ML20151Z284

From kanterella
Jump to navigation Jump to search
Performance Testing of Passive Autocatalytic Recombiners
ML20151Z284
Person / Time
Issue date: 06/30/1998
From: Blanchat T, Malliakos A
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES), SANDIA NATIONAL LABORATORIES
To:
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
References
CON-FIN-L-2443 NUREG-CR-6580, SAND97-2632, NUDOCS 9809210241
Download: ML20151Z284 (212)


Text

j vg2 aAwnwapmwwa k M M M MM S %n smEMRf b e a m w w y:" '; u-  % ,

e epa dgw % mhsmeWW m y m p w m w w m nme a : +W % e w ' aam- mr ~ -

, ,A m -

~ , -

4 a

M@sGMMSMWM.xJW@m,_yusino9.7-26 e w %o m,:{sqmam~ so+ug_m,;. meam,u;4.s

_u o n, %swyg, m u yg grupypme m w wpu. 4, -w r M yg wx w - s.cn 3

y e, y r, t ., mq. .w#,ng . 3 9.a ,3,Ln ( v ,ar ;;

m . ,

  1. '?

x, : > ,

m J w- M;hs %,

.y _

e . ,a, . '

y

c. ,c 3 . -

gammg:9:W L ?! ?%xk~ 43-pCM? c r

,e,- dGm '

%o - -": ^, r . - , 9 ~ -

-g haf,%NWVhikhW?ay& $ & ? k ? N W ? $ q$ Y W W W W W % i W k.bka w_ z r _ m- m, = -

N:E' "

m M

eWW

$w @w w w w ww % d @a w m -(%. ' ,a. na@ M w g

n i erfarn-wwwnlestingsofww'w wee..:

, g m%ewRwm iance nw 3 n uunr m.mnunaan ~w w, m~. a. , m,s =,

dn,y.am.u.mww asn sive3Autocat~alytic pwMnQ w~.~PR,ec~ornbinersy cw a

- ec  ;, .+ ,7 x

&as gn?pg p.wf m. a~p y% rm.mnkW c &y&;%ptqqynQ murmp4 u ry qvgMMMg gp yw" &QmpmQ vt #m~a m>> ea ' .

++ 9 a

h[y , i q$@.

& I,h k J P mw k ih w#me,.u,h.h N.[ c b ,1 I 4 , dM'I

kMdh,.h.we)p [3Y Uh y.dgMd' + MN Y Mi49:g " p-@u@.gy e

ii

a. w. ,4 ,

g% i;lD,:h

,, - ~

m =

g j g,

_ 4 o jr '

<g g s' s y p l,5

[.  :  !

M kT2.Essest/5NL T M  ? W W $MMZ ,4 hk

% .J V, ' ' (SN*#

MWEMugiskosMRCfh$@i b 3DMOW m @ j agF " ";F 'M&dM y" - a MM7Mh NMWM qgw NT p Wa wwv.,DM&w Jy E3 Yh&gp9p@<W'Ygh5.0NW 0%%. ' $C \ , < * ' Y, ch w%w

< .~ > ~- " -

Q B&., s o 4 q&q& fy,n n' , s. f0. /p x. c;purg

..]M M l:We

^

f. . .y! AS>

H s

n~ V'h-k 1.%4 R 4~.

W!..%: ,' ' . e S.e $.c b,s ?, 2:.0:;u

? b .' h I* ,

r m

o ,

b 4 p$s < .R n,  ;:m y:v Qa w%y:W,9.p;.;b p a tw un uywvs & mq: & ; n; ; p

  • , ., M V i <
b. '

,, c jWsy::bu#q%gWf b 4 1;

'y&p v r y :m; Lfr 9:da tt?T p G y '

tM>'U *'

L:>

g m p %y: p "g%y%y;p'f

  • y.%g.S&p)v,? ny ,

en:

t..

q g-y' e;,', -

WN#RWt di e. fg , a.'a.k rm,JV:m z m (M ; 4i s m,[ ol1 t.

- e y n ,,Grd a_?

g

% wem;p wm e%n ,g, s - . -

WP e o -

s.

,s -

+ -

W

$$e$sedahedtsandLebeestostesW VM ; % . 4 MQ& @gW o +s

S ,

1 '

  • 1

$ll &s ny & $ Jih0 jd r n-llY ,< Y ^ cj ^

, ; s8; ,

y .

,m3 *,% p%y$pg$.

s p*e,Q 5W 4n&wpJ.Y T n

& ,m '

g g:v.4 &. %_ gi4 J.y .,q&a=3Q.wn n. -.~# p. m w i::> .c

~,"u w s :Q n ;

'su 8

a rt w,

._<3

.x s ,

a.3 - ;f > W< + ;. . . uw %s- >

i,.- , . 9 +:g a i

. 2 4 4 y, 1 -

,, ,. m a r

'g ^

,'7 hk . i 1 , ,, e i '

'3

T f

m S.f'Ii .t g%9v.A%y;

, ,.4. g m@w%m  ;<yddwwM;g m

.y .sygg g < p. - , s,

  • ' (

gg'5 s\f ,l y M, 4m.

s,/ ~ y ggs w3. ,

s, ....

.:e mp!. D'. w w ,y0J,h-z,-d,,. \.i&l I,h([w,g  % a W gba,'a y[- I, "l ;-p *,n r < < A)

MSf * ' . h ; y ;g '9,;,.,-,.$f. '. -' ' a, F ,(f- -y I -h e .

p, g y.,

.s " k j h N[, g ,

4 Y$ bhh & &, y ff ^I:4 1

3 7 y n' g& ?w'.- ,s v' n _ np t:k e::-pw ,., A s s:(s u 'r.ndw' n;yv;<m'b

~+i. ' #H %. . -

y. . .

'N,.  : ye , ,

(*i

,4 n s. a v;,, ,"s' \, e

. 1 .h$~,1 i+

g

.j'x' '

?! - , m yr ~> '

' 's'  ? -

w;f;v Qt v'; '

Q: yfo4p .

Rpg w m ' sg aq .,c q+ % k i; ' ;n. ,.  :.:p;;n .x . ,

, t  ;

n r x 9 .,

ff~:%mq &, A n GyqW~ . ym y y? %> x:fd a wforf %ff ~4yk e.'!j 4 Q.,Njfsf

a

' ~'

L , l1L '*

  • MMusmaelear Resshitsycommmimien %W A' ~ y@% 7' ; , ,

spgg uw@y:4W4. mawr WTJ" @ws .<: wt; sNN M

~

- n -

- v,

, u vy< w ;. , is < >

, i a m.wyn,pr w&: js _W%f,! W,v.U ;Q1 $sye;;. .

.r Qh + %&;ff .

s

. s ,

e& '

's l8-l l 4: .. M a ': L

I

^'M &p d QIhL +l> , , , ~ W:p ,

i, .W#g;?$y a wm& #@n !W V Y$hlfk.%l:W&@w&&lW; W7 Ab4a:S;"?,

i

-s q u W ; *bu %, . W2a1n':n'9 ?

  • * +

~

,I bhh$p m,n Y : ; + M S*1Y $?Y Y AYY  % N h N@ $%p%MV% M m ; O @8 @%

& MMmW m n w: VW:g Mn s J GM4; W

y m ~'

6 l M/. % ?

-M s,/ g W gf W WU. W W@ ,s

._a w

g

=

  1. p w- .

- a' 4.kg f wa n u&m wth w ~-J d' q- W ;wn e 2~~: ~ .e

~--

pw n%sg%m 'fw< w *@~ W+Q4 ' 9%s@"%@p 4. d&gN

' )~- M dhf M

,1 > v o ,, t ,

x  ;- a N- *5

%QM&&W4MW Wh ',& > " N

hhb g.;f k SN h b Nkbh y s ypgp,o.qu o g + gAmmm .s fe N b h 39;,9 b N. ' "

p.

s e mo , n,., s 4 < ,w p W .

~

hhh q ryg$$ghNbk?w$5$p ,gggg;  ;+N h 2a i' m, s. v.m< v u~ < m, wm.Wm  ?  %

r N

+g r>u f g. ,p a[&wW8 ,.

+

14; MT i n mo -n ~,p nse , ft hajy n 'l +m, y. s Tm:;- h% bW. Mf:i

.1

.'6

' um4.lp .rp g&mM P w,f;j%,

F,+4 M4 o. d. ~ ;V ' '

'y.

st).qp G.J >'"' '

-m v

.\ yl "#p;.rA,k' ~' u# . q.%

i

< . m G ~.; ; ;[ fi

%,$& n s, ;s,N,g Tg+ x:f. i, YW * *pl'yA 4 05 '

'A, s fyfb . . . ,

  • ' yl2 ~

2, e}Yp C, } g. je' jp::p q ,&, %

b i c i

{ f. ,' t gg# m

,g hg h '

. , , I? bG 9809210241 900630 ' 7f @M,, j w" c A

$@M

Sh PDR CR-6500 R NUREG h ,

W ,' ai r 4% *%y ,%

g#g. y s

PDR

' i ' .g' > ,

}m dhh W  %% MWO mmm 7(MN w @ndM.? w w( w , w r L *rHMThy l J $@ 9@ 4_ ' _ .3 - . .W , X

  • _i M _'., y[t _ .

y

m - ew --

y ~ ~ ~ ~ ~ - - ~ ~ ~ -~*-m-~~~~+

$np Nhp wegfymp I b- b i m-w.

4

hf h hhh h h h h$w w ahhhhhk '^ 0&W i

[.

4k 3 %

  1. m ,v cMpA&p% ,mma9QywmM%mme pm mns S, w m %. c +n N kkhhh NNA k;-

v wmmwwww w J 4 Shh w

- x

" :i,; $y$'

fRAsenemy et Rosemme ussedek caed in imC Putsonnene C 4

32  :$$N kWUM bqg

,4 pp %.% gsAe%ww%&m.M nM;nhQ SG%

W WKW w .e..m  % .,. NOih% . ~ m. 9

\ a 4s N f

? .. .

, e

, i '

'4 M g)- MMeet gau;w essessante w sited w wh mMICynw pedestione w w sediwbe,evegeWo_ trem one of the.n fotoodng

+ . sources:f - .. a L%

A ms$The E Pt49e 'Destevient Reentf2120 L StreetfMWMewer I eveli es WesNngton; DC  :

2056620001 E 1

  • % N$ !

- e

! Q, M[ h h$$%6M$M@@$$dh $hMN, li M yUML M j . _ ..

f $ 3MTltshportntendent of OsseenenteLUf 8Ecovemment Printing Oteos ? P40, tox 37042. WesNngton, DC 2 1

% d hhW80084MSMMM$ **' '

  • i W

i

'h 4

?El Os  ? i '

3l ca m.h$f &..$ $.e M h&.N.e.W M M N ksF$AW Y?.W.r,.*e,.e.h.pr'W.g$%

R M SWMNDM W$$ @$m a-y t . 1. g -%. -

Nh p.4 1 e [$ g g $spanheugh

$ a% SN MU me Setig met tegnes represente mo meterity of documente chd in NRC e @(4.. .' ..x-

./ MN .

- e

% pulsos MM >

e.j

'l i I( %

gp $teneggtoto'essteusereMN H gpfWQgMW 4 it 1

K w- t j? 5 4 2l N WW fM M W W8 M M W S @K $y$hNW $ A W R O,c  % ' %7

~ 2 wyne esseneseemamente m ee muRem artes we messem for purehow frem me oevemment Primme Ornoes * '

$$kM! M M@ N0sneed $GC etelt and sentreeter reportei pWIC-epensored eenforence proosednge, hiernational agram 4 -l f husertoieanse g

rapmeniend NRc hoeum end hnwhww(Alw eventh we rechtwy guWm; NRC remh* '

f ,

j 4 $p$&M q

@am d m es ce='sMAN'WL!s endow w'end M musmer_W y commawon fesumow.

Mit o It MMi sh. 4 j MDMR@ veshnissi D

h. Acesu@mente'aneame nem me segmenes onserwiesion servios inoeude NuRe 1

h# ;y%% JD  !

j i l

j. M @$9erensener egeney,te the Niesteer Magidatory A, '

Commission  ;;R f ,/ Wsdeelsgerte P ,

prep ". L j

, :: asbookeC~

m

&&QQgg @p%g%% , WM@X , & , wc h , J jf;itens such f,o ,s; d[ig, ag 9}h

b. h ensemente austeMe tem pidies and speelal technicol aureries include en open literature

~ ~ )

mann.ed= rad =eemenene ww=p.or carenest= =gman(= dan,==ns W

2 paperto son.ueussy he'estehed fmm mese ihrertes? WPW MM m "' " " , ' '

?, hQ j g& W@ W W&~ &l0&$$$'s WRU %$ W NJN . ? + ~ . Mr

+

'I hj ad7

-gt M eseumonto'eush eo~thesseleissertatione foreign' reports and transistione; and non-NRC. conference pros ' ' '

g l hhh

~

%eseetge are esageMe terlpurehese trem.the orgerdsetlen opensering the putscodon cited <- .

WWW FMW hENA J . . . - % '

q$$q$

sqq MWM.m@e game ==

i

= NRC ea r=== = ead= **

  • me e=aw eaw == =~ r-a a m*

Mee Aasenswesen, namenden and ties aerween asemen, u.s: Nuclear Reguletmy CommleWon, Washingtong 4

QSgmjI PNd M DCAsg M M  !

$w w'ees destgggeMgy$m@p -w $" s@S : ..

@%cz2Wnm 7 W% 4 $ceples i . .

i ...h h dtehad atattidustry eedes and stendere used h a edetentive menner in the NRC _ regulatory process are main- 7 j hff f' MS

$p;f me;NRC Uhrery[Two WMte PBnt Norm gpg ksmopene? oeme'end etendarm ere vouser soppreshwd endmer be suroimad.wom m wet l 11545 Mooisvels Pete,' Rockwise. MD 20852-2738i for use by -  ;

y ' WM een er; e mer are'Amortman Neuenal atenswee, kom the Amortoon National Standarde institute.1430 Dreed- j s? WhfR pFe% diXMFM "WeW W jyeertNewyertpNQaewsaes.; i N' NJb'*F.Q' MM W<

W '

-l p$pd 4

8 u >

/d?^E % U * ' ' * ~

s. ggp{c}w(" ' i* 't ak * *
  • j f .

} a "r hk gm p un ya , y 4 ,p: y a , l

+

k k. h4..hmhwmhkhgyNkEUh!

.,,%sen dasa-..o. onsore..,-a.enov ~ unhed -a v--

h[ '

a fsp p$9determeUnliadantesGovemmentneranya.enoymormat.nor.enyWtheir.4 : malesa: ^

sJ d $inquessed erimpiled,orassumes any'iegel setsiilty or sesponeitsty'for,any mird petty's use, or me moules at l l

. s p gausuararvnesmenon, apperans, product or proosee - inmis moort.or mamaamma is uu ; -

WasmomeportywouldnalreingsprhmeymnedWS * - p J*g e1 %mwq;y w m f

r hhh hk h h hb l wis@- 2" 1 v M.,9

%~A 9M%sWW'9 w%g%pN en mm7MR n w#g m*@mkw'$ngMpD%mw b wGSu+Arwom e M p w w da m m n ~~MMM ' a %

M i

~

%MW W 6

$P $$5 5 hMM#Y'MFM @WN W<%:e&*W ' ' #* 'M ,

' _ ~ mmuAmannn u~ . . .

NUREG/CR-6580 SAND 97-2632 '

6

Performance-Testing of  ;

z .

Passive Autocatalytic Recombiners i Prepared by  ;

. T, K. Blanchat/SNL -

A. Malliakos/NRC l I

i Sandia National Laboratories Prepared for U.S. Nuclear Regulatory Commission ,

l 1

D i D-w#'  !

[."'*%

9809210241 980630 J

-65 PDR 1  :

- -_ _ ..~._ _ _ - . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . . _ _ _ . _ _ _ .

' O L.

f1 I

t- [

L  !

[

' AVAlukSILITY NOTICE j

j Avelletdity of Reference Matanels Ceed in NRC PiMeans I

, [

I.

Most documents cited in NRC putdostions wNl be avasable from one of the foNowing sources':  !

7

> b-

1. i The NRC Putdo Document Room 2120 L Street, NW., Lower Level, Washington, DC 20565-0001- l t

!' g 2.' LThe Superintendent of Documents U.S. Govemment Printing office, P. o. Sox 37082. Washington. DC i l- " 20402-8328 i

. e i ' (

F si 3.' The National Technical Information Servloe, Springneid, VA 22181-0002 i ,

i l- . .

l, Although the Beting that fotows represents the majority of documents otted in NRC putdoations, it is not in- f tended to be exhaustive.

- . . l

7 l ,

Referonood documents avatebio for inspection and copying for a fee from the NRC Putdo Document Room i l; include NRC correspondence and internal NRC memoranda: NRC bumetins, circulars information notices, in- j

!* spection and investigation noticos: Doensee event reports; vendor reports and correspondence; Commission  :

h papers; and appdoant and boensee documents and correspondence.  !

i lJ

! ?The fotowing documents h the NUREG sortes are avaBable for purchase from the Government Printing Offlos: i formal NRC staff and contractor reporte. NRC-sponsored conferonos proceedings, international agreement ,

reports, grantee reports, and NRC booMets and brochuros. Aioo avaBable are regulatory guides, NRC regule-tions its the Code of Federal Reguistions, and Nuceeer Rettuentory Commission Issuances.

Documents avaBable from the National Technicallnformation Servios include NUREG-earles reports and tech- )

, nical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commiselon. 6 forerunner agency to the Nuoleer Regulatory Commission, j Documents avebeble from putdo and special technical harles include aN open literature items , such as books , l joumal articles, and transactions - Federal Register notloos, Federal and State legislation. and n;pelonel reports can usueIy be obtained from these Braries.

. . l Documents such as theses, diesertations, foreign reports and translations, and non-NRC conference pro-  !

coedngs are avaBatdo for purchase from the organization sponsoring the put2 cation cited.

I

. Single copies of NRC # eft reports are available free, to the extent of apply. upon wrttten request to the office I of Adminletration, Distrbution and MaB Services Section, U.S. Nuclear Regulatory Commlesion. Washington. l

' DC 20555-0001.  ;

ts Copies of industry codes and standards used h a substantive manner in the NRC regulatory process are main-tained at the NRC Lbrary Two White FBnt North,11545 Rockvte Pike. Rockvine; MD 20852-2738, for use by ,

= the pi4Ro. Codes and standards are usually copyrighted and may be purchased from the originating organite- j

, , . tion or, if they are Amerloan National Standards, from the Amerloan National Standards institute.1430 Broad-  !

E 1 way. New York. NY 10018-3308.

s l DISCLAll8ER NOTICE {

x *his report was prepared as an account of woric sponsored by an agency of the United Steses Govemment l

  1. Nrthe United States Govemment noranyagencythereof, nor any of their employees, makes any warranty,  !

'O' '

seed or implied, or assumes any legal liability or responsibility for any third pony's use, or the results of j woe,'of any Ww .i &i., apparatus, product, or process disclosed in this report, or represents that its use j

.y such third party would not infringe privately owned rights. j L

b a

h a

( ,

r:

i

~

q; .

1 I

+ - 3 '

I _ . _ _ _ _ _ _ . _ _ _ _- -. . .-- . - - - . - i

NUREG/CR-6580 i

SAND 97-2632 Performance Testing of

( Passive Autocatalytic Recombiners Manuscript Completed: June 1998 Cate Published: June 1998 Prepared by T. K. Blanchat/SNL A. Malliakos/NRC 1  ;

I Sandia National Laboratories j Albuquerque,NM 87185 A. Malliakos, NRC Project Manager Prepared for Division of Systems Technology Omce of Nuclear Regulatory Research 4 U.S. Nuclear Regulatory Commission Wcsh'agton, DC 20555-0001 4

NRC Job Code L2443

( / - .s 4 M..... ).,

)

l

e .

br sale by the U.S. Cnwernment Pnnting Orke Supenntendent ofIncunens, Mail Sig: SSOP, Washinguns,DC 2M)2-9328 ISBN 0-16-049654 3 1

?

i

?

I

't i

I t

.i l

1 i

i i

i r

k I

J l

i e i

Abstract Performance tests of a scaled passive autocatalytic recombiner (PAR) were performed in the Surtsey test vessel at Sandia National Laboratories. The test program included experiments to:

1) define the startup characteristics of PARS,2) confirm a hydrogen depletion rate curve of PARS,3) define the PAR performance in the presence of steam,4) evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations,
5) define the PAR pelformance with and without the hydrophobic coat,6) determine if the PAR could ignite hydrogen mixtures,7) define the PAR performance in well-mixed conditions, and
8) define the PAR perfom1ance in a low oxygen environment. The tests determined that the PAR startup delay times decrease with increasing hydrogen concentrations in steamy environments.

Measured depletion rate data were obtained and compared with previous work. Depletion rate appears to be proportional to scale. PAR performance in steamy environments and the lack of hydrophobic coating was investigated. Placement of the PAR near a wall (as opposed to a center location) appeared to have an effect on depletion rates. The PAR ignited hydrogen at relatively high concentrations (5-10 mole %). Low oxygen concentrations appeared to have an effect on the hydrogen / oxygen recombination rate. The effect of well-mixed conditions during depletion rate measurements were inconclusive.

I I

iii NUREG/CR-6580

Contents A ckno wle d gm ent s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No m en c l at ure . . . . . . .. . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. 0 I n trod uc ti o n .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.0 Experiment Description . . .. . . . ... .... .. ..... .. . . . . . .. . . .. ... . . .. . .. .. . . .... .. . . . .. .. . . . . .. . . .. . . . . .. .. . . .. . .. . . . . .. . ... 3 2.1 PAi t Desc ripti o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Test FM Iity Descriptio n .. .. .. . . . . . ... .. . .. . .... .. . . . .. ... . . . . . . . . . . . . ... .. . .... . .. . .. . . . . . . . . . . . . ... . . . . . .. .. 3 2.3 Instrumentation, Control end Data Acquisition .. ...... . . ...... .... ..... .................. . .... 4 3.0 Gas Composition Measurements and Analyses.. ... ............. ... ....... ..............................7  !

4.0TestMatrix..................................................................................................................9 5.0 Experimental Results . ... ..... . .. .. .... . . . . . . .. .. .. . .... .. . .. . . . . . . .. . . .. .. ... ... .. .. . .. .. . . . .. . ... . . . . . . .... ... .. . . . .. . 1 1 ,

5.1 The PA R- 1 Experiment .. ... . .. ... . . . . . . ... . . . . ... . . . .. .. . . . . .. . . .. . . . . . .. .. . .. ... .. . . . . . .. .. .. . .. . . . .. . . . 13 l 5.2 The PA R-2 Experim en t ..... . . .. . . . .. . ...... . .. .. . . . . .. . . . .. . . ... .. . . . .. . . . . . . . . .. .. . . . . . . . ... . . .. . . . . . . .. . . . . . 14 5.3 The PA R-3 Experiment .. . . .. .. . ... ... .. .. . .. .. .. . . .. .. . . .. . .... . . . .. ... .. ... .. .. . .. .... . .. . .. ... . . ... . .. . . . . . .. 14 5.4 The PAR-4 Experiment....... ................................................................................14 5.5 The PAR-5 Experiment .... . . . ... .. .. . . . . . .. . . . .. . .. . .. . .. . .. . .. . . ... .. . . . . . .. .. . .. . .. . . .... .. . . . .. . .... .. . . . ... . . . . I 5 5.6 The PA R-6 Experiment . . .. . . . . . . . . . .. . . .. . . ... . .... .. . . . . . ... ... . . .. . . . . . .. . .. . . .. .. . .. ..... . . . . . . .. . ... . . ... . . 16

' 5.7 The PAR-7 Ex periment . . . . . . . . .. . . ..... ... . . . . . .. ... ... . . . . .. .. . . . . . . ... ... . .. . .. . . . . . . . . . .. . . ... . . . . . .. . .. . . . . 16 5.8 The PAR-8 Experim ent . . . .. .. . . . . . .. .. .. .. . . . .. ... ... . . . . .. . . . . . . . . . ... . . . . . . ...... .. .. .. . . . .. ... . . . .. . .. . . . . .. 1 7 5.9 The PAR-8 R Experiment .... .. . .. .... .. . . .. . . ....... . . . . .. .. . . . . . . . . . .. .. . . .. . . . . . . .. .... . . ... . . . . . . . . . . . . 1 8 5.10 The PAR-9 Ex peri ment . .. ... . . . . . .. . .. ..... . . . .. .. . .. .. .. . .... . . . . ...... . . .... . . . .. .. .. .. . . . . . . . . .. . ... ... . .. 1 8 5.1 1 The PA R- 10 Experiment . .. .. .. . ....... . .. . . . . . ...... . .. . . . ... .. .... . .. . . . .. .. . . . . .. ... . . . . . . . . . . .. . .. .. . 1 9 5.12 The PA R- 12 Experiment . .. .. .. . . . .. . .. .. . . . . ... . . . . . . .. . . . .. . .. . .. . . . .. .. ... . . . . .. .. . . . . .. . .. . .. .. . . . ... .. . I 9 5.13 The PAR- 13 Experi m ent . . . . . . . . . .. . ... .. . . . . . . .. ... . . .. . . .... . ... . .. .. . . .. . . . . . . . . .. . .. .. . . . . . . . . . . . . .... 20 5.14 The PAR- 13 R Experiment .... .......... .............. ...................... ...............................21 5.15 The PA R-demo l Experi ment . . .. . . . ... . . . . . . ... . . . .. . . ... .. ... . . ...... . . . . . .. . ..... .. . . . . . .. . . . . . . .. . . .. ... . .. 2 2 5.16 The PA R-demo 2 Experime nt . . ... . .. ... . . . .. . . . . . .. . . . . . .. . . .. . .. . . . . ... .. .. ... . . .. . . .. . . . . .. . .. .. . . . ... . . . . . 2 2 5.17 The PAR-demo 3 Experiment . ... ........... ............. ..... ...... ................... .. . . . . .. . .. 2 3 5.1 8 The PAR- 14 Ex peri ment . . ... . . .. . . . . . . .... .. .. . ... . .. .. . . . . .. . . .. . . ... . .. . . . . .. . . . . . . . . . . . . .. . .. .... . . 24 5.19 The PAR- 15 Experim ent . ... .... . . .. . . .. . .. . . . . . . ... . . .... . . . . . . . . . . . ... . ... . . . . . . . . . . . .. . . . . . . . . ... . . .. 2 5 5.2 0 The PA R- 16 Experi ment ... . .. . . ... . . . . .. . ... .... . . . . . .... . . ..... . . . . .... . . ... . . . .. . . ... . .. ... . . ... .. .. . . . . . . . 2 6 4

1 6.0 PAR Performance Analyses .. . . . . ... .. . . . . ...... ... . . ... . . ... . . . . . .. . .... .. . .. . .. . .. . .. .. .. .. . . .. . .. .. . . . . ...... ... . . 2 7 '

6.1 S cal e E ffect . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Depletion Rates Under Well-Mixed Conditions ......... .... ..... .. ..... . ....... ............. . 29 6.3 Catalyst Temperatures and PAR AT as Functions of Hydrogen Concentrations........ 29 6.4 WallEffect........................................................................................................30 l v NUREG/CR-6580 ,

l l

4

1 i

i h

Contents (conticued) .  :

E t

6.5 Oxygen Limit Effect .. ..... ... . . ... ...... . .. .. .. .. ... ...... ... . . .. . .. . . ... . ... . . .. . .. ..... ..... . ....... ...... .. . .. 3 0 .

6.6 Hydrogen Ignition by the PAR........................ ........... ............ ............................... .. 31 l I

l

.j

~

7.0 Depletion Rate Calculations Using Velocity Measurements........................ ........... ... ....... 33 >

r 8.0 Summary...............................................................................................................................37 l

9.0 References.........................................................................................................................39 j r

r

)

I

)

r r

e t

i I

t L

i.

'{i 1

i i

r t

3 t

4 i

P i

i

?

i J

'r 4

D 1

I i

i, 4

l l

k t

4 3

NUREG/CR-6580 vi  :

a _ m __ -.,,. . _ J Contents (continued)

Figures

1. 1/4 Scale PAR test module.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .49
2. Top view of the RWE/NIS PAR module (assembled for 1/2,1/4, and 1/8) scale tests. . . 50
3. Cartridges held in a vertical configuration by the PAR housing.. . . .. ... .. .. ...... ...... 51
4. PAR cartridge and catalyst pellets . .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. 52
5. PAR location in the Surtsey vessel .. ....... . .. .. ..... . .. . .. .. ... ........ .. ... . .......53
6. Top view of the PAR housing and location above the support beams...... . .. . ... . . .. 54
7. The Sunsey vessel........ .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 55
8. Surtsey vessel ports used for steam, gas, instrumentation, and video services... ... .56
9. PAR instrumentation and systems ...... .. . . . . . . . . . . . . . . . . . . . . . . . .............57
10. The PC-based control panel for the PAR experiments . ..... . . . . . . . . . ...........58
11. Locations of the vertical thermocouple arrays in the Surtsey vessel . ... . . ....... . ..... 5 9
12. PAR catalyst and gap thermocouple locations...... . .. . . ... . . . . . . . . . . . . . . . .. .. . . . 60
13. Surtsey vessel centerliu gas temperatures from TC array A in PAR-1. . . ... ...... . ... 61
14. Surtsey vessel wall gas temperatures from TC array B in PAR-1... . . ..... .... .. ........ .61 l
15. Catalyst canridge temperatures in PAR-1. . . ... ..................................62 l
16. Catalyst gap temperatures in PAR-1... .. ... . .. ... .... . .. ... . .. ......................62 l
17. Inlet and outlet temperatures in PAR-1... . ........... . . .63 l
18. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-1.. . . 63
19. PAR gas velocity in PAR- 1.. . ... . ... ......... . . . . . ... ..... .. . .... .. . .. .. . ... . . . . . . . . . . . 64
20. Gas concentrations (dry-basis) in PAR-1.. . ...... . . . ... . .... ... . . .. .. . .. ........... . 64
21. H2concentrations (dry-basis) in PAR-1..... ... .. . .. .. ..... ...... ... . ........ ...... .. . ... . .. . 65
22. H 2concentrations (dry-basis) in PAR-I from 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> .......... .. ....... ..... .. .. .. 65 l
23. Catalyst temperature compared to H2 additions and concentrations in PAR-1. . ... . ....... 66
24. PAR AT compared to H2 additions and concentrations in PAR-1........... ...... ... ..... .. .. 66
25. Surtsey vessel centerline gas temperatures from TC array A in PAR-2............ .... . .. . 67
26. Surtsey vessel wall gas temperatures from TC array B in PAR-2. ...... ...... .. . .. .. . . . . . 6 7
27. Catalyst cartridge temperatures in PAR-2... ... . ... . .. . . . . ..................68
28. Catalyst gap temperatures in PAR-2.. . .. ...... . . . . .. . . . . . . . . . . . . . . . . . . .. . .. 6 8
29. Inlet and outlet temperatures in PAR-2.... .... . ............. ........ ...... . . . ... . . . . . . . . . . . 69  ;
30. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-2... . 69
31. PAR gas velocity in PAR-2... .. ... ...... .. . . .. .......... ... ......... . . . . . . . . . . . . . . . . . . . 70
32. Gas concentrations (dry-basis) in PAR-2.. . . . . . . . . . . . . . . . . . . . ......................70
33. Catalyst temperature compared to H2 additions and concentrations in PAR-2.... .. . . ...... 71 i
34. PAR AT compared to H2 additions and concentrations in PAR-2. ... ...... ...... . ... .. . ... 71
35. Surtsey vessel centerline gas temperatures from TC array A in PAR-3. . . . .... . . . 72
36. Surtsey vessel wall gas temperatures from TC array B in PAR-3. ... . . . . . .. . . 72
37. Catalyst cartridge temperatures in PAR-3.................. . . ... ... ..... ......... . .. ... . . .. . .. . . 73
38. Catalyst gap temperatures in PAR-3 ........... ....... . .... . . ...... . .. ... ....... . .. .... . 73
39. Inlet and outlet temperatures in PAR-3......... .................. .. ....... . .. .. ...... . . . 74
40. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-3. . . 74 vii NUREG/CR-6580

Contents (continued)

Figures ,

41. PAR gas velocity in PAR-3.. .......................... ........................75
42. Gas concentrations (dry-basis) in PAR-3. .. ... . .... . ... ... . . . . . . . . ... . . . . . . . . .. 75

. . . . . . . . . . 76

43. Gas concentrations (wet-basis) in PAR-3 . . ... .. . . . . . . . . . . . . ,

. 76 l

44. H2concentrations (wet-basis) in PAR-3 . .... ..... . . . .. .. ....... ........ . . . .... ........ . ..

Catalyst temperature compared to H .. 77

45. 2 additions and concentrations in PAR-3..... .. .

. . . .. . . . . . . 7 7

46. PAR AT compared to H2 additions and concentrations in PAR-3. .. .. .. ...
47. Surtsey vessel centerline gas temperatures from TC array A in PAR-4. .. ..... .. .. . . . 78
48. Surtsey vessel wall gas temperatures from TC array B in PAR-4.... . . . . . .... . . .. ... 7 8
49. Catalyst canridge temperatures in PAR-4.......... ............................... . .... . 79
50. Catalyst gap temperatures in PAR-4. . ... ... ........ .. .. . .............................79
51. Inlet and outlet temperatures in PAR-4.... .. . .. ........... . ...................................80
52. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-4.... . 80 P AR gas velocity in P AR-4. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . .. . .. . .. ... ... . . . . . . . .. . .. .. . . . . . . . . .

. 81 53.

