loss is applied. Details on attached Mathcad worksheet.
1
.i.
s
Calculation of Reverse flow coefficients to be applied to By/Br RCFC model These loss coefficients are based on S&L Flo Series Model data contained in Calc 90-0060 rev 0, and represent the minimum flow losses that would be incurred to get from the 10 inch riser back to the 20 inch header, where flow could potentially split.
The minimum piping length is 138.85 feet of 16 inch piping (node 670), and contains 3 LR elbows and 3 45 elbows. Based on Crane, p A30 the pipe length will equate to a K of approximately 1.4 ft :.013 K1r90 = 20 ft g 45 16 ft Ir Ir90 = 0.26 K tr45 = 0.208 K
- 1.0 sudden expansion K
- 5 sudden contraction ex sc.
K rtot : 3 K 1r90 3 K 1r45 + K KRot : 3 K 1r90+ 3.K tr45
- K ex se K
= 2.404 K
rtot Rot =1.904 need to multiply the loss since the model uses velocity calculated for one coil set, while the header services 4 coil sets K
- K 16 K req = K tiot 16 req nor K
= 38.464 feq "
req exhaust piping losses, based on node 561 149.5 feet of 16 inch piping with 6 LR elbows K etot = 6 K 1r90
- K K retot = 6 K 1r90 + K ex sc K
= 2.56 K
= 2.06 etot retot K cxeq ' K 16 K rexeq " K 16 etot retot K
= 40.96 K
= 32.96 exeq rexeq
_. ~_ -._
br Volume =104000000 Type = Pipe
==
Description:==
This volume represents the 16 and10 inch diameter supply headers to the RCFC.
10 nodes are used to represent the 16 inch piping, with a totallength of 138 feet. It employs 12 nodes to subdivide the 10 inch piping into approximately 3 foot lengths.
Reference:
Braidwood Iso Spool piece dwg no. SX-66, lines SX 66-1 and SX-66-2. The 16 inch piping is assumed to be horizontal and is based on the Byron SX Flo-Series model.
Key Features: Note that no losses are modeled in for valve 1SX022D. This is intentional to minimize the overall friction losses. This modelis being set up to maximize the extent of voiding and minimize the time it takes to initiate void generation. Adding additional friction here would effectively raise the TDV pressure by the pressure drop created but would delay initiation of void and throttle the pump restart. Therefore it is conservative to neglect this loss. Choking is enabled at the junction between the 10 and 16 inch piping.
l l
i d
4 F
l
i i
h4 Junction: 110000000,111000000,112000000,113000000,114000000 Type: Single Junction
==
Description:==
This junction provides the connection from the inlet supply header piping to the individual coil headers. It is the same diameter as the coil header. The losses associated with the transition from the vertical header are those of sudden contraction (forward) and sudden expansion (reverse) of 0.5 and 1.0 respectively, Key Features: There are no special features selected. Note however that the ability of the code to allow connection to multiple faces of piping volumes is utilized Additional losses could be added by selecting crossflow junction modeling, but this has been intentionally not done to minimize the overalllosses for the same reasons stated previously.
4 l
I
. _. _. ~ _..... _...
b7 l
Volume =105000000,106000000,107000000,108000000,109000000 l
Type = Pipe
==
Description:==
This volume represents the horizontal section of 4 and 3 inch diameter supply headers to the individual RCFC coils. It employs 19 nodes to subdivide the piping into three 6 1
node segments to allow calculation of piping segment forces. The last node is a very short node that connects into the RCFC coil. No forces are calculated for this segment due to its short length.
Reference:
Braidwood Iso Spool piece dwg no. SX-66, lines SX 66-1 and SX-66-2 Key Features: The only losses associated with this piping are due to fittings. The K-values are Crane based.
l t
l i
l l
l 4
l
7 l
l D2 i
l s
Junction: 130000000,131000000,132000000,133000000,134000000 Type: Single Junction
==
Description:==
This junction provides the connection from the individual coil headers to the coil l
plenums. It is the same diameter as the coil header. The losses associated with the transition from the vertical header are those of sudden expansion (forward) and sudden contraction (reverse) of 1.0 and 0.5 respectively.
Key Features: There are no special features selected.'
1 l
l l
6
.~
hl Volume =120000000,121000000,122000000,123000000,124000000 Type = Pipe
==
Description:==
This volume represents the plenums and tubing for a single RCFC coil unit. Note that heat transfer is modeled for these volumes. Each volume represents 60 tubes, and treats them as two sets of 10 foot U-bend arrangements with an intermediate plenum. The coils are assumed to be completely horizontal and no vertical displacement is modeled for simplicity. The actual vertical displacement in the tubes is less than 1 foot in actuality and is considered negligible with respect to this analysis.
Reference:
Carrier Drawings 28SW405613, 28SW405623 Rev B,28SW405593 Rev B, and Mathcad calc sheet for RCFCs tubing model(pages attached)
Key Features: Note that the counter current flow card has been entered for these volumes to provide the junction hydraulic diameter based on an individual tube diameter. This is being done to provide the appropriate interphase drag correlation input. Heat structures 11201000 through 112410000 are associated with these volumes to provide heat transfer modeling. HEM choking is allowed at the connections between the coil tubing and the plena.
s
-.. _.. ~
D/O Junction: 135000000,136000000,137000000,138000000,139000000
. Type: Single Junction
==
Description:==
This junction provides the connection from the individual coil headers to the coil plenums. It is the same diameter as the coil header. The losses associated with the transition i
from the vertical header are those of sudden contraction (forward) and sudden expansion l
(reverse) of 0.5 and 1.0 respectively.
