ML20136H955
| ML20136H955 | |
| Person / Time | |
|---|---|
| Site: | Browns Ferry |
| Issue date: | 01/06/1986 |
| From: | Munro J, Wilson B NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II) |
| To: | |
| Shared Package | |
| ML20136H952 | List: |
| References | |
| 50-259-OL-85-03, 50-259-OL-85-3, NUDOCS 8601130095 | |
| Download: ML20136H955 (175) | |
Text
{{#Wiki_filter:_ k ~ p Rtfug. NUCLEAR REGULATORY COMMisslON UNITED STATES 'o [' REGION il .n. -g j' 101 MARIETTA STREET,N.W. ATLANTA, GEORGI A 30323 ~$., / ENCLOSURE 1 EXAMINATION REPORT 259/0L-85-03 Facility Licensee: Tennessee Valley Authority 1101 Market Street Chattanooga, TN 37402-2801 Facility Name: Browns Ferry Nuclear Plant Facility Docket Nos.: 50-259, 50-260 and 50-296 Written examinations were administered at Browns Ferry Nuclear Plant near Decatur, Alabama.- Operating examinations were administered at the POTC near . Soddy-Daisy, Tennessee. Chief. Examiner: /!6 O J. Munro Date Signed (< [Ed ' Approved by: ,A h -)WuceA. Wilson,SectionChief Da'te Signed Sunnary: Examinations on November 18-21, 1985 Requalification examinations were administered to fifteen candidates; three of whom passed. The performance on the requalification examinations (20% pass rate) has resulted in a determination that the Browns Ferry Operator Requalification Training
- Program is unsatisfactory as of November 1985.
B60113 6 # 259 PDR ADOCK 0 PDR G
- '-c e
p. ,,,-.y r-- y-. w
REPORT DETAILS 1. Facility Employees Contacted:
- A. R. Champion, Instructor W. D. 'Dawson, BWR' Simulator Instructor
- R.~J. Johnson, Chief, Nuclear Training Branch
- R. G. Jones, Browns Ferry Training Supervisor
- C. H. Noe, Supervisor, Operations Training
- N. Catron, Simulator Supervisor
- Attended Exit Meeting
~2. Examiners:
- J.'Munro, Region II K.~ Brockman, Region II S. Guenther, Region II
- Chief Examiner
'3. Examination Review Meeting At the conclusion of the written examinations,-the examiners provided R.- G. Jones with a copy of the written examination and answer key for review. Utility comment: on the written examination are attached as to this report..The following resolutions are provided to these comments. a. SR0 Exam (1)~ Question 5.01 NRC Resolution: Agree. The referenced material does provide an alternative explanation for the phenomenon. Answer key modified -to allow alternative response. (2) Question 6.14 NRC Resolution: Disagree. Path (2) on Figure 477-D states "... via cooling water header." The CRD at this point in the flow path represents a typical CRD and not only the inserted CRD. The examiner recollects no questions from the candidates with regard to clarity of the figure or flow paths. Additionally, the other potential answer responses bear very little resemblance to the correct exhaust water flow path and could not possibly be correct, i.e., water flow through a shut MOV or through a higher pressure section of the system. No change to the examination is warranted.
2 (3) Question 6.15 NRC' Resolution: Agree. The referenced material supports the recommended alternative response as an acceptable answer. (4) Question 7.05 NRC Resolution: Question deleted. Due to inconsistencies within 01-47 and the lack of defining criteria for an Emergency Turbine Shutdown, the potential for not being able to identify specific actions exist. Exam and answer key revised to reflect this change. .(5) Question 7.08 NRC Resolution: Agree. The facility submitted reference material provides an acceptable alternative answer. Answer key modified to allow alternative response. (6)_ Question 7.10 NRC Resolution: The conditions given within the question are explicit and agree with those listed on pages 35 and 36 of 0I-66 (IV.A.3), for High Off-Gas Pressure. Given a high pressure condition all drains and SJAEs will isulate. It is agreed that these conditions do meet the Off-Gas Explosion criteria. 0I-66 orovides different sets of immediate actions for this transient, depending upon where one looks. Either set will be accepted: Scram Reactor (0.7) and Trip Turbine (0.3) -0R-Scram Reactor (0.7) and Notify SE (0.3) Answer Key modified to reflect this change. (7) Question 7.12a NRC Resolution: Using the word "one" was to cue the examiner to the fact that any inoperability within the Fuel Pool Cooling system meets the criteria; it is not a specific criteria. Exam key changed to remove confusing word. (8) Question 8.04 NRC Resolution: Agree. Typographical error corrected to reflect 40 MWt. (9) Question 8.13 NRC Resolution: Question deleted. Inconsistencies in the interpretation of the applicable Technical Specifications when both trip systems are inoperative makes evaluation inappropriate at this time. This area will be resolved with Commission representatives in the near future (see Letter of Transmittal). Exam and Answer Key revised to reflect this change.
~ -i. 3 'b. R0 Exam .(1)- Question-1.07 NRC Resolution:. Disagree. The answer to the question requires only a basic understanding of the relationship between " quality" and the various "enthalpy"' values presented by the Steam Tables. 'The.infonnation provided is consistent with facility learning objective #1 of the " Thermodynamics - Mollier Diagram" lesson plan. No change to the examination is warranted. (2). 2.02a NRC Resolution: A ' The answer key is in error. It is changed to: 510(gree.10)MVAR(0.25)intheleading(incoming) direction-(0.25). (3)~ Question 2.14 NRC Resolution: See SR0-Question 6.14. (4) Question 4.05 NRC Resolution: See SR0 Question 7.05. (5) Question 4.10 NRC Resolution: See SR0 Question 7.08 (6)-Question 4.13 .NRC-Resolution: See SR0 Question 7.10. '(7) _ Question 2.09 NRC Resolution: Disagree.- The question is in accordance with .the requirements of'10 CFR 55 Appendix A Parts 2.c and 4.b. Additionally, the knowledge tested is analogous to that required by certain. facility learning objectives detailed in various ECCS Requalification Lesson Plans. The answer key will be revised to also reflect ' ADS valve power auto swap to RMOV-C. No additional change to examination is warranted. c.. (1). Questions 1.08/5.06,1.13.-5.09,5.11 NRC Resolution:- " Key Words" are not required to receive full credit when describing the principles and concepts concerning a theoretical topic. However, specific cause-effect relationships described by the transient response graphs will be required. No' change to examination necessitated.
l 4 4. Exit Meeting-At the conclusion of the site visit the examiners met with representatives of the plant staff to discuss the results of the examination. Those individuals who clearly passed the simulator examination were identified. There were three areas of generic weaknesses noted during the simulator examinations. Several SR0s demonstrated an inability to effectively utilize, in an organized fashion, the facility E01s. This deficiency was most apparent during events which involved multiple E0f s. This weakness may be attributable to a lack of familiarity with the E0I content. Two shifts of personnel during the simulator examination endeavored to utilize " uncontrolled" Hot License Training Lesson Plans as a reference document. This practice is unsatisfactory and only " controlled" reference material should be utilized for plant operation. Communication by shift personnel was marginal at best and virtually non-existent at times. Often times the information communicated was not understood or was misconstrued. The cooperation given to the examiners and the effort to ensure an atnos-phere conducive to operating examinations was noted and appreciated. The licensee did not identify as proprietary any of the material provided to or reviewed by the examiners.
