ML20140E938

From kanterella
Jump to navigation Jump to search
Forwards Response to NUREG-0737,TMI Item II.F.2 & SER Confirmatory Item 15 Re Inadequate Core Cooling Monitoring Sys.Core Exit Thermocouples in Reactor Vessel Water Level Sys Replaced W/Rcs Hot Leg wide-range RTDs
ML20140E938
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 03/05/1986
From: Bailey J
GEORGIA POWER CO.
To: Youngblood B
Office of Nuclear Reactor Regulation
References
RTR-NUREG-0737, RTR-NUREG-737, TASK-2.F.2, TASK-TM GN-827, NUDOCS 8603280246
Download: ML20140E938 (72)


Text

_

George Power Company Project Management

. Rout] 2. Box 299A Waynesboro. Georgia 30830 Telephone 404 724-8114 404 554-9961 Southern Company Ser ices. Inc.

Post Office Box 2625 Birmingham. Alabama 35202 Telephone 205 8704011 lgpg)ggg March 5,1986 Director of Nuclear Reactor Regulation ille: X7BC35 Attention: Mr. B. J. Youngblood Log: GN-827 PWR Project Directorate #4 Division of PWR Licensing A U. S. Nuclear Regulatory Commission Washington, c.C. 20555 REF: Letter f rom Bailey to Denton, GN-674 dated 8/5/85 NRC DOCKET NUMBERS 50-424 AND 50-425 CONSTRUCTION PERMIT NUMBERS CPPR-108 AND CPPR-109 V0GTLE ELECTRIC GENERATING PLANT - UNITS 1 AND 2 SER CONFIRMATORY ITEM 15: TMI ITEM II.F.2

Dear Mr. Denton:

Enclosed for your staff's review are ten (10) copies of the VEGP submittal for TMI Item II.F.2, Inadequate Core Cooling. This submittal supercedes the submittal referenced above and contains additional information requested by your staff. Of particular interest is a design change from the referenced-submittal n'. ely the core exit thermocouples in the reactor vessel water level system have been replaced with RCS hot leg wide range RTDs. Thic information will be reflected in the next FSAR amendment as an update to Appendix 4A.

Please note that Attachment 1 of this enclosure contains copyrighted material. By copy of this letter, Westinghouse will release the NRC f rom the copyright in order to make a microfilm copy necessary for their records. This is the extent of the copyright release.

If you have any questions, please advise.

Since rely,

. g.

J. A. Bailey I i

Project Licensing Manager JAB /sm Enclosure xc: List attached.

Nr

' I i l 8/A3 8 j 1

8603280246 PDR 860305ADOCK O5000424 l

{DR

- - -~ ..

Director of Nuclear Reactor Regulation File: X7BC35 March 5,1986 Log: .GN-827-Page 2 xc: R. E. Conway G. Bockhold, Jr.

R. A. Thomas T. Johnson J. E. Joiner, Esquire D. C. Teper (w/o enclosure)

B. W. Churchill, Esquire W. C. Ramsey M. A. Miller (2) L. T. Gucwa B. Jones (w/o enclosure)

Vogtle Project File 0053V h)

_1 3 .

t Response to NUREG-0737. II.F.1

" Instrumentation for Detection of Inadequate Core Cooling' I. The Inadequate Core Cooling (ICC) Monitoring System installed at Plant Vogtle Project will include the following:

- Core exit thermocouple (T/C) monitoring Core subcooling margin monitoring Reactor vessel level monitoring A detailed electrical and layout description of each of the above ICC monitoring subsystems is given below:

A. Core Exit Thermocouple System The core exit thermocouple monitoring system consists of two redundant independent trains that monitor all 50 of the Plant Vogtle chromel-alumel core exit thermocouples (25 on protection set III and 25 on protection set IV). A layout sketch of the i system is shown in Figure I. The train orientation of the thermocouples are shown in Table 1. The core exit thernecouples are mounted at the top of core support plate. They are then _

routed to four upper head conoseal penetrations. Af ter exiting the conoseal penetrations, the thermocouple wires proceed through )

a swaglok and then to qualified connectors to facilitate disconnection during removal of the upper head. Upon exiting the i

I 0290G:2/ GEL /485

- , - - - , - - - -. . . . ~ . . - , . . , - , , - . , , .

reactor vessel cavity, the cables are rcuted in a manner consistent with the requirements of Regulatory Guide 1.75 to the in-containment qualified reference junction boxes. Each reference junction box includes three redundant platinum RTD's , imbedded in a block of copper to reflect the temperature at the junction of the chrome 1 alumel and copper wire. The uncompensated core exit

~

thermocouple signals (25) and the reference junction box temperatures (3) are routed to Remote Processing Units (RPU) A3 ana 83. The signals from both RPU's are routed to both Display Processing Units (DPU) for calculation of the compensated core exit thermocouple value. The value chosen for the reference junction box temperature is a function of the data quality of each of the RTD signals. Following the calculation of all 50 compensated thermocouple values, the information from both DPU's are transmitted to both seismically qualified flat panel Plant

~

Safety Monitoring System (PSMS) displays. The displays are located on Section D of the Plant Vogtle control board as shown in the Vogtle FSAR, Figure 18.1-2. DPUA and display A are powered by train A and DPUB and display B are powered by train B. The

! cabling between the RPU's, DPU's and displays meet the requirements of Regulatory Guide 1.75.

0290G:3/ GEL /485 ,

B. Core Subcoolina Marcin Monitor The inputs to the core subcooling margin monitor include the l

. following: , l f

- Wide range RCS pressure (4 channels)

- Core exit compensated therwecouple values (50 channels) ,

- Reference junction box PTD values (6 channels) l i

The electrical layout of the subcooling margin monitor is shown in i Figure II. One channel of wide range RCS pressure is input into I each RPU channel (A2, A3.-82, and 83). Also 25 uncompensated l thermocouple channels and the corresponding 3 reference junction box RTD signals are input into RPU's A3 and 83. The outputs of each of the RPU's are routed to each DPU. The RCS subcooling margin is then calculated based upon the wide range RCS pressure and compensated core exit thermocouple readings. The value of RCS pressure utilized in the calculation is a function of the data quality of the pressure readings. The value of core exit thermocouple temperature is based upon the auctioneered high thermocouple quadrant average temperatures. The auctioneered high thermocouple quadrant hverage temperature is utili?ca in the ,

calculation of the core subcooling margin for the quadrant average thermocouple temperature more accurately reflects the individual t loop bulk temperature. Basing the core subcooling margin ,

calculation on the highest thermocouple reading would not be.

I indicative of-the bulk loop temperatures. Use of the auctioneered high thermocouple quadrant average temperature in'the calcu'lation l J

02906:4/ GEL /485-

.__ __ . . _ _ _ _ _ _ _ _ . ~ . _ . . _.._..u.__.._._.

of core subcosling margin is consistent with the utilization in the WOG Emergency Response Guidelines (ERG). The WOG ERG's do not specify that core subcooling margin shall be based upon maximum core exit temperature. The WOG ERG's do specify that,the core cooling status tree utilize the fifth hottest core exit thermocouple temperature in the implementation of the decision.

paths, however, core subcooling margin may be calculated using average core exit thermocouple temperatures. The subcooling margin calculated values are routed to both dispirjs (A and B).

The cable routing from sensor input to display meet the requirements of Reg. Guide 1.75. The PSMS displays are the same display pai,31s utilized in displaying the core exit thermocouple information.

1

! C. Reactor Vessel level Instrumentation System The Reactor Vessel Water Level System (RVWL) consists of two redundant independent trains that monitor the water level in the l

reactor vessel.

The wide range RVLIS reading provides an indication of reactor l

vessel water level f rom the- bottom of the vessel to the top of the I vessel Juring natural circulation conditions. The narrow range RVLIS reading provides an indication of reactor vessel water level from the middle of the hot leg pipe to the top of the reactor

~

vessel head during natural circulation conditions. The dynamic head RVLIS reading provides an indication of reactor core, internals and outlet nozzle pressure drop for any combination of 0290G:5/ GEL /485 1

- _ _ - _ ,~ ._ ._._____.

_,_ __.___ .._._ .._. _._ _._,a

l cperating reactor coolant pumps. Comparison of the measured 1

pressure drop with the normal, single phase pressure drop provides )

an approximate indication of the relative void content of the circulating fluid. The inputs to the RVLIS system include the

' following: .

1. RCS hot leg wide range RTD's (2 channels)
2. Reference junction box RTD values (6 channels)
3. Wide range RCS pressure (4 channels)
4. Differential pressure (6 channels)

S. Reference leg temperature values (14 channels)

6. Reactor coolant pump status (4 channels)

A fluid diagram of one train of the Plant Vogtle RVLIS system is shown in Figure III for the inputs associated solely with the RVLIS system. The electrical block diagram associated with the RVLIS system is shown in Figure IV.

As discussed, the RCS hot leg wide range RTD signals are input to RPU's A2 and Bl. Also, one wide range RCS pressure channel is ,

input into each RPU (A2, A3, B2, and 83).

