ML20151X872
ML20151X872 | |
Person / Time | |
---|---|
Site: | Peach Bottom |
Issue date: | 06/23/1998 |
From: | PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC |
To: | |
Shared Package | |
ML20151X850 | List: |
References | |
PM-1010, PM-1010-R02, PM-1010-R2, NUDOCS 9809170280 | |
Download: ML20151X872 (45) | |
Text
. . . . - . .- - . . . , . . .. .. .-
l l
i 1
- 1 I
l ENCLOSURE 3 .I l
l Residual Heat Removal (RHR) Pump I NPSH Analysis l
4 4 1
9009170290 900911 PDR ADOCK 05000277 P PDR E 49CAMbbdo
._m., . . . . . _ . . . . _ . m ._ , . . . _ _ . - . , . .
3 Erhibit IE-C-420-1, Rev. 2 .1. calculation No. i M * /010
Effective Date:
CALCULATION COVER SHEET
- 2. LOS O
- 3. Unit (s) 28-3 PECO Nuclear PBAPS JK Doctype 061 14 TTdeoladar V p 6. Safety Related CR/Other No. /- 00 35 0-L 5. Last Page No. fare Y Non-Safety Related D 4.
B. System / Topic No.: N 7.
Description:
AlJU H structure : At /A h it A. ))ves3> z A'ro2.r, t.89 c33, Lc J** 21, 2 L)P *il
' Component: ta3 pots _ 3 Reefs 3 U03% 3 0M3S Record of Revisions
- 12. Assumptions 13. Signatures
- 9. Rev. 11. Vendor Calc. Approver (s) / Date No. 10. Description of Revision Hamber Rev. YES NO Preparer l Reviewer 2l3,> ,c ,
s', - > o > o x 9; g i
1 4
I 1
- 15. Manual [
- 14. Related Calculation No(s). Computer O l '
Provides Info. To: Computer Prusram 5. Version No. :
Receives Info. From: [fM - /Od Pf4 -1004- /118 7 -tf .24
- 17. Total PaSes:
- 16. Provides Info. To: (DS Info. Only)
IJFSAR/ Tech . Spec./etc. : ,
i i
c c
Effective.Date: 9/4/94 Exhibit NE-C-420-3, Rev. 1 Page 1 of 1 PoRc No RAS /kmm I SQR NO 30 9 CALC. # 7d"/O/O REV. 7-
! RESP MGR YES DCD # DATE:
CALCULATION REVIEW CHECKLIST !
MANUAL COMPUTER YES or N/A CALC. CALC.
X X CALCULATION IS THE APPROPRIATE BASIS FOR THE ACTIV7.TY /85 X X CALCULATION ASSUMPTIONS, CONSIDERATIONS, AND VA'S METHODOLOGY CONFORM TO APPLICABLE DESIGN REQUIREMENTS X X SOURCES OF DATA AND FORMULAS WERE REVIEWED AND V/1 VERIFIED TO BE CORRECT AND COMPLETE X X INPUT DATE IS CORRECT AND USED PROPERLY /W Vary X THE ANALYTICAL METHOD USED IN THE CALCULATION HAS '~
BEEN CONSIDERED AND IS PROPER FOR THE INTENDED USE -
X MATHEMATICAL ACCURACY HAS BEEN CHECKED AND IS CORRECT M I
(INDICATE VdTHOD USED)
A) COMPLETE CHECK OF EACH COMPUTATION N/9 l B) SPOT CHECK OF SELECTED COMPUTATIONS M C) PERFORMANCE OF ALTERNATE OR APPROXIMATION 'dM CALCULATION (ATTECHED)
X X CALCULATION RESULTS WERE CHECKED AGAINST APPLICABLE VA DESIGN CRITERIA AND WERE FOUND TO BE IN COMPLIANCE l X X EXISTING CALCULATIONS REQUIRING REVISION AS A RESULT YIf OF THIS CALCULATION HAVE BEEN IDENTIFIED & DOCUMENTED X THE ANALYTICAL METHODS DESCRIBED IN THE COMPUTER NI4 CALCULATION
SUMMARY
IS PROPER FOR THE INTENDED USE X X ALL SYSTEM AND TOPIC NUMBERS ASSOCIATED WITH THE N CALCULATION ARE LISTED X COMPUTATIONAL ACCURACY HAS BEEN CHECKED AND IS //M i CORRECT (INDICATE METHOD USED)
A) CHECK SAMPLE CALCULATION USING DATA OTHER THAN //M THAT USED IN THE SAMPLE B) PERFORMANCE OF ALTERNATE OR APPROXIMATION //M CALCULATION (ATTACHED)
C) DESCRIBE OTHER METHOD USED: ///[9 l
l X PROGRAM USED IS APPROPRIATE, INPUT IS VALID, AND N!A OUTPUT IS REASONABLE CONSIDERING THE INPUT X X BASE CALCULATION HAS BEEN REVIEWED AGAINST CURRENT WT I
l DRAWING REVISIONS AND POSTED DCDS TO IDENTIFY SIGNIFICANT DIFFERENCES I The criteria listed above are the minimum criteria to be considered and are not ,
intended to limit the initiative of the reviewer to consider other criteria. I Attributes applicable to manual and computer calculations are noted by an "X" in the i cppropriate column.
List the documents used to support this review. _ 377- /b,to / /95SherFD i DX / /// (s, WMWM A
REVIEWED BY: DATE: 4//#)/Og 7
l
e s 96-a1183 8/96 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEET PAGE 2 NUCLEAR G'100P '
l
- 1. PURPOSE I OBJECTIVE !
The purpose of this calculation is:
A. to determine the NPSH margin for the RHR pumps and required containment overpressure as a function of time following a DBA LOCA, ( recirc. suction line break) assuming one case with the strainer design basis debris loading and one case with the maximum expected post LOCA debris load, maximum torus water level drawdown, ma dmum high pressure service water temperature and containment sprays activated at t!me =0 seconds.
B. to determine the NPSH margin as a function of time following these other LOCA cases:
l
C. to determine the effect on NPSHA if a LOCA occurs while purging. Some nitrogen and '
steam will be lost before the purge valves close, which will affect the containment l overpressure and therefore NPSH available to the pumps. This is evaluated with the j maximum expected post LOCA strainer debris load.
D. to generate curves for various pool levels, pool ternperatures and overpressure conditions to determine the limits of these parameters for adequate pump NPSH. Four curves will be generated to demonstrate the temperature impact on allowable pump flow rate for various overpressure conditions for 4 torus water levels; 10.5',12.3',14.5' and 20'. All curves assume clean suction strainers.
NOTE: THIS CALCULATION SUPERCEDES THE NPSH AND SUCTION PlPING PRESSURE DROP CALCULATIONS FOR THE UNITS 2 AND 3 RHR PUMP SUCTIONS FROM THE TORUS IN CALCULATIONS 18247-M-006,11187-M-060, ME-363,18247-M 30; AND PARTIALLY SUPERCEDES CALCULATION 11187-M-024 AND 18247-M-001.
Utilization of this calculation by persons without access to the pertinent factors and without proper regard for its purpose could lead to erroneous conclusions. Should it become desirable to use this calculation to support design or station activities other than those explicitly specified in this section, the responsible engineering branch shall be contacted to ensure that the purposes, assumptions, judgements, and limitations are thoroughly understood.
- 2.
SUMMARY
OF RESULTS Part A The Limiting NPSH margin for the DBA LOCA is 3.2 ft, which occurs at the maximum Torus temperature of 205.7'F and a containment pressure of 22.11 psia.
Note: The spreadsheet for the strainer design basis debris loading (1633 ft ) indicates negative NPSH margin at 600 sec. This is an artifact of two assumptions ; 1) the assumption of instantaneous cooling of the drywell atmosphere to equilibrium with the spray temperature as included in Ref.14, and 2) the assumption made in this calculation ofinstantaneous loading of the strainer made in this calculation . This assumption of equilibrium was made because it accurately reflects the behavior of the drywell atmosphere in the long term. In the short term, this assumption artificially depresses the containment pressure. The effects of this assumption are further magnifie4 at 600 sec.,
M3sEEM\ FORMS \CALCSHT. DOC 6/22/9810:48 AM
e 19641433 8/96 CALC. NO. : PM 1010 PECO ENERGY CALCULATION SHEET PAGE: 3 NUCLEAR GROUP REvlSION : 2 because torus cooling is initiated at this time. This causes an artificial instantaneous drop in drywell pressure of 0.9 psi, or 2 ft. A time delay of even 60 seconds in the drywell temperature response results in a positive NPSH margin of 1.4 ft.
Part B Long term NPSH margins were not calculated for the IBA and SBA cases. However, from an inspection of the NPSH margins available in the short term cases, it can be seen that the IBA and SBA cases are bounded by the DBA LOCA case.
Part C Should a LOCA occur while the containment is being purged, the NPSH margin would be reduced from 3.2 ft. To 1.4 ft., which is still acceptable.
Part D Curves developed by this calculation for the EPG's (T-102) are included in pages 26 to 38.
- 3. DESIGN INPUT / CRITERIA Design inputs for this calculation are as follows:
- 1. The torus temperatures and pressures evaluated in Parts A and C are taken from Calculation PM-1013, Rev.0 ( Ref.14 )
- 2. The torus temperatures and pressures evaluated in Part B are taken from Reference 1.
- 3. Piping data was derived from Ref. 6-8.
- 4. Suction strainer data is taken from Ref. 23.
- 5. RHR pump NPSHR data is taken from Ref.16 and 17.
- 6. Torus level and pump flow rates following LOCA are taken from Reference 1 for all cases.
- 7. Insulation volumes analyzed are as follows: ( Ref. 23, Appendix lil)
Strainer design basis: 1026 lbs / RHR strainer X 3 RHR Strainers / 2.4 lbs/ft3 = 1283 ft' 420 lbs/ C.S. strainer x 2 C.S. strainers / 2.4 lbs/ft3 = 350 ft Total = 1633 ft Post LOCA debris load : 451 lbs/ RHR strainer X 3 strainers / 2.4 lb/ft3 = 563 ft 165 lbs/ C.S. Strainer x 2 strainers / 2.4 lb/ft3 = 137 ft Total = 700 ft 3 M:\sEEM70RMs\CALCsHT. DOC 6/22/98 10:48 AM
196. Rids 3 8/96 CALC. NO. : PM-10'i0 PECO ENERGY CALCULATION SHEET PAGE: 4 REVISION : 2 NUCLEAR GROUP i
- 8. Strainer dP data is as follows: ( Ref. 23, Appendix lil) 1633 ft' Nukon debris load ( strainer design basis )
! Temperature Pumo flow dP
('F) (gpm) ( ft.)
- 100 10000 10.28 205.7 10000 7.36 100 11100 11.99 205.7 11100 8.31 700 ft' NUKON debris load ( debris load in zone of destruction )
Temperature Pump flow dP
- (*F) (gpm) (ft.)
r 100 10000 4.83 y 205.7 10000 4.13
- Clean Strainer Temperature Pe' 1p Flow dP
(*F) ,gpm) (ft.)
100 .00 2.65 t
- 4. ComputerCalculations No computer calculations were used in the development of this calculation. Excel spreadsheets were utilized. However, these spreadsheets were utilized as an automated calculator only.
1
- 5. Assumptions
- 1. The HPSW system temperature is assumed to be 90*F.
! 2, HPSW flow to each RHR HX is assumed constant at 4500 gpm.
NPSHR = NPSHA )
- 4. The computation of the torus temperature based on calculated vapor pressure,in part D,is not completely interpolated in that the pressure conversion factor uses the value of 2.31 rather than a temperature corrected value. The effect on NPSH due to this minor underestimation of tamperature is not significant.
- 6. References
- 1. GE letter Report EAS 10 0289 on Suppression Pool Drawdown, May 18,1969, transmitted by G-HE-9-114, dated May 18,1989, DC# 027673.
MfEEM'EORMs\cALCSHT. DOC - 6/18/98 4:13 PM
.-.. - .. - - . . - - . . ~ -- - . . . . .
1 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEET PAGE: 5 i REVISION : 2
- - NUCt. EAR GROUP l
- 2. P&l Diagram M361, Sheet 3, Rev. 59 i
( 3. Piping Specification M-300, Rev.14 l
l 4. NUREG/CR-2772 " Hydraulic Performance of Pump Suction Inlets for Emergency Core Cooling l Systems in Boiling Water Reactors", June 1982.
- 5. Peach Bottom UFSAR Fig. 4.8.1, Mode B l 6. Bechtel Drawing 6280-M-83, Rev.17
- 7. Bechtel Drawing 6280-M-91, Rev. 23
- 8. Bechtel Drawing 6280-M-103, Rev. 37
- 9. Crane Technical Paper N. 410 " Flow of Fluids Through Valves, Fittings, and Pipe *,1980 Edition.
10.- ASME Steam Tables, 5" Edition
- 11. Peach Bottom improved Tech. Spec. 3.6.2.2
- 12. NE-265 - Specification for ECCS Suction Strainers, Limerick Generating Station, Units 1 and 2 and Peach Bottom Atomic Power Station Units 2 and 3, Rev. A, dated February 11,1997.
- 13. Calculation PM-1004, Rev 0
- 16. Dwg. 6280-M1-U-284-1, RHR Pump Curve
- 17. Dwg. 6280-M1-U 296-1, RHR Pump Curve
- 18. Iso 11187 P-10-1
- 19. Iso 11187-P 10-2
- 20. Calculation 11187-M 024, Rev.2
- 21. UFSAR Fig. 14.6.108, Rev.13
- 22. UFSAR Fig.14.6.12A, Rev.13
- 23. SDOC # NE-265-17, Rev.1
- 24. Calculation ME- 693, Rev. 0
- 7. Attachments i
i Attachment #1: RHR Pump Curves and Test Data ( References 15.16 and 17 )
i MAsEEM\ FORMS \CALCsHT. DOC 6/18/98 4.13 PM l
~ ~~ ~ ' " - - --- -- -
. - 39g,3j 4g3 8.96~
CALC. NO. : PM-1010
- PECO ENERGY CALCULATION SHEET PAGE
- 6 l REVISION : 2 j NUCLEAR GROUP
- 8. Analysis A. NPSH Margins for the RHR Pumps Under the Worst Expected Accident Conditions The methodology used to perform this calculation was to review the suction piping arrangement for the RHR pumps at Peach Bottom to determine the K value for each suction loop. The bounding K value was then used along with the strainer head losses from Ref. 23 calculate the total head losses through the bounding RHR suction loop for the temperatures given in Ref.14 and the flows given in Ref. 5. This information was combined with level information from Ref. 5 and containment pressure data from Ref.14 to calculate NPSHA. This data was compared to the NPSHR for the RHR pumps to determine NPSH margin at various times following a DBA LOCA.