1 e* ENCLOSURE 3 U. S. NUCLEAR REGULATORY COMMISSION -REACTOR OPERATOR LICENSE EXAMINATION FACILITY: BROWNS FERRY 1, 2&3 REACTOR TYPE: BWR-GE4 DATE ADMINISTERED: 85/11/18 EXAMINER: K E BROCKMAN APPLICANT INSTRUCTIONS TO APPLICANT Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at loast 80%. Examination papers will be picked up Exur (y) hours after the examination starts. % OF CATEGORY % OF APPLICANT'S CATEGORY VALUE-TOTAL SCORE VALUE CATEGORY ________ _g ___ 16.25 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW 7 6 7.Z 1 _I____ _ _l ________ 2. PLANT DESIGN INCLUDING SAFETY N4 AND EMERGENCY SYSTEMS 4 24.71 _1____ __ l_ ________ 3. INSTRUMENTS AND CONTROLS / 6.JT O Jg.JL 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL 6 #. 7,f
- 47. 7 T 100.00 TOTALS FINAL GRADE _________________%
All work done on this examination is my own. I have neither given not received sid. EEPL5CEEiT5 555NIiERE~~~~~~~~~~~~~~ I I I, I. L t t l 4
, m-t 7 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 2 TUER55DY EMECEI~sEET TRd 5FER dND" FLUE 6"FLdk ~ ~ ~~~~ GUESTION 1.01 (1.00) STATE for which condition the reactivity coefficient contribution w3uld be MORE NEGATIVE. EXPLAIN your choice. Doppler coefficient with a 25% Void Fraction in the corer -OR-Doppler coefficient with a 75% Void Fraction in the core. QUESTION 1.02 (1.00) Attached Figure # 220 shows a POWER HISTORY and four possible SAMARIUM traces (Reactivity vs Time). SELECT the most accurate curve for displaying the expected SAMARIUM transient. GUESTION 1.03 (1.00) A reactor heat balance was performed (by hand) during the 00-08 shift due to the Process Computer being 00C. The GAF's were computed, but the APRM GAIN ADJUSTMENTS HAVE NOT BEEN MADE. Which of the following statements is TRUE concerning reactor power? Y If the feedwater flow rate used in the heat balance calcu-a. lation was LOWER than the actual feedwater flow rate, then the actual power is HIGHER than the currently calculated power. b. If the reactor recirculation pump heat input used in the heat balance caleviation was OMITTED, then the actual power is HIGHER than the currently calculated power. c. If the steam flow used in the heat balanco calculation was LOWER than the actual steam flow, then the actual power is HIGHER than the currently calculated power. d. If the RWCU return temperature used in the heat balance cal-culation was LOWER than the actual RWCU return temperaturer then the actual power is HIGHER than the currently calculated power. f Nde: 0.,ly I A w w e-is 'Tn'ke - Sele.c+ eh I Ass nu (xxxxx CATEGORY 01 CONTINL'ED ON NEXT PAGE xxxxx) l i 1 4 I
f
- J s
.1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION PAGE 3 '~~~iElRE36YE E5C5~~E5IY~iR E5f5E~IE6"_iLU56~iL6E QUESTION 1.04 (1.00) The reactor trips from full powere equilibrium XEN;N conditions. Twenty-four hours later the reactor is brought critical and power level is main-tained on range 5 of the IRMs for several hours. Which of the following statements is CORRECT concernin3 control rod motion?
- a. Rods will have to be withdrawn due to XENON build-in.
b. Rods will have to be rapidly inserted since the critical reactor will cause a high rate of XENON burnout. c. Rods will have to be inserted since XENON will closely follows its normal decay rate.
- d. Rods will approximately remain as is as the XENON estab-lishes its equilibrium value for this power level.
QUESTION 1.05 (1.00) Attached Figure 4404 illustrates the ' Combined Head / Pressure Curves for Two Pumps.' Select from the figure the appropriate system operating point (numbered 1 through 6) for each of the follouing conditions.
- o. Pumps A and B running in SERIES with the pump discharge valve' (0.5) throttled shut from the initial condition.
- b. Pumps A and B running in PARALLEL with the pump discharge valve (0.5) fully open.
QUESTION 1.06 (1.00) Which of the following radiation exposures would inflict the GREATEST biological damage to man? a. 1 Rem of GAMMA b. 1 Rem of ALPHA c. 1 Rem of NEUTRON
- d. HONE of the abovel they are all equivalent (xxxxx CATEGORY 01 CONTINUED ON NEXT PAGE xxxxx) k
t 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 4 ~~~~iElE566iSI55C5I 55 i~iEI55fE5~556'fL656"fL55 GUESTION 1.07 (1.00) What is the GUALITY of a 540 degree F vapor-liquid mixture whose specific anthalpy is 1175 BTU /lbm?
- a. 0.559 b.
0.816
- c. 0.964 d.
0.971 QUESTION 1.08 (1.00) Attached Figure # 408, ' Reactor Power versus Core Flow Operating Mcp', illustrates how CORE FLOW changes with respect to REACTOR POWER without forced circulation. EXPLAIN why incremental in-creases in power initially produce very rapid increases in core flow, but eventually reach a pcint where further power increases produce no increase in core flow. (i.e., why the curve turns up!) GUESTION 1.09 (1.00) 'K-eff is changed from 0.920 to 1.004. CALCULATE the REACTIVITY cddition which was required to acomplish this. E QUESTION 1.10 (1.00) Which of the following radioactive isotopes found in the roactor coolant WOULD NOT indicate a leak through the fuel cladding. a. Co - 60 b. Xe - 133 c. I - 131 d. Kr - 87 (xxxxx CATEGORY 01 CONTINUED ON NEXT PAGE xxxxx) i I 6 i
v. 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 5 ~~~IiEEE56655 EiC5,~55Ii'iEiE5?ER 5E6'_iEUi6"_iL6E ~ QUEbTION 1 11 (1.50) STATE whether the following thermodynamic properties INCREASE, DECREASE, or REMAIN THE SAME as they apply to the steam between the inlet and outlet of a REAL TURBINE. c. Enthalpy b. Entropy c. Quality GUESTION 1.12 (1.00) Attached Figures 4 426 A. B, & C show Process Computer printouts for en OD-6, Option 1 and Option 4.
- c. Is the Neutron Flux profile in Bundle 31,32 TOP or BOTTOM peaked?. (0.5)
- b. EXPLAIN why the LIMLHGR values for Bundle 31,32 vary at each (0.5) node.