In addition, one of two sets of three differential pressure signals (wide range, narrow range, and dynamic head) are input into RPU A3 and 83, respectively. Also seven reference leg compensating temperature inputs from'each train of RVLIS are input

! .l l

i 0290G:6/ GEL /485/00306

i into RPU's A3 and 83. Finally, to determine the appropriate RVLIS l

indication, the running status of each reactor coolant pump is

-input into the non-1E RPU N1.

Both trains of RVLIS readings are routed to both displays (A and B). The cable routing from sensor input to display meet the requirements of Reg. Guide 1.75. The PSMS displays are the same display panels utilized in displaying the core subcooling margin and the core exit thermocouple information.

II. Several analyses have been performed to verify the design of the RVLIS i

system described in Item I.C. The results of these are discussed in the following documents:

A. Summary Report, Westinghouse Reactor Vessel Level Instrumentation

'! System for Monitoring Inadequate Core Cooling, December 1980

' submitted to the NRC via T. M. Anderson to Darrell G. Eisenhut, NS-TNA-2358 dated December 23, 1980.

B. Responses to NRC Request for Additional Information on the Westinghouse RVLIS, Summary Report.

C. Supplemental Information on the Westinghouse RVLIS, submitted to the NRC via E. P. Rahe to L. E. Phillips NS-EPR-2519 dated March -

19, 1982.

(

0290G:7/ GEL /485

__.,.__._.._...,-,._.__.._._.._____.___,m _ . . _ _ . = ,

In addition'to the analyses conducted in the three references above, the hydraulic components of the RVLIS system were installed at the Semiscale Test Facility in Idaho so that transient response characteristics could be obtained during small-break LOCA and other 1

accident conditions. A description of the tests conducted and a.

discussion of the test results are presented in the following documents:

D. Westinghouse Evaluation of RVLIS Performance at the Semiscale Test Facility December 1981 submitted to the NRC via E. P. Rahe to L. E. Phillips, NS-EPR-2526 dated December 8, 1981.

E. Westinghouse Evaluation of RVLIS Performance at the Semiscale Test Facility for Test S-UT-8, January 1982 submitted to the NRC via 4

E. P. Rahe to L. E. Phillips. NS-EPR-2542 dated January 13, 1982.

F. Westinghouse Evaluation of RVLIS performance at'the Semiscale Test Facility for Test S-18-7 submitted to the NRC via E. P. Rahe to L. E. Phillips, SED-SA-00081' dated June 28, 1982.

4 III. A description of the tests conducted on the Westinghouse RVLIS system and the results of the tests are presented in references (D), (E), and I

(F) listed above.

i

]

02906:8/ GEL /485

IV. Response to II.F.2, Attachment I, Design and Qualification Criteria for Pressurized Water Reactor Incore Thermocouples A.' Attachment I to this response, provides the 6 design of the display package on the PSMS. The display package hierarchy, as summarized in Exhibit 1, includes the following:

1. Top Level Plant Status Summary (Exhibit C-2.0)
2. Four Lower Level Graphic Displays
a. Core Temperature Map (Exnioit C.3-1)
b. Pressure-Temperature Operating Limits (Exhibit C-400)
c. Reactor Vessel Water Level (Exhibit C-5.0)
d. Nuclear Power (Exhibit C-6.0)
3. Four Pages of Menu Display
a. Primary Data Trend Menu
b. Secondary Data Trend Menu
c. Containment Data Trend Menu
6. Octa11ed Data Menu l

)

0290G:9/GE,L/485

4. Four Multi-Page Sets of Data
a. Six Page Set of Primary Data Trends
b. Five Page Set of Secondary Data Trends
c. Two Page Set of Containment Data Trends
d. Eight Page Set of Detailed Data 2 B. The following exhibits provide a top down display of the core exit

' thermocouple information.

1

1. a. Exhibit C-2.0 - maximum core exit thermocouple i

temperature.

b. Exhibit C-3.1 - quadrant co're exit thermocouple maximum, average and minimum temperature. Also provides a comparison between the RCS hot leg RTD's and the

, quadrant T/C data.

i

c. Exhibit C-10.6A - spatially or.iented core exit thermocouple map showing each thermocouple temperature.

, d. Exhibit C-10.4 and C-10.5 - Alpha numeric listing of core exit thermocouple location, tag designation and temperature reading per quadrant.

W 029dG:10/ GEL /485

e. Exhibit C-7.3A - a two hour trend history of the three core exit thermocouple quadrant. maximum temperatures.

C. , The following exhibits provide a top down display of the core subcooling margin (based upon core exit thermocouples):

1. a. Exhibit C-2.0 - core subcooling margin based upon core exit thernecouples.
b. Exhibit C-4.0 - RCS pressure - temparature plot exhibiting plant approach to saturation.
c. Exhibit C-10.1 - alpha numeric listing of both trains of core subcooling margin.
d. Exhibit C-7.1 - a two hour trend history of the core subcooling margin.

D. The following exhibits provide a. top down display of the RVLIS system.

1. a. Exhibit C-2.0 - displays appropriate RVLIS narrow and wide range and dynamic head readings depending upon RCP status.

0290G:11/ GEL /485

. _ _ _ _ _ _ . _ - - _ _ .. _ __ _ . . _ _ ~ - _ _ _ - . . . _ _ . . . . _ , _ - - . . _ _ , _ _ _. _ . - _

b. Exhibit C-5.0 - mimic of analog meters indicating RVLIS narrow, wide and dynamic readings with respect'to reactor vessel. Only displays appropriate ranges based

. upon RCP status. -

c. Exhibit C-10.2 and C-10.3 - alpha numeric listing of appropriate ranges for both trains of RVLIS system.

d.- Exhibit C-7.6 - a two hour trend history of all three RVLIS ranges. Also presents a trend of RCP status.

E. Tren'd Capability - In addition to being displayed on the PSMS, the RVLIS readings are recorded on the main control board.

Furthermore, the core subcooling margin, core exit thermocouple temperature and the RVLIS indications are trended on the Vogtle Safety Parameter Display System.

F. Alarm Capability - The core exit thermocouple display.pages are designed such that any numeric thermocouple readout greater than 1200*F will be displayed in inverse video and flashed at a frequency of 1 hertz.

The core subcooling margin will indicate "SUSC00L" when the auctioneered high quadrant thermocouple average temperature is at -

or below the RCS coolant saturation point. "SUBC00L' and the respective numeric value in degrees F will'be displayed in inverse video when the subcooling margin is less than a specified value.

j "SUPERHEAT' and the respective numeric value in degrees F 4111 be 1

02906:12/ GEL /485

i 1

displayed in irverse video and flashed at a frequency of 1 hertz l l

when the auctioneered high quadrant thermocouple average l temperature exceeds the coolant saturation temperature.

6. Backup Display - Since the Plant Vogtle PSMS display system-features two redundant independent displays, one display console is considered the primary display ~and the other display console is considered the backup display. As such, the backup display console for ICC nonitoring is also a qualified display. The time

]

interval required to sample the data, perform the necessary calculations, and display the data is within 5 seconds. The data is sampled every second. Exhibit -10.6A illustrates the radial distribution of the Plant Vogtle thernecouples and Exhibit C-10.5 lists the thermocouples locations and respective power supply.

i

! H. Location - The PSMS displays are located on Section D of the Plant '

Vogtle control board as shown in Figure 18.1-2 of the FSAR.

V. Respense to II.F.2, Appendix B, Design and Qualification Criteria for Accident Monitoring Instrumentation l

A. Equipment Qualification

1. -Core Exit Thermocouple Monitoring .

I Listed below are the appropriate documents indicating the qualification tests conducted on the PSMS subsystems.

l -

t 02906:13/ GEL /485 m -w --- - - - - , r - , --e- e- e ,,-m-- , - -,.%.r_.---.... - , - , , . . -.,,,~+,,,,~,+-.s,,~, p., , ---m,-,,-,-,,,,eroe-, ,--,s-- -,-r e ge w- --

1 Subsystem Document

a. T/C Connectors and Adaptors ESE-438,C
b. Reference J'inction Box ESE-44A
c. Microprocessors ESE-53
d. Plasma Display ESE-618
2. Core Subcooling Margin Monitoring Subsystem Document
a. Wide Range RCS Pressure ESE-2
b. Core Exit Thermocouples See Item Above
c. Microprocessors ESE-53
d. Plasma Display ESE-618
3. RVLIS Monitoring System Subsystem Document
a. Wide Range RCS Pressure ESE-1A 0290G:14/ GEL /485
b. Differential Pressure ESE-4
c. Core Exit Thermocouples See Item Above
d. .High Volume Pressure Sensor ESE-48
e. Hydraulic Isolator ESE-49
f. Reference Leg RTD's- ESE-42 I
g. Microprocessors ESE-53 I
h. Plasma Display ~ ESE-618 l

I

8. Single Failure Criteria A detailed discussion of the Reg. Guide 1.97 Post Accident Monitoring Design Basis is presented in Section 7.5 of the Plant 1

l Vogtle FSAR. Included in the discussion is a justification for the number of channels selected and the diverse variable identified where necessary. Presented in the Vogtle FSAR, Section l

l 7.5 Table 7.5.2-1 is a detailed description of-the characteristics associated with each ICC monitoring system, including range, number of channels, and qualification status. j l

02906:15/ GEL /485

L C. Power Supply - RPU's Al and A2, DPUA and Display A are powered by inverter power bus I. RPU's 81 and B2, DPUB and display B are powered by inverter power bus II. RPU A3 is powered by inverter power bus III and RPU B3 is powered by inverter power, bus IV.