Calculatino NPSHA l
NPSHA = Z. -Z,u,n,+144P.,/p - hr h.i- 144Pv.,/p !
I where: Z., = Elevation of torus water surface (ft.) ;
1 Z, urn, = Elevation of pump suction (ft.)
Note: Center line of the RHR pump suction is at elevation 94'-6*, (ie., equal to I the elevation of the bottom of the torus). Thus, Z.,- 7.pls equal to the torus water level. .
l P., = Torus pressure ( psia)
I Py., = vapor pressure at torus water temperature (psia) l l
br= piping friction losses (ft) h.i = strainer head foss (ft) 3 p = density of water at torus water temperature ( lb/ft )
Calculatino hr The method used to calculate hv for the various flow rates and temperatures is as follows:
- 1) Calculate hr at some reference temperature and flow rate, i
- 2) Calculate he at other temperatures and flows using the follo'uing equation:
ha = heix (Q2 / Qi)* X ( v2/ vi )
where: hr, = reference piping head loss (ft.)
ha = calculated piping head loss (ft.)
! Qi = flow rate for reference piping losses (gpm)
Q2= flow rate for calculated piping losses (gpm)'
vi = specific volume for water at reference temperature (ft'/lb) l :.
MASEEM70RMsCALCsHT. DOC 648/98 4.13 PM
+:St.sn:.1 l I CALC. NO. : PM 1090 l l PECO ENERGY CALCULATION SHEET PAGE: 7 i
REVISION : 2 '
I NUCLEAR GROUP l l
l l v2 = specific volume for water at temperature at which piping losses are being calculated (ft /lb)
! Reference cioino losses:
l l From Ref. 9, pg. 3-4 hr = 0.00259 KQ2ja4 l For 24" RHR Suction Piping d = 23.25 in. l l
D = 1.9375 ft. l From an inspection of Ref.18 and 19, it was seen that the suction piping arrangement of RHR i pumps A and C was identical to the arrangement of pumps B and D. Therefore, piping takeoffs were only performed on the A and C pumps.
l Piping Takeoffs :
Pump A Suction Piping:
Piping Segment Dia. (in.) Length ;
1 23.25 18'- 1/4" l 2 23.25 16*-11" 3 23.25 3'-3" 4 23.25 3'-0*
5 23.25 4'-0*
Total 45'-21/4" or 45.19 ft.
K value for "A" Pump Suction Piping: K=fi UD = 45.19ft /1.9375 = 23.3 fi Pump C Suction Piping Piping Segment Dia (in.) Length 1 23.25 5' - 4 %"
2 23.25 3' - 0" 3 23.25 3'-0*
4 23.25 18'- 11 %"
5 23.25 6'- 5 3/8' 6 23.25 4* - 0*
Total 40'- 9 5/8" or 40.8 ft.
K value for "C" Pump Suction Piping: K=fi UD = 40.8ft /1.9375 = 21.1 ft Pipe Fitting Takeoff ( See Ref. 9 pg. A-27 to A-29, for K values) i Pump "A" Suction Piping
! Fitting Type K No. of Fittings Total K 90 S.R. Elbow 20 fi 3 60 f, Tee (flow thru run ) 20 f, 1 20 fe MASEEMPORMSCALCSHT. DOC 6/18/98 4:13 PM
- s m ,463 .
CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEE PAGE: 8 REVISION : 2 NUCLEAR GROUP 60* S.R. Elbow 16.4 f, 1 16.4 f, l
Gate Valve 8ft 1 8 f, l 22.5* L.R. Elbow 8 ft 1 8 ft l Total 112.4 f, I l
Pump "C" Suction Piping i Fitting Type K No. of Fittings Total K I I
90* S.R. Elbow 20f t 2 40 f, 90* L.R. Elbow 14 f, 2 28 f, .
Tee (flow thru run) 20f t 1 20 fe I 60* S.R. Elbow 16.4 f, 1 16.4 f, ;
67* 30' L.R. Elbow 11.3 f, 1 11.3 fe )
45' Elbow 10 f, 1 10 f, Gate Valve 8 f. 1 8 f, Total 133.7 f, Total Piping Resistance K Value Pump Suction Piping K Fitting K Total K A 23.3 ft 112.4 ft 135.7 f, C 21.1 f, 133.7 ft 154.8 fe For a reference point, calculate the piping loss for a flow rate of 10000 gpm at a temperature of 205.7*F.
For old RHR pipe assume r/D = 0.00085 ( value for cast iron )
Calculating Reynold's Number Re = 50.6 Op / d ( Ref. 9, pg. 3-2)
= 0.299 ( Ref. 9, pg. A-2)
Re = 4.37 E +06 l From Ref. 9, pg. A 24 ft = 0.0195 Finally:
Pump K hf ( ft.)
A 2.65 2.34 C 3.02 2.67 Calculatina hp Given the RHR strainer configuration for Peach Bottom as shown below ( Ref. 23 ), it can be seen that the pressure drop across module 1 must be equal to the pressure drop across modules 2 through 6.
4 1 2 3 4 5 6 RF ,
MASEEMPORMs4ALCsHT. DOC 6/18/98 4:13 PM l
l
196-914s3 8,96 CALC. NO. : PM-1010 PAGE:
PECO ENERGY CALCULATION SHEET REVISION :
9 2
NUCLEAR GROUP l
l However, to calculate the strainer head loss, the percentage of the total strainer flow which passes through module 1 must be known.
Strainer Design Basis Debris Load ( 1633 ft* )
From Ref. 23, Appendix 111, page 111-3, the percentage of total flow which passes through module 1, the flow rate, temperature and headloss data is given as follows for a debris load of 1633 ft'of NUKON.
Total Strainer Flow Temperature Module 1. Flow Fraction 11100 205.7 0.2539 11100 100 0.2344 10000 205.7 0.2456 10000 100 0.2251 Choosing 11100 gpm at 205.7*F as the reference value, an equation was developed to calculate the flow fraction as a function of flow and temperature.
The function for calculating the flow fraction is as follows:
%i = %ex ( Qi / Q,w ) 3'*x( i/ ,c)* "
Note: The exponents in the above formulas were derived by trial and error where:
% = Flow fraction at Q, and Ti
%g = Flow fraction at reference flow rate and temperature Qi = New flow (gpm)
Q,c= Reference flow (gpm)
.i= kinematic viscosity at new temperature Ti ( centistokes)
.re = kinematic viscosity at reference temperature Tre( centistokes)
Calculating Flow fractions for module 1 for the data given in Ref. 23 ( Appendix til) yields the following results, which validate the expression used for this correlation:
Flow Temperature Ref. 22 Flow . Calculated Flow Percent Difference Fraction Fraction 11100 205.7 0.2539 0.2539 0 l 11100 100 0.2344 0.2344 0 10000 205.7 0.2456 0.2456 0 10000 100 0,2251 0.2267 0.7 4
6/18/98 4.13 PM M:\sEEM70RMs\CALCsHT. DOC
From Ref. 23, Appendix ill, page 111-3 the percentage of total flow which passes through module 1, the flow rata, temperature and headioss data is given as follows for a debris load of 700 ft of NUKON.
l
)
I j
l 1 r
1 i
l I
l
! i L
l i
i M2EEM70RMSCALCSHT. DOC 6/18/98 4.13 PM ;
i l
l-
196-31453 8/96 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEET PAGE: 11 REVISION : 2 NUCLEAR GROUP Total Strainer Flow Temporature Module 1, Flow Fraction 10000 205.7 0.3176 10000 100 0.3019 Choosing 10000 gpm at 205.7'F as the reference value, an equation was developed to calculate the flow fraction as a function of flow and temperature. Note: This equation assumes that the variation of this percentage of flow as a function of flow is the same as for the strainer design basis debris load case.
The function for calculating fraction of total flow is as follows:
%, = %,e x ( Q,/ Q,,,,)0"/ (vi re v )"5 where:
%, = Flow fraction at Q, and T,
%,e = Flow fraction at reference flow rate and temperature Q, = New flow (gpm)
Org = Reference flow (gpm) a= Kinematic viscosity at new temperature Ti (centistokes)
.,e = Kinematic viscosity at reference temperature T,e (centistokes)
- Calculating Flow fraction for module 1 for the data given in Ref. 23 ( Appendix Ill, page 1117) yields the following results:
Flow Temperature Ref. 22 Flow Calculated Flow Percent Difference Fraction Fraction 10000 205.7 0.3176 0.317S 0 10000 100 0.3019 0.3019 0 Given the flow fraction, the head loss for the strainer can be extrapolated from some reference value:
Extracolatino Strainer Head Loss:
! The head loss across a fouled strainer is equal to the sum of the bed and form losses. The bed losses l represent the viscous losses across the debris bed, and the form Icsses represent the friction losses through the strainer assembly, l
M1SEEM; FORMS \CALCSHT. DOC 6/18/98 4.13 PM I
,mmsm - -- --
CALC. NO. : PM-1010 l PECO ENERGY CALCULATION SHEET PAGE: 12 REVISION : 2 NUCLEAR GROUP l l
l Strainer Design Basis Debris Load ( 1633 ft* )
Head loss for the replacement strainers is given in Ref. 23 ( Appendix til, page lil 7) as:
1 Flow Rate Temperature Head Loss ( ft.)
11100 205.7 8.31 11100 100 11.99 10000 205.7 7.36 10000 100 10.28 l
Bed losses:
The bed losses vary as a function of the flow rate and the kinematic viscosity of water at the temperature of the torus water. The bed losses vary as a function of the flow rate and not the flow rate squared because the flow rate across the debris bed is sufficiently low as to be laminar.
The bed losses for the replacement strainers are given in Ref. 23 ( App. Ill, page ill 7) as follows:
Flow Rate (gpm) Temperature (*F) Bed Loss (ft.)
11100 205.7 7.17 11100 100 10.99 10000 205.7 6.48 10000 100 9.52 Choosing the bed losses at 11100 gpm and 205.7 F as a reference value, the following formula was developed to extrapolate the bed losses to other flows and temperatures:
hi = hecx ( %x Qi / %x Q,e) 727 x ( .i / p.rg )o sa3 where:
h, = calculated bed loss (ft.)
h,c = reference bed loss (ft.)
% = calculated flow fraction
% = reference flow fraction Qi = extrapolated total flow (gpm)
Q,w = reference total flow (gpm)
.i = kinematic viscosity at extrapolated temperature (centistokes)
.re = kinematic viscosity at reference tcmperature (centistokes) l M:\sEEMPORMs\CALCsHT. DOC 6/18/98 4:13 PM
\
196-21453 8/96 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEE PA
. ;3 NUCLEAR GRC UP Calculating the bed losses for the Ref. 23, Appendix Ill, page 111-7, data yields the following results:
Total Flow (gpm) Temperature (*F) Bed Loss ( Ref.23) Bed Loss % difference (calculated) 11100 205.7 7.17 7.17 0 11100 100 10.99 10.99 0 10000 205.7 6.48 6.48 0 10000 100 9.52 9.94 4.4 Form Losses:
The form losses vary as a function of the square of the velocity or flow. The form losses for the replacement strainers are given in Ref. 23, Appendix 111. The form losses for the replacement strainers are as follows:
Flow Rate (gpm) Temperature ('F) Form Losses (ft) 11100 205.7 1.14 11100 100 1.00 10000 205.7 0.88 10000 100 0.76 The form losses consist of three components, the drag and tuming losses through the stralner mesh, the intemal drag losses in strainer module 1 and the drag losses in the common tee discharge.
Choosing the form losses at 11100 gpm and 205.7'F as the reference value, the form losses can be extrapolated to other flow and temperature conditions using the following expression:
hi = (hm n + ha.m.) x ( % x Qi /%, xQre )2 + h t..x( Qi/Q,c)2 where:
hi = form losses at extrapolated flow and temperature conditions (ft.)
hm n = reference drag and turning losses for module 1 mesh (ft.)
h,ne.m = reference internal strainer drag losses for module 1 (ft.)
hi = reference drag losses for common tee (ft.)
% = flow fraction through module 1 at extrapolated flow and temperature conditions
%e= flow fraction through module 1 at reference conditions Qi = extrapolated total flow (gpm) j Org = reference total flow (gpm)
Values for hm n, ha.m. and ht,. are found in Ref. 23 Appendix lit, page 11110 as follows:
hm..n = 0.553 ft.
M?SEEM\ FORMS \CALCSHT. DOC 6/18/98 4:13 PM l
gg - - -. _ _ _ _ _ _ _ . _ _ _ __ ___ , _ _ _ , _
l CALC. NO. : PM-1010 i PECO ENERGY CALCULATION SHEET PAGE: 14 REVISION : 2 NUCLEAR GROUP ha.m., = 0.394 ft.
ht = 0.194 ft. l l
Calculating the form losses for the Ref. 23, Appendix 111 data yields the following results: I
~ Flow (gpm) Temperature (*F) Form Losses Form Losses % Difference (Ref.23) (Calculated) (
11100 205.7 1.14 1.14 0 i 11100 100 1.00 1.00 0 i 10000 205.7 0.88 0.88 0 10000 100 0.76 0.77 1.0 l
Finally, the form and bed losses as calculated were summed to provide the total strainer head loss and compared to the Ref. 23, Appendix lil values as follows:
Flow (gpm) Temperature (*F) Strainer Loss (ft) Strainer Loss (ft) % Difference
( Ref.23) (Calculated) 11100 205.7 8.31 8.31 0.0 11100 100 11.99 11.99 0.0 10000 205.7 7.36 7.36 0.0 10000 100 10.28 10.71 4.2 Maximum Expected Post LOCA Debris Load ( 700 ft3 )
l Head loss for the replacement strainers is given in Ref. 23 ( Appendix 111, page 1117, Licensing Case) as:
Flow Rate Temperature Head Loss ( ft.)