Key Features: There are no special features selected.
I i
R i
-._,.y.
b//
Volume =140000000 Type = Pipe
==
Description:==
This volume represents the horizontal section of 4 and 3 inch diameter supply header to the uppermost RCFC coil. It employs 14 nodes to subdivide the piping into two 6 node segments to facilitate piping segment force calculation. The first node is a short run node for which forces are not calculated. The last node is the vertical run to the 10x4" reducer that starts the standpipe collecting all the coil discharge flow. This node is added to the 10 inch head piping in the calculation of the vertical segment thrust load.
Reference:
Braidwood Iso Spool piece dwg no. SX-63, lines SX 63-14 Key Features: The only losses associated with this piping are due to fittings.. The K-values are Crane based.
I l
I I
4
- ~ _. _ _....
l
\\ /2 1
Volume = 141000000, 142000000, 143000000, 144000000 i
l Type = Pipe l
==
Description:==
This volume represents the horizontal section of 3 and 4 inch diameter retum l
headers from the individual RCFC coils. It employs 13 nodes to subdivide the piping into two j
lengths for segment load calculation, The first node is a short run for which no forces are j
calculated
Reference:
Braidwood Iso Spool piece dwg no. SX-63, lines SX 6312 and SX 63-13 Key Features: The only losses are due to fittings. The K values are based on Crane methods.
I i
)
)
l l
l i
i I
l
b/3 Junction: 145000000,146000000,147000000,148000000,149000000 Type: Single Junction l
l-
==
Description:==
This junction provides the connection to the exhaust header piping from the individual coil headers. It is the same diameter as the coil header. The losses associated with the transition from the vertical header are those of sudden contraction (forward) and sudden expansion (reverse) of 0.5 and 1.0 respectively.
Key Features: There are no special features selected. Note however that the ability of the code to allow connection to multiple faces of piping volumes is utilized. Additionallosses could be added by selecting crossflow junction modeling, but this has been intentionally not done to l
minimize the overall losses for the same reasons stated previously.
l l
l l
l l
l i
I -
(
t 4
i s
f e
e
O/k Volume =15000000 Type = Pipe
==
Description:==
This volume represents the 10 inch diameter exhaust header from the RCFC. It employs 27 nodes to subdivide the piping into approximately 1 foot lengths. It models a U-shaped geometry running down from the coil exits and then rising to the elevation at which the 10 inch pipe tees into a 16 inch header. The 16 inch header is represented by another 10 nodes, and is based on the shortest run with the fewest fittings. The piping section between the elbows is represented by 6 nodes to allow a horizontal load to be calculated. The horizontal distance is assumed to be 3 feet, based on discussion with the structural engineers.
Reference:
Braidwood Iso Spool piece dwg no. SX-63 Key Features: No fitting losses are modeled in this line, other than in the 16 inch header, to minimize the potential pressure drop and allow the maximum void generation. These losses are compensated for the 16 inch header carrying three other coil flows. The losses are calculated in the worksheet attached.
e a
'b / f '
J Volume =30500000 -
Type =TDV
)
==
Description:==
This volume represents the SX pump / piping system exhaust boundary condition.
.)
Key Features: The pressure is set at 14.2 psia throughout the event. This pressure represents the static pressure available from the nominal cooling lake level for this elevation. Note: the RELAP model was built from iso-dwgs and exhibited a height difference from inlet to outlet of
-17.85 ft. The outlet pressure is then 14.7-(409-17.85-390)*.4335 or 14.2 psia i
a s
y
- 1 I
J 6
6
?
b 14 l
1 l
Junction: 301000000
, Type: Single Junction l
==
Description:==
This junction provides the connection to the exhaust header piping connecting to the lake. Loss coefficients were calculated for this junction to represent the minimum number of 4
fittings in the shortest run of piping. Since this piping run is shared by three other coils, a
- multiplier to account for the pressure loss is applied. No reverse loss was appnsd to maximize L
the Mallback loads" that were observed to occur. Details on attached Mathcad worksheet.
i l
I l
l l
t 6-
b/7 Calculation of Reverse flow coefficients to be applied to By/Br RCFC model These loss coefficients are based on S&L Flo Series Model data contained in Calc 90-0060 rev 0, and represent the minimum flow losses that would be incurred to get from the 10 inch riser back
~
to the 20 inch header, where flow could potentially split.
l The minimum piping length is 138.85 feet of 16 inch piping (node 670), and contains 3 LR elbows and 3 45 elbows, Based on Crane, p A30 the pipe length will equate to a K of j
approximately 1.4 l
f =.013 t
l l'
l K tr90 = 20.ft g 45 = 16 ft tr l-K tr90 = 0.26 K Ir45 = 0.208 r
K
= 1.0
. sudden expansion K w :=.5 sudden contraction ex Krtot = 3.K 1r90 e 3 K1r45 + K Kflot := 3 K1r90 + 3'K1r45 + K ex x
Krtot = 2.404 Kflot=1.904 I
i
[.
need to multiply the loss since the model uses velocity calculated for one coil set, while the header services 4 coil sets L
K req K 16 K req = Kflot 16 rtot K
= 30.464 K
= 3f. 464 fe9 req exhaust piping losses, based on node 561 149.5 feet of 16 inch piping with 6 LR elbows N
Ketot = 6 K 1190 + K Kretot = 6 K1r90 + K ex w
K
= 2.56 K
= 2.06 etot retot Kexeq ' = Ketot 16 Krexeq ' K 16 retot i.