A sketch of signal flows between the protection channels, RPU's, DPU's, and displays is shown in Figure V.

D. Channel Availability and Indication The operator has access to all ICCI channels at all times pre- and

! post-accident on several QDPS displays. These include the Exhibit 1

C-2.0 display, and the detailed data display of Exhibits C-10.1,

' C-10.2, C-10.3, C-10.4, C-10.5, and C-10.6A. The recording 4 capability of the ICCI channels is indicated in the Plant Vogtle FSAR Table 7.5.2-1.

i E. Quality Assurance All hardware associated with the Plant Vogtle PSMS ICCI monitoring systems meets the applicable portions of the quality assurance regulatory guides.

F. Capability for Sensor Checks

, The Plant Vogtle PSMS provides the means for cross checking j between channels that bear a known relationship to each other. In addition, the subsystem displays only project a group value based 0290G:16/ GEL /485

_ . . _ , . _ _ , _ -_ .a.__.-. ._.. _ . _ , _ _ _ _ _ _ . ._ _ .__ , _ _ _ ._ ,, _ ._

upon a data quality algorithm. Quality codes that may be displayed include GOOD, POOR, BAD and SUSPECT. The operator may access the lower level detailed data lists to determine the reason for other than GOOD data quality group values. -

G. Capability for Test and Calibration See Plant Vogtle FSAR, Section 7.5.2.3.1.30.

H. Channel Removal from Operation See Plant Vogtle FSAR, Section 7.5.2.3.1.3E.

I. Access to Setpoints Adjustments, Calibration and Test Points See Plant Vogtle FSAR, Section 7.5.2.3.1.3F.

J. Information Readout See Plant Vogtle FSAR, Section 7.5.2.3.1.3G.

I K. System Repair See_ Plant Vogtle FSAR, Section 7.5.2.3.1.3H.

L. Derivation of System Inputs i

See Plant Vogtle FSAR, Section 7.5.2.3.1.31.

l l

0290G:17/ GEL /485

l l

M. Instrumentation Utilization To the extent practical, the Plant Vogtle PSMS display has been

. designed and located in such a manner that the operator uses the ICCI displays during both nornel operation and post accident situations.

N. Periodic Testing See Plant Vogtle FSAR, Section 7.5.2.3.1.3J.

VI. Schedule The Plant Vogtle ICCI monitoring system is to be installed and tested prior to fuel load. Furthermore, the system will be calibrated prior to the plant achieving 5 percent power.

VII. Plant Vogtle is adopting the format and content of the Westinghouse Owners Group (WOG) Emergency Response Guidelines for writing the plant specific procedures. Attachment II illustrates the generic WOG Critical Safety Function Status Tree for monitoring the status of plant i core cooling. As seen, all' variables necessary to implement the core cooling status tree are provided by the Plant Vogtle ICC instrumentation system. The Functional Restoration Guideline, to which the operator is directed based upon the logic dictated by the tree, also utilizes the information provided by the ICC instrumentation. ,

Attachment III provides a listing of the generic WOG guideline FR-C.1 1

j " Response to Inadequate Core Cooling." Note the use of core exit 4

02906:18/ GEL /485

- - - . _ _ - -- - _. . . . . - ,- - - ..-,-.__.-.- --,~-. - -- .-.- .-.-- - -

thermocouple temperature in steps 5,1,16, and 18. Also note that the RVLIS indication is utilized in steps 6,16, and 23. A review of Plant Vogtle procedures FR-C.2, " Response to Degraded Core Cooling," and FR-C.3, " Response to Saturated Core Cooling " also demonstrates the extensive use of ICC instrumentation retdings.

1 Attachment IV provides a listing of the generic WOG guideline E-0,

" Reactor Trip or Safety Injection". Note the use of core exit thermocouple temperature for calculating RCS subcooling margin in step I .

25. Similar subcooling margins are utilized throughout the generic guidelines.

VIII. Evaluation of the acceptability of the location of the plant safety monitoring system (PSMS) displays will be included as part of the detailed control room design- review.

i i

I 6 l

l i

4 l

l l

l 02906:19/ GEL /485 L

Reference /

Junction Box

/ T/C's _

RPU DPtl Display A

[ $.s  :

A3 [

r r AE

[

r A

sa v

_ / T/C's 83 r r

's _ B B Y W Reference Lisplay lp Connectors h j i 7 Junction Box j g n p

! / '

O" C / 'Swagloks /

3-

/ n" / /

/ / .

f/ .

! / /

j / Q-4 T 7 Conoseals /

\ / '

/ / '

, / Cold / Hot / / J I / Le9 I * /

j ,., /

/ km Leg

, //

2

/

l / /

y Reactor

/

l / ,

j

! a

/

i / 's '

\ //////////// IC 2 0C j . .

'j i

1

! Figure I. . Core Exit Thennocouple System i

i I i

3 IC OC

i. WR Pressure A - O T/c's E RPU b ,

]

"l -

RJB RTD's i A3 '[

! Reference .i Junction Box - Display DPU A

i A

[

WR Pressure g  ; RPU [ ,

i A2 [

i

i. WR Pressure i _ .T/C's.1 RPU l [ RJB RTD's E B3 (

E DPU Display

{ _

t i

WR Pressun RPU l l I G- r 82 [

Reference - Electrical Buffer i

Junction Box -

Figure II. Core Subcooling Margin System i

i

i i

a RTD RTD -

j

~ * "'

I' i Hydraulic i IsoMir l .-

l y Hot Leg @ RTD @ RTD Hydraulic Na rrt,w Wide Dynamic Vessel Range Range Head Isolator Differential Differential Differential

r Pressure Pressure Pressure L.-

- - - hPTD

- Hydraulic Isolator 8 , RTD g,RTD M i LJ l

Figure III. Reactor Vessel level Instrumentation Fluid layout Drawing i

i t

f

l l

l L l. I s e g t a n

lsl i

81 i lc '

l i< i. . ,

er m ,

i e

s W

JU j JU JU JU JU q 12 14 > 12 -

!! li 5

' 5 I 1 I l i l l l@ @ E@ E@@ E@ s4:  :

i .

nnin NNNNNNNNNNNN~

!e

~

i

!e

i twyt veet 1 -

1 I.

i

  1. . I l

1 <

< 9-i

~

i

-Omanns L nlcaanuel 1.Ke Iu t

  • y

. =

  • " l a s W i, -

1 -

909'.% ehr . . . .

I _C '

  • 1 Sws R NI5 i

.O - '_ s -

I A e

L at e--

-e

_.1

} -

a  :

si j

, . 1 1

.- _C.._ - +

i m

i 1 - - - -

8 0 M 1 gg,g e l

e 6 t +at ' ~ - - - -ts - - --

','.i-s,- -,s - -*

3 } *

! L '

1 C -

! h

~

m * -

Coe4 vet

% ma n B**'d

! risets 3:ese,**[ ,) - ,,

Once l  ; , sN '- / sea m g ehe a<el I.4e 1 (4 e6m - #2f!

  • X C 4., -

6

% 2 1 om nm ..

- an.-as sN A I i a ..eo ., ,.,,a ,, ,

l. ,e 7 sap e

m.{ .J,. n.,,

. r

. . c#.., te

< m " fcs zi.ut.,

' .. am_

m -

1 c -nse s c -

, , ,,, n n s 1a...

= = c 1

' -

  • r 1,1 L oisesav l o wa.,
  • % v. 4..

O:  %>

, ,3_  % is

- t

. .O _ c I -

-  ; ,1rr 4

'* d Fioum V. Vootle PSMS Electrical Interconnection .

i *

W -

3

! t 4 -

b

_ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ ____ ___ __ ____1__

Train A Train 8 TE-01 TE-35 TE-02 TE-21 TE-04 TE-38 TE-03 TE-22 TE-05 / TE-39 TE-06 TE-23 TE-07 TE-41 TE-08 TE-24 TE-13 -TE-42 TE-09 T[-25 TE-15 TE-43 TE-10 TE-26 TE-20 TE-44 TE-11 TE-28 TE-27 TE-45 TE-12 TE-34 TE-29 TE-46 TE-14 TE-36 TE-30 TE-47 TE-16 TE-37 TE-31 TE-48 TE-17 TE-40 TE-32 TE-49 TE-18 TE-50 TE-33 TE-19 Table 1. Thermocouple Train Orientation 1

s I

9

(

02906:52/ GEL /485 l

e ATTACHMENT I O

l 1

02906/ GEL /1-85 l

l

INFORMATION PACKAGE STRUCTURE FOR t.

