ML20137B018
ML20137B018 | |
Person / Time | |
---|---|
Site: | Yankee Rowe |
Issue date: | 09/19/1985 |
From: | Holmgren B, William Jones, Lefrancois D YANKEE ATOMIC ELECTRIC CO. |
To: | |
Shared Package | |
ML20137B017 | List: |
References | |
YAEC-1492, NUDOCS 8601150023 | |
Download: ML20137B018 (24) | |
Text
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _
e FIRE WATER TANK SEISMIC ANALYSIS FOR <
YANKEE NUCLEAR POWER STATION i
By p Donald R. LeFrancois YAEC-1492
\
f'o I 4 e?O' C A /9 /8M ~
PreparedBy:b.4.MeFranteist [ /
(Date)
Yankee Project Department Reviewed By: 'l
'L (44/6 '. b N5b B'. W. Holmgre Lead Mechanical Engineer / (Date)'
Yankee Projec epartment Approved By: bJ 63 m S J 20 ter W. G. Jon , Engineering Manager '(Date)
Yankee Pro t Department Approved By: dei c23, /[
. D. Haseltine, Project Manager (Date')
Yankee Project Depart. ment Yankee Atomic Electric Company Nuclear Services Division 1671 Worcester Road Framingham, Massachusetts 01701 8601150023 860106 PDR ADOCK 05000029 F PDR
DISCLAIMER OF RESPONSIBfLITY l ~
This document was prepared by Yankee Atomic Electric company and is completely true and accurate to the best of our knowledge, information, and belief. It is authorized for use specifically by Yankee Atomic Electric Company, and the appropriate subdivision within the Nuclear Regulatory commission only.
With regard to any unauthorized use whatsoever, Yankee Atomic Electric company, and its officers, directors, agents, and employees assume no liability nor make any warranty or representation with respect to the contents of this document or to its accuracy or completeness.
e m
ABSTRACT l
This report presents the results of Yankee Project Department Yankee Mechanica Engineering's structural evaluation of the Fire Water This isStorage in partialTank at Nuclear Power Station for postulated seismic loadings. tic response to Topic III-6, " Seismic Design Considerations" of the Systema Evaluation Program (Reference 1).
The evaluation of the tank shows that the tank, including anchor bolts 2,3,4) and foundation, will remain within code allowable limits (References the Yankee when subjected to loads caused by a seismic event based on either (Reference 14) or the NRC spectra (Reference 15).
Composite Spectra (YCS)
-lii-
TABLE OF CONTENTS Page 11 DISCLAIMER OF RESPONSIBILITY.....................................
iii ABSTRACT.........................................................
iv TABLE OF CONTENTS................................................
v LIST OF FIGURES..................................................
1
1.0 INTRODUCTION
2
2.0 DESCRIPTION
OF STRUCTURE.........................................
2 2.1 General Description........................................ 2 2.2 Fabrication and Erection...................................
4 3.0 P ERFORMANCE CRIT ERI A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 3.1 Tank Shell, Roof, and Floor................................
4 3.2 Anchor Bolts............................................... 4 3.3 Foundation.................................................
4 3.4 Soi1.......................................................
5 3.5 Loading....................................................
6 4.0 METHOD OF ANALYSIS...............................................
7 5.0 ANALYTICAL RESULTS AND CONCLUSION................................
7 5.1 Tank Dynamics.............................................. 7 5.2 YCS Results................................................
8 5.3 NRC - LLL/ TERA Results.....................................
9 54 conclusions................................................
10
6.0 REFERENCES
-iv-t
LIST OF FIGURES Title Page Number Tank Elevation 11 2.1-1 Bottom Plate Plan 12 2.1-2 Roof Plan 13 2.1-3 Foundation Plan and Detail 14 2.1-4 Anchor Bolt Detail 15 2.1-5 5.2-1 Yankee Composite Spectra - Horizontal Direction ' 16 NRC Spectra - N/S Direction 17 5.3-1 ,
NRC Spectra - E/W Direction 18 3.3 2 NRC Spectra - Vertical Direction 19 5.3-3
-V-e
1.0 INTRODUCTION
The Fire Water Tank (TK-55) is the water supply for the fire water system and for the primary and secondary pumps of the Safe Shutdown System (SSS).