54. Gas concentrations (dry-basis) in PAR-4... .. ...... . . . . . . . . . . . . . . . . . . . . . . . ..........81
55. Gas concentrations (wet-basis) in PAR-4 ..... . .......... . . ....... .......... ... .......... ......... ..... 82
56. H2concentrations (wet-basis) in PAR-4 ... ........... ... ..... ............ ... .. ........ ........... .. ..... 82
57. Catalyst temperature compared to gas additions and concentrations in PAR-4 ... . ... . .. 83
58. PAR AT temperature compared to gas additions and concentrations in PAR-4.. .. ........ . 83
59. Surtsey vessel centerline gas temperatures from TC array A in PAR-5.... . ..... ..... . . ... 84
60. Surtsey vessel wall gas temperatures from TC array B in PAR-5.. ...... .......... ......... . .. 84
61. Catalyst cartridge temperatures in PAR-5.. ..... ........... . ... .. ... . . ..... .. ... . ............85
62. Catalyst gap temperatures in PAR-5... ........ . . . . ... ......................................85
63. Inlet and outlet temperatures in PAR-5.... .... .. .. ....... . . .. .......................... . . ...... ..... 86
64. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-5...... 86
65. PAR gas velocity in PAR-5........ .... .. ... . ..... ... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . 87
66. Gas concentrations (dry-basis) in PAR-5..... .. . . . . . . . . . . . . . . . ...............................87
67. Gas concentrations (wet-basis) in PAR-5 . . . . . . . . . . . . . . . . . . .............................88
68. H2 concentrations (wet-basis) in PAR-5 ........ ... .. ..... .... .... . .......... . . ........ . ... .. .88
69. Catalyst temperature compared to gas additions and concentrations in PAR-5.... .. .. . .. 89
70. PAR AT temperature compared to gas additions and concentrations in PAR-5.... . ...... 89
71. Surtsey vessel centerline gas temperatures from TC array A in PAR-6. . . .... ... ........ . 90
72. Surtsey vessel wall gas temperatures from TC array B in PAR-6. ......................90
73. Catalyst cartridge temperatures in PAR-6.. . .. . . . . . . . . . . . . . . . . . ..................91
74. Catalyst gap temperatures in PAR-6. .. ....... . .. . ..... . .... .. ... . ....... ... . . . ..... ... . .. .. 91
75. Inlet and outlet temperatures in PAR-6... .. . . . ..... . .. . .... ... ... ........... .. ... .... ... .92
76. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-6...... 92
77. PAR gas velocity in PA R-6.. .. . .. . .. . . . . ... ..... . . . . . . . . . . . . . . .. .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 i
78. Gas concentrations (dry-basis) in PAR-6... .. .. .... ... ..............................93 l 79. Gas concentrations (wet-basis) in PAR-6. ..... . .. .. .. .... . . .... ... ... . ............94 l 80. H 2concentrations (wet-basis) in PAR-6 ......... ..... .... ..... .... ..... . ... ... ... . .... .. . . .. 94 NUREG/CR-6580 viii 1

1

Contents (continued)

Figures

81. Catalyst temperature compared to gas additions and concentrations in PAR-6.. . .. 95
82. PAR AT temperature compared to gas additions and concentrations in PAR-6. .. . ... . 95
83. Surtsey vessel centerline gas temperatures from TC array A in PAR-7.. . . . . . .. .. 96
84. Surtsey vessel wall gas temperatures from TC array B in PAR-7. . .... . .. ...........96
85. Catalyst cartridge temperatures in PAR-7... .. . . . . . . . . . . . . . . . . . . . . ... 97
86. Catalyst gap temperatures in PAR-7.. .. .. ............ .. ... . .. ... ...... ... . .. .. ....... .. . . . 97
87. Inlet and outlet temperatures in PAR-7.. . . . .. .. .. ....... ... . . . . .............98
88. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-7.. . 98
89. PAR gas velocity in PAR-7... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
90. Gas concentrations (dry-basis) in PAR-7.. . . . . . . . . . . . . .. .99
91. Gas concentrations (wet-basis)in PAR-7... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .. 100
92. H2concentrations (wet-basis) in PAR-7 . .... .. . .... . ... . . . .. . .. . ..... . . . ... 100 i
93. Catalyst temperature compared to gas additions and concentrations in PAR-7. .. 101
94. PAR AT temperature compared to gas additions and concentrations in PAR-7.... ........101
95. Surtsey vessel centerline gas temperatures from TC array A in PAR-8.. ..... . .... .. .. .102 )
96. Surtsey vessel wall gas temperatures from TC array B in PAR-8..... ... . . ....... 102
97. Catalyst cartridge temperatures in PAR-8.... . .. . . .. . . . . . . . . . . . . . . ....... . . . 103
98. Catalyst gap temperatures in PAR-8.. ...... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
99. Inlet and outlet temperatures in PAR-8.. .. .... .. . ......................................104 100. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-8. . 104 101. PAR gas velocity in PAR-8... .... ... . ... ....................... . . . . ................105 102. Gas concentrations (dry-basis) in PAR-8. .... . ... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . .105 103. Gas concentrations (wet-basis) in PAR-8 ....... . . . . .. .. . .. . ...... ...... ..... ... ... .106 104. H concentrations 2 (wet-basis)in PAR-8. .. . . . . . . . . . . . . . . . . . . . . . . . . . . ...............106 105. Catalyst temperature compared to gas additions and concentrations in PAR-8... . . . .107 106. PAR AT temperature compared to gas additions and concentrations in PAR-8. . . ....107 107. Surtsey vessel centerline gas temperatures from TC array A in PAR-8R.. . .. . ... . .. 108 108. Surtsey vessel wall gas temperatures from TC array B in PAR-8R...... .. .. . . . . ...108 109. Catalyst canridge temperatures in PAR-8R.. . . . . . . . . . . . . . . . . . . . . . . . . .... 109 110. Catalyst gap temperatures in PAR-8R . ...... . ... . .. . . . . . . . . . .. 109 111. Inlet and outlet temperatures in PAR-8R. ..... . . . . . . . . . . . ..................110 112. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-8R .110 113. PAR gas velocity in PAR-8R............... ............ . . . . . . . .. . . . . . . . . . . ... . 111 114. Gas concentrations (dry-basis)in PAR-8R... . .. . ..... . . . . ...................111 115. Gas concentrations (wet-basis) in PAR-8R.. . . . .. ..... . . . . . . . . . . . ..... 112 116. H concentrations 2 (wet-basis) in PAR-8R.. .. ..... . . .. .. . .. .... . . ...... ... ... . .... . .. 112 117. Catalyst temperature compared to gas additions and concentrations in PAR-8R.... .. .. 113 118. PAR AT temperature compared to gas additions and concentrations in PAR-8R.. . .. .113 119. Surtsey vessel centerline gas temperatures from TC array A in PAR-9. .. . . . . .. .114 120. Surtsey vessel wall gas temperatures from TC array B in PAR-9. . . . . . . . . . . . . . . . . . 1 14 ix NUREG/CR-6580

Contents (continued)

Figures 121. Catalyst cartridge temperatures in PAR-9.. . . . . . . . . . . . . . . . ..... .. . . . . . .... ... 115 122. Catalyst gap temperatures in PAR-9.... .... . .. .. .. . ... .. . ... ...... . .. . .. . ... 115 123. Inlet and outlet temperatures in PAR-9.. . . . . . ... . . . . . . . ..................I16 124. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-9... 116 125. PAR gas velocity in PAR-9.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I 17 126. Gas concentrations (dry-basis) in PAR-9.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 127. Gas concentrations (wet-basis) in PAR-9. . . . . . . . . . . . . . . . . . ...............118 128. H concentrations (wet-basis)in PAR-9. . .. .. . .. . . . . . . . . . . . . . . . .. ... . . ....118 2

l 129. Catalyst temperature compared to gas additions and concentrations in PAR-9. . . . . 119 130. PAR AT temperature compared to gas additions and concentrations in PAR-9. ...119 131. Surtsey vessel centerline gas temperatures from TC array A in PAR-10. . .. .. ... ..... 120 132. Surtsey vessel wall gas temperatures from TC array B in PAR-10. . . .. ... .. . 120 133. Catalyst cartridge temperatures in PAR-10.... . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . 121 134. Catalyst gap temperatures in PAR-10.. ... . . . ... .... .. . . . . . . . . . . . . . . ..121 135. Inlet and outlet temperatures in PAR-10... .. . .. . . . .. ..... .. . . . . . . . .. .. . . . .. 122 136. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-10.122 137. PAR gas velocity in PAR-10.. . ... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 138. Gas concentrations (dry-basis) in PAR-10..... .. . . . . . . . . . . . . . . . . . . . .. .. .. 123 139. Gas concentrations (wet-basis) in PAR-10...... ......... ... . . . . . . . . . . . . ..... . .. . .. 124 140. H concentrations 2 (wet-basis) in PAR-10. . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . .....124 141. Catalyst temperature compared to gas additions and concentrations in PAR-10..... . .125 142. PAR AT temperature compared to gas additions and concentrations in PAR-10.. ....... .125 143. Surtsey vessel centerline gas temperatures from TC array A in PAR-12.... .. ... .... .126 144. Surtsey vessel wall gas temperatures from TC array B in PAR-12.. .. .. .... . .. . .. .126 145. Catalyst cartridge temperatures in PAR-12... . .. .. ..... .. .. .... .... . .. . ..... .. . ..127 146. Catalyst gap temperatures in PAR-12... .. .... . . . ..... . . ... .. . . . . . . . . . . . . . . . . . . ..... 12 7 147. Inlet and outlet temperatures in PAR-12.... ...... . . . . . . . . . . . . . . . . . . . .. . ...... .... . 128 148. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-12..128 149. PAR gas velocity in PAR-12.. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ..... . 129 150. Gas concentrations (dry-basis) in PAR-12. .. ... ... .. . . .. .129 151. Gas concentrations (wet-basis)in PAR-12. . . . . . . . ..... .. . . 130 152. H concentrations (wet-basis) in PAR-12 . .. . . . .. . .. . . . . . . . . . . . . . . . . . .. 130 2

153. Catalyst temperature compared to gas additions and concentrations in PAR-12. . .. .131 154. PAR AT temperature compared to gas additions and concentrations in PAR-12. . . .131 155. Surtsey vessel centerline gas temperatures from TC array A in PAR-13. . .. .132 156. Surtsey vessel wall gas temperatures from TC array B in PAR-13. .. . . ...132 157. Catalyst cartridge temperatures in PAR-13. ..... . ... .. . . . . . . . . . . . . . . . . . . . . .133 158. Catalyst gap temperatures in PAR-13. . .. . . . . . . . . . . . . .... ... .133 159. Inlet and outlet temperatures in PAR-13. . . . . . . . . .. .. .. .... .... .. ... 134 160. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-13.134 NUREG/CR-6580 x

Contents (continued)

Figures 161. PAR gas velocity in PAR-13.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ........ 135 162. Gas concentrations (dry-basis)in PAR-13. . . . . .. . . . . . . . . . . . . . . . . . .. .135 163. Gas concentrations (wet-basis) in PAR-13 . . ... .. .... . . . . . . . . . . . . . . . . . . . . . . . . .136 164. H concentrations 2 (wet-basis) in PAR-13 ... .. .......... . . . .. . . . . . . . . . . . . ... .136 165. Catalyst temperature compared to gas additions and concentrations in PAR-13 . .137 166. PAR AT temperature compared to gas additions and concentrations in PAR-13. . .. 137 167. Surtsey vessel centerline gas temperatures from TC array A in PAR-13R... . . .. . ..138 168. Surtsey vessel wall gas temperatures from TC array B in PAR-13R... . ........ . . ....13 8 169. Catalyst cartridge temperatures in PAR-13R... . . ..... .. ..... . .......................139 170. Catalyst gap temperatures in PAR-13R . . . ... .. ... .... . . . . . . . . . . . . . . .. . .139 171. Inlet and outlet temperatures in PAR-13R. ..... . . . . . . . . .. . . . . . . . . . . . . . . .. . .. 140 172. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-13R.............................................................................140 173. PAR gas velocity in PAR-13 R.. .......... .... ........ . . . .. . ... .. .. ..... ....... .. . . . . . . .141 174. Gas concentrations (dry-basis) in PAR-13R. . .... ... . ... . . .. ..... .. .... . .. 141 1 175. Gas concentrations (wet-basis) in PAR-13R... .......... ...... . . . . . . . . . . . . . . . . .. . . . .142 176. H concentrations 2 (wet-basis) in PAR-13R........ . .. .. . .. .. . . . . . . . .. . . . .142 177. Catalyst temperature compared to gas additions and concentrations in PAR-13R.. . .143 178. PAR AT temperature compared to gas additions and concentrations in PAR-13R . .... ..143 l 179. Surtsey vessel centerline gas temperatures from TC array A in PAR-demol .......... ... ..144 i

180. Surtsey vessel wall gas temperatures from TC array B in PAR-demol . . ... ... ........... .144 181. Catalyst cartridge temperatures in PAR-demo 1.... ........ . . . ...... . . . ... . .... .. . .... 145 182. Catalyst gap temperatures in PAR-demol .... ........ .... . . . .. .... . . . . .. . . . 145 l 183. Inlet and outlet temperatures in PAR-demol ...... . ........ ....... .... ....... .... ........... . .. . 146 l84. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PA R-d e m o 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . . . . . . . .... . . . . . . . . . . . . . . 14 6 185. PAR gas velocity in PAR-demo 1......... . ................... . ..... ... . .. .... ..................147 186. Gas concentrations (dry-basis) in PAR-demol . ... ........ . . .... ....................147 187. Gas concentrations (wet-basis) in PAR-demol . ..... . ........... ... . . . .. .. .. ... ... . . ..148 l 188. H concentrations 2 (wet-basis)in PAR-demol. . . . ...........................148 189. Catalyst temperature compared to gas additions and concentrations in PAR-demol . ... 149 190. PAR AT temperature compared to gas additions and concentrations in PAR-demol .....149 191. Surtsey vessel centerline gas temperatures from TC array A in PAR-demo 2.... . . . . 150 192. Surtsey vessel wall gas temperatures from TC array B in PAR-demo 2. ......... ..............150 193. Catalyst cartridge temperatures in PAR-demo 2... .... . . . . . . . .......................151 194. Catalyst gap temperatures in PAR-demo 2 ............. .. . . .... .... . .. ... ..... . ....... ... .... ...... I 51 195. Inlet and outlet temperatures in PAR-demo 2..... . ........ ........ ........................152 196. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PA R-demo 2 .. .. . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . .. . 152 197. PAR gas velocity in PAR-demo 2..... . . . .. . .. . . .. . . . . . . . . . . . . . . . . . . . . . .... ...... 153 xi NUREG/CR-6580

~

Contents (continued)

Figures 198. Gas concentrations (dry-basis) in PAR-demo 2. .... ... ........................153 199. Gas concentrations (wet-basis)in PAR-demo 2. . . . ... ...... . ......... . .... 154 200. H concentrations 2 (wet-basis) in PAR-demo 2.. ... ....... . .. ... . . . . . . . . . . ....... . 154 201. Catalyst temperature compared to gas additions and concerurations in PAR-demo 2... 155 202. PAR AT temperature compared to gas additions and concentrations in PAR-demo 2. ..155 203. Surtsey vessel centerline gas temperatures from TC array A in PAR-demo 3........ . .. 156 204. Surtsey vessel wall gas temperatures from TC array B in PAR-demo 3. .. . .. ... 156 205. Catalyst cartridge temperatures in PAR-demo 3. . ... .. . . ... .. . . . . . . . . . . . ...157 206. Catalys gap temperatures in PAR-demo 3..... . .. .. ..... . . . . . . . . . . . . . .... ....157 207. Inlet and outlet temperatures in PAR-demo 3.. . . . . .. .. . . . . . . . . .. .. .15 8 208. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-demo 3. . ..... . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 209. PAR gas velocity in PAR-demo 3........ .... . . . . . . . . . . .... . . . . . ....... 159 210. Gas concentrations (dry-basis) in PAR-demo 3. . ...... . . .. . . . . . . . . . . . . ....... . 15 9 211. Gas concentrations (wet-basis) in PAR-demo 3 . . .. . . . .. . . ...... ... .. .. . .. . .... ...160 212. H concentrations (wet-basis) in PAR-demo 3.... . ..... ... .. . . . .. .. . . . . . . . . . . . . . .160 2

213. Catalyst temperature compared to gas additions and concentrations in PAR-demo 3... 161 214. PAR AT temperature compared to gas additions and concentrations in PAR-demo 3. ...161 215. Surtsey vessel centerline gas temperatures from TC array A in PAR-14....... ....... .. ...162 216. Surtsey vessel wall gas temperatures from TC array B in PAR-14... ..... .. ...... . . 162 217. Catalyst cartridge temperatures in PAR-14... . ........... .. .. . .. ....... . .. . . . . . . . . . . . . . .163 218. Catalyst gap temperatures in PAR-14. . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . .163 219. Inlet and outlet temperatures in PAR-14.. .. .. . ...... .. .... . . . . . . . . . . . . . . . . . . . . . .164 220. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-14. 164 221. PAR gas velocity in PAR-14..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..165 222. Gas concentrations (dry-basis) in PAR-14... .. ...... . . . . . . . . . . . . . . . . . . . . ..... 165 223. Gas concentrations (wet-basis) in PAR-14 .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .. 166 224. H concentrations 2 (wet-basis)in PAR-14. . . . . . . . . . . . . . . . . . . . . . . . ....166 225. Catalyst temperature compared to gas additions and concentrations in PAR-14. . ... ...167 226. PAR AT temperature compared to gas additions and concentrations in PAR-14.. . ... ..167 227. Surtsey vessel centerline gas temperatures from TC array A in PAR-15. . . . . . . ..168 228. Surtsey vessel wall gas temperatures from TC array B in PAR-15.... ... .... .. . ... 168 229. Catalyst cartridge temperatures in PAR-15. .. . .. ... . . . . . . . . . . . . . . . . . .. .... I 69 230. Catalyst gap temperatures in PAR-15. . . . . . . . . . . . . . . .. . . . . . . . .. .... . 169 231. Inlet and outlet temperatures in PAR-15.. ..... . ...................................170 232. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-15. 170 233. PAR gas velocity in PAR-15.. .. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .... .. . 171 234. Gas concentrations (dry-basis) in P A R-15... . .. . . . . . . . . . . . . . . . . . . . . . . . . . ..171 235. Gas concentrations (wet-basis) in PAR-15. .. ..... . . ... ..... . . . . . . . . . . . . . . . . . . . . 1 72 236. H concentrations 2 (wet-basis) in PAR-15 . . ... .. . ... . . . . .. .. . . . . .... . . ... 172 NUREG/CR-6580 s.

I l

Contents (concluded)

Figures  !

\

237. Catalyst temperature compared to gas additions and concentrations in PAR-15 . . .173 238. PAR AT temperature compared to gas additions and concentrations in PAR-15.. . .173 239. Surtsey vessel centerline gas temperatures from TC array A in PAR-16. .. . . .. 174 :

240. Surtsey vessel wall gas temperatures from TC array B in PAR-16............. ..... . . . 174 l 241. Catalyst cartridge temperatures in PAR-16.... . . . . . . . . . . . . . . . . . . . . . . .. .175 242. Catalyst gap temperatures in PAR-16. . . . .. . .... . . .. . . . . . . .. . ..175 243. Inlet and outlet temperatures in PAR-16.... . . . . . . . . . . .. .. . ... ......176 l 244. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-16. 176 I 245. PAR gas velocity in PAR-16.. .... .. . ... ... ... . . . . . . . . . . . . . . . . . . . . . . . . .177 246. Gas concentrations (dry-basis) in PAR-16.. ... . . . . . . . . . . . . . . . . . . . . . ... 177 '

247. Gas concentrations (wet-basis) in PAR-16. .. ... . . . . . . . . .178 248. 11 2concentrations (wet-basis) in PAR-16.. . . . . ... .. . . . . .. . . . . . .178 249. 0 concentrations 2 (wet-basis) in PAR-16.. .. ... .. ... . . . . . . . . . . . . . . . . . .179 250. Catalyst temperature compared to gas additions and concentrations in PAR-16... . .. 180 i 251. PAR AT temperature compared to gas additions and concentrations in PAR-16.. ... ] 80 )

252. Hydrogen moles in Surtsey during tests with low hydrogen concentration.... . .181 l 253. liydrogen depletion rates at low hydrogen concentrations .. . . . . . . . . . . . . . . , . . . . . . . . I 81 254. Hydrogen moles in Surtsey during tests with high hydrogen concentrations. . .... ... ....I82 255. Hydrogen depletion rates at high hydrogen concentrations... ... .. . . . . . . . . . . . .. 182 256. Predictions of hydrogen depletion rates versus hydrogen concentrations . . . . . ... . ... I 83 ,

257. Temperature difference between successive array B thermocouples. .. .. . . . . . .183  !

258. Normalized hydrogen depletion rates at low hydrogen concentrations. ... . .... . .. . I 84 j 259. Normalized hydrogen depletion rates at high hydrogen concentrations.... . . . .. ..I84 '

260. Normalized well-mixed hydrogen depletion rates at high hydrogen concentrations.. . 185 261. Normalized well-mixed hydrogen depletion rates at low hydrogen concentrations. .. 185 262. Cartridge temperature versus hydrogen concentration... . . .. . . . . . . .. ... 186 263. PAR AT versus hydrogen concentration....... .. . . . . . . . . . . . . . . . ..... ..I86 264. Cartridge temperature versus hydrogen concentration in PAR-16. .. . . . . .187 265. PAR AT versus hydrogen concentration in PAR-16. . . . . . . . . . . . . . .. 187 266. Hydrogen moles in Surtsey during tests for the wall effect. . . .. .188 267. Hydrogen depletion rate comparison for the wall effect. . . . . . . .... .. .188 268. Hydrogen moles in Surtsey during tests for the oxygen limit effect... .. . . 189 269. Hydrogen depletion rate comparison for oxygen limit effect .. . . . . .189 270. Hydrogen and oxygen concentration during PAR-16. . . . . . .190 271. Normalized hydrogen depletion rates as a ftmetion of hydrogen and oxygen concentration in PAR-16..... .. . . . . . . . . . . . . . . .... .. . ... .... .. .190 272. PAR-2 volumetric flow rate versus time.. .. .. . . . .191 273. PAR-2 hydrogen concentration (dry-basis)..... .. .. . . . .. ..... . . . . . .191 274. PAR-2 flow rate versus concentration .. .... .. . . . . . . . . . . . . . . . . .. .192 275. Hydrogen depletion rate by two methods .. .. .. . . . . . . . . . . .. . .192 xiii NUREG/CR-6580

h Contents (continued)

- Tables

' l. PAR instnunentation .. .... .. .... ... ....... . . .... ... .. . . . . . . . ... . . . . .. . .. . .. .... .. .... . . . .. . . . ... .. I.

t

2. P AR test matrix .. . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Cartridge location in the PAR tests (lef1 to right) .............................................................. 46 l i
4. Cartridge location in the PAR-14, -15, and -16 tests (left to right).'........ .......................... 47 >
5. Initial conditions prior to the hydrogen burn ..... ...... ........................................................ 48 r

i i

e i

[

t i

t i

9 i

i t

4 2

E 6

s r

s t

i i

s i

(

i NUREG/CR-6580 xiv l P

1

___.._ --_ _ J

Acknowledgments  ;

The authors would like to thank K. O. Reil for his oversight and guidance of the experimental program. The authors express their gratitude to M. S. Oliver and C. Hanks, who were the electronics and instrumentation technicians for these experiments, and to T. T. Covert and D. Trump, who were the mechanical tecimicians. All operations at the Surtsey Test Site were performed under the capable management of the site supervisor and mechanical engineer, R. T. Nichols. The gas mass spectrometry technical assistance and analyses were provided by S. M. Thornberg and S. L. Metzger. J. H. Bentz and D. W. Stamps (University of Evansville) reviewed the report, providing numerous helpful comments. M. L. Garcia typed, compiled, and edited the manuscript.

This work was supported by the Accident Evaluation Branch, Office of Nuclear Regulatory Research, of the U.S. Nuclear Regulatory Commission and was performed at Sandia National Laboratories, which is operated for the U.S. Department of Energy under Contract No.

DE-AC04-94AL85000.

xv NUREG/CR-6580

Nomenclature PAR passive autocatalytic recombiner ALWR advanced light water reactor U.S. United States SNL Sandia National Laboratories USNRC U. S. Nuclear Regulatory Commission I&C instrumentation and control PC personal computer DAS data acquisition system GMS gas mass spectrometer CCD charge coupled device IR infrared RH relative humidity X,,,,, steam concentration P,,, saturation pressure of steam f

c initial noncondensible fraction 0

Nu total pretest moles of gas including steam and noncondensible gases j 1

X[ initial pretest mole fraction of species i at time = 0 l

0 Ni initial pretest gas moles for species i t

X, mole fraction of species i at time t i i N, gas moles of species i at time t '

SMPS Standard Meters Per Second V, standard velocity i 1

V actual velocity p actual density p, standard air density AP differential pressure across the velocity probe C calibration constant for the velocity probe P, standard pressure in absolute units xvii NUREG/CR-6580

Nomenclature (continued)

P, actual pressure in absolute units T, standard temperature in absolute units T, actual temperature in absolute units F, standard volumetric flow F, actual volumetric flow Q steady-state volumetric flow C, hydrogen volume fraction in containment R hydrogen removal rate e efficiency factor for hydrogen removal pn mass density of hydrogen in the PAR Xn hydrogen molar fraction at the PAR inlet

! P vessel pressure Rn hydrogen gas constant i T temperature of the PAR inlet NUREG/CR-6580 xviii

Performance Testing of Passive Autocatalytic Recombiners 1.0 Introduction Passive autocatalytic recombiners (PARS) have been under consideration in the United States (U.S.) as a combustible gas control system in operating plants and advanced light water reactor (ALWR) containments for design basis accidents. PARS do not require a source of power; instead, they use a catalyst to recombine hydrogen and oxygen gases into water vapor upon contact with the catalyst. The heat produced from the recombination of hydrogen with oxygen creates buoyancy effects which promote the influx of the surrounding gases into the recombiner.

The recombination rate of the PAR system needs to be great enough to keep the concentration of hydrogen below acceptable limits.

There are several catalytic recombiner concepts under development worldwide. The PAR design tested at Sandia National Laboratories (SNL) has been developed by the NIS Company, Hanau, Germany. Detailed tests and analyses were made in cooperation with the Battelle Institute, Frankfurt, and the Technical University, Munich. Its development has been sponsored by the ,

German utility, RWE Energie.

The NIS/RWE PAR device contains flat rectangular cartridges filled with porous spherical ceramic pellets, which are coated with palladium. The large surface area of the palladium layer of the pellets acts on diffused gas molecules to recombine hydrogen with oxygen. Between the cartridges, the PAR device has open flow channels to allow heavier particles or aerosols in the atmosphere to flow through with little plugging of the pellet surface.

Sandia National Laboratories, under the sponsorship and direction of the U.S. Nuclear Regulatory Commission (USNRC), has conducted an experimental program to evaluate the performance of PARS. A PAR was tested at the Surtsey experimental test facility (domed cylinder with a volume of 99 cubic meters (m')) at SNL. The test program included the following experiments:

e Experiments to define the startup characteristics of PARS (i.e., to define what is the lowest hydrogen concentration where the PAR starts recombining the hydrogen with oxygen).

. Experiments to confirm the hydrogen depletion rate curve of PARS which was provided to the USNRC (EPRI,1993).

  • Experiments to define the PAR performance in the presence of steam.
  • Experiments to evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.
  • Experiments to define the PAR performance with av J without the hydrophobic coating.

1 NUREG/CR-6580

e Experiments to determine if the PAR could ignite hydmgen mixtures.

  • Experiments to define the PAR performance in well-mixed conditions.
  • Experiments to define the PAR performance in low oxygen environments.

The following describes the configuration of the PAR, the test facility, the instrumentation, the control and data acquisition system, the test conditions, and the test results and analyses.

NUREG/CR-6580 2

2.0 Experiment Description 2.1 PAR Description Figure I shows the 1/4 scale PAR test module steel housing and chimney section. The PAR test module was a scaled version of the prototype PAR [EPRI,1993] that was developed and fabricated by NIS INGENIEURGESELLSCHAFT MBH (Ilanau, Germany). The prototype PAR contains two rows of standard catalytic cartridges (44 cartridges per row) and has dimensions of 1 m by 1 m. The PAR test module (also manufactured by NIS) contains only one row of standard catalytic cartridges and could be assembled as either a 1/2 scale,1/4 scale, or 1/8 scale PAR by removing cartridges and using smaller (length) front and back panels. Note that the 1/2 scale PAR test module configuration has dimensions of ~0.5 m by ~1.0 m. Figure 2 shows a top view comparing the PAR test module at the three scales.

Figure 3 shows that the PAR test module housing holds the catalyst cartridges in a vertical 3

direction and guides the air flow. A vertical flow channel with a spacing of about I centimeter l (cm) is formed between the cartridges. These flow channels (along with the PAR body or I housing) define the flow area for convection of the heat generated by the heat of reaction. The PAR exit has a chimney with a free cross-sectional area equal to the cross-sectional area through the cartridges. This eliminates downward flow in the PAR and improves the volume flow through the PAR.

Figure 4 shows that the catalyst material is inserted into rectangular cartridges (0.45 m length, 0.01 m wide,0.20 m tall). The cartridges are filled with the catalyst pellets. The steel sides of the cartridges are perforated with many slotted-like openings that allow hydrogen to enter into ,

the cartridge. The catalyst is a palladium-coated (0.5 weight %) aluminum oxide pellet with a diameter of about 4-6 millimeter (mm) and a bulk density of ~0.5 kilogram / liter (kg/L). The porous oxide pellet provides a large inside surface area (~100 m2 /g) of palladium.

A hydrophobic coating is placed on each pellet to minimize startup delays due to surface water, either from steam condensation or activation of the containment spray system. NIS states that the hydrophobic coating is probably destroyed when the PAR catalyst exceeds ternperatures of about 473 K. The PAR catalyst would reach these temperatures at about 2 mole % hydrogen gas (H 2)in cold dry air and about 1 mole % H in2 the hot air / steam environment.

2.2 Test Facility Description Figure 5 shows the location of the PAR test module in the Surtsey vessel. The PAR was located at the Surtsey vessel centerline, ~1 m above the midline elevation (except in PAR-9, where the PAR was moved to within 0.3 m of the vessel wall). Horizontal and vertical I-beams exist in the lower half of the Surtsey vessel but there are no I-beams located directly below the PAR. Figure 6 sho'vs the layout of the PAR and the horizontal I-beams (top view). The flow area through the beam openings is 47 % of the total Surtsey cross-sectional area.

3 NUIEG/CR-6580

The Surtsey vessel (Figure 7) is an ASME-approved steel pressure vessel. It has a cylindrical l

shape with removable, dished heads attached to both ends, and is 3.6 m ih diameter by 10.3 m '

high. The Sunsey vessel has a maximum allowable working pressure of 1 megapascal (MPa) at 533 K, but has a burst diaphragm installed to limit the pressure in the vessel to less than 0.9 MPa.

It is supported approximately 2 m off the ground by a structural steel framework with its longitudinal axis oriented vertically. A total of twenty 30.5-cm (12-inch) and 61-cm (24-inch) instrument penetration ports exist at six different levels around the perimeter of the vessel. The vessel walls and heads are 3/8-inch thick and covered with at least 4 inches of fiberglass l i

insulation, or equivalent material. A false floor currently installed between the lower head and the cylindrical wall section reduces the freeboard volume of the Surtsey vessel to 99 m'. l Numerous flanges on the vessel were modified to allow steam, noncondensible gas, water, electrical, and video service into and out of the vessel. Figure 8 shows the ports that have been ,

modified for these purposes.  !

2.3 Instrumentation. Control, and Data Acanisition The most significant variables measured in the PAR experiments were: (1) the pressure and temperature in the Surtsey vessel, (2) the gas constituents and steam concentrations, (3) the PAR  !

pellet and channel gap temperatures, (4) the flow velocity through the PAR, and (5) the amounts of hydrogen and oxygen injected into the vessel. Figure 9 shows the major instrumentation and equipment installed in the Surtsey vessel for the PAR experiments.

Due to the novelty of the PAR test module and the complexity of the planned tests, the instrumentation and control (I&C) equipment and the data acquisition system were designed to  ;

be very flexible. This allowed changing the test conditions (during the course of a test) based on real-time test results. A personal computer (PC)-based data acquisition system (DAS) was designed to control and monitor the course of the test in real-time. The control panel is shown in Figure 10. The PC-based DAS pc instantaneous readouts of the cartridge pellets and  !

corresponding cartridge air gap temperature; Surtsey vessel pressure, temperature, and gas '

concentrations; and valve positions for steam, hydrogen, and oxygen additions. In addition, the DAS controlled the hydrogen target concentration and the duration of the gas addition interval.

Table 1 is a listing of the instrumentation used in the PAR experiments. The boxed numbers in l Figures 10 and 12 correspond to the channel numbers in the data acquisition system listed in  ;

Table 1. Instrumentation changed slightly as the PAR experiments progressed. The analysis and techniques used to describe key data from the test instrumentation are described in the section below. .

Four pressure transducers were used to measure the pressure in the Surtsey vessel. Two transducers have ranges of 0-1.38 MPa; the other two have ranges of 0-2.07 MPa. The four l

transducers were mounted in level 6 penetrations on the Surtsey vessel. All of the transducers '

were metal diaphragm strain gauge-type pressure transducers (Precise Sensor, Inc., Monrovia, i

CA). The specified accuracy from the manufacturer for the pressure transducers is better than l

5 l

NUREG/CR-6580 4

)

l

- _ - = - . .. . _ .-

  • 0.50 percent at full-scale output. The transducer's frequency response is greater than 22 kilohertz (kHz) (16 millisecond (ms) rise time). These instruments are routinely recalibrated at SNL against instruments traceable to the National Institute of Standards and Technology, and accuracies are always within the manufacturer's specifications.

The gas temperature in the Smtsey vessel was measurci with twenty thermocouples installed in two rakes. Figure 11 shows thermocouple locations. The two thermocouple rakes were installed vertically in the vessel; one rake at the vessel centerline (array A) and one rake (array B) located about 0.32 m from the vessel wall. Ten equally-spaced type-K thermocouples (1.0 m spacing) were located on each rake. All type-K thermocouples were made of 0.254-mm wire with a 1.6-mm sheath. The temperature range of the type-K thermocouples is 273 K to 1523 K. The maximum error using the manufacturer's calibration is

  • 9.4 K at 1523 K.

Six type-K thermocouples were installed in the Surtsey vessel steel walls. Five thermocouples measured wall temperature and one thermocouple measured floor temperature. In addition, thermocouples measured the injected oxygen and hydrogen temperatures, both at the respective manifolds and also at each steam / gas diffuser. In order to minimize steam condensation, steam

)

was mixed with the oxygen and/or hydrogen during each gas iniection. The temperature of the '

inlet steam was also recorded.

A real-time gas mass spectroscopy (GMS) system was used to determine the concentrations of  ;

nitrogen, oxygen, and hydrogen in the vessel at four sample points. The four sample points were I at the PAR inlet, the PAR outlet, high in the vessel near the dome, and low in the vessel near the  ;

floor. To ensure representative samples and to minimize the delay time due to purging sample lines, each line was purged for ~1 minute prior to sampling. This necessitated a continuous purge of gas out of the vessel. The sample lines and purge rates were sized to allow no more than a 1.0 % loss (by volume) of gas out of the vessel over the course of a 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> test. Since the PAR inlet was the sample point of greatest interest, this point was selected for every other sample (i.e., PAR inlet, PAR outlet, PAR inlet, Surtsey dome, PAR inlet, Surtsey floor, PAR inlet, PAR outlet, ...).

Ten to twenty pre-evacuated 500-cm' gas grab sample bottles were used to collect samples from the vessel. Most of the gas grab samples were taken at the PAR inlet; however, any of the four gas sample points could have been selected. These gas grab samples were used as an independent verification of the gas composition. The sample times were chosen based on the expected PAR performance and the estimated test duration time. All sample lines were purged prior to filling the gas grab bottles to ensure representative samples. All of the gas samples were analyzed posttest using gas mass spectroscopy by the Gas Analysis Laboratory at SNL.

A high resolution 1/2-inch charge-coupled device (CCD) color camera was mounted on a level 5 port, and viewed the PAR through a tempered glass window. In addition to the digital camera, an infrared (IR) camera also viewed the PAR through a different level 5 port. The camera view l could see the PAR exit (top of the chimney) and provide visual evidence in the event of a

deflagration event.

i 5 NUREG/CR-6580

7 The hydrogen and oxygen gas was supplied to the vessel from separate manifolds. Standard 44 liter compressed gas cylinders were installed on the manifolds. In the tests that involved a prototypic air / steam atmosphere, the cold gas entering the vessel was mixed with an appropriate amount of steam to heat the cold gas to near the desired test temperature. Mixing was done in a diffuser / mixer pipe that was located near the Door of the vessel. This was necessary to prevent condensation of the steam. The amount of hydrogen added was usually based on the difference between the actual hydrogen concentration at the PAR inlet (from the gas mass spectroscapy instrument) and the target hydrogen concentration. For every mole of hydrogen that was added, typically, one-half mole of oxygen was also added in those tests at high hydrogen concentrations.

Mass How controllers were used to provide precise metering of the hydrogen and oxygen into the vessel. Two mixing fans were installed in the vessel (see Figures 6 and 9). They were located on opposite sides of the PAR at the openings of the false floor support I-beams; one pointed upward and one pointed downward. The fans were usually cperated when hydrogen was injected and prior to taking gas grab samples.

Other instrumentation included a hygrometer to measure relative humidity; and pitot-tube differential pressure transducers and a hot-wire anemometer to measure the velocity of the gas at the PAR inlet and outlet.

Figure 12 shows the location of the thermocouples that monitored PAR temperature. Twelve thermocouples monitored the catalyst temperature at three cartridge locations; PAR middle (and a PAR middle backup), PAR edge, and PAR corner. Three vertical positions for temperature measurement were monitored at each location (2 cm from the bottom, middle, and 2 cm from the top). These thermocouples were inserted into the cartridges and surrounded by the catalyst pellets. Twelve thermocouples monitored the temperature of the gas in the gap between the cartridges and were located opposite of the catalyst thermocouples. Four thermocouples monitored the PAR inlet temperature. Two thermocouples were located at the centerline middle and two were located at the centerline edge (within 2 cm of the PAR bottom). Four thermocouples monitored the PAR outlet temperature. Two thermocouples were located at the centerline middle and two were located at the centerline edge (within 2 cm of the chimney exit).

Real-time plots of the pertinent parameters provided indications of the PAR heat up and hydrogen depletion during the course of the test. The plots included the vessel hydrogen, oxygen, and steam, concentrations, oxygen and hydrogen total flow and flow rates, PAR temperatures, gas temperatures from the two vertical arrays, vessel pressure, and the velocity of the gas at the PAR inlet and outlet.

NUREG/CR-6580 6

3.0 Gas Composition Measurements and Analyses The GMS system cannot measure steam concentrations, a dry sample must be presented to the GMS system. In order to achieve this, a condenser and condensate trap (and heated gas inlet lines) were installed on each gas measurement line. This yielded dry-basis gas concentrations; however, to determine wet-basis gas concentrations, the steam fraction must be known. A hygrometer was used to determine the relative humidity (RII). Then, the steam concentration (X ) was calculated by, P"

X ,,,,,,, = R H (1)

Pawai where the saturation pressure of steam (P ) is determined from the saturated steam tables using the vessel average gas temperature. The thermocouples on array B were used to determine the vessel average temperature.

The nitrogen-ratio method was used to determine wet-basis gas concentrations as a second independent method (Blanchat,1994). The nitrogen-ratio method does not require an estimate of the posttest noncondensible fraction. It does, however, require the pretest noncondensible fraction. The data and assumptions required for the nitrogen-ratio method are listed below:

1. The initial noncondensible fraction, fic , must be known.
2. The total pretest moles of gas, N ,o, including steam and noncondensible gases, must be known.
3. The measured ratios of the pretest and posttest noncondensible gases must be known. I
4. It must be assumed that nitrogen is neither produced nor consumed by chemical reactions.
5. It must be assumed that leakage between the time for which the pretest numbers apply and the time of the posttest samples does not change the ratios of the noncondensible gases.

Let X , be the initial (pretest) mole fraction of species i at time t = 0 in the Surtsey vessel and let N ,o be the initial number of steam and noncondensible gas moles in the vessel. The initial number of gas moles for all species is N? = Xf Nfm i . (2)

Let X'i eb the mole fraction of species i at time t. For the various posttest times, the number of moles of nitrogen is assumed to be unchanged, and the numbers of moles of the other gases are therefore given by, N' = N"y, .

(3)

X,,

x 7 NUREG/CR-6580

It is not necessary to know the posttest noncondensible fraction; only the ratio of the posttest gas species mole fractions are needed.' Furthermore, provided all noncondensible gases leak in the same proportion, a correction for posttest leakage is not needed.  ;

3 The nitrog:n-ratio method calculated the total number of nonco sjensible moles. Total moles in the vessel is calculated using ideal gas law relationships. Thert: fore, the number of steam moles ,

is simply the difference between the total vessel moles and the total noncondensible moles. The steam fraction is found from the ratio of steam moles to total vessel moles.

I i

i h

r b

i e

5 4

?