OUESTION 1.13 (3.00) Attached Figures $430 A & B represent a transient that could occur at a BWR GIVEN: (1) A Total Loss of Feedwater occurs Time t = 0.8 min (2) No operator actions,8bcur (3) Recor der Speed = 1 division = 1 minute EXPLAIN the_cause(s) of the following recorder indications a. Core Flow DECREASE (Point 2) (0 5) b. Reactor Pressure INCREASE (Point 8) (0.5) e. Reactor Pressure VARIATION (Range 12) (0.5) d. Reactor Level DECREASE (Point 14) (0.5) o. Reactor Level REDUCED INCREASE (Point 16) (0.5) f. Reactor Power DECREASE (Point 17) (0.5) (xxxxx CATEGORY 01 CONTINUED ON NEXT PAGE xxxxx) 'k l i
s 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATIONe PAGE 6 ~~~~ EER566Ykd5fC5,~U5AT TREK 5E5R d d~FLbf6~FL6U ~ ~ T____________________________________________ GUESTION 1 14 (.75) Attached Figure 4 285 is a t.inPlified sketch of a SJAE. For cach of the pressere relaticnshiPs given below, STATE whether the pressure listed first is CREATER THAN, LESS THAN, or EDUAL TO the pressure listed second. NOTE: THE LOCATION OF THESE PRESSURES CORRESPOND TO THE POINTS INDICATED IN THE FIGURE. a. P(1) as to P(3) (0.25) b. P(1) as to P(5) (0.25) c. P(2) as to P(4) (0.25) 9 (xxxxx END OF CATEGORY 01 xxxxx) (xxxxxxxxxxxxx xxxxxxxxxxxxxxx) I T l t h
e 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 7 QUESTION 2.01 (1.00) Which one of the following EECW loads will be 'shed' automatically if EECW header pressure decreases to 50 psi 3? a.. Control bay air conditioners
- b. RBCCW Hx's
-c. Drywell Hydrogen and Oxygen analyzers
- d. Control air compressors QUESTION 2.02 (1.00)
The main generator is on line at 800 megawatts when a hydrogen leak in the generator reduces hydrogen pressure to 45 psis. Using attached Figure 4 451 (Estimated Capability Curve): c. STATE the maximum leading REACTIVE load allowed on the generator, if a power factor of 0.80 is to be maintained. (0.5) b. STATE the msnimum REAL load allowed on the generator if a power factor of UNITY (1.0) is to be maintained. (0.5) GUESTION 2.03 (1.50) For each of the following RHR systems, STATE the RHR system (s), (unit and system), IF ANY, with which it can be DIRECTLY cross-connected. Consider only Unit-to-Unit cross-tie capabilities. o. Unit 1, System i b. Unit 2, System 1 c. Unit 3, System 1 QUESTION 2.04 (.50) Reactor pressure is 900 psig and RHR-System I is running in response to a valid LPCI initiation signal. STATE the approximate expected FLOW INDICATION on the RHR System Flow Recorder (System IV, on Control Room Panel 9-3. (mmmmm CATEGORY 02 CONTINUED ON NEXT PAGE ummmm) E
n. 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE S 00ESTION 2.05 (1.50) Answer the following with regard to the CS System a. A CS initiation signal is present and the operator takes a running CS pump switch to the STOP position. STATE the abnormal (0.5) . indication (s), if any, that he will receive. Tj(I LIST the operator action (s) which would be required to RESTART the pump secured in part (a). CONSIDER BOTH AUTO AND MANUAL RE-STARTS. (1.0) QUESTION 2.06 (1.50) STATE ALL of the positions for the EDG ' Operational Mode Switch' -AND-DESCRIBE the function of each position as it relates to voltage regulation. A GUESTION 2.07 (2.50) Listed below are five (5) parameters which can indicate a Failed Jet Pump. or REMAIN THE STATE whether these parameters will INCREASE, DECREASE, SAME for a Jet Pump Failure. NOTE: THIS IS NOT A RISER BREAK a. Reactor Power, as indicated by APRM's. (0.5) b. Core Flow, as calculated from Core Plate dP. (0.5) (0.5) c. Fa' led det Pump Flow. d. Companion Jet Pump Flow (Other det Pump on the common riser). (0.5) Companion det Pump Loop RECIRCULATION FLOW. ( cyrHet rP Loor'5 (0.5) o. (xxxxx CATEGORY 02 CONTINUED ON NEXT F AGE xxxxx) . t k s e O
t 'J 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 9 GUESTION 2 08 (1.50) DESCRIBE the alignment and flowpath (per the Fire, Explosion, and Natural Disaster Plan) that you would use to boost Fire Protection water pressure. ASSUME THAT SUFFICIENT HEADER PRESSURE CANNOT BE MAINTAINED Be specific as to plant / system locations. QUESTION 2.09 (2.50) During reactor operation at 98% Rated Thermal Power, a Loss of 250 vde Reactor MOV Board A occurs. LIST five (5) different systems and/cr MAJOR COMPONENTS that will be effected prior to transferring power -AND-STATE one example of what the effect will be. EXAMPLE: IF 250 VDC RX MOV C HAD BEEN LOST --- RCIC - LOSS OF POWER TO CONDENSATE PUMP GUES1 ION 2.10 (1 00) STATE ALL of the automatic signals which will CLOSE the RBCCW Sectionali:ing Valve (FCV-70-48). OUESTION 2.11 (1.00) Reactor Feed Pump (RFP) turbine speed is controlled by either a Motor Speed Changer (MSC) or an Motor Gear Unit (MGU). The MSC...(CHOOSE ONE) will control the RFP turbine's speed only if its speed a. signal is greater than that from the MGU. b. ...is only able to control feed flow rate over an approx-imate turbine speed of 2600 - 5650 rpm. c. ..., like the MGUr does afford the capability of manual speed control by use of a local handwheel. d. ...will lock in place to prevent a ramp response to a false signal, if the signal from the flow controller is lost. a t k '(xxxxx CATEGORY 02 CONTINUED ON NEXT PAGE xxxxx) 1 i
8 J 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE to GUESTION 2 12 (.50) A DG-automatic initiation signal is present and the operator depresses DG A's Control Room Emergency Stop PB. STATE the action which the operator must take from the Control Room to reset the automatic start lock-out. QUESTION 2.13 (.50) DG 'A' is the sole supply to SD Board 'A*. When paralleling the Normal Power Supply'back to SD Board 'A', the synchroscope should be turning slowly in the ________ direction. FILL IN THE ABOVE BLANK QUESTION 2 14 (1.00) Attached Figures 4 477 A, B, C, 8 D represent four (4) CRD water flowpaths. Which one of the Figures most correctly displays the CRD Exhaust water flowpath following a ROD INSERTION? (xxxxx END OF CATEGORY 02 xxxxx) (xxxnuxxxxxxxx i xxxxxxxxxxxxxxx)
- Z s
I i E h .....m.. _____..-.,m,_..-___.m_-
V E b
- 3.
INSTRUMENTS AND CONTROLS PAGE il GUESTION 3.01 (1.00) Unit 1 is operating at 100% RTP, with recire in Master Manual. The 'A' . Pressure Regulator unit, which is governing, FAILS LOW. 4 ASSUME:.
- 1. No Operator Actions D...#
- 2. All other EHC control settings are normal 3.