The purpose of this report is to present the results of the Mechanical Engineering analysis. The analysis demonstrates that the fire water tank, ring foundation, and anchor bolts will meet code allowable limits and in fact have substantial margin to these limits when subjected to YCS' based seismic loadings.
In addition, the analysis demonstrates that the fire water tank, ring foundation and anchor bolts mest code allowable limits when subjected to seismic loadings based on an NRC seismic event.
This report is divided into five sections. Section 1 is the introduction. Section 2 provides a description of the tank and tank foundation including fabricEtion and erection requirements. Section 3 presents the performance criteria used by Mechanical Engineering for the ovaluation of the tank and foundation. Section 4 describes the method of analysis used in the evaluation of the tank. Section 5 is a summary of the analytical results and the conclusion obtained from these results.
2.0 DESCRIPTION
OF STRUCTURE 2.1 General Description The fire water tank is a cylindrical, steel shell structure 44'-0" in diameter and 32'-0" high. The tank is designed to hold 350,000 gallons of water.
The tank shell is composed of four rings with the lowest ring 0.35" thick and the upper three rings 5/16" thick (Figure 2.1-1). The tank floor is composed of 5/16" thick welded steel plates (Figure 2.1-2). The tank roof is made of 3/16" thick welded steel plates set at a 3/4:12 slope (Figure 2.1-3).
All steel plates are ASTM A283. Grade C material. The weight of the empty tank shell, roof, floor, and miscellaneous items is approximately 110,000 lbs.
Twenty-two simply supported. A36 steel channels located at the top of the tank shell provide radial bracing. The channels are equally spaced around the circumference of the tank. These channels are supported at the tank rim end at a central plate which is supported by two vertical channels.
The tank rests on a reinforced concrete ring foundation and an oiled sand base. The ring foundation is l'-6" thick by 6'-0" high and rests on a 5'-6" wide by l'-6" thick reinforced concrete footing (Figure 2.1-4). All concrete has a minimum 28-day compressive strength (f') of 4000 psi.
The tank is connected to the ring foundation with 24 equally spaced, 2-1/4" diameter anchor bolts. The anchor bolts are J shaped and embedded 3'-8" into the foundation (Figure 2.1-5). The anchor bolts are made of AISI 1141 steel.
2.2 Fabrication and Erection The fire water tan? s.s fabricated and installed in accordance with Specification YR-EDCR 79-24-S2 (Reference 8). The ring foundation and footings were constructed in accordance with Specification YR-EDCR 79-24-S4 (Reference 9).
Spscification YR-EDCR 79-24-S2 requires that the tank be insta11sd in cecordance with National Fire Protection Association (NFPA) NFPA 22, Water I
Tanks for Fire Protection (Reference 10), and American Water Works Association
~
(AWWA) D100 Welded Steel Elevated Tanks, Standpipes and Reservoirs for Water Storage (Reference 11). Mill test reports were required for all materials used for fabrication of the tank.
Specification YR-EDCR 79-24-54 contains the technical requirements for excavation, filling and backfilling, and construction of the rin8 foundation end footing. .
Structural fill and backfill consists of a well gradec, clean sand and gravel, compacted to a minimum of 95% of the maximum dry density of the soil.
Cement and aggregates conform to the appropriate ASTM specifications.
All concrete was mixed, delivered and placed in accordance with the requirements of ASTM C94, Standard Specification for Ready Mixed Concrete.
Test cylinders (4 per test) were taken at each placement. Cylinders were formed, cured and tested in accordance with appropriate ASTM standards. All cylinders tested at 28 days failed at greater than the 4000 psi required.
3.0 PERFORMANCE CRITERIA I 3.1 Tank Shell. Roof and Floor The tank shell, roof, and floor are made of ASTM A283 Grade C steel with a minimum yield strength (Fy) of 30 ksi. Tank hoop stress is limited to the allowables of the AISC Nanual of Steel Construction, 8th Edition (Reference,2) including a 1.33 increase in allowable stresses for seismic loadings. - .
