ML20148M999

From kanterella
Jump to navigation Jump to search
Analysis of One-Foot Drop Accident, Addendum 1,Revision 1, for RSAR for HN-300 Series Radwaste Shipping Cask.Oversized Drawings Available in Central Files
ML20148M999
Person / Time
Site: 07109092
Issue date: 11/06/1978
From:
HITTMAN NUCLEAR & DEVELOPMENT CORP. (SUBS. OF HITTMAN
To:
Shared Package
ML20148M997 List:
References
NUDOCS 7811220260
Download: ML20148M999 (24)


Text

'

O PitO. LECT COVElt SilEICT Document Title

" ANALYSIS OF ONE FOOT DROP ACCIDENT" Project Document Number ADDENDUM NO. 1 Rev. 1 for SAFETY ANALYSIS REPORT For The HN-300 SERIES RADWASTE SHIPPING CASK liittman Nuclear & Development Corporation 0100 lied Hranch fload Columbia, Maryland 21045 7811220 M o it ef: Std. Doc.

N/A

Itev, O

g5 4*-"+.w,,, ja

4

>b 11EVISION 1 OG 11 EV.

D NI'E ENGINEERING Q. A.

PROJ. MGil.

ECN #

{\\fkal ],

}f 0

6l5/78 jf,

[ } Q f

1 10/Gl78 k), p,,,,.' & f Q, hf' ;

), k),,qt X),LJ.78-15o j

J r

9 4

l l

Prepared by. John Jennings Checked by George Trigilio

TABLE OF CONTENTS Page I.

Structural Analysis 1

i i

A - One Foot Drop Onto Side of Cask 1

i l

B - One Foot Drop Onto Closed End 5

1 l

C - One Foot Drop Onto Long Edge 7

1 l

D - One Foot Drop Onto Door Face 10 i

i(1)

E - One Foot Drop Onto Bottom Edge of Door 12 l

F - One Foot Drop Onto Side Edge of Door 15 I

i i

G - Weld Londing Due to Bolt Tension / Shear Laminated 10 i

l Plate Construction

'3 I

i i

II, Containment Analysis t

17 l

'III.

Shielding Analysis 6

17 APPENDIX A - Figure 1 i

REFERENCES i

i ii

I.

S t.r uc t u al Analysis A.

One Foot. Drop Onto Side of Cask 1.

Impact Energy of Loaded Cask E = Wh W = 43,000 lbs 4 3,000 x 12

=

h = 12 in.

516,000 in - Ib

=

2.

Steel flequired to Absorb Impact V7

=E

&cr = 50,000 lbs/in er 516,000 V

= 10,000

(#"I'

)

= 10.32 in 3.

Stopping Distance The Kinetic energy is absorbed by the deformation of 48 each studs, embedded in the 2" thick top and bottom plates.

_l1 n

_O F1 F1 F1 nn

~

A I'd J

s y

i

\\4S h" 47" i

a 4

4 i

i l

1 of 17 i

I I

n" I

g g"

~

r

(~,',._--

-j.q qy... g y,,-

n g., N ' N-r,

., y \\

f',

, /,./ '

f s.-

( --

'\\

,/IN N \\

/

/

/

Q

/ f\\

' r l/,,, ',/. !.

/,

O

/ / /Nx

,/../.

x

,/

.<r y.N/

./

. /

cu-L

' NN

's s

i 7

' -/'

- i x s l

O

,/j' /. ', // ',/ ',-

N

/

/

, 'N i j / - - -

--e - y t - (-- -* - %-

--Y-a

../

N O

l

's

's v

,'x(-

NNN 1 --

. N b

i' N (N N N,\\ \\

'g l x

p A--

e y \\ a m._.s_

n s.c.s..s._s '..a _ u.

N N 4 r. - -

9

[/ ss's

  • .r

',3

'..N Typical Stud Installation m

i, s

1.. _ v... __.

s

.PT_.

,,4 w..

\\\\

~

_ _r..

lc' l

(M__.

4 n

l r.-)..

{/ h v

t=A

_ 10.32

~ 48 x 3.1416 x (0.5)"

= 0.274 in 4.

Applied g Load 2h E ~_ T (ref. 1)

~_ 2 x 12 0.274 i

I

= 87.6 5.