(
K
= 40.96 K
= 32.96 ex,q rexeq
).-..
9 i.
I'
b/7 Heat Structure =112010000,112110000,112210000,112310000,112410000 Type = Cylindrical geometry heat conductor j
==
Description:==
These heat conductors are modeled as two sided cylindrical structures to represent the RCFC coils modeled hydraulically in volumes 120010000 through 124010000. The boundary conditions internal to the tubes are standard RELAP heat transfer map based on time dependent calculated hydraulic conditions in the tubes. The outside of the tubes is represented by a specified constant heat transfer coefficient coupled to a time dependent temperature boundary condition. This time dependent temperature is taken from vendor containment analysis results for a DBA LOCA and a 0.942 ft2 steam line break inside containment.
Reference:
Carrier Drawings 28SW405613, 28SW405623 Rev B,28SW405593 Rev B, and Mathcad cale sheet for RCFCs tubing model(pages attached). Containment analysis data contained in Westinghouse calc CN-CRA-95-119-R0 Key Features: The specified heat transfer coefficient was arbitrarily set at 500 Btu /hr-ft2-F to provide a rapid heat transfer rate to the coil. This value is large relative to the maximum Uchida correlation value of 280 Btu /hr-ft2-F typically used in steam condensing situations with no air present. Since there is air present and this condition would be anticipated to exist throughout the initial time period of interest to this calculation, this is a clearly conservative selection, providing an overestimate of the heat input. The tubing fins are not explicitly modeled, however, a review of the calculated surface temperature of the tube shows that the tube surface is essentially equal to the outside boundary temperature, which is precisely what the fins are intended to l
accomplish. However, if reductions in heat transfer coefficients are contemplated, the effect of the fins must be considered in more detail, since they would tend to counter the effects of reducing surface heat transfer coefficients.
n
' ~ ' ' ' '
i t-/7 l
t RCFC Coil Model Calculations
Reference:
WTRCOlL 2.2 Data Sheet BR2P01 AA.ATW dated March 24.1994. attac i
Rmts := 12 number of rows in full coti
)
Length := 120 length of tube row enenes i
t := 0.049 tube thickness inches.
niubes := 200 number of tubes per row ckts := 600 number of tubeside circurts ~
9' i
flow := 2650 total cott flow gpm OD := 0.625 tube diameter inches i
4 vel := 6.5 water velocity. fps note that we are modeling one half of an RCFC. and are dividing itinto 5 coiis, versus the data i
above. which is for both coil stacks combined s
-i clubes =ntubes-25 i
crubes = 240
= number of tubes per coil these are div'ded into 4 c!reurts of 60 tubes with a length of 10 feet each. since:
tubckts = ntubes Rows g
ekts ctubes,g tubckts f
i 4
l l
-. - - =.. _. --.
b - 2.6
.l l
l l
Additional Coil Geometry Calculations flow area for 60 tubes
'Atuk 60 = 9.08866 10' ft2 i
hydrauhc diameter for tube OD-2t
- b. dtube --
12
-2 bydtube = 439167 10 ft heat transfer area per pass outside area Aout :: 2
-L 60 12 12 Aout = 98175 ft2 for 1 pass of 60 tubes A g := n OD-21 WA 60 12 12 l
A g = 82.781 ft2 for 1 pass of 60 tubes i'
the RELAP model spirts one pass into 5 two foot long segments t
l l
b-2/
as an additional check, we can compare the velocity stated in the spec sheet and on tne coil drawing to that calculated assuming 60 tubes per pass in a cost tuk ;* (OD-2 t)2 A
-~K 144 4
~3 Atuk = 1.514777 10 tube area. ft2 coilflow := 110w coilflow gpm 10 coilvolm.= "
volumetric coil flow, cuft/see M17.4805 coilvolm = 0.59042 vcale := "
Atuk 60 vcalc = 6.4%
calculated tube water velocity fps this calculated velocity compares very favorably with the stated tube velocity of 6 5 fps t it can be concluded that the aooropriate flow area and coil geometry is betng acohed
b - 2 2.
Ccic: M/TRCOlL 2.2 WTRCO!L 2.2 Rev: O Performance of HVAC Water Coils Project No.: 00072-135 S&L Program No. 03.7.274-2.2 Page 68 Station Equip. Name Braidwood Date Equip. Number RCFC SW Cooling Coils Calculation Number March 24.1994 2VP01AA Data File BR2P01AA.ATW Coil Conditions Barometric Pressure, psia Water Flow, gpm 14.696 Fouling Factor, hr-ft* *F/ Btu Coil Face Area, ft8 2650.0 Water Velocity, ft/sec 0.00150 '
232.2 Face Velocity, ft/ min 8.5 Entering Airflow, acfm 462 107354.., Leaving Airflow, acfm Entering Mass Flow,Ib mix /hr 438436 Entering Air Density, Ib mix / cu. ft.
Leaving Mass Flow,Ib mix / hr 104069 !
0.0681 Entering Mass Flow,Ib dry air / hr Leaving Air Density, Ib mix / cu. ft 438436 435002 Entering Air Density, Ib dry air / cu. ft.
Leaving Mass Flow,Ib dry air / hr 0.0702 i 0.0675 Entering Air Day Bulb Temp., 'F Leaving Air Density, Ib dry air / cu. ft 435002 120.0 Entering Air Wet Bulb Temp. *F Leaving Air Dry Bulb Temp., 'F 0.0697 !