A.W. V0GTLE PSMS PLASMA DISPLAYS ,

PLANT STATUS

SUMMARY

NUCLEAR REACTOR CORE P-T POWER T/C LIMITS fESSEL

(

PRI -

SECONDARY- CNMT DATA TRENDS TRENDS TRENDS LIST MENU , MENU MENU -

MENU 1' 1r 1r U 1

TREND TREND TREND DETAIL DATA DATA DATA .' DATA PLOTS- PLOTS PLOTS i

EXHIBIT C-1.0 l

C:pyrighte 193 by Westinghousa El;ctric Corporation, all rights reserved

\

l PLANT STATUS

SUMMARY

00/00/00 1

00:00:00 PR2R AFU , SG PRESS LVL 900 GPn 1200 PSIG 1

TCDLD ' THDT s - LVL 560 *F UR PRESS

610 *F UR 100 %

< m 2250 PSIG NR 100 %

'DFF~ ' l l

_I L 900 ,

1200 PSIG ICC GPn' 2 CDRE T/C MAX 620 *F 56.0 *F ~ WIEMIWill 25 *F 610 *F 2 '

DFF RV LVL q00 1200 PSIG STATIC HD FULL RNG 80 %LVL GPn' 3 STATIC HD UPPR RNG 80 %LVL $ '

560 *F DYNAMIC HD 0 %Llo 610 *F '

3 -

- v 0FF ,

q p 900 GPM' '

1200 PSIG I I s -

560 *F 610 *F NUC PUR f 4

.DFF ,

UPPR RNG FLX 0.000 % "

LDUP, P.NG FLX 1. 0 E + 03 CPS SUR 0. 00 OPn PLANT CDNTAINNENT RUST LVL 100 % PRESS 55 PSIG CST TNK 1 LVL 100 % XTND RNG PRESS 150 PSIG CST TNK 2 LVL 100 % H2 CONC 10.0 % -

UTR LVL 0 IN RHHUNCIRTDRS RPU STATUS DPU-A PSS DPU-B SDURCE Al-OK R2-DK AS-DK -ND - NO DPU-B NUC RVL CDR P-T B1-On B2-DK B3-Dr "I-UK EXHIBIT C-2.0 FORMAT

- Copyrightc 19EL by W:stinghous? El;ctric Corporation, all rights rIserved 1

t CDRE TEMP T/C 00/00/00- 00:00:00 THaT O* IHaT LDDP 3  :

610 'F

/ LDDP 2

/[ 610 *F Tcato LDDP 3 Tea't.o '

i LDDP 2 560 F f i 560 'F N

QUAD 3 OUAD 2 NAX 603 'F  ! MAX 602 *F AVG 583 'F l AVG 582 'F MIN 553 F  ! MIN 552 'F 2 70 * ..... .......... . . . . . . . . . . . . . . . . . . . . . . . . . ' ', .......................... ....... .. ... 9 0 '

i TCato i LDDP 4 00AD 4 TCDLD i QUAD 1 LODP 1 560 'F MAX 604 'F  ! MAX 601' 'F 560 'F AVG 584 'F  ! AVG 581 *F 2 NIN 554 'F i MIN 551 'F b

. l i l i l THDT  :

LDDP 4 d [

Jg THOT LDDP 1 610 'F 1 s'o' 610 *F RHHUNCIRTORS RPU STRTUS DPU-R PSS DPU-B SOURCE R1-oK A2-oK A3-aK -No M DPU-B -

NUC RVL CDR P-T B1-aK B2-uK B3-ar N1- ot, EXHIBIT C-3.1 FORMAT (APPLICABLE TO V0GTLE PLANT UNIT 1)

Copyright 019fah. by Westinghouse El;ctric Corporation, all rights res rved 6

P-T S ATUR ATION L If1I TS 00/00/00 00:00:00 3000 _ ....i....,....i....i....,....,...

i_3000 2500 -

_ 2500

^

^

_ G _

2000 -

- 2000 UR -

UR PRESS -

PRESS 1500 -

1500

~

~

_ SUBCDDLED PSIG REGIDN

_ PSIG 1000 -

1000 500 -

500 SUPERHEAT REGIDN -

O!! ' I'I' 100 200 300'I'I'I'I~0 400 500 600 700 AUCT HI QUAD T/C RVG 6 2 0 *F CORE T/C MAX 620 'F s CURRENT STATUS IJR PRESS 2250 PSIG

,l_lPERHERT 25 'F o PRIDR STATUS HEATUP RATE 0 'F/HR 15 111NUTE UPD ATE CDDLDDUN RATE O 'F/HR

- l l

Alit 4UllCI ATORS RPU STATUS DPU-R DPU-B SOURCE PSS Al-aK R2-0K A3-aK Mm DPU-B NUC RVL CDR P-T B1-or B2-DK B3-ar N1-at:

l EXHIBIT C-4.0  ;

FORMAT l

i l

l Copyrighte 1982, by Westinghouse Electri: Corporation, all rights r:strved i

t P.V LVL 00/00/00 00:00:00 STATIC HD FULL RNG UPPR RNG 80 %LYL 80 %LVL

=[= - -

120 5 - -

120 - -

110 100............................... -

1oo p ( $ 80  % LVL - -

90  % LVL c 6 0 - - .. .,,_ ( $ 80 a

F:

E 40 .' .. *..

70 20 -- - -

60

(

0 - -

0FFSCALE DYNAMIC HD 0 %L10 120 100 80 60  % LIO O RCPS ON - -

40 20

($ 0

-ALL RCPS  !

0FF -

AHHUNCIATORS RPU STATUS DPU-R PSS DPU-B SDURCE Al-oK A2-DK A3-aK N1- Di, *ND -* NO -

DPU-B NUC RVL CDR P-T B1-or B2-0K B3- aie EXHIBIT C-5.0 FORMAT 1

Copyrightc 19.Bk. by Westinghous2 El:ctric C:rporation.

all rights riserv;d t

NUC LE AR PDLIER 00/00/00 00:00:00 XTHD RNG DETECTDR

_ _ 200 100 UPPER RNG ~ ~

10

% PUR LOG SCALE 1

' ~

106 10-1 10 5 10-2 104 10-3 LDUER RNG E E 6~ ~

103 egg D F j0-4 - LUG SCALE 10 2 10 1

UPPER RNG FLX 0.000 %

LDUER RNG FLX 1.0E+.03 CPS START UP RATE 0.00 DPM ANNUNCIATORS RPU STATUS DPU-A DPU-B SOURCE PSS Al-an A2-aK A3-an N ' NO DPU-B

,NUC RVL CDR P-T B1-aK B2-aK B3-oK " I - *,,

EXHIBIT C-6.0 -

1 FORMAT

Copyrights 198a. by Wzstinghouse Electric Corporation, all rights reserved PRIl1ARY TRENDS NENU 00/00/00 00:00:00 TRENDED PARAMETER PRGE WR PRESS 1 4

SUBCDDL MARGIN 1 UR THDT/TCDLD 2

CDRE MAX T/C 3

, NUC PUR 4 4

! PR2R LVL 5 RV LVL 6 l .

I l

J I

e i

AHHUNCIATORS RPU STATUS OPU-R PSS DPU-B SOURCE Al-aK A2-0K A3-oK N'l- 06 M - No DPU-B NUC RVL CDR P-T B1-oK B2-0K B3- ope 4 _

4

' EXHIBIT C-7.0 FORMAT

- _ _ _ _ _ _ _ _ - . _ _ _ _ ,_. _ . _ , . _ _.. _ _ _ . _ . . . - _ - . . _ _ _ _ _ _ . . _ _ _ . _ _ , . . . _ _ _ _ . ~ . _ _ . _

Ccpyrighto 1926 by Westinghouse Ef;ctric Corporation, Cil rights r; serv;d

- e PAGE 1 PRIMARY TRENDS 00/00/00 UR PRESS 00:00:00 SUBCDDL 111NUTES

-120 -90 -60 -30 0 I l i l

3000 2500 .

UR PRESS 2000

- 2250 PSIG 1500 1000 500

~

I i I . I , l ,

l l l '

l 50  :.UPERHERT

~

g.

- 0 25 'F 50 100 150 200 I e l i l i l .

-120 -90 -60 -30 0 MINUTES -

AHl4UllCI ATORS RPU STATUS DPU-R PSS OPU-B SDURCE Al-OK A2-DM A3-on N1 -06, M ~NO DPU-B NUC RVL CDR P-T B1-oe B2-aK B9-ar O

EXHIBIT C-7.1 FORMAT

Copyright 0192h by W;stinghous2 Electric Corporation, c!! rights reserved PAGE 2 PkIMARY TRGNDS C00/00/00C THDT/TCOLD 00:00:00 LDDP 3 LDDP 2 THDT 610 *F THDT 610 *F TCDLD 560 *F 700 U'

_ _ 700 b _

5_-

p-500 -

500

_- ,F -

,F 300 300 100 100 0 , , , ,

0

-120 -90 30 0 -120 -90 30 0 MINUTES NINUTES LDDP 4 THDT 610 *F LDDP 1 TCOLD 560 *F THDT 610 *F 700 TCOLD 560 *F

_ 700 b __ _

b_

500 5_

_ _ 500

__ ,y __

,p 300 -

300 100 -

100 i , ,

0 0

-120 -90 30 0 MINUTES -120 -90 30 0 MINUTES ANNUNCIATORS RPU STATUS PSS DPU-A DPU-B SOUPCE R1-ox R2-0K A3-un -NO 6 NUC RVL CDP PwT B1-or B2-0K B3-ak giifk H DPU-B EXHIBIT C-7.2A FORMAT (APPLICABLE TO V0GTLE PLANT UNIT 1)