E I

t NUREG/CR-6580'- 8 f

4.0 Test Matrix Twenty PAR tests were conducted. The test matrix is summarized in Table 2. The PAR was located at the Surtsey vessel centerline in all tests except PAR-9.

The goal of the first three tests was to determine the minimum hydrogen concentration at which the PAR begins to recombine, both in cold air (PAR-1 and PAR-2) and in steam atmospheres (PAR-3). These startup tests were all performed at 1/2 scale.

PAR performance at low hydrogen concentrations was determined in the PAR-4 (at 1/2 scale),

the PAR-5 (at 1/4 scale), and the PAR-6 (at 1/8 scale) experiments. NIS states that the hydrophobic coating is probably destroyed when the PAR catalyst exceeds temperatures of about 473 K. The PAR catalyst reched these temperatures at about 2% 112 in cold dry air and about  ;

1% H2 in the hot air / steam environment. Tests PAR-4, PAR-5, and PAR-6 were performed at l hydrogen concentrations that would not destroy the hydrophobic coating. I The effect of the hydrophobic coating was determined in two counterpart tests, PAR-7 and PAR-8. Both tests were performed at 1/8 scale and at relatively high hydrogen concentrations.

The hydrophobic coating was intentionally destroyed during the PAR-7 experiment. A repeat test, PAR-8R, yielded performance data at 1/8 scale and high hydrogen concentrations.

The PAR-9 experiment was performed at 1/8 scale to determine the effect on performance when the PAR is located near a wall. New cartridges were used and the depletion rate data from PAR-9 was compared to the counterpart test, PAR-6 (also at 1/8 scale but at the vessel center location).

liydrogen ignition by the PAR was intentionally tested in the PAR-10 experiment. The PAR-11 test (a planned counterpart high concentration hydrogen ignition test) was not performed. The PAR-12 experiment (at 1/4 scale) and the PAR-13 and PAR-13R experiments (at 1/2 scale) yielded the scaled counterpart high hydrogen concentration performance data and completed the test series.

Obtaining hydrogen depletion rate at steady-state well-mixed conditions was the goal of the PAR-demol, PAR-demo 2, and PAR-demo 3 experiments. The mixing fans were operated continuously (at slow speed) throughout most of each test. These experiments were performed with old cartridges that had been last configured for the PAR-8R experiment. Steady-state well-mixed depletion rate data was Ao obtained in the PAR-14 and PAR-15 experiments. New cartridges were installed in the 1 o scale housing prior to starting the PAR-14 experiment.

The PAR-16 experiment was designed to investigate oxygen limits. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support 1-beams.

9 NUREG/CR-6580 l

5.0 Experimental Results Some general pretest and posttest observations from the twenty tests are described in the following paragraphs. The specific experimental results and test observations are then presented in the respective test sections.

The atmosphere for the first two tests was air, at a pressure of about 0.21 MPa. The next twelve tests used a mixture of 0.107 MPa of air and 0.107 MPa of steam, for a total pressure of about 0.21 MPa. To achieve these conditions, the vessel was scaled with about 0.083 MPa of cold air inside (one Albuquerque atmosphere at about 293 K). To achieve a steam atmosphere, the Surtsey vessel was heated internally with steam to obtain a gas temperature of about 375 K. A portable steam boiler provided a low-pressure, saturated steam heat source (227 kg/hr) into Surtsey. Initially, the steam that entered Surtsey condensed and yielded latent heat to the vessel walls and atmosphere. A steam trap installed in the Surtsey floor removed the condensate without removing gases. As the vessel heated, the vessel pressurized with steam. The vessel bulk gas and wall heat up was accomplished in about 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. At a temperature of 375 K, the air and steam pressures become equal. Note that the air pressure increased from 0.083 MPa to 0.107 MPa because of the increase in air temperature from 293 K to 375 K.

Five well-mixed tests were performed in air-only atmospheres and at pressures of about 0.21 MPa (PAR-demol, PAR-demo 2, PAR-demo 3, PAR-14, and PAR-15). The purpose of the experiments was to obtain depletion rate data from a hydrogen concentration of about 5 mole % (dry-basis) in an air atmosphere (no steam). In all five tests, the PAR was first operated at a steady-state well-mixed condition by continuously injecting hydrogen. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. The mixing fans were operated continuously at a slow speed throughout most of each test. The " demo" tests used old cartridges.

A set of new cartridges was obtained prior to performing the PAR-14, PAR-15, and PAR-16 experiments.

Depletion rate data were not obtained in the PAR-demol and PAR-demo 2 tests due to premature bums. The following points can be made in regards to the " demo" tests: 1) Hydrogen burns occurred in all three tests. The source of the bums has not been determined. Further investigation will be needed to identify the ignition source. 2) The PAR startup delay time increased with each successive test, from ten minutes in PAR-demol to forty-five minutes in PAR-demo 3, 3) Well-mixed conditions were obtained by operating the mixing fans at slow speed, and 4) A depletion rate comparison between PAR-8R (a non-mixed 1/8 scale test with hydrogen / air / steam mixtures at 2 bar pressure and without mixing fans) and PAR-demo 3 (a well-mixed test) shows that the depletion rate was smaller in PAR-demo 3. One possible explanation is that a more accurate depletion rate was obtained with the mixing fans running continuously in PAR-demo 3 since the PAR was now depleting the entire volume uniformly. The depletion rate calculation assumes that the entire Surtsey volume is being depleted and that the hydrogen concentration in the vessel is uniformly the same concentration as + 4 measured by the GMS at the PAR inlet sample point. However, there may be another explanation. The cartridges in the 11 NUREG/CR-6580

f 1/8 scale PAR have been operated at high temperatures for many hours and the catalyst may have degraded.

Low oxygen concentrations were suspected to have yielded a poor depletion rate performance in the PAR-7 experiment. The PAR-16 experiment was designed to investigate this effect.  ;

A series of about twelve figures is presented for each of the twenty experiments described below.

The first two figures show the temperatures recorded by the two vertical vessel gas thermocouple arrays. A linear-average is given on each respective temperature plot. Also, the time of the mixing fan operation is given on the array B plot. The next two figures show the cartridge catalyst and gap temperatures, respectively. The six middle thermocouples in the catalyst and also the gap were used to provide average temperatures. A figure shows the PAR inlet and outlet temperatures from the middle thermocouples along with the gas addition flow rates as measured from the hydrogen and oxygen flow controllers. A figure compares vessel pressure and saturation pressure (using the array B average temperature) to the steam fraction (as determined from Equation 1) and the relative humidity fraction. A figure shows the velocity of the gas (in meters per second) at the PAR inlet and the chimney exit using the pitot-tube differential '

pressure transducers and the hot-wire anemometer. The last five figures focus on gas concentration measurements. The dry-basis gas concentration at the PAR inlet sample point as  ;

determined from the real-time gas mass spectrometer is shown and compared to the gas grab sample (GGS) post-test measurements. Next, the wet-basis concentrations of hydrogen, oxygen, nitrogen, and steam (also at the PAR inlet sample point) are given. The next figure focuses on the wet-basis hydrogen concentrations at the vessel floor, PAR inlet, PAR outlet, and vessel dome locations. This figure also shows the integrated hydrogen (and oxygen, if used) addition.

The last two figures compare hydmgen and oxygen wet-basis concentrations (at the PAR inlet) and integrated additions to either the average catalyst temperature or the PAR AT. The PAR AT (differential temperature) was calculated from the difference of the PAR outlet and inlet average temperatures.

Steam fractions, as determined from the ratio of saturation steam pressure to total pressure in the Surtsey vessel, and also from the nitrogen ratio method, were very similar during the course of the majority of the tests. A few deviations were seen in the later tests and the steam fraction detemiined by the me$od of pressure ratio may not be accurate; these deviations were attributed to problems with the hygrometer, especially after it was damaged by the deflagration event in the PAR-8 experiment and subsequently repaired.

Two observations can be made regarding most of the PAR tests. The first is that the PAR started within 10 minutes in tests with both cold air atmospheres and with hot air / steam mixtures when hydrogen concentrations were quickly increased to > 1.0 mole %. In cold air tests, similar startups were also seen even with hydrogen additions to only 0.2 mole %. However, startup delays were seen in tests with steam atmospheres with low hydrogen concentrations. These startup delays decreased in time when the hydrogen concentrations were increased.

NUREG/CR-6580 12 l

l l

The second observation is that at steady-state operation the PAR appeared to generate a l convective flow loop in the Surtsey vessel from the PAR outlet to the dome, down the Surtsey wall (until reaching the height of the PAR inlet), and then returning to the PAR inlet; as indicated '

by both the hydrogen concentration and the vessel gas temperature measurements. Since the convection flow pattem did not extend to the Surtsey floor, the vessel was not completely well-mixed by the PAR during steady-state operation. The hydrogen concentration from the sample point located near the floor always showed a higher concentration when measurements were taken after the last addition, as compared to the other sample points. This indicated that the depletion below the PAR near the floor was lower than that in the upper half of the Surtsey vessel. Also, the convective loop appeared to be driven further downward into the lower half of the Surtsey vessel in those tests with the higher hydrogen concentrations.

l 5.1 The PAR-1 Experiment '

The PAR-1 experiment was designed to measure the minimum startup hydrogen concentration (refer to Figures 13-24). The PAR was configured for 1/2 scale. The Surtsey vessel was sealed and pressurized with bottled air to about 0.21 MPa. The initial vessel average gas temperature was about 290 K.

In most of the PAR tests, the gas concentrations measured by the mass spectrometer could be identified and separated by sample location (see Figure 32, gas concentrations in PAR-2);

however, in PAR-1 (and also in PAR-3), the location identifier was not recorded. Therefore, separate color traces of hydrogen concentration of the individual locations are not available for PAR-1 and PAR-3. Gas concentrations at specific locations were displayed on the monitors during the course of the test (and therefore indicated on Figures 21 and 22) and are consistent with the measurements recorded in the other tests.

The PAR started recombining after the first hydrogen addition to about 0.3 mole %. There was essentially no delay in startup. This was shown by the vessel gas and the catalyst temperature increase, the flow increase at the PAR outlet, and the decreasing hydrogen concentration.

The PAR appeared to generate a convective flow loop in the Surtsey vessel from the PAR outlet to the dome, down the Surtsey wall (until reaching the height of the PAR inlet), and then returning to the PAR inlet. This was shovm by the relatively flat temperatures and small temperature gradient for the thermocouples located below the PAR on the thermocouple array B.

Also, the hydrogen concentration from the sample point located near the floor showed small decreases, as compared to the other sample points. At t = 4.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />,just prior to turning on the mixing fans, the hydrogen concentration in the dome and near the floor was 0.2 mole % and 1.6 mole %, respectively. A simple mole-average of the dome and floor values yield a concentration of 0.9 mole %. The true vessel average, determined after mixing the vessel, was 0.6 mole %. This indicated that little depletion occurred in the lower half of the Surtsey vessel.

13 NUREG/CR-6580

5.2 The PAR-2 Experiment The PAR-2 experiment, essentially a repeat of the PAR-1 experiment, was designed to measure the minimum startup hydrogen concentration (refer to Figures 25-34). The PAP was configured for 1/2 scale. The Surtsey vessel was sealed and pressurized with bottled air to about 0.21 MPa.

The initial gas temperature was about 297 K. The PAR started recombining after the first hydrogen addition to about 0.15 mole %. There was essentially no delay in startup. As in PAR-1, the PAR appeared to generate a convective flow loop in the Surtsey vessel from the PAR outlet to the dome, down the Surtsey wall (until reaching the height of the PAR inlet), and then returning to the PAR inlet. The hydrogen concentration from the sample point located near the floor showed small decreases as time progressed, compared to the other sample points. This indicated that little depletion occurred in the lower half of the Surtsey vessel.

5.3 The PAR-3 Experiment The PAR-3 experiment was designed to measure the minimum startup hydrogen concentration in a hot air / steam environment (refer to Figures 35-46). The hydrogen gas injections were very similar to the PAR-1 and the PAR-2 experiments. The PAR was configured for 1/2 scale. The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 52 mole %.

The PAR did not give a strong response after the first two hydrogen additions. Note that there was a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> wait period after each addition. A close inspection of the data showed that near the end of the second addition: 1) the temperature of the catalyst increased,2) there was an increase in flow at the PAR outlet, and 3) decreased hydrogen concentration at the PAR outlet was accompanied by a slight decrease in the hydrogen concentration at the PAR inlet.

The startup response of the hot, wet PAR was delayed as compared to the cold, dry tests (PAR-1 and PAR-2). The PAR started immediately at a level of 0.15 mole % hydrogen in PAR-2. The PAR started within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> at a concentration of 0.4 mole % in PAR-3. Again, the PAR appeared to generate a convective flow loop in the Surtsey vessel. 1 1

5.4 The PAR-4 Experiment  !

The PAR-4 experiment was designed to operate the 1/2 scale PAR at a steady-state condition while maintaining the temperature of the catalyst below 473 K to prevent destruction of the hydrophobic coating (refer to Figures 47-58). The Surtsey vessel was sealed with air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved at a gas temperature of about 377 K. The steam concentration at the beginning of the test was about 46 mole %.

Hydrogen was added to achieve a steady-state concentration. Hydrogen concentration was l slowly increased using a series of hydrogen additions. The PAR started about 5 minutes after the hydrogen concentration reached about 0.4 mole %. Note that the mixing fans were turned on l

l NUREG/CR-6580 14 l

l

during each addition (and remained on for 30 s afler the addition was stopped). The PAR started about I hour after the hydrogen additions were commenced, with the average hydrogen concentration at about 0.7 mole %. A steady-state condition of the PAR was achieved at about 3.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. The steady-state hydrogen concentration was about 0.8 mole %. At steady-state, the AT across the PAR was about 30 K and the average catalyst temperature was about 455 K.

After the last hydrogen addition at 3.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, the hydrogen concentration at the PAR inlet decreased from about 0.85 mole % to about 0.2 mole % in about 0.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. This decrease in hydrogen concentration yields depletion rate information, which is discussed in detail in Section 6.

The DAQ computer inadvertently stopped at about t = 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. In order to extend the wet-basis gas concentration measurements to about t = 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, regression fits of pressure and temperature data (from about t = 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> to t = 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />) were calculated.

As in the previous startup experiments, the PAR appeared to generate a convective flow loop in the Surtsey vessel during steady-state operation. The hydrogen concentration from the sample point located near the floor always showed a higher concentration after the last addition, as compared to the other sample points. This indicated that the vessel was not completely well-mixed by the PAR during steady-state operation.

5.5 The PAR-5 Experiment The PAR-5 experiment was designed to operate the 1/4 scale PAR at a steady-state condition while maintaining the temperature of the catalyst below 473 K to prevent destruction of the hydrophobic coming (refer to Figures 59-70). The Surtsey vessel was sealed and contained air at about 0.083 MPe. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was acf;ieved. The gas temperature was about 376 K. The steam concentration at the beginning of the test was about 54 mole %.

The PAR started immediately after the first addition of hydrogen as the hydrogen concentration approached 0.6 mole %. A steady-state condition of the PAR was achieved at about 1.82 hours9.490741e-4 days <br />0.0228 hours <br />1.35582e-4 weeks <br />3.1201e-5 months <br />.

The steady-state hydrogen concentration was about 0.5 mole %. At steady-state, the AT across the PAR was about 34 K and the average catalyst temperature was about 455 K.

To prevent any disturbance of the convective flow recirculation pattern started by the PAR, the mixing fans were turned on only twice during the test, at 0.3 hrs prior to the first gas grab sample and near the end of the test at 3.3 hrs,just before the last gas grab sample. The vessel remained well-mixed during the hydrogen adds as indicated by identical hydrogen concentrations at the PAR inlet and at the vessel floor. This was attributed to the mode of addition (hot buoyant hydrogen added with steam through the diffuser mounted near the vessel floor) along with the convective mixing set up by the PAR in the upper half of the Surtsey vessel. Note that this helps mix the gases during hydrogen adds, but not during the depletion test. This can be observed by 15 NUREG/CR-6580

the divergence of the hydrogen concentration at the PAR inlet and vessel Goor after 1.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> in Figure 68.

At steady-state operation, the convective flow loop in the Surtsey vessel was very similar to that seen in the PAR-4 experiment.

5.6 The PAR-6 Experiment The PAR-6 experiment was designed to operate the 1/8 scale PAR at a steady-state condition while maintaining the temperature of the catalyst below 473 K to prevent destruction of the

  • hydrophobic coating (refer to Figures 71-82). The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 52 mole %.

The PAR started within twenty minutes after the first addition of hydrogen as the hydrogen l concentration approached 0.9 mole %. A steady-state condition of the PAR was achieved at about 1.92 hours0.00106 days <br />0.0256 hours <br />1.521164e-4 weeks <br />3.5006e-5 months <br />. The steady-state hydrogen concentration was about 0.6 mole %. At steady-  !

state, the AT across the PAR was about 27 K and the average catalyst temperature was about 460 K.

To prevent distmbing the convective flow recirculation pattern started by the PAR, the mixing fans were turned on only at the beginning of the test, prior to some gas grab samples (at 0.27 hrs, j 0.39 hrs, and 3.28 hrs), and near the end of the test just before the last gas grab sample (at 5.45 hrs). The vessel remained fairly well-mixed during the hydrogen adds.

At steady-state operation, the convective flow loop in the Surtsey vessel was very similar to that  :

seen in the PAR-4 and PAR-5 experiments.

5.7 The PAR-7 Experiment ,

The PAR-7 experiment was designed to operate the 1/8 scale PAR at a steady-state condition by  ;

continuously injecting hydrogen to maintain a hydrogen concentration of about 7 mole % (wet-  :

basis). NIS states that operating at high hydrogen concentrations will cause the temperature of '

the catalyst to exceed 473 K and should destroy the hydrophobic coating (refer to Figures 83-94).

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to 7 heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentrativ i the beginning of the test was about 54 mole %.

The PAR started about seven minutes atter the first hydrogen addition commenced. The PAR temperatures peaked and then started to decline while the hydrogen was being added (t = 0 to t = 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />). During this time, when the hydrogen concentration increased from 0% to 8%,

oxygen levels decreased from 12% to about 5%. Because it was suspected that the reduced PAR temperatures were due to reduced oxygen levels, oxygen was added from t = 1.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> to NUREG/CR-6580 16

t = 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> in an attempt to understand this effect. As the oxygen was added and the oxygen concentration increased from 5% to 8% the PAR appeared to " restart", as indicated by increasing .,

l catalyst temperatures.

t The steady-state hydrogen concentration was about 3.5 mole %. At steady-state, the AT across l the PAR was about 130 K and the average catalyst temperature was about 760 K.

t 5.8 The PAR-8 Experiment The PAP.-8 experiment was designed to replicate the conditions of PAR-7 and to determine if the  ;

lack of the hydrophobic coating would delay the startup in a steam environment (refer to Figures .

95-106). The PAR was configured as a 1/8 scale device (with the same cartridges used in PAR-7) l and located in the middle of the Surtsey vessel. In PAR-7, the hydrogen concentration reached about 8 mole % and the catalyst temperature reached 1000 K, which destroyed the hydrophobic ,

l coating. In addition, a steady-state depletion curve from about 7 mole % hydrogen was to be

' {

attempted;  ;

l The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to l

l heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature i was about 375 K The steam concentration at the beginning of the test was about 51 mole %.

j i

The first hydrogen addition replicated the first hydrogen addition in PAR-7. The PAR started l about eighteen minutes aner the first hydrogen addition (as compared to seven minutes in PAR-7). . Based on these results, it appeared that the lack of the hydrophobic coating had little effect in delaying the PAR startup. The conditions after the first hydrogen addition were: 1) the maximum hydrogen concentration reached about 10.0 mole %,2) the maximum AT across the PAR was about 260 K. ad 3) the average catalyst temperature reached about 1000 K.

- A second hydrogen addition (along with a concurrent oxygen addition) was performed to obtain a steady-state depletion curve from a hydrogen concentration of about 7 mole % (due to a drift in the mass spectrometer calibration, hydrogen concentration was believed to be only about j_ 6 mole % at the time of the addition). About four minutes after the completion of the hydrogen addition (the oxygen addition was still being performed and the mixing fans were operating), a deflagration occurred in the Surtsey vessel. Immediately before the burn, the hydrogen and oxygen concentrations were about 11 mole % and 9 mole %, respectively, The cata!yst temperatures were rising at the time of the burn and had reached about 1140 K, the AT across the PAR was about 280 K.

The Surtsey vessel pressure peaked to about 0.56 MPa and the average gas temperature reached  ;

about 800 K during the burn. Due to the ongoing oxygen addition, about 2 mole % of oxygen l was added immediately aller the burn. After the burn, the hydrogen concentration was about j 0 mole % and the oxygen concentration was about 5.5 mole %. A steady-state depletion curve i

was not obtained due to the deflagration event. j k

17 NUREG/CR-6580  ;

- - -_- - - -=_. .. -- - - - - - , - . . . -

5.9 The PAR-8R Experiment The PAR-8R experiment was designed to operate the PAR at a steady-state condition by continuously injecting hydrogen to maintain a hydrogen concentration of about 5 mole % (wet-basis) (refer to Figures 107-118). Note that this condition was not met in PAR-8 because a deflagration consumed all of the hydrogen in the vessel prior to achieving a steady-state condition. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 378 K. The steam concentration at the beginning of the test was about 55 mole %.

The PAR started about fifteen minutes after the start of first hydrogen injections. A steady-state condition was reached at t = 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. At steady-state: 1) the hydrogen and oxygen concentrations were about 5.5 mole % and 9.5 mole %, respectively,2) the AT across the PAR was about 190 K, and 3) the average catalyst temperature was about 860 K. Note that the vessel pressure and average temperature at steady-state were about 0.24 MPa and 392 K, respectively, and the steam concentration was about 52 mole %. The small increase in vessel pressure and temperature was caused by the gas (and steam) additions in conjunction with PAR heating of the vessel gases while setting the steady-state op-rating condition.

No hydrogen burns occurred and no small prticles were seen floating inside the Surtsey vessel (as was seen in PAR-13 and PAR-13R).

5.10 The PAR-9 Experiment The PAR-9 experiment was designed to operate the PAR at a steady-state condition by continuously injecting hydrogen to maintain a hydrogen concentration of about 1 mole % (wet-basis) (refer to Figures 119-130) and compare the results with PAR-6. In PAR-6, the PAR was located at the vessel centerline. In PAR-9, the PAR was configured as a 1/8 scale device (using new cartridges) and was located about 0.3 mfrom the wall of the Surtsey vessel. As in all of the tests, the PAR was located about one meter above the false floor support I-beams.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.20 MPa was achieved. The gas temperature was about 372 K. The steam concentration at the beginning of the test was about 48 mole %.

The PAR started about six minutes afler the first hydrogen injection. The PAR reached a steady-state condition at t = 1.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. At steady-state: 1) the hydrogen and oxygen concentrations were about 1.0 mole % and about 11.5 mole %, respectively,2) the AT across the PAR was about 95 K, and 3) the average catalyst temperature was about 490 K.

NUREG/CR-6580 18

Some of the PAR temperatures from the thennoccuples embedded in the catalyst spiked upward at about t = 0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> during the incremental gas additions (2-min. intervals) and quickly returned to earlier values. It is not known why this occurred. Refer to Section 6.2 for comparisons between PAR-9 and PAR-6 results.

5.11 The PAR-10 Experiment The PAR-10 experiment was designed to determine if a PAR could ignite an air /stearruhydrogen mixture with an initial hydrogen concentration of about 10 mole % (refer to Figures 131-142).

The PAR was configured as a 1/8 scale device (with the same cartridges used in PAR-8) and located in the middle of the Surtsey vessel.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.22 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 48 mole %.

The PAR started about eight minutes after the hydrogen injection was commenced. Because it was necessary to add a large amount of hydrogen in a small time frame; the flow controller was partially bypassed and hydrogen was directly added from the hydrogen manifold. Steam was added and mixed with the hydrogen using the hydrogen diffuser nozzle located near the floor of the Surtsey vessel. The mixing fans were operating during the hydrogen addition. A deflagration event occuned in the Surtsey vessel about 12 minutes after the completion of the hydrogen addition. The conditions just prior to the hydrogen burn were: 1) the maximum indicated hydrogen concentration was about 10.5 mole %,2) the maximum AT across the PAR was about 70 K, and 3) the average catalyst temperature reached about 740 K. Note that the peak catalyst temperature reached 950 K just before the burn.

Assuming no hydrogen was consumed prior to the burn, the wet-basis hydrogen concentration should have reached about 13 mole %. It is believed that the sampling system did not have enough time to adequately purge sample lines and capture the actual concentration inside the Surtsey vessel at the time of the burn. Unfortunately, the gas grab sample taken after the hydrogen addition and just before the burn was bad, and could not verify the dry-basis gas mass spectrometer results.

The oxygen concentration was about 13 mole % immediately before the burn. The Surtsey vessel pressure peaked to about 0.64 MPa during the burn and the average gas temperature reached about 880 K. After the burn, the hydrogen concentration was about 0 mole % and the oxygen concentration was about 8 mole %. A steady-state depletion curve was not obtained due to the deflagration event.

1 5.12 The PAR-12 Experiment The PAR-12 experiment was designed to operate the PAR at a steady-state condition by continuously injecting hydrogen to maintain a hydrogen concentration of about 5 mole % (refer l 19 NUREG/CR-6580

to Figures 143-154). The PAR was configured as a 1/4 scale and !ocated at the centerline of th Surtsey vessel about one meter above the false floor support I-beams.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 48 mole %.

The PAR started about ten minutes after the first hydrogen injection was commenced. A steady-state condition was reached at 1.6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />. At steady-state: 1) the hydrogen and oxygen concentrations were both about 6 mole %,2) the AT across the PAR was about 230 K, and 3) the average catalyst temperature was about 880 K. Note that the vessel pressure and average temperature at steady-state were about 0.33 MPa and 440 K, respectively, and the steam concentration was about 62 mole %. This was caused by the gas (and steam) additions in conjunction with PAR heating of the vessel gases while setting the steady-state operating conditions. Steady-state hydrogen depletion data was taken until t = 5.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> and then the mixing fans were tumed on.

5.13 The PAR-13 Experiment The PAR-13 experiment was designed to operate the PAR at a steady-state condition by continuously injecting hydrogen to maintain a hydrogen concentration of about 5 mole % (refer to Figures 155-166). The PAR was configured as a 1/2 scale and located at the centerline of the Surtsey vessel about one meter above the false floor support I-beams.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 52 mole %.

The PAR started about ten minutes after the first hydrogen injection. A steady-state condition was reached at t = 1.4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. At steady-state: 1) the hydrogen and oxygen concentrations were about 4 mole % and 11 mole %, respectively,2) the AT across the PAR was about 120 K, and

3) the average catalyst temperature was about 650 K. Note that the vessel pressure and average temperature at steady-state were about 0.32 MPa and 420 K, respectively, and the steam concentration was about 58 mole %. This was caused by the gas (and steam) additions in conjunction with PAR heating of the vessel gases while setting the steady-state operating conditions.

As hydrogen was being added to the vessel; a series of three small hydrogen burns occurred. The first burn occurred at about t = 0.6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />; the maximum PAR temperature at that time was about 600 K. The IR video showed many small (possibly glowing) particles flaating inside the vessel.

It is believed that the particles were composed of the catalyst hydrophobic coating (a polymer).

These whitish particles have been seen in other tests when the catalyst temperature has exceeded 500 K. The burn at about t = 0.8 hrs was particularly interesting because the video showed that a large burst of white particles ejected from the chimney seconds before the deflagration.

NUREG/CR-6580 20

One of the mixing fans failed during the test which prevented obtaining a well-mixed condition in the vessel. Therefore, depletion rate data was not obtained from an initial well-mixed condition.

5.14 The PAR-13R Emeriment The PAR-13R experiment was designed to operate the PAR at a steady-state condition by continuously injecting hydrogen to maintain a hydrogen concentration of about 5 mole % (refer to Figures 167-178). The PAR was conGgured as a 1/2 scale and located at the centerline of the Surtsey vessel about one meter above the false Door support I-beams. This test was intended as a repeat of PAR-13; most of the hydrophobic coating should have been removed in PAR-13 and it was anticipated that no burns would occur during the repeat test.

The Surtsey vessel was sealed and contained air at about 0.083 MPa. Steam was then added to heat the vessel and the air until a pressure of about 0.21 MPa was achieved. The gas temperature was about 375 K. The steam concentration at the beginning of the test was about 48 mole %.

The PAR started about ten minutes after the Srst hydrogen injection. A steady-state condition was reached at t = 1.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> At steady-state: 1) the hydrogen and oxygen concentrations were about 6.5 mole % and 12.0 mole %, respectively,2) the AT across the PAR was about 110 K, and

3) the average catalyst temperature was about 900 K. Note that the vessel pressure and average temperature at steady-state were about 0.29 MPa and 420 K, respectively, and the steam concentration was about 50 mole %. This was caused by the gas (and steam) additions in conjunction with PAR heating of the vessel gases while setting the steady-state operating condition.

l The corner and the edge catalyst cartridge temperatures were much colder than the middle {

cartridge temperatures (Figure 169). This large variation in temperature had not been seen in earlier tests. This probably caused a lower than expected PAR performance during the depletion interval, as shown in the PAR performance analyses section.

Two small hydrogen burns occurred during the hydrogen injection interval. The Erst burn occurred at about t = 0.7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br />. The maximum PAR catalyst temperature at that time was about 700 K. These burns were very similar to those seen in PAR-13. The IR video showed a few small (possibly glowing) particles Doating inside the vessel (noticeably less particles than that seen in PAR-13). No more particles were seen after the second burn at t = 0.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> and hydrogen was added uneventfully until the desired well-mixed, steady-state condition was I achieved.

Note that saturation pressure (P,,) does not have any meaning when a burn occurs as shown in Figure 172. The steam is superheated from the burn, temperatures are very high, and therefore, so is P,,,. Since the hygrometer reads 100% RH this yields X,,_ > 1, which is nonphysical.

21 NUREG/CR-6580

5.15 The PAR-demol Experiment The PAR-demol experiment was designed to operate the PAR at a steady-state well-mixed condition by continuously injecting hydrogen and then obtain depletion rate data from a hydrogen concentration of about 5 mole % (dry-basis) in an air atmosphere (no steam) (refer to Figures 179-190). The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. The mixing fans were operated continuously (at slow speed) throughout most of the test.

The Surtsey vessel was sealed and contained air at about 0.21 MPa. The gas temperature was about 300 K. The PAR started about ten minutes after the first hydrogen addition. As hydrogen was being added to the vessel; a series of three hydrogen burns occurred. The first burn occurred at about t = 0.77 hours8.912037e-4 days <br />0.0214 hours <br />1.273148e-4 weeks <br />2.92985e-5 months <br />; hydrogen concentration was about 7 mole % and the maximum PAR temperature at that time was about 840 K. The infrared camera showed a flame front (coming into the view from above the PAR) that burned downward past the PAR. The hot-wire anemometer was tumed off after that burn (since it presented a possible ignition source). Some of the temperature data was expanded over the burn intervals in an attempt to isolate flame front infom1ation, however, the results were inconclusive. The second burn occurred at about t = 1.32 hours3.703704e-4 days <br />0.00889 hours <br />5.291005e-5 weeks <br />1.2176e-5 months <br />; hydrogen concentration was about 7 mole % and the maximum PAR temperature at that time was about 820 K. Again, the infrared camera showed a llame that burned downward past the PAR. Since the quartz lamps (mounted near the vessel dome) were now suspected as the ignition source, they were deenergized after the second burn. A third burn occurred at about t = 1.74 hours8.564815e-4 days <br />0.0206 hours <br />1.223545e-4 weeks <br />2.8157e-5 months <br />; hydrogen concentration was about 8 mole % and the maximum PAR temperature at that time was about 1000 K. The IR camera now showed flames initiating at the PAR chimney exit. Since the hot-wire anemometer and the quartz lamps were turned off they were not the ignition source. The PAR definitely appeared to be the ignition source.

The catalyst hydrophobic coating can probably be discounted as the ignition source for all of the burns in the PAR-demol test since the IR video showed no small particles floating inside the vessel prior to the burns.

The hydrogen addition was not stopped after the first and third burns. The hydrogen l concentration in the Surtsey facility did not increase with the continued additions since the bums l ignited the hydrogen jets at the diffuser outlet. The flames attached to the diffuser outlet were extinguished only when the hydrogen additions were stopped.

The mixing fans appeared to be effective in maintaining a well-mixed condition inside the Surtsey ve mel. The hydrogen concentration from the sample point located near the floor closely tracked the PAR inlet sample point.

5.16 The PAR-demo 2 Experiment l l

The PAR-demo 2 experiment was designed to operate the PAR at a steady-state well-mixed j condition by continuously injecting hydrogen and then obtain depletion rate data from a hydrogen concentration of about 5 mole % (dry-basis) in an air atmosphere (no steam) ) (refer to l

NUREG/CR-6580 22

Figures 191-202). Note that this test was essentially a repeat of the PAR-demol attempt. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. The mixing fans were operated continuously (at slow speed) throughout the test.

The Surtsey vessel was sealed and contained air at about 0.21 MPa. The gas temperature was about 300 K. The PAR started later than in the PAR-demol test, about twenty minutes after beginning the hydrogen addition as compared to ten minutes in PAR-demol. Due to incorrect mass spectrometer calibration settings, the actual hydrogen concentration in the Surtsey vessel was greater than indicated during the performance of the test. As hydrogen was being added a large burn occurred that consumed all of the hydrogen in the vessel. The burn occurred at about t = 0.685 hours0.00793 days <br />0.19 hours <br />0.00113 weeks <br />2.606425e-4 months <br /> with the hydrogen concentration at about 11 mole % and the maximum PAR temperature at about 680 K. The PAR catalyst was not hot enough to be a hot-surface ignition source. The infrared camera showed an upward propagating flame front coming into the view from below the false floor support I-beams. The flames eventually engulfed the PAR and rose toward the dome. 1 The hot-wire anemometer and the quartz lamps had been tumed off about ten minutes prior to the burn, they were not the ignition source. The catalyst hydrophobic coating can probably be discounted as the ignition source since the IR video showed no small panicles floating inside the vessel prior to the burn Some of the temperature data was expanded over the burn interval in an attempt to isolate flame front information. Both thermocouple arrays show temperatures first increasing at low levels in the Surtsey vessel (i.e., within two meters above the floor). It was determined that the burn commenced immediately after the hydrogen addition was turned off.

The mixing fans maintained a well-mixed condition inside the Surtsey vessel. The gas sample point located near the floor indicated hydrogen concentrationn very similar to those indicated by the gas sample point at the inlet of the PAR.

5.17 The PAR-demo 3 Experiment The PAR-demo 3 experiment was designed to operate the PAR at a steady-state well-mixed condition by continuously injecting hydrogen and then obtain depletion rate data from a hydrogen concentration of about 5 mole % (dry-basis) in an air atmosphere (no steam) ) (refer to Figures 203-214). Note that this test was essentially a repeat of the PAR-demol and PAR-demo 2 attempts. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. The mixing fans were operated continuously (at slow speed) throughout the test.

The Surtsey vessel was sealed and contained air at about 0.21 MPa. The gas temperature was about 300 K. The PAR started later than in the earlier tests, about forty-five minutes after 23 NUIEG/CR-6580

beginning the hydrogen addition as compared to ten minutes in PAR-demol and twenty minutes in PAR-demo 2.

After the hydrogen was added a small burn occurred that consumed a small amount of the hydrogen in the vessel. The burn occurred at about t = 1.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> with the hydrogen concentration at about 6.5 mole % and the maximum measured PAR temperature at about 840 K.

The PAR catalyst may have been hot enough to cause hot-surface ignition. Helical igniters have ignited 6 % hydrogen / air mixtures at temperatures near 850 K. The infrared camera showed a downward moving flame front coming into the view from the dome region above the PAR. The flames eventually engulfed the PAR and then appeared to die out as they approached the false floor support I-beams. The camera showed that a hot particle was ejected out of the chimney immediately prior to the burn. Since, the hot-wire anemometer and the quartz lamps had been turned off about one hour prior to the burn, they were not the ignition source.

Some of the temperature data was expanded over the burn interval in an attempt to isohte flame front information. Both thermocouple arrays show temperatures first increasing at high levels near the dome in the Surtsey vessel, followed by increasing temperatures in the Ir,wer levels of the vessel.

The mixing fans maintained a well-mixed condition inside the Surtsey vessel.

5.18 The PAR-14 Experiment The PAR-14 experiment was designed to operate the PAR at a steady-state well-mixed condition by continuously injecting hydrogen and then obtain depletion rate data from a hydrogen concentration of about 2 mole % (dry-basis) in an air atmosphere (no steam) (refer to Figures 215-226). Note that this test was essentially a repeat of the PAR-1 and PAR-2 experiments with the exception that the mixing fans were operated continuously (at slow speed) throughout the test. The PAR was configured as a 1/8 scale device and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. The 1/8. scale PAR housed eleven new cartridges that contained catalyst material with undamaged hydrophobic coating. This test was performed at a low hydrogen concentration in order to keep the PAR temperature below 473 K (200 C) to avoid burning the hydrophobic coating.

The Surtsey vessel was sealed and contained air at about 0.21 MPa. The gas temperature was about 280 K. After the mixing fans were started, the hydrogen addition commenced at t = 0.46 hours5.324074e-4 days <br />0.0128 hours <br />7.60582e-5 weeks <br />1.7503e-5 months <br />. The hydrogen flow rate was based on calculations showing that the addition rate l (about 100 liter / minute (lpm)) was about twice the scaled depletion rate. The PAR started about l thirteen minutes later with the hydrogen concentration at about 0.5 mole % in the Surtsey vessel.