Starting Parameters o TCV's - 100% Steam Flow Position 0% Steam Flow Position o BPV's o Power - 100% Rated Thermal Power o Pressure - 1010 psig NOTE: FIGURE 4 374 IS ATTACHED FOR REFERENCE Which of the following most accurately describes both the INITIAL RESPONSE and FINAL STATUS of the different parameters and components. a b c d INITIAL RESPONSE o TCV's 1 NO CHANGE ITHROTTLE CLOSEITHROTTLE CLOSEI NO CHANGE o BPV's ITHROTTLE OPENITHROTTLE OPEN I NO CHANGE I THROTTLE OPEN o Power i DECREASE I NO CHANGE I INCREASE I DECREASE o Pressure i DECREASE I NO CHANGE I INCREASE I DECREASE I I I I FINAL STATUS 1 1 I i I I I I o TCV's 10%(MSIV Shut)I < 100 % 1 ~100 % i NO CHANGE o BPV's 10%(MSIV Shut)I 0% 1 0% 1 0% o Power 10%-(Rx Scram)I > 100 i > 100 i < 100 % o Pressure IAs contro11edl >1010 psig i >1010 psig I <1010 psig lby SRV's and i I I ~ lHPCI/RCIC i i I 4 GUESTION 3.02 (1.00) Attached Figure 4 457 illustrates the ' Core Stray System Pipe Break Detection Instrumentation'. STATE the pressure relationships between i Points 6 and 7 while operating normally at power? JUSTIFY your cnswer. 1 i .I ll (***** C ATEGORY 03 CONTINUED ')N NEXT P AGE *****) j i 1
s 3. INSTRUMENTS AND CONTROLS PAGE il 00ESTION 3.03 (1.50) On Panel 9-23 there are two (2) BACKFEED SWITCHES. c. DESCRIBE the two (2) automatic actions which will occur when these switches are placed in the BACKFEED position. (1.0) b. STATE what manual action (s) are possible when these switches are in this BACKFEED position. (0.5) GUESTION 3.04 (2 00) For each of the following situations (i and ii) select the correct Feed-water Control System / plant response from the list (a through e) which follows. An answer may be used more than once, and NO operator actions are taken.
- a. Reactor water level decreases and stabilizes at a lower level'.
- b. Reactor water level decreases and initiates a reactor scram.
- c. Reactor water level increases and stabilizes at a higher level.
- d. Reactor water level increases and initiates a turbine trip.
e. None of the above. i. The plant is operating at 70% power, in 3-element control, when One (1) MSIV Fails Shut. ii. The plant is operating at 100% power, in 3-element control, when One (1) Feed Flow Detector FAILS DOWNSCALE. QUESTION 3.05 (2.00) LIST four (4) conditions that will initiate the annunciator "RPS ATU TROUBLE.' (xxxxx CATEGORY 03 CONTINUED ON NEXT PAGE xxxxx) h l
s' 3. ' INSTRUMENTS.AND CONTROLS PAGE la GUESTION 3 06 (1 00) Which one of the following most correctly and completely describes the -censor input (s) .which actuate the Unit 1, Panel 9-5 ' REACTOR WTR LEVEL A ABNORMAL' annunciator? a. Normal Control Range (GEMAC) A (LT-3-53) l b.. Auctioneered Highest or Lowest value of Normal Control Range (GEMAC) A (LT-3-53) and B (LT-3-60) c. _ Average Value of Normal Control Range (GEMAC) A (LT-3-53) and B (LT-3-60) 4 d. Either Normal Control Range (GEMAC) A (LT-3-53) or B (LT-3-60), as determined by the selected input to i FWLC (HS 3-53 on Panel 9-5) QUESTION 3.07 (1.00) -The reactor is being started up. Assume the following: o Reactor Power is below the LPSP o Rod Withdrawal. Sequence-B is in effect o No RWM errors or blocks exist o The RWM Normal-Bypass Switch was positioned to Bypass following complete withdrawal of all RWM Group 6 rods to Position 36 The operator incorrectly attempts to continue withdrawing Group 6 rods to position 48. Which one of the following most correctly details the outcome of this operator error? NOTE: FIGURES 4 467 A - D ARE PROVIDED FOR REFERENCE Rod withdrawal will occur with NO Rod Position Restrictions. a. b. Rod withdrawal will occur, provided all Group 6 rods are maintained within 1 notch of each other. Rod withdrawal will NOT occur beyond the RWM Alternate c. Withdrawal Limit for Group 6. d._ Rod withdrawal will NOT occur beyond Position 36, due to RSCS immediately imposing a Rod Block. (xxxxx CATEGORY 03 CONTINUED ON NEXT PAGE xxxxx) l l h-a 1 1 g 3'
e 3. INSTRUMENTS AND CONTROLS PAGE pr QUESTION 3.08 (2.00) Answer the following with respect to the Rod Sequence Control System a. During the performance of SI 4.3.B.3.a3 concerning RSCS Operability prior to startup, a ' TEST FAILED' light is received (Panel 9-28) after depressing the 'COMPARATOR CHECK A' Pushbutton. STATE whether this indicates a SATISFACTORY or UNSATISFACTORY response. JUSTIFY your response! (1.0) b. DESCRIBE how the lamp dimmer function differs when power is between the LPSP & LPAP, as compared to being below the LPSP. (1.0) GUESTION 3.09 (1.00) The core contains 172 LPRM Detectors in 43 ' Detector Assemblies' (stainless steel tubes with 4 LPRM detectors each). FILL IN THE BLANKS: The " detector assemblies
- are ________ (wet / dry) tubes AND are (symmetrically /assymmetrically) located in the core.
QUESTION 3.10 (1.00) Assume that APRM 'B' currently has fourteen operable LPRM inputs and is reading 65% power. Which one of the following indication (s) and/or cetion(s) will occur as a result of one LPRM (of the fourteen remaining LPRM inputs to APRM 'B') FAILING DOWNSCALE. ASSUME NO OPERATOR ACTION a. LPRM Downscale Alarm - APRM 'B' reading < 65% b. LPRM Downscale Alarm - APRM 'B' reading > 65% c. LPRM Downscale Alarm - APRM INOP Alarm - Rod Block - APRM 'B' reading 65% j d. LPRM Downscale Alarm - APRM INOP Alarm - Rod Block - Half-Scram - APRM 'B' reading 65% l (xxxxx CATEGORY 03 CONTINUED ON NEXT PAGE xxxxx) I l i k L i i
3. INSTRUMENTS AND CONTROLS PAGE Hf QUESTION 3.11 (1.00) A Reactor / Plant Startup is in progress and preparations are being cade to start the.first Reactor Feed Pump (RFP), in accordance with BF-DI-3,'*Feedwater System'. Which one of the following lists (a through d) correctly specifies the conditions which should be estab-lished prior to resetting and rolling the turbine? (a) (b) (c) (d) 5 1 Elem i Sg1 Elem i S91 Elem 1 Three Elem FWCS Mode Switch 1 9 AC TGOP I Auto 1 Off I Auto I Auto RFP Suction Valve 1 Open 1 Open i Open 1 Open RFP Discharge Valve i Closed l Closed i Open I Closed AOP l On i Off I Off I On i RFPT Trip Status i O r. I On i Off I On (Blue Light) I QUESTION 3.12 (2.00) The plant is operating at 23% power and both Recirc Pump M/A Transfer Stations are in MANUAL and set for minimum speed. The 'Recire Flow B Limit' annunciator is CLEAR. For each of the following instances, STATE how the speed of Recire Pump 'B' will change-(i.e., INCREASE, DECREASE, REMAIN THE SAME) and WHICH COMPONENT (S) of the control / positioning system is/are LIMITING. NOTE: FIGURE 8 474 IS PROVIDED FOR REFERENCE a. Recire Pump 'B' M/A Transfer Station placed in ' BALANCE'. (1.0) h b. Recire Pump 'B' M/A Transfer Station manual potentiometer is { turned fully in the counter-clockwise direction. (1.0) i 4
- l.