Force Applied to 24" Thick Side Plate Weight of 2.1" Thick Plate 3,802

=

Weight of Cask Contents 8,000

=

11',802 l

F = Wg l

l

- 11,802 x 87.6

= 1,033.855 lbs l

i I

{

(

l 2 of 17

6.

Strength of 23" Thick Side Plate Welds Neglecting support by the 1" thick plate beneath:

e = joint efficiency = 0.85 a = 0.5 in.

2

/ = 2(144+40) = 368 in.

S

= 0.6 x 36,000 = 21,600 lbs/in y

F

= e (Vf/2 ) afS y

y

= 0.85 x 0.707 x 0.5 x 308 x 21,000

= 2,388,416 lbs

,388,410 Margin of Safety =

_y 1,033,855 1.31

=

7.

Force Applied to Weld Jointing 13" Thick to 2" Thick Top and Bottom Plates.

Weight of Cask & Contents

= 4 3,000 lbs Weight of 24" Thick Plates 10,072 lbs

=

32,928 lbs F = Wg

= 32,928 x 87.6

= 2,884,492 lbs l

8.

Strength of Welds Joining 13" Thich to 2" Thick Top and Hottom Plates F

= 2 x 2 x 0.85 x 0.75 x 146 x 21,600 y

= 8,041,680 lbs 8,041,080 Margin of Safety

=

- 1 2.884,492 1.79 9.

Maximum Stress In 23" Thick Side Plate Uniformly distributed load, one edge free, remaining edges fixed.

See Reference No.

2, Table 26, Case 10a-3 o f 17

s

,'?/ h';W.////./ '

/ ' ':D b

a/b = 40.5/144

= 0.2812

[ 40.5 4

1,033,855-

= 177.3 lbs/in 2

k = 144 x 40.5 f,e.-,.Yb.-.

J B

= 0.0270 t = 2.25 i

~BlI D Max 0-

=

t2

, -0.027G x 177.3 x (144)2 (2.25)2

= -20,044 This is a compressive stress on the bottom of the plate at the center line of the fixed end ("a" side).

The support i

I contributed by the 1" thick plate below has been ignored.

1 1

l Maximum Shear Theory of Failure Combined Shear j

and Axial Stress O'

3G,000 >

(0{+40")

o o

y s

i i

Where O't = 20,044

  1. /in Ref. A-9 I

I o

and O'

= 21,600

= 9,351 #/in" Ref. A-5

!(1) 8 1 + 1T31 j

O'y = 36,000

> [20.0442 + (4 x 9.3512)) i

=

x 1000 1

l

>= (401.76

+ 349.7'6)3 x 1000 I

i 30,000 27,414 /. OK t

i i

i Margin of Safety a

i j

36,000 1

-1

= 0*313 27,414 i

i l

i l

l l

1 4 of 17

o

' B.

One Foot Drop Onto Closed End 1.

Impact Energy of Loaded Cask E = 510,000 in-lbs (see A-1 above) 2.

Steel Deformation Required to Absorb Impact i

V = 10.32 in3 (see A-2, above) 3.

Stopping Distance b\\ F "

i

-- y-s O

O O

O O

i Total No. Studs l

l(1)

=g O

O

= 20 s

-y 1

O o

o O

O y

~.-..

f w,v'f r'/,

s

,/

\\

= f.

_ l-

/n'... _..__. A '

t i

i

- 10.32 t

~ e I

F.' '

l 2G x 3.1416 x (0.5)"y

..._ __y_

q a_

l(1) i

= 0.505 in (gpT7_%_

i c.

1 I

..--.~W..

4.

Applied g Load Kl g"

l

-9 g=

i

_ 2 x 12 i

t 0.505 l(1)

= 47.5 5 of 17

s 5.

Force Applied to 2:l" Thich End Plate Weight of Plate 1,355 lbs

=

8,000 lbs j

Weight of Cask Contents

=

Total 9,355 lbs

=

I F = 9,355 x 47.5 (1) l i

444,363 lbs 1

=

6.

Strength of 24" Thick End Plate Welds Neglecting the support contributed by the 1" thick plate beneath:

a = 0.5 in

/= 2(52.5 + 40.5) = 186 in F

= 0.85 x 0.707 x 0.5 x 186 x 21,600 y

= 1.207,188 lbs l

Margin of Safety

- 1,207,188

- 1 444,363 k1) 1.72

=

.. ~ - -

7.

Maximum Stress in 24" Thick End Plate l

We neglect the support contributed by the 1" thick plate, l

beneath.