10000 205.7 4.13 10000 100 4.833 Bed losses:
The bed losses vary as a function of the flow rate and the kinematic viscosity of watei at the temperature of the torus water. The bed losses vary as a function of the flow rate and not the flow rate squared
! because the flow rate across the debris bed is sufficiently low as to be laminar.
l The bed losses for the replacement strainers are given in Ref. 23 ( App. Ill, page 1117, Licensing Case) as follows:
Flow Rate (gpm) Temperature ( F) Bed Loss (ft.)
10000 205.7 2.766 10000 100 3.588 Choosing the bed losses at 10000 gpm and 205.7 F as a reference value, the following formula was
- developed to extrapolate the bed losses to other flows and temperatures:
! h, = hrex ( %ix Qi / %ex Qre) "3 x ( .$ / p.re )0 "
l l
M3sEEM70RMsCALCsHT. DOC 6/18/98 4:13 PM l
l i
596 214s3 8.06 CALC. NO. : PM-9010 PAGE:
PECO ENERGY CALCULATION SHEET 15 REVISION : 2 NUCLEAR GROUP where:
hi = calculated bed loss hre = reference bed loss
%i = calculated % of total flow
%e= reference % of total flow Q, = extrapolated total flow Q,e = reference total flow
.i = kinematic viscosity at extrapolated temperature
.re = kinematic viscosity at reference temperature Calculating the bed losses for the Ref. 23, Appendix ill data yields the following results:
Total Flow (gpm) Temperature (*F) Bed Loss ( Ref.23) Bed Loss % difference (calculated) 10000 205.7 2.766 2.77 0 10000 100 3.588 3.59 0 Form Losses:
The form losses vary as a function of the square of the velocity or flow. The form losses for the replacement strainers are given in Ref. 23, Appendix Ill, Page ill 7, Licensing Case. The form losses for the replacement strainers are as follows:
Flow Rate (gpm) Temperature (*F) Form Losses (ft) 10000 205.7 1.361 10000 100 1.245 The form losses consist of three components, the drag and turning losses through the strainer mesh, the intemal drag losses in strainer module 1 and the drag losses in the common tee discharge.
Choosing the form losses at 10000 gpm and 205.7'F as the reference value, the form losses can be extrapolated to other flow and temperature conditions using the following expression:
hi = (hm.gn + ha.m ) x ( %, x Q,/ %e xQre )2 + ih x( Qi/Q,e)2 where:
hi = form losses at extrapolated flow and temperature conditions (ft.)
hm., = reference drag and tuming losses for module 1 mesh (ft.)
ha.me = reference internal strainer drag losses for module 1 (ft.)
ht = reference drag losses for common tee (ft.)
M:\sEEMiFORMs\CALCsHT. DOC 6/18/98 413 PM
w:.9Et.mE.1 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEET PAGE: 16 REVISION : 2 NUCLEAR GROUP 1
%, = % of total flow through module 1 at extrapolated flow and temperature conditions
%e = % of total flow through module 1 at reference conditions Qi = extrapolated total flow (gpm)
Q,e = reference total flow (gpm)
Values for hen.e, ha.,n, and he,. are found in Ref. 23 Appendix lli, page 111-12 as follows:
hen = 0.703 ft.
ha.,n, = 0.501 ft.
he,. = 0.157 ft.
Calculat,ing the form losses for the Ref. 23, Apper. dix ill data yields the following results:
Flow (gpm) Temperature ('F) Form Losses Form Losses % Difference (Ref.23) g yalculated) 10000 205.7 1.361 ,, _
1.361 0 10000 100 1.245 L 1.245 0 Finally, the form and bed losses as calculated were compared to the Ref. 23, Appendix til values as fol lows:
Flow (gpm) Temperature ( F) Strainer Loss (ft) Strainer Loss (ft) % Difference
( Ref.23) (Calculated) 10000 205.7 4.127 4.13 0.0 10000 100 4.833 4.83 0.0 NPSH Margin Combining the piping and strainer losses described above with the pressure and temperature vs. time data from Ref.14 and the lev 31 and flow rate vs. time data from Ref.1, EXCEL spreadsheets were prepared to calculate the NPSH. vs NPSHg and the required overpressure as a function of time after the accident. The spreadsheets are included on the following sheets. The results of this analysis are shown graphically after the EXCEL spreadsheet for each case. From these graphs, it can be seen that the minimum NPSH margin occurs at the maximum pool temperature. The minimum NPSH margins for the two cases are as follows:
Minimum NPSH Margin ( at 205.7'F)
Case Torus Debris Load NPSHR NPSHA Margin (fth (ft) (ft) (ft)
Strainer Desi0n Basis 1633 26 26.3 0.3 DBA LOCA Design Basis 700 26 29.2 3.2,,,,,,,,,
MASEEMPORMsCALCSHT. DOC 6/18/98 4.13 PM f
m m. wn, CALC. NO. : PM-103 PAGE:
PECO ENERGY CALCULATION SHEET 17 REVISION : 2 NUCLEAR GrtOUP Table A-1 Tlrne Dependant NPSH Analysis DBA LOCA PBAPS RHR 1633 ft3 NUKON Strainer Design Basis Debris Load l Reference Head loss Flow Temp. Mesh Loss intemal Drag Loss (gpm) ('F) ft ft Pipe 2.67 ft '10000 205.7 Strainer 8.31 ft 11100 205.7 0.553 0.394 Time (sec) Pressure (s.p.) Temp (S.P.) Vap. Press Spec. Volume S.P. Level Pump Flow ( gpm) Flow Fracton 0 14.69 100 0.95 0.01613 14.54 11100 0.2344 49 15.41 136 2.60 0.016274 15.44 11100 0.2424 106 15.74 140 2.89 0.016293 14.64 11220 0.2440 600 15.53 148 3.54 ' O.016332 13.04 11180 0.2450 l 666 15.74 150.6 3.72 0.016343 13.44 10000 0.2368 l 805 16.00 154 4.10 0.016363 13.94 10000 0.2374 2075 17.26 168 5.72 0.01644 13.94 10000 0.2398
)
2622 17.67 172 6.27 0.016463 13.94 10000 0.2404 2995 17.b9 174 6.57 0.016474 13.94 10000 0.2406 4290 18.54 180 7.51 0.01651 13.94 10000 0.2414 l 5571 19.02 184 8.20 0.016534 13.94 10000 0.2421 l 6475 19 31 186 8.57 0.016547 13.94 10000 0.2425 1 8592 19.83 190 9.34 0.016572 13.94 10000 0.2434 11143 20.36 iM 10.17 0.016598 13 94 10000 0.2440 12505 20.62 196 10.61 0.016611 13.94 10000 0.2442 14383 20.92 198 11.06 0.016624 13.94 10000 0.2445 16448 21.22 200 11.53 0.016637 13.94 10000 0.2448 19302 21.53 202 12.01 0.01665 13.94 10000 0.2451 23787 21.84 204 12.51 0.016664 13.94 10000 0.2455 31667 22.10 205.7 12.77 0.01667 13.94 10000 0.2456 45633 21.84 204.3 12.51 0.016664 13.04 10000 0.2455 Common Tee Loss Bed Loss Flw Fracton ft ft 0.194 7.165 0.2539 hf(strainer) hf(strainer)
NPSHR hf (pipe) Form Bed hftstramer) NPSHa (ft) Psupp req'd (psia) Req'd Overpressure (psi) 28 3.18 1.00 10.99 11.99 31.28 13.28 -1.42 28 3.21 1.06 9.18 10.24 32.00 13.70 -1.00 29 3.29 1.09 9.12 10.21 31.29 14.76 0.06 29 3.27 1.09 8 84 9.93 28.03 15.94 1.24 26 2.62 0.83 7.89 8.72 30.40 13.87 -0.83 26 2.62 0.83 7.78 8.61 30.75 13.99 -0.71 26 2.63 0.84 7.38 8.22 30.41 15.40 0.70
.26 2.64 0.85 7.28 8.13 30.20 15.90 1.20 26 2.64 0.85 7.24 8.09 30.09 16.17 1.47 26 2.64 0.85 7.12 7.97 29.55 17.05 2.35 26 2.65 0.86 7.00 7.85 29.19 17.68 2.98 26 2.65 0.86 6.93 7.79 29.08 18.01 3.31 26 2.65 0.86 6.81 7.67 28.64 18.72 4 02 26 2.66 0.87 6.72 7.59 28 05 19 50 4 80 26 2.66 0.87 6.68 7.55 27.68 19.91 5.21 26 2.66 0.87 6.64 7.51 27.38 20.34 5.64 26 2.66 0.87 6.59 7.47 27.04 20.79 6.09 26 2.67 0.87 6.55 7.42 26.66 21.25 6.55 26 2.67 0.88 6.51 7.38 26.26 21.73 7.03 26 2.67 0.88 6.48 7.36 26.30 21.97 7.27 26 2.67 0.88 6.51 7.38 26.28 21.73 7.03 MASEEMTORMS\CALCSHT.DCC 6/4/98 5:02 PM
E ET M-
= cm o 4 m
% 9
=O 0 h 3
3 Figure A-1 @m $
E Minimum Torus Pressure Available vs. Required - Debris Load 1633 ft3 NUKON 8Z nm
=
- Strainer Design Basis Debris Load *U o 0 w
1 ~<
& 25 ...,
0 e o <
am g*'ga :eig . ,
> < ~ ,
o g.g:.
' ' ' ^ '
y 4
f:'3.8T . . . . . . . -
a;; . y 4 -
s m.
$ M 'g
> .-..;:c.- '^ -
a s
.~- ^ **g"' "
'f %
.. -pesp- .x- .s . :: :
w-20 9 513:
m....
P 35-. .,, TM.- ^
- pM.7:f *
- p ..:M:i:
~~
"s -.v.-
~ ; - prdmum NPsy rnergin
'g ..... .. ..
= 0.3 ft p
Ra , Ub.. ,
~= ~o -
(~~
'^
n#)??
.: cf. m i
o
.,_..c;g.r :::~ .;R. .. !:: . n y4 g.3pg:;- {
, . :Y ' ?$~
1S -
- f. . .
ir V .y =.~.=... =... . . .. ~.. =..=. .~. .r. .
..-...~.....-...c-....=...-....-.~..~.....--:
". s 4
wi g::.- -
y
_7._ . . ia. .
c.
- :., p ,.
- O Mmemum Ry I = 7.27 psi 2
< < .g , ~.,
,10
< ^ .
3 + <
+
ee
.._. #.#. ._ ,. . ._. _ . . .. .. .m. . .
m
,,,e., ..
j .
~
5 ,"I - - - Psupp req'd (psia) s .'
s ' ' Torus Pressure
+< ' '
s
.f - - - - - - Atmosphenc Pressure T T O r- '
" ~
- - - - Req'd Overpressure m
< O r f"> ,
c
- '/
a v
, 55-m9 0 ' ......s.. .....s.. .;.-m._.
.- g..~_...
. . _ . ~ . . - O Z i
i, 1,0,00,0 ' 1,5000 2,0000 " 25000:- !.?30000. .g. !$350. 0. 0...h. n. A. 000. 0. i. ?.450001 15000 z ,O 5 ,000 e
I
's.:
4 Q J J 4
(D O
-5 ' Time (sec.;
e 8
o DJ
- D E
196 21453 846 CALC. NO. : PM-1010 PECO ENERGY CALCULATION SHEET PAGE: 19 REVISION : 2 1 NUCLEAR GROUP Table A 2 Time Dependant NPSH Analysis - DBA LOCA PBAPS RHR 700 ft3 NUKON LOCA Des 6gn Basis Debris Loed Reference Head loss Flow Temp. Mesh Loss intamal Drag Loss Common Tee Loss (gpm) (*F) ft ft ft l Pipe 2.67 P 10000 205.7 I Strainer 4.13 ft 10000 205.7 0.702946 0.500949 0.157244 Time (sec) Pressure (s.p.) Temp (S.P.) Vap. Press Spec. Volume S.P. Level Pump Flow ( gpm) Flow Fraction 0 14.69 100 0.95 0.01613 13.65 11100 0.3121 49 15.41 136 2.60 0.01627 13.65 11100 0.3188 I 106 15.74 140 2.89 0.01629 13.65 11220 0.3206 600 15.53 148 3.54 0.01633 13.65 11180 0.3212 l 666 15.74 150.6 3.72 0.01634 13.65 10000 0.3103 805 16.00 154 4.10 0.01636 13.65 10000 0.3108 2075 17.26 168 5.72 0.01644 13.65 10000 0.3128 2622 17 E' 172 6.27 001646 13.65 10000 0.3133 2995 17E 174 6.57 0.01647 13.65 10000 0.3135 4290 1854 180 7.51 0.01651 13.65 10000 0.3141 5571 19.02 184 8.20 0.01653 13.65 10000 0.3147 1 6475 19.31 186 8.57 0.01655 13.65 10000 0.3151 8592 19.83 190 9.34 0.01657 13.65 10000 0.3158 .