i l (xxxxx END OF CATEGORY 03 xxxxx) 1 't
- -~ 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 16 ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~IA656L6656AL 66NTR6L 0UESTION 4.01 (1.00) 0I-74, 'RHR System *, cautions the operator NOT to start an RHR pump for SHUTDOWN COOLING until after the Reactor Recirculation Pump for -the associated loop is shutdown. STATE the basis for this caution. QUESTION 4.02 (1.00) Per'the ' Control Roon Abandonment
- procedure, STATE the preferred cethod of scramming the reactor if you are UNABLE to do so prior l
'to leaving the Control Room. - GUESTION 4.03 (1.00) A cold (185 des F) reactor st/artup is in progress per GOI-100-1, ' Integrated Plant Operations'. SELECT the proper sequence for per-forming the following steps from the heatup and pressurization cection of the GOI. 1. Pull rods to raise power to mid-range 7 on IRM's. 2. Reset HPCI Low Pressure Isolation. 3. Place a Reactor Feed Pump into operation. 4. Close Reactor Head Vent (FCV's 3-98/99). 5. Raise the Pressure Regulator setpoint to 920 psig. 6. Verify / Open Outboard MSIV's. 7. Reset RCIC Isolation. 8. Switch SJAE to nuclear steam. a. 1,6,4,7,2,8,3,5. b. 4,6,1,2,7,5,3,8. c. 6,1,4,7,2,5,3,8 d. 1,6,5,4,7,2,8,3. QUESTION 4.04 (3 00) LIST ALL of the immediate actions required by EDI-3, ' Reactivity Control.' i (xxxxx CATEGORY 04 CONTINUED ON NEXT PAGE xxxxx) I t d
4. FROCEDURES - NORMAle ABN0RMALe EMERGENCY AND PAGE 17 g ________ ______________ RADIOLOGICAL CONTROL del.E7~6 OUESTION 4.05 (1.00) A main turbine-generator startup is in progress per BF-0I-47. While conducting system checks at 1800 rpm, you receive a turbine High Vibration alarm and a report'from the Turbine Ruilding AUO of a squealing noise coming from the Hp turbine. Whtch of the following sets of actions is correcte per DI-47. a. Check bearing oil flows, temperatures (oil and metal) and seal steam header pressure while maintaining turbine RPM to clear the rub. b. . Trip the turbine if unable to verify / restore proper oil / seal steam flow and clear the rub / vibration within te allowed 5 min-ute hold period. c. Immediately trip the turbine and verify the lift pumps running; DO NOT engage the turning gear. d. Immediately trip the turbine, break condenser vacuume and verify the lift pumps running. ENGAGE the turning gear when the ero speed alarm sounds. QUESTION 4.06 (2.00) LIST ALL of the conditions under which Standby Liquid Control injection is MANDATORY as per EDI-3, ' Reactivity Control' or EDI-47,* Failure of Reactor to Scram when Required QUESTION 4.07 (1.00) py,,, 'Drywell Spray Initiatiori Limit', is Attached Figure 4 437 used in conjunction with the CAUTION provided in EDI-2, ' Con-tainment Control". "If torus pressure exceeds 14.5 psig AND torus temperature and drywell pressure are below the Drywell Spray Initiation pressure Limite then initiate drywell sprays at rated flow.' STATE the basis for this Drywell Spray Initiation pressure Limit. tB (xxxxx CATEGORY 04 CONTINUED ON NEXT PAGE xxxxx) u .ka .I
- i. !
i E ?l It ' lt ll
4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PACE gg ~~~~ d6f6LdGiddE~C5NTRbL ~~~~~~~~~~~~~ ~~~~ ~ ~~ R QUESTION 4.08 (1.00) EDI-1, ' Level Control',~ cautions the operator NOT to throttle the HPCI or RCIC systems below 2400 rpm or 2100 rpm, respectively. STATE two (2) of the three bases for this caution. QUESTION 4.09 (1.00) GIVEN: The D/G CD-2 System has initiated in its Vital Area - Per BF-0I-39, CO-2 Storage, Generator Purging, and Fire Protection't STATE What action (s) must be taken AND where it/they must be performed to enable the D/G CD-2 System to reinitiate (upon receipt of a valid eignal). NOTE: ASSUME THAT AN ADEQUATE CO-2 SUPPLY STILL EXISTS. QUESTION 4 10 (1.00) GOI-?00-11, ' Reactor Scram", cautions that if BOTH loops of RHR are placed in the Torus Cooling Mode of operation, then either I.L. 74-59Y or I.L. 74-73Y must be illuminated. c. STATE the significance of these lights NOT BEING ILLUMINATED. (0.5) b. STATE the adverse consequence which could occur if this caution were not [dhere'd to. (0.5) L QUESTION 4.11 (1.50) Per EPG-X, LIST in order of preference, the three (3) viable mech-enisms for adequate core cooling. QUESTION 4.12 (1.00) Per DI-57, ' Aux Electrical Systems", a visual inspection is to be conducted following every 4160 vAC breaker operation. LIST the two-(2) items which are to be checked. (xxxxx CATEGORY 04 CONTINUED ON NEXT PAGE xxxxx) 4 i i I t
4.- PROCEDURES - NORMAL, ABNORMAle EMERGENCY AND PAGE
- 9
~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~666f6L66fCAE~66 TR6L GUESTION 4.13 (1.00) You receive the following annunciators while at 72% RTP: OFF-GAS ~ PRESSURE OFF-GAS HI TEMPERATURE You confirm the the Off-Gas System has ISOLATED. STATE your Immediate Actionse periOI-66, Off-Gas System'. QUESTION 4.14 (1.00) Which one of the following IS NOT a valid condition requiring a Radiation Work Permit (RWP)? a. Initial entry into the Drywell after power operations. b. Work in an aree known and posted as being a FIXED CONTAM-INATION area. c. Work in an area which will result in greater than 25 mrem WB exposure in a day. d. Work in an area requiring respiratory protection, due to airborne radionuclides. (xxxmx Eh6 OF CATEGORY 04 xxxxx) (xxxxxxxxxxxxx END OF EXAMINATION xxxxxxxxxxxxxxx) i
- l
't J 't i e .i
g ## - ), = a i 1 5 3 8 3 s 1 I I a g y y s se et so w w we 46 eo es se u i. TIME Cdays) s.t = Jr N i, = f.... i i 1 a to to to as to 36 Mo 96 se as so em se Tl ME (da.gt) 8.$ = .5 l.a - 4 h s-3, i i i i i i i i s to 85 se as to as een est so er Se er se TIME (A,3s) Jr N i i.s _ C. 0.s - r I I I I 5 I I I i I I I 3 se to ao 15 30 AT go 95 #O SS" 6e To TIM E (Ae sjs) 15-e* d.