The plate is uniformly loaded and fixed at all edges.

See reference No.

2, Table 26, Case Sa, 52.5" a/b 52.5

,1,3g 40.5 405 b

l i

B1

= 0.4095 i

t 2.25

=

,(1)

O.

B2

= 0.1944 q= 210 0 lbs/in2

% = 0.0207 6 of 17

~

2

.- B,9 b Max 0-t2

_ -0.4095 x 210.0 x (40.5)

(2.25)2 o

27,8G2 lbs/in'

=

i i

I(1) 3G,000 Margin of Safety = 27,862

-1 8

- 0.0292 8.

Maximum Shear Theory of Failure Combined Shear and Axial St' cess O'

= 36,000 d

(O2 + 40

)

5 Y

t s

i l

Where O'

= 27,862 Ref. B-7 I

and O'

= 21,G00 l

2.72 s

= 7,941 Ref. B-6 d

(27,862)2 = 4(7.941) I $ x 1000 O'

= 36,000 l

i(1) y i

g

.j (776.29 + 252.24) x 1000

=

l l

36,000 > 32,071 OK l

Margin of Safety =

36,000 -1

= 0.123 l

32,071 i.

I I

C.

ONE FOOT DROP ONTO LONG EDGE 1.

Stopping Distance Tan &

- 47 k '/ : *x 62.5

\\

\\

N Yj

' N,

= 0.7520 j

V

's s

$3I N \\,,,

s 0- = 30. 9 4 s

Ng

,N N

'N

'N

/ = 148 in

'1 3

V

= 10.32 in (see A-2, above) 7 of 17

s

/

53. 0$4 g

$ !o.9 4'

/

/

u 36.94 h +h (t(t AreaofTriangle=t(t(t cot 53.06 cot 2

2

= 1.32994 t

+ 0.75191 t 8

2

= 2.08185 t 2

2 Volume of Prism

= 2.08185 t 2

o 308/11 t~

= 154.06

=

Z V = 10.32 = 154.06 t2 0.258 in t =

2.

Applied g Load E"

2 x 12 0.258 92.89

=

3.

Component g Load To Side Plate gs = g cos<>

92.89 x 0. 79926

=

74.24

=

4.

Force Applied To Side Plate F = WgS W= 11,802 lbs 11,802 x 74.24 (see A-5, above)

=

876,233

=

2,388,416 lbs Fy

=

(see A-G above) 2,388,416 Margin of Safety

=

~

876.233 1.73

=

8 o f 17

t 5.

Maximum Stress In Side Plate 2

3-

= 115. 90 lbs/in 52.5 x 144 See-A-9 above for remaining parareters y,

y _ -0.048 x 115.90 x (144)2 (2.25)2 2

=- 22,787 lbs/in 3G,000 Margin of Safety

=

-1 22,787

= 0 58 6.

Component g Load to Bottom Plate g3 = g S I N 13-(see C-2, above)

= 92.89 x 0.60098

= 55.83

)

7.

Force Applied To Bottom Plate i

Weight of lt" thick plate

= 2,678 Weight of Cask Contents

= 8,000 10, G78 F = Wgb 10,678 x 55.83

=

596,100 lbs

=

8.

Strength of Bottom Plate Welds Fy = 2,388,416 (see A-G above)

,388,416 Margin of Safety _

_ y 596,100

= 3.01 9 of 17

a 9.

' Maximum Stress In Bottom Plate Reference No. 1 Table 26 Case 10,a (see A-9, above)

-596,100 o

q=-

= 78.85 lbs/in" 144 x.52.5 14 tt a/b = 0.364G S2.5 a

B1 = 0.048 t=

2.00 b

o

-B1 4 b" Max O'=

2 t

o

_ - 0.048 x 78.85 x (144)"

(2.00) 2

=-19,620 lb/in 30,000 Margin of Safety

_y

=

27,695

= 0.83 D.

ONE FOOT DROP ONTO DOOR FACE 1.

Stopping Distance Volume of Steel rgquired to absorb impace = 10.32 in (see A-2 above).

See Figure 1 Assume that wolds securing the hinges to the cash body shear without absorbing energy.

The hinge " hooks" will remain

,ff,/,

,,,, 7 captured under the cask, because the impact force passed between the centroid of the " hook" and the cask body.

The depth of deformation of each " hook", dividing energy absorption equally between the four, is 0.445 inch, i

2.