11143 20.36 194 10.17 0.01660 13.65 10000 0.3162 j 12505 20.62 196 10.61 0.01661 13.65 10000 0.3165 i 14383 20.92 198 11.06 0.01662 13.65 10000 0.3167 16448 21.22 200 11.53 0.01664 13.65 10000 0.3170 l 19302 21.53 202 12.01 0.01665 13.65 10000 0.3172 I 23787 21.84 204 12.51 0.01666 13.65 10000 0.3175 31667 22.10 205.7 12.77 0.01667 13.65 10000 0.3176 45533 21.84 204 3 12.51 0.01666 13.65 10000 0.3175 BedLoss FlowFraction ft 2.766 0.3176 hf(strainer) hf(strainer)
NPSHR hi(pipe) Form Bed hf(strainer) NPSHa (ft) Psupp req'd (psia) Req'd Overpressure (psi) 28 3.18 1.63 3.96 5.58 36.8 10.90 -3.80 28 3.21 1.69 3.55 5.24 35.2 12.33 -2.37 29 3.29 1.74 3.55 5.29 35.2 13.09 1.61 29 3.27 1.74 3.48 5.21 33.4 13.67 -1.03 26 2.62 1.31 3.12 4.42 34.9 11.96 2.74 26 2.62 1.31 3.09 4.40 34.7 12.32 -2.38 2.63 1.32 2.99 4.32 34 0 13.88 -0.82 26 26 2.64 1.33 2.97 4.30 33.7 14.41 -0.29 26 - 2.64 1.33 2.96 4.29 33.6 14.69 -0.01 26 2.64 1.33 2.93 4.26 33.0 15.61 0.91 2.65 1.34 2 90 4.24 32.5 16.28 1.58 26 26 2.65 1.34 2.88 4.22 32.4 16.64 1.94 26 2.65 1.35 2.85 4.20 31.8 17.39 2.69 26 2.66 1.35 2.83 4.18 31.2 18.20 3.50 26 2.66 1.35 2.82 4.17 30.8 18.62 3.92 26 2.66 1.35 2.81 4.16 30.4 19.07 4 37 26 2.66 1.36 2.79 4.15 30.1 19.53 183 26 2.67 1.36 2.78 4.14 29.7 20.00 5.30 26 2.67 1.36 2.77 4.13 29.2 20.49 5.79 2.67 1.36 2.77 4.13 29.2 20.75 6.05 26 2.67 1.36 2.77 4.13 29.2 20.49 5.79 26 MMEEM70RMSCALCSHT. DOC 6/4/98 5:02 PM
- 't I !
- ,{ : !l.
4 gA43s g-O>rO zO.. 5aa .
TmgOAZm O< hrC Q..
Z (f) 1 T
I d U>Om-n oo Eo;5; omOCV 0m<i5Z-
- u e
r _
u s _
s _
r e
e p r r u e s d v m s
e 'q O r e d P r er _
s pi p u _
u r u q _
o s e -
T P R i - -
s p
t f 5 - -
2 0 -
3 6 - - _
n d ig e r
r _
a iu m q _
e H R _
S e 0
)
P s W 1
? s 0,;
n r
u s'
.e'
.r 5;
.p
m .r u
r e" v
'n' M .o' N 2 T' m' ;. u .
u ,
- Fw O
n . .. -. >
K . .. . " r a ;-
.g ,
U .4 " m 9. e .r .
N M
, i m,. ;. g m0:
3 . - +- .
. s, ;:.
- 0 ::s
. f t .. "" ,. 0 :
0 3
- .^'
- '.. 4 a,.
c ,.
0
- ^ ;
- :-g -
g .
0 :
a 7 ~ ::".
^
d :
a n:w:*:: '- c:
- m 1: m o :m ...-
e.
- ::N:m-;
m* > :
L w .
- my. 4 .
s
- . 1 :
eE m i :T b ad r , '
eo L:
.* ~
. +".r O' 0
DL -
0
- s e*- .
0 0
dir .
3 eb e"- ". .
r i e 2- uD q
- "~
e.
,~
)
c e
Aei s -. .'* .
0 0 (
s aRs
.; . 0 e r .a ..
...-.".' . 5 2 n usB ..
=. i r
igv n ' 2 "::-
s T
F eg <
1i l ,
b is = , 0, l
ae :+ * * '
- .: +
" i 0 0
iD a
0 vA .WJ "J: 2 AC -
s.
G g- ~
=
eO r
i*.-r u L .@ :2Mg y1 0,
s
- y
- , 0 s % - . e0 e ..g..
5, 1
r ..,
P s
- m.
- a. :
- . "y:
u r ., . 0 o ;/.im.?
r:
.* - ,0 0
T .
0
- x. 1-
' . -l p '.,
m .
m:x u .. * ::
e,?.6 i
m m ll, #'
n 0
i r .
M .<
.gM*:i ::
n ;
.;g. .
,s
/ ' e005s -
w14
- .F[:;?"
i L/ j:('l 9:$([:<
4 ip .Ye.
i 0 5 0 5 0 D 2 1 1
.g g E5mggmE*6> rom- 1e Ooo -
edg PS m5
w .m.sn.w,., -- - - - - . -- - -
CALC. NO. : PM-1010 I
PECO ENERGY CALCULATION SHEET PAGE: 21 REVISION : 2 NUCLEAR GROUP B. NPSH Margin Under IBA and SBA LOCA Conditions The methodology used to perform this analysis is identical to that used for the DBA LOCA case ,
with the following exceptions: 1
- 1. The temperature, torus level and pressure data in this analysis was taken from Ref.1, which was not revised to account for Power Rerate. To account, the torus temperatures were
!ncreased by 5%. The torus pressures were not increased.
l
- 2. Since an IBA or SBA is not expected to dislodge and transport large amounts of insulation i debris to the torus, clean strainer headioss data was used for this analysis. i i
The spreadsheets used to perform this an'alysis are attached on the following pages. From these i pages,it can be seen that from an NPSH standpoint, both the SBA and IBA cases are bounded by the DBA LOCA. j l
1 l
i l
l M;\sEEMiFORMs% ALCSHT. DOC 6/18/98 4:13 PM
-- % n ,.2% ,*% A ,
. l CALC. NO. : P41010 PECO ENERGY CALCULATION SHEET PAGE: 22 l REVISION . . 2 NUCLEAR GROUP l
l l Table B-1 Time Dependant NPSH Analysis = 18A LOCA PBAPS RHR '
Clean Strainer i
Reference Head loss Fby Temp. -
(gpm) (*F) ,
Pipe 2.67 ft 10000 205.7 l Strainer 1.14 psi 11100 100 Time (sec) Pressure (s.p.) Temp (S.P. Vap. Press Spec. Volume S.P. Lovet Pump Flow ( gpm NPSH hf (pipe) hf (strainer j 0 14.50 95 0.81534 0.016114 14.54 0 26 0.00 0.00 '
50 35.20 104.58 1.06965 0.016144 14.64 0 26 0 0 l 101 36.00 109.935 1.2385 0.016162 14.74 0 26 0 0 l l 154 35.70 115.29 1.4711 0.016184 14.74 0 26 0 0 l 257 35.00 124.005 1.8901 0.016221 14.84 0 26 0 0 l 401 34.00 132.09 2.3445 0.016256 14.74 0 26 0 0 600 28.00 137.55 2.6735 0.016279 12.84 0 26 0 0 610 27.70 137.55 2.6735 0.016279 12.84 10000 26 2.607374 2.168948 785 24.80 140.175 2.8892 0.016293 13.34 10000 26 2.609617 2.170813 1145 29.00 147.63 3.4508 0.016327 14.14 10000 26 2.615062 2.175343 1373 29.50 148.155 3.5381 0.016332 14.14 10000 26 2.615863 2.176009
- 1626 28.40 154.56 4.1025 0.016363 13.94 10000 26 2.620828 2.18014 l 26 2.624192 2.182938 1
2018 27.10 158.025 4 5197 0.016384 13.94 10000 6107 25.80 175 035 6.7159 0.01648 14.04 10000 26 2.639568 2.195728 11200 25.90 177.975 7.025 0.016492 13.94 10000 26 2.64149 2.197327 l
NPSHa (R Psupp req'd (psia) Req'd Overpressure (psi) 46.29 5.75 4 95 l 93.98 5.956226368 4.74T/73632
- 95.64 6 076666344 4.623333656 l 94.51 6.302689499 4.397310501 92.18 6.667857228 4.032142772 88.84 7.154689742 7.545310258 l 72.21 8.287412949 4.412587051 l 66.73 10.32494007 -4.375059933 59.97 10.32270494 4.377295059 69.42 10.53280015 -4.167199855 70.41 10.61855579 -4.081444207 66.39 11.25828172 3.441718283 62.41 11.66892145 3.031078546 54.49 13.79320597 0.906794025 53.43 14.14074686 0.559253139 l
i M:\SEEM70RMSCALCSHT. DOC 6/18/98 4:13 PM
w .sram.1 CALC, NO. : PM 1010 PECO ENERGY CALCULATION SHEET PAGE: 23 l NUCLEAR GROUP REVISION : ._ _( _
Table B-2 Time Dependant NPSH Analysis $8A LOCA PBAPS RHR Clean Strainer Reference Head loss Flow Temp.
(gpm) (*F)
Pipe 2.67 ft 10000 205.7 Strainer 1.14 psi 11100 100' Time (soc Pressure (s.p.) Temp (S.P. Vap. Press Spec. Volum S.P. Level Pump Flo NPSHR hf (pipe) hf (strainer) 0 14.50 05.00 0.815 0.016114 14.54 0 26 0.00 0.00 27.50 121.26 1.740 0.016208 14.84 10000 26 2.60 2.16 1548 29.50 129.68 2.164 .CcJ16243 14.74 10000 26 2.60 2.16 2339 31.80 140.91 2.889 0.016293 14.64 10000 26 2.61 2.17 3571 32.90 150.99 3.718 v.016343 14 64 10000 26 2.62 2.18 5058 33.40 160.13 4.741 0.016395 14.54 10000 26 2.63 2.18 6567 34.00 167.90 5 591 0.016434 14.44 10000 26 2.63 2.19 8054 34.40 174 83 6.566 0.016474 14.34 10000 26 2.64 2.19 9473 25.00 180.18 7.511 0.01651 14.24 10000 26 2.64 2.20 10930 35.40 185.01 8.384 0.016541 14.24 10000 26 2.65 2.20 12310 35.90 185.33 8.384 0.016541 14.24 10000 26 2.65 2.20 14390 NPSHa (ft Psupp req'd (psia) Req'd Overpressure (pst) 46.29 5.75 8.95 70.21 8.56 6.14 73.91 9.02 .$.68 77.69 9.77 4.g3 78.52 10.58 4 12 77.39 11.63 3.07 78.85 12.51 2.19 75.54 13.52 1.18 74 75 14.50 0.20 73.74 15.36 0.66 74.93 15.36 0.66 I -
M:\SEEMPORMSCALCSHT. DOC 6/18/98 4.13 PM
'96-214'53 8/96 l
CALC. NO. : EM-1010 i PECO ENERGY CALCULATION SHEET PAGE:
24 NUCLEAR GROUP C. LOCA While Purging As previously stated in Part A of this calculation the available NPSH for the NPSH pumps is expressed by the following equation:
NPSHA = Pm + Z -he - Pm i l
l where Pcont = Torus pressurs Z = Static Head ( Torus water level) hf = suction line friction losses (including suction !.tralnerlosses) i Psat = vapor pressure of the pumped fluid
! From the results in part A, it can be seen that the NPSH margin at the limiting torus temperature l and pressure conditions is 3.2 ft.
From Ref.14, it can be seen that a LOCA occurring while purging reduces the available l containment pressure at the limiting torus temperature to 21.2 psia. From the spreadsheet on the l following page, it can be seen that this torus pressure will still provide an NPSH margin of 1.4 ft.
, Therefore, even with maximum expected accident fealing, the Suction strainers can !
l accommodate a DBA LOCA while purging.
l l
l
?
l
?
- M:GEEM70RMSCALCsHT. DOC 6/22/9810:48 AM
i 1%214S8 8/M 1
CALC. NO. : PM-1010 l PECO ENERGY CALCULATION SHEET PAGE: 25 I
NUCLEAR GROUP s
Table C.1 Time Deportdant NPSH Analysts .LOCA During Containment Purge 700 R3 NUKON LOCA Design Basis Debne Load Temp esh Lor ntemai Dra9 Los mmon Tee to Bed Lo Fkm Fraction j Reference Head loss Flow I
(gpm) ('F) R R R R P5e 2.7 A 10000 205.7 10000 205 7 0.70295 0 500949 0 157244 2.760 0 3176 Strainer 4iR hf(strain hf(strainer)
Pressure (s o Temp ($ P. Vap. Pres Spec. Volum S P. Leve Pump Flow ( gp Flon Fracton NPSHR Nf(pipe) Form Bed hf(strainer Tune (see 2.58 1 25 3 59 4 83 0 1469 100 0 94924 0 01613 1454 10000 0.30190 28 49 14 59 136 2 6047 0.016274 15 44 11100 0 31682 28 3 21 1 69 3 55 5 24 106 14 91 140 2.8892 0 016293 14 64 11220 0 32056 29 3.29 1 74 3 55 5.29 595 14 70 148 3 5381 0 016332 13 04 11180 0 32122 29 3 27 1 74 3 48 5 21 666 14 91 150 6 3 7184 0 016343 13 44 10000 0 31026 26 2 62 1 31 3 12 4 42 0 31081 26 2 62 1 31 3 09 4 40 605 15 17 154 4 1025 0 016363 13 94 10000 16 42 168 5 7223 0.01644 13 94 10000 0 31277 26 2 63 1 32 2 99 4 32 2075 2 64 1 33 2 97 4 30 2622 16 82 172 6 2736 0 016463 13 94 10000 0 31327 26 17 04 174 6 5656 0 016474 13 94 10000 0 31347 26 2 64 1 33 2.96 4 29 2995 4290 17 68 180 7 511 0 01651 13 94 10000 0 31410 26 2 64 1 33 2 93 4 26 i 0 016534 t3 94 10000 0 31474 26 2.65 1 34 2 90 4 24 5571 18 16 184 8 203 6475 18 44 186 6 568 0 016547 13 94 10000 0 31506 26 2 65 1 34 2 68 4 22 8592 18 96 190 9 34 0 016572 13 94 10000 0 31576 26 2 65 1 35 2 85 4 20 0 31624 26 2 66 1 35 2 83 4 18 11143 19 49 194 10.168 0 016598 13 94 10000 l 19 74 196 to 605 0 016611 13 94 10000 0 31648 26 2 68 1 35 2 82 4 17 l 12505 4 16 14383 20 04 198 11 058 0 016624 13 94 10000 0 31672 26 2.66 1 35 2 81 0 31697 26 2 C6 1 36 2 79 4 15 16448 20.34 200 11 526 0 016637 13 94 10000 4 14 19302 20 64 202 12.011 0 01665 13 94 10000 0 31722 26 2 67 1 36 2 78 0 31747 26 2 67 1 36 2 77 4 13 23787 20 95 204 12 512 0 016664 13 94 10000 4 13 21 21 205.7 12.77 0 01667 13 94 10000 0 31760 26 2 67 1 36 2 77 31667 1 36 2 77 4 13 204 3 12 512 0 016664 13 94 10000 0.31747 26 2.67 45533 20 95 NPSHa (R Psuco req'd (pse Rea'd Overpressure (p 39 04 9 94 -4 76 ,
l 35.06 11 57 3 13 34 27 12.66 2.04 l 30 62 13 93 4 77 1 32 75 12.05 2.65 33 01 ,12 20 2 50 32 31 13.75 0 95 32 01 1429 4 41 31 86 14 57 4 13 [
31 22 15 49 0 79 )'
30.75 16 16 1 46 30 59 1651 1 81 i 30 04 17 26 2 56 j 29 37 18 07 3 37 l 28 96 18 50 3 80 l
28 63 18 95 4 25 l
28 24 19 40 4 70 I
27 83 19 88 5.18 27.39 20 37 5 67 27 40 20 63 5 93 27 40 20 37 5 67 l
i i
a MASEEM'FORMSCALCSHT. DOC 6/18/98 4 54 PM
w:.unwe.; - -- - - - - - --- --- - -
CALC. NO. : PM 1010 PECO ENERGY CALCULATION SHEET PAGE 26 NUCLEAR GROUP l
D. NPSH LIMIT CURVES AND ECCS SUCTION REQUIREMENTS CURVES FOR EPG'S (T-102) l The purpose of this section is to determine: 1) the torus temperature limit at which the NPSH requirements will be satisfied for a variety of flow, torus level and pressure conditions. 2) the torus water level at which the NPSH requirements will be satisfied for a variety of flow, torus temperature and
! prossure conditions.