Copyright 319.86 by W;stinghous') El:ctric C:rporation, cli rights r:sirved t

PAGE 3 PRIMARY TRENDS 00/00/00 00:00:00 CDRE NAX T/C OVAD 3 QURD 2 NAX T/C 603 'F N 602 9

_3000 _

_3000 2000 -- 2 2000

-E 'F -

~

F E _E1000 F 2 1000 i D- i >_

2 0 L 2 0

-120 -90 30 0 -120 -90 30 0 NINUTES MINUTES DUAD 4 QUAD 1 NAM T/C 604 'F N 601 9

_3000

_3000 I - -

-E 2000 E- -E 2000 E- -E *F E- -E *F

_21000 E- -

i 1000 i >l i >l

~ _

2 0 -

2 0

-120 -90 30 0 -120 -90 30 0

~

MINUTES NINUTES AHHUNCIATORS RPU STATUS DPU-A DPU-B SOURCE PSS Al-aK A2-aK A3-on gi_ gy' N - NO DPU-B NUC RVL CDR P-T B1-or B2-uk B3-DV EXHIBIT C-7.3A '

FORMAT (APPLICABLETOV0GTLEPLANTUNIT1)

Copyricht219Bfa. by W stinghouse Electric Corporation, all rights reserved l

i t

PAGE 4 PRIf1ARY TRENDS 00/00/00 00:00:00 NUC PUR XTND RNG DETECTOR NINUTES

-120 -90 -60 -30 0 I l ' ' '

l l 100 r _

10 UPPER RNG FLX 1

0.000 %

10

-1 LOG 10-2 SCALE 10-3

~

l , I , l , l ,

I i l l

_ 6 10 5 LDUER P.HG FLX 1.0E+03 CPS 10 4 CPS r D, 10 3 LDG 2 SCALE 10 10

~

~

1 ,  ! , I , l ,

-120 -90 -60 -30 0 -

l11HUTES AtiNUNCIATDRS RPU STATUS OPU-R DPU-B PSS SOUPCE Al-on A2-OK A3-oK N1- DL, E 2iiMt M DPU-B NUC RVL CDR P-T B1-oK B2-or 83-or ,

1 EXHIBIT C-7.4 l

FORMAT t

Copyright 019&, by W;stinghouse Electric Corporation, all rights reserved t

PAGE 5 PRIMARY TRENDS 00/00/00 00:00:00 PR2R LVL MINUTES

-120 -90 -60 -30 0

.j i l l l D- 100 75 PR2R LVL 100  %

1 -

50 %

i 25

^

0 I , I ,

I , I ,

-120 -90 -60 -30 0 i

MINUTES RHNUNCIATORS RPU STATUS DPU-R DPU-B SDURCE PSS Al-aK A2-DK A3-0K -NO- ~ No DPU-B NUC RVL CDR'P-T B1-0V B2-ot: B3-ar N1-DK i

EXHIBIT C-7.5 l FORMAT l

t

Ccpy?;ghlD.19jb. t.3 Westinghouse Eicc:ric Coroc :'i .

all rights resersed PAGE 6 PRIMARY TRENDS 00/00/00 00:00:00 RV LVL MINUTES

-120 -90 -60 -30 0 STA11C HD I l

l i '

~

120

_~ 100 STATIC HD LVL D_ 80 80 %

c 60 j -

40 E -

20

- 0 l i I , I , I ,

DYNAMIC HD I l

l l

00 RCPS DN 12 DYllRNIC

.- 100 HD LIO 80 60 40 20 D- 0 i , i ,  ; , i ,

ALL RCPS OFF I l l '

l

- D--

4 g ATING l i I . l . I ,

-120 -90 -60 -30 0 MINUTES PSS Al-on A2-apfN-o, NUC RVL CDR P-T B1-or B2-DV B3-cy g1- o t, b B EXHIBIT C-7.6 FORMAT

C pyrighte 19fdk by Westinghouse Electric C:rporation, '

cli rights r; served .

9

SECDNDARY TRENDS MENU 00/00/00 00
00:00 l

i j TRENDED PARAMETER PAGE l SG UR LVL 1 SG NR LVL 2 i

AFU FLOW 3 SG PRESS 4

CST LVL 5 l .

t i

1 a

1 RHNUNCIATORS RPU STATUS DPU-R DPU-B 50VPCE PSS Al-oK A2-0K A3-oK No DPU-B NUC RVL CDR P-T B1-or B2-Or BB-at N1~ U':

4 EXHIBIT C-8.0 FORMAT l

1 4

, . _ , , _ . _,.,,__,_._g,., _

,,.__,%-_ y.,_ .-_n-__m _ _ , , , , . , , , , ,yy- ,..-,.,y,-,.,,,_,,__ .-,__-_ _w,, .,,..g- w,.,y_-.r_,__..

Copyright 319E. by W;stinghouse Electric Corporation, all riEhts reserved t

PAGE 1 SECONDARY TRENDS 00/00/00 00:00:00 SG UR LVL 111NUTES

-120 -90 -60 -30 0 1 l l l 100 UR LVL 50 % SG 1 100 %

~

l , l . l i I i I i '

l l

100 UR LVL 50 % SG 2 100 %

~

l . I i I . I i I i l '

l 100 UR LVL 50 % SG 3 100 %

~

l , I i l i l i I i i '

i 100 UR LVL 50 % SG 4

~

100 %

~

1 , l . l . 1 .

-120 -90 -60 -30 0 til flVT E S At(H'JitC I ATORS RPU STATUS DPU-R OPU-B PSS SOURCE HUC RVL CDR P-T B1-Dr 82-Dr B9-Dr Al-0K A2-0K A3-0K ny _ U'. MIM E2M DPU-B EXHIBIT C-8.1 FORMAT

C:pyright019Efa, by W;stinghouse Electric Corporation, all rights res rv;d t

PAGE 2 SECONDARY TRENDS 00/00/00_ 00:00:00 SG NR LVL HINUTES

-120 -90 -60 -30 0 I l l l NR LVL 50 % SG 1

~

100 %

~

1 , I . I . I i I i i '

i 100 NR LVL 50 % SG 2

~

100 %

~

1 i I e I i I .

I l i l 100 NR LVL 50 % SG 3

~

100 %

~

l i l i l i I i I i '

i l 100 NR LVL 50 % SG 4

~

100 %

~ ~

1 i I . I . l .

-120 -90 -60 -30 0

~

NINUTES AlltlUNCI ATORS RPU STATUS OPU-A OPU-B SOURCE PSS NUC RVL CDR P-T Al-aK R2-DM A3-on N1-06 m - ND DPU-B B1-or 82-or 83-or _

O EXHIBIT C-8.2 FORMAT

C:pyrighto 1982. by

~ Westinghouse Electric Corporation, all rights r: served 6

P AGE 3 SECOND AR'i TRENDS 00/00/00 00:00:00 AFU FLDU NINUTES

-120 -90 -60 -30 0

_i i -

i - -

~

1000 800 AFu FLDu 600 GPN SG 1 400 900 GFil 200 i i i . I i i . O

_i i i -

i '

1000

[- i 800 AFU FLDU 600 GFM SG 2 400 900 GPM 200 i , i . i . i , 0

_i i i -

i -

1000

[- i 800 AFU FLDU 600 GPN SG 3 400 900 GPM

~

200 i . i , i , i ,

0

_i i i -

i -

1000 800 AFU FLDU

, 600 GPM SG 4 400 900 GPM 200 i , i i i , i ,

0

-120 -90 -60 -30 0 MINUTES .

ANNUNCIATORS RPU STATUS DPU-R OPU-B SaVPCE PSS Al-oK A2-aK A3-aK MfiM M iB NI ~ U', DPU-B NUC RVL CDR P-T B1-ar B2-0K B ?- ai' e

EXHIBIT C-8.3 FORMAT

Ccpyright3191lk by Westinghouse Etetric Corporation, cll right: r;scrved t

PAGE 4 SECDilDARY TRENDS 00/00/00 00:00:00 SG PRESS NINUTES

-120

-90

-60 '

-30 0 D- 1200 800 PRESS PSIG SG 1 400 1200 PsIG

-t , i . i , i . -

0 D- 1200 800 PRESS SG 2 PSIG 400 1200 PSIG

-i i i , i . i , -

0 D- 1200 800 PRESS SG 3 PSIG 400 1200 PSIG

-i , i i i , i . -

0 D- 1200 800 PRESS PSIG SG 4 100 1200 PSIG

-i . I i i , i . -

0

-120 -90 -60 -30 0 MINUTES -

ANNUNCIATORS RPU STATUS OPU-A OPU-B SOURCE PSS Al-OK R2-ok R3-On -HD N OPU-B fiUC RVL CDR P-T B1-or 82-or B3-Dr N1-OK _

EXHIBIT C-8.4 -

FORMAT

Westinghouse Electric Corporation, cli rights r;s:rved t

PAGE 5 SEC0f1DARY TRENDS 00/00/00 00:00:00 CST LVL NIllVTES

-120 -90 -60 -30 0

_I i l i D- 100

~

75 CST LVL

: TAllE 1
: 100  %

~

50 %

25 l . I , I , I ,

0

_I i l l D- 100

~

75 CST LVL TAtlK 2 100  %

50 %

25 l . l . I , I ,

0

-120 -90 -60 -30 0 f11NUTES AHi1UtlCI ATORS RPU STATUS DPU-R DPU-B SOUPCE PSS Al-on A2-0K A3-On 10 M DPU-B NUC RVL CDR P-T B1-or B2-on 89-or ni- U'. _

EXHIBIT C-8,5 FORMAT i

1

l Copyright 819& by

  • W;stinghous2 Electric C:rporatiog cil rights reservId i

i i

i i

!j e a  !  !