The mixing fans maintained a well-mixed condition inside the Surtsey vessel.

l At t = 1.87 hours0.00101 days <br />0.0242 hours <br />1.438492e-4 weeks <br />3.31035e-5 months <br />, the hydrogen flow rate was reduced to 501pm in order to reach a steady-state condition. About two minutes later, catalyst temperatures spiked. The catalyst temperature l

ranged from 600 K to 850 K during the spike. Just before the sharp rise in catalyst temperatures:

l NUREG/CR-6580 24 l

l

1) the hydrogen and oxygen concentrations were about 2.0 and 20.5 mole %, respectively. 2) the AT across the PAR was about 75 K, and 3) the maximum catalyst temperature was about 453 K (180 C). The catalyst temperatures returned to values observed before the spike within about ten minutes. A similar event occurred in the PAR-9 experiment (which also used new catalyst). A hydrogen deflagration event was not observed during the temperature spike.

The second unusual event occurred about 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> after the hydrogen additions were stopped, during the depletion rate portion of the test. It appeared that the PAR stopped depleting hydrogen. This was indicated by the decrease in catalyst temperatures to ambient temperature, little AT and gas flow across the PAR, and constant hydrogen concentrations (about 0.9 mole %)

in the vessel. Mixing fans were turned off at t = 5.4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> to determine if they were causing the shutdown. No effect was noted after the fans were turned off. Note that a similar shutdown may have occurred at the end of the PAR-demo 3 experiment (the catalyst temperature data shows sharp decreases near the end of the test). The causes for the spike in catalyst temperature and the shutdown of the PAR are not clearly understood.

5.19 The PAR-15 Experiment The PAR-15 experiment was designed to operate the PAR at a steady-state well-mixed condition by continuously injecting hydrogen and then obtain depletion rate data from a hydrogen concentration of about 2 mole % (dry-basis) in an air atmosphere (no steam) (refer to Figures 227-238). The PAR was configured as a 1/8 scale device (eleven cartridges) and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams.

Note that this test was essentially a repeat of the PAR-14 experiment, and similar to the PAR-1 and PAR-2 experiments with the exception that the mixing fans were operated continuously (at slow speed) throughout the test. Note also that the hydrophobic coating on the catalytic material was damaged in the previous experiment (PAR-14).

The Surtsey vessel was sealed and contained air at about 0.21 MPa. The gas temperature was about 285 K. After the mixing fans were started, the hydrogen addition commenced at t = 0.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. The PAR started about fifteen minutes later with the hydrogen concentration at about 0.5 mole % in the Surtsey vessel. The mixing fans maintained a well-mixed condition inside the Surtsey vessel.

At t = 1.50 hours5.787037e-4 days <br />0.0139 hours <br />8.267196e-5 weeks <br />1.9025e-5 months <br />, the hydrogen additions were stopped in order to obtain depletion rate data.

Just prior to stopping the hydrogen additions: 1) the hydrogen and oxygen concentrations were about 2.0 and 20.5 mole %, respectively,2) the AT across the PAR was about 90 K, and 3) the maximum catalyst temperature was about 473 K (200 C).

The spike in catalyst temperatures seen in the PAR-14 experiment did not occur in PAR-15.

Also, the PAR did not shutdown at 1.0 mole % hydrogen concentration, as was seen in PAR-14.

The PAR continued to deplete hydrogen to a level of about 0.3 mole % hydrogen. The only visual difference between the two tests was that the atmosphere was foggy in PAR-14 and clear in PAR-15.

25 NUREG/CR-6580

f 5.20 The PAR-16 Experiment j The PAR-16 experiment was designed to determine the PAR oxygen limits (refer to Figures 239-251). The PAR was configured as a 1/8 scale device (eleven cartridges) and was located at the centerline of the Surtsey vessel and about one meter above the false floor support I-beams. l The Surtsey vessel was sealed and inerted with nitrogen. The inerting process consisted of adding nitrogen (~ 95 psia) to the Surtsey vessel to reduce the oxygen concentration to about 0.2 mole %, and then venting the vessel to the target test pressure. At the beginning of the test, the nitrogen and oxygen concentrations were 99.7 and 0.3 mole %, respectively, as determined by the on-line gas mass spectrometer. The vessel pressure was about 0.22 MPa. The gas l temperature was about 274 K. The mixing fans were operated continuously (at slow speed) throughout most of the test.

After the mixing fans were started, a hydrogen addition to about 1.8 mole % commenced at t = 0.1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />. Slight increases in PAR temperature indicated that the PAR started recombining with oxygen concentration at 0.2 mole %. Additional increases in temperature occurred with incremental oxygen additions at t = 1.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> and t = 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. Catalyst temperature did not increase after a hydrogen addition at t = 3.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />. The mixing fans maintained a well-mixed condition inside the Surtsey vessel.

This experiment determined that reduced oxygen concentrations resulted in degraded PAR performance. Figure 250 shows two points in time (t = 4.7 hrs and t = 6.2 hrs) that have the same hydrogen concentration (3.0 mole %) but different oxygen concentrations (1.5 mole % and 4.0 mole %). Note that catalyst temperature is a direct measurement of PAR performance. The catalyst temperature was 380 K at 1.5 mole % oxygen and 520 K at 4.0 mole % oxygen.

At t = 6.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, the hydrogen additions were stopped in order to obtain depletion rate data. Just prior to stopping the hydrogen additions: 1) the hydrogen and oxygen concentrations were about 3.0 and 4.0 mole %, respectively, 2) the AT across the PAR was about 130 K, and 3) the maximum catalyst temperature was about 520 K. The mixing fans were turned off at t = 7.2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. The depletion rate will be calculated by two methods, using the change in hydrogen concentration and the PAR velocity.

NUREG/CR-6580 26 l

l

6.0 PAR Performance Analyses Hydrogen depletion rates are used to measure the performance of a PAR. The hydrogen depletion rate is usually determined as a function of the hydrogen concentration in the vessel.

Depletion rate analyses can also be used to show the effect of various factors, such as PAR location, oxygen concentration, catalyst poison, etc., on PAR performance.

l The following procedure was used to determine the depletion rate. First, the time-dependent amount of hydrogen in the Surtsey vessel (in moles) was determined by multiplying the average hydrogen concentration by the total number of moles in the Surtsey vessel. The average hydrogen concentration was assumed to be that measured by the gas mass spectrometer at the PAR inlet sample point. The total number of moles in the vessel was calculated using the ideal  ;

gas law with an average temperature determined from the array B thermocouples.

As shown earlier in the results section, the hydrogen concentrations measured at the four sample locations diverged from some initially equal value over the course of a test (unmixed tests). This was because the mixing fans were off while depletion rate data were taken and the PAR flow was not sufficient to maintain a mixed condition in the vessel. The methodology used to determine the depletion rate assumed that the vessel was well-mixed at all times; this introduced some error since the average hydrogen concentration was not actually measured and cannot be calculated since the local steam concentrations were not known. The measured depletion rates generally overpredicted hydrogen consumption at the stated hydrogen level since the hydrogen concentration at the PAR inlet sample point, just before the fans were turned on, was lower than the average value (for example, see Figure 176 at t = 2.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.).

The depletion rate was then determined by calculating the difference in hydrogen moles at each successive time interval, using the fitted data from the steady-state depletion interval, after the hydrogen additions were stopped., The calculated depletion rate was then plotted against the measured hydrogen concentration.

6.1 Scale Effect PAR performance and the effects of scale were determined with tests at both low and high hydrogen concentrations. Note that the initial conditions for all tests started with a vessel pressure of about 2 bar, with approximately 50/50 mixtures of air and steam.

Figures 252 and 253 show the PAR performance with low hydrogen concentrations

(< 0.7 mole %) at three scales: 1/2 scale (PAR-4),1/4 scale (PAR-5), and 1/8 scale (PAR-6). A regression fit of the number of moles in the vessel during the steady-state depletion interval is shown in Figure 252 for each test. These fits were then used to calculate the fitted depletion rates shown in Figure 253 (along with the 95 % confidence intervals). Note that the 1/2 scale depletion rate is ~4 time s the 1/8 scale depletion rate.

27 NUREG/CR-6580

Figures 254 and 255 show the PAR performance with high hydrogen concentrations (3-6 mole %) and at three scales: 1/2 scale (PAR-13 and PAR-13R),1/4 scale (PAR-12), and 1/8 scale (PAR-8R), Simple scaling does not appear to apply to depletion rates at high hydrogen concentrations. Also, a higher removal rate occurred in PAR-13 than in the repeat test, PAR-13R. This may be due to the fact that a well-mixed initial condition was not totally achieved in PAR-13 due to a failed mixing fan (shown by the different measured hydrogen concentrations at the floor and PAR inlet sample points in Figure 164). However, note that the PAR-13R AT was far below normal (see Section 6.3); therefore, the PAR-13R depletion rate is suspect.

A better comparison of the scaled depletion rate data can be made by normalizing the data.

Figure 256 gives hydrogen depletion rate predictions for both the Fischer and the Sher depletion rate models (Fischer 1995; Sher et al.1995). Both models show that the depletion rate is directly proportional to the PAR scale (i.e., number of cartridges in the PAR). These models assume that the hydrogen depletion rate is simply a function of the hydrogen concentration, pressure, and temperature at the PAR inlet. Therefore, a simple scale factor can be used to normalize the data.

There are no corrections for scaled heat losses. Neither model can predict the mixing behavior inside the facility; therefore, the models were used under the assumption that the Surtsey vessel was well mixed at all times.

However, if the PAR only consumes hydrogen in a small portion of the total vessel volume, the depletion rate calculation can overpredict consumption if the vessel is not well-mixed at all times. Note that most of the Surtsey tests were not well-mixed. The depletion rate measurements then become scale-dependent since tests with larger scale and/or higher concentrations appear to deplete larger pockets of hydrogen within the total vessel volume. This is indicated in Figure 257, which gives the temperature difference measured between successive array B thermocouples (see Figure 11) at and below the PAR location. The temperature differences shown in Figure 257 indicate that the convective loop ends at different heights below the PAR for different test conditions; possibly revealing that larger pockets of hydrogen are depleted at larger scale and at higher hydrogen concentrations.

Figures 258 and 259 show the scaled depletion rate data normalized to full-scale by applying the scale factor (x2 fur 1/2 scale, x4 for 1/4 scale, and x8 for 1/8 scale). Figure 258 shows that the calculated depletion rates for these tests at low hydrogen concentrations are indeed directly l proportional to scale. However, at high hydrogen concentrations, Figure 259 shows the calculated depletion rates in the tests using the large scale PAR are lower than depletion rates in tests with the small scale PAR. The depletion rate calculation does not take into account hydrogen stagnation in the lower part of the Surtsey vessel and that the large scale PAR provides better mixing than the small scale PAR. .

Figures 258 and 259 are used to compare SNL test results with published depletion rate data l (EPRI 1993: Fischer 1995; Sher et al.1995) at pressures of 2 bar and I bar. Data at 1 bar is only presented to highlight the physics; depletion of hydrogen by the PAR is a mass diffusion process driven by density gradients. The comparison shows that the SNL data correlates reasonably well with the Fischer model at 2 bar pressure when hydrogen concentrations were below 4-5 mole %.

NUREG/CR-6580 28 l

The steady-state conditions of PAR-12, -13, and -13R were ~3 bar. This means that the those test data should really be compared to theoretical depletion rate curves at 3 bar pressure. In these comparisons it must be noted that different PAR designs may have different performance curves.

Both the Fischer model and the Sher model are based on the Battelle experiments applicable to the NIS prototype PAR design (EPRI 1993; Fischer 1995; Sher et al.1995); note that the NIS prototype PAR described in the EPRI (1993) report did not have the taller chimney that was used in the SNL PAR tests.

Because the PAR takes a while to heat up (thermal inertia), it will also be hotter than its equilibrium value (due to the same thermal inertia) as the hydrogen is depleted. This effect should be less pronounced for the 1/8 scale versus the 1/2 scale. This is corroborated by the data.

As hydrogen concentration decreased from 2 mole % to 0.5 mole %, the average catalyst temperature decreased about 150 K in PAR-8R and only about 100 K in PAR-13R. The only time the PAR will not affect performance is when hydrogen concentration varies slowly relative to temperature change in the PAR.

6.2 Depletion Rates Under Well-Mixed Conditions Figures 260 and 261 show depletion rate comparisons between PAR-8R (a non-mixed 1/8 scale test with hydrogen / air / steam mixtures at 2 bar pressure and without mixing fans) and PAR-demo 3, PAR-14, PAR-15, and PAR-16 (well-mixed 1/8 scale tests with hydrogen / air mixtures at 2 bar pressure).

The depletion rate for PAR-demo 3 was smaller than for PAR-8R. One possible explanation is that a more accurate depletion rate was obtained with the mixing fans running continuously in PAR-demo 3 since the PAR was now depleting the entire volume uniformly. The depletion rate calculation assumes that the entire Surtsey volume is being depleted and that the hydrogen concentration in the vessel is unifonnly the same concentration as that measured by the GMS at the PAR inlet sample point. However, there may be another explanation. The cartridges in the 1/8 scale PAR have been operated at high temperatures for many hours and the catalyst may have degraded. Tables 3 and 4 show which cartridges were used for each PAR test and give its location in the housing.

The PAR-15 experimental data supports the explanation that a well-mixed vessel will yield a lower depletion rate curve. However, the PAR-14 and the PAR-16 depletion rate data were similar to that seen in PAR-8 (possibly caused by the test anomalies that occurred in PAR-14 and the nature of the PAR-16 test). Therefore, tests performed under well-mixed conditions did not yield definitive evidence that well-mixed conditions reduce the depletion rate.

6.3 Catalyst Temperature and PAR AT as Functions ofIlvdrocen Concentration The catalyst temperature and the difference in temperature between the PAR inlet and the PAR outlet both provide evidence of PAR performance. Figures 262 and 263 show PAR catalyst temperatures and PAR AT as a ftmetion of hydrogen concentration during the steady-state 29 NUREG/CR-6580

depletion intervals, respectively. The catalyst temperature increased about 96 K for each 1% of hydrogen concentration, regardless of the starting temperature. The PAR AT increased about 34 K for each 1% of hydrogen concentratisn. This is much less than the EPRI PAR results (80 K for each 1 mole % of hydrogen concentration). Note that the SNL PAR tests were performed with an ac'_ tional 0.5 m tall chimney section. This chimney section probably increased flow through the PAR which reduced the AT.

Note that the PAR-13R AT data shown in Figure 263 lies well below the norm. Remember that the corner and the edge catalyst cartridge temperatures in PAR-13R were much colder than the ,

middle cartridge temperatures (Figure 169). This anomaly does not show on Figure 262 because l it plots the average of the middle catalyst thermocouples. This probably caused a lower than expected PAR performance during the depletion interval. ,

i Figures 264 and 265 plot PAR-16 catalyst temperature and PAR-16 AT as a function of hydrogen ]

concentration during seven steady-state depletion intervals, respectively. Temperatures are definitely reduced in those intervals with low oxygen concentrations, when compared to other PAR tests (with 10-20 mole % oxygen) and also the last steady-state interval for PAR-16 (starting at 3.7 mole % oxygen).

I 6.4 Wall Effect l Two counterpart experiments were performed to determine if the placement of a PAR near a wall f would affect performance, as compared to placement of a PAR in an open volume. Both tests were performed at 1/8 scale and at 2 bar pressure, with a 50/50 mixture of air and steam. Figures 266 and 267 show the hydrogen moles in Surtsey and the depletion rates, respectively, for PAR-6 (center location) and PAR-9 (wall location). The wall clearly appeared to have an effect at low hydrogen concentrations, yielding a smaller depletion rate as compared to the open volume test.

This was probably because the wall impedes natural convective flows.

6.5 Oxycen Limit Effect The PAR appeared to " slowdown" in the PAR-7 experiment with hydrogen concentration increasing and oxygen concentration decreasing. The PAR " restarted" when oxygen was added.

The PAR-8R test was performed at similar conditions; however, oxygen was maintained near 12 mole % throughout the test.

Figures 268 and 269 show the hydrogen moles in Surtsey and the depletion rates, respectively, for PAR-7 (low oxygen) and PAR-8R (excess oxygen). Above 4 mole % hydrogen concentrations, the hydrogen depletion rate in PAR-7 was substantially smaller than in PAR-8R.

Reduced oxygen levels did not impact the PAR-7 depletion rate data below 3 mole % hydrogen concentration because oxygen was added in PAR-7 as the hydrogen concentration was about 4 mole % and decreasing.

NUREG/CR-6580 30

PAR performance at limited oxygen concentrations was intentionally tested in PAR-16. Figure 270 gives the hydrogen and oxygen concentration history for PAR-16. Figure 271 shows the depletion rate at various times during the PAR-16 experiment. Note that the PAR depleted hydrogen at very low oxygen concentrations; however, oxygen starvation certainly yielded reduced depletion rates (i.e., low oxygen concentrations do limit the amount of hydrogen that can recombine to something less than stoichiometric levels).

6.6 Ilvdroecn lenition hv the PAR Dellagrations of hydrogen were seen in the air / steam tests (PAR-8, PAR-10, PAR-13, and PAR-13R experiments) and also in the air-only tests (PAR-demol, PAR-demo 2, and PAR-demo 3). There appeared to be two separate ignition sources.

The first ignition source was probably the PAR catalyst hot surface. Surface temperatures greater than 1000 K are in the range for hot surface ignition in 50 mole % steam environments.

A large deflagration was seen in PAR-8 after hydrogen was increased from ~9 mole % to )

~11 mole %. The peak catalyst temperature was about 1100 K. A large deflagration also was i seen in PAR-10 immediately after hydrogen was quickly increased to about ~12-13 mole % (the measured peak hydrogen concentration was only ~11 mole %, probably because the sample i system did not have adequate time to purge the sample line and capture the true concentration). l The peak catalyst temperature was about 950 K. '

Ignition also occurred at much lower hydrogen concentrations (4-5 mole %) and with peak catalyst temperatures in the range of 600-800 K. These surface temperatures are too low to ignite hydrogen. In PAR-13 and PAR-13R, a combination of new and old catalyst cartridges were used. Videos of these and other tests showed small, whitish-looking particles floating in the vessel whenever new cartridges (with undamaged coating on the catalyst pellets) were heated to temperatures above 500 K. In the PAR-13 video, a burn started in the PAR immediately after a burst of these small whitish-looking particles ejected out of the chimney. It is important to note that the cartridges used in the PAR-8 and the PAR-10 experiments were previously subjected to high concentrations of hydrogen and that the hydrophobic coating was mostly destroyed prior to performing these tests.

In the PAR-demo tests, flame fronts were seen descending from above the PAR, ascending from below the PAR, and also exiting the PAR outlet chimney. Some of the ignitions may have been caused by extraneous sources, such as the quartz lamps or friction-induced static discharges.

However, since ignition still occurred in later tests when these extraneous sources were eliminated, the actual ignition source still remains unknown. Table 5 summarizes the conditions in the vessel and in the PAR immediately prior to the hydrogen burns.

31 NUREG/CR-6580

- . . - . . - - . . _ . . - . - - ~ . - . - . . - - - - . . - . .

l l

i 7.0 l

Depletion Rate Calculations Using Velocity Measurements The KURZ thermal anemometer was calibrated at the manufacturers using air at 25'C and at  !

1 atmosphere pressure. The specified range and accuracy of the Series 450 insertion mass flow j element is approximately 0-6 m/s and 2% reading, respectively. Note that the thermal  !

anemometer measures a mass rate normalized to a standard density and therefore yields a  !

standard velocity in units of Standard Meters Per Second (SMPS).  !

t

~ Standard velocity = l V,apV/p, (4)  !

where p = actual density (kg/m')

V l= actual velocity (m/s) )

p, L= standard air density (1.186 kg/m'). l i

i The bi-directional velocity probe (or pitot-tube probe) (Kent and Schneider,1987) provides gas

. velocity using the following equation. ,

AP V=f 2 (5) jl/2pC ,

^

where AP =-

differential pressure across the probe (Pa) l C = ' calibration constant for the probe (1.5).  :

- Since the gas at the chimney outlet was essentially air in PAR-2, conversion of standard velocity  :

to actual velocity requires only scaling the result for the gas density according to the ideal gas law. ,

t

! Actual velocity = l V = V,(P, / P,)(T, / T,) (6) )

l

. where j V. =- actual velocity (m/s) .

P, = standard pressure in absolute units (0.101 MPa)  !

P, = ' actual pressure in absolute units l T, = standard temperature in absolute units (298 K)  !

T, = actual temperature in absolute units.

l t

t i

33 NUREG/CR-6580

Measurements from the ve::sel pressure transducers and the thermocouples at the chimney exit were used with Equation 6 to convert the hot-wire signals to actual velocity.

The pitot-tube pressure transducer data (in voltage units) at the PAR inlet and the chin'ney outlet was converted to differential pressure (Pa) using the following conversions along with Equation 5.

AP (inlet)

= inlet volts x 7.5658 Pa/ volt j

AP (outlet) = outlet volts x 7.6220 Pa/ volt.

i The pitot-tube probes were calibrated; a calibration constant of 1.5 was determined. This was slightly different than the 1.07 calibration constant used by Kent and Schneider (1987). The difference can be attributed to a modified probe design that utilized a slotted cutout on the static side (to drain steam condensate). The density in Equation 5 was calculated using thermocouple data at the PAR inlet and chimney outlet and assuming that the gas composition was 100% air.

The pitot-tube at the PAR inlet did not yield good results, probably because the differential pressure was too small (tenths ofinches of water). Better data was provided by the outlet pitot-tube probe because the flow is focused by the chimney (note that the outlet pitot-tube velocity is within a factor of 2 calculated from the thermal anemometer data).

A volumetric flow rate must be calculated in order to use the velocity measurement for depletion rate calculations. The thermal anemometer measures standard volumetric flow by the following equation:

Standard Volumetric Flow = F, = Area x V, (7) 2 where the Area is equal to the cross-sectional area of the chimney (0.25 m for the 1/2 scale PAR).

The actual volumetric flow is determined by scaling the result for the gas density according to the ideal gas law:

Actual Volumetric Flow = F, = F,(P, / P,) (T, I T,) (8)

Figure 272 shows the time-dependent volumetric flow rate at the PAR inlet using the thermal anemometer measurements. A cerrection factor of 0.8 was applied to the flow in order to conved the local peak velocity measurement to an average velocity (Bird et al.,1960). This was based upon assuming average flow velocity in turbulent tube flow (for ease of calculation) and using a hydraulic diameter of 0.25 m. Note that volumetric flow rate at the PAR inlet can be obtained by scaling the PAR chimney outlet results by the PAR inlet temperature (i.e.,

x Tw/T#).

I l

NUREG/CR-6580 34

A check on the volumetric flow rate calculation can be performed. Fischer (1995) found that the experiment results obtained at Battelle were best fit by assuming flow rate is an exponential function of the volume fraction of hydrogen:

Q = 0.67 Cli'" (9) where

=

Q steady-state volumetric flow (m'/s)

Cn = hydrogen volume fraction in the containment.

This equation was based on the prototype full-scale PAR. In order to use Equation 9, the hydrogen concentration must be determined. Figure 273 shows the hydrogen concentration in PAR-2 as measured at the PAR inlet. Figure 274 then compares the PAR-2 volumetric flow rate data to the Fischer equation, scaled by a factor of 2 to match the 1/2 scale PAR used in the PAR-2 experiment. The flow rate in PAR-2 exceeds the flow rate predicted by the Fischer model. This higher flow rate is expected since the PAR-2 test was performed with the additional l 0.5 m chimney.

A depletion rate can be determined using the volumetric flow rate measurements. The hydrogen removal rate (in kg/hr) for the PAR can be calculated using:

R = c Q py (10)

[

where c =

efficiency factor for hydrogen removal Q =

volumetric flow rate of containment gas through the PAR (m'/hr) pn =

mass density of hydrogen in the PAR (kg/m').

The density of the hydrogen gas at the PAR inlet was calculated using:

l P

Pu = X" Rg T where

=

Xu hydrogen molar fraction at the PAR inlet (from Figure 273)

P = vessel pressure (Pa)

Rn

= hydrogen gas constant (4124)

T = temperature at the PAR inlet (K).

Figure 275 compares the hydrogen depletion rate calculated by two methods. The first method is based on the measured rate of change of hydrogen concentration (dM/dt method) described in Section 6.0 Figure 275 shows the curve giving the fit of the data from the PAR-4 (1/2 scale) test.

Figure 275 also shows the depletion rate for the PAR-2 experiment using Equation 10 (velocity 35 NUREG/CR-6580

n ethod). An efficiency factor of 0.85 'was used to be consistent with that recommended by

, Fischer (1995).' l The two' depletion rate methods yielded almost identical results for the PAR-2 experiment. This I

exercise can be repeated for other tests; however, the conversion of the standard velocity to actual velocity cannot be performed with confidence on the hot-wire anemometer data for the

- majority of the tests due to the lack of air / steam gas mixture calibration data.

i i

t i

e

+

1 t

h

\

h

)

NUREG/CR-6580 36

.l

i i

i i

8.0 Summary

, Performance tests of a scaled passive autocatalytic recombiner (PAR) were perfonned in the Surtsey test vessel at Sandia National Laboratories. The test program included experiments to:

l'

1) define the startup characteristics of PARS,2) confirm a hydrogen depletion rate curve of s PARS, 3) define the PAR performance in the presence of steam,4) evaluate the effect of scale  !

(number of cartridges) on the PAR performance at both low and high hydrogen concentrations,  ;

5) define the PAR performance with and without the hydrophobic coat, 6) determine if the PAR could ignite hydrogen mixtures, 7) define ' the PAR' performance in well-mixed conditions, and
8) define the PAR performance in the presence oflow oxygen concentrations.

- The following conclusions can be made. The PAR started immediately with low concentrations of hydrogen (0.2 mole %) in cold air atmospheres. The PAR startup was delayed about 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> in a test .with a low concentration of hydrogen (0.4 mole %) in a hot, steamy atmosphere. The PAR started in about 10 minutes in hot, steamy atmospheres when exposed to hydrogen concentrations in the range of 3-5 mole %.

The SNL test results were compared to published depletion rate data based on the Battelle experiments that used the NIS prototype PAR design (EPRI 1993; Fischer 1995; Sher et al.

1995). The comparison shows that the SNL test data correlates reasonably well to the published

- Battelle depletion rate data. Differences in the depletion rates are probably due to differences in PAR designs and test methodology and analysis. ,

The PAR appeared to generate a convective flow loop in the Surtsey vessel from the PAR outlet -

to the dome, down the Surtsey wall until reaching a height near the PAR inlet, and then returned to the' PAR inlet. This was shown by the relatively flat and equal temperatures from the thermocouples located at elevations below the PAR. The loop appeared to drive further downward below the PAR with higher hydrogen concentrations and also with larger PAR scale.

Also, the hydrogen concentrations from the sample point located near the floor showed small decreases over time, as compared to the other sample points. .

3 Assuming a well-mixed condition in the vessel, the hydrogen depletion rate is most likely proportional to scale. Assuming well-mixed conditions, the Fischer correlation (Fischer,1995) is

.well within the range of the Surtsey PAR test depletion rate data. The parameter that affects scale proportionality is the well-mixed assumption in the methodology used to determine the depletion rate. Since the PAR only consumes hydrogen in a portion of the total vessel volume, the depletion rate calculation can overpredict consumption. The depletion rate measurements ,

then become scale-dependent since tests with larger scale and/cr higher concentrations eppear to l

deplete larger pockets of hydrogen within the total vessel volume.

L Two counterpart experiments were performed to determine if the lack of the hydrophobic coating would cause a startup delay in tests with hot, steamy environments and hydrogen concentrations j

- > 5 mole %. A startup delay of about 18 minutes occurred in the test with no coating, as compared to the test with the hydrophobic coating, which had a startup delay of 7 minutes.

37 NUREG/CR-6580 1

i

- %e,,-- , .v., ,.e-,

, - . , ., ----:---,-..m - , . - - . , - .--m- - - . - - - . , . a -. . . .

Ignition of hydrogen by PARS is possible. The ignition source is suspected to be the high surface temperature of the catalyst at high hydrogen concentrations. Additional experiments will be 1

necessary to determine and verify the source ofignition.

The oxygen limit effect was intentionally tested. The PAR depleted hydrogen at very low i

oxygen concentrations; however, oxygen starvation certainly yielded reduced depletion rates and i

PAR temperatures (i.e.,' low oxygen concentrations do limit the amount'of hydrogen that can  ;

. recombine at rates less than those observed at stoichiometric levels).

Counterpart experiments determined that the placement of a PAR near a wall yielded depletion rates smaller than those obtained with the PAR placed in the middle of the facility, e

r Y

t i

('

t r

i I

t g.

r.

L 1 l -- ,

i l

1 NUREG/CR-6580 38 i.

i

i 9.0 References

1. Bird, R., W. Stewart, and E. Lightfoot,1960, " Transport Phenomena," John Wiley &

Sons, New York,1960.

2. Blanchat, T. K., M. D. Allen, M. Pilch, and R. T. Nichols,1994, " Experiments to Investigate Direct Containment Heating Phenomena with Scaled Models of the Surry Nuclear Power Plant," NUREG/CR-6152, SAND 93-2519, Sandia National Laboratories, Albuquerque, NM, June 1994.
3. Electric Power Research Institute (EPRI),1993, " Qualification of Passive Autocatalytic Recombiners for Combustion Gas Control in ALWR Containments," Electric Power Research Institute, Advanced Light Water Reactor Program, Palo Alto, CA, April 8, 1993.
4. Fischer, K.,1995, " Qualification of a Passive Catalytic for Hydrogen Mitigation,"

Nuclear Technology, Vol. I12, October 1995.

5. Kent, L. and M. Schneider,1987,"The Design and Application of Bi-directional Velocity Probes for Measurements in L.arge Pool Fires," ISA Transactions, Vol. 26, No. 4,1987.
6. Sher. R., J. Li, and D.E. Leaver,1995,"Models for Evaluating the Performance of Passive Autocatalytic Recombiners (PARS)," 1995 National Heat Transfer Conference, ANS Proceedings HTC, Vol. 8, Portland, OR, August 5-9,1995.

39 NUREG/CR-6580 1

s

Table 1. PAR instrumentation (continued)

Channel Number Description

  • Units 21 Vessel Pressure Kulite BM-1100 psia 22 Vessel Pressure Kulite BM-1100 psia 23 Vessel Pressure Kulite BM-1100 psia 24 Vessel Pressure Precise Sensor 555 psia 25 H 2Manifold Pressure psig 26 O2Manifold Pressure psig 27 Boiler Pressure psig 20 Hygrometer Temperature C 19 Hygrometer Dew Point C 17 Mass Flow Meter SMPS 16 Pitot Tube Inlet Volts 15 Pitot Tube Outlet Volts 12 Mass Spec Pressure Volts 31 Pressure 112 Vessel side of MFC psia 32 Pressure H2 Regulator side of MFC psia 33 Pressure 02 Vessel side of MFC psia 34 Pressure 02 Regulator side of MFC psia 35 H Manifold Temp 2

C 36 O2 Manifold Temp C 37 H MFC Inlet Temp 2

C 38 0 MFC Inlet Temp 2

C 41 TC Array Al C 42 TC Array A2 C 43 TC Array A3 C 44 TC Array A4 C 45 TC Array A5 C 46 Mass Spec C 47 TC Array A7 C 48 TC Array A8 C 49 TC Array A9 C 50 TC Array A10 C 51 TC Array B1 C 52 TC Array B2 C 53 TC Array B3- C 54 TC Array B4 C 55 TC Array B5 C 56 TC Array B6 C 57 TC Array B7 C 41 NUREG/CR-6580

i l

Table 1. PAR instrumentation (continued)

Channel Number Description

  • Units 58 TC Array B8 C 59 TC Array B9 C 60 TC Array B10 C 61 Surtsey Shell 1 C 62 Surtsey Shell 2 C 63 Surtsey Shell 3 C 64 Surtsey Shell 4 C 65 Surtsey Shell 5 C 66 Surtsey Shell 6 C 67 Mass Spec Cabinet C 68 H, DifTuser C 90 0 Diffuser 2

C 91 Ilygrometer Temp C 92 Atmosphere Temp C 93 Comer Gap 3 C 68 PAR in Middle C 69 PAR in Middle C _

70 PAR in Edge C 71 PAR in Edge C 84 PAR out Middle C 85 PAR out Middle C 86 PAR out Edge C 87 PAR out Edge C 72 Middle Cartridge 1 C 73 Middle Cartridge 2 C 74 Middle Cartridge 3 C 75 Middle Gap 1 C 76 Middle Gap 2 C 77 Middle Gap 3 C 78 Edge Cartridge 1 C 79 Edge Cartridge 2 C 94 Edge Cartridge 3 C 81 Edge Gap 1 C 82 Edge Gap 2 C 83 Edge Gap 3 C 45 Middle Cartridge backup 1 C St Middle Cartridge backup 2 C 97 Middle Cartridge backup 3 C 99 Middle Gap backup 1 C 100 Middle Gap backup 2 C NUREG/CR-6580 42 L

r-l l

i l

l Table 1. PAR instrumentation (continued)

Channel Number Description

  • Units

! 101 Middle Gap backup 3 C I

102 Corner Cartridge 1 C l

103 Corner Cartridge 2 C '

104 Corner Cartridge 3 C

105 Corner Gap 1 C l 106 Corner Gap 2 C l
  • All temperature measurements used Type-K thermocouples.

t I

i l

1 l

l 43 NUREG/CR-6580

Table 2. PA '. test matrix Test Purpose Scale Atmosphere Startupin Air 1/2 2 bar air, no steam, 1

0.2%, 0.4%. 0.6% H ...Xn2...r.i 2 n

Find Xn2... .n Performance at Startup 1/2 2 bar air, no steam, inject Xu2..i.n (single 2

injection)

Startupin Air / Steam 1/2 1 bar air,1 bar steam.

3 Find Xn,. ,,,,,,,,, ,,,, 0.2%, 0.4%, 0.6% H ...Xn2. 2 ..,sie.. .n s

Scale / depletion rate 1/2 1 bar air, I bar steam, continuous injection ,

4 without startup transient to maintain 1.4% H2 until PAR reaches l steady-state (SS)

Scale / depletion rate 1/4 1 bar air,1 bar steam, continuous injection  !

5 wit! mi *artup transient to maintain 1.4% H2 until PAR reaches SS (same as PAR-4) 6 Scale / depletion rate without 1/8 1 bar air, I bar steam, continuous injection startup transient to maintain 1.4% H2until PAR reaches SS '

(same as PAR-4)

A: m . , /4 .

s Mc 7 Perfomiance 1/8 1 bar air, I bar steam, continuous injection (this test will destroy the to maintain 7.0% H2until PAR reaches SS hydrophobic coating)

8. Performance 1/8 1 bar air, I bar steam, continuous injection 8R (without the hydrophobic to maintain 7.0% H2until PAR reaches SS coating) (same as PAR-7)

, i

. , ,  ; e, 9 PAR at wall to measure short 1/8 1 bar air, I bar steam, continuous injection circuit effects (use new catalyst to maintain 1.4% H2until PAR reaches SS with intact hydrophobic coating) (same as PAR-6) m , . ,;-,, n.- m.,

10 Hydrogen ignition by PAR 1/8 1 bar air, I bar steam, quick injection of PAR back to vessel centerline 10% H 2

- ,e -

y q 37 y ,

y ,

g 12 Performance / scale / depletion rate 1/4 1 bar air, I bar steam, continuous injection ,

without startup transient to maintain 7.0% H2until PAR reaches SS (same as PAR-7) m ygg _ , ,.

13 Performance / scale / depletion rate 1/2 1 bar air,1 bar steam, continuous m.jection 13R without startup transient to maintain 7.0% H2until PAR reaches SS (same as PAR-7) l 4

m- 1 m,, y , ,

my pm. s

> ,v, - . n .ya ng c N. shek .

s um n b ,e a wv s hbk b eb em je $b na, U 4. s

n. d.;u a 5. en s . 2.9 %d NUREG/CR-6580 44

i Table 2. PAR test matrix (continued)

Test Purpose Scale Atmosphere demol Performance / depletion rate in a 1/8 2 bar air, no steam, continuous mixing, demo 2 well-mixed environment 6.0-1 0.0 % 11 2 demo 3

,, ;p . 6' <

43 m ne ,

14 Performance / depletion rate in a 1/8 2 bar air, no steam, continuous mixing, well-mixed environment 2.0 % 11 2 (new catalyst) ytg ',: s ,

g4 , a .