- .5 -
3 I i 5 I I I 4 5 5 3 I I I s so oc so sr as 9a go vs so as so ss u Time.(Ansjd FIGURE # 220
g 9 m 6 =% ( g \\ k Y N 4 d
- x
+ .( A p* N E .8 N l ~s, N, q 5 s g 's g 8 s s ~, ~ x \\" c ~, = 3 N N .c. s \\. 4 M k o g. .g \\. e tM i .l
- l l
POWWl/PLS OPERATING MAP ""'0',% PonsT e ses 11ss I I I I I I I 1 1 I I I Q EE i = DESIGN PLOW CONTROL LINE E j til -120 ~ I 5 APRM rod mLoCx MONITOR LINE g- 'gO E E -100 m8 ,=4 -90 8 &EI" -80 PUMP CONSTANT I k (W n SPEED LINE ,Z -70 N ATUR AL -+ CIRCULATION +- M ASTER MAN = gh \\ FLOW CONTROL MANGEX LINE -60 oc 5 i3 gj ,20% DUAL PUMP SPEED LING $F -50 4 MINIMUM EXPECTED 3: g FLOW CONTROL LINE II -40 5 4 _ _ _ _ _ _. " '" '""" '1* * "_E*_" ( -30 ~ i RECORC PUMP NPSH LIMIT LINE - mQ -20 JET PUMP NPSH LIMIT LINE h$- IM -10 I I I I I E 0 10 20 30 40 50 60 70 80 90 100 110 I
- =
i L PERCENT RATED CORE FLOW E l~
69 - 6 THERNAL DATA IN FUEL ISS5MBL% IX JY = 31.32 8/24/84 0800 FWh0WNS FERRY - 2 lTF 'WT F R U N' F8UNAV W WBUNAV FIOFF XE MFLPD KZMF MFLCFR MCFR EBUN DNS. "E !!03. 182.15 2.984 2.7.52 0.127 0.119 0.988 0.0946 0.406 19 0.4165 2.9774 27548.75 17.32 647: lFE DATA ~ NFLCFR MCFR ELCFR EKFLO ITYF SIZE FLIN 0.4165 2.9774 1.240 1.600 2 " 8X8 13.40 lCCS LIMITS - APRAT ELEY MAFLHCR LIMLHGE lo474 19 5.02 10.60 2 POW RELFWR , QUAL VF LFKF FLPD FKLNGR 1 0.0360 0.2897 -0.0260 0.000 1.183 0.097 1.304 2' 0.0818 0.6583 -0.0236 0.000 1.104 0.206 2.764 3' O.0873 0.7025 -0.0202 -0.000 1.099 0.219 2.938 4" 0.0905 ' O.7276 -0.0166 0.001 1.098 0.227 3.040 5. 0.0936 0.7525 -0.0128 0.017 1.099 0.235 3.146 6,' O.0972 0.7815 -6.0089 0.044 1.100 0.244 3.270 7' O.1014 0.8157 -0.0049 0.075 1.100 0.255' 3.416 St -0.1085 0.8723 -0.0006 0.110 1.102 0.273 3.656 9 0.1144 0.9204 0.0039 0.147 1.102 0.288 3.860 ,0 0.1207 0.9709 0.0087 0.185 1.103 0.304 4.073 .1', 0.1309 1.0531 0.0138 0.225 1.103 0.330 4.420 . 2.! O.1383 1.1126 0.0193 0.270 1.103 0.348 4.670 ? .3 ; ' O.1431 1.1512 0.0250 0.313 1.'103 0.360 4.830 .400 0.1449 1.I'653 0.0'309 0.349 1.102 0.365 4.886 . 5 h.', 0.1515 1.2182 0.0369 0.380 1.101 0.381 5.105 . 6.F, 0.1559. 1.2540 0.0431 0.407 1.101 0.392 5.253 7j - 0.1528 1.2294. 0.0494 0.431 1.100. 0.384 5.146 .Si[s,. 0.1580 1.2708 0.0557 0.453 1.099 0.397 5.317 l ,0.1619 1.3026 0.0623 0.472 1.099 -0.406 4.556 0.1604 1.2903 0.0688 0.491 1.098 0.402 5.391 i v i? 0.1570 't.2626 0.0753 'O.507 1.098 0.394 5.275 1.101 0.375 5.021 1 . 0.1490 1.1981 .0.0815 0.522 1.109 0.346 4.639 0.1367 1.0997
- 0.0873 0.535
~ ik 0.1122 0.9023 0.0924 0.546 1.125 0.288 3.861 FIGURE # 426 A
f \\ ?\\ -( KZ ~ TN CR FL EXP MAFRAT MAPLMGR - LIMLNGR 1 99.000 99.000 0.013 8570. 0.093 1.106 11.943 2 .99.000 99.000 0.013 22614. 0.225 2.582 11.486 99 000 99.000 0.013 26635. 0.250 2.767 11.069 3 - 4 99.000 99.000 0.013 29360. 0.264 2.868 10.851 5 99.000 99.000 0.013 30408. 0.276 2.962 10.735 6 99.000 99.000 0.013 30559. 0.287 3.071 10.711 '7 99.0'00 99.000-0.013 30308.- ~0.298 3.200 10.751 8 99.000 99.000 0.013 31132. 0.322 3.417 10.619 '9 99.000 99.000 0.0'13 30810. 0.337 3.596 10.671 LO 99.000 9,9.000 0.013 30441. 0.353' 3.785 10.729 ll 499.000 99.000~ 0.013 31040. 0.385 4.096 10.634 ~ L2 99.000 99.000 0.013 31329. 0.408 4.315 10.587 L3*.. 99.000 99.000 0.013 30849.. 0.418 4.456 10.664 L4 ,99.000 99.000 0.013 3018.6. 0.418 4.507 10.770 ,5 99.000 99.000 0.013 30798. 0.441 4.708 10.672 ,6 99.000 99.000 0.013 31298. 0.457 4.845 10.592 ~ k ,7
- 3.481 4.086 0.303-30446.
0.442' 4.747 10.729 3.342 3.858 0.321 31078. 0.462 4.905 10.628 '. 8 ~ 3.210 3.649 0.340 31233. 0.474 5.025 1.603 9 !0 ' 3.092." 3 467 0.358 29424. 0.458 4,969 10.846 l1 2.987 3.307 0.375 27167. 0.44; 4.860 11.027
- 2 2'.898 3.171 0.391 23202.