These limits are determined by setting NPSHA equal to NPSHR and solving for the required variable.
This equation takes the form:
NPSHA = NPSHR = P. + h. - h, h ,
l To solve for torus temperature, the values of NPSHR and he which correspond to various RHR system flows are input into the equation along with varying torus levels and pressures. The equation is then solved for vapor pressure, which is converted to saturation temperature by reference to the steam tables.
Similarly, when solving for torus level, torus temperature conditions are converted into vapor pressure and combined with the torus pressure and flow dependent variables, and the equation solved directly for static head, which corresponds to torus level, since the RHR pump suction elevation corresponds with torus level zero.
Torus Temperature Limits The torus temperature limits were calculated for the following conditions:
. RHR system flows of 7500,9000,10000,11000,11500 and 12000 gpm
. Torus water Levels of 10.5*,12:3',14.5' and 20'
. Torus overpressures of 0,3,6,10,20,30 and 60 psig A clean suction strainer was assumed in formulating these curves, since these curves will be used to respond to many transients, such as ATWS and Appendix R fires which will not transport insulation debris to the torus.
Suction line friction losses, including strainer losses were calculated using the EXCEL spreadsheet in section A above. These losses were computed as a function of flow only. Alllosses were calculated at 10,000 gpm at 205.7'F. These losses were then corrected for other flows by applying the following formula:
hf = hfr., ( Qi / Or.,)2 i
hfi = friction losses at new flow
~
hf, , = friction losses at reference flow ( 10,000 gpm)
Oi = new flow Or.,= reference flow ( 10000 gpm)
These friction losses are combined in an EXCEL spreadsheet with the flow level and torus pressure conditions given above to calculate the torus temperature limits, using the following equation:
h., = 144 P./ p + h.- h,- NPSHR 6/18/98 4.s4 PM M.\sEEM70RMs\CALCsHT. DOC
19tM1463 8/96 i CALC. NO. : PM 1010 PECO ENERGY CALCULATION SHEET PAGE: 27 REVISION : 2 NUCLEAR GROUP l Once h. is found, the results are converted into temperature by referring to the ASME Steam Tables ( l Ref. 10 ). l l
The results are shown in the spreadsheet and graphs presented on pages 26 to 30. ,
l Torus Level Umits The torus levels limits were calculated for the following conditions:
. RHR system flows of 7500,9000,10000,11000,11500 and 12000 gpm
. Torus water temperatures from 95'F to 300*F .
l
. Torus overpressures of 0,3,6,10,20,30 and GO psig A clean suction strainer was assumed in formulating these curves, since these curves will be used to respond to many transients, such as ATWS and Appendix R fires which will not transport insulation i debris to the torus.
Suction line friction losses, including strainer losses were calculated using the EXCEL spreadsheet in section A above. These losses were computed as a function of flow only. All :osses were calculated at 10,000 gpm at 205.7'F. These losses were then corrected for other flows by applying the following formula:
hf, = hfr., ( Q, / Or., )2 hfi = friction losses at new flow hfr., = friction losses at reference flow ( 10,000 gpm)
Qi = new flow Q,.,= reference flow ( 10000 gpm)
These friction losses are combined in an EXCEL spreadsheet with the flow level and torus pressure conditions given above to calculate the torus temperature limits, using the following equation:
h, = NPSHR+ hf + hvap - 144 P./ p The results are shown in the spreadsheet and graphs presented on pages 31 to 38.
l M3sEEM10RMsCALCsHT. DOC 6/18/98 4 S4 PM
5 z0 C
6 m TABLE D-1 RHR PUMPS CLEAN STRAINERS Calculate the Hf at varmus Bows us ng raisos of fkms to 2 0 pows Deterrmn. .tson of lorus temperature vs now He new ft NPSH R g E ;onvemon of frumon loss (Hf) for far new stramers O (GPM) Q ratio y0
= g cir 7500 0 5625 2 75 25 O Clean stramer dP is 2.22 ft910000 gpm and 205 7' F & pepmg is 2 67 ft @ 10000 gprn and 205 7 F Osang the equation hvap = hst - NPSHR - hf + PA 9000 0 81 3 96 26 Qg $
k 10000 1 4 89 26 o go M Frict.cn kas is corwied based on the raho of the fkms squared 11000 1 21 5 92 28 C g thus the Hf at 10000= 4 89 feet H2O es coverted for various fkms 31 b h
r-11500 12000 1.3225 1 44 6 47 7 04 33 2 O O
'i -<
6 Or--hvn Level ban Tech Spec Levee Vorten Lseme O 12 3 Ft Torus Level 14 5 ft Torus Level 20 Ft Torus Level O Torus 10 5 Ft Torus Level TEMP Vapor Psessure TEMP vapor Pressure TEMP Vapor Pressure W;A " Pressure PA FLOW NPSHR Frec Loss Vapor Pressure TEMP deg F F1 PS4A deg F FT PSI deg F GPM FT FT FT PStA deg F FT PStA PSIG FT (ABS) 8 52 185 00 25 20 to 90 19100 15 70 6 79 175 00 1750 7 57 180 00 19 70 0 33 95 7500 26 2 75 10 38 194 00 171 00 16 29 7 05 177 00 18 49 8 00 182.00 23 99 33 95 9000 26 3 96 14 49 6 27 17 56 7 60 180 00 23 06 9 98 193 00 4 89 13 56 5 87 169 00 15 36 6 65 174 00 33 95 10000 26 8 67 186 00 12 33 5 34 164 00 14 53 6 29 172 00 20 03 33 95 11000 28 5 92 10 53 4 56 158 00 3 80 150 00 to 98 4 75 160 00 16 48 7.13 17700 33 95 11500 31 6 47 6 98 3 02 141 00 8 78 6 91 2 99 141 00 12 41 5.37 165 00 3
33 95 40 88 12000 1500 34 5 26 7 04 2 75 2 91 22 63 1 26 9 79 109 00 192 00 24 43 4 71 2 04 to 57 126 00 195 0u 26 63 11 52 193 00 32 13 13 90 13 38 209 00 20700 h
23 22 10 05 193 00 25 42 11 00 197 00 3J 92 40 88 9000 26 3 96 21 42 9 27 189 00 191 00 24 49 10 60 195 00 29 99 12 98 205 00 8 87 187 00 22 29 9 65 40 88 10000 11000 26 28 4 89 5 92 20 49 17 46 7 56 180 00 19 26 8 34 184 00 21 46 9 29 189 00 26 96 11 67 200 00 f 40 38 7 75 181 00 23 41 to 13 193 00 13 91 6 02 170 00 15 71 6 80 175 00 1791 40 88 11500 31 6 47 8 37 184 00 11 64 5 04 162 00 13 84 5 99 169 00 19 34 40 88 12000 34 5 7 04 9 84 4 26 155 00 208 00 3356 14 52 21100 39 06 16 90 219 00 26 2 15 29 56 12 79 205 00 31.36 13 57 -
6 47 81 7500 209 00 37 85 16 38 217 00 203 00 30 15 13 05 206 00 32 35 14 00 4781 9000 26 3 96 28 35 12 27 204 00 31 42 13 60 208 00 36 92 15 98 216 00 26 4 89 27 42 11 81 201.00 29 22 12 65 47 88 10000 12 29 203 00 33 90 14 67 211 00 47 81 4781 11000 11500 28 31 5 92 6 47 24 40 20 85 13 56 9 02 195 00 188 00 26 20 22 65 11.34 9 80 199 00 192 00 26 40 24 85 10 75 196 00 30 35 13 13 206 00 [
183 0 20 77 8 99 188 00 26 27 1 t.37 199 00 178 00 18 57 8 04 to 4781 5106 12000 7500 34 5 26 7 04 2 75 16 77 38 81 7 26 1619 218 00 40 61 11.51 221 00 42 81 18 52 22300 48 31 47 10 20 90 20 38 230 00 228 00 h
217.00 39 40 1705 219 00 41 60 18 00 222 00 5706 9000 26 3 96 37 60 16 27 218 00 40 67 17 60 221 00 46 17 19 98 227 00 26 4 89 36 67 15 87 215 00 38 47 16 65 57 06 10000 16 29 217 00 43 14 18 67 224OG 33 64 14 56 211.00 35 44 15 34 214 00 37 64 5706 11000 28 5 92 39 59 17.13 219 00 205 00 31 89 13 80 208 00 34 09 14 75 212 00 57 06 11500 31 6 47 30 09 1302 15 37 214 00 12 04 202 00 30 02 12 99 205 00 35 52 57 06 12000 34 5 7 04 26 02 11.26 198 00 2782 245 00 65 92 28 52 24713 71 42 30 90 252 00 26 2 75 61 92 26 79 243 00 6372 27 57 20 80 17 7500 246 00 70 21 30 38 251 00 26 27 242 00 62 51 2705 244 00 64 71 28 00 80 17 9000 26 3 96 60 71 250 00 26 65 243 00 63 78 27 60 245 00 69 28 29 98 80 17 10000 26 4 89 59 78 25 87 241 00 61 58 240 00 60 75 26 29 242 00 66 25 28 67 247 00 28 5 92 56 75 2456 239 00 58 55 25 34 80 17 11000 239 00 62.70 27.13 244 00 23 02 235 00 55 00 23 80 237 00 57 20 24 75 0 80 17 11500 31 6 47 53 20 25 37 240 00 50 93 22 04 233 00 53 13 22.99 235 00 58 63 80 17 12000 34 5 7 04 49 13 21 26 231 00 37 57 263 00 8903 38 52 264 00 94 53 40 90 268 00 < Q r-7500 26 2 15 85 03 36 79 262 00 86 83 30 103 28 36 27 261 00 85 62 37 05 262 00 8782 38 00 264 00 93 32 to 38 26700 y fT) O 10328 9000 26 3 96 83 82 39 98 267 00 84 69 36 65 261 00 86 89 37 60 263 00 92 39 103 28 10000 26 4 89 82 89 35 87 260 00 259 00 83 86 36 29 261 00 89 36 38 67 265 00 28 5 92 79 86 34 56 258 00 81 66 35 34 103 28 11000 34 75 258 00 85 81 37.13 262 00 76 31 33 02 255 00 78 11 33 80 257 00 80 31 103 28 11500 31 6 47 35 37 259 00 31.26 252 00 74 04 32 04 254 00 76 24 32 99 255 00 81.74 y 103 28 12000 34 5 7 04 72 24 66 79 299 00 156 16 61.57- 300 00 158 36 68 52 301 00 163 86 70 90 303 00 g 26 2 15 154 36 60 172 61 1500 26 3 96 153 15 66 27 299 00 154 95 67 05 300 00 157 15 68 00 300 00 162 65 70 38 303 00 g a 172 61 9000 66 65 299 00 156 22 67 60 300 00 161 72 69 98 302 00 o 4 89 152 22 65 87 298 00 154 02 g 172 61 10000 11000 26 28 5 92 149 19 64 56 297 00 150 99 65 34 298 00 153 19 66 29 299 00 158 69 68 67 301 00 f i5 172 61 64 75 297.00 155 14 67.13 300 00 Ba 145 64 63 02 295 00 147 44 63 80 296 00 149 64 172 61 _ ,31 6 47 151 07 65 37 298 00 @
Q 172 61 115 _00 1200u '45 7 04 141 57 61 26 294 00 143 37 62 04 294 00 145 57 62 99 295 00 o
5 E -
- . < . - ' l !
. l_ i ',ii :
bI _
Qf 2o . 75 .
8 _
ht o O>pO{rsy O7 (D.1mgl- y$-
. TmOo mZmDO4 y{gz -- "
5o5n a8,
_ e v g o
ms ig b s g
_ e a p p ig 9 s
r d 9 s p u n 9 9 p p ss a 9 9 9 9 9 9 9
P e
r qp 9 5 2 o
9 1
o 9
9 9
s 9
2 o
t t t o e t o _
a 0 0 0 0 t t O 0 6 3 2 1 6 3 m 0 .
T 0 .
- 2 _
1 _
0 _
0 _
, 5 _
N 1 _
1 _
0 .
0 .