15 Performance / depletion rate in a 1/8 2 bar air, no steam, continuous mixing, well-mixed environment 2.0 % 11 2 (same catalyst as PAR-14) e - . . . - ~, m ' , , , g. ,

16 Performance in low oxygen 1/8 2 bar nitrogen, no steam, continuous ,

environment mixing, '

(same catalyst as PAR-14) 2.0-4.0 % 112 , 0.0-4.0 % 0 ,

i I

45 NUREG/CR-6580

Table 3. Cartridge location in the PAR tests (left to right)

PAR 9 PAR 12 PAR 13 PARBR PAR demol Canndge PAR 1 PAR $' PAR 6 PAR-13R PAR demo 2 PAR-2 PAR-7 PAR demo 3 PAR-3 PAR-8 PAR-4 PAR 10 1/8 t/4 1/2 1/8 t/8 Scale 1/2 1/4 1/8 2 2 2 4167/CNI 2 3 3 1

4167/CN2 1 3 4 4 4167/CN3 3 4 5 5 4167/CA/4 4 5 6 6 ,

4167/CA/5 5 6 7 7 4167/CA!6 6 11 7 7 I i 1 11 4167/CN7 8 8 8 8 4167/CA/8 8 9 9 9 4167/CA/9 9 10 10 4167/CN10 10 10 13 6 13 11 4167/CNil 11 4 14 12 4167/CN12 12 14 10 15 13 4167/CNt3 13 15 9 16 14 4167/CN14 14 16 22 7 7 15 17 5 11 4167/CN16 11 22 44 1 1 4167/ Call 7 16 18 12 23 5 5 17 19 7 4167/CN18 2 17 15 4167/CA/19 18 20 18 16 4167/CN20 19 19 17 4167/CA/21 20 33 6 6 4167/CA/22 21 11 3 20 18 4167/CN23 22 21 21 19 4167/CA/24 23 12 2 42 4167/CA/25 24 3 40 4167/CN26 25 4 25 4167/CA/27 26 6 24 4167/CN28 27 26 4167/CN29 28 32 10 10 4167/CN30 29 31 9 9 4167/CN31 30 30 4167/CN32 31 32 29 4167/CN33 3 21 3 4167/CN34 33 20 2 2 4167/CA/35 34 27 4167/CN36 35 28 8 8 4167/CA/37 36 8 43 4167/CN38 37 10 41 4167/CN39 38 35 4167/CN40 39 II 40 9 39 4167/CN41 5 37 4167/CA/42 41 38 4167/CA/43 42 1 34 4 4 4167/CN44 45 22 44 7 36 4167/CN45 4167/CN46

' Computer locked up while testing auto add controls after the PAR-5 test, about 900 psi (from I bottle) was added to Surtsey (this raised 11 2

to about 1.6%, catalyst temperatures reached ~280 C for about 1000 s).

NUREG/CR-6580 46

i l

1 l

Table 4. Cartridge location in the PAR-14,-15, and -16 tests (left to right)

Canridge PAR 14 PAR-15 PAR-16 Scale 1/8 4542/CA/l 8 4542/CA/2 9 4542/CA/3 10 4542/CA/4 5 4542/CA/5 3 4542/CA/6 2 4542/CAn 7 4542/CN8 1 4542/CN9 11 4542/CA/10 6 4542/CNil 4 l

1 47 NUIEG/CR-6580

Table 5. Initial conditions prior to the hydrogen burn P,,,,,, T,,,w T,,,,iy,, AT Scale AP Notes PAR H2 O2 Steam

(%) (%) (MPa) (K) (K) (K) (MPa)

(%)

9 48 0.26 392 1140 280 1/8 0.30 1 8 11.0 13 48 0.25 380 950 70 1/8 0.39 10 13.0 378 880 20 1/2 0.02 1,2,3 13 4.4 12 50 0.24 0.26 380 780 10 1/2 0.06 1,2,3,5 13 5.5 12 50 415 800 160 1/2 0.04 1,2,3 13 4.0 11.5 55 0.30 380 740 90 1/2 0.05 1,2,3 13R 6.0 15 46 0.25 410 880 140 1/2 0.03 1,2,3 13R 6.0 14 46 0.27 0.24 320 840 170 1/8 0.15 2,6 demol 7.0 20 6 0.24 330 820 160 1/8 0.07 2,6,7 demol 6.8 15 1 0.25 340 1020 220 1/8 0.30 2,5,7,8 demol 8.5 13 2 0 0.22 310 680 35 1/8 0.47 2,4,7,8 demo 2 11.0 19 0.23 320 850 160 1/8 0.04 6,7,8 demo 3 6.0 19 1 Notes:

1) during 02add
2) during H2add
3) white particles floating in vessel
4) flame front from floor
5) flame front from PAR outlet
6) flame front from ceiling
7) no hot-wire anemometer
8) no quartzlamps i

l NUREG/CR-6580 48 l

F Additional Chimney \s  %

\ -f \

I

\

l 540.mm Chimney

___  !~

Bottom Comb K  %

\

260 mm

~

~~~~

200 mm

\

470 mm

/

Housing PAR Scaling 1/2 = 910 mm -454 mm'  ;

1/4 = 470 mm i

1/8 = 260 mm i

I h

Figure 1.1/4 scale PAR test module housing. .

4 49 NUREG/CR-6580 l

r. ..

44 standard cartridges I m long a

f 1/2 m wide

(

a p

1/2 SCALE PAR 1/2 m long 22 standard cartridges

' i i

I/2 m wide i view of cartridges

! partially obscured by p' chimney housing 1/4 SCALE PAR 1/4 m long 1I standard cartridges i l' l

u h- 1/2 m wide 1/8 SCALE PAR Figure 2 fop View of the RWE/NIS PAR Module (assembled for 1/2,1/4, and 1/8 scale tests).

NUREG/CR-6580 50

4 1

i f

l l

e E

l )

,i j

i j[ %j,1 F:

- j

4; I pi.- , yn m

l

,/' ,.y - ,

. . . . ~.a y v.en gf M T R l ~7

.)$4

{ .!l ..b I q ;;;g 4) l r '

, p{73h

uiani;JaaNP;j;j. .

,:y 4

4 1

l 9 .

t. .

~

o a 1

.- e

,op e ,y

' '

  • W j

.+ , ,

f e .

. ... A ,, e

_r,, ,s / .c

~

.. - 4

+

)t r. -

jY

,e i

.$w d. . _

! . 1 i Figure 3. Cartridges held in a vertical configuration by the PAR housing.

51 NUREG/CR-6580

..,s.- , . . . . .

. . . t.. . .h,: . . t

/. ] ,. . L , aies mino,n .1 L [.,; . ,4 - . , ' .. ,$ '-

l .. n.

d .,, ,,,,,,,,.... ,g. a E Wlit hMh mli s ,. > oi , .k.f i ' ..' 'n "' '

..j

..t J.av!Ql.t.WyWWhimilplyimMi{i1.n.(

l t L hi 4 L%"7';'1E Illil!) -

i

.. ..... _ ..... ... ..m o n ...,

.............I..................,.,,~,,,,,_,_. ,

' LL.s I[8 d's *lT'/ 'N,. 5[',j.IJ 'y 'TyT'['nP'i h' f'). "6. 'f T1 ft QA'yQy-Q',iU. a., yT;,g, q 7.

. . . . . . . . . . . . . . . . . . . . . ......v....

,w.uu nnun,uiuiunnunu.

~

.....u..............................

r-

,14

.,e l .

' ..a

.P l

?.-l

.n

.)- 1.

__ ;g)- --

+

y .r; , y.-e

v. ,:

n_;; .

i?! k-

' $m&M.d @ .% ,.

pu&.u.nw@l f W, a . ....4

,4

.s. s,K

. a: fi: h ' ' '.,c'. j ,.p.,

,a. . . we

-f;f ?Hf$ , f od e>g%7/N 6 v

A w ma'g[y['h;ma,n,;:.<t

~ ]d.g,, E 5 pung%&

m. 4h Ws@w& Af,, e e;d.,7y$.,m ,.c,o mm< ; . w VG4ap,y; y ~me lib]e13s;d at M .2nd% % 2 & &ebd.sigLS Figurt 4. PAR cartridge and catalyst pellets.

NUREG/CR-6580 52 1

I l

- - ....- .- - - . . - - - . . - _ _ ~ - - - - - _ . - - -

i i, .

., m m,,,,,, ,,  ;\ ..

4

s __ _

'C? 4 Jj m -

~U .. &

Q .

2:: y ,

'?bt f

A, ,. kC r ~,

a 1,. I ^

1 I

ll l

,1 l j ,

l M

'g li  ;.

d b

'ti

) 4.i , iT d

-J 'd . ._l 3

. W Figure 5. PAR location in the Surtsey vessel.

53 NUREG/CR-6580

<?

- me- ;p Nf ~$ {f(?

~gr1lgp

n'~t [ ffj -
f y.,.yg l

l 135 '

NORTH

,/ \

180 '/ \\ 45

'\
  • ,  ! EAST

( /

225 \

x-;

f !0

\

/ - TC Array A

-- . / - 'TC Array B

_ b/

l 270 SOUTH 315 Figure 6. Top view of the PAR housing and location above the support beams. l NUREG/CR-6580 54

I k

i 8

t

}. j .. .. - ,

f t-

_}

iA

=

i

- e *i

I

,1 h -

4 4, l

~ -

Q- ,

I ._

n..~

y ,. wpve , , ej g

ll

,  ?.h; W, =

M yJ~

'+- wWusen.aesat a=%,_ p aw p ,;.,

sS_,-.,

~ .~.+--..w---. -

~

~ ~

Figure 7. The Surtsey vessel.

i 55 NUREG/CR-6580

z C

Ml -n a e-n n

=

a oc C

r tuts O O O -O O O-5 4 VentVene N

  • lines uses speelines -

g Airinieden w

a g

tut 5 o -

o 2

a e

E. tevet4 O R"Pi" d"C O O Ai'in O- 0 O o Moss Speclines TC Feodthna

[ Airinjaden Pact tubeIlnes -

i g Hygromotor Hotwire anemometer 5

. e tevets O -O.

s-O ^

,# O o

, g -/ *-

i g

o tevet2 o/ 3 - (-V; / 'y

-(V) ,

G c.

O ~

? O n a

0-teveti O\ (v) ( 'u/

~) O 4 VentValve (D)'

! d. with Blower t o.

a ownin '

steemin O _

l' W ,

2 315 0 45 90 135 180 225 270 SOUTH EAST NORTH WEST 1

-i s

t

--__..-.-_.-----m----om--ene- ,e e ev-,-,-~,,=-we+>-'~--wwr'--w,-v--*n --,,nw+ v ww- r e m~w= :ev ~~ --r=~~w*>= -- m-- *~<vw-w-e'- wr ww + -e- v e~r- w ~ m m 'v -,w--m-,-wo-en-w+-ww-~---,ve,,a-.e,- -

l i

I i

H2sample .

t

- Pressure Gas TCs H2sample i i

Pellet TCs I l

H2sample - .

c ,, c , ,

Gas velocity Hygrometer M. .ixmg fans l

l Steam in H2 in O2 in H2sample _ _

Airin l 4, 4

41

. t. . ,

' :-' :;: w

r.

3, _ ;jj: D ~ ' , ~ , , ' u: ... ..a,

~ 7; ; < ,,

,gg c;ag ', - (:n > .? .

7 m'. '

+

.. + . . .a: ., ~

l\ :;;;;
  • z(.;:  %;

s

,.y ,

.'4 s.

+f ~ , s

.t :.g y,..,,.2--

.y ,

Figure 9. PAR instrumentation and systems.

57 NUREG/CR-6580

z C

Ei O

a  %, - , ~ , .

l l Em S w w,. . m mm m i

$ }.c n am- am- l U} N

~~ ~ l l \n nnl ~~

a g __g_- _g_w _ C am- am- ,

- , . , ~~ l1 u -" "

C l

l ___ _W _a_w_ w_l__. am- c+m - , -# N.o

-. o.

D Eb '

a

.t " . _ -== o m ~ =~ llIHl u w w C -.mo O

~-

m m m MO- FBD - -.Omio

- w- i i g i

-.mo

![ - _w_,_ w w Ps.ia E .

Am ---o o am- -.mo a ,, - . =o . ,

'~

Yd((>+ =="" *

  • 4- E

[3 I '""**"" I m-2 1M

-rM M MM l7 00 "

l 0 00 l H2 h Marten (%) N cmo  ;

t ll! l 7 l u s = ren.n m

@ l Om l H2 LsW Sm Pokt N E gg- gg-

]

o

} O 00 l Gee Updale interv.I(set $ @m

& am- am-i -. -

s i 0.

u_ = c -

-F** h sec=ams ww am- ram - 02 %

> i 0 h a , , gi o a i _ i

'x SurtseY 't ade- em-J "em E \ **

PAR /7 ,)

'l g.

5

= x'

=

n  % ,, /g ^ ^ ^ ^ % ,,,

Tests ^^^^ - t

-a ,

Daol OLE l l un l0A0Upesepums l co'*wE l co"Tl otE I l ==loioupen. wino l l , j _ - - . _ _ _ _

L L

t 7-TC Array

  • IC Array B

(

hI T10

'\ 1.000 m

+

1.828 mm- T9 -

t '

1.000 m r -

T8 - -

L Level 6 ,

1.000 m  :

865 m r 0.365 m T7 -

i _

[ Level 5 .J f 1.000 m .

f- T6 -

I l 1.000 m 1.000 m[ Level 4 T5 -

]

I .- '-

l 1.000 m

[ Level 3 ,

T4 -

i ]

1.000 m T3 -

892 m [ Level 2

] 1.000 m i

l ,

T2 -

1.0 0 m

[ Level 1 ]

T1 -

l j/ 0.324 m J

, i ll .

I 2

. - 0.322 m

,l '

llW

f Figure 11. Locations of the vertical thennocouple arrays in the Surtsey vessel.

! 59 NUREG/CR-6580 i

i

Z C

h a . -

i Pi oumetTempweswes h ,/1 ** I amJ l e en I e e7 1

?' ,!

Q ,/ ,/

~ /. /

P / j/ catndge Terrperstwes y / / thddie Boden comer

> ,, , , ,/ ,, / Catndse M Gep Cartndge M Gep f

m E /

/.M 1 1

eer i en I em i eien i 1

I em 1-em i

.= 1 eien i M /

E / eman i ens i en i em i ein I lI ch o. / -

l q  ! ,

% /

G- /

a m ne see

/

f /

Top i Catedge M Gep en i en i Catndse M Gep em ; en I-

/ i g -

j I en i en l I en I en i

[ ,/

[m eel en I en ! I en i e es !

. .. . ?1 r -

l.

m Tarpeistwas

.. .. .. I em i ese 1 I en I en l

~M j

--.__--.-____._.-m..<--,-

360

- A7 (PAR outlet) A1(bot)

A2 340 g

A3 A4 y  : '

A8 - A10 A5 ,

3 320 - A6 (n/a) hj 8.

j 300 -

y p $

r A7 A8 A9

I j __ 2, N---r A10 (top)

_ N A1 - A5 '#89*

280 .... .........,....i....,....

0 1 2 3 4 5 6 Time (br)

Figure 13. Surtsey vessel centerline gas temperatures from TC array A in PAR-1.

340 B1(bot)

B2 B3 g 320 - B6 - B10 - B4 5 - '

B5 a$$ h Qk N B B5 0 (top) 280 -- e a r - -

average l l mix fans l .. ,,.. ,,....,.. ......,....

0 1 2 3 4 5 6 Time (br)

Figure 14. Surtsey vessel wall gas temperatures from TC array B in PAR-1.

61 NUREG/CR-6580

500 midcari h


midcar2 <

midear3 450 - 1 i midcari bu 2  :

-- midcar2 bu i

l 2 400 ;- \ midcar3 bu a edgcari E 1 i \.s edgcar2 h 350 -'  %. ,

\

I g'% m. - edgcar3

  • : corcari ,

300i -- corcar2 l corcar3 l

mid average l

250 ,,, ,, ,

,, ,,,, ,,,,,,,,,,,, l 3 4 5 6  ;

0 1 2 Time (hr)

Figure 15. Catalyst cartridge temperatures in PAR-1.  :

i 500 midgapi

}- -

midgap2 midgap3 450i midgap1 bu g  :

midgap2 bu 32400i .

midgap3 bu

\ edggapi edggap2 350 rgap1 300 -- corgap2 corgap3 mid average 250 ,,

0 1 2 3 4 5 6 Time (br)

Figure 16. Catalyst gap temperatures in PAR-1. I NUREG/CR-6580 62

I 400 ,

1000 in mid  :

380 l '

n in mid -

!  !! out mid - 800 g

$ 360 2 l .  !! out mid $

$  : j -- H adds  :.600 l l 2

_5 2 340 l I l f j' e

8.  : i i I j is o

h400 E i l 1 O

se 320 i  !

I I a y' .. .I II 200 E o

e- L 7 300i0 4

^

l ll 280 - ,,,,,,,,

,.,,.,,,,,,,,,,,,,,, 0 0 1 2 3 4 5 6 Time (hr)

Figure 17. Inlet and outlet temperatures in PAR-1.

0.30 1.00 e

g 0.20 i P - 0.75 .g a  :

l e

E 0.15 ~ i P. -

u.

lg 0.10 2 -

P.

XRH

- 0.50 5

l 0  : .

0- 0.05 -~ X *'"' - 0.25 a:

0.00 { -

-0.05~,,,,,,.,,,,,,,,,,,,,,,,,,,,,, 0.00 0 1 2 3 4 5 6 Time (hr)

Figure 18. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-1.

63 NUREG/CR-6580 ,

2 inlet (pitot) _

outlet (pitot) -

outlet (hotwire)

[

7 -

-- -- H 2add -

76 31- - 2000 5 EO b -

'S u f, a 4'M AD ~

_1000 e c-i n g

l ll!

i .

l -

l 11

> " 0

-1 .... ...... ..,....,....,....

0 1 2 3 4 5 6 Time (hr)

Figure 19. PAR gas velocity in PAR-1.

100 -

9 0 -5 G,

80 .

-.r ---

m.r

-l rr -

I

'- ; n Y H2 o 70 ,

E N2

- 60 :E O2 c  :

50 ;

.3 e GGS H 2 C

40 j l E m GGS N 2 8 30 2 8 E a ,- . _. 11 _ B _ .,_ .1o A GGS O2 '

o 20 . -- - T - "

.M] l 10 -

0!=. .F..O.i;^...",J: ^i7?...i.... I O 1 2 3 4 5 6 Time (hr)

Figure 20. Gas concentrations (dry-basis) in PAR-1.

NUREG/CR-6580 64

2.0 500

=

H2 % g ,  :

H2 adds GGS

- 400 y

[ $1.5 o

I*

o E

i

&  : - 300 y c -

8 e 1.0 - -

v g -

c  : [ floor- 200 1 0.5 - , -

anlet O  ; e 100h

- > -dome:

O.0 t , , , , p , . , , , , , , , , , , , , , , , , , , , outlet ,

0 0 1 2 3 4 5 6 Time (hr)

Figure 21. H2 concentrations (dry-basis)in PAR-1.

1 0'8 _ 500

=

H2 % ,,

- - - H2 adds inlet ,"

$ 0.6 - floor o g h400 y

'5 Li -

o fg

< i, g -

i f m/ " +,

q  : g c o jp' "

T p'

@ f 300 .o e 0.4- o ;gj}g,J, , ) i.,,

y 8

$ f y ', ; ';q Wi , o

~

S >

'oh, '

I o-

~

g" h

llW

' 'I7h100[E

, ~

O 80.2- '

I

['fqiq, h

'l '

- @ Ii, ,

h ,S '/

of 1

, lll ,

q' l outlet dome  :

0.0 I ,' ,

i

. . . . 0 0 1 2 Time (br)

Figure 22. H2 concentrations (dry-basis)in PAR-1 from 0 to 2 hrs.

65 NUREG/CR-6580

500 - 500 2.0 ~

H2 adds Uf1n.1 - l -

E t

-  : _ 400 j7

- 450 Temperature g

$1.5- _

- 400

~

h300 j1.0- ~

B [ (

g - 200 ~

F x - 350 $.

g 5 c 0 05 h100 $ - 300 0.0

.. . ., , . , ,.... 0 - 250 0 1 2 3 4 5 6 Time (br)

Figure 23. Catalyst temperature compared to H 2 additions and concentrations in PAR-1, 2.0 ' 500 - 60

~

' "" Effn..sl -

H, adds 50 g 3 1.5 - AT - 400 {g ~

1 -

_ 300 6 j 1.0 - - 30 j~

t - 200

~ ~

I -- 20 %

8  :

S

~

tr 8 0.5 - - 100 4 O  :

I

- 10 I 0.0 ..

,.. 0 -0 0 1 2 3 4 5 6 Time (hr)

Figure 24. PAR AT compared to H 2 i additions and concentrations in PAR-1.  !

l l

NUREG/CR-6580 66

A7 (PAR outlet) A1(bot)

A2 340 - A3 E -

A8 - A10 A4 l

~

A5 e 320 - l A6 (n/a) 300 yQ l N 0 (top)

A1 - A5 average 280 ... ,... ,....i....i....,....

0 1 2 3 4 5 6 Time (hr)

Figure 25. Surtsey vessel centerline gas

temperatures from TC array A in PAR-2.

I 340 l -

B1(bot)

B2 B6 - B10 B3 2 320 - ~

, B4

{ . ~. 85

$ [ M j H- B6

$. 300 - eN $= -k

-ewe =w% B8 E

  • _ B1 - B5 89

_ B10 (top)

! 280 - .

average l

1...,l..l..,ll..,l,,1..1 ,

0 1 2 3 4 5 6 Time (br)

Figure 26. Surtsey vessel wall gas 4 temperatures from TC array B in PAR-2.

67 NUREG/CR-6580 l

i............

500 midcari 3 - midcar2

[

1 midcar3 450; i midcari bu

$ \

\ ,'

- midcar2 bu midcar3 bu j l 400 -'

y -

/\ i N edgcar1 edgcar2 g 0- N- edgcar3 E -

s-4  : corcari 300 -- -

--- corcar2

corcar3
mid average 250 ....,..,.,....i....i....i....

0 1 2 3 4 5 6

! Time (br)

Figure 27. Catalyst cartridge temperatures in PAR-2.

500 midgap1

- midgap2

[

midgap3 450 ; midgap1 bu 8_ - -- midgap2 bu midgap3 bu g400i edggapi y -

,\

-- edggap2 g 350 ) g A edggap3

N .. .,o

@ ~ '

. _j corgap1 F  : .

- - " corgap2 300 -

corgap3

mid average 250 ... i.. .i.. .. . ..

....i...

0 1 2 3 4 5 6 Time (hr)

Figure 28. Catalyst gap temperatures in PAR-2.

NUREG/CR-6580 68

- - - ._. _ _. - - _ = .

1 l

l l 400 1000 l  : in mid -

in mid .

380.-] out mid - 800 g p q g

~

$ 360 - j lj out mid -

I .j -.- H 2adds e  ;

j!j

( 3  !' _ 600 :E l 2 340 I I -

~

e h i - 400 E o 320 l ]I fl

?.j

- O

! H  :

<l

'jl l- -

g j

300{ - - ~ mA'O L  ! i 1

l

~

- 200 E

il l 280 ~ . . . . , , , , , , ),1 I'

,,,,,,,i,,,,,,,,,,~0 l l 0 1 2 3 4 5 6 l

l Time (hr) 1 l Figure 29. Inlet and outlet temperatures in PAR-2.

l 0.30 1.00 MY f f: 0 75 E I

[ 0.20 _

3  :

$l$$$ h P,,, _

tt l 2 0.15 2 Py ,,,,, - 0.50 5 RH I 2 0.10 i

~

O. Xsteam ~ b

!  : - 0.25 I l 0.05 2  :

l  : _

l

0.00 ....i.,,ii,... ,,.i,., ,,,.. 0.00 I 0 1 2 3 4 5 6 i

i Time (hr)

Figure 30. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-2.

I 69 NUREG/CR-6580

J 2 3000 inlet (pitot) outlet (pitot) g g . outlet (hot wire) . g

.-- H 2add

}1- '

- 2000 {

b -

b

  • 0 -

1

  1. - i E

llh O jp t

> - i ,

g g0-91 1000 g l 0 -

p E  ;

l jl y i l I I

-1 ,,,,,,,, i,, ,, .,

,,,,,,,,,, 0  ;

O 1 2 3 4 5 6 Time (hr)

Figure 31. PAR gas velocity in PAR-2.

2.0 floor ,

m inlet (

$ 1.5 - outlet i l

o -

dome 5  : e GGS -

C - '

81.0- e e

y -

e 8  :

80.5- <

s e e ,

0.0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 1 2 3 4 5 6 ,

Time (hr) 1 Figure 32. Gas concentrations (dry-basis) in PAR-2. J

\

NUREG/CR-6580 70

2.0 500 - 500 floor

"* ~

- = inlet E

$ 1.5 - e outlet - 400 _g _ - 450 7 3  :

  • dome .

y $

5 -

H, adds - 300 * - 400 $

temperature f h

g 1.0 .

p .

c g- 200 ~ - 350 *

$ 0.5 -

g , b b o e '

S y O  ;

t, %L 100 4 - 300 m 5 h:'"%,., r*-: o 0.0 7 ,,,, , ,. .., , , . ~0 - 250 0 1 2 3 4 5 6 Time (br)

Figure 33. Catalyst temperature compared to H2 additions and concentrations in PAR-2. 1 I

l l

l 2.0 500 - 60 floor  :  :

- = inlet i ~

l

- 50 1.5 outlet [ - 400 J i

3  :

- dome .

g

,% 5 -

H, adds 7 300 ~  : E h1.0 l temperature 0 - 30 D h 200 n -

k1 8 .k ", -

3 - 20 l

  1. ~

S '

8 0.5 - '

O k, r%h 100 S - 10 I y ,,,,'.

~

0.0 ..

.".. .,. ---r i . , .. , . . O -0 0 1 2 3 4 5 6 Time (br)

Figure 34. PAR AT compared to H2 additions and concentrations in PAR-2.

71 NUREG/CR-6580

425 47 (PAR outlet) A1(bot)

A2

$ 400 - A4

' A5 j .

A6 (nla)

E - A A7

8. -

AB g$ 375 -i A9

~

A10 (top) average 350 '' ,,,,,,,.......i ''

0 1 3 4 5 7 Time (br)

Figure 35. Surtsey vessel centerline gas temperatures from TC array A in PAR-3.

380 B1(bot)

.j

B2 B3

- .~ _

' - B4 8 370 - -

B5

$ 1 -

B6 fu .

87

{ .

BB

$ 360 - -

B9 r -

Bio (top)

~

average mix fans 350 ,,,,,, ,,....i ' '

3 4 5 7 Time (br)

Figure 36. Surtsey vessel wall gas temperatures from TC array B in PAR-3.

NUREO/CR-6580 72

500 midcari

_.- midcar2

Q midcar3

-\

. midcar1 bu

$ 450 - . -- midcar2 bu 2 -

r midcar3 bu

's

j -

^..

edgcari  !

g /, edgcar2 l 5 400 -

H .

[4 j/f Mgcar3 corcar1 fj!/

-- corcar2 corcar3 '

mid average I 350 ...

i........... ............ ...

l 0 1 2 3 4 5 6 7  !

Time (hr)

Figure 37. Catalyst cartridge temperatures in PAR-3.

500 midgapi

-- midgap2 J midgap3 i

midgap1 bu

@ 450 - -- midgap2 bu 2 . midgap3 bu 3 -

g edggap1

(

E

~

1

\

- - edggap2 edggap3 y 400 - n'

\

\ corgapi

' --- corgap2 N%-

_,a corgap3 mid average 350 .. .... ...., ...i.... .....

0 1 2 3 4 5 6 7 Time (hr)

Figure 38. Catalyst gap temperatures in PAR-3.

73 NUREG/CR-6580 l i

1000 420 _ _

in mid -

410j in mid  :- 800 ^

7 out mid [

g 400 : l , out mid : E gg 390 :

1 f

y

___.-H 2 adds - 600 -

5

g e  :  :

f

~

.l

8. 380 ~~g j {l ,

- 400 5

I- 370 -

h- fl l N,

_ p u.

.. 'N - 200

.' l 360 ~ g _  :

350 .... ..,.i....,,..I.i....i...,i.... 0 0 1 2 3 4 5 6 7 Time (hr)

Figure 39. Inlet and outlet temperatures in PAR-3.

0.30 g 1.00 0.25 h -

c O

vessel

- :A X ag - 0.75 E 2 0.20 -  ; g 2 -

- X steam -

V E <

E 0.15 -~ P --- 0'50 *

"~-

2 0.10 -- ~

B

~

i - 0.25 @

0.05 - -

~

0.00 ~ ....,... ,.... ....i....i.... .... 0.00 0 1 2 3 4 5 6 7  !

l Time (hr) l l

Figure 40. Saturation pressure, vessel pressure, i relative humidity, and steam fraction in PAR-3.

NUREG/CR-6580 74

l 2 3000 inlet (pitot) i outlet (pitot)

~

p g .

outlet (hot wire) ~

s.

31-

~

-- - H2 add - 2000 o$

b .

a .

,o 2 - c 0 Ed! - 1000 0 -

m L

i  : I" I

l l

ll l -

-1 l

. . . . , . . . . . . 5 . , l'. . .,....,....

.'j 0 0 1 2 3 4 5 6 Time (hr)

Figure 41. PAR gas velocity in PAR-3.

100 .

90 4 g 80 ha w l,- g gc m, M"

$ 70 4 H2 5e 60 k: N, S 50 i O2 5C

  • GGS 40 i e GGS

! 30 i A GGS i 0 205 " ^ ?- -

10 i  :

0 .

.i..T. ..O-J. W.... .... ....

0 1 2 3 4 5 6 7 Time (br)

Figure 42. Gas concentrations (dry-basis)in PAR-3.

75 NUREG/CR-6580 1

i 60  ;

1

'f.

50 ' N i g  : s% ~ _.,

$ 40 ~1"^b ~m~

5 [ H2 ~~- l j 30 i N2 g  : o,

! 20 i Steam d "~

~

~

~

10 c= i f

0 ............ m t. hr..............

0 1 2 3 4 5 6 7 Tima (hr)

Figure 43. Gas concentrations (wet-basis) in PAR-3.

1.2 - 250 1.1 j H% 2 h {

go 1

.0 i H2 adds - 200 7 0.9 -i: l I -

.9!

- I O

y 0.8 -E

E
  • c0.7 _5 floor _- 150 "o e

e 0.6 -i

y ye 0.5 =3 i _ 100 <,

g 0.4 i gqqlh inlet  : 3 8 0.3 i _,

,/ outlet - 50 Q s

O 0.2 ~

T I

~

1]

5  :

0.1 ; . dome ]ltri,,,/nYAy,iig i ,,

0.0 .. .......................... .... 0 0 1 2 3 4 5 6 7 Time (hr)

Figure 44. H2 concentstions (wet-basis)in PAR-3.

NUREG/CR-6580 76

1.5 ,, 250 - 480 H% 2 7 H2 adds ~

7 200 7 $

R -

Temperature .g - 440 g

- 150 - 420 3 .

o 7 ( B - 400 E

- 100 r - 380 g

@ 0.5 - m ,.  :

8 1 "" 3 h360f U

1 - 50 #

l ,

g '

y ,

i 1- 1 y

0.0 , ,, , .. ,

j b, . . .; 0.

- 320 0 1 2 3 4 5 6 Time (br)

Figure 45. Catalyst temperature compared to H 2 additions and concentrations in PAR-3.

l 1.5 , 250 7 50

H% a . _

g . H2 adds - 200 y - 40 S -

AT o

@ 1.0 - o  : E g

'l - 150 - 30 -

8 -

3 g I - 100 ~ - 20 'k E , ,In [ o

5  :

O gg P b -5 # ~'

*;;y ,

I

' 'I ' ,

l,l 0.0 ,

i.- , i.. .. .

i....'O -0 0 1 2 3 4 5 6 Time (br) l Figure 46. PAR AT compared to H2 additions and concentrations in PAR-3.

77 NUREG/CR-6580

420

A7 (PAR outlet) A1(bot) 410 E - - - A4 2 400 - A5 A6 (n/a)

^

390 A8 E

@  : A9 380 2 - A10 (top) average 370 ~ .... .... .... ....i....i....

0 1 2 3 4 5 6 Time (br)  !

Figure 47. Surtsey vessel centerline gas temperatures from TC array A in PAR-4.

i 400 B1(bot)

B2 B3 B4

$ 390 - B5 g -

g - B6 B7 8 -

N B f 380 - B10 (top)

_l

- average mix fans 370 fR. M.iE.N.i.. MWI1ET.

.i ... MP.MNG'Pl

....i....

0 1 2 3 4 5 6 Time (hr)

Figure 48. Surtsey vessel wall gas temperatures from TC array B in PAR-4.

NUREG/CR-6580 78

i' 500 midcari

-- - midcar2 midcar3 g , g gm. $, midcari bu

['7 ----- midcar2 bu l

- 450 - , E ,

j p  ; , gr midcar3 bu

- )g edgcari 2 .

./

a. .

edgcar2 E '

'l edgcar3 400 - i 0 -

/// corcari

// _.__.. corcar2 l _

corcar3 mid average 350 , ,

0 1 2 3 4 5 6 l Time (br) )

Figure 49. Catalyst cartridge temperatures in PAR-4.

500 midgapi

~

- -- rnidgap2 midgap3 g -

midgap1 bu

- 450 - -- midgap2 bu E ... midgap3 bu 400

-- corgap2 corgap3 mid average 350 .

,,i,,,,,..,,,,,,,,, ,,,,,,,

0 1 2 3 4 5 6 Time (br)  !

Figure 50. Catalyst gap temperatures in PAR-4.

1 79 NUREG/CR-6580 l

420 .

1000 I 800 g g400j ,[  ; -j

' E

$390 T =

g u

Q]n midh400 380 ~ ih , g 5

In mid -

g l

@ 370.i: l

. I ,

i, out mid - 200 E I 360 2 lO out mid -

!l yj'ilpil;jlil ll l

fjl)e j'llllh ---

2 am  :

350 lI.l . .i .

l k.t.Il.. .........,i...".i.... 0 0 1 2 3 4 5 6 Time (hr)

Figure 51. Inlet and outlet temperatures in PAR 4.

0 30 1 00 grrn wiry,rmp q ggi g i I = _

_f - 0.75 h

$ 0.20 [ $

E i m ,

3  :

i

-- 0.50 g g 0.15 - ,

1 l

8  :

P"'

5

-~# 8 y 0.10 p***'  :

} >.25 g 0.05 -- RH .

I steam [

0.00 - ..,,,... ,....,...,,... ,.... 0.00 )

0 1 2 3 4 5 6 Time (hr)

Figure 52. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-4.

NUREG/CR-6580 80

I s

2 1000 inlet (pitot) -

outlet (pitot)

, _ g; outlet (hot wire) - 800 E g

~

j -

- - H 2add _

- . u p -

, - 600 O

80- -

l _

b 8

>2 -

- 400 0

. lG :l O -1 -t ,, , 3 ,, , ,,, $

- 200 4

f i1 i Pl iljj!Nisi! i Ta!Nsw vi ~

f

~

< -2 I,.,!,,,,,WTP",WY??",,,..,,,,,, -

o

. 0 1 2 3 4 5 6 Time (hr)

Figure 53. PAR gas velocity in PAR-4.

100 90 l-

@ 80 ve=_

, , - ,'crxY H

~

$ 7 0 -5 H2 E

c 60 i: N2 e 50 -j O2 40 2

  • GGS h i a GGS g

c 30 l A GGS ,

O 20 ~ ' ~ pm ..

0 =..... .. ,... . ...=.,n ,. ....,....,.... ,

0 1 2 3 4 5 6 7 8 Time (hr)

Figure 54. Gas concentrations (dry-basis)in PAR-4.

81 NUREG/CR-6580

60 _

n 50 : g

. mm-se;,/ yA' lspk,,,~ ~ . . , . ,

g

p j 40 i
H2 N2 f 30 i:

c o2 8 20 _ Steam g  :

o go h - " ' y, , _

0- ....,....,.........,.... ......... ....

0 1 2 3 4 5 6 7 8 l

Time (br) ,

Figure 55. Gas concentrations (wet-basis) in PAR-4.

1.0 _; _ 400

! 0.9 i - 350

' n et 300 (0.7;-

I l 3 ), , il outlet h250g@

l 5 0.64 ,

/ i ,

dome H2 adds h0.5) h '/ .

/ ( O2 adds i b200f<

Ec 0*44 j i /

/ \ ,\.

- 150 j' 8 0.3 1E ] '& \ \

k i

100 -3 E

o 0.2 :

- 50 0.1 M T4 4

0. 0 . . . . . . . . i . . . . i . . . . . . . . i . . . . . . . . . . . .

~0 0 1 2 3 4 5 6 7 8 Time (hr)

Figure 56. H2 concentrations (wet-basis)in PAR-4.

NUREG/CR-6580 82

- .- . _ . _ .. - .- . _ _ ~ - - . . - . _ . - . _ . . - . . . . . . _ . - . . _ ~ -

2 l 12 400 - 500 f ~

10 l

$I e 8

~

- 300 o a>

k6 2 .

~

E - 450 g 4 :/ H%

2  ?.> 8.

j 12 o, % .- 200 g g g H2 adds

[

f - 400 1 8 -

l Temp _100 5 -

3

~

a..,.

0 '

... . ..,. .... ,,....... . ....,. f*, O ~ 350 0 1 2 3 4 5 6 7 8 Time (hr)

Figure 57. Catalyst temperature compared to gas additions and concentrations in PAR-4.

12 400 - 40 10h h . .  ;

8 I '

_ - 300 - 30 4 AT 1 - 200 - 20 g 1 / H%

2

<c ce I

b 0 -

0 E -

/ H2 adds - 100 F$ - 10 J . .

. a....

0

\

.... .... .... . .. ...., ...,....i.... 0 -0  !

0 1 2 3 4 5 6 7 8 Time (br)

Figure 58. PAR AT temperature compared to gas  ;

additions and concentrations in PAR-4.

83 NUREG/CR-6580 l

420 ,

A7 (PAR outlet) A1(bot) 410 A2

_ i A3

- A4 E400j E A5 A6 (n/a) h390 -

/%vuu* A7 A8 F5380j 4 . li --

A9 370 - Iverge 360 ~ .... .... .

i O 1 2 3 4 Time (hr)

Figure 59. Surtsey vessel centerline gas temperatures from TC array A in PAR-5.

B1(bot)

B2 B3

$ 380 _ 'y '^N li 2

% b B6 87

\

1 -  % B8 5 370 - D B9 B10 (top) average

. mix fans 360 . .. ....i '

i.. -

0 1 2 3 4 Time (br)

Figure 60. Surtsey vessel wall gas temperatures from TC array B in PAR-5.

NUREG/CR-6580 84

500 midcar1

_._._.. midcar2 midcar3

@ 450 E .

/ / - - m dca midcar3 bu E

5 f f' '\ x e edgcar3 r2 p

400 \ -

corcari

-- corcar2 corcar3 mid average 350 . . . , . . . ,

0 1 2 3 4 Time (br)

Figure 61. Catalyst cartridge temperatures in PAR-5.

500 midgapi

--- midgap2 midgap3 midgap1 bu

$ 450 -~ -- midgap2 bu c) . midgap3 bu i'%:.,p *'# edggap1 g

e 3, pe " g - -- edggap2 i'b E edggap3 y 400 -- *

%. corgap1

=...,,, .

-.-.. corgap2 corgap3 mid average 350 . . . .

0 1 2 3 4 Time (hr)

Figure 62. Catalyst gap temperatures in PAR-5.

85 NUREG/CR-6580

420 , 1000

in mid  :

I 410 2 in mid -

~

out mid

- 800 E f 7 400 _ j! 'my ~~~~' ' , ~

out mid -

am

- . l lj ' --

- 600 3 3

2 390j 2 - =

2

,l!

. i l

l. l

.~

S I E

8. 380 i_. I ]il.. ll , - 400 O c

E  : 'l l l lN -

@ 370 -~ i j  : $

i - 200 E J l  ;

360i

! j j

! hj -

350 ~ .! ,i! ,, . , i li i i

.. . . i . . . . 0 0 1 2 3 4 Time (hr)

Figure 63. Inlet and outlet temperatures in PAR-5.

1.00 O.30 y 0.25  : c

.- 0.75 .g i

.20 7

-~^ ^^ --

Wc

- 0.50 mE g

2 0.15 - e ,2 -

3 g  :

w

$ 0.10 i P, _

. }

I-

Pi v

- 0.25 0.05 i Xg a {

0.00 . . .. i

. . *!"7 i . . . . .

. . . . O.00 0 1 2 3 4 Time (hr)

Figure 64. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-5.

NUREG/CR-6580 86

2 1000

inlet (pitot)  :

outlet (pitot) - ^

- 800 ,_[

g 1

} lj & &,

jj ~

outlet (hot wire) r^ ' --.. H 2 add -

p

[  ; i

,- 600

,8 0 -- I y

e y!l I- 1 -

o 1 l

' I ! - 400 O l ll '

E O  :

ll-i j p l l  !

E I  ! a

i l jl l l _- 200 y

,! bl- l!,

~

-2  ! ,  ! c,

~

-0 0 1 2 3 4 Time (hr)

Figure 65. PAR gas velocity in PAR-5.

100 _ l

1 90 -i  !

l

@ 80 h vp gerngmP*Ptav&W

$ 70 i H2  !

5e 60 4: N2

8 50 i O2 h 40 4
  • GGS 8

c 30 i A GGS U 20 i ^44M!W!w==4-%Wh w44%+u e 10 i l 0 ,e,' ..,,.. " 7 ." . e . : 7 ,e : . .

0 1 2 3 4 Time (hr)

Figure 66. Gas concentrations (dry-basis) in PAR-5.

1 87 NUREG/CR-6580

60 ,

i ~ . ...; c .;,

,,- . . . n ., ,,I, j,"'wy 7.u., $^b './

7 50 -

[ [

40 k - ~ . -

c  :

H2 l N2 c  : o2 3 20 - - Steam g } '

U 10 i W@Ju ec44h4km l 0' ... .... ....i.... ]

o 1 2 3 4  :

1 Time (hr) i Figure 67. Gas concentrations (wet-basis) in PAR-5.

0.8 . . 400

floor .

0.7 i inlet -

350 outlet e

/  :

.- 300 .*o

%e 0.6 :i dome L,1, o

l -

l'

!ji H2 adds
. 250 E 5 0.5 -' /

e i i '

O2 adds i 3 e 0.4 : L

- 200 g 3 i + -

c 0 .3 -- t. ;. 1 jI< . 6

- 150 z" g Ath

L' m h .

- 100 g o 0.2 .

O  : L 4  : F 0.1 - - 50 0.0 ..i....i....i.... O I O 1 2 3 4

! Time (hr)

I Figure 68. H2 concentrations (wet-basis)in PAR-5.

NUREG/CR-6580 88

._ ._. .-- - ._. - - . _ - _ ~ _ . .- - - .-

1 i

)

11 , 500 - 500 kh h -

ha i 1

- 400 y $

$ 7) H2 %  !

- 450 5.

e 6i O2  % ' 300 v" 3 5

  • o-H2 adds .

E E h 3 (e Temp  :- 200I I h 8 ,

- 400 R j - 100

- 350 0 .

.., ,,i 0 0 1 2 3 4 Time (br)

Figure 69. Catalyst temperature compared to gas additions and concentrations in PAR-5.

i l

l l

11 500 - 40 10 4 an , 1 l i , , um 4-4L p r. m,J j

,g[

j ii g u i j k h { j Nf0 f 9:

~

n l- y r,y a- -

8 --

- 400 7

,g j - 30 o 7, AT -

E

~

E- 6 i H2  % - 300 ~

j Sh '

0%2  : - 20 D H2 adds - 200 $ $

g x 1 I

~

O .

i . .

.i . . . O -0 0 1 2 3 4 Time (hr)

Figure 70. PAR AT temperature compared to gas additions and concentrations in PAR-5.

89 NUREG/CR-6580 l

l.-.____--

420

~

410 -

b A7 (PAR outlet) A1(bot)

A2

^

2400k 4

!390j A5 16  : W A6 (n/a)

. hm H 370 -.. -

A9 l

360 ver ge 350 ~ ....i....i....i....i.... ....

0 1 2 3 4 5 6 Time (hr)

Figure 71. Surtsey vessel centerline gas temperatures from TC array A in PAR-6.

B1(bot) 380 F B2 B3 Y

Q %N B4 fa .

B5 B6 2 370 - B7 1 g'% 88 g

B9 B10 (top) average 360 - p mix fans q

l l ....,..

0 1 2 3 4 5 6 1 i

Time (hr) l l

Figure 72. Surtsey vessel wall gas temperatures from TC array B in PAR-6.

NUREG/CR-6580 90

l l

500 midcari

-- midcar2

[- '-*- midcar3 midcari bu 2

- 450 -

s midcar2 bu

~

I -

midcar3 bu h  ; l edgcari

(

E J

ll

\

N edgcar2 edgcar3 y 400 -  ! '% ' corcari

--- corcar2 M - _.

corcar3 mid average l 350 .

3 i . . i, ' r-r,- r' T r' ,-r -

0 1 2 3 4 5 6 Time (hr)

Figure 73. Catalyst cartridge temperatures in PAR-6.

500 midgapi

-- midgap2 midgap3 g midgap1 bu 7 450 -

/\ -- midgap2 bu 3 I ~g, f

N midgap3 bu e  ; .

"% 's s edggap1

8. N -- edggap2 5 400 - ~% edggap3 H N corgapi s.

gp%+ -- corgap2 corgap3 350 - .Tr,, T4, , ,-.

mid average i- i i 0 1 2 3 4 5 6 Time (br)

Figure 74. Catalyst gap temperatures in PAR-6.

91 NUREG/CR-6580

1000 420 _

in mM  :

410 ; in mid (failed) l

'~t.L. '

out mid 7 800 E g400' '

out mid  : $

h 2

aMs - 600 g

$3902~ .'

5 y \ ,

E

8. 380 i I

~~.

400 g M - i

~u 7 3

370 - !

I

I  ! I "

- 200 b 360 - I I i l 350 ~ .I' . . . j'i. .. .... .... .... .... 0 0 1 2 3 4 5 6 Time (hr)

Figure 75. Inlet and outlet temperatures in PAR-6.

0 .3 0 -- gy - 1.00 P%  :

0.25 i c m 0 .20 --N

4 - 0.75 3O E

g X. :

L ,* E E 0.15 1- ~ -

t - 0.50 m g  : ' I -

r - S to m

% B E 0.10 { -

- 0.25 I a:

0.05 -~ _

~

0.00 .... .... ....,....i....i.... 0.00 0 1 2 3 4 5 6 Time (hr)

Figure 76. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-6.

NUREG/CR-6580 92

2 1000

inlet (pitot)  ;

outlet (pitot) - -

g12 - 800 fi . outlet (hot wire) }

}

jI - -.. H add 2

3 u

m -, . -

3

( j" - 600  :$

'g o _di 6 1 1

S ra -

!i -

8 l.j - 400 0 a -

E1 2 ll p  : if

j;  ! .

I l j - 200 g

!  !  ! l (i...!,,.II!,lL,....,,,,,,,,,,,,,,,

~

1,

-2  ! ~0 0 1 2 3 4 5 6 Time (br)

Figure 77. PAR gas velocity in PAR-6.

100 .

90 i.

80 i p ;- 4 ,, 4 = = = ,,, : ?= '-Ag

-o 70 i H2 5- 60 j N2 e  :

e 50 4 O2

$C 40 5 i e GGS

$ 30 i A GGS l 8 20 yO" 15 "

= 1*- = =h - -

Na 10 i j 0 5 . 9 . , i r .", ,"i .". , , i ."" . . . . . . i . .", ,

L 0 1 2 3 4 5 6 l

l Time (hr)

Figure 78. Gas concentrations (dry-basis)in PAR-6.

l 93 NUREG/CR-6580

60 _

50'i " ' ." ~ - w~L ,, _ j E

40 --

~

H2 C

@ 30 5 N2 e .

c 02 g 20 i Steam c .

o ~

0 10 - c'*

~

I ~ l+ ' ^"l '

' ~ * 'N '

l O - .-F..i....i.'... ....i....i.... )

0 1 2 3 4 5 6 Time (hr)

Figure 79. Gas concentrations (wet-basis) in PAR-6.

1.0 _ i 200

'l -

l 0.9 i \!

7

@ e 0.8 : l '-

150 .*

'I floor g 0.7 j j g  :

~

E

- 0.6 i l i h inlet -

/- outlet

$0.5l m  : I q .

dome

- 100 Q

$ 0.4 ~

k H2 adds : -f*

0.3  % O2 adds - 50 0.1 l: I d .

0.0 - !... ....i....i....i.... .... 0 0 1 2 3 4 5 6 Time (hr) I l

Figure 80. H2 concentrations (wet-basis)in PAR-6.  !

NUREG/CR-6580 94

12 400 - 500 l

11 i 4psL .i. ....

. lL > ,, ._aue Hioir vir

=

r lyI

_10 e rpr- ' r ve- . n iT " " 'I ',I -

$ 94 H%2 ;300 $

~

j 84 0%2 @ - 450 E e 6 '1, H2 adds  : { g 1 e Temp - 200 E

~

8

~

11 r

'i,(ll - 100 j f - 400 i!,

3

  • -- > 0 il@p -

0 '

,. ,,, ,, ," ". 7."['."* . 0 - 350 0 1 2 3 4 5 6 Time (br)

Figure 81. Catalyst temperature compared to gas additions and concentrations in PAR-6.

i l

l 12 400 - 40 m 1 - l -

(

94 o

AT - 300 I - 30 8 -i H% 2 $ _

5 74 0%

  • E g

c is 2 ~

g8-fO H2 adds - 200 '8 - 20 D

/

i < ~

e 5

^

5 11

\ f' l l i .

- 100 g 8 - 10 0

, _ LiTMnrrrrrrrru

...,..........s..

r

.. . ...., 0 10 0 1 2 3 4 5 6 Time (br)

Figure 82. PAR AT temperature compared to gas additions and concentrations in PAR-6.

95 NUREG/CR-6580

800 -

s A7 (PAR outlet)

A1(bot) 700 l ^3 e

- - - --- A4 AS 600 2 E  : l A6 (n/a)

E -

J l A7 5 500 2 A8 F ~

A9 400 d

E _ ._-

T ver g

....ii

. ..i.... ....i.... ....i.... ...

0 1 2 3 4 5 6 7 8 Time (br)

Figure 83. Surtsey vessel centerline gas temperatures from TC array A in PAR-7.

l l

450 .

B1(bot) <

440]! (% [ B2 B3 430 i I g 420 j

- - B4 e - B5 a 410j B6 E *** l

$8 g 390 - h M B9 B10 (top) 380i ,

ayemge 3'704 - - - -

mix fans 360 . ..i.... .... .... ..,.i.... .... ....

0 1 2 3 4 5 6 7 8 Time (br)

Figure 84. Surtsey vessel wall gas temperatures from TC array B in PAR-7.

NUREG/CR-6580 96

I l

1100 l  : rs midcari


midcar2

~

1000 i ,

5 midcar3 g 900 - !_ . /, O midcar1 bu

- -- midcar2 bu

[a 800 2i f k '- / s \%-

midcar3 bu

~

\ g\

3 700 i edgcari E

E 600 :-

t;\)s edgcar2

%\ edgcar3 500 2 corcari i N - - - corcar2 4002d corcar3 300 2

mid average 0 1 2 3 4 5 6 7 8 Time (hr)

Figure 85. Catalyst cartridge temperatures in PAR-7.

I 1100 midgap1 1000j -- midgap2 i h' midgap3 900 2 midgap1 bu

$ ;7 \[g,hje3 --- midgap2 bu

[ 800 }i _; s.

midgap3 bu edggapi 3 700 i f\ , i 1 -

j g . . N.

- -' edggap2 1 E 600j ,

s y\ edggap3  !

F 500 i

\\ ' '

~-,

corgapi

--- corgap2

'~

400 i) --

corgap3 i mid average 300 ....i....i.... ....i....i.... ....i....

0 1 2 3 4 5 6 7 8 1

Time (br)

Figure 86. Catalyst gap temperatures in PAR-7.

97 NUREG/CR-6580

2000 750 _

in mid  :

700 - P in mid -

out mid i 1500 [

@ 650i j out mid  : 3 2 600 ~  %'$ - - H 2adds -

--"-. O 2adds 1 1000 j 3

~

h550$ .

500 I "j' -

e -

3:

450j ll ll!!l ll h500 y 4004 -

o -:

l d . .'.i..

l' . I..l7 350 i ....i....i....i... i....,....

0 O 1 2 3 4 5 6 7 8  !

l l

Time (br)

Figure 87. Inlet and outlet temperatures in PAR-7.

0.35 1.00 0.30 '

- 0.75 .9 7  : x U

7 k 0.25 i '

E  : - 0.50 $

o .

e j 0.20 -- Pg G

~

    • - 0.25 X an  %

0.15 X,,,,, f 0.10 ~....i....i....i....i....i.... .... .... 0.00 0 1 2 3 4 5 6 7 8 Time (br)

Figure 88. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-7.

i l NUREG/CR-6580 98

3 , 2500 2- - 2000 E m

i; -

\  :

r

  • 1 2 f -.

- 1500 3o u -

b

$1 k

$0 5 . .' 0 ihlet (pitot) - 1000 0 m  : r- n outlet (pitot) -

o

-  !  !! inlet (hot wire)  :- 500 ~

I !l -- H 2add I l

-2

j ji _.--. o add  :

.,..,.... ....,....,,,,,,,. 2.,.... .... 0 0 1 2 3 4 5 6 7 8 Time (br) l l

Figure 89. PAR gas velocity in PAR-7.

i 100 .

i 9 0 -i g 80 ij, ,

E 70 ik H2 60 3 C  : N2 em 50 i - O2 y 40 i -

e GGS 8 30 a GGS 8  :

o 20 +:

A GGS i~

i ot..............................,

. . . ... .. .i....

0 1 2 3 4 5 6 7 8 1

Time (br)

Figure 90. Gas concentrations (dry-basis)in PAR-7.

99 NUREG/CR-6580

70

)

#^".m.-----..,,~~

.1