Buckling stresses developed in the tank are limited to the allowables of American Petroleum Institute (API) Standard 650 (Reference 3). This standard was used in the original dusign of the tank, and contains provisions for seismic design.
3.2 Anchor Bolts The 24 anchor bolts are made of AISI 1141 steel. The ultimate tensile strength of this material is a minimum of 85 ksi. Anchor bolt stresses are limited to the allowables of the AISC (Reference 2).
3.3 Foundation Stresses in the reinforced concrete ring foundation are limited to the allowables of ACI 349-76 (Reference 4). Anchor bolt pullout capacity is calculated in accordance with Appendix B, Steel Embedments, of ACI 340.
3.4 Soil The ring foundation footing sits on undisturbed soil and compacted, structural backfill. Maximum bearing on the soll is limited to 10 TSF.
3.5 Loading The fire water tank is an axisynnetric structure located on the ground. The tank was, therefore, evaluated for one horizontal earthquake component combined with a vertical component.
For an event based on the YCS spectra, the vertical component is taken as two-thirds of the horizontal component.
The horizontal component of the NRC (LLL/ TERA) seismic event was taken es the higher acceleration in either the North-South or East-West direction.
YCS spectral accelerations are obtained from Reference 14. NRC spectral accelerations are obtained from Reference 15.
-S-
4.0 METHOD OF ANALYSIS t
I The fire water tank was analyzed using the method developed by Veletsos cnd Yang (Reference 12) for flexible tanks which was recommended in NUREG/CR 1161 (Reference 13). This methodology considers the effects of two modes of horizontal combined fluid-tank motion and one mode of vertical fluid-tank i interaction. This method also accounts for the effects of tank flexibility on l dynamic loads.
The method of Veletsos and Yang assumes a circular, cylindrical tank fixed at the base. Calculations are then performed to determine the natural frequencies of the tank-fluid system in the compulsive and convective modes, the effective fluid weight in each mode, and the height of the centroid of the cffective fluid weights. The overturning moments at the base, base shear, and the hydrodynamic pressure on the tank shell can then be calculated for a given response spectra.
Structural damping in the impulsive mode for a YCS seismic event is assumed to be 5 percent. This is based on the recommendetions of Reference 13 and Regulatory Guide 1.61. Conservatively, 3 percent structural damping was assumed for a WRC seismic event.
NUREG/CR-1161 (Reference 13) recommends that a damping of 0.5 percent be assumed for the convective mode. At this time, response spectra are not available for this damping. For ttis reason, spectral accelerations based on 2 percent damping were used. These accelerations are acceptable because at the tank's fundamental frequency in the convective mode (0.26 hz) the differences in accelerations for different damping values are small.
Conservatively, a 1.5 factor was applied to loads in the convective (sloshing) mode to account for participation of modes other than the fundamental convective mode. Vertical seismic effects were accounted for by reducing the resisting overturning moment by (1 - vertical ZPA) and increasing the hydrostatic fluid pressure by (1 + vertical ZPA). Conservatively, the stresses resulting from all three modes, convective, impulsive and vertical, were added absolutely.
l 5.0 ANALYTICAL RESULTS 5.1 Tank Dynamics The fundamental frequency of the tank fluid system in the impulsive mode Gu *) is 17.5 hz. The fluid weight acting in this mode (W ) is 1993 kips with a center of gravity (I ) at 11.6 ft. above the tank base.
The fundamental frequency of the tank-fluid system in the convective Effective fluid weight in this mode (W2 ) i' 94B mode (A)2) is 0.26 hz.
kips acting at 20.5 ft. above the tank base (1 ).
5.2 YCS Results The spectral acceleration at the impulsive mode fundamental frequency (S, ) is 0.15s. The spectral acceleration at the convective mode fundamental
) is 0.06g. Multiplied by 1.5 this yields an acceleration of frequency 0.09 5 . Conse (S,hvatively , the ZPA of 0.lg was used. A plot of the horizontal cpectra is shown in Figure 5.2-1.