74.5 Entering Air Dew Point Temp., 'F Leaving Air Wet Bulb Temp., 'F 102.3 51.0 Entering Humidity Rabo, Ib vap/lb dry air Leaving Air Dew Point Temp., 'F 69.5 0.0079 51.0 Entering Air Relative Humidity, %
Leaving Humidity Ratio, Ib vap/lb dry air 11 0.0079 Entering Enthalpy, Btu /lb dry air Leaving Air Relative Humidity, %
37.6 18 Entering Water Temp., 'F Leaving Enthalpy, Stu/lb dry air 100.0 Leaving Water Temp., 'F 33.3 101.4 Coil Performance with 0 plugged tube circuits Total Heat Transfer, Btu /hr Sensible Heat Transfer, Stu/hr 1879922 Latent Heat Transfer, Stu/hr 1879922 0
Condensate Flow Rate, ;b/hr 0.0 Coil Physical Data Fin / Tube Type Fin Material Circular / Staggered Fin Pitch, fins / inch Tube Material Copper Fin Thickness, inch 8.0 Tube Outside Diameter, inch 90/10 Cupro-Nickel Tube Length, inch 0.010 Number of Tube Rows 0.625 Tube Wall Thickness, inch 120
- Vertical Tube Spacing, inch 12 Number of Tubes per Row 0.049 1.390 Coil Serpentine (passes / row)
Horizontal Tube Spacing, inch 200 1/3 Number of Tubeside Circuits 1.203 600
b - 2.~;
Characterizatforrof Heat Transfer Effects of Fins on RCFC Coll Tubing 1
develop appropnate multipliers on assumed heat tra o u ng and.
transfer due to the fins is bounded in the RELAP5 calculations F e additional hea benefit from the fins. The overall heat transfer coeffic is a strong function o g e greatest calculating appropnate multipiiers for use in the RELAPS mod and unfinned tub o
4 tube geometry, on an individual coil basis. Reference data sheets and in p.
.625 r wtrcoil code OD5 g-outer dia, ft I
l
- Tv, ID,.625 - 2.049 inner dia, ft l : 12 4-length of tube N = 60 number of tubes per coil i
.049 l-t=7 tube thickness, ft i
I kw 30.7 tube thermal conductivity, byu/hr-ft-F AO = n OD N l AO = 471.239 Tube outside area Al n ID N 1 Al = 397.349 Tube inside area AO-/l Aw e p
average wall area Rt.0015 design internal fouling factor f
D~2g
' fin charactenzation tfin 01 fin thickness, inch nfm
- 812 fins per foot pitch = 1.203 g-based on honzontal tube spacing odfin pitch maximize fin diameter i
2 2
A Ifin : odfin - OD,
A Ifin = 5.763 10-3 area of one fin A finte - A Ifin nfin i N 3
Afinte = 1.59310 area of an Ens j
AOT - AO + A finte area of fins plus tube now the effect of fins can be demonstrated using the overall heat transfer relationship f exchanger key inputs to this determination are the inside and outside heat transfer coefficient efficiency.
I hin i 1000 assume that water side ht is 1000, typical value hsn t.500 let hsn be range variable from 1 to 500 D pitch L : odfin OD kr=218 2 hsn tanh 4 L,k (D f(hsn)
This oxpression defines the approximate fin eff:ciency, hsn 4 L k]D
Reference:
Kr*P,n *F rinciples of Heat Transfer", eqn 2-59, page 62.
b-2 r i
the following expression provides the overall effects of heat transfer on finne
Reference:
Threikeld. " Thermal Environmental Engineenng", eqn.12.33, page 248 Uf(hsn) :
1 i
I tAOT RtAOT I
1 - f(hsn)
.AOT+
han Aw kw - Al hin Al AO hsn-
- f(hsn)
A Snte l
1 Unf(hsn) :
i t
Rt 1
E Aw kw'^
AI"^
- hin Al i
1 The following plot demonstrates the effect of the fins directly for a given delta T as a outside heat transfer coefficient Heat Transfer Ratio Finned Tube 1
l l it; k
I '
11 i
l i ; !'
'I:
4 i
I i'l l
e i,,
l I
3.5 i -
I l
Il
l'l l
i lti i
t L
i i
.e-t i
I i
' N !l;!l l
.i Ufthsn) AOT 3
!j;;{; '
t i
Unthsn) AO i
f
- !^l.
~
i l
i.l, il;!
l 2.5
'i ; i ' lli l
l l
ll
!i}4
.I!
l k I!
I'.
l l
l i
t 2
t i
l' Heat Transfer Multipher for fins, jl; l
l
, e i
'li, 4
1.5
+
i i-l ie
+i!
1 w,,
lt i.I l
, ; i ei,l 4
l t
l_l!I,!!
l ji, I i au luu 3
ot0 han Outside Heat Transfer Coemcient
., s 1
i
' b - 24 i
.: Application to RELAPS RCFC Model The RCFC coils have been modeled as pipe volumes with heat slabs. The outsid the Uchida condensing correlation. To determine an app needed.-
R = 53.34 gas constant
- P = 14.6 minimum containment initialpress Ti =130 maximum initial containment temp RH = 0.20 relative humidity
'.w 6
V 2.758 10 containment volume 1
a Psat i 2.223 saturation pressure at 130F i
. (P - Psat RH) V a-M
='144" R-(Ti - 460) s Ma = 1,786 lo ibm of air I
l-i Vapmass depsloca 201200 approximate vapor mass per COCO results for DEPS-LOCA at l
t=49 sec Vapmass msib942 85000 approximate vapor mass per COCO results for.942 split rupture with MSIV failure (taken off plot)
- Air / steam mass ratios at 50 seconds, can be determined and Uchida correlation table (
manual can be interpolated to provide HT coeffic.ent n empt i'
M a I C8 Vapmass depsloca M.