~~~~ ~-~

60 ~

s i AJ,V,. ~ H2 f 50 i -

N2

@ 02 co 40 k -

Steam 30 5

!0 20 d -

0 -

10 ~

0 2

.........,...'....u.,...................

0 1 2 3 4 5 6 7 8 Time (br)

Figure 91. Gas concentrations (wet-basis) in PAR-7.

2500 10 _ -

g-

[ 2000 y

@8

$ 74 floor  : j 5 6j inlet 8 g j

- odet h1500*h

% i dome  : y H2 adds 7 1000 g 5 4i

! 3i O2 adds  :

~- 500 3

0 24 '

1d )  :

.... .... ......... ..,.. ....i....

0 0~ 4....

0 1 2 3 4 5 6 7 8 Time (hr)

Figure 92. H2 concentrations (wet-basis)in PAR-7.

NUREG/CR-6580 100

l l

l i

l 12 2500 - 1100 11 4 H%

2

- 10 4 0, % _

- 1000

$ 9i / -

H, adds E - 900 Y

[c } - . O, adds k ' 800 h

(

3 S 6: 5 I

' Temp -

B - 700 8.

E

{8 5y Ih i bt,I
. 1_ 1000 $ - 600 44  : I W.,

ll S ' 500 3

~

8 3:

0 24-J ' - - - -

- 500 # y

_ 400 1i

/-

l 0'}....,.rl'.,....,....,.. , 'llfuur

,,..;'. ........, _0 ' 300 0 1 2 3 4 5 6 7 8 Time (hr)

Figure 93. Catalyst temperature compared to gas additions and concentrations in PAR-7.

1 l

12 - 2500 - 350 11 4 AT  :

10 g H, % _ F 300

$ 9 -! - A O% 2

$o ~ 250

-y 84 H2 adds E g f - 1500 7 7i /

'l , O, adds 3 ? 200 p S 6 -i JD B <

j 5 -! ,, i l

I:~.^ i

- 1000 $ -: 150 a $

g a4 I

0 1 - 500

4

................'..........0 [

1

" ' 'l,7 0 .

-0 0 1 2 3 4 5 6 7 8 Time (br) l Figure 94. PAR AT temperature compared to gas ,

l additions and concentrations in PAR-7.  !

l I l l l

10i NUREG/CR-6580 1

i 900 , l

A1(bot) .

A2 l 800q

^

g  : A7 (PAR outlet) -- A4 g700i \ A5 g -

q A6 (n/a) l g600i h i A7 E - l A8 A9 500 A10 (top)

      • '* 9
  • 400 b -

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (br)

Figure 95. Surtsey vessel centerline gas temperatures from TC array A in PAR-8.

900

81(bot)

- B2 B3 j 800.'

2  :

B4 I - B5 5 700 /' ~' / B6 E 420 l

/ B7 4

k B8

,j --

0 (top) average 380 __ _

mix fans 360 i

l ll..,...,...,...

l ]...

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (br)

Figure 96. Surtsey vessel wall gas temperatures from TC array B in PAR-8.

NUREG/CR-6580 102

?

1100 - midcari

/74.w~? l 1000 2 ~~-" midcar2 i /~ % midcar3 900 ; ..-

g  : ny-:v G

.- midcar1 bu

- y -- midcar2 bu g 800 1: midcar3 bu ag -

4" edgcari

! 700 i li

&  : I edgcar2 E 600 i edgcar3 H

e -

/

'.c.

500 5 I

, ('(.- corcari l  : ,, -- corcar2 400 2

corcar3 i mid average 300 ....... ..., .., .... ., .,...

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 97. Catalyst cartridge temperatures in PAR-8.

l 1100 midgap1 I

-- midgap2  !

1000]i fpg[j i midgap3 l

-j!be%g / i\ midgap1 bu

@ 900 i '

n -- midgap2 bu g 800 ;i ,

d

\\ midgap3 bu 700i d y' P\ -- edggapi h

g !i

'~-

edggap2 E 600 i i\\ edggap3

$ 500 -i l corgapi corgap2 400 ; corgap3 i mid average 300 i ..i... ....... ...... .. .

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (br) l '

Figure 98. Catalyst gap temperatures in PAR-8.

103 NUREG/CR-6580

900 2000 1

in mid  : ,
in mid - l 800 - f,l , out mid -

^

j 1500 5, s? -
j. out mid -

To j700i  ; __. - H, adds :

~

5

$  : , !j - - 0 2adds _ 1000 3 l*

o i WMWI i l'

'l i

!3 F  ! tj- - 500 S 500f  ! i ;I . u.

400 _

...,.......,..l.',...',...,... . ... 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (br)

Figure 99. Inlet and outlet temperatures in PAR-8.

0.6 1.00

~

{ P, _

0.5g P,,,,, _

e X RH

- 0.75 .9 7  :

U e -

y.i..m G

u.

2 0.4-E  :

- 0.50 mEe o .

e 0.3 - -

03 m

/ O 0.2 _

b i

l 0.1 W. ... ... ...i ..i...i...i... 0.00 l 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  !

Time (hr)

Figure 100. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-8.

NUREG/CR-6580 104

2 4000

inlet (pitot)  :

outlet (pitot) -

p 1l l $ inlet (hot wire)- 3000 &

9 3  : ,

- H 2add -

p 5 -

O2 add -

3 30-iMJ "" - '

w "m ' 2000h

.f

}  :  : 0 O  !! - 1000 iI

. N#  ! '!

i

i j i lt i

j i  : .

-2 ..l. ...i...i...,..'.,...,..,,

.. 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 101. PAR gas velocity in PAR-8.

100 90 4 7 80 , @

Y 5 50 5 O2 5

y 40 5

  • GGS l e GGS l 8 30 4 A GGS l

8  : N o 20 '

10 -

QA -

l 0 he.. ... ...

...i b..i.,....,=..

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 102. Gas concentrations (dry-basis) in PAR-8.

i 105 NUREG/CR-6580 l

l

70 60 : -

f T 'i~~' ' 1 -

g  :

  • ~""'~y 3 3  ;

{ 50 i: - N /U, R A /

E i #

3c 30 --

g 1

Q -

H2 N2 c 20 - o2 o -

U jo j Steam 0 - ........... ... ... ... ... ...

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 103. Gas concentrations (wet-basis) in PAR-8.

12 - 1500 11 i i  :

10 - 1

~

$ 9k , floor -

l E

8 -i: inlet - 1000 E-p 7 "g outlet 7 S 6- dome . g 5 5i H2 adds .

$ 4i O, adds - 500 3 c

0 3: i 5o F

O i 2i .

- i ii . . . s . . . s . . . . . . /. , .t 0' ..u'...s...,.. r0 1

O.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 l l  !

t Time (hr)

Figure 104. H2 concentrations (wet-basis)in PAR-8.

NUREG/CR-6580 106 1

20 2500 - 1100 H%2 18 j 0, % ' 1000 x_

7 162: - 2000 s7 Y H, adds o ' 900 7s 14 2: B g O, adds E .

- 12 : - 15003- - 800 E e .

b, Temp 1 j 10 j '

B ' 700 E 8- w- 1000 ~ ; 600 8

2 - 500 o 4- - 500 $ f g

2: e - 400 0 . .,, , . .' , ,

, . ,, ~0 ' 300 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 105. Catalyst temperature compared to gas additions and concentrations in PAR-8.

20 . '500

_ - 350 AT 18 i: H, % [ ;300 g 16 i O, % - 2000 y :

$ 14 i H, adds j - 250 n f 12 i fD A O, adds - 1500 { h200 8 10 ' v B

~

N

- 150 $

h8' m  :

-w ' 1000 $

I a

@ 6g -

3 ;100 04 2 -

- 500 $

- 50 2-  :

0............g . .

. ,, ... 0 -0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (hr)

Figure 106. PAR AT temperature compared to gas additions and concentrations in PAR-8.

107 NUREG/CR-6580

500 A1(bot)

- A2 A3 g A4 450 -

7 j %,.'

A5 5 A6 (n/a)

E - A7 E A8 5400-- A9 A'0 P}

N

~ _ .

yer ge

~

350 .. . ........ ............... ....

0 1 2 3 4 5 6 7 Time (hr)

Figure 107. Surtsey vessel centerline gas temperatures from TC array A in PAR-8R.

430 2 B1(bot) 420 2 B2 410 __

5 400 2 '.'-

B5 Ei B6 j 390 -- ~" N. B7 370 B 0 (top) a mage 360 i -

350 ~....l..................,.......

mix fans 0 1 2 3 4 5 6 7 Time (hr)

Figure 108. Surtsey vessel wall gas temperatures from TC array B in PAR-8R.

NUREG/CR-6580 108

1000 i midcari 900i fg - - - midcar2 I

,\ midcar3 2 800i \ midcari bu

?  : pg --- midcar2 bu j 700i '

I '~

midcar3 bu E edgcari

8. 600 i -

I

\ edgcar2 E -

g edgcar3 4 500 2: s w corcari

-- corcar2 400iJ _

corcar3 300 ' ... , . .,.. ,,....,...., .,.,,,,, mid average 0 1 2 3 4 5 6 7 Time (hr)

Figure 109. Catalyst cartridge temperatures in PAR-8R.

I i

I 900 : midgapi

\ --

midgap2 800j \.

midgap3 g

f\.

midgap1 bu j 700 - _._. midgap2 bu 3  : (; midgap3 bu 2 600 }

edggap1 g  : - - edggap2 m 500 - -~-

edggap3

corgap1 400 'J

~

~

--" corgap2

corgap3 300 ' ...

i..... . ..

.i .... .. ..., mid average 0 1 2 3 4 5 6 7 Time (br)

Figure 110. Catalyst gap temperatures in PAR-8R.

109 NUREG/CR-6580

600 . .

3000 g in med .

in mid  :

J - 2500

- od mW : y 500 - out mid ' : S E '

l '( _._..H 2 adds -

2000 p 400 2 1500 g h1000 300f i @ .

- 500 l

1 200 '.'...i....i....i.... ....,......... ~ 0 0 1 2 3 4 5 6 7 Time (hr)

Figure 111. Inlet and outlet temperatures in PAR-8R.

0.5 - 1.00

" "' E 0.4 -

g -

X, - 0.75 E B

~

e

s  : X- u.

I 0'3- -" -

- 0.50 g E

3

[ $

D- 0.2 - ~

- 0.25 [

0.1 - -

0.00 0 1 2 3 4 5 6 7 Time (br)

Figure 112. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-8R.

NUREG/CR-6580 110

. 3 5000 inlet (pitot)  :

outlet (pitot) g 2- - 4000 E .9-outlet (hot wire)

}  :

-- H 2add [ $

  1. : f - - 0 2add 7 3000 y1- w -w==  : y y -

~

o 3 i K_ i _2000g O 0- d

_ a m

- 1000 'c

-1

' l O

l 0 1 2 3 4 5 6 7  ;

4 Time (hr) I l

Figure 113. PAR gas velocity in PAR-8R.

100 .

90 i g 80 i. ,.

,7 5 - --

$ 7 0 -i H2 5 60 j N2 e  :

e 50 4 O2 l

2

~ 40 j:

  • GGS C a GGS

! 30 i O

A GGS O 20 j i 4 ' b .- = c e r.-h 10 -

0 9...,....,....?..,.f....O...,....

0 1 2 3 4 5 6 7 Time (hr)

Figure 114. Gas concentrations (dry-basis) in PAR-8R.

111 NUREG/CR-6580

70 60 2 w- ..eL~ ~

E _ . , ,

~~ ~+

7 3a .a~

.w g _

e 40 - H2 S i

$c 30 i .

N2 O2

$ 20 j Steam 8  :

m --Le m '-

- 4 c.x w, -w 10 i 0~ ....,.... .... ......... .........

0 1 2 3 4 5 6 7 Time (hr)

Figure 115. Gas concentrations (wet-basis) in PAR-8R.

8. 800 75 h700 floor  : a Fe6i - - 600 .*o inlet Ij k55 e  : 1

~

outlet dome h500 5

3 i

e2 4i -

j' ,

H2 adds f 400 E 4

c 3- Oz adds ~- 300 f 8 - , . _

g 2j g -

7 200y 1i .

i #- ~

f100 0:  ;

......... .........,...., ........ 0 0 1 2 3 4 5 6 7 Time (br)

Figure 116. H2concentrations (wet-basis) in PAR-8R.

NUREG/CR-6580 112

12 3000 - 1000 10 - 2m

  • g hh 8- H% - 2000 E j

@ k 2 E 0%2 3 - 700 E S 6- - 1500 g E

% adds E  % - 600 g 0 2adds l 8 4- - 1000 I a g _

Temp 3 - 500 g 2- N -- 0 0

% _ 499 3500

.Jr.............,.. '..,..,.,.... ....

~

O 0 - 300 0 1 2 3 4 5 6 7 Time (br)

Figure 117. Catalyst temperature compared to gas additions and concentrations in PAR-8R.

l l

12 3000 - 200 '

10 g - 2500 g _ ,g

~g 8- AT r2000$ g

%%  : u -

h 6-l 1

g O% 2 f1500$ - 100 $

h H2adds I k l 4~

N o, adds i 1000 ( ~

O 2- - 500 M g.......,....,.... ,_ -~ -

O . .. ....,..- 0 -0 0 1 2 3 4 5 6 7 Time (br)

Figure 118. PAR AT temperature compared to gas additions and concentrations in PAR-8R.

I 113 NUREG/CR-6580

500 A7 (PAR outiet) A1(bot)

A2 A3 g .

A4

- 450 -

A5 l -

A6 (n/a) 3 ~

A7 A8 5 400 I / .Ei l--

h

?%., A9

. }

%- A10 (top)

  • -- - average 350 ,.. ,...., ..., ...i....,....

2 3 4 5 6 0 1 Time (hr)

Figure 119. Surtsey vessel centerline gas temperatures from TC array A in PAR-9.

390 B1(bot)

B2 B3 380f - B4 8 ,

B5 g  : .,

_.,,~N..%,*. 86 3 - _

5 370 - ~_' B7

_... es g  ;

B9

  • b 360 B10 (top) average

-- mix fans 350 .

..i....i. . .... ...." i 0 1 2 3 4 5 6 Time (hr)

Figure 120. Surtsey vessel wall gas temperatures from TC array B in FAR-9.

NUREG/CR-6580 114 y

.. ~ ----. - _ -. . . . - - - .- . .- . _- - --

l l

l 800 midcari i __._. midcar2

! 700 ;  ;

m h r3 '

m W a d bu

i - -- midcar2 bu 2 600 2 l midcar3 bu i j { edgcari

& 500 - ' '~7s 5 edgcara t--

.r 2.c %6'x ' ~ CorCari 400i-)j

~

-- corcar2

..- corcars mid average 300 - ,

0 1 2 3 4 5 6 Time (br) 1 Figure 121. Catalyst cartridge temperatures in PAR-9.  !

I l

1 l

600 midgapi

[; --- midgap2

~

midgap3 I[

~

midgap1 bu

@ 500 -_ E ~'~" midgap2 bu e -

midgap3 bu 3 -

NN edggap1 2 -

edoga 2 P3 400 1_ . p1

_._.. corgap2 corgap3 mid average 300 ,. , ,,., ,, , i,, -

0 1 2 3 4 5 6 Time (br) l Figure 122. Catalyst gap temperatures in PAR-9.

115 NUREG/CR-6580

2000 460 -

in mid  :

in mid -

440 - out mid :.1500 $

out mid : s E 420 - .- .

- H2 adds -

g 3 , f 'Y '-

y . ~' i -- O 2adds -- 10G0 B h400g e I I

'\

s.

f f3

- 500 F j .9 380 -  ;

g 360

-1

\ . b. <.k s! h.... ....,....,....,.... 0 0 1 2 3 4 5 6 Time (br)

Figure 123. Inlet and outlet temperatures in PAR-9.

0.30 , 1.00 c

0.25 i pva**l - 0.75 .9 g  : ti 2

4 a -

bta'* 0.50

' 3 m .

$ 0.15 - .

(n l l e  :

g a .

- 0.25 I 0.10 -  ;

(

0.05 , .. .i..> i....i....i....i...- 0.00 1 0 1 2 3 4 5 6 Time (hr)

Figure 124. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-9.

NUIEG/CR-6580 116

! 2 2000 l -

inlet (pitot)  :

outlet (pitot)  : g g .

outlet (hot wire) - 1500 g  ;

31-

--.. H2 add _ re j p -

-- O 2add -

p l

li g0- 'l 'l 1 " M ' un - -

~

t"8 g 0 -j - 500 ii- .,

~

l lIjll ll!ll I" l

-1

]I,lL,

- ~

i,ll , H,' , , , ,

0 O 1 2 3 4 5 6 l

Time (hr)

Figure 125. PAR gas velocity in PAR-9.

1 100 .

9 0 -E g 80 ig,m, . ;, . . , , - ,

4 :g p,; . ,cu.=- -

$g 70 i: H2 c-C 60 i N2 S 50 j O2 2 E

  • GGS 40

$ l a GGS l g 30 i A GGS  :

0 20 p+;c *r- 7-"*' ' - = = -

1 0 -E O b, 8, i

^

,,,i,,,,i,,,,,,, .

0 1 2 3 4 5 6 Time (br)

Figure 126. Gas concentrations (dry-basis) in PAR-9. ,

117 NUREG/CR-6580

60 _ -

50 2

{ } +' % ,,_

~e,.,_,,,,,

g _p.

.- m

, _ _ g, .,

C -

N2 8 30 E . O2 C

8 C

20: Steam 0 ,o -  ? e=v = - + ': *

  • s p .- } 7 ^

O ~ ... 7"..'

,i-....i....i. ..i....

0 1 2 3 4 5 6 Time (hr)

Figure 127. Gas concentrations (wet-basis) in PAR-9.

1.5 _

200 m

floor _ g inlet outlet

_- 1 5 0 .2 3 1 .0 -- 9

~

b dome 3

c ,

H2 adds - 100 m

.o

~

% ~

u 0 2adds _

~

- 50 8

'f

)NWh4tg%

p

' M[2'&M

,...,....m.

i 0

0.0 .... .... ....

0 1 2 3 4 5 6 Time (hr)

Figure 128. H2 concentrations (wet-basis)in PAR-9.

NUREG/CR-6580 118

. _ _ . .. . . - . . . . . ~ . _ _ _ . . . .-.- .. . . . . _ . --. . _ . . -..-_ - .

l 14 200 - 650 J

4 1 I , . i -

1 150 0 11 -~ * - 550 3 '

{

v h / O% 2 - 100 - 500 E E <

j H2 adds I _ f b - 450 ,g

~

~

0 2adds - E g 1l ' ' " " -

50 5 5 U

1 M ** O - 400 $

~

0'

~~

, i , 0 - 350 0 1 2 3 4 5 6 Time (hr)

Figure 129. Catalyst temperature compared to gas additions and concentrations in PAR-9. j 14 200 - 100

I a i .,

~

-150 h

e '

E

.9 10 / ,, H% 2 - 100 g <i b O% 2 $ - 40  %

b H2adds 3 f1 7 #' O2adds ~E f _ po 0

/...i.... ..... ...i.....

... 0 -0 0 1 2 3 4 5 6 Time (hr)

Figure 130. PAR AT temperature compared to gas additions and concentrations in PAR-9.

119 NUREG/CR-6580 <

1100 i A1(bot) 1000 2 A2

A3 8 900 i -- A4 2  : A5 B 800 /' A6 (n/a)

{500j' -

A7 (PAR outlet)

/ A7 A8 g j g  : A9 i 400 -- _

-=-- -

A10 (top)

- average

~

300 ...., ..i.... .... ....i....

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr)

Figure 131. Surtsey vessel centerline gas temperatures from TC array A in PAR-10.

1000 B1(bot)

B2 000 B4 q

85 y 800 /,

'e

/,

- B6 97

/

g, 500 /

-- B8 5

89 F  :

B10 (top) 400 - average

~

mix fans

,I . . , , I I ,, .,..I ,I , , ,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr) l Figure 132. Surtsey vessel wall gas  :

temperatures from TC array B in PAR-10.

NUREG/CR-6580 120

1000 _ midcar1

-- midca(2 900 i midcar3 medcar1 bu g 800 j _._. midcar2 bu e 's midcar3 bu 700 : edgcar1 j i k 600 2 E i k\A MG edgcar3

\ \'\ corcari 4 500 ; 1l i /l *NIN -- corcar2 400 ~ - .hb corcar3

mid average  ;

300 ~ ,,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 i l

Time (hr) )

Figure 133. Catalyst cartridge temperatures in PAR-10.

)

i 1000 i midgap1 900 q -- midgap2

midgap3 l

2 800i 3 midgap1 bu j l -- midgap2 bu

{ 700 i 3

3 midgap3 bu E  : edggap1 h600; ,3

\_ _.- edggap2 Y  %.._ corgapi

'~

400.- --- corgap2

corgap3 300 ~ ,,

,,,,,,,,,,, ,,,,,,,,,,, , mid average 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr)

Figure 134. Catalyst gap temperatures in PAR-10.

121 NUREG/CR-6580

2500 1000 _  :

in mid 900 : in mid

-j out mid -7 2000 g

~

j g 800 i j out mid : $

I ~~~ H2 adds - 1500 3

$ 700 ! -.- O 2adds g

3  :

8. 600 i  ! -1000 E O E  :  !  !

$ 500 i  !  !  : g

- I l

- 500 E 400 l /  :

300 2 ....i..l.. ....i..I..i.... .... ~0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (br)

Figure 135. Inlet and outlet temperatures in PAR-10.