The net seismic overturning moment (M + +
OT 11a 22a W331 S,l
. Were W3 and 1 3 are de weigM of W tank Mob waur add We center of gravity of the tank without water, respectively. The resisting moment at the tank base is 59,979 ft-k. The resisting moment consists of the weight of the tank shell, roof, base, and miscellaneous components and the weight of the water all multiplied by appropriate moment arms. The total resisting moment is reduced by (1 - vertical ZPA). The overturning moment at the tank base is 4193 ft-k. Since the resisting moment is greater than the overturning moment, the tank will not overturn during a YCS seismic event.
Maximum tank hoop stress.(T , is 11.8 ksi, compared with an allowable stress of 24 ksi. Maximum tank compressive stress (CTComp ) is 0.91 ksi, compared with an allowable of 6.58 ksi. Maximum bearing stress of the soil is 6.1 kaf compared with an ultimate capacity of 20 ksf.
The anchor bolts were enalyzed essuming that the bolt resisted all seismically induced sliding and overturning. Conservatively, no credit was taken for friction between the tank and foundation resisting sliding or water woight resisting overturning.
Maximum shear stress in an anchor bolt is 3.3 ksi, compared with an ellowable of 19.3 ksi. Maximum tenslie stress in a bolt is 7.13 ksi, compared to an allowable of 37.4 ksi.
In addition, the concrete ring foundation was checked for anchor bolt pullout and shear loads. Using the recommendations of Appendix B to Reference 4, the maximum allowable pullout (tensile) load on the bolt is 120 kips. Maximum allowable shear load on the bolts is 159 kips. The calculated bolt tensile load is 28.4 kips. The calculated bolt shear load is 13.1 kips.
5.3 NRC (LLL/ TERA) Results Spectral acceleration at the fundamental frequency of the impulsive mode is 0.36g. Spectral acceleration at the convective mode fundamental frequency is 0.17s. Multiplied by 1.5, this yields an acceleration of 0.255g for the convective mode. IPA in the vertical direction is 0.16g. Plots of the spectra are shown in Figures 5.3-1, 5.3-2 and 5.3-3.
The overturning moment at the base of the tank caused by seismic loadings is 10,202 ft-k. The resisting moment at the base is 55,980 ft-k.
Since the resisting moment is greater than the overturning moment, the tank will not overturn during a LLL/ TERA seismic event.
Maximumhydrodynamicpressurestressinthetankshell(C{ ) is 13.45 ksi, compared with the allowable of 24 ksi. The allowable compressive stress of 6.58 kai is greater than the calculated compressive stress of 1.99 ksi.
Maximum bearing stress on the soil is 11.7 ksf. This is less than the ultimate bearing capacity of 20 ksf.
Anchor bolt stresses ware calculated assuming that the bolts resisted all sliding and only the weight of the empty tank helped to resist the seismic
~
overturning.
Maximum bolt shear stress is 7.93 ksi compared to an allowable shear stress of 19.3 kal. Maximum bolt tensile stress is 18.44 ksi which is less than the allowable tensile stress of 33.9 ksi. The maximum shear and pullout loads on a bolt (31.5 k and 73.4 k) are less than the allowable shear and pullout loads of the concrete (159 k and 120 k, respectively).
5.4 Conclusions All portions of the fire water tank (TK 55) remain within code allowable limits when subjected to postulated seismic loadings (YCS or NRC).
The calculated compressive stress in~the tank is less than 14% (YCS) and 30% (NRC) of the allowable buckling stress. Therefore, the tank is not subject to buckling.
The anchor bolts and ring foundation are adequate to resist the full seismic overturning moment of either seismic event, with no credit taken fcr the weight of the water. The anchor bolts and ring foundation are also adequate for resisting the full sliding shear caused by either seismic event with no credit taken for frictional resistance. These are very conservative assumptions.
6.0 REFERENCES
- 1. NUREG 0825, Integrated Plant Safety Assessment, Systematic Evaluation Program for Yankee Nuclear Power Station, June 1983.
- 2. American Institute of Steel Construction, ATSC Manual of Steel Construction, 8th Edition.
- 3. American Petroleum Institute, Standard 650, Welded Steel Tanks for 011 Storate, 7th Edition, November 1980.
- 4. American Concrete Institute, ACI 349-76, code Requirements for Nuclear Safety Related Concrete Structures.