0.403 4.597 11.416 !3 2.824 3.059 0.'405 18940. 0.355 4.205. 11.843
- 4 2.776 '
2.977 0.416 1337.9. 0.286 3.429 12.000 , j, ' r, ~ g. l .fi J-1 E. N'b ? t*: ?..k, FIGURE # 426 B -}. ' ' 1 -.LM.. ?.. u u.
s N \\ t OD6 0FTION 4 8/24/84 0800 BROWdS FERRY'- 2 TME 12 NIGNEST RATIOS OF'A. BUNDLE MAPLNGR TO ITS LIMITING LNGR, FOR ALL BUNDLES IN TME CORE ARE NAPRAT MAFLNGR .LIMLNGR. 'ITYF ' EXP L.J.K K,Y,K. - 0.572 5.79 10.12 2 34252. 154,4,19 19,49,19 7 0.572 5.77 10.11 2 34307 65,2,19 41.14,19 ,0.572 5.79, 10.13 2-34193. 60,1,19 19,14,19
- 0.572 5.78 10.11 2
34289. '38,3,19 41,48,19 0.533 6. 6 '4 12.00 5 11936. 119,3,20 9,36,20 0.553 6.63 12.00 5 11946. 96,1,20 51,26,20 0.552 6.60 12.00 -5 11988. 130,4,20 51,36,20 - 0.552 6.62 12.00_ 5' 12034.
- 13,2,20 9.26,20 0.552 6.67 12.10 6'
13290. 154,3,19 21.48,19 0.551 6.67 12.10 6 12718.. 154,1,19 19,50,19 0.551 6.67 12.10 6 13317. 60,2,19 21,14.19 0.551 6.67 12.10 6 13297 65,1,19 39,14,19 NUMBER.OF BUNDLES WITH MAPRAT GREATER THAN 1.0 IS 0 e .i pj' y FIGURE # 426 C
~. -. l FIGURE f 430 A 9A swertI p$ wen 100% i k I a g-tl ng* k j l 1 4 i o so ao so so too iso o 4 e is is j CORE FLOW TOTAL STEAM FLOW (a to81 bethel e (s to lts/ht) 1 i. t } i 4 t 4 '~ e 7 n-
- m...
j 5 ~------,, 3 e e eso oro - oso tote toso teso e 4 e 13 to i REACTOR PRESSURE TURelNE STEAM FLOW { ^ IPoISS s (a t o Ibe/hel a W ...--,,.--.---..P- ^- w
FIGURE f 430 B 98 i TOTAL LOSS OF FREDWATEft FLAW socan 1005 sve:T l l i j j r e U
- p..,
18 f ~ i L / 14 f '"~~~ .. = 1s o soo ooo ooo isoo isoo o io no so ao so oo REACTOR PRESSURE REACTOR VESSEL LEVEL (Psse.) toucuss) k i i d i 30 18 ~~ to p ' gy o as so 78 too 13s o .4 e 13 is APRM-TOTAL FW FLOW (% POWsR) (a 1o' tee /hel sw "v
l l l STEAM JET AIR EJECTOR 4 J -.- ~. J.$M8.w...,g.)..,...ms., .-....w..~r. .. r e.v r.e..,. e.s. p..,,.u. ,. -,.. n. .., ~~ Supply NJ P(5) -. ~. - P(4) I e i (2) Main Condenser l l \\ i i f FIGURE # 285 .n.,.n.n-,
.v
- Pase 28 i
3r 001 100-1 OCT 2 8 584 ATB 4 POLE,1,2SO,000KVA,l800 RPM,22,000 VOLTS ;; 0.90 P.5.,0.60 SCP.,75 PS!G HYDROGEN PRESSURE,500 VOLTS EXCITATIC n,...,.... :... _....... . p,e.................................................._.............................................:.... ,i ............_.I...._......,. 1 m_,.. n....... ................................._..5_... .......... _............n._.........._....... C #,. _m.. ............(.. i t .i_......... ~... _..... ......_..t....i.. .. _..i._...... 7 m.. __....__ ........._.._._...I._...... _ o 2 5_. P._.. .r, .~.r._............. ..........__...i._..... .__,....r.._...... I. i. ..._._t.._.._ ... _..................i..._..-.... _..... -. ..........n.......... 5 ._.i.___._...__........ . z-........ _.... _...__..__._._.._._.0._ __...._. __.. 95. C ._....._.p.. ,.f_......_._.._..._._.._....._..._._._...._... .. _..................._o._.... ..-. _ r_._. e. 2 _ _. ... i..... _.._.. _.. _.... 1_ .._....._...._.__.5....._. ,s. _ S.e ...___i_____.. 8 ...s........................ ..............r._.........__.._....._._.___ .t._.__. _._ r _ _... t__...... X . O._n_i EGO: GCO'!JCOE500_:500,ElcooH,......i_l0_0?120 0.7 l C _.......C..O.-..T 2 0 0 H2.C..O._'.i:4_0. 0_.':: .o 1300.4,
- 0. 0 0...
.............._.T._. _. _.. _................. - _ _ _.......s...._.__ g%,,.. ._.._.t..._ ........ _.... _......f._.....__. .... ~, i O .... _a .i = 3 Os, .......... s._....... i .. N.. .. -... ~.... L. = o. p,,,.~_.~...u=..._. ...................s
- ~. ~. t.
....._...e._._........ .. _... _ ~. _ _..... . u. s.. ~... - ......._.._.....P... _... _.. _... , L 4 _. ~_. C'......._... . ~.. .U. g, a'. O,1.... gw( .t N_ - ,.g - l.. _. l.................
- 1..
u ._nn. 4... ...1._........ I.... ... s _ !.. g...... l. _..... t...!'".~._................. =. _..._........ ..........e...._._......._.............- 70C t."... t s . p.- ...............t.. t
- ~..
~.................................... ...I........ l ................................_....._..._.l_.._... ,.se. _ ~................................ i ...........g.................. > CVavr As gine;;gg og pgr.g pgars: 43 IklY1 BC L!Hrt13 Sf,At!.t A! Wet 6 8 At.neo . ms l CVan C3 gt;grgg3 gy 4tnagg.'18 CC48 (W3 Nf Af".in#
- I e
FTCL"1T W.
3 I li--yki-w vy p: $i l(b',p1__gn_ gt p%$e 1 l = 5 i i i i., r ll n --I,l }Le s* &e^ e' l jii [ $ $11 l 111 r* :! n _ I *- 1 -l T_i i b-- 8g:rLw :!!l,j La
- x
==l
- c...'