1.00 0.8 ;- t

- m Xag .

0.7 2-y steam -

C g 0.6 P, - 0.75 .g a  : p'***

2

~

E 0.5 i ~  ! - 0.50 k E

2

~

S m

S e 0.4 :

2  : - 3 1 - 0.25 I 0.3 } Ct'

~7 O.2 _~ -

/

0.1 ~ ....i.7. i....i..

.i.h?. ...- 0.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr)

Figure 136. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-10.

NUREG/CR-6580 122

i

.i 2 5000

inlet (pitot) _

outlet (pitot) ) ^

^

1 .' inlet (hot wire) j 4000 g 0 .

- O r.'-'-'- ---'-'1 - 2000 0 m

m y

l l O O l l - u.

i i  : 1000 z" i

i -

-2 .. ,,,.i,, ..,,

1

,....,.... -0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (br)

Figure 137. PAR gas velocity in PAR-10.

l 1

100 :

90 5_ j g 80 : Mv"-" - I e H2 m

h 0f

-e 60 -:

N2 -

O2 50 i e GGS y 40 i a GGS 8 A GGS 30 4 )

8 o 20 i -i%~== -

10 4 0 . . . . , . . .! . . . . , . . . . u 3. . \

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr)

Figure 138. Gas concentrations (dry-basis)in PAR-10.

l l 123 NUIGG/CR-6580

60 _

50 2 P  :

@ 40 -

30 H2

$C  :

N2 8 20 -: o2 c

b 10-f 0 ~ ....i.... ....i....i....i....

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (br)

Figure 139. Gas concentrations (wet-basis) in PAR-10.

l 11 - 1200 10 d b /

m g j inlet ~_ 1000 _

  • : outlet  : 5

$ dome - 800 A E 7]7 H2 adds

- ~

j 5-j O2 adds h600 4 3 .

N 4i .

\

- 400 I E 3': -

3O O _

F O 2i - 200

'i 0 . . . . . /. . .

.. ....c ... ....

0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (br)

Figure 140. H2concentrations (wet-basis) in PAR-10.

NUREG/CR-6580 124

! 20 1200 - 800

! 18 4  : ;750 g 16 4 1000 g 7

- 700 b H%2 h800 t650 3 - 600

~

=8 10 i O%2

- 600 E -

5 84 H2adds  : < ' 550 @

h g

6j O2adds - 400 I

e

' 500 %

4j Temp  :

o . - 200 15 F

450 lii o

2i '400 0' ...

...V. .

, , ., ~0 ' 350 '

O.0 0.1 0.2 0.3 0.4 0.5 0.6 Time (hr)

Figure 141. Catalyst temperature compared to gas additions and concentrations in PAR-10.  :

20 1200 - 100 18 i -

- 1000 7 - 80 l @ 16 i l $ 14 5

! E AT 7 800 g g 12 H%

- 60 -

i e

.910]; 2 1 0% - 600 V <1 g 2 Q -*

g 8-j H, adds _a z" a.

l g  : 0 2ndds f -

S -

o 4, $ - 20

- 200 2'

O i... . .

.....i ,

i .- 0 -0 j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 T.ime (hr)

Figure 142. PAR AT temperature compared to gas 1 additions and concentrations in PAR-10.

1 t

125 NUREG/CR-6580

500 N A1(bot)

s A2 5

g A3

- 450 .__ A4 k6 A5 5 .? A6(n/a)

E I / A7 E

400 - - - - A8 0 (top)

~M __

average 350 .... .... ..

.i....i.. .i..

0 1 2 3 4 5 6 Time (br)

Figure 143. Surtsey vessel centerline gas temperatures from TC array A in PAR-12.

. B1(bot)

B2 B3 g -- B4 1 450 - B5 7 _

s 3

2

[ B6 B7 E -

/ / 'E B8

! 400 - B9

~

[ - - -

B10 (top) average 350 i i s I O 1 2 3 4 5 6 Time (hr)

Figure 144. Surtsey vessel wall gas temperatures from TC array B in PAR-12.

NUREG/CR-6580 126

. - . - _ ~ - . - - - .. - . . - - . . . . -

l

[

1000 midcari i

- ---- midcar2 i i, A M.4 midcar3 l 2 8002g i *

  1. Y midcari bu
  • -/~}\}~g

-- midcar2 bu 7 midcar3 bu Ei 7002 i l E i  ! >

\ edgcar1 l 8. 600 - 1 'S edgear2 l

E  : 1

\

'h gpg l 0 500i  ! g. 's corcar1 w: % .." m. --.. corcar2 400jj


c - m g med average 300 ....,,, ,,,,,,,,,,,,,,,,,,,,,

0 1 2 3 4 5 6 Time (hr)

Figure 145. Catalyst cartridge temperatures in PAR-12.

i 1

l l

1000 : midgap1 900 --- @ 2 i > ,+ midgap3 midgap1 bu 2 800i:  ;/%;-

j i -- midgap2 bu lii 700 ~ '

.\ midgap3 bu edggapi

\,

k 600 2 g' - - edggap2 E i

~

edggap3 0 500 .g corgapi rgap2 400 J -

w corgap3 300 M ang

....i....,....i....,....,....

0 1 2 3 4 5 6 l

l Time (hr) l Figure 146. Catalyst gap temperatures in PAR-12.

l t

127 NUREG/CR-6580

700 1500

.1

/M ,

in mid -

, /
  • in mid out md {

600 g out mid _ jogo 3 g  :

--H 2 adds . g

-"-- O adds -

j h 500 - Ij i 2 _

8.

~

!'i I . E o

e  : r i _ 500 S 400 l! n - -

u.

p t -

l iI

~

ll -

l  !

300 --

-0 ,

0 1 2 3 4 5 6 f Time (br)

Figure 147. Inlet and outlet temperatures in PAR-12.

0.5 -

1.25

~ '

I i ' 1.00 e O.4 - f  : -u 2

a E

s -

-- 0.75 u.

" ~ ,

E i  : m i E, 0.3 --d o  ;

E -

P,, h 0.50 65 l 8

  • 8

""'  : I  !

0.2 i X ag - 0.25 E l X,,,,  :

0.1 ....,....,....,....,....,.... O.00 0 1 2 3 4 5 6 Time (br)

Figure 148. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-12.

NUREG/CR-6580 128

l 3 , 2500 2 U  !

^

_  : 1, 9 - 2000 E

= -

D1~

i g

0 L ==

$ inlet (pitot) -

- 1000 U a -1 ; outlet (pitot) -

y

$ j U outlet (hot wire) [ y j -- H 2add - 500 g

-2i l i

- - 0 2add

,1  :

-3 2J .,....,.... ,,...,.... ~0 0 1 2 3 4 5 6 Time (hr)

Figure 149. PAR gas velocity in PAR-12.

l l

l 100 ;

90 2 80 m p l 2

E e 60 4 N2 50 ;

fc 40 i i

O2 GGS

$ 30 i

" GGS A GGS 0 20 i i % _D

~

0~....

C~ _

....i....i...-i.... ....

0 1 2 3 4 5 6 l Time (hr) l l

Figure 150. Gas concentrations (dry-basis)in PAR-12.

i 129 NUREG/CR-6580

70 _

60 2 .~~.,._1_.~...~.._,-- ~~

..- H2 S 50 i v' N2 O

E  : O2

" 40 Steam 8

.a EC 30 --

!O 20 d -

o -

10 i ~

0 i [......... .........i....i....

0 1 2 3 4 5 6 Time (br)

Figure 151. Gas concentrations (wet-basis) in PAR-12.

7. _ 2500 62 '  :

g i py w floor inlet

-- 2000 y I ' -

o S 5 ;i -

outlet -

5,,

@ y c 4i '-

dome .- 1500 7 e i H2 adds -

E j3 7 '

' O2 adds h 1000I I g  : -

c 2 -- L -

m 0

\ - 500 h

~

0 .... .... .... .... .... .... 0 0 1 2 3 4 5 6 i

Time (br)

Figure 152. H2 concentrations (wet-basis)in PAR-12.

NUREG/CR-6580 130

14 2500 - 1000 g

12 - N H%

- 900 -

2 - 2000 y E j 10 'f O, % -

j - 800 j 8 H2 adds 3

~

O, adds i1500h F700 k

,  : B E 1/T \A u  :'00 iw j *1 e 4- r" v _


r

'*;;  :' } -5 m

2 - 400 0 0 ..., ...,....,.... ...., ... 0 - 300 0 1 2 3 4 5 6 Time (br)

Figure 153. Catalyst temperature compared to gas additions and concentrations in PAR-12.

l l

l l

14 2f.00 - 250

Ah h 12 - fy g

AT - 2000 7 - 200 f 10 H, % _

5 8- ,% -

- 1500 ~ ~ 150 $

o  : H2 adds k Q j 6- o, adds _ 3999 2, :_ 3gg g g  :

g

/ (h u -. . _ m _ _ , , 3v - r .

a.

c 4- C ' ' ' ' - ~

l 6

2 i' 0' .

..i. .

i ...

7 .

0 10 0 1 2 3 4 5 6 Time (br)

Figure 154. PAR AT temperature compared to gas additions and concentrations in PAR-12.

131 NUREG/CR-6580

500 A1(bot) 1 A2

. A3

$ 450 - . / A4 2 -

L l A5

{3 A6 (n/a)

\ ,

~

g ~( 0 (top) l

-v' average  !

350 ....,....,....s 0 1 2 3 4 Time (hr) j i

Figure 155. Surtsey vessel centerline gas temperatures from TC array A in PAR-13.

- B1(bot)

B2 500 - B3 l g -

B4 l

l y  : B5 B6 l 5 450 - ,

2 B7 gg

8. I 89 Ff,400- g "b 'QQ~..-. ~

~ -

B10 (top)

I W _T ^ average s

mix fans

!,.>i " ' '

350 i.. i 0 1 2 3 4 l Time (hr)

Figure 156. Surtsey vessel wall gas temperatures from TC array B in PAR-13.

NUREG/CR-6580 132

900 -

~

midcari midcar2 800 2 i midcar3

- -  %' midcari bu E 700 2 ./ , - -- midcar2 bu

!  ! / p% midcar3 bu 3 600 f f \ edgcari

8.  :  ! g \ edgcar2 5 500 ; I Ns edgcar3 H )I

)

\ corcari 400U -'-" corcar2

. corcar3 300 ' mid average 0 1 2 3 4 Time (hr)

Figure 157. Catalyst cartridge temperatures in PAR-13.  !

l 900

midgapi

~~" *idgap2 800h .

midgap3 g ~

midgap1 bu 7 700j f -- midgap2 bu j  : -

midgap3 bu e 600 -

, p edggapi

- edggap2 h  : l ,

y 500 - edggap3 corgap1 400 2 -

--" corgap2

corgap3 300 ~ ....

..... . . . , , , , , mid average 0 1 2 3 4 Time (hr)

Figure 158. Catalyst gap temperatures in PAR-13.

133 NUREG/CR-6580

700 3000

in mid  :
in mid - 2500 _

600 7 out mid  : @,

@  : F .'

out mid  ; 2000 3

' H2 adds :

2 500 2 -

5 400 300 ;500 200 l l

10 ,

0 1 2 3 4 Time (br)

Figure 159. Inlet and outlet temperatures in PAR-13.

0.5 ,

_ 1.50

? 1.25 c

_ 0.4 ;  :

y j 2 . ,  ? 1.00 g i j;' \ u-E  :  :

g0.3_  % _

h 0.75 l l 0) e

/ p*  :

7 0'50 l

g .M P vesw I O.2 -  :

W Xas p 0.25
X,,,,,

0.1 v....i....i....i.... 0.00 0 1 2 3 4 Time (hr)

Figure 160. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-13.

NUREG/CR-6580 134

3 5000

inlet (pitot)(falled) :
outlet (pitot) -

m 2: outlet (hot wire) h4000 E j  :

$ - - H 2add  : 3 1i ) - -- O 2 add h3000g 7 '

$0 Qe - 2000 0 e  :  : c

- 1000 a

-2 . . .

i .. . . i . . . . 0 0 1 2 3 4 Time (hr)

Figure 161. PAR gas velocity in PAR-13.

100 - n, 90 i N

@ 80 dM "~

O

$ 70 k ,p r#"~ ~'~

5 60 4:

  • GGS e a GGS S 50 i A GGS h 40 k 30 gem g-m = :-v m e +

' 01 . N. . , . . . . , .

-~

0 1 2 3 4 Time (hr) ,

Figure 162. Gas concentrations (dry-basis) in PAR-13.

135 NUREG/CR-6580 ,

70 60 2

  • : H2 S 50 ;

y N2 i

" 4 0 -- O Steam

~$ 30 :i U-E  :

8 20 f -

0 '

= i'

~

10 4 1 "=y i N...i....i....,.... _ --

0 .

2 3 4 0 1 Time (hr)

Figure 163. Gas concentrations (wet-basis) in PAR-13.

floor  :

E 2500 let i dome o R5 2 /

H2 adds i 2000 g g !  ; ,

z aMs 1500 j f

': 1000

- m e 2: -

o o -

F O ?500

$ j_

%C  !

0 0 . ...,....,....,....

2 3 4 0 1 Time (br)

Figure 164. H2concentrations (wet-basis) in PAR-13.

)

NUREG/CR-6580 136

14 2500 - 800 jkM NM Db "$ $

E -

H%

2 E '650y 8- ~

j '600 O, %  :

N 6- \ H2 adds -

0

$ O2 adds - 1000 [ E 500 1 o Temp

- 500 '450h 2- 400 0 ... ,...., ..

, 7 ~0 ' 350 0 1 2 3 4 Time (hr)

Figure 165. Catalyst temperature compared to gas additions and concentrations in PAR-13.

I l

14 _ _ 2500 - 200 0- M N

- 150

~

8- - 1500 j  : AT j - 100 D 6- H, %

E

[ - 1000 1 k s  : 0%

2 E 4  :

8 U

i-H2 adds @ - 50 2 O2 adds 0 .. ..

i ..

h 0 -0 0 1 2 3 4 Time (hr)

Figure 166. PAR AT temperature compared to gas additions and concentrations in PAR-13.

137 NUREG/CR-6580

A1(bot)

A2 500 -

- A3

$  : .a - A4 g

,' A5 450 -

(

[ A6 (n/a)

~

A8 E f ,.

'w-m A9 l- 400 - g y A10 (top) kg '

r-average 350 . . . .

i 0 1 2 3 Time (hr)

Figure 167. Surtsey vessel centerline gas temperatures from TC array A in PAR-13R.

500 B1(bot) 82 B3

- B4

$ 450 _ B5 g . .

B6 g -

400  % B9 B10 (top)

N L

, -__, f average mix fans

-q i q . .

350 . ~. . .

i 0 1 2 3 Time (hr)

Figure 168. Surtsey vessel wall gas temperatures from TC array B in PAR-13R.

NUREG/CR-6580 138

1000 midcari

_ _. midcar2 900 midcar3 e midcari bu g 800 :- p \ --- midcar2 bu I

$ 700j midcar3 bu

~ '

edgear1 600 i I '

edgcar2 E  : edgcar3

@ 500i -s .. .h. , . corcari 400 r

mid average 300 ~ . . . .

0 1 2 3 )

Time (hr) I Figure 169. Catalyst cartridge temperatures in PAR-13R.

900 midgapi

/ .' -- midgap2 800k -

midgap3 g .

midgap1 bu

- 700 - 8

\

midgap2 bu

!  : r- \ midgap3 bu 3 600i  !. ' 4 edggapi g,  ; /.b sl. --- edggap2 5 500i H  :

sNN'N s edggap3 corgap1 400; j ---~ corgap2 corgap3 mid average 300 . . . .

i . . . .

0 1 2 3 Time (hr)

Figure 170. Catalyst gap temperatures in PAR-13R.

4 139 NUREG/CR-6580

3000 700

in mid i

? 2500 _

600 ,1 out mid : E out mid - 2000 3 E --" H 2adds .

g E 500 -' .

$  : - O2 adds 1500 I 400

~~~-

_~qf -

1000 ,

y -

O 300 --- -

500 200 2 i

-0 0 1 2 3 Time (br)

Figure 171. Inlet and outlet temperatures in PAR-13R.

1.50 0.5 _

- 1.25 c

.S

_ 0.4 -

] , 1.00 y E Y -

A 2

E E 0.3 - ,){ f - 0.75 g g . 1V  : g Pd E

~

-d - 0.50 B

/ P%  : z 0.2 Xas F 0.25 0.1 j

i X.

i i

0.00 0 1 2 3 Time (br)

Figure 172. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-13R.

NUREG/CR-6580 140

i 1

1 2 5000 inlet (pitot) :

outlet (pitot) -

, 7

-.- H 2add 4000 g

~

}1- - -. O 2 add {

b

- 3000 $

.8  : i  :

h 0:uUL Y l_f $

0 -

. - 1000 I~

i!!! 'i LO!!illlplWiiiWilii!

-1 .

!gU , , . '0 0 1 2 3 Time (hr)

Figure 173. PAR gas velocity in PAR-13R.

100 .  !

90 l J 80 hk "

I 70 60 --

kg [**' 2 2

5 50 j O2 40 5

  • GGS h '

8 30 20 Y#"*N 10 E floor sample 0 . .

..i.... ....

0 1 2 3 Time (br)

Figure 174. Gas concentrations (dry-basis) in PAR-13R.

i 141 NUREG/CR-6580

70 60 2 5 5  ;

. ,,, , 3 .- ~- . s. . m ., . . . . . ,

{g 50 2: 4, , .,,. . .. 4 f. .aq.fT " v ,,

i j -

2 2

$c 30 - - O2 gc 20 :: Steam 10 'P 0 . . . .

i

...i . 5-~ .

0 1 2 3 Time (br)

Figure 175. Gas concentrations (wet-basis) in PAR-13R.

8_ _ 3000

floor -

72 inlet g j I T outlet dome  :

2500 o

S  : '

I H2 adds i 2000 g k5 e i O, adds : I 1500 .E e4 e

~3 ~

, i(%

~

g i Y'b L h 1000 3" 82 ~ -

/ E j

3 F

O

/ , "l%gP" - 500

% ~-  :

i . . 0 0 . . . , . .. ,

0 1 2 3 Time (hr)

Figure 176. H2concentrations (wet-basis) in PAR-13R.

NUREG/CR-6580 142

l 20 3000 - 20 H% 2 18 -

^ 16 ;

2

- 2500 g - 900 g H2 adds -

a>

~

14 -

0 2adds - 2000 A 12 -

l e S 10 Y Tem a Mf 69%gis, , . k - 700 k

-1500 B E

$ 8- / <

~

- 600 i' 8 6-  ! " - 1000 I E 8 }& Q9 3 - 500 ~s U -

O

- 500 - 400 0 0 . ,

, . 0 - 300 0 1 2 3 Time (hr)

Figure 177. Catalyst temperature compared to gas additions and concentrations in PAR-13R.

20 , g 3000 - 180 18 - H%2 .- 160

- 2500  :

7 16 - 0%2 - 140

$ 14 - H2 adds ~- 2000 A ~ 120 -

10 - M/bN J, . -1500 g

i e 8-

/ 2~ - 80 m 8 - 1000 3 - 60 '

e 6- a -

J/

- 50 f_ .

' h. _N- 20 0 . .

i i . -

0 -0 0 1 2 3 Time (hr)

Figure 178. PAR AT temperature compared to gas

additions and concentrations in PAR-13R.

l l

l 143 NUREG/CR-6580

800 .

A1(bot) 750 5

! A2

! 700 i A3 g 650 i -

- A4 A5 2 600 4 3 550j ^ (" }

A 500 A8 l

g 450 j A9 400 ver ge L

300 ....,,,,,

...i....

0.0 0.5 1.0 1.5 2.0 Time (br)

Figure 179. Surtsey vessel centerline gas temperatures from TC array A in PAR-demoi.

800 ,

' B1(bot)

82 700 - B3 2  :

600 - - -- -- B 86 B  : 87

8. 500 - 88 b  : 89 B10 (top) 400 - .

average x

w -[

...,....i,n, , , , , , , r, ,

4 Q

mix fans 0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 180. Surtsey vessel wall gas temperatures from TC array B in PAR-demo 1.

NUREG/CR-6580 344

1100 midcari 1000 j --~ midcar2

/ midcar3

- 900 - ~

/,# midcari bu M

p _._.. midcar2 bu g 800i / \

~' /

h' . / midcar3 bu edgcari h 700 2

& 2 4 i.3-s / ,( i edgcar2 600 -

E 0 500 ) -

(\ '

edgcar3 corcari

/ - ,

_._.. corcar2 400 5 )/ corcar3 4 300 : J mid average 0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 181. Catalyst cartridge temperatures in PAR-demo 1.

1000 - midgapi i / --- midgap2 900g I' . midgap3

^ 2 ' midgap1 bu E 800 : '

-- midgap2 bu

! 700 i midgap3 bu 3 i , 's /fd edggapi

- -- edggap2

& 600 i G" -

/

N- f

\

E  : edggap3

@ 500 i i corgapi

-- corgap2 400 1 corgap3 mid average 300 .>

i ..... . .

i . . . .

0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 182. Catalyst gap temperatures in PAR-demo 1.

145 NUREG/CR-6580

5000 800 , _

in mM  :

700 ; in mid

-- 4000 ^E out mid

$ soo ; out mid g j - H2 adds , -- 3000 _t E 500 --

A s \  : ]

400 --

\

~

/ ., - 1000 300 2 c7;l i i 7;g7 nj -m g. g

~

l 200 - . . . it!!!

t 1

,!!!!!,!I, y y n ,

j,,,, , ,!i , -0 0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 183. Inlet and outlet temperatures in PAR-demo 1.

1.50 0.6 i Xag i

~

0.5 i X,, m r 1.25 c

P, i e r 1.00 y

$ 0.4 i p***' -

1 2

E 0.75 g g0.3, I V)

Q  : /

\ i I 0.50 5 y 0.2 ;  : I 2

0.1 f 0.25 "

. . . - 0.00 0.0 - . . . . s . ...,.. . . ,

0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 184. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-demo 1.

NUREG/CR-6580 146

2 5000 inlet (pitot)

- ~

i outlet (pitot) ^

[4000 g g outlet (hot wire) 11- - -- H 2 adds  :

y b -

i - 3000 :8 c .

e

! N

- 2000 0 g0- -

g I -

. a

,, - 1000 m

-1 . . . . . . .

i . , . . . . 0 0.0 0.5 1.0 1.5 2.0 Time (br)

Figure 185. PAR gas velocity in PAR-demo 1.

100 :

SU i L H2 5 60 -j N2 l h 50 k 02 5 40 2

  • GGS c 30 2 A GGS O 20 i W^* mA+

I 10 2

.. h. .i...M_

l i _

0 i i.

0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 186. Gas concentrations (dry-basis)in PAR-demo 1.

147 NUREG/CR-6580

100

    • k G g 80 i f7U

- 60 ;

H2 e i N2 e 50 -i 02 e 40 i C

i --

Steam

! 30 i 8 20 m-0 0 1 . . . .A. . . _ . _ i.M i . . . ..i v. , ,-

0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 18'/. Gas concentrations (wet-basis) in PAR-demo 1.

9 5 floor i 8~ inlet .

2500 je

@ 74 outlet j

' 4 dome

.g 6 3; _._.. H adds -- 2000 E E 2

/ .

3

/r/J/

,g 5 ;:  ? 1500 g

.1 u A :- .

<n

~~ I c E 83: / .

1000 4 C -

% ~

O g 2 ;; ' ,c- 5 e 9500 1 i. /

/  :

O; ~r . . .', . .. > s

- - ' ' .O 0.0 0.5 1.0 1.5 2.0 Time (br)

. Figure 188. H2concentrations (wet-basis) in PAR-demo 1.

NUREG/CR-6580 148 r

25 -

3000 - 1000

@ 20 - ( F2500 g I 00

.e .

{ ,

y ~ 800 Y

15 y, b ~

700

] .

j  : --. -.. H, adds ?1500 E ~- 600 E

$ 10 - Temp s'  : ~

- 500 D 8  :

/ ' 1000 E

R E  : 3 L 400 3 o 5 , - 500 0 0

- 300 0 , , , ,

,,,,,,,,, , , ~0 ' 200 0.0 0.5 1,0 1.5 2.0 Time (br)

Figure 189. Catalyst temperature compared to gas additions and concentrations in PAR-demo 1.

l 1

l 25 , 3000 - 300 tf 4{ - 250 20 l j_ . _f2500

@  : AT f' - 2000 E - 200 -

- 15 7 H%

2 b  : u - E

~

O, % / - 1500 $ ~ 150 D x

gc 10 -

/ <~ -

~

..H2 adds -/

8 ,' - 1000 3 ~

100 1 c  : s  :

0 ,"

0 5} - 500

- 50 0 >

i .

i i , -

0 -0 0.0 0.5 1.0 1.5 2.0 Time (hr)

Figure 190. PAR AT temperature compared to gas additions and concentrations in PAR demo 1.

l 149 NUREG/CR-6580

A1(bot)

A2 800j

A3

^

2 700 2 A5 e  :

5 U

^ ("

  • E 600 - A7 E i A8 E 500 7 A9

" i A10 (top) 400 average 300 . , , ,

0.0 0.5 1.0 Time (hr) .

Figure 191. Surtsey vessel centerline gas '

temperatures from TC array A in PAR-demo 2.

900

B1(bot) 800q B2 83 1

$ 700 g B4 B5 2  :

$ 600 ; B6 B7

[

k -

9 810 (top) average

] m fans 300 ~ ,

0.0 0.5 1.0 Time (hr)

Figure 192. Surtsey vessel wall gas temperatures from TC array B in PAR-demo 2. I 1

NUREG/CR-6580 150

- . ~. . -- .- . . . . _ . -- . - . -

800 midcari

_._.. midcar2
midcar3 700 midcari bu

$  : -- midcar2 bu 2 600 2 midcar3 bu j  : \ edgcari

0.. edgcar2 g

e 500 : i. \\ edgears

~'

i'\ corcari 400 2 -

i

'l^$'k3 l-

-- corcar2 corcar3

, /. mid average 300 , . . .

0.0 0.5 1.0 Time (hr)

Figure 193. Catalyst cartridge temperatures in PAR-demo 2. I l l 900 _ midgapi

-- midgap2 800 - midgap3
midgap1 bu E 700 -: -- midgap2 bu 2 / midgap3 bu edggap1 h600 .,

---~ edggap2 g  ;

edggap3 p5500j l i.0 i

./,// ' corgapi n --- corgap2 400 .

// x corgap3 jj' mid average 300 . . . . .

n . . . .

0.0 0.5 1.0 Time (hr)

Figure 194. Catalyst gap temperatures in PAR-demo 2.

4 151 NUREG/CR-6580

800 5000 i in mid l  :

in mid i 700i -

out mid - 4000 ^E

$ 600 j out mid { $

p  : -.. H 2adds  !

- 3000 g h500 U ll  !

8.  ! l ~- 2000 E 5400{ { $

300 - r,-i .

M! h 1000 b f!  :

l .

j 200 . .I .

i I '

i .

. . . ~0 0.0 0.5 1.0 Time (br)

Figure 195. Inlet and outlet temperatures in PAR-demo 2.

0.8 . -

1.00 j  :

0.7 i*

~

C

_m 0.6 -': - 0.75 .g XRH '

.u steam '

k 0.4 j Pm - 0.50 5 0.3 ~

dE "

0.2 - - 0.25 I M

0.1 ~  :

0.0 . . . .

i 0.00 0.0 0.5 1.0 Time (hr)

Figure 196. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-demo 2.

NUREG/CR-6580 152

2 5000 inlet (pitot)  :

outlet (pitot) -

, g outlet (hot wire)

- 4000 E_

-'- . H adds -

E 11- 2 b -

- 3000 :$

'g -

.8 s -

h  : 8 i

O 0- 80 -]I N II ~

O E "

. 1

- 1000 f pI i i

- l 1 i  !!

-1 ,

,i , ,

i, , , , -0 0.0 0.5 1.0 1 Time (hr)

Figure 197. PAR gas velocity in PAR-demo 2.

I 100 :

90 f M H2  !

2 60 c  : O

.9 H 50 :i e GGS c 40 7 m GGS l

! 30 i A GGS O 20 j A  % ____ _

0 i _

0.0 0.5 1.0 Time (hr)

Figure 198. Gas concentrations (dry-basis) in PAR-demo 2.

153 NUREG/CR-6580

100 90 l

@ 80 j __

$ 70 4: H2 E

y 60 : y*

8 50 4 E Ao i:

C Steam  !

! 30 ]

i 0 20 i 0

i . . M.. .... 0.5 1.0 i

0.0 Time (hr) t Figure 199. Gas concentrations (wet-basis)in PAR-demo 2.

12 _ 1500 11 4 floor -

10 4 inlet ~

g .] outlet _$

{ _

8 .j dome _._._._._.- - 1000 E 5 7q - - . H adds 2 ./ -

g e si / '

E

$ 54 l'/

h 4k / - 500

~

8 3 -i

./ $

F

~

U 2 i -

'/

l 11 y _

0- . . . . .  ? '. . 0 0.0 0.5 1.0 Time (hr)

Figure 200. H2concentrations (wet-basis)in PAR-demo 2.

NUREG/CR-6580 154

25 _ 3000 - 600 k 20 0

~6 5 15 H, % 2 j { O% 2 - 1500 E 10  ; -- H, adds W i <~ - 400 $

e 8  : Temp . 1000 3 !2, s - 350 3 g [

o 5- / ,. O

- 500 - 300 d l

O 0 - 250 0.0 0.5 1.0 Time (br)

Figure 201. Catalyst temperature compared to gas additions and concentrations in PAR-demo 2.

25 _ 3000 - 120 L 100

{ 20 i%Mp ff 1 7

2500

_O i 80 H%2 I 5 ~

2 j O, %

7 ~

[ - 1500 B D

< - 20 g h10 - H, adds =

l ,

g ', _ . _ . . _ . _ . _ _ . -- 1000 E EO c -

s  :

0 5- ' ,. - - 500 N

~

,. ' [40 0 i -

0 -60 0.0 0.5 1.0 Time (hr) t Figure 202. PAR AT temperature compared to gas additions and concentrations in PAR demo 2.

l 155 NUREG/CR-6580

500 A1(bot)

A2 A3 7

- __... - A4

$ 400 _ A5 3 -

f A6 (n/a)

8. A7 E -

de A8

{

0 (top) 300 -- average j 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 l Time (hr) i Figure 203. Surtsey vessel centerline gas temperatures from TC array A in PAR-demo 3.

500 B1(bot)

B2 B3 2

B4 7 -

B5 5 400 - B6

@ . B7 E .

B8  !

$ B9 g B10 (top)

F average 300 -_ -

mix fans

]

.... .... .... ....i.... .... ....i.... ....

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 )

Time (br)

Figure 204. Surtsey vessel wall gas temperatures from TC array B in PAR-demo 3.

NUREG/CR-6580 156

1 i

l l 900 midcar1 l  : --- midcar2 l 800 2 t midcar3

\

I -

midcar1 bu E 700 2 (k -- midcar2 bu l 2 -

A \s midcar3 bu l f 600 -f  ; \y % edgcari

! & s  % edgcar2 Q 500 l-  : ,

i \wVw edgcar3 corcari 2~'..s.s-N ~ m- --- corcad 400  !

corcar3 300 5 dJ mid average l

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (hr)

Figure 205. Catalyst cartridge temperatures in PAR demo 3.

900 - midgapi j -- midgap2 800 - -

midgap3 g j midgap1 bu

- 700 - -- midgap2 bu l .

(

N midgap3 bu edggapi 3 600 i gp <

&  :  ; i' -- edggap2 j

5 500 -'  !\ s edggap3 F .

.I-ij I .N ~- N corgapi 400i l I

~

'~ N' s

--" corgap2 J corgap3

/J mid average 300 ....i.... .... .... . .... . . ............

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (hr)

Figure 206. Catalyst gap temperatures in PAR-demo 3.

l 157 NUREG/CR-6580

l 600 .

5000 in mid -

in mid 500 ; ut mid {- 4000 ^E

- 1 52 -

J out mid -

2 7  : g - H 2adds ~ 3000 5 i

400f Lh,,,'N j 2w0 3 1 300k - 1000 u.

...............i....i....i...i..-.i....~0

~

200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 207. Inlet and outlet temperatures in PAR-demo 3. l 0.3 1.00 j

C

-C - 0.75 .9 y n -f .

y 0.2- -

2 2 -

1 b  !

~

k -

- 0.50 i  : b P,

5 y 0.1 -

- 0.25 g P%

L _

0.0 .... ....i T.7 .... .... ...'.i....i.... ....

i 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 208. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-demo 3.

NUREG/CR-6580 158 l

t

i l

3 5000

' ~

inlet (pitot)  ;

outlet (pitot) - ^

7 2-

_ 4000 E outlet (hot wire) _o_.

3 8

- ~

- - _.__.. H2 adds -

_ u

.gp a - 3000 gm ti i ll k _

- 1000

~

I B.

i

-1 ,,,,,,,,,, ,,,,,,,,,,,,,i....,,,,,,,,,,,,,,, 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 l

Time (br) j l

Figure 209. PAR gas velocity in PAR-demo 3. 1 l 100 .

90 i oQ 80 i . ,,

~ ~ ~ " - -

y; w = =.-- > - - - - - -

$ 70 5 H2 5 60 j N2 h 50 j O2 3 40 j e GGS g i a GGS g 30 i A GGS 0 20 kW :------ w w ^:--..-= w. .:+> p - :vs 10 1::

j .=.--- _

0-- ... ......... .... . r.. ....i. n .i....r r

  • r 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 210. Gas concentrations (dry-basis) in PAR-demo 3.

l 159 NUREG/CR-6580 1

100 _

90 i g 80 2

.m 70:: iN_ -

C H2

- 60 ;i e N2

.9

- 50 :: o Ec 40 i -- Steam O

30 i o 20 j% -#3 g m u , - . _ g. w , m y .m.: .

10 -

i

~

o .f, , . . .,...... ..,.......

\ s. T-

,,,.......,g ..rp ,,,-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (hr)

Figure 211. Gas concentrations (wet-basis)in PAR-demo 3.

1500 8_ '

600r -

, 7i  ;

inlet outlet je

$6' 5 k dome _ jogo @

~

5, 5 ; _._..H 2 adds .

c  : 3 e 4i $ g ._._._.__._ _._._._._._._: g e  : .r . _ _

a '

I jc 3j -

/

.j 9

- 500 m

0 l ' b -

14 ,j

j, 0- .... .........,,,,,,......... .... ......... 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 212. H2cencentrations (wet-basis)in PAR-demo 3.

NUREG/CR-6580 160

. _ - - = _ - .. . . - . . _ - - -

25 3000 - 1000

_ 900 J.> - -

^

E 15 .~

) NbhhMM H%

2

- 2500 -!800-

- 700 E e .

V &

., 3 .

O, %

- 1500 E F 600 E 2

S jo _ _ _. H, adds <a ~

d c ' 500 8  : Temp - 1000 2 -

g ,

_ _ . _ _. '400

- 300 0'...,....,,,,,,....,,,,,,,,,,,,,',,,...,,..',, 0 '200 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 213. Catalyst temperature compared to gas additions and concentrations in PAR-demo 3.

25 _ 3000 - 180

' 160 2.'[.[,,jf,hh h -

2 E -

AT - 2000 g g 15 -

~

~

c , H% E S  :

0%

2 _

- 1500 E ' 80 $e g ~

2 <

g l -. . H, adds - 1000 E" 8

.l_.._._.__._.__._._._ . _ . . _: 5 [4 o 5- - 500 $ _ 20

}

0. }

,, ,,. . .........i. ,i.. .,,..,,, ,,, ., 0 -20 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Time (br)

Figure 214. PAR AT temperature compared to gas additions and concentrations in PAR <lemo3.

161 NUREG/CR-6580

425

A1(bot)

A2 400 ' A3 A4 E 375 ; A5 2  :

A6 (n/a) h350 A7 E  : A8 5 325 -- A9 F _

A10 (top) 300 b;.,i"'. average 275 ....i.... ....i....i....

0 1 2 3 4 5 6 Time (hr)

Figure 215. Surtsey vessel centerline gas temperatures from TC array A in PAR-14.

! 295 81(bot) l -

B2 B3 l

_ 290.'- ' - -- B4 E ' B5 2 -

B6 h285. o. B, g g'I, . . . . _ _ _ . .

B8 E  : 'a.

d 89

$ 280 B10 (top) mix fans average 275 .... .... .... ....i... .....

0 1 2 3 4 5 6 Time (br)

Figure 216. Surtsey vessel wall gas temperatures from TC array B in PAR-14.

NUREG/CR-6580 162

i i

l l 900 midcari ,

--- midcar2 I l 800i midcar3 l midcar1 bu

@ 700 2 1

__. midcar2 bu E - I midcar3 bu j 600i edgcari ,

& 1 edgcar2 g 500 }i [ edgcar3 l H -

corcar1 l 400i -

/

3. ,

._._.. corcar2 l e' ::rd corcar3 l 300 - -- \

mid average j 0 1 2 3 4 5 6 Time (hr) l Figure 217. Catalyst cartridge temperatures in PAR-14.

1 900

midgapt

- - - midgap2 800 : midgap3 i

midgap1 bu 2 700 2 1 g

! -- midgap2 bu l

-; midgap3 bu

~BE 600 :

(n g- edggapi

~

- -- edggap2 g 500 i: edggap3 H  : corgap1 400 - -- wrgap2

/

300 2

2. 3p% rgap3 mid average 0 1 2 3 4 5 6 Time (br) i Figure 218. Catalyst gap temperatures in PAR-14.

i i

163 NUREG/CR-6580

.. ... . . . ~ _ . - . . . .-_ .- _.

500

-- 500 4

in mid _

in mid out mid - 400 ^E

$ 400 -

ut mid

- H2 adds - 300 g 2 .

g a .

1 -

.ts 2 .

R - - 200 E N

f 300 - j  % _

- - 100 E 200 - -0 0 1 2 3 4 5 6 Time (hr)

Figure 219. Inlet and outlet temperatures in PAR-14.

0.3  ; 1.0

[0.9 E- 0.8 e

~~

l g

0.7 $m i o. 0.2 - -0.6 g 3 .

RH

, m -

X,1,,, _

m y 0.1 ] o l

p,, _

I l' -

P.,,, .

It 0.0 5.... .,,,,.... 0.0

( ....i.. .... ,

0 1 2 3 4 5 6 Time (hr)

Figure 220. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-14.

NUREG/CR-6580 164

. - . . _ _ . .. . . . _ ~ . =- . - - - . _ - - . - . - _ . _ - . - . - - _ _ . . . . . _ - . . - .

4 500

inlet (pitot)  :
outlet (pitot)  : -

l g 3_ -

outlet (hot wire)

- 400 Eq l 1  : - -.. H adds2

! - - u l 3 2- _- 300 :$

I a  :

[ l  : e l 0 1 2 3 4 5 6 i Time (hr)

Figure 221. PAR gas velocity in PAR-14.

100 . ,

90 i ~-

80 i .

1-T 1

d. i-m 70 i H2 T T p g 60 1 r

~

S 50 3 N2 rr o 40 -

E 30 1 02' 1 F

20 i f r -

1 t y 1

M) j 10 (/ e g  : a GGS GGS k  :

8 2; A GGS ~

c -

b 1- .

,7 - ,e ,r 0 ..........i....i....i....i-

O 1 2 3 4 5 6 Time (hr) l Figure 222. Gas concentrations (dry-basis)in PAR-14.

i l

165 NUREG/CR-6580

100 .

90 -

g 80 2

$ 70 4 H2 E

-c 60 ;E N*

.lii 50 ;i O2

.6 40 2 C E Stearii I 8 30 ;:

C

> g= - '=- =w=  : -

0 20 - n l

10 - r j .

0 Tr . g . . ' . . i . . . . i . . . . i ' . . . . '. . .

0 1 2 3 4 5 6 Time (hr)

Figure 223. Gas concentrations (wet-basis) in PAR-14.

2.5 ._._._._._._._._._.__._._._._. _

/ fl r

/ _

g (o

^ 2.0 - -

/

/M k

--- inlet outlet

.9 E

5 1 .5 2 / dome - 200 g

.g  : -- - H adds 2

-8 p

8 u . - .s ,,. ,_.. a a

<n e 1.0 -

e -

g c

r ry. 7-r; .. 100 5.5 O - O p

o 0.5 - -

0.0 ....i......... .... 0

....i....

0 1 2 3 4 5 6 Time (hr)

Figure 224. H2 concentrations (wet-basis)in PAR-14.

NUREG/CR-6580 166

25 1000 - 800

( 20 -

j H%

2 Y ',((l% h l$, p hM k g - 600 y c 15 , O, % i &

3 ' - H 2adds - 500 - 500

$2 e  :

P 3

- 400 i 3

1 , 1 7 ~, 7 300 0 0~ .. ..

... .. ... , ... .... 0 - 200 0 1 2 3 4 5 6 Time (hr)

Figure 225. Catalyst temperature compared to gas additions and concentrations in PAR-14.

25 _

1000 - 180

- 160 f20 h l$ ih M k i140 k H, % & -10 g

/ ,' O, % $

- 500

$1l/_._..Hadd g 2 < - 80 g 2-' '

- - - - ---- - - - - - - - - - - -- g y 60 1- ' -~~ ' '~ -

- 20 0~ i .i .i ..i ..

i.... O LO O 1 2 3 4 5 6 Time (br)

Figure 226. PAR AT temperature compared to gas additions and concentrations in PAR-14.

167 NUREG/CR-6580

350 A1(bot)

A2

- - A3 E 325 - A4 l -

A5 A6(n/a) 3 '

& A7 A8 5 300 -

A 0 (top) average

, l 275 ....i.... .... .... .... .... .... ...,,...,,....

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 227. Surtsey vessel centerline gas temperatures from TC array A in PAR-15. ,

1 l l i

l 295

,- B1(bot)

- B2 B3

_ 290.' -- B4 E -

f j ,i , . . , -

l E 285 - -

B7

~

N E  : B8 l 280 - B10 (top) mix fans

average 275 .... .... ...................,,.. ,,,,,,,,,,,....

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

I Figure 228. Surtsey vessel wall gas  !

temperatures from TC array B in PAR-15.

NUREG/CR-6580 168

i 500 .

midcari

- - - midcar2 midcar3 g fg midcar1 bu

,. _._. midcar2 bu

,! 400 - '

/y \ midcar3 bu 8 -

edgcar1 s'

, \ edgcar2 h edgcar3 y -

- s corcari 300 - -

-- corcar2 corcar3 mid average

,,,,,,,,,i...,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 1 2 3 4 5 6 7 8 9 10 Time (hr) ,

Figure 229. Catalyst cartridge temperatures in PAR-15. l l

l 500 .

midgapi

- - - midgap2

~

midgap3 g

~

midgap1 bu

/\ --- midgap2 bu

/

~

7g 400 - midgap3 bu f ,\

edggapi i .. l g

--- edggap2 o.

  • . '\N 5 -

edggap3

  • w._~ corgap1

~ - - - corgap2 300 - ~ . .

corgap3 mid average  ;

O 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 230. Catalyst gap temperatures in PAR-15.

169 NUREG/CR-6580

l 400 500 in mid .

l .

in mid

.. out mid - 400 g i

l @ - out mid -

e .

- - . H 2adds - 300= [

2 *- -

9 2 300 - -

h

- 200 [

$ ^

f

- - 100 E 200 - ,,r -0 0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 231. Inlet and outlet temperatures in PAR-15.

0.3 1.0

~

~ 0.9

- t0.8 e

~

k 0.7 $

h 0.6 [

T -

/ 0.5 E Ei X RH / 0.1 8g g _

2 0.1- X,1,,, g

~

P,,, _

{

P,,,, .

0.0 ... f...i... 3.... ....i.... ....i.... .... .... 0.0 0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 232. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-15.

NUREG/CR-6580 170

. l

0 inlet (pitot)  :

outlet (pitot)  : -

3-- - 400 p -

outlet (hot wire) o,

)

- - H 2adds  : E

_ m 3 2-: - 300 2 c  : e S -

c O

> 1-

- 200 0 m  :  : a 0 1 100 ~

z  :

: 1

-0 l 0 1 2 3 4 5 6 7 8 9 10 l l

Time (br)

Figure 233. PAR gas velocity in PAR-15.

100 . _

80 4:-: -:-: : -:-

@o 60 I: N2 b

40 4 o

E  : O2  :

20 ip - - -. ' t- - -
- - -- - -s v -

S 3 'e 'e e GGS 5 d a GGS  :

A GGS

! 2d gg l 1

A

i a  :

0 +...i....i.... ....i.... ....i.... .... ....i....

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 234. Gas concentrations (dry-basis) in PAR-15.

171 NUREG/CR-6580

100 90 i 7 80 i- _

$ 70 ' H2 E 60 ;

e  : N2 em 50  : : O2 b

c 40 - ! Steam h 30 i 8 20 f.kww:t;.m=w w;;;,;.=u ';::

10 4 0EW r m trnrr i ...i.... ....i.... m i....

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 235. Gas concentrations (wet-basis) in PAR-15.

2.5 j_ . . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . - 300

. j g 2.0 -~ f floor y

3 .

3 inlet E - 200 E u

-e 1.5 i outlet _

e V

.9 dome -

m 3

p1 _._.- H2adds  ; <,

.g c 3,o _-- / z 8 # h

- 100 a c -

J .

0 0.5 -' . ,,

%~es--

0 0.0 .............. .... .... .... .... .... .... ....

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 236. H2 concentrations (wet-basis)in PAR-15.

1 NUREG/CR-6580 172

l i

25 ,

1000 - 800 l f20 h l  ;

1

@ H, % I

& - 600 j c 15 e O, % 3 g i

f3 y2: -

/\

--- H, adds Temp

- 500 - 500 f - 400 E 1-' / F - 300 0

) 0 '.... ....,.... . .. .... ....,...'.,,','..,......... 0 - 200 0 1 2 3 4 5 6 7 8 9 10 4

Time (br)

Figure 237. Catalyst temperature compared to gas l additions and concentrations in PAR-15.

1 i

25 _ 1000 - 180 160 llhh

~

140 f 20 -

@  : AT I g - 120 g

~

c

~

2

] - 100 3 153 'e x/ O% - 500 v

" g 2

< - 80

~

tr c --- H 2adds f l 2- g - - - - - - - - - - - - . - - - - - - -.

3

- 60

- 40 i

6 j , .

g i

- 20 0 .... . .. .. . .. . . . .. . . .... .. .. ... . 0 -0 0 1 2 3 4 5 6 7 8 9 10 Time (br)

Figure 238. PAR AT temperature compared to gas additions and concentrations in PAR-15.

173 NUREG/CR-6580

o-350 .

349j A1(bot)

M l

330 i A3 6 i .

A4 2 320 1 A5

a. A6 (n/a) h3104: (M A7 g <-

E 300 i A8

$ l

^9 i = A10 (top) 290 i /.

280 ~ average  ;

270~....,....,....,....,........,........s....s,...

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 239. Surtsey vessel centerline gas temperatures from TC array A in PAR-16.

310 -

B1(bot)

B2 B3 300 - __

g o - . 89 280 - -

B10 (top) mix fans y.. average 270 ....i.... .... .... .... .... .... ... .... ....

0 1 2 3 4 5 6 7 8 9 10 Time (br)

Figure 240. Surtsey vessel wall gas temperatures from TC array B in PAR-16.

NUREG/CR-6580 174 t

, 600 midcari

t midcar2 550j midcar3

', midcar1 bu g 500 : N -- midcar2 bu midcar3 bu l $ 450 -: s k 3

8.400i E

. f h

\q\

\s.

edgcar1 edgcar2 edgcar3

.V,/V x l 0 350 i .

N , A'%

corcari

- -- corcar2

~'

300i l corcar3 -

mid average 250:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 241. Catalyst cartridge temperatures in PAR-16.

600 midgap1

-- midgap2 550]i S, .

midgap3 midgap1 bu

^

M. 500 ;: '

-- midgap2 bu midgap3 bu

$450 5: ,' edggapi lii l'.

k400 5 f A s

- - edggap2 edggap3 r s . ,,f a E  :

$ 3502 - - '

corgap1

- ~.

_.__.. corgap2 300t ,

corgap3

" ' mid average 250',,,,,....,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 1 2 3 4 5 6 7 8 9 10

Time (br) l 1

Figure 242. Catalyst gap temperatures in PAR-16.

175 NUREG/CR-6580

1200 500

- in mid .

in mid - 1000 out mid . E

~ .9-out mid 2 400 -

.. H2 add

- 800 g e

j

- - O 2add - 600 5 8

E - 400 j e 300 - -

l-- 1

_o

~

, i - 200

p. 0 200 ....i....i....i.

. .... ....i....i....i....

0 1 2 3 4 5 6 7 8 9 10 Time (br)

Figure 243. Inlet and outlet temperatures in PAR-16.

0.3 __

~

- j [0.8 g

? 0.7 %

g

o. 0.2 -

] E- 0.6 u.

E 2 -

/ /0.5 E l . Xgg , o,1 g g

~

X,,,,, @

g 0.1 -- P at I

pvessel . m 0.0 ....s....;....s....s....,.. .s....;....;....s..

0.0 0 1 2 3 4 5 6 7 8 9 10 Time (hr)

Figure 244. Saturation pressure, vessel pressure, relative humidity, and steam fraction in PAR-16.

NUREG/CR-6580 176

. .. - . . - _ . . -. -- . . . . - .= _ .

l l 4 2000

'  : inlet (pitot)

~

outlet (pitot) g 3 -[ outlet (hot wire)

- 1500 -

p

-- H 2add 3

u 3 2- - -. O 2 add ,

3 co _

2

! e ll - 1000 Eo

> 1-l l. -

o 0-N I d jl 500 I

l

L  : l

-1 ,,,,,,,,,,,,,,,....,,, ,,c...

ll

....,....,,,,,,,,,, 0 0 1 2 3 4 5 6 7 8 9 10 Time (hr) l Figure 245. PAR gas velocity in PAR-16.

l l

l l

l l

l l l

100 t

1 13

o r" V, I -
  • 95 - -

t i

_m o

.a -

l 5  : H2  :

l o 90 / N /

l

% 5/ j O2 /

t 4 E

$l 0 1il_  %

j A

"%[ Ni

'. . . ; i . . . . i . . . . . . . . . . . . i . . . . i . . . . . . . . . . . . i . . . .

! 0 1 2 3 4 5 6 7 8 9 10 l

Time (br)

Figure 246. Gas concentrations (dry-basis) in PAR-16.

4 177 NUREG/CR-6580 l

I

100

T

(

~

95 -~ H2 o

e .

N2 8 90 /

O2 /

f 5/ /

Steam c 4j '

! 3 8

0 O

2:.

.- N '4 14: .;.., p#4-0- r. . . . . . . i . . ~. rrrmT . . . . i . . . i . . . . i . . . . i . . . . i . . .

2 3 4 5 6 7 8 9 10 0 1 Time (hr)

Figure 247. Gas concentrations (wet-basis) in PAR-16.

" 1000 5 - noor inlet f $

g4 outlet _.800 j

s - dome

--.. H 2 add

- E N L - 600 Em g  : - .-. O 2add -

y  : p _ _ _ . . _ . . _ _ . . _ _ _ . . _  : o"

$2- N ~,

- 400 m

C

/. . .) a,

~

E

- 200 U1 2 -- --

..j

~ ~

F
_ ._ r s '%:

0 0 .............. .............. .... ...,i.........

0 1 2 3 4 5 6 7 8 9 10 Time (br)

Figure 248. H2 concentrations (wet-basis)in PAR-16.

NUREG/CR-6580 178

d F

5 1000 floor

~

{ . 7 m

inlet O

$,4- outlet  ? - 800 E

.S dd g  : dome j- - 1 , .

j

- 3- - - . H2 add j - 600 5 c -

,fi i

n .

3  : _..-. O2 add rl. ' -

g r L. -

O" y2-  ! -400 u g  : .f - J 8 c

j l \

g n

._.-._._.-._.]

- 200 5 aO

1

_ H 0 ,,,,,,...,,,,,,.... .... ....,,,,,,,,,,,,,,,,,,,, 0 0 1 2 3 4 5 6 7 8 9 10 )

Time (hr)

Figure 249. O2concentrations (wet-basis) in PAR-16.

I 179 NUREG/CR-6580

t i

5 1000 - 600 4

H%2

^

0%2 h .

g g

~4~ .g - 500 's Temp ~ ~~^-'-~~~ '

E j

-.-.. H aadd ( g

~

3- 0 2add \

/ 'I T c - -

S i J .a - 500 E - 400 E IJN 5