- 5. Cygna Energy Services, Report No. EY-YR-80023-15 Revision 0, Fire Water Tank.
- 7. YAEC Calculation No. YRC-333, Revision 1 Fire Water Tank Seismic Analysis.
- 8. Specification YR-EDCR 79-24-S2, Revision 1, Specification for Fire Protection Water Storage Tank.
- 9. Specification YR-E3CR 79-24-S4, Revision 0, Specification for Fire Pump and Water Supply Construction Site. Concrete and Masonry Work.
- 10. National Fire Protection Association, NFPA 22, Water Tanks for Private Fire Protection.
- 11. American Water Mc-ks Association, D100, Welded Steel Elevated Tanks.
Standpipes and Reservoirs for Water Storage.
- 12. Veletsos. A. J. and Yang J. Y., Dynamics of Fixed-Base Liquid-Storage Tanks, presented at the U.S.-Japan Seminar for Earthquake Engineering Research with Emphasis on Lifelino Systems, Tokyo, Japan, November 1976.
- 13. NUREG/CR-1161. Recommended Revision to Nuclear ReRulatory Commission Seismic Design Criteria.
- 14. Cygna Energy Services Document No. HB-1, ARS/ SAM Handbook for Seismic Analysis, Rev. O.
- 15. EES Inc., Job No. 81060 File No. 5-F, Broadened ARS.
LIST OF FITTtteCS O ,,,,,,,,,,
" Y e.se mess eats esaceereien es e me eneve w a 2.- Roo ,34ATcn u.5 onT6G.
He a (b u.sovo,3 i
I
. 4 1 ~ ns a
e.-
z **
aoo,uan.ett ancu. --- =caz w-sceose
,g$ u..or..oo .
I
- c. . .o- sucre o 1.
u-3.,sooo omsm.r ct t iy s cu.mozz.(m
.;. . e Stue owtartomt .So?e?o ao_
I ,gh g.. . _
'o I
Cs c+
e e
to*
st* RoorvtuT M sons 7s se.ar65
'./ ** tea. mort 6s*4L me 1 u-Soeooo Z7
~
) e '
f .
C5 ca 2
2 ** t.etLL oezt (ttwa eno) M 506000 sa.er.Lt
[
e c7 6 to* sooor notz hwe*W w-sos e s+
e.'8-I ,
g ig" sa cLa.mxz (uswe=) w -s o s ooo sa.ra
% Ca e 1
~
- k Le i sesiot tanota u-soe.sse cuvsituE LADCt8L 64-SOG.508 dY_ d LE a
, , on g I
.- .c .. . c o..cu o !
Swa ost <.
~ FL s t.of sL Asmutac. l r.
,1 st-as sE menes a v=4 as I C ** e
'"6*******
L = 3 . .w2%=e - . .
"*'* * **..e -useu.-set , estw,w .)
,/
- y _ 3 evitt av.anesa vame cD t=Et'ta.Da 4
& vfAa - #900 gg e.A6 NO+3463 D W3 g, .* , YApett ho - Tu
- S CAPaoT T- 5So.Doo CE1*Gg &as.
tga e . anse e
g
- Of1sGao peutS$ = af as
~
] f f'Y " ! pevemo1Taf.C Yt%f ruggg .pto esthe matte
-t '*. ' t- ev ao.aso ==
~T-
' sisc.=ttes eesetts.cre svises.
sC +!--
L $ ~
ST43mLEs% STt(L ann csat.a'f hm ~
ANOCCl N4 T C. tem.iR 6-h ,
n.u....
.~...s.. . .. .... ...
l . . ... .
=='s-= se===a--*
saarta . stas setc a-se es e.-a . e- .
j*r.aoo, o 3.s. g ,vv .ec.out) e.fT=.cs
- te se toc.tse ev swete te
., ,.e~,- f tasv=e . wecuuns test sovve.a. sevoseet.t.e vest smag.,
k -
q- .cc cs . atme.,...e
-~ some. e
..=* e.one.. oe r e.oiessispeca y' g *tLD anSpecteena* SetLL doiseTS 1 ht nonet49it a f bpoi 9 SAY
< g g. g.g g g* CatCun.9tagnect e vg s'.1%*
- (* # pet;1 CagD4D Bf.Twitte wiftTS
- 21**ie%*
'. eLJtsam suo cf r.stst omr.,.E2* p 5sg*
A
- i[ ] sent mac CP Fwt3T A*C.* tr-se %*
gg ; ej s ecs to mase e svity' e W ,
App *>qu n - .