! CONTRINNENT TRENDS MENU 00/00/00 00:00:00

)

l 1 TRENDED PARAMETER PAGE i

CNMT PRESS 1 j

j XTND RNG PRESS 1 j H2 CONC 1 CNMT WTR LVL 2 i

j RUST LVL 2 i

j i

i '

i t ,

f

)i i

1 i RHHUNCIRTDRS RPU STRTUS DPU-A DPU-t SOURCE

{ PSS M i

Al-on A2-OK A3-on N1-Ot, NUC RVL CDR P-T B1-on B2-DK B3-or N tl DPU-B

[ .

EXHIBIT C-9.0 FORMAT

{

1 i

3

C:pyrighto 19fft by W stinghouse EI;ctric C:rp:raticr',

all rights r:s;rv d t

P CNI1T TRENDS 00/00/00 0^:00:00 H2 CDNC MINUTES

-120 '

-90 -60 -30 0 i i l i .

E 60 CNNT PRESS

p;E 55 PSIG T -E 30 PSIG l , I , ,

2 0 I l ,

I l l l i

? -

175

? Vi 150 Y.THD RNG PRESS

__ E 150 PSIG 125

? -E 100 T -E 75 PSIG r

_ -2 50

' ~

? 25

? 40 1 i I ,  ! , l ,

-25 T' D -- 10 H2 CONC

E 10.00 %

? = 5 2 l i l i ,

2 0 l l ,

-120 -90 -60 -30 0 tilNUTES ANNUNCIATORS RPU STATUS OPU-R OPU-B SOUPCE PSS Al-OK A2-0K A3-og g y , DF, EIN EEN DPU-B NUC RVL CDR P-T B1-un B2-De B 3- 07 EXHIBIT C-9.1 FORMAT

T C:pyright319fah. by Westinghouse Electric Corporation, all rights reserved V

PAGE 2 CNNT TRENDS 00/00/00 RUST UTR LVL 00:00:00 CNNT MTND RflG LVL f11NUTES

-120 -90 -60 -30 0 I l i '

l D- 100

- RUST UTR LVL 75 100 %

1 50 %

2 25

~

~

l . l . I ,  ! ,

l ' ' ' '

i l l 150

: CNnT XTND RNG LVL 2 125 0 IHCHES

- l'UD

-h 75 INCHES

- i 50

- -5 25 D: FLDDR DRAINS LVL ,

-120 -90 -60 -30 0 MillVTES ANNUNCIATORS RPU STATUS DPU-R OPU-B PSS SOURCE NUC RVL CDR P-T B1-ar B2-ar B3-or "I" U '.

Al-un A2-0K A3-an MM M DPU-B 0

EXHIBIT C-9.2 l FORMAT l

1

Copyright 019Ah, by Westinghouse Electric C:rporation, l cll rights reserved '

i l

DETRIL DATA MENU 00/00/00 00:00:00 PLRNT DATR PRIMRRY SECDNDARY PARAMETER PAGE PARAMETER PRGE UR PRESS 1 SG NR LVL 7 UR THDT/TCDLD 1 SG UR LVL  ?

SUBCDDL MARGIN 1 SG PRESS  ?

PR2R LVL 1 CST LVL  ?

RUST LVL 1 AFU FLDU  ?

RV LVL 1 NUC PUR 1 RVLIS TP.N R 2 RVLIS TRN B 3 CORE TEMP T/C OURD 1 & 2 4 ,

00AD 3 & 4 5 T/C MRP 6 CONTAINMENT DATR PARAMETER PAGE PRESS 8 H2 CONC 8 UTR LVL 8 ANHUNCIATORS RPU STATUS OPU-A DPU-B SOURCE PSS Al-aK A2-0K A3-aK N1-on: DPU-B NUC RVL CDR P-T B1-or B2-06: B3-at l

EXHIBIT C-10.0 FORMAT

Copyright >' 19fa by W;stinghouse El::tric Corporation, cli rights riserved i

PAGE 1 DETAIL DATA 00/00/00 00:00:00 PRIl1ARY DAT A LIST UR PRESS 2250 PSIG BYU23:UIElls 25 *F ~

P T-108 2201 418 2200 428 2200 438 2200 1.lR TCOLD UR THDT LDDP 1 TE4138 560 *F LDDP 1 TE413A 610 *F 2 423B 560 2 423A 610 3 433B 560 3 433A 610 4 443B 560 ,

4 443A 610 PR2R LVL 100 % RUST LVL 100 %

LT459 100 LT990 100 460 100 991 100 461 100 992 100 993 100

-RV LVL 80 %Lvt

  • 80 %LVL 0 %Lio STATIC HEAD FULL RNG UPPR RNG DYNA!11C HD TRN A 80 80 30 TRN B 100 100 0 NUC PUR 0.000 % 1.0E+03 CPS 0.00 DPH DET PUR UPPR RNG FLX LDUR RNG FLX SUP, TRN A DN 0.000 0.0E+00 1.00 TRN B DN 0.000 0.0E+00 1.00 AHHUNCIATORS RPU STATUS DPU-A DPU-B SDUPCE PSS Al-aK A2-0K A3-on MXHiM M DPU-B NUC RVL CDR P-T gy _ ut B1-cr B2-an 83-ar -

EXHIBIT C-10.1 FORMAT

C:pyright319.66. by Westinghouse El.tctric Corporation, all rights reserved e

PAGE 2 DETAIL DATA 00/00/00 RVLIS TRAIN A 00:00:00 TE1314 UPPR FULL D'!NAMIC 120 *F RNG DP RNG DP HD DP ATE 1313 TE1316 109 *F u 165 *F G LT1310 LT1311 LT1312

-6.10 IN -13.4 Ill -2.81 Ill

/

LI 1311 DFFSCALE g g g I" T- nTE131E 1 120 *F [jg1

[ 2 LIT 1310 0FFSCALE TE1319

" 268 'F m TE1317 m TE1318 3 114 'F 121 *F LIS1312 DFFSCALE RV LVL STATIC HD UPPR RNG 80 %LVL STATIC HD FULL RNG 80 %LVL RCPS DFF DYNAl1IC HD 30 %LIO WR %r(TE -943A) 560 *F UR PRESS 2250 PSIG AHHUNCIATDRS RPU STATUS OPU-A PSS DPU-B COURCE Al-on A2-0K A3-ot NUC RVL CDR P-T B1-or 82-Dn 83-0V "I ~ U '. - NO M DPU-B EXHIBIT C-10.2 FORMAT

Copyiighte 19.fh by Westinghouse El:ctric Corporation.

all rights reserved PAGE 3 DETAIL DATA 00/00/00 RVLIS TRAIN B 00:00:00 TE1324 UPPR FULL D'.'NAH IC 120 *F RNG DP RNG DP HD DP ATE 1323 TE1326 109 *F n 165 *F 10 LT1320 LT1321 LT1322

-6.10 In -13.4 In -2. 81 In

/

LI 1321 DFFSCALE g g g I T- nTE1325 1 I 120 *F q g

LI51320 -

DFFSCALE TE1329

/ " 268 *F D

~

m TE1327 m TE1328 3 114 *F 121 *F LI51322 0FFSCALE RV LVL STATIC HD UPPR RNG 100 %LYL STATIC HD FULL RNG 100 %LYL RCPS OFF DYNAMIC HD 0 %LIO we % (re -433c.) 560 *F UR PRESS 2250 PSIG AHHUNCIATDR5 RPU STATUS OPU-R PSS OPU-B SOURCE Al-aK R2-0K R3-aK gi-01: MN DPU-B NUC RVL CDR P-T B1-an B2-0K B 3- ai, EXHIBIT C10.3 FORMAT l

, w

Copyright 31936. by Westinghouse Electric Corporation, a!! rights reserved I

PAGE 4 DETAIL DATA 00/00/00 00:00:00 CDRE T/C QUADS 1 8. 2 QUAD 1 T/C 'F QUAD 2 T/C 'r LDC H01 TE10013 520 LDC H15 TE10038 520

^

J02 TE10014 520 J08 TE10040 520 J04 TE10039 520 J10 TE10016 520 J06 TE10015 520 J12 TE10041 520 J08 TE10040 520 J14 TE10017 520 LO2 TE10042 520 LOB TE10019 520 LO4 TE10018 520 L10 TE10044 520 LC6 TE10043 520 L12 TE10020 520 LOB TE10019 520 L14 TE10045 520 fl02 TE10021 520 N08 TE10047 520 N04 TE10046 520 N10 TE10023 520 tiO6 TE10022 520 N12 TE10048 520 N08 TE1004? 520 -

N14 TE10024 520 R06 TE10049 520 R08 TE10025 520 R08 TE10025 520 R10 TE10050 521 REF JUNCTION RTD REF JUNCTION RTD TE11980 160 TE11983 160 TE11981 160 TE11984 160 TE11982 160 TE119'35 160  ;

1 ANNUNCIATORS RPU STATUS DPU-A DPU-B SOURCE I PSS Al-un A2-aK RS-cK N1-UK - NO - ~ NO DPU-B 1 NUC RVL CDR P-T B1-on B2-an 83-0r EXHIBIT C-10.4 FORMAT

  • TRAIN A
    • TRAIN B

CopyriEht c 19.86. by Westinghouse Electric Corporation, aff rights reserved t

PAGE 5 DETAIL DATA 00/00/00 00:00:00 CDRE T/C QUADS 3 & 4 OUAD 3 T/C 'F QUAD 4 T/C 'F LDC 808 TE10026 520 LOC A06 TE10001 520 A10 TE10002 520 A08 TE10026 520 C08 TE10004 520 CO2 TE10027 520 C10 TE10029 520 C04 TE10003 520 C12 TE10005 520 C06 TE10028 520 i C14 TE10030 520 COB TE10004 520 E08 TE10032 520 E02 TE10006 520 E10 TE10008 520 E04 .TE10031 E12 520' TE10033 520 E06 TE10007 520 E14 TE10009 520 E08 TE10032 520 .