~~~ ~~"

W-

.g c 2.

ux

' i z g

_ 1/IM  :

, 8 o1- .9

~

M-

' 7'

/

f-

{

p

- 300 3 j

j _

_1 .

i

. . _ . . .i

.y 3 . ....

...ig.. ...g...E T f .T .U .I T . F T . . gE 0 1 2 3 4 5 6 7 8 9 10 i l

Time (br)

Figure 250. Catalyst temperature compared to gas t

additions and concentrations in PAR-16.

I 1

l l

l 1000 - 180 .

5' AT -

- 160 H, % n n

  • 4- O%

~

jj - 140 2 2 o -

j.

g r i120 g

_ _.. H, add

@e 3] _ .._. O2 add  % l I 3 - 100 e<

8

^

o d '

- 500 8

< - 80 g fjs g c -

_ / I - 60 U-c ' % '/

/ 'iB

- 40 d1- p------ ._/ h

.-> - 20

.m ,e . . - . . o 0 . ........ ......... .... ... .. . ....

. ... 0 -0 0 1 2 3 4 5 6 7 8 9 10 Time (br)

Figure 251. PAR AT temperature compared to gas additions and concentrations in PAR-16.

NUREG/CR-6580 180

70 i e

  • PAR-4 60 ~  % .

= PAR-5

A*

g .

PAR-6

$ 50 2. *

. ,! fit o  :

2 40 ; . <

c  : .

  • O Y

8' 30 2 ~

b -

% e I 20 2) * '

i ..= .

10 -i j* .,=

O ~T...,....,....,....,....,....

0 1 2 3 4 5 6 Time (br)

Figure 252. Hydrogen moles in Surtsey during tests with low hydrogen concentration.

0.5 g  :

_ PAR-4 (1/2 scale)  ;

l E o'4 : . -.?b.B.5.U..@_sca)_Q" ! __ L__ . , _ ,

j  :

. PAR-6 (1/8 scale)  ;

~

. ,4 5 -

fit .

c 0.3 - -

+- "*; *- +

.g  : ,

0 -

+ +- + + f

$.2 !

? 0.1 -

4 f- , .*

  • "- c'4-b'*.. //

.."v g .

1 0.0 2 -

,i....i....i.... ....i...

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Hydrogen Concentration (mole %)

Figure 253. Hydrogen depletion rates at low hydrogen concentrations.

181 NUREG/CR-6580

600 d

'

  • PAR-13

= PAR-13R 500 -f l

  • PAR-12
  • :
  • PAR-8R

{ 400 -- ,

2  : A g .

St E 300 2 l W .

e i i T.,6*

R200j i . .

2 100 - p 0

ii .. ..............i.........

0 1 2 3 4 5 6 Time (br)

Figure 254. Hydrogen moles in Surtsey during tests with high hydrogen concentrations.

2.5

  • PAR-13 "I  !#/ ,

[

$ 2.0 - -

--+--

..j

-f g  :

  • -PAR-12 y - PAR-8R ~

fit - 4- g- ,-

g 1.5 -

i  : .

i-O 1.0 -

+ ='- i-O  : .

' '" i E  : ~.

'i y0.5-

~

I .

0.0 -

0 1 2 3 4 5 6 Hydrogen Concentration (mole %)

Figure 255. Hydrogen depletion rates at high hydrogen concentrations.

NUREG/CR-6580 182

14 l

O E 13 2 2 bar,373 K,45/45/10 steam / air /H i

---+--- --- i---+--+- J-- - - -

xa 12 _ . ~~-- - z.-

t 11 .

-+- + .-

~, 10 - - - -- -- a- a-

$ gJ ., . 4. scale,..volurnejn.! , ,.

8 8 -[

Fhil; 1 00 -!- "+" -i" -

jjj 7- - '

"1I2,"1000" "!" -i" "! " '

O. 6- .

"1 2,"100" "!"

"I" "!" "f"

$ 5- - -

~ 1- -t- t-  : -r-t- -t-g 4 . , 4 ..j.. ..i.. . . q .. ,

. . {. .

82 3-e 2-I>,1- -

. i 0 .... ....i......... .... .... .... .... .... ....

0 1 2 3 4 5 6 7 8 9 10 Hydrogen Concentration (mole %)

Figure 256. Predictions of hydrogen depletion rates versus hydrogen concentrations.

l 1

1 40  :

E AT = T6 - T5 ,

30 " -~~-------,---

~~ ~~~---" - - - - - - ~ ~ - - - 1 g PAR-13R 1/2 scale,6% H,- AT = T5 - T4  !

- 20 ig - -

gy _ yg ;73-  ;

8 c 1 0 -i N e 1

8 g

0 : ? " ~-' -

g 20 i -

" PAR-12,1/4 scale ~,-5%-H~

g 10 [

l l 2 0S: " " * " "

2 l g 10 t _ PAR-8R; 1/8 scale; 6% Hy- ,

E C1 ~h w = - '

e o :: -

H 10 i __ PAR-4,1/2 scale,1% H,

i. 0 . . .

i . . . .

0 1 2 3 I

Time (br)

Figure 257. Temperature difference between successive array B thermocouples.

183 NUREG/CR-6580 l

I  !

l

1.5 . , .

,-e ei PAR-4 (1/2 scale k2) p -

=l PAR-5 (1/4 scale k4) 7 PAR-6 (1/8 s'cale k8) ,

lii . 5.. ..Eischer!2. bat. air / steam. . .; . . ..t.

$j'o_

.  ; Fischerji bat air 4

.9 -

y .*

a

$ 0 .5 -

- ,- -r-

.i

!-4.*

-I- d-

/  :

E -

  • 4j.l4**i g> .

e.

r - _.., -

0.0 .... r .. .... ....i.... ....i....i.... ....i....

0.0 0.1 0.20.30.4 0.50.6 0.7 0.8 0.9 1.0 Hydrogen Concentration (mole %)

Figure 258. Normalized hydrogen depletion rates at low hydrogen concentrations.

10 . PAR-13l(1/2 scale x2) j e -

g 9- "*" PAR;13.R (1/2 scalex2)"

6 8- *- PAR-12i(1/4 scale x4)i -- - -

$7 ~ . L .. PAR-Un.(.1/8.

a: -

scale.xB)l.

Fischer 2 bar air /steanj ,,

f.'

1 8

6 T "Fis6hsfii"bsi" sir" "j ??"' "d'*F a

% 5- -

+ -+ +- - -

t 4-

.~s'*>**l6- - - Q-

  • w

-t-

-r-

. y- -t-c e 3--

-t-i' - - - -

F 2 -- -

+-

R 1_ .

_;_ _+_

I -

0- ',...i....i....i....i....

0 1 2 3 4 5 6 7 Hydrogen Concentration (mole %)

Figure 259. Normalized hydrogen depletion rates at high hydrogen concentrations.

NUREG/CR-6580 184

i l

l 8

e i e PAR-8R ,

87 6

s A

FIAR-demo 3- +- --

PAR-14 y 6 -i 7 p;g ;

+ +

3-K 5+ .+ ~ . RAR,16..+. .a . .. +

y4i

.6 -

Fischer 2lbar Fischerthar"

l e "t'

i "1"

?

a3i c  :

e 3-i r-2j- - 1 -

j.-

Q1k:

I si w- .

l e  ; .

02 .

~

O 1 2 3 4 5 6 Hydrogen Concentration (mole %)

Figure 260. Normalized well-mixed hydrogen depletion rates at high hydrogen concentrations.

1 3 "

e .

  • PAR-8R a PAR-demo 3 Q -

A 6 PAR-14 I R -

v PAR-15 e

$2- - + PAR-16 "?" "u" s'" '

8  : Fischer 2lbar T . Fischer 1 bar 5.

j_ . .. .T. .. .;. .. . . . . . . .

c -

a p -

v g '

e -

x -

0- l 0 1 2 3 Hydrogen Concentration (mole %)

Figure 261. Normalized well-mixed hydrogen depletion l rates at low hydrogen concentrations.

1 i

185 NUREG/CR-6580

800 ~

  • PAR-2

~

v = PAR 4 700i ,

  • PAR-5 v v PAR-6

~

  • PAR-7 2 600 2 .

a o e PAR-8R j  :

a PAR-9 5  :

g500 7 o PAR-12

"#g , #

  • PAR-13
  • PAR-13R 400 -' .

+ PAR-demo 3 e PAR-14 300 -

  • PAR-15 2 3 4 = PAR-16 0 1 6 / Yo Hydrogen Concentration (mole %)

Figure 262. Cartridge temperature versus hydrogen concentration.

200

"

  • PAR-2

,

  • PAR-4

, B

  • PAR-5

@ 150; -

8

, ,o v PAR-6 e .

.o o n + PAR-7 v

  • PAR 8R 100 - "Jb
  • PAR-9 g -

o#

E e, hg" ,

o PAR-12 PAR-13 50 - , ,, v PAR-13R v

',, '4'M " + PAR-demo 3

  • PAR-14 0- 1 ...,....i....i....i....
  • PAR-15 3 4 5 = PAR-16 0 1 2 Hydrogen Concentration (mole %)

Figure 263. PAR AT versus hydrogen concentration.

NUREG/CR-6580 186

. . . - - ~ - . . - - - - . - . - - - . - . - - . - - . . . . . . - . . . . - . - . . -

1 1

, 550 -- -

i 4 -

3 .7 % O2 500; p j  : a I

x

- 4502

.f+ 1.7%0 4 2 E 400 -

J PAR-8R l' 8.  : , p1.3%o2

E
  • PAR-demo 3
y 350 ' , , ee0.9%o2 A PAR-M 4
we 0.7 % O2 v PAR-15 300 gos%o + PAR-16 g

96 / %

1.s % 0 j 250 . ..,2 . . . . , . . . ,

O I 2 3 4 Hydrogen Concentration (mole %)

Figure 264. Cartridge temperature versus hydrogen concentration in PAR-16.

l 150

  • PAR-8R 3.7 % 02 +*

- = PAR-demo 3 .

A PAR-14 g , ,

g -

v PAR-15 ,+ , ,

{100 + PAR-16 e* , = y+ 1.7%o 2

a . 34 / %

8 -

e m #1.3%o2

8. _ v A b 50 - 0.9 % 02
& - e 1.6 % o' 40+ 0.7 % o2

} g0.5 % O2 0 . . . . , , . A  %. 2 . . , . . .,

0 1 2 3 4 i

l Hydrogen Concentration (mole %)

] Figure 265. PAR AT versus hydrogen concentration in PAR-16.

4 187 NUREG/CR-6580 i

70 -

"

  • PAR-6, center location i

a PAR-9, wall location 60 i , =

St

_g 50 ~ =, ,

o -

2 40 -s=  : .

g ,

E 30 2 M 8**

$ 5'L 1 20 .- ~ . *

  • = =.

10 j 0-N...,.... ....,....,....,....

0 1 2 3 4 5 6 Time (hr)

Figure 266. Hydrogen moles in Surtsey during tests for the wall effect.

0.10

  • ~PA8-6,..ceMdr_locadon _

$cn 0.09 I -

= PAR-9, wall l'ocation 6 0.08 - -

Eti'

. "" i e -

lii 0.07 - -

- r" -

=

x -

c 0.06 -

  • - = i-

=- "I~

$ 0.05 - -

~ i~ +*.~

A 0.04 i-

~

3*~

o g 0.03 -

+ r= * --

E 0.02 - - -

~ w-N 0.01 , - +-

I 0.00 -

0.0 0.2 0.4 0.6 0.8 1.0 Hydrogen Concentration (mole %)

Figure 267. Hydrogen depletion rate comparison for the wall effect.

NUREG/CR-6580 188

4 800 _ -

,*

  • PAR-7 700j .

= PAR-8R 600 2 4'8 fit E i e' l 3 500 -:

2 *

! E 400 2 i s .*

[300-o a p  :

200 i

e 100 4 l 0 ...i....i....i....i....i....'  ;

O 1 2 3 4 5 6 Time (hr)

Figure 268. Hydrogen moles in Surtsey during tests for the oxygen limit effect.

1 1.0 . .

e E . ! PAR-I(O g4 5%) '

h

- 0.8U"T_ . 1 PAR-8 Rid)>rg1dh

'i fit 2 Tu 0.7 -

.w ce  : - -

c 0.6 :

o t- .t-:

-+-

% 0.5 + i- +- i e-  !- i- +

Q,4 .

. . }. . . . . . .

.. q. . . .; .. .. j.. . .}. .

O '

0.35: +-

c

i. - +- + '

+- +

@ 0.2 2 i- --

+- - -+-

b

> 0.1 =i - .- ,.-- .

1  : .

O.0 -.i....i.... ....i....i.... .... ....

0 1 2 3 4 5 6 7 8 Hydrogen Concentration (mole %)

Figure 269. Hydrogen depletion rate comparison for oxygen limit effect.

189 NUREG/CR-6580

5 ''''''''''''''!'''''''''''''''''''''''''''''500

-  :  :  ! H2 mole % -

mid fans off [

R '

2 .

"-h 0 mol@. 2 1

- 400 -

2

@4 - a-- J'H2sdds!

E '

$3 2 .

$ 2.5dds! ,

[300 g  :  : reg ( fit . l

.  : j g .

s. .

.e E2 7 A 4 + ' + <

r 200 5

$ D d ,{ .

G I5 o  : l 0 m 1- +- - -

+- -

l100 0

0 b e' M m, . . , . . . . i . . ntr i m . .

j ....i.... ....i.........

0 0 1 2 3 4 5 6 7 8 9 10 11 Time (hr)

Figure 270. Hydrogen and oxygen concentration during PAR-16.

l 5 Oxygen mole %

rnix fans off e A 0.25

[ [

B 0.45 j? -

(G only)-- m 4- - --

7 e 7.-

-7 A C 0.66 j j v D 0.94 e 3- -

+- 4 -

.+- + E 1.34 j  :

  • F 1.74 E -
  • G 1.61-3.70 g2- -

.v v -

g  :  ; e Fischer 2 bar 81- -

+/ . . i. .

Fischer i bar g

~

,g Battelle 2 bar I Battelle 1 bar 0 . . , , ', , , =. , , , , , , , ,,,,, ,,

0 1 2 3 4 5 Hydrogen Concentration (mole %)

Figure 271. Normalized hydrogen depletion rates as a function of hydrogen and oxygen concentration in PAR-16.

NUREG/CR-6580 190

l l

l l 700 C 600 2

.fE 5 500 5 l 2 i l

l400~:

s t 300 i: i k

s A ,

l @ 200 - f. " ji 2

$ 100 i f 0 ~.;...i..............,....,.... ....

0 1 2 3 4 5 6 7 Time (hr)

Figure 272. PAR-2 volumetric flowrate versus time.

2.0

PAR inlet ,

. GGS l 8

a 1.5 _

_e E  :

C -

e 1.0 - .

e y -

8  :

8 0.5 - #

o -

0.0 .... .... .... ....

....i....i....

0 1 2 3 4 5 6 7 l

Time (hr)

Figure 273. PAR-2 hydrogen concentration (dry-basis).

191 NUREG/CR-6580

(-

e 700 _

E  :

"E v

600i - o f5004: 8 o g oo g- 400 i o l o  :

E 300 2 l

$ 200 i o

> - o PAR-2 hot-wire data

]100j Fischer equation for prototype ti  :) (x 1/2 for scale)

< 0~S.... ....i.... .... .... ....

0.0 0.5 1.0 1.5 2.0 2.5 3.0 l Hydrogen Concentration (mole %)

Figure 274. PAR-2 flowrate versus concentration.

i l

'O o PAR-2 hot-wire data (velocity method)

/[

,e i

6 -

PAR-4 data fit

$ .5 -- (dM/dt method) f a g - <

c

.g

- / /,/ o 5O- 10 T o /'/

o',

8 -

o C ~

$ 0 .5 -

E ic  : o

- o 0.0 0. . . i . . . .

i . . . . i . . . .

0.0 0.5 1.0 1.5 .2.0 l Hydrogen Concentration (mole %)

l Figure 275. Hydrogen depletion rate by two methods.

NUREG/CR-6580 192

NRjeoan sas u.s.NuctE AR cE:utATraY eoumissioN

i. g y E EE BIBLIOGRAPHIC DATA SHEET

~ "

isne,wr=ria . aran,..-=>

NUREG/CR-6580 2.TnEE AmosusmLE SAND 97-2632 Performance Testing of Passive Autocatalytic Recombiners 3. DATE REPORT PuBolSHED

.*=, w u m.

l June 1998

4. FIN OR GRANT NUMBER L2443
5. AuTHORIS)
6. TYPE OF REPORT Technical T. K. Blanchat/SNL A. Malliakos/NRC L PERioo covEREo u-a o. ,

s.PE3RggNuATioN - NAuE Amo AooREss u,nac-o. ou-,a u.a . , c ,=u, ..

Sandia National Laboratories

-Albuquerque, NM 87185

e. sPoNsoRgRGANIZATiON - NAuE AND ADORESs of Anc. erae "seau as ea e . #, traw.p, war hac o.4.e Otta , me e ut mecha Repuscorr cea.mem Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001
10. SUPPLEMENTARY NOTES A. Malliakos, NRC Project Manager
11. AssTRACT isso ,ws er het Performance tests of a scaled passive autocatalytic recombiner (PAR) were performed in the Surtsey test vessel at Sandia National Laboratories. The test program included experiments to: 1) define the startup characteristics of PARS,2) confinn a hydrogen depletion rate curve of PARS,3) define the PAR performance in the presence of steam,4) evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations,5) define the PAR performance with and without the hydrophobic coat,6) determine if the PAR could ignite hydrogen mixtures,7) define the PAR performance in well-mixed conditions, and 8) define the PAR performance in a low oxygen environment. The tests determined that the PAR startup delay times decrease with increasing hydrogen concentrations in steamy environments. Measured depletion rate data were obtained and compared with previous work. Depletion rate appears to be proportional to scale. PAR performance in steamy environments and the lack of hydrophobic coating was investigated. Placement of the PAR near a wall (as opposed to a center location) appeared to have an effect on depletion rates. The PA.R ignited hydrogen at relatively high concentrations (5-10 mole %). Low oxygen concentrations appeared to have an effect on the hydrogen / oxygen recombination rate. The effect of well-mixed conditions during depletion rate measurements were inconclusive.

i 12. KE Y WORDS/DEscR tPT ORS tuse ,wr .,an,.m ease ser muer ,cras,i m sece e rne =,.,,.s is avaitasiuir siaituu T I

' Unlimited Passive autocatalytic recombiner, PAR, hydrogen combustion, combustible gas , _ , , ,,,,,,,,,,,

control, hydrogen depletion, palladium, passive catalytic filter ,,,,,,,,,,

Unclassified line Rep vtl Unclassified

16. NUMBE R of PAGE5
16. PRICE esaC 90AM m (24W

Printed on recycled paper Federal Recycling Program c-__

i I

A 1 i

1 i

t

~l i

.. j i

l

.I

. 1 i

1 j

I d

r 1 1

s 1

1 1

l 4

J

.j 1

I 1

i I

Y l

ISBN 0-16 049654-3 j '-

90000 u  : 9 80160'496547  ;

Y

-. - . . - . . ~.-. . - . , . ..

s. ,

= UNITED STATES , -

SPECIAL STANDARD MAIL POSTAGE AND FEES PAID 6 NUCLEAR REGULATORY CORAINSSION - USNRC

1 h WASHINGTON, DC _20555-0001 - . PERWT NO, G-67 1

OFFICIAL BUSINESS s 1 4

PENALTY FOR PRik%TE USE, $300

, .- - ~

12355g US g,pf',544a s ,

DIV-INF 0 '

14 N 19 ,

P_.p9n ATr ,

~

~

. b WF % g r. f Uo r r: n y' "ANAGE uEnr Wsv97NGray-DC :l

-,0555 R s

S 3

,_ , .F w

?

. [,,.

I' c..

2

. t g, -' -

5 -i_, a' P--

f g A Y T ,s "

'a ,-_%e i

, m .

~ '

W 'l v ,

A'

'..I

,i,_.

e '

= e '* r *. I r> , , ,

A-

.. 5 -

" W 4 'ps. h.+-. -

k e ., 6

^

.y.-

A "-i 4e W

\

F

.- 4 S .- -3 s -,j, -". 3

'i,.a

'.f,

+

4 ,

.' 4 - . ,' '

+

3

g. , _

,: ff'.'- _c.,.- r, ~

T

.. ,,_... , , :. h i u ,

5 ' ,P. - "-

v s

.."3,-

f ,

y

,Q=

  • n ,-3... ,

v .-e- 4-l' ' '

-' y:' .

, _ Q', .- _

.yc s - < -

., , ;q . _ _ . i e

t _

- *

  • gg- <

'  %  ; -g 4 k .' -' i.,d'- 9 + d,, .

7,.

w ., w.

- y . 4 ,. - m

  • y

-.(

y . , , .:

-, '19 3P - - :,;; _ . -

g .j q .,  ; y .;_

\

, ., 3; .

N*_ . , , , ,.s 37 N t f i ~

l't'" uL

  • %il '

~.

[ , 'q' .,,f, j m

? k. ., ,.

dI '

$ .A 'J.-

1 > ^; x  % [?' ( 9 # r , ' " < ., g ,

.v.

~ _ ,: .s .

t 1 - +m

- 1 + . .

4 s - y:

m

'w

+s . g .o

, .7,.

4 s
  • -: m 4

, g,c n _-

J. a ., , '

'p,,,

~ "'

E

[ 3{ *' ~ + .19 b.',s 3 y g _,.t'

. . . ' . _ ' ~/X'- ,

f 3

?b 4 ' ~.) W. - -. .. -['jf R .,-_,_- ,

g

'q..

". 0 * '

, .;u i'-

w , e' v.; - -

m. w. r > - - - ~ , > - .- r e. m , .w y . . 3.,: ,

^

  • e --- -

..ggy

  • 7.,,'_- - - . - c - .n. y. < ,

,. vnv' -e-

,,_F -(. ~ ,---=' , . - ,"

5, ,y 7

  • ? :.,s ' '

s r ;9_ '

+ r r..

u. ,,s
c. ...m_. . x . ,.

.t .

s .4 .

' ' '.-. v*

i m t'Y -~ . ,'(, t .' "-:*

A

._ . . . _ ,,,. y 3 ,

. m y L .A } . . .,. . _ _ _ _ , _ . x_ r ~

, , .