Applied g Load E"

, 2 x 12 0.445 10 of 17

53.9

=

3.

Force Applied to Doors Assume the weight of the cask contents is equally divided between the two doors.

Weight of Door

= 1350 Weight of Cask Contents

= 4000 5,350 F= Wg

= 5,350 x 53.9

= 288, 365 lbs 4.

Closure Bolt Load b

Assume the door is a rigid 7g p4 3

body.

Also assume the bolts are strained in proporation to r3 E2 their distance from the hinge Fo Fi t

and to the number of bolts in t

I the reaction plane.

F7 would bez l

the highest bolt loading.

Moment applied to door = 288,365 x 15.5 in.

= 4,469,658 lb-in Summation of Forces:

  • "7 Fo+

= 288,365 28.75 Summat. ion of Moments:

b nF7

= 4,409,658 28.75 l

1 11 of 17 i

X Force (inches) n fxn = 213.5 o

F1 1,75 2

F 6.75 2

2 F3 10.75 2

2

{x n =

4402.875 F4 15.25 2

F 19.75 2

5 F6 24,25 2

_ p.

F 28.75 2

7 F7 _ 28.75 x 4,469,678

= 29,186 lbs 4402'.875 h!ax 0t

= 36,945 lbs/in

=

=

0.790 Minimum Tensile Strength of Bolt material is 105,000 lbs/in (Ref. 3) 05,000 Margin of Safety

_y

=

36,944

= 1.84 14.5 x 29,272 Fo = 288,365 -

28.75 69,970 lbs

=

E.

ONE FOOT DROP ONTO BOTTOM EDGE OF DOOR I

I 1.

Stopping Distance

.0 Tan e

=

151.6875

,s p

'\\

%s 6'

= 0.30984 l

s s.q G = 17.220

$ gy \\x

\\

'N

-g \\)

)

N

} = Gl.5 in N

\\

i N/

/

12 of 17

I e

72. B- __ 4 f.22 -

17 s

/k t

t7 (t cot 17.22)

,/

Area =

g(t cot 72.78) +

/

t 9

= 1.76821 t~

..___._.__._..___.___._.V 2

Volume = 61.5 x 1.76821 t l

2 3

= 108.75 t in 10.32

= 108.75 t (see A-2 above) t

= 0.308 in.

2.

Applied g Load g=b t

, 2 x 12 0.308

= 77.9 3.

Normal Force Applied to Door Assume the weight of the cask contents is evenly divided between the two doors.

Weight applied to each door is 5,350 lbs.

(see D-3 above) t Wg cos 9-F

=

5,350 x 77.9 x 0.95518

=

= 398, 086 lbs 4.

Roar Force Applied to Door Wg SIN 6 F

=

y 5,350 x 77.9 x 0.29604

=

123,379 lbs

=

5.

Bolt Reactions Making the same assumptions as in D-4 above:

13 of 17

' Summation of Forces:

" 7

= 398.084 F

o + 8. 7 5 7

398.,086 Fo+

=

28.75 F

= 398,084 -7.4609 F7 o

Summation of Moments:

j[x nF7

= 398,086 x 15.5 28.75 398,086 x 15.5 x 28.75 y

4402.875

= 40,291 lbs 1

Max O

=

t

_ 40,291 0,790 o

51,002 lbs/in"

=

O'y =fv (see E-4 above)

, 123,379 1 :c 0.790 o

= 11,155 lbs/in" Combined Stress = ( O'tE+4 T 2)6 y

= ((( 51,002)2 +

(11,155)2f1 2

52,P08 lbs/in Margin of Safety

- 1 (ref. 3) 52,208 1.011

=

14 of 37

i F.

ONE FOOT DROP ONTO SIDE EDGE OF DOOR l

1.

Stopping Distance D

61'5 g

,g'4>.

Tan 6. =

'J 15' 6875 8

N

'N gs 14

=

\\

')

\\gs

&=,

u

\\

'/

See D-1 abu. and Figure 1 7

,r,c 7,

, 7 y,,r y--- y The cask will impact on two of the door hinges.

The welds securing the hinges to the cask body are assumed to fail without absorbing any energy.

The two hinge " hooks" impacted will be captured beneath the cask.

The depth of deformation of each " hook", dividing the energy equally between them, is 0.714 inch.

2.