G08 TE10011 520 G02 TE10034 520 G10 TE10036 520 G04 TE10010 520 G12 TE10012. 520 G06 TE10035 520 G14 TE10037 520 -

G08 TE10011 520 H1'5 TE10038 520 H01 TE10013 520 REF JUNCTIDH RTD REF JUNCTIDN RTD TE11980 160 TE11983 160 TE11981 160 TE11984 160 -

TE11982 160 TE11985 160 '

ANNUNCIATDRS RPU STATUS OPU-A DPU-B SOURCE PSS Al-oK A2-ax A3-ai: 'NO - NO DPU-B NUC RVL CDR P-T B1-an B2-DK B3-or N1-0f:

EXHIBIT C-10.5 FORMAT

  • TRAIN A
    • TRAIN B

-y , -wm- , , -

CopyrightD 19&, by Westinghouse Electric Corporatien, all rights reserved t

PAGE 6 DETAIL DATA 00/00/00 CDRE T/C MAP o' 00:00:00 A C E G H J L N R 15 oVAo 560 3

ouno 15 2

14 560 560 560 560 560 560 14 12 560 560 560 560 560 560 12 10 560 560 560 560 560 560 560 560 10 27o' 8 560 560 560 560 560 560 560 a 560 8 eo'

-6 560 560 560 560 ' 560 560 560 560 6

-1 560 560 560 560 560 560 4 2 ouso 560 560 560 560 560 4

560 ouso 2 1

1 560 1 A C E G H J L N R

~

180*

AHHUNCIATDRS RPU STATUS PSS OPU-R OPU-B SOURCE Al-cK A2-0K A3-un NI~UK MM DPU-B NUC F.VL CDP. P-T B1-Dr B2-Dx B3-oe EXHIBIT C-10.6A l

FORMAT (APPLICABLE TO V0GTLE PLANT UNIT 1)

CepyrightS 19Eh. by

. Westinghouse Electric Corporation, all rights rescreed t

PAGE 7 DETAIL DATA 00/00/00 00:00:00 SECDND AR'.' D AT A LIST SG UR LVL SGI SG2 SG3 SG4 LT501 100 % LT502 100 % LT503 100 % LT504 100 %

SG NR LVL SG1 100 % SG2 100 % SG3 100 % SG4 100 %

LTS17 100 LT527 100 LT537 100 LT547 100 518 100 528 100 538 100 548 100 519 100 529 100 539 100 549 100 551 100 552 100 553 100 554 100 SG PRESS SG1 1200 PsIG SG2 1200 PSIG SG3 1200 PSIG SG4 1200 PsIG PT514 1200 PT524 1200 PT534 1200 PT544 1200 515 1200 525 1200 535 1200 545 1200

, 516 1200 526 1200 536 1200 546 1200 RFU FLDU SG1 900 GPM SG2 900 GPM SG3 900 GFM SG4 900 GPr1 FT5152 900 FT5151 900 FT5153 900 FT5150 900 15152 900 15151 900 15153 900 15150 900 CST LVL 100 % 100 %

TANK 1 TANK 2 LT5101 100 LT5104 100 5111 100 5116 100 '

AHHUNCIRTDRS RPU STATUS DPU-A PSS DPU-B SOURCE R1-DK RZ-DK A3-Og N1- o t,, NM DPU-B NUC RVL CDR P-T B1-DK B2-DK B3-DK EXHIBIT C-10.7 ~

FORMAT

Copyright? 1926, by Westinghouse Electric Corporation, all rights reserved ,

t PAGE 8 DETAIL DATA 00/00/00 00:00:00 CNUT DATA LIST PRESS 55 PSIG XTND RNG PRESS 150 PSIG PT934~ 50 PT10942 150 935 50 10943 150 936 100 937 25 H2 CONC 10.0 %

TRN A AIT12979 10.0 B 12980 10.0 H2O LVL SUr1PS 120 IHCHES XTND RNG LVL 0 INCHES SDUTH LT7??? 53 LT764 50 NORTH  ??89- 53 765 50 RCAV  ???8 60 ANNUNCIATORS P.P U STATUS DPU-R DPU-B SOURCE PSS Al-oK A2-uK AS-aK M + NO N1-DK DPU-B NUC RVL CDR P-T B1-aK B2-ce B3-ar EXHIBIT C-10.8 FORMAT

6 ATTACHMENT II e

0290G/ GEL /1-85

Numb;r: ' Tite: R:v.lssu2 m st2:

F-0.2 CORE COOLING HP/LP, REV.1 1 Sept.,1983 l

t 0.;

  • GOTO FR C.1 R C.

NO CORE EXIT

+ TCs LESS - RVLIS NO THAN12000F FULL RANGE GREATER -

YES THAN (2)

NO "

CORE EXIT GO TO TCs LESS -

FR-C.2 THAN 7000F YES GOTO FR C.2 NO AT LEAST ONERCP -

RUNNING RVLIS NO YES FULL RANGE GREATER THAN (2)

YES RCS GOTO SUBC00 LING NO FR C.3 BASED ON .

CORE EXITTCs GREATER THAN YES (1)0F GOTO

~ , FR C.2 RVLIS DYNAMIC HEAD RANGE NO GREATER THAN (3)-4 RCP (4)-3 RCP (5)-2 RCP YES (6)-1 RCP

  • GO TO FR C.3 t .

l

' CSF SAT l

t ATTACHMENT III i

k e

5 t

.- v t t 0290G/ GEL /1-85

\. ,

l l

Nusnhor: Th8*s Rev. leeue/Deser l FR C.1 RESPONSE TO INADEQUATE CORE COOLING HP Rev.1 1 Sept.1983 STEP H ACTION / EXPECTED RESPONSE R! ESPONSE NOT OBTAINED &

CA UTION

  • If RWST level decreases to less than ai, the SI System should be alignedfor cold leg recirculation using ES-1.3, TRANSFER TO COLD LEG RECIRCULA TION.
  • Low-head SIpumps should not be run longer than m without CCW to the RHR heat exchangers.

/ 1 Verify 31 Velve Alignment -

Manually align volves as necessary.

PROPER EMERGENCY ALIGNMENT l 2 Verify 31 Flow In All Trains:

Stort pumps and align volves os

  • Charging /51 pump flow indicators - necessary. Try to establish any CHECX FOR FLOW cther high pressure injection:
  • High-head 51 pump flow indicators - [ Enter plant specific list].

CHECK FOR FLOW Low head 51 pump flow indicators -

CHECK FOR FLOW 23 Check RCP Support Conditions - i Try to esroblish support conditions.

AVAILABLE

[ Enter plant specific list) l 2 of 10

l m m s . %,

FR C.1 RESPONSE TO INADEQUATE CORE COOLING HP.Rev.1  !

1 Sept.1983 e

STEP ACTION / EXPECTED RESPONSE l RESPONSE NOT OBTAINED -

/4 Deck 31 Accumulator isolation Valve Status:

a. Power to isolation volves - c. Restore power to isolation volves.

AVAILABl.E

b. Isolation volves - OPEN b. Open isolation volves unless closed offer occumulator discharge.

5 Geek Core Ixit TCs - LISS Go to Step 8.

THAN 1200*F 6 Geek RVLIS Full Range Indication:

a. Indication - GREATER THAN (J) o. E increasing, THEN return to Step 1. g NOT, THEN go to Step,7.
b. Return to guideline and step in effect 7 Geck Core Exit TCs:
a. Temperature - LESS THAN 700'F
o. E decreasing THEN return to Step 1. g NOT, THEN go to Step 8.
b. Return to guideline and step in effect i

3 of 10

-- w -

w-

w ==

n.m.

FR C.1 RESPONSE TO INADEQUATE CORE COOLING HP.Rev. I 1 Sept.1983 ST E P f--- ACTION / EXPECTED RESPONSE l l RESPONSE NOT OBTAINED -

NOTE This guideline should be continued while obtaining hydrogen sample in Step 8.

8 Check Centoinment Hydrogen

. Concentration:

a. Obtain a hydrogen concentration measurement:

[ Enter plant specific means]

b. Hydrogen concentration - LESS
b. Consult plant engineering staff THAN 6.0% IN DRY AIR for additional recovery actions.