R mstb. S ass i
mstb942 R loca = 0.888 which would yield an Uchida coefficient of about 92 btu /hr-ft2-F R msib = 2.102 which would yield an Uchida coefficient of about 41 btu /hr-ft2 F
- s v --
r
b - 2.7 i
/
Based on the fin effects curves calculated above, the following coefficien e ap Uf(92) AOT loca
h msib ' 4I'Unf(41) AO h
2 Uf(2) AOT mslbmin
- Unf(2) AO
- ie h msib = 129.576 hmsibmin = 8.581 Note: This approach provides a value of heat transfer that is bounding fo MSLB case, where mass addition to the vapor spa of hte at t=0 is developed and a linear ramp to the full ht !4 applied over time i
i r
l l
i' l
i I
j ATTACHMENT E J
d
~ SELECT FIGURES FROM CALCULATION PSA-B-9813 l
[ Response to NRC RAI 2.c))
4 i
?
)
4 4
0
+
PSA&98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Time Dependent Volume Pressures 100.0 p-100010000 80.0 7
ir3 60.0 l
2 Pn m
2 40.0 o
20.0 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 11 LOCA/ LOOP TDV Boundary Condition Pressures l
I 29 of 63 l
PSA-:-98-13 Rivision 0 RCFC Performance DBA LOCA/ LOOP Flows at TDV Boundarie' 2000.0-i%
1000.0 7
j 0.0 f
mflowj-101000000 mflowi-301000000
-. l!
-1000.0 4A
~1
-2000.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 12 LOCA case flows at Model Boundaries 30 of 63
PSA.:-9813 R1 vision 0 RCFC Performance DBA LOCA/ LOOP Flows at Coil 120 Boundaries 200.0 I
100.0
\\
e a
n
~
'J 0.0 m
)
i ti O
mflowj-130000000
^'
[
mflowj-135000000
-100.0 k
-200.0 O.0 20.0 40.0 60.0 80.0 Time (s) i Figure 13 LOCA case flows at Coil 120 l
l l
i 31 of 63 i
PSA B-98-13 Revision 0 RCFC Performance DBA LOCA/ LOOP Flows at Coil 121 Boundaries 200.0 l
t l
I 100.0 k
a m
'I,
.O
'x i g
0.0 Z
mflowj-131000000 g
mflowj-136000000
-100.0 i
I I
3.0 j
-200.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 14 LOCA case flows at Coll 121
-20%
32 of 63
~
PSA-3 98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Flows at Coil 121 Boundaries 200.0 100.0 k
^
k!
n C
4,);
S 0.0
~~
t mflowl-131000000
.g mflowl-136000000
)
-100.0
-200.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 14 LOCA case flows at Coil 121 s
32 of 63
PSAO98-13 R; vision 0 RCFC Performance DBA LOCA/ LOOP Flows at Coil 122 Boundaries 300.0 200.0 73 100.0 k
DC 1
T IN) 0.0 mno.3_3-j g
- 1; mflowi-137000000 i
4 l
-100.0
-200.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 15 LOCA case flows at Coil 122 a
f 33 of 63
.=
~ ~.
l PSA.:-9813 R: vision 0 l
RCFC Performance DBA LOCA/ LOOP Flows at Coil 123 Boundaries 200.0 t
100.0
)
Y
'N E
4,.
j 0.0
%~'
oc mnowi-tasoooooo
[
mflowl-138000000
-100.0 i
4
-200.0 0.0 20.0 40.0 60.0 80.0 Time (s) l l.
Figure 16 LOCA case flows at Coil 123 l
i' l
34 of 63 l
a w:
J PSA.7. 13 R; vision 0 i
I RCFC Performance DBA LOCA/ LOOP Flows at Coil 124 Boundaries l
200.0
[-
i.
l l
l i
100.0 l
^
Q t'
O.0 g
I
[g mflowj-134000000 g
- j mflowl-139000000
-100.0 E
l
-200.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 17 LOCA case flows at Coil 124 l
l I
l l
l l
35 of 63
PSA-:-98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Coil 120 center node liquid void fraction 1.0
%g...
ji.,l j
l t
l i il gs II I !I I,i 1 : il i
0.8 I
Ilhjll i
,,I g,
i iI ij O1
)i li g
gi l,i nii li q;i
=
i y0.6 1i l l,, pi
,i u.
i i; ql; y
li' li,
-.,l I,l o-li i
g'i,; :- il l
] 0.4 l',
in
- ,'l
- voiaf-120m0000 CT gi ji t
- il voidf-120090000
]
l
- - - voidf-120160000
- il i
i I,
- - voidf-1202iOOOO li li i i,l Ill 0.2 1
.s
.s li i
\\ \\'<
l ' 'i.f
\\
.1s li 9 0.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 18 LOCA case void fraction in Coll 1 l
l l
r.
l 36 of 63
PSA-:-9843 R: vision 0 RCFC Performance DBA LOCA/ LOOP Coil 121 center node liquid void fraction
' h.,..
ll' jil
\\i li
.,1 i
\\
ll ' hl
\\'i li l 'l i
0.8 gi i ll i lll l 'i !
le l lll li ll i lil E
l'i ;
li ! l'l
]0.6 lj l,ll ll 1~
li l'
11 II ;
lll' I'l li l ',,i sil i
- @ 0.4 II ll l lll1 l'
- voxn-121040000 ty 18 llil voidf-121090000 l
i
- ]
g l, i i
lltl
- - voidf-121160000 l
g
,I
- - voidf-121210000 1\\
II ' ll I, 'i jl,'l 0.2
\\'
il s
\\
li 'l(t I
i
\\
,. s l'
n l
s.,
i 3
b
..s..