- ) - _ -~ _ a *
~*
.,DSMk ce=, -
,s=e.3.tsa* \*t m
-v or e g.is.ese*
g 3
Ir F IS>t ER TAMK tCOMPANY w n r w.= w .
3%3 g
7 it l m.i sum l '
~q . >.
- ;.) I; '"" 350,000.g. GA N SU (TK-55)
.reki ?
no u.LLO.cuvsc,CTION ss rs TANK
-v et=a-<.-.w.s, st . un- 135 x ,
, 2,,e , ~
-v o g% i _r I
"" YANKEE ATOMIC ELECTRIC CD. * *c'"3Tr*
PU"Ir-'W4 ) _. }! ,
==** " ' '
7 g. .orvou jY ,,,..g g~.e ~ ~ , ,o 1
-- ~ ' c i .
..u... w
~~
== M 50947I
-5 W W 2- o ,.. . ,,s ,.
-.. h.Jm 2.,_
c3 eu ELU V E 1% **
=1. -
,T. [.. h. .Q...
no
(l ll!I!jlj 1! : i' I il 1i 1 ll K
N T E
. A S s
e d, c,
.II.
T 8 L
o e c m e d 9
. o '4 h
A T w a S 4 A
- s jg ,
4 Y 9 E e T t (. .
.Ii.
.. s g .,
0 A 3 .
a R A y N P. n. 5-m d E ',
e O m%
- O gL F .
- O u a a-
- 3 F M e
o.
t k
- v
. o-an T mM Oe a x c
+
n
. 4 t m . ,a . U m .r W s. w R O .
2 L
b a
n t .
- e e .
- u .
A.
3 3
t.
T
(
R x.
um t
r s L.~NS C a i.c t s. w a .. v a
- s. OC R s t r a m"
.I a
m i
t, R n s
M ma"e d e O O mHm n
o F T usm D T ueu mn.
O mr" U
7 3 s a B .,=
6 O e R P
P
" I y, A
"S . s 6 s e D 8, E 2 c,,s, 1 ,o Gt u * . .
IlF *8 .o o n R. 3 7
, m.
e a w L * . i g c o
tA R h_g E e T G a
m_
2 1
l P
et t i.
f w c
a A 9 . v M - . o S T 2
E lP a
v 4' u R v 4 , 1
- 1 G mo
. I
- . t g,%.
s F t f
o B
i
. 1 e
i S
f.y su u, t o a s c ;5V gr am .-
- ov ,
- _a a, , t .
o L
e
. c '7 = Am 4
t s _
~
4i
/
~ - rof. mo o
T i
y
! i
,4* - o r
,y 1
_=
- _ yv y3 -
j
~ .
}
i t i e s
- g g .
y6 -_5 -
l t Ii P
N llIIflll[ll1llI;' \'
? .a 3,10 c//78 M
.' ?-* - ---
11SH03103 03A0HddV ,, g lan ,
o j
- yj
'1 -
- - _I ({
m' ,
.) s , u. o [M u
jl
. - - . . . . . . .. .'o .
- -9 g es
{ ,N- u a lt,
+ , g s~ -
1 .
- z 11 t cp s s e t ss 3, . -
. ~
~ , __
= > ,
s , 5 . o * ;
s $ !
$ . 'o '
3.,l. _ '
o
-l, :- 3 g $
%g
~
- g & &
3 " '
h t
2 w% e t.
IS
- - 8 l is e
. = )
$ b- Ie s .
Gi M t.
u w[. ..
. m j * . ,
U N di EE C {s Ei! El !!
l ilu bh m
7 S INE
,N e
=
f t 6 6 s
hN ,
a, t.
w j:* 35 g ,
$ 'se.+
%I I y .e.