Go to Step 9.

c. Hydrogen concentration - LESS c. Turn on hydrogen recombiner THAN 0.5% IN DRY AIR system. I CA UTION
  • Alternate water sourcesfor AFWpumps will be necessary if CSTlevel decreases to less than v>.
  • A faulted or ruptured SG should not be used in subsequent steps unless no intact SG is available.

9 Check intact 5G Levels:

~

a. Narrow range level - GREATER
c. Increase total feed flow to restore THAN (5)% [(6)% FOR ADVERSE narrow range level greater then /51%

CONTAINMENT]

[(d>% for adverse containment].

E total feed flow less then (7) gpm, THEN go to Step 18. OBSERVE NOTE PRIOR TO STEP 18.

b. Control feed flow to maintain narrow range level between (5)%

[(d>% for adverse containment) and 50%

i l

4 of 10 l

m tw a .wm .

FR.C.1 RESPONSE TO INADEQUATE CORE COOLING HP.Rev. I 1 Sept.1983 STEP h---j ACTION / EXPECTED RESPONSE '

l RESPONSE OT OBTAINED h 10 Check RCS Vent Peths:

a. Power to PRZR PORV block c. Restore power to block volves.
  • volves - AVAILABLE
b. PRZR PORVs - CLOSED
b. Manually close PRZR PORVs. E any volve con NOT be closed, THEN manuelly close its block volve.
c. Block volves - AT LEAST ONE c. Open block volve unless it was OPEN closed to isolate on open PRZR PORV. .
d. Other RCS vent paths - CLOSED
d. Close any open RCS vent path.

[ Enter plant specific list)

NOTE Partial uncovering of SG tubes is acceptable in the following steps.

11 Depressurize Allintact SGs To (3) PSIG:

a. Dump steem to condenser of o. Dump steam at maximum rate maximum rate using SG PORVs.
b. Check SG pressures - LESS
b. E SG pressure decreasing, THEN THAN (s) PSIG return to Step 9.g NOT, LHE[

go to Step 18. OBSERVE NOTE

' PRIOR TO STEP 18.

c. Check RCS hot leg temperatures - c. E RCS hot leg temperatures AT LEAST TWO LESS THAN 400*F decreasing, THEN return to Step 9.E.N_QJ, THEN go to Step 18. CBSERVE NOTE PRIOR TO STEP 18.
d. Stop SG depressurization S of 10

Semmber TMos Bew. leses/Deves FR C.1 RESPONSE 70 INADEQUATE CORE COOLING HP Rev. I 1 Sept.1983

~

e ,

. i d STEP H ACTION / EXPECTED RESPONSE l RESPONSE NOT OBTAINED -

12 Check if 51 Accumuletors $hould Be Isoleted: -

c. At least two RCS hot leg o. Go to Step 18. OBSERVE NOTE
temperatures - LESS THAN PRIOR TO STEP 18, 400*F
b. Close all 51 occumulator b. Vent any unisolated occumulator.

isolation volves 13 Stop All RCPs 14 Depressurize AllIntact SGs To Atmospheric Pressure:

a. Dump steam to condenser at a. Dump steam of maximum rate maximum rate . using SG PORVs.

( 15 Verify St Flow:

. Continue efforts to establish 51 flow.

  • Charging /SI pump flow indicators - Try to establish any other high CHECK FOR FLOW pressure iniection:

-OR- [ Enter plant specific list].

  • High-head Si pump flow indicators - IF core exit TCs less than 1200'F, CHECK FOR FLOW THEN return to Step 14. IF NOT, THEN go to Step 18. CBSERVE NOTE PRIOR

-OR- -

TO STEP 18.

  • Low head 51 pump flow indicators - .

CHECK FOR FLOW t

a f

J 6 of 10 l

m m a . w.am FR C.1 RESPONSE 70 INADEQUATE CORE COOLING HP-Rev.1

, 1 Sept.1983 STEP d ACTION / EXPECTED RESPONSE ' RESPONSE NOT OBTAINED -

16 Check Core Cooling:

a. Core exit TCs - LESS THAN 1200*F o. Go to Step 18. OBSERVE NOTE PRIOR TO STEP 18,
b. At least two RCS het leg b. Return to Step 14.

temperatures - LESS THAN 350*F c.- RVLIS full range indication - c. Return to Step 14.

GREATER THAN (9/

17 Go To I 1, LOSS OF REACTOR OR

~

SECONDARY COOLANT, Step 12 NOTE Normai conditions are desired but not requiredf:,-

starting the RCPs.

( 18 Check Core Exit TC - LESS Start RCPs os necessary until core THAN 1200*F exit TCs less than 1200*F.

_l,E, core exit TCs greater than 1200*F and all available RCPs running, THEN open all PRZR PORVs and block volves.

jF core exit TCs greater than 1200*F and all PRZR PORVs and block volves open, THEN open o!! ether RCS vent paths to containment.

l l

l l

7 of 10 i

\.

m na a .wm .

FR C.1. RESPONSE T0 INADEQUATI CORE COOLING HP Rev.1 1 Sept.1983 W

d STEP ACTION / EXPECTED RESPONSE ' RESPONSE NOT OBTAINED h-19 Try To Locally Depressurize All Use faulted or ruptured SG.

Irrtoct SGs To Atmospheric Pressure:

-OR-

  • [ Enter plant specific means]

20 Check if St Accumulators should Be Isoleted:

a. Low head Si pump flow o. Return to Step 18.

indicators - AT LEAST INTERMITTENT FLOW

b. Close o!! Si occumulator b. Vent any unisolated isolation volves occumulator.

21 Check if RCP: Should Be Stopped: a

o. At least two RCS hot leg o. Go to Step 22.

temperatures - LESS THAN 350*F

b. Stop oil RCPs 22 Verify 51 Flow:

Continue efforts to establish SI

  • Charging /SI pump flow indicators - flow. Try to establish any other high CHECK FOR FLOW pressure iniection:

-OR- [ Enter plant specific list).

  • High-head 51 pump flow indicators - Return to Step 18.

CHECK FOR FLOW

-OR-

  • Low head 51 pump flow indicators -

CHECK FOR FLOW I

i .

I 8 of 10

)

l l

i W h sov. leewe/Deve FR C.1 RESPONSE TO INADEQUATE CORE COOLING HP Rev. I 1 Sept.1983

  • I STEP b ACTION / EXPECTED RESPONSE ' l RESPONSE NOT OBTAINED h 23 Check Core Cooling: Return to Step 18.

l

  • RVLIS full range indication -

GREATER THAN (9/ .

  • At least two RCS hot leg temperatures - LESS THAN 350*F 24- Go To E.1, LOSS OF REACTOR OR SECONDARY COOLANT, Step 12

- END -

e

~

~

9 of 10 l

- - - - - - -r-- . - - - + .-.

m m .. . . .o. .

FR.C*1 RESPONSE TO INADEQUATE CORE COOLING HP.Rev.1 ,

1 Sept.1983 ;

9 FOOTNOTES (1) Enter plant specific value corresponding to R WSTswitchover serpoint in plant specific units.

(2) Enter plant specific time.

(3) Enter plant specific value which is 31/2 feet above the bottom of activefuelin core with :ero void fraction, plus uncertainties.

(4) Enterplant specific value corresponding to CSTlow levelswitchover serpoint in plant specific units.

(3) Enter plant specific value showing SG leveljust in the narrow range, including allowancesfor normal

. channel accuracy. *

(6) Enter plant specific value showing SG leveljust in the narrow range, including allowancesfor normal channel accuracy, post accident transmitter errors, and reference leg process errors, not to exceed 30%.

'(7) Enter the minimum safegu.trds AFWflow requirementfor heat removal, plus allowancesfor normal channelaccuracy (typically one MD AFWpump at SG design pressure).

(8) Enterplant specific value which is 200 psig, minus allowancesfor normal channel accuracy.

(9) Enterplant specific value which is above the top of activefuelin core with :ero voidfraction, plus uncertainties.

l 10 of 10

Attachment'IV 0290G:1/ GEL /4-85 I

l l

- _ _ _ , . , , , * '%r9

= = . n. ~

I E.0 REACTOR TRIP OR SAFETY INJECTION HP.Rev. I 1 Sept.1983 STEP ,

ACTION / EXPECTED RESPONSE ,

RESPONSE NOT OBTAINED -

25 Check if 51 Flow Should Be Reduced:

a. RCS subcooling based en core exit
a. DO NOT STOP Si PUMPS. Go to TCs - GREATER THAN /14)*F Step 27.

3 b. Secondary heat sink.

b. E neither condition satisfied. THEN
  • Total feed flow to SGs - GREATER 00 NOT STOP Si PUMPS. Go to THAN (6> GPM Step 27.

-OR-

  • Ncrrow range level in at least one SG - GREATER THAN (3;?;
c. RCS pressure - STABLE OR
c. DO NOT STOP S1 PUMPS. Go to INCREASING Step 27.
d. PRZR level - GREATER THAN (15/?;
d. DO NOT STOP Si PUMPS. Try to sichilize RCS pressure with normal PRZR spray. Return to Step 250.

26 Go To 151.1,51 TIRMINATION, Step 1 9 of 13 1