~
0.0
~
O.0 20.0 40.0 60.0 80.0 Time (s) l 4
Figure 19 LOCA case void fraction in Coil 2 37 of 63 l
l
PSA&98-13 Revision 0 l
RCFC Performance DBA LOCA/ LOOP Coil 122 center node liquid void fraction l
.0 j7 ;;;
i 1
l t
l gi lI i. g 1
g 1
0.8 I'
ll I :I l ',
!I'l pl >l!l!I i
li l
C
\\I ii i [hl l
.8 I,i l,'l ill 8 0.e ii lti a
i,i p: l ik i
s i ',
lii i
O
}'
pl
!ll I
I, i
1 0.4 ll ]-
l
..-4220 -
cy l
voidf-122o9oooo j
\\i
.I
- - voidt-1221soooo p; ;)l i
\\i
- - vois-12224oooo i
\\ 's i 0.2
\\\\
pl hl41 l
\\o p
! 'l 1
\\
.0, 1:i g
\\ %.....
l' i
- =
O.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 20 LOCA case void fraction in Coil 3 i
i 38 of 63 l
PSA *-98-13 R; vision 0 RCFC Performance DBA LOCA/ LOOP Coil 123 center node liquid void fraction 1.0 t<.
l' i
i
\\i jI il 1i l'
ii i:
l' ii 0.8 li i
li gi li ii l'
is i
li 8
is i
I'
\\ 'I C
l8 11 O
)i l
si
=
l@ 0.6 Ii It in
- i
'i i
E li l
il o
i i i
- i 5
li i
i i
4 gi l'
0 3 0.4 l'i If H
- voiof-i23040000 I
y lI voidf-123090000 g-jl
- - voidf-123180000
- ]
g j,
- - voidf-123210000
\\s \\
l' i
0.2 p
ii g
I
\\s l i
\\
\\s
\\
\\' I ___
0.0 -
~
O.0 20.0 40.0 60.0 80.0 Time (s) l Figure 21 LOCA case void fraction in Coll 4 l
l l
l
~
39 of 63 i
PSA-: 98-13
\\
Rivision 0
\\
I RCFC Performance DBA LOCA/ LOOP Coil 124 center node liquid void fraction 1.0 hj l,
i m
i
- i li li t i i
o je ii i
!I gi -
le is 0.8
\\\\\\
ll ll l
i il l
)i i
i 11 k
i i
11 e
.9 gi l,
),
i i
3r 3 0.6 g'i
- l
!l b
\\ 'i ll E
gi ll
?l O
i A
I li i
i 1
3 0.4 I!
Il l voiaf-124040000 g-I l
i e
gudf-124090000
- ]
)i ji
- - voidf-124160000 i
l
- - voidf-124210000 li i
\\i li 0.2
\\'i.
I ',
\\\\
li l'
4 i
N 0.0
' - ~ ' -
O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 221.,0CA case void fraction in Coil 5 i
i 4
l 40 of 63 i
i PSA.:-98-13 R: vision 0 j
i i
RCFC Performance DBA LOCA/ LOOP Coil 120 center node pressures 150.0
- p-120040000
-p-120090000
- - p-120160000
- - p-120210000 100.0 m
.g
\\
S 2s E
ec.
50.0 I
f-#,'
g a,
s 4 {, L's...
u...
sd _ _
Ns 1
0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 23 LOCA case pressure in Coll 1 1
i l
41 of 63 i
t
i V
PSAC-9813
\\
R1 vision 0 l
l RCFC Performance DBA LOCA/ LOOP Coil 121 center node pressures 150.0 l
p-121040000 l
p-121090000
- - p-121160000
- - p-121210000 100.0 n
\\
m m0 2m E
E c
50.0
-dg S[
/rvW'$;...
4 c
m___
l V
0.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 24 LOCA case pressure in Coll 2 l
l I
42cf63 I
PSkB-9813 R: vision 0 RCFC Performance DBA LOCA/ LOOP Coit 122 center node pressures 150.0 p-122040000
-p-122090000
- - p-122100000
- - p-122210000 100.0 li?
- iB0 2
5 u>
2 a.
50.0 I%
I hY 3-_
g g
v 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 25 LOCA case pressure in Coll 3 43 of 63
PSA.:-98-13 R1 vision 0 RCFC Performance DBA LOCA/ LOOP
\\
Coil 123 center node pressures i
150.0 p-123040000
- p-123090000
- - p-123160000
- - p-123210000 100.0 R
'inQ.
I Em E
I 2
l n.
50.0 l
g l
%v:..
- p,,; bi b
QW J
0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 26 LOCA case pressure in Coll 4 i
i a
J 44 of 63 l
PSA-:-98-13 Rivision 0 RCFC Performance DBA LOCA/ LOOP Coil 124 center node pressures 150.0 p-124040000 p-124090000
- - p-124160000
- - o-124210000 100.0 E
050 2
s E
E 50.0 l
9 l
s:.x l
i g.-
I 4
y l,wa ~ -..
NC:.