Applied g Load

.g = Sb t

_ 2 x 12 0.714 33.6

=

Since this g loading is much less than any other calculated above, the cask will withstand this drop without failure.

l

)

l l

l 15 of 17

G.

WELD LOADING DUE TO BOLT TENSION /SIIEAR AND LAMINATED PLATE CONSTRUCTION i

1.

Weld Loading due to Tension i

i i

1

  • k i

eL9so l

I i

I I

l Ak l

\\E 87._,950 l

=

l e,2.,9 s o #

l 1-1/8 diameter A-325 Bolt - Minimum Tensile Strength l

I i

= 82,950 lbs.

i i

l Separating Force = 82,950 sin 30 cos 30

= 35,918 lbs.

l' Weld Length Between Bolts = (4.50 - 1.25) = 3.25" 1

I i

Assuming 1/8 Machine Allowance on 1/2" groove weld.

l l

F 3.25 (.500

.125) 36,000 = 43,875

=

1 l

Margin of Safety = 43,875 - 1 = 0.222 l

35,D18 l

2.

-Weld Loading due to Shear 1

I Ref. E-4 I

I l

Shear Force Applied to Door = 123,379 i

Shear Force Per Bolt = 123,379-8,813 lbs.

14 I

i Weld Strength per Bolt = 43,875 lbs.

i l

l Margin of Safety = 43,875 - 1 = 3.98 i

8,813 16 of 17

II.

CONTAINiiENT ANALYSIS j'

Positive containment is provided by the cask internal disposable j

containers which have leak tight seals and closures.

t l(1)

III.

SIIIELDING ANALYSIS All of the deformations to shielding calculated above are small.

No deformation extends into the effective shield thickness used in the initial dose calculations.

17 of 17

.- - - - nn~..~.

. ~... - -. - - - ~. ~. -.. - - - ~.. - ~.. - ~ -

n.-----.~.~

. - -. - - - - -.... -.,. -. - - ~,. - -. - - -.._.. - -... - ~

n re -

9 I

n k

d I

I i

t l

E a

i i

I '

e i

l 1-t i

1 i

I l,

f APPENDIX A

l a

l l

i

(

i l

i i

l 3

1 P

I r

4 i

)

l I

l l

i I

I i

I i

t.

a 2

1 A

i i

(

i a

l,-.-

x

--x---.,

..-,_.na.

..,_,e-.w--w-

-..,.,-m,nn.,

,m-,~,---nm.,---<

FIGURE 1 Reference Drawing C-001-4-011 l

g(('N'4tg//D77K'" " k 'N,\\

///

!?

"~

+

\\

Nw\\

-./

f'

/N

'N N

\\

,N y\\

'p '

\\

,s

'd

\\

x 6 y'*

\\

/

N )

\\

\\

b-

%O__.

12341_'_.g y

e/

h, et Y

=c

$L

(

Cx Of

., gA

\\

k i

b>

N U

\\sm-

\\

v y

-/

n.0w Sheet 1 of 2

Figure 1 -' Sheet 2

+ c 9

N Area of Shaded Segment f

2

=R (9 - 1/2 SIN 2 9) e s /

Where:

COS 9 = R-t =1-Hinge is 3 inches thick.

2 Volume = LR (9 - 1/2 SIN 29)

= 18.75(9 - 1/2 SIN 29)

For "D",

V = 10.32 4

0.1376 = (9 - 1/2 SIN 29) t (9 - 1/2 SIN 29) 0.200 0.0422 0.400 0.1177 0.440 0.1354 0.445 0.1377 For "F"

V = 10.32 2

0.2752 = (9 - 1/2 SIN 29) t (9 - 1/2 SIN 2G) 0.720 0.2785 0.715 0.278C 0.714 0.2751 l

Sheet 2 of 2

M l

References 1.

Cask Designers Guide 2.

Formulas For Stress & Strain, Fifth Edison Raymond J.

Roark and Warren C.

Young.

3.

ASME Boiler and Pressure Vessel Code, Article SA-325

)

m.

O f

I n.=mme g

h m

l 1

beams m

humus

{

O. n -ouo

/

NO. OF PAGES REASON O PAGE ILLEGIBl:

C HARD COPY FILED AT:

PDR CF OTHER 3

1 O BETTER COPY REQUESTED ON MGE 700 (ARGE TO RLM:

O HARD COP ( FILED AT:

PDR '@

OTHER DM ON APERTURE CARD NO3ONhd2

,