- _ y
. o i M *.4 i
- 2 3
.% 4 * +
-'l igi,1f
~
3
- - As .,
$ E E 'A'
', g, .
t-i,\ .
i
/
'Qy; . .. ,,
g ,
13
,m
- -T .'
..m-
"~
.m g P//@ ssva weas rioitvo no, . .t j.=,C= 5,',*. ""O asiv er.os seas 4 sala sinotv uwe.v4
-- 3 %3 .
a-- it.mc
.en.
N
- l1~1.l <!aW2Oi o l r
i i.ji i~rtjw'j l.
a"-
1, i Is. 3 l
[3lO.ed
! . g l;i; rq 1 pu m jm .
- g. . .
4 4
- 8. f I. r El j'
- t .I fi -
h} ir ir >- -l II , "i )i a
6 :.
Ie h
3
} 9. . 4 d 3%
411 , .-
f* .
- & l
- } }. g -
.s 1 2
'~
i Q, f
. / I h 'I
' ' L -! Ja ti
/
l 'l , \f pf j.2
- L fx. ,t ; d d . : i: ' ig' d 5 Y' b' k 6Y P i::
e , ,
d ll b
)
e
.b h
- i .
2
' j.a, , - . <
c '
gg '].
m - -
9 f
E
"' ' ' 'g y 4 { (-
c o ,5
=
3 W ' 11 O - C y y] :,-h-e .) I l* i' '
II
,j.hj..
, -6 3
-f)j8-2
.o @1 .'
,i -,
. a . ,, ,.4 . g ;*
.i
?
= f.i. V'r ' gb s )I
/K,.. E a '
'% s ' Q 1I .
U W rf 3 t ' r27 1 ,
N i.. 0, d* ,; 4r8
-- 4
, ,,3 . . ; w. . .. . ., ,
ll 11 . ,A ', e -
s' j -
~
1 t.- nij
., ; I
. d- --
ll
.lj q,
.T- -
h g 't ) ti g .
8 v l' * . .f.J .el .,l ,l.6 ?
0.] ; 7 v g ,i
,', e .l
- re e
eti i,C j
- af t .
+ 8/
1 fN i
N.. b 0' J F', 8= .- 4 -I bi O v
wc . , a, l 2 -- ~6-
~
71 %
j' f -y Q)a L-d 'V W_M3i n
,/ T -
_5 n
h~y g.
.. g 14 4
i 1ll jll
)1,11 li* _
)t *'
/>
i 4
e u
8" 6 4 5
a . Y 5
- H Nc: 9 c
T Ae i 0
- S Pse "" -5 t
r a N M e. "
s e
s O
C O t
"M o
< 8 Ca -
a
- e 0 Kee = 'a J
- o
.c f
S Nn == i V s u 0 T As=
ts u E L T t
a V O e
s O
R B E
- R
/ s r, P H O
l .
/ l,
- a s
n o.
e
~-
x i
v r.
a' P
A H C
N A
mRN S
I P
e s
r...u.
n o, v
m
" l' i o.
l m
T; is. .,
f .
fe <
$i
[i l
i a
dl 5t
- e 1D U .
2t l
. Eo M
li RB U
Gr
, I o 0 Fh ls c n
A
. 5*
t i
$ a
{
m
- T c _ t o
t *I
- e. .
L, B
^
R
. O
. H
- C 4
- S A
J
)
ui i.
s
.i c
a.
c a
1 lll
0.35 :
- . . . . : j :* : : *I: . . :* ..
- : : : . : ::: i ::: :: :: .- .
l l:; ;.:;:. i. :.:
i : : : : : .:::: i .
- , ::: : : : : : : ::: : i j : : : .-
O.30 . . . . . . . . . . . . . . : . .. . . . . . : . . :. . . . . . : .. . . : .. .. :. .. . . :. . : . :. : : .. .. ... ..: : .. ... . . . . . :: ..: :.: .:a:. -
i r i :: : :: ::
- : !: : u. s:: .
i ! : : : : .
. i. :. :. :. .
- i
- .DA$P%tld .MTIO =l !24 ii j i
i i !iI i:
- : is: ..
- i. :::
- i. : : ::: i
- ; :: g:
- : 1. . I:- i : : : I .:: :
- i .