J 1
0.0 i
0.0 20.0 40.0 60.0 80.0 Time (s) 1
\\
Figure 27 LOCA case pressure in Coil 5 I
t l
l t
45 of 63 l
_ =
PSA B-98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Upper coil mesh temperature 300.0
{ 250.0
,f' f'
e 2
/
E e
8.
l E
s e 200.0
-t
}--
I
~
l
.5 i
O a.
,I
.c i
i M
i O
1 2
150.0 r
I
-- LOCA Boundary Tem) httemp-120100901
- httemp-120100911 100.0 O.0 20.0 40.0 60.0 80.0 Time (s) i l
Figure 28 LOCA case containment and coil temperatures l
46 of 63 l
?
I
I
)
PSA-B-98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Inlet Header liquid void fractions 1.0 g
, g,, -
,l 11 l 1 lj l
I, 0.8 I
, i 11 l 1lj i
i I, I, I ll f0.6 I
!g;l
~
1 lIl a
O I i.
\\
.9 0.4
\\l mer 1*
- ]
I' i
,I i
O.2
'I
,,,_3,o30000
\\l voidf-104020000
- - voidf-104030000 i
- - voidf-104040000
- - voidf-104050000 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 29 LOCA case inlet Header void fractions i
i
=
l 47 of 63
)
PSA-:-98-13 R1 vision 0 RCFC Performance DBA LOCA/ LOOP Inlet Header liquid void fractions 1.0
% ~_ -=. _
1i..
i,
\\
5'.I i
i 0.8 l I ',
I'll
.t ii,
. t;i lI,!
l i
C-o
- \\%
.I i 8 0.6 I 'i j'll
'13
\\
- il I
d-1 i,
i,'
'Ii jil' o5 I I' nll
'li.
hlpll
)
$ 0.4 I';
I l,i !
lil 'l CT i
"]
ii I
I!
ill l
'i
- l' 0.2 I \\ 5 II'l
'kli
}
i i)l
- voidf-104060000 I'
I'jl l.
voidf-104070000 l l
't l'l.
- - voidf-104080000
- - voidf-104090000
.[si..
l(I 1
- l void'-'04'**o 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 30 LOCA case inlet Header void fractions a
48 of 63
.. ~.
PSA.:-98-13 R: vision 0 RCFC Performance DBA LOCA/ LOOP Inlet Header liquid void fractions 1.0 m
i i
0.8
[I I
II i
C d
.h 8 0.6
((i l
tt
,1
'O iI I
O
'i l^' i i
j 0.4 i[i h
i!
U
'In!
\\
l 0.2 i \\
l j
voidf-104110000
'[
q
- voidf-104120000 i:
5
- - voidf-104130000 l/
- - voidf-104140000
.,, 4 1
- - voidf-104150000 0.0
'- '. 0 O0 20.0 40 60.0 80.0 Time (s)
Figure 31 LOCA case inlet Header void fractions l
4 l
l j
49 of 63 l
PSA B:98-13 Revision 0 RCFC Performance DBA LOOP /LOCA Pressure / void fraction in inlet header 300.0 1.0 200.0 g
i
,_,04,00000,
o To is S
- 0.5 $
I"n E
5 100.0
(
I
\\-
N.
Af
\\'
C 0.0 O.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 32 LOCA case inlet Header Pressure / void behavior l
[
i 4
l 50 of 63
PSA-:-9813 R: vision 0 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0 7i I
5 g.
l 1
l 0.8 l
8
=
8 0.6 I
Lt 4
V
'O>
l i
3 0.4 l
4 0"
- O l
a 0.2 j
- voidf-150010000 g
voidf-150020000
)
- - + voidf-150030000 r
- - voidf-150040000
(*
fl
- - voidf-150050000 0.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 33 LOCA case Outlet Header Void fractions i
1 s
51 of 63
PSA-B-98-13 Ravision 0 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0 l
i
\\
O.8
)
f.
I
','li C
ili l
'l5 8 0.6
' t';
i
' l.
2 i$
O i'
l
@ 0.4
'g i
CT 2
L n
I}
t 0.2
'l i
voidf-150060000 voidf-150070000
- - voidf-150080000
\\i
- - voidf-150090000 i
- - voidf-150100000 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 34 LOCA case Outlet Header Void fractions 52 of 63
l l
PSA."*-98-13 R: vision 0 1
1 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0
.s II 0.8
~I
.I C
.h 8 0.6
)
it u'5
.9 0 5
,4 L
a i
i i,
s voidf-150110000 voidf-150120000 Ig'
- - voidf-150130000
- - voidf-150140000 d'
- - voidf-150150000 0.0 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 35 LOCA case Outlet Header Vold fractions 53 of 63
PSA-:-98-13 R vision 0 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0 0.8 11 C
1 h
l
@0.6 i
i u.
.E l
o I
j 0.4 l
CT O
I fi O.2 N
g voidf-150160000 t'
voidf-150170000
- - voidf-150180000
- - voidf-150190000
- - voidf-150200000 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 36 LOCA case Outlet Header Vold fractions 4
54 of 63
PSA B-98-13 R vision 0 1
RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0 0.8 8
8 0.6 tt V3 l
] 0.4 j\\
f Cr i
a L
l I
voidf-150210000 k.e voidf-150220000 8
- -
- voidf-150230000
[
I
~ - voidf-150240000 I
' l
0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 37 LOCA case Outlet Header Void fractions i
)
i l
55 of 63 l
j
PSA-:-98-13 Rivision 0 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0
~___
3,-
i
)
,1 I
l l l i
i ; ;
cl,,
0.8 i i
!I g li ll i
l
- I i
l.