- 0 _
1 _
1 0
a ; 5 0
1
- 0 _
D 1
)
g M _
i F P _
G
(
T 0 I
0 _
M , 0 W U 0 O 1 L H F S P P
N M R , 0 P 0 U H - -
5 R
9 E L
- G
- NI S
0
, 0 0
9 l
e e v vr 0 e 0 l
t u , 5 o
o C 8 f e 3 h t
2 w 1
o d
n le a B 0 5 i s ,0 0
0 n 8 1 io g
- a e
=
c R
- rc f e
_ e a 0
- b S 0 d
_ i la 5
v 0 0 0 0 0 0 7 0 5 0 5 0 5 3 2 2 .
1 1
. ;8Be c5 $$
hmhogR>"0 ?> 5aE
4 4%y4k*
OyO~ 7O $
Zb5 mgm Q ICCpMq ml - Sw TmOO mzm%O<- om yz . . "
_ Eahx axa=
e
_ v g g g o g g
. b a is p
is p u p ps is i9
_ p s e
d 9 9 9 9 p r
u n 9 9 9 9 9 9
s a 9 9
s ig 9 2 9 9 5 9 e s 5 o
1 o t o 2 r o o P p t t t 0 t
t o
0 0 0 0 s 2 0 6 0 0 u
r 6 3 1 3 0 o -
0 T 2 1
0 0
' 5 _
1 .
~
_ 1 _
m 0 _
0
'0 .
1 _
1 b _ 0 1 0
' 5 D 0 1
h p )
a r _
m G p 0 g 0 (
T I
M ' 00 w 1 o U l F
H p S m P
N 0 u .
- 0 P .
R 5 e -
- H R
9 l g
n i .
S 0
0
' 0 l
9 e
v l
e t
o f
o 0 5 e v 0 4 r - 5 1 u 8 d C n w a l o
3 e 2 B 1 s 0 i
0 n . 0 o 8
- a. ig e
s.
t R
d f e
h a
a S 0 V 0 5
0 0
0 5
0 0 0 0 7 0 5 0 5 3 2 2 1 1
_ u. *gg . . -
F5m%*256?Oso .5 E
M4%ER=
o yo.ZO:.m5 b$ 8 mgm '
CI> O{CIfITT- O 1I1
$ u~
O >-l TAOOmzmmO4 mm sOz. . "
EPC= Eg, e
v b
o g s
g g s
s g a p s p p ,, ig
_ s s p
d 9 9 9 p p n 9 9 9 9 a g 9
- g isp 9
5 o
9 2
9 1
g 9 5
9 2
- t o t o 9, o o h 0 0 t
0 1 t t
0 6 3 0 g 3 0 2 1 0
T 0
2
_ 1 S
0 N
0
, 5 1
1
~
X t 0
0 0
1 1
0 c 0 1 : 5
- 0 )
D 1 M h P p G a
r 0
(
G , 00W 0 O T
I 1 L F
M P U M H 0 U S , 50 P P
N 9 E L
R G H N R I l
e t 0
0 S _.
v e - 90 l
t o
f o
0 2 e 0 d v . 50 n r u
a 8 t C o w f
o o 5 le 4 B 1 s 0 n
e 0 n , 0 e o 8 e i g
t w e e R b
d f e
i a 0 la S 0 V 5 0 0 0 0 0 0 7 0 5 0 5 0 5 3 2 2 1 1 C:8 a *2 i 4
_ hRc+!=gs 50 Gu e
s8hB R' O % 7O, C oo yd Z@IT 1 1 gM- 4 ,e O>pb C ImO0 mzmIQ<
I ghgZ -
boE5 9e=
_ g g g h
a s i g g e p is p s p is is g
- p p is Ma 9 9 3 9 99 9 p r
9 9
5 9
9 2
9 1 9 5 9 9 9
P m
M 0
o o t t t o o ot 2 t
o 0 0 0
_ r 6 0 0 t 0
. o 3 2 1 6 3 O 0 T 0
_ _ 2 1
~ 0 0
. 5 1
' 1
^ -
0 0
d . 0 1 1 1
D h
p a
r - 0 G . 5 0
T I 0
- 1 M )
I L M P
H G S 0 (
P N . 00W R 0 O 1 L H F R P R M E 0 U N - 0 P I
A . 5 E 9
R L T G S N .
I N S _
A 0 _.
E . 0 _
L 0 _
C 9 0
0 e . 5 r
v 8 u
C w
t w
o o
o le f B 0 0 s 0 2
i
. 0 e n o 8 i
g r
m e a R
- a. f e
-a a 0 v S 0
- 5 0 0 0 0 0 7 0 5 5 0 5
_ 3 2 1 1 .
";g 2 E." a'
- i gm2535gse @ s su >c
b Table D-2 RHR Pump Clean Staener Determenation of ht forikms hi 9N p rn k%
Detemune Torus level es a func8on of now ussng the equation hs = NPSHR + hi- PA + hvap 1;ow 7500 9000 ratio *2 0 5625 0 81 2 751 3 961 yC mO fm where hs as static head (which is torus feves) 10000 1 4 890 Qg .
Hr at 10000 gpm & 205 7 4 89 ft H2O [
@ 11000 1 21 5 917 o7 g riote. If the calculated requwed levelis less than 10 $ ft ( vortex hmn),the requwed Torus levelis to 5 a 11500 1 3225 6 467 Q O g 12000 1 44 7 042 0 0
= -<
'i Torus Temperature (deg F) 300 8
o Torus 95 110 125 150 165 180 200 220 240 260 280 168 400 12 619 17857 27613 41 516 60 855 87.178 122.313 hvap (10 1 892 2 968 4 538 8 751 W M Pressure PA (pseg) (pssa) F6ow (gpm) fJPSHR hi (ft) hs (ft) (-* to torus leve4 11 659 21 147 34 756 53 177 79 755 114 518 160 206 14 7 7500 26 2 751 -3 467 -2 500 -1057 2.907 6 606 0 35 967 54 987 80 965 115 729 161 416 7.816 12 870 22.357 14 7 14 7 9000 10000 26 26 3 961 4 890
-2 257
-1 328
-1 290
-0 361 0 154 1 083 4 118 5047 8 746 13 799 23 286 36 896 55 916 58 943 81 894 84 921 116 658 119 685 162.345 165 372 p
1 699 2 666 4 110 8 074 11 772 16 826 26 313 39 923 14 7 11000 28 5 917 123 235 168 922 11 624 15 323 20 376 29 863 43 473 62 493 88 471 7 660 14 7 14 7 11500 12000 31 34 5 6 467 7 042 5 249 7 824 6 216 8 791 10 234 14 198 17.897 22 950 32 433 46 047 65 068 91.045 72 372 125 809 107.060 171 497 152 666 h
-8 066 -4 153 -0 488 4 527 13 960 27.509 46 465 3 171 7500 26 2 751 -10 428 -9 483 5 737 15170 28 720 47 675 73 582 108 270 153 876
-9 218 -8273 6 856 -2 942 0722 177 9000 26 3 961 6 666 16 099 29 649 48 604 74 511 109 200 154 805 I 177 177 10000 11000 26 28 4 890 5 917
-8 289
-5 262
-7 344
-4 317
-5 926
-2 900
-2 013 1 014 1 651 4 678 9 693 19 126 32 876 51 631 55 181 77 538 81 089 112 226 115 777 157 832 161.382 p
y
-1 712 -0767 0651 4 564 8 228 13 24.1 22 676 36 226 171 11500 31 6 467 163 957 s 7.138 10 802 15 818 25 251 38 800 57 756 83 663 118 351 172 12000 34 5 7 042 0863 1 808 3.225 ~
-2 605 6 773 20 262 . 39 153 64 990 99 602 145 126 1500 26 2 751 -17390 -16 467 -t5 075 -11213 -7.583 6 20 7 40 363 66 200 100 812 146 337
-15 257 -13 865 -10 002 -6 373 -1 395 7 983 21 473 20 7 9000 26 3 961 16 179 147 266
-12 936 -9 073 5444 -0 466 8 912 22 402 41 292 67129 101 741 20 7 10000 26 4 890 -15 250 -14 327 2 561 11 939 25 429 44.319 70 156 104 768 150 293 20 7 11000 28 5 917 -12 223 -11 301 -9 909 -6 046 -2 417 6 111 15 489 28 979 47869 73 706 108 318 153 843 31 6 467 -8 673 -7 750 -6 359 -2 496 1.133 20 7 11500 50 444 76 281 110 893 156 417
-6 099 -5 176 -3 784 0 078 3 708 8 686 18 064 31.553 20 7 12000 34 5 7 042
-12 115 -2 811 10 600 29 403 55 147 89 658 135 073 24 7 7500 26 2 751 -26672 -25 III -24 420 -20 627 -17 043 10 30 614 56 357 90 868 136 284 3 961 -25 461 -24 567 -23 210 -19 417 -15 833 -10 905 -1600 11 810 24 7 0000 26 57 286 91 797 137 213
-18 488 -14 904 -9 976 -0 671 12 739 31.543 24 7 10000 11000 26 28 4 890 5 917
-24 532
-21 505
-23 638
-20 611
-22 281
-19 254 -15 461 -11 877 -6 949 2 356 15 766 34 570 60 313 94 824 14P 240 h 24 7
-17 061 -15 704 -11 911 -8 327 -3 399 5 906 19 316 38 120 63 863 98 374 ,to 790 24 7 11500 31 6 467 -17955 66 438 100 949 .-;364
-13 129 -9 336 -5 752 -O824 8 480 21 891 40 694 24 7 12000 34 5 7 042 -15 381 -14 486
-26 768 -13 557 5 030 30 539 64 797 109 941 26 2 751 49 876 -49 055 -47 784 -44 161 -40 692 -35 890 20 34 7 7500 6 240 31 749 66 008 111 151
-48 666 -47 844 46574 -42 951 -39 482 34 679 -25 558 -12 347 34 7 9000 26 3 961 112 080
-38 553 -33 750 -24 629 -11 418 7169 32 678 66 937 y g 34 7 10000 26 4 890 -47 737 -46 915 -45 645 -42 022 5 917 -44 710 43 888 -42 618 -38 995 -35 526 -30 723 -21 602 -8 391 10 196 35 705 69 964 115 107 gy y y 34 7 11000 28 73 514 118 657 <O t-
-39 068 -35 445 -31 976 -27.173 -18 052 -4 841 13 746 39 255 34 7 34 7 11500 12000 31 34 5 6 467 7.042 41 159
-38 585
-40 338
-37 764 -36 493 -32 870 -29 401 -24 599 -15 477 -2 266 16 321 41 830 76 088 121 232 5 IT1 9
~
-73 080 -72 332 -71 148 -67695 -64 342 -59 664 -50 725 -37 714 -19 344 5 931 39 937 84 809 O ~ ZO 30 44 7 7500 26 2 751 71 870 -71 122 49938 -66 485 -63 131 -58 454 -49 515 -36 503 -18 133 7 141 41.147 86 019 z 44 7 9000 26 3 961 86 948
-69 009 -65 556 4 2.202 57525 -48 586 -35 574 -17.204 8070 42 076 44 7 10000 26 4 890 -70 941 -70 193 89 975 D 54 498 -45 559 -32 547 -14 177 11 097 45 103
-65 982 -62 629 -59 175 44 7 11000 28 5 917 -67 914 -67166
-62 432 -58 979 -55 625 50 948 -42 009 -28 997 -10 627 14 647 48 653 93 525 h 44 7 44 7 11500 12000 31 34 5 6 467 7 042 64 364
-61189
-63 616
-61 041 -59 857 56 404 -53 051 48 373 -39 434 -26 423 -8 053 17222 51.228 96 100 M k y -
-122.597 -110 184 -92 464 47893 -34 645 9 411 74 7 7500 26 2151 -142 693 -142 165 -141.240 -138 291 -135 289 -130 987 *O 60 -91254 -66 683 -33 435 10 622 3 961 -141 482 -140 955 -140 030 -137 087 -134 079 -129 777 -121 387 -108 974 b 74 7 9000 26
-65 754 -32 506 11.551
-140 026 -139 101 -136 158 -133 150 -128 848 -120 458 108 044 -90 325 74 7 10000 26 4 890 -140 553 14 578
-136 074 -133131 -130 123 -125 821 -117 431 -105 018 -87298 -62127 -29 479 74 7 11000 28 5 917 -137 526 -136 999
-113 881 -101 467 -83 748 -59 177 -25 929 18 128 74 7 11500 31 6 467 -133 976 133 449 -132 524 -129 581 -126 572 -122 271 O -130 874 -129 949 -127 006 -123 998 -119 696 -111.306 -98 893 -81 173 -56 602 -23 354 20 702
- 74 7 12000 34 5 7 042 -131 402 E - ,
i f
$y3 g O>rO zo . 'sh .
o
">On" 0 rOcr 152 1 U $
TmOO mzm%O<-
- BIT I 2n< r r
nc5z .. "
Eo mE ag=
F 9 F F F 9 * *
- 4 0 5 0 6 5 2 1
8 1 1 1
o o n
_ o t t a t F F h t
F s
5 0 5 s 6 5 1
2 l e
1 1 .
p p p p m m m m e e e
. e T T T T s s s
_ s u u u
_ u r
r o r o
r o
o T T T T
a _
2-
~ _
D _ 0 e
r 0
5 1
u 1 g
i f F
t s
n
/
e m
e r
i 0 u - 50 q 0 1
e R
n g n
i o p
(
g t
c m u k F
S S %
C - 60 0
C 9
E 5 e
v e r u
s c a
c e 0 e
r h
t
- 50 u e 8 s v s
e o r b p a r r s e e v
o n in o
i a
r ig t ig s
p S e n R 3
0
- l C
a e f S
e a y 0 0
5 o 7
- 4 2 8 4
2 2
x = - 1 1 t ii R. . 2
$mm6Ehi$=s8o r
) l ,
F24g!