....4....... ........4...:. . . .
0.25 . .. J> 3. .. .: . 4.. . I 4.. . ..
..........4.........+.:..+.44..>... .......
i :.
lli::::
e : - -
- i. : : : . ;: :
- l: :-
! : I! l. : i: i:. i : : :- .: :
- .::i -
.g . : .
- :.:.. : I :. : : :.
x .
- il:j.g .: : :-
.o.
- . l j gsi:.: j : 51. l: I. I.: i. t - l !. j .i ;
- l : . . ..g . .
I
- {: :
> : i su:.1.;. :: -
e 0.20 -... .. :: .....!..
. :: . ,....t .:g
- 3. .; .1 . . :. . . . . ......:....:.
l 71 ! i l j . : :
e -
! ll .:;- i ini'I 8
i i i !ii i : : ::-
w - -
s -
i ;:! +
i ji . i ! j !!:*
w -
- . i : .!j : . : : . .
u -
i l11 i i i i i i i :
- i: i1~
u -
i : : .:: : : -
t : :
- ; l e -
.I :.
- ..
- :l : ; gg- :l -
i
- : i
. i:.:. : . .. . .
J 0.l5 ..........4.......!....+:... > ..+:.4 4 4 5... 4 . . . + . . . . .:.. . . 4. . .: . 4. .+.. ...
i i
....4.. . . . >4.. -
c : - -
c l
8 :
- !: : i
!- j t ! 'i-: !
t .:
u w
! ,j![1! : ,
l.
- a. -
v : 8
- i -
0.t0 ... . . . . . . . . . . . . ..:..... - ....:.. . ........:.. .. :. . .. .
- j - -
'i ; i ii
- 1 .
g ,
i . ! ! ! I-0.05 . .. ..>.......4..
. . . . .; . . . ..+.. . ., . .
- ...,....4...,;
.: 4. . . 4. .<
. 4. . ...c..>.
- j .
. I : : ::: : -
.e > > ' '
0.00 * - ' ' = - - i O.I 0.5 1.0 5. ' ' 10 >'. 50, 100.
File 00ENCY IHZ)
FIGURE 5.2-1 Yankee Composite Spectra Horizontal Direction 16
i l
l l
i s.n . _..
7 . . . . . _ . _ . . . . _ . . .. ._
.. __ . - ._ .. . . .t . . . . . . . .. .. .. . . . . . . _ . .
i --2 */'o I
3 .. a ' _ . _ . . . . . . . . . .
.i i .
e.u .
,.._a. ..
3
. t - '
.i .
. e... .
/
i e.n - . _ . . ._ ._._. ._ - -...... .. _ _
- e. u 4. _ .
.. .. _......t,........- ... e. e.s e.. i u
a-FACQUENCT IHll
. .. u.
u is a u se uu isa i
. FIGURE 5.3-1 NRC (LLL/ TERA) Spectra N-S Direction i
17
e . se - . - . . . ,- .- - .
.. 7 i
G ..
9
[ -
3f,
.S. .
E 5 ..
(*
0 e
- ti 5u e.=
. j- -
j m .
e
~
P e.se
' ^ ^
- "... ... ... . . . . . . . . . . . . . . . i. = = === ia FREQUENCY INZI m FIGURE 5.3-2 NRC (LLL/ TERA) Spectra E-W Direction 18
i s.n =. . . .. ..... . _ . . . . . .. .
..ee
. e.ee
. . . . . . _ . . . . . . . . . . . . . . . . . - . . . . . =_
I
. e.ee .
- - - - - - _ _ . _ . - - . . _ _ . - . . h2.f.e.-
l
\-
31 s
- e e.se . _ _ . - . . . _ _ _ _ . _ . . . . . . . . __.
e.n ' .... . _ . - _. .. . . . . . . . _ . . . . _ . . _
..m -
-m.
- e. ee.. . ... e. ... ..s e. e i
a e , 3 e se a m is u im FREcuENCT IHZI I
FIGURE 5.3-3 NRC (LLL/ TERA) Spectra Vertical Direction 19
______ _ _ _ _ _ _ _ _