II e
i S
i I fI i
W 0.6 i
i;
.I, tE l'
II l Il i
I!
i i I i
o i
i '1
'li i
j 0.4 II' g;
l I
cr
]
I,i j ;;
l' i
\\1
'l L
\\
i ll i
i,g 0.2 i
i g,
ll,
- voidf-150260000 iI ill
- voidf-150270000 l
i I
l
- - voidf-150280000 l 'I
- - voidf-150290000 g,
l/
- - voidf-150300000 0.0
. 0.0 20.0 40.0 60.0 80.0 Time (s)
Figure 38 LOCA case Outlet Header Void fractions i
56 of 63
PSA-B-98-13 ~
R: vision 0 RCFC Performance DBA LOCA/ LOOP Outlet Header liquid void fractions 1.0
~- :
0.8 8
=
8 0.6 a
'9o>
] 0.4 5
0.2 voKtf-150310000 voidf-150320000
- - - voidf-150330000
- - voidf-150340000
- - voidf-150350000 0.0 O.0 20.0 40.0 60.0 80.0 Time (s)
Figure 39 LOCA case Outlet Header Void fractions 57 of 63 1
ATTACHMENT F PIPING AND EQUIPMENT ELEVATIONS
[ Response 'o NRC RAI 5)
BRAID' WOOD PIPING AND EQUIPMENT ELEVATIONS Leaend OUTSIDE CONTAINMENT.
INSIDE CONTAINMENT CONTAINMENT PENETRATION D4MENSIONS ROUNDED TO NEAREST INC[
& REPRESENT TYPICAL ELEVATIONS 1CT 1r EL 30T-5" EL 305'-51s" l/
7 4-EL 395'-S"
-6 1--
4-7 S-f $-
4-f 4-EL 397-4" EL 307'0" EL 306'-254" Y
EL 394'-2a
, EL392'-2 v2"
/\\f
/
Essential 4-4-
EL 302'-2" 4-p 4-EL 394'-2" CooUng
~EL301'M EL 3800'-0" l7 fl l
7 4-EL 3Giv 4-4-
EL 380'-0" 4-EL 387 #
EL MM ELEVATION 390' #
4-4-
EL 386' 4-p 4-EL 387#
EL 384'-7" EL387 4" 4-
/
4-EL 387-6" 4-7
/\\f 4-EL 384'-7" l
EL 380'-00" bemoe Water Coito EL 380'-00" Service Water Coils y
1VPO1AB & 1VPO1AD 1VPO1 AA & 1VPO1 AC Typical right Hand hby Typical Left Hand Aeoembly EL 388*-6" O
EL 387 Note:
it applies to both Urits 1 and Unit 2 Pump EL 384'-0"
'j 150#
fL
_7
~~
l EL 387 b~
EL 384'M y7 AFW Engine Driven Cooling Water Heat Exchangers Purnp iSXO1K & 1SX02K EL 387-7" EL 387-7"
(
7
~
l
\\f EL 388*-5" EL 386*-5" i
Condenser &
Condenser &
Cooler 1 WOO 1C3 Cooler 1 WOO 1CA I
l
- CS.mc Whusase a caneanent Copois; EL336'#
EL 330'-7" l
y N
EL 330'-0" EL 337-10" EL 330'-10" Essential Semco Water Strainers Essential Water Pumps i
BYRON PIPING AND EQUIPMENT ELEVATIONS ESW Leaend OUTSIDE CONTAINMENT.
Essential Cig Tower i
Cooling Riser INSIDE CONTAINMENT Tower ELEV. 405'-4" Basin CONTAINMENT PENETRATION n
ELEV. 405'-4" Service Water DIMENSIONS ROUNDED TO NEAREST INCH
& REPRESENT TYPICAL ELEVATIONS 10" V
EL 307-5" EL 305'-51s" lf fl
}/\\M
$---5 5-4--
4-EL 305'-5"
-6 5--
4-4-
EL 397-4" EL 3970" EL 305'-2se" EL W' EL392*-21r/
}/
g f7 7
[
4-4-
EL 302'-2" 4-4-
EL 394'-2" 1
EL301'0" EL 389(TV l/
4-EL 389*-0" 4-l 4-EL 391 #
4-7 EL387-F EL388*-9" l/
7 4-EL 385'-9" 4-7 4-EL 387-9" j
4-EL384'-T EL382'-6" 4-
/
4-EL 382'-6"
/
7l 4-EL 384'-T EL 380'-00" Service Water Coins EL 380'-00" Semco Water Coils 1VPO1AB & 1VPO1AD 1VPO1AA & 1VPO1 AC Typical right Hand Assembly Typical Left Hand Assembly
)
EL 388'-8" O
EL 387 T Note:
W EL 384' 0" It applies to both Units 1 and Unit 2 isxom>
f i
N l EL 387-T EL 384'-0" j
AFW Engsne Driven Cooling Water Heat Edissiv.
Furm 1SXO1K & iSXO2K EL 387-7" EL 387-T T
fl EL 388'-5" EL 388'-5" Condoneer &
Condenser &
Cocier 1 WOO 1CB Cooler 1 WOO 1CA l
l-s#S.mc.swhoeruomeonent Cwpa-EL 335* 0" EL 330'-T l
EL 330'-0*
EL 332' 17 EL 330'-10" l Essentiel Semco Water Straners Essential Somoe Water Pumps
?
!