$h o Io Cp gC[Fd Z gIRIH T I
$b nmOOmz$g<- mh "
pgm a8' g
F
- F e 0
8 5 o 1 6 1
0 5
t o o 1 t
F F w
- o 5
6 0 ie 1
5 1
B p p p m
e m e m e T T T s s u
r u s r
ur o o o T T T 0 0
0 2
/ 1
- 0 b 0 2- t 5 1
D - 1 e
r 0 u 0 g , 0 i 1 F 1 t
s n 0 0
e ; 5
)
0 m 1 m e
r p
i g
uq 0 (
+ 0 0 wo e 0 R
l 1 F n p o e v 0 m i
t r 0 u
, 5 P c u u c - - 9 e S e - -
l g
n S h t - 0 i C 0 S e . 0 C v 9 E o e b r
u a 0 s s 0 s i
, 5 e
r r n 8 p e o r n i e ia g v t r e 0 O S R , 0 0
i s n e 8 p a f
~-
6 l e a
~
- C S 0 3 0
- 5 0 0 0 0 0 0 0 g 0 7 0 0 0 0 0 0 0 o. 0 4 2 0 8 6 4 2 o, 8 2 2 2 1 1 1 1
_E %$ o i
- m23Eg$g5b
- e- .#1
. m$
ET om t E 50
=O 6
3 Sm E 5 oz e Q ~ ECCS Suction Requirements Figure D-2c %m a I
y 6 to10 psig overpressure O.
$ 20 Torus Temp 180 F to 200 F g CLEAN STRAINERS 19-Safe Region is above the curve p
'17 O
{16 -
= 15 -
14 5
Z E 13 O
F- 12 1 m
1,
- Torus Temp below 180 F IT1 10 H
9 8--
<O t-11000 11500 12000 Si m _O 7500 8000 8500 9000 9500 10000 10500 o" Z SINGLE PUMP FLOW (gpm)
Z 9
$ b$
e o" A
, 445 aR*
- O> mh88 ZCo mi 1
p~"IQC r>H
" - T> " 2 3 - _
TmO0 mzm2O4 Wm " _
_ EpT= Eav .
F _
0 0
2 w
l o
e b
_ p m _
e _
T _
s _
u r
o _
T .
N _
t W 1
d 1 2-D e
r u
g l/ 0 0
0 1
1 i
F t
s 0 0
n 5 )
e 0 1 m m p e g r (
0 0 W i
u q 0 O 0
e 1 L R - - F n P o M i
t 0 0
U c 5 P u 9 E S L G
S N C e I C v E
r u
c mS e
r e u h s t s e e
r e
r p v o g v b o R a ig E i s
s N
- p I A
n 0 R o
2 T ig o S e t
g N R
- is p A e E f a
0 L 1 C S 8 4 2 0 1 = 1 1 1 ens gR rMA5oEn>5mi g0 9I. E
eO%$g _
O f zO .. ZN _
IOCr d OZ m71y T jQ $ _
i _
TmO0 mzmxO<- yggZ - -
Eoh= Ea= _
F _
0 _
4 F .
2 o _
t 0 _
2 _
F 2 _
w _
0 o -
2 le _
2 b .
p p _
m m _
e e _
T T s s u
r u r
o o T T 0 .
0 _
0 2
1 _
0 0 _
5 _
1 e 1 2- _
D 0 e
r 0
0 u
1 1
g .
i .
F _
t s 0 0
n 5 )
e 0 1 m _
p
_ m g e
r (
i u
q 0W 0
0 O e 0 1 L R - F n
P-o - M i
t - 0 0 U c -
5 9 E P
u -
S e L
v G S r N C u 0 I c 0 S C e 0 9
E eru h t
s e s
e v r
p o 0 r
e b 0 v a 5 o R s 8 g E i e
p N n 0
I A o 3 R ig 0 o T S
e 0 R
t 0
_ ig N e 8 s
p A f E a 0 L S 2 C 0
. 0 5
0 8 4 2 0 6 7 2 1 1 1 1
{u. d5 moe8 9eh +2 E
$mE+!=QsEs
' -! )
f.* [
OMo 7o. . $$8 .
T#gm- $
opIC{VMl-- Z 1mCd "
TmO0 mZmIO<- D
- @ggz - - _
EoE=g=e=
- l
_ F 0 F 6
2 0
- o t
4 2
F w l
o 0 e 4 b
- 2 p
p m m e e T T s s u ru r o
o T T 0 0
0
/ 2 1
0 0
- 5 1
1 f
2-D 0 e
r 0
0 u 1 1
g i
F t
s 0 0
n - 5 0 )
e 1 m m p g
e r (
i u 0 0 W q 0 0 O e 1 L F
R P n M i
o 0 U t
c 0 P 5
u 9 E S L G
S e N C v r . 0 0 S I
C u 0 E c 9 e e
- h t
e m
r p
v o
0 0
r b 5 ev a 8 o R g
E s N i isp I A n R o 0 0 T ig 0 6 S e 0 o R 8 t
g N
A e isp E f
_ L a
_ 0 C S 0
. 3 0 5
0 8 6 ' 2 0 8 7 2 1 1 ' 1 1
=E d i 8 r >-
t j mE%O"5 Q 5 E go 9$. E
. ,i! : t : ,
@%, i?* 1l O> g zO,. . . 8 o IOCr>H 1
0>g -
z C-og 7
1 0 M0OmzmZo<- _
mmg 5Z- _
E99= @8=
F _
0 _
2 0
_ o 8 t 2 F w 0 l o
8 e 2 b p
g m e
T s
u r
oF To 0 0
0,
- 2 1
0 0
g 5, 1
2- 1 D _
e r 0 0
u 0, g 1 1
i F
t s _
0 n 0 e , 5, 0
)
m 1 m p
e r g i ( -
u 0 q 0 W e 0, O .
R 0 1
L F _
n P .
o i M _
t c 0 0 U
_ u 5 P S 9 E
. L
_ S G C e 0 N
C I
v r 0 S
- E e r u 0, u
s c 9 s e e
r h t
p
_ e 0 m
o v
o 0
5, g b 8
_ a s R a p E s 0 N I
i 6 A n 0
_ n R o 0
_ a T ig 0, h S e t 8 r
e N R
_ t a A e e E f G
r L C
a 0 S 0 5,
a 8 8 4 2 0 8 7 2 ' ' 1 1 1
=$s gR gdNs; oi NsEMh 9$. E
N i
Calculation PM-1010 Rev.2 Attachment 1
- Page 1 of 4 I
! I 1
1 Attachment 1 RHR Pump Curves and Data o
. t k (V . k thrTd W 4~H \
f e.) Q l C l' &
?y;.4*,j5 ' '.i.L - 3:L~: ' ;;f
-m. . :.QgaQ.sg'&'
y Tj'M'Qm,..i iE(..: watj r 4. 'A 5 4,jmuW g gt h *,-'"w ,k 4 p; ~ <
$ $C Q 5 g&
& ll <. , c i.
1
! $ s l Wip ajs i
e a$
as s.- mmL Dhfa}dP w ews w;ag k w a l ? t iMEDMMtR HMRM %d %f~.f man ca( a gra w t ammimesbEWdU it UNRhiL9EOU MW 1s.] in.A 1.3 %
${IN$!NNjNkMdh bf@ik$} hib$
swe%2EpeH# Wl M a$M i t Mi
! EM' ELEB)M
@DEM 3MBTM WSMRMik iR M # iM.
M% E5% FE E4. ism i .. .
. 4 . .a . . - . . - . - --
1 ml E6l
.Qg
. oR, ) h%
p
/
N N.e ;. -*hhNf@M . eg.e..n-- N Ch )?. b .} t.p%4[jh4 m.--- - -
D
- f'4.#4'sh @
3 h[' '
.o g,l -
.h 9,k iI % H ,Is % M-[.7 AE W E ;$j #.5
'.'y
-i o3:.w 3 E L j .h $v Yn1ad M. F' i.
-s p
m.T- . ... ,
d$llhlkNMIfNhbibbk ; N .).
i sgiH1%8E8 W R t@ M MW $J . OR. 6! (..a ww mim meM ee s mery*A rT
$@NMMiO!@$$! MdD3Q Mh i$
gedse n ew nu mw uan w t w arn gw
- m. , s p=q,w.5w- m x pQtma . ..
OjSy (;4 2. %q i NC.d %iydJ%# gt56igig A'2m' v . .
1 , .
.. .. *.% .: e
'. n . . . .'
, ; .fl ll' L. l.
il .
? '. ! ,2 5 9\ ,.
y Av f z.,
A r r ou n < s.s t- I l . .
. ^ * ' '
. f,.*) * " Y ?. .
i
[. % 'n ~ ~
')1,,M:. . m.w;r,c . ; w @. w?"f..~ -
3 ;#h';"'..',,T
- .~= - 3 M. . .
- -g..Stq1 ~-
-e pm V 33,h.'u n:.w dfkg:
, j., , i .v.
"" . .: ,.w
[.gpppp M,{
ir.: ,
h u :rt:4 p;tetyl fp . . . . . -
%F ..a h _hj$ !VQ.E$N E,jI:.
i iER @M GM 1903fW/p3 g t.,T
- g. g 3
3 ,
pr. i:oJ(i e 1. S &P p e og ;) L.
4(" y '$ k.,
e _ M .( g ib'm ,g 43 7 }i.W if.j@Mi hi *L ,.T
^
b Mq J tiri$ 5E 4. 7Mm a "m ',.;4wq S'4'1,'S'f3.x " v.a , s. > ,*. r. r 1 '"*1.'.' n'y i
or.. i I ?. @
['iP f.8%::/ id.h~;c
, t. ..
5t l ! h E
- L 4
- N, , ,
u u.?
. h; ,pi %'. f.gik!h.th7
.: ?.r4m.,e.; ,&):.t1F .i Y. . hi '"~ [
faiitmishiW
. ,_%gpA... .")' r,m senemas g se -
4 . .
p .-
4.. % t . 3 . . . ., n. . p : gs. A . . .
7t % ll W
- 3y r. d
- r'r ,
d 3 g ,:r r p.i . y a
k b .N, p " m. ~
' 9 J 3! % T ( & h , b k..P
- ypi . a
.. ,.. E~ft--- --
q '-
n 4
3: .
- ., ..-4 g+.C Q.m .
p% J;,*.~
. b,,,r[. !J 1.b' c;!: 4 g;.'.s W+.-
i
- j. ( p.g..
6-9 ce. . . d, , . .
r:-*:"
1.:.2 -
w% p.:
.,e *P - ? ' ":- -
.Wr . M b. m %.4 t - - M,,. g g.. e'G 3. ". '!'"t,'
M& y. , .gi:--
- -- . . "l +
N .'
ssr,. e f, .*,
.? -l . .
$;b .at : !
~
W;'g <- n &-. 2 . A } ;. ,a ;'5i t'N"'tYOU[0.\f.;.W'-
o;s
..t
=
~;! ~~ t. . . ..: -t h,g,],:
. . w. v..&' Ay
- tr
. .. 1 Y' N.a . . ,f. * . *,*
=
5
.'e,.1 ' {*].Y .
e.c
?
,I a.
t..
, .ve p . y 3. y - <; - -- "1, ---r ,
--- - - - ~ " "
q
-- p ,a -
. c ... . . . _ . . . . .. c ;
!, . m.s.
I @.i.M._r _,M._ rpArr -M P 4 .n,W..W.9.W_ h._. .g,w .....'.,gc.
-.#m.
- .,N"/ D. .tf
. u. m... .gJ .. .".. : 'i: : .
W-
. . * * .JT w[
,i .. .._. .
. @cf q. ,' ;" ,r'" W_'-
TF.. "W.' Il * "1
^
4*.!t59.M. : : . i.x,M V 'I#'"
t, z;M'.M_.
mr-ba.: 'I5"n@g?
i 3 %c. M. C... 3}, ,.
- Wb.rt .. 9e a g . ..M. ..'s s
j .1 3 .; ~ p' ~ '.:S : ' "^ . g gy in ..:n e- kn 1
- i l.b3 '. n , ,f
- :v ..,y ..
.N b. g : t . . .t}'l9 . '. . q , ,t. 'q a m
,,-;* +y8:h. . g; A)d , b*j'M ps.y.t;#. . . . .
J K,g.a .,. t..,.h..:;.:.k. u',[ { g L .
~9*Ng'7.:
i;;j[..; Wf,,. .T.9. f:y?w:< c.V...- ay . .~ , .[e.
t' .. .,
" ,.7 L . s . ,; .
,r
, p 7<. ~~
n
, g. .
'.g h '
e- -
' 1 ' . q, ,. ." ' t r L'If-r.
/,a .
g- --r-4 p+ O . .
.:.. n:n.. e . .u. r~ q q:. . " " "1
! r
,i: !
~4" "
Y' A
- r. ' ..;l..
yAL Y.
4 3.- {4. .:p,h.- : -
N %{$5'f['i 1$
h k: . HAWb,I.,h.mbu.s$dhP b. Nh NIhN5 1
$w1$MNU$$%m._Mdk$bE7
- n. .M.c
. M , u, . -
ym Ew._ .. a k
x,. . . e1,s.m w4
.mt...supa.,.
w a-m, g.,' .m p. . .t-- ,
J %,h, yV$*l . ,, ,
e-tp'][bt
~
-,I .i.$t '
an f
- m ,2 m p'a&d -
g.)'".Y.&.,M..
3 3 g7
.l u fL.m.W.$.Q 5 h '
plg a m. .e , ,_
" 1 ddNHERR R$1RF9.PM
! ,.-n _.n i
('W.qg !~ 3..Em:
%:-a.ydgpe e i we e q s~ r A w.iy-l:h'i P e
i e, %.w,+ N.: - w:'a 'l
.4.%5 w va
- y. W--!@
Cti h*.jYHPN a :.u,.c s , W.- :
F u m2 mL .
,e, R-e - Q~ :lN f"eg.Bk= 4 w .
\. # * '
' 'l
.& d *n.r:o$jl,4O i
! c. ...
.g!!
o %. f.&m,m. t&1--&a -
{b 7 m T
WEU IE EIN
$%. % w[N. Y. ig::s5
,z.i 6..p.g:o > m e m g. E ,
4 D00*dlS'^.sppy.d.,.g c ; m.- .. rg.. a.d M. t :@C.e,c' j
.. x.k c
'.TV"'Y8 Md"* Y.l. ,2j
'r:d E$N*V.
.- m-
- +- r
., 2-{ *'-- .
-...n
'*"^2;... __
[ . ., u .- < #'
d.-A 4 u..
d l
4
~ ~ ~
wh ram owmwv R e v. 2.
4 T r A c. m w r (
.. r .--
U4
\, s) e c .
C ERT!.FI E D
. n nv m nn,
..._.a y. , . . . , . . . ,
........d.
. . . . _.-.....n.-....................r.......t..t... . . . . . . . .. . . . . . _ . . . .
.n " 4, u-,m .c .:..
u.._ : 1.. 1 ,
,n t n fs,'..:..m.m -- ,; n, .::1,:a: .
. .rCPp. .: :.E" L m,m..I..e. . .r.. . Js..l. !. LE..~r.."I..a : ,.r:. . ::
4 .
.........r...
i...
.J . .. .............t....I.,.~...........
, ..,. .. .. .. .. . .t.....,._.
.- .s.
.. . . . . . . . . . . .t .. ... . . n. 4. _ . . . . i ; . . . .. .. . . . . . . . . . . .
e m .a. ,-. .
>v.m.,,....,.
,e
. . . . .. -. . .. . . . . . ..~
.....,. ,. .. .%.....t--,
....._..t..
..s
...i..
.. . .t. . i. s. . . r; . .
, O A O <t) . . . . ... .. .... ... . . . _ . ... .....
,f.
. . .. .. .....9....
W
.._.l...
3.. n.. .. ..-.. .yL1 . )....
f .. . . ..I ..
,M .. .
... .. . . . ........t...
.1
.. A. .-.... . . , .. . , .
.g,...
. .a.. .
.L
.... t . ...:...
7..
.t.
,a.t
..t~...i
.o ,.
r.
..,,..~,%.,.4.,.
- a. ..
- . , . 3 .
.r .... . . . _. . .
m
...t.. . . , ,
c: e- . . . . .
........m...t._._
... .,. ._.... .r.,
. . . .. . .... .. ....... ... .... .. .. ... . , t..-. . ....t.......
. . ...i.~. . ... .t. ......,..r.....
....i, ..
3o, . . . . . .
. .. . , .m3.L... <
. . . . .t,n-. ._ A, .. .u. .... . c,, ., . .......,..a..a.........L._.
.e , .n
. .. . . . . .........r.t....... . . _ . - _. . . ...
. . . , . . . . = . . , . _ . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . -. . . . .. f. .y . ..c. g , y. . .4 ,f t ,,,I. ....
. . . . . .s . . . . . . . . . . .
%y. . . . . . ..g -- .- n..t- . **" -
-' * .* '.' - .*-+****..r.*..*. b-* ***t " .. ,* *w't . M C**,14...--
m - - .* - - -
- =
- - .
) .3 3* a, ym:O.=: l. r
. d;; 's " .: U : {.; :l' . 9.m...~'... . .;: j r :;. : n i:'
' .. l: :. *..l: [ :. :
1.
ry;,.;*...;.' ,.u;cwuu
- r. I' W N- 0.
n, p m
M., e . y
. ; ~. ,
D4 *!'g.... *--L:
. . . ! . (, y. r ~.. . .
.:*.a.,,....... -- l
..........."f,?"
fg ('[ ,g , .7...g~..... . . . ... ...
. . . . . - - VT 9. .
4
. , ..(..g...w i
<g
,,,, 0
...n.~..._.
.............,......l........... . . . . . . . ... ..
. . . . . . . . . . ....l...
. . . . . . . ....L., . 4. .. .. . . . . . .-
..t..
f...... ., , ..
... I
.,)..... .!......
.......N..s.... !................
- a. .
..,._....,..).. .. .
3.. .t.....
,.g . . . .-. ... ... . . . . .. . . . . . . . . . g-
..s...,... g . t ., . .. . . . . . .,
i
.4
..r._..................
.. .. . . . . . , i
,0 0 -
w.,. I
..........j.........,.......t.........t...!,..t.....I..,.............s.........h....._t..... . . . - -
i I b .........._..~......I._.
. . . . . . . . . ... . . . . . . .. . . . ..u
. . .. ... .. ... .. .. ... .. . . . . . . . ,. , i
. . .. ..l.... . . . . -. . ..m.. . ... . . . .. .
.,,.,..M s,
\g
.. . .. L. ..... ..._...,
.. . . . . . . ....1...,.,......
... . . . ....g, . ..
. . ...I. .
...t. . . . .......r..=.".
.r ...,.
,.............r.. ... .- ..- 4 ')
t .. .,... . . .
T. fQ.....g..... . ug . t.. ,.. . . .,... . . . , .
.- s. ..
~. .......;.....d...
....l. ...
g.. .
g .y , .
.. . .. ., . . .. ,. .,s .
..S.... . . . . . .. . - . ......L.. . . . , .. . . 5. ...
. .Q .t . . .. . . . . .
.5l... -..
. .-... ._-. .. ........I,.......
- l. . . . ...t....,..
_ . ri . . *
.. +g..
. . - . ! I. . . . ..
..d,.
- 7
.. .. . . ..m.
> .........s.
.... ,.n. .. . 9 .... .
.l.
. . . , 1..-.. - . . . .I .............1....
,g
. - . . . .. . . . . t.. . .-*.*. . '. ,* ..**..- . '.'.' 1.
. . .. g O__*.b .. ..y.
l
..................ps.. , ,. . '.. ' Q . .p; n ... .> . , .\. . . . 3 ..
.c
.. . . . . . ..t . .., . .
..i, ,
. .....t..
1.,. . . . . . .
.> .1 t .. . . . . - _ . . . . . .
L.I
. . . .. .. ... _. . . .. ... . . ...................f..
. .....g.. - -..-..;... - -
.A, .
-2 _
....t.~.~......~.A.
. . . . . . ..g.... .
.. . .;....g..-..
. .. . . .g. . . .
. t. . .
.r . . . .--=.=.t..x_....f,,. . i 3 g .. . ..
....y,
.........q.....t...l ..
. . . . . . . . .. . . . . v. , .
- g. ....i
...... .... .. .f n .........t... ...... . ... ... .. .... .. . . .. .. .d..........
......_..!..v........ _ . . . . +. . .8,. . . . ...... . . . .
.. .- . 1... . ... .d. r
. .. .. .... . . . .J ...f........ .
........l. . . . -
. .. ......t....
. .. -. . y>
n c-
..--)-..1 .
w .
....-..---.+.w.......l...
.. ... ... . . . . .. .l. .......t........... .......i........,.... . . , . . , . . . . ~ ......f..s
. . . . - ... ..k .. . . . ,..... . . -. . . . .. . ... . - . .,
.L...'.5. . . . 5 . l- . .
.t.... .
., . . . .. . . ...........m.
. .. ... ..t . . . .
.t...
m
.. .. .. . L.
. p <
. .. ..... ..,.... .. .. ..... . ...l,,.................t. ,.).
.M....
6 .
................l..
- n n ...
...t,,.....
. .1.. . .. ...- ~ . . . .- . . . .. . . . . . ... . . .........g,...i......-........
. ... .... , l. t.. . . . ..... . .!. t.. ..~. l...............
._ . ~! . . . 3. . .. .. ..... ... w "O m .
... . . .,1 . . 4 ... ... . , . .. . .f..... . . m. .
,.,. . .. ... . ,.iL... .. . ... .
- g. .
1.. .. -
n .
- g. ..
. . ..1, - . , . . ~ . . . .. ..... . . . . . . . . . I.. . . . . . - . . .. . . . . . . .
. . ... .. . . . .s
. . ....g
\.......!...1..
...t.. . . U. ... .. ... .. . .. .l.
O ...+ ..
71., .
....n .t....
...........l.-.
..............t..b... .
.J
. ... ...i ... .i....... .. ....., ..
.....'*[",...r.. ...-..4I. ..
... .. ... ... .N....... .. .2 3
- . ....... . ..I.... . ..... . .. ... . .. ... .... .. . . . . . ..... ..!................
.~.~.1.....: . . . t _.
..d.... .
. .. .. ... .. .. . . . . .._. . .s. . .
....L..... .. . . . ... . . . ... .... ... e..
9 e 333,
- a-
- --L.~ti............................, ..... .i....
+. .. ....../.... ..
+
.t . . .. ,
, _- .. .... --. . .g.-...i . . * -
s * * .Z
.... C .. .- ....~.... . - . . .........
.+... ..
. . .. ... ....... -. ... ...l... .
, . . . . . . . . I.
s la y x
r .
- .......'r/ t ., .... .. .. ... t. .A . .
...H...'M....., .
l,
,........t.
~.
....t.
. ..t..... . ... .. .. ... .. . .6 . ,.
...-......g.. ..,
M i. . . . . . . T. . . ..... .. . .,..
.. - . t. . . . . .1.......
..... . , . .. .L .
. . . I. . :! .. . . ......l.
. ~ . . . ,..... .. . ,. . .l.-
3 p1 -
- l. . .
. 6.. ... .. ... .. . .... ._.
.g..
. .. ... . . .. ... . ... t,y
.. . I...
- 3. .
......I'..
. .d I f *,1. *, .
. .J ...
........1....... . .. . . . . . .. ..
' . ' * . . , - ' I. . -
l' 6
~.
.~. Or--
. .i .-
.. .. '..' . ...- .. N
....'.._........w.....
3 4 %. ,
.g. . .
9, ,0 . . [ I*{ . . . . . . .. .- -. .. . .. .. , . . . . _ . I....
. t. .
t .. , . . . . ..
.y . . . l. ..
l . . . .
. . e.
. -., ,i. 1 8 i .........
.w
..f. I.
. . ..1..,..... .._
.. . m .4 , ... . . . .. ...I.-
g O.3, gy . . . . . -.. l .. .l.... . . . . .
.g.. .... f-
.....l., ....... .
. .. .. .. . . .. . ;.1 .. .
w ... .
. k, 1U ::) 7:: : :; :
.g.... : ",.) : (.
i '-w . ... . S L. :M :' . .;'. %:
. . ~ .
e
- gh ..g. t.M.~. M.T . . . . .
!..g.! ' . . ... ; a..: . n. .' . t. - * - -
_m . . . .
t..".~'.t..".'.
2
!W ...
..m .*".-lm s. - .
- t. . .,J.
i . .. . . . . . . . ....
.i. . ...
.I. .
.~ ..-~...
s
-s
..-+e......r. . . . .. . .. .. ... .. ..
. . ... .....1 . ~ . ..
... .g.. .. .-. .
....1.. i .. .. .. .... .. l .1. . .,...... ...
Q) ,. ,
,, .g...-
..~,1..-
.g. .. - .
~ . .. .
.1. ,-. ..%... .- V. . . ...t..... ...
.m_.. .. .
, s . . . . .. . .. ..
', Qp
....i e4 s p. . -
, . w. .mD .. .... . . . . . . ..,........l........t.....1.. . .... . -..
g.. ..'J.~ .
.....,a,/.J
. . ..}- . . ; .- .
.... .. . .. . .. ... .-...i. . .. . . -.. .g. .
.g... . ~ - . ..
pr .. .
- . . .9T_
..'^
3
-. ..s # +.. -
.\'
.. s... ..
. . .{y.. ' .,... . ... ,. ...........'l..
R 'z .
.w.... ,......... .. .~~ .
-- ~ *-. . rs .-
. .m .Q....<..~...... . . f".' ,,.i....s j r .. .. .g - . .,1;,, :, gJ.1,1.-
. ... ... A. . .% . . ._ , ... f...-. .. ..l.....
..~..g.......g y ] ..g. .
e ..w.... 4.
w,.
~. . . . . .
.g -.
! *. PIA %
. . .M.$'E' ' '. 7'=r=.;: u.::: t."r *.7 -' ' *.f. VC ' 1".: l .
n l.: :. .h,' ' ' 1.W*R: ,,1,i t ' . *' '* ^- ' rd ' " .: *
[
- , M i *.2 2:: {x( . : ~':w: !: :":-'...: --. ;;U : n ;;r- : : : ::.:d n : r:: .r=. {. r : :d; ')rj. ;*1;n l F .- :; * '
ETO. .h.. .a.." F.; .... .. l=. . ~:.... . . ..' .; ;. .. ... .. .. u..t. ....::: . ... ; .L. :..: l...':r u:..'.u * . ':g .* . 2, ) :. 2.:. 9. 0 -- ...J..
... Z.
_. :t
- g. :. . i .L.
. .' t ; l .'.~ C U.~.). q: :.;v% ;.
..g.~.y........~.....
. , . .m. . .,,. , .,.o. . . ~....t. g..
.nq
..,~..L.. i.
..A... .. ... .. ..........._...,.....I............
. . .. .. ... , . . . . . J.yg. . .. . Ai n
Q . . ..r. +=. . . . . . . . . . .... . . . .. .... . . ~ .. .. .... .. ... .. .. ... ..
. . . .. .. .... ... ..... .... ..... .... . . . g. .,g*.=.
i - .. g. - .
-p
,3 , .
g ;; . .
7 .
_.i1.,............
1........L., . . .. .. . . . . .. .. .. .. . . . .~
...... -. . . . - Q. .
.. .....1..... ~ . . ... .
. . . . r...
3..~.. . . . ..7 ... O.
.._..l.......-
. ......!........!.1,...
.....~
.. ~ . ~ .
L4.
. . . ... . . . . . . _ _ . t c......-
i _.......l.... ..
T
. *0 . .. . .
-i...~...... ...'.
- ~ L. x .u=t1:=;W: D :'. . tn - .D:=.utt~ m. .-t'1QLn a .. .:\
- m. C. :=~. :1 : . .
.:x
- C-
-' .,C : .:.:0:. . . . t h *n . !!".d.d= g' .. ,." , , '. -
.l. : u p .. . . .:0 u: . m. . : . . : : O. .N_. : . . .y. . : . . f :g . . . . Q. .:. :.. . p ; TK..g *.*.l.
r . -
-g....
I g . . .
t l
I I