S! j p tl i l n e i, 1l I L____ ____J L__ __ J I p gg 1 x ,.e ,= =s mj i ll 3 r (p l f Nii! ~ ~~ n wi e n i 9 s-p Pli (!H C = T" f u Q =h o e g C C ll 11 =nl ',g
- 4v.u
= e g 3v e: e o% }; I o j ling j +i.4
- 1:
1 : : 4 -- _ - - nj s.g4ll-v.4 _ _ ,;I,, l P' F 1 u a s i (I l ~
f ri i 1 l 2.3-37
ity yli $4h t- >- i 0-il l<h [1 L 1 e i
== lJ
- liy__'_ _.fl__l'I_ _ _ __ __ _ _
.!g stg$e i i I i q 7___ __________q l { liil,v lt.oj}lllllIll r J " 5' 3'Pr*! llil 7' l 3 b ! t-l 11 i 111 i @i m?_ c I
- l 7 )"
4 i T_ i o l -*8 e a e c- .4 ,*G_ _i i _ __ _a u.$ : L____ != A F i ju IIC ll%. _, a a s r 'lllis Ie Q = = @,NI!! 3 m ese a i.,,. Eli @3 ( E 4: gj ! e*e I M+ a g t y = J, +, f i A' st? = 0 ,i 4 3 tr = i, 3 '. F E $ (rii (0: 0 e 9 lh .s -- - ilg 3; 5; I i t: : i 118 s. g ,,. i -- x a , il+ -l i 2 O l l G (3 p el 2.3-37
0184 ? 34%yyli it i-W i 0- ,I g ljp I g)h., p% y' i 5 11**f* 1 c r l' k-l 4.a. ..a e i i., I c 1
== y y s uo ce *c=, in __ is IN [+ ikT ll ( h h h5 f lr _ g = = !! @i t.i u _ g *-Bi e Im-- ep:r L-w I UJ ? x j u ~l elp i n l I @3 (==e r s si i ii i 8 L. _._ _ _ _ _.J L -.J l i. 9-r i = n=, /. s M ^C 8 E, - ' ( t ' l
- 3M1!!
A r il ly vi. <a e O-Fli @3 ( w u i f = 3 @j b x 4 g k *9 =il d,4# h ' il e m Je de i CD o i2 2 g { j-3 1 y v.6 i on n - 6 y lly, S,l
- 1 U
d3 J.11 e h (i I, i O @ 4 2.3-37 ,,----,.,_..nw.r-.,,,,,-,n,r,, .w.9,n, .,--,__n_,_,--,,--w_,___-,,.-.---.__,,
6 I IliiI i iny.% i- >- i O- !I I If lI
- E
[ nd 5 i ] ! p[__3 'q ___ _ _ _ _ _ _ _ _ _,l ,7__ l l 4 e l l ,p. 0l ', ; _i! x lg M: M M : M : I 'gj I I I H y--M l! l @I 3 9l g!l.2' l _ii i + :S +1 : + l1 e n l i I ~}e{sl--w :!j j = _l LR1 ? e-: = ole n l i " @) (=== ..a._6 i: Il i 1I L I 3 5 L_ .J L__ _ _.J I (" v IP - .>+ = E dr-: .g I i 8 ll,_g a ml 8 all = = g e h,Mill g$e:r['l l$ ,e e_ lili 4 e3 ( ? w L=~ M I P P b 9/ = 6 {l i e9_D m 9 ( = k, h )f f>l d6 TT. el a wg g~.o o I f.! or $ >I I lU U: : S 5 l l I i 17 o s + h i i lnu I g x p $l 2.3-37
e At.to 3100170H1NO3 annVHOAH-OH13313 380013 O S I 8l 3 ~ ld (I ~~ ilii ll i li r lii 5 11 ~ W r i ll il r < r h M>i#, et' ' CE 'Q M ~ L I.l1 itkili ligp,p o a i ~ i i~i r. 3 h* .s ip)I11$1 ~ ' ig!h A Il li ll + < ll DNk"3 ll ll lll ( lll s uonesl)llenb o 4.u u 5061, i "T(" Je d; - 1
Lessen Pla 06/19/84 O DRYWELL STEAM DRYER D /
- s f
i ~ ~ = I VM {0 M
- s....
S ( A de e ~ Il peAM l'. s. %Qf % J. =
- TAnomy uouio couTRot._.
+ FIGURE CORE 5 FRAT ST87EN FIFE BREAE DETECTION INSTRtRIENTATION
- %7
Id%Al"2 W II Requal RWM Grou, Vit Wraw Positten Check RWM Croup WitWraw Positter Check 1 00-48 28 00-06 2 00-48 ft 92 14 9 nn in 30 42-44 l 4 co-os 31 12-16 .s 5 00-48 32 14-16 6 00-36 13 00-08 7 00-22 34 06-J8 l 00-14 4 35 34-36 9 00-08 sa AA-Aa 10 00-04 17 16-20 11 36-48 38 12-16 12 09-20 10 an nA 13 14-18 40 28-32 (c 14 22-34 41 22-26 15 04-06. .42 i6-se 16 00-06 at l6-32 17. 10-22 44 20-30 18 18-30 45 08-12 19 34-40 46 16-24 20 08-12 47 38-40 I l 48 32-36 e 21 ' os-to ( '22 '06-12 I 49 26-2a 23 22-28 se ' S 41 '51 l 24 20-22 _12-16 25 30-32 l 52 12-14 26 40-42 l I )' 53 08-10 27 10-14 I 54 36-40 TIGURE TYPICAL CONTROL ROD WITHDRAWAL SEQUENCE
- 467.A (SEQUENCE B)
I --mm_--_.w..__--__,___,_-,.._ ,_.,c,-. ---rr-
P 8] _.t_ cf 36 6 "04/1078F nevisten 0 M H Regual VitWraw Positid check ' bwM crovo! WitWraw Positter tw creue check A 55 28-32 ' 56 m is 57 " 40-42 58 42-48 59 60-48 60 38-48 61 32-36 62 I 24-30 63 42-as 64 14-16 65 10-14 66 36-40 67 30 34 68 40-42 69 16-20 + 70 14-16 71 00-06 72 06-10 3 I h .I y_ i 1 ( i I l I l I FIGURE TYPICAL CONTROL ROD WITHDRAWAL SEQUENCE
- 467 B (SEQUENCE B) (Continued) e 9
g,4...* a WK II Requal BBLII252 f. Rods 8n the Oreue g 1 30-31,38-39,46-31,34-23,30-15,i,2-23, 14-31, 22-39, 30-47, 34-55, 46-47, 54-39, 54-23, 46-15, 38-07, 22-07, 14-15, 06-23,'. - ';
- y.,
06-39, 14-47, 22-55 ~ 2 38-31, 30-23, 22-31, 30-39, 46-29, 46-23,' 38-15,22-15,14-23,14-39,22-47,38-47,!, 54-47, 54-31, 54-15, 46-07, 30-07, 13-07,' 06-15. 06-31,'06-47, 14-55, 30-55, 46-55 3 26-27, 34-34, 42-27, 34-19, 18-19, 10-27, 18-35, 26-43, 50-35, 50-19, 42-11, 26-11, 10-11. 02-19, 02-35, 10-43, 18-51, 26-59, 34-51, 42-59, 50-51, 58-43, 58-27, 34-03, 18-03, 42-43 4 34-27, 26-35, 34-43, 43-35, 50-27, 42-19, (', '; 34-11, 26-19, 18-27, 10-35, 18-43, 26-51, 42-51, 50-43, 54-35, 58-19, 50-11, 42-03, 26-03, 18-11, 10-19, 02-27, 02-43, 10 51, 1 18-59, 34-59 5 22-03, 22-59, 38-59, 38-03, 06'-19, 06-43 54-43, 54-19, 14-11, 14-51, 46-51, 46-11 6, 11 06-27, 06-35, 54-35, 54-47, 30-03, 30-59 7, 14, 19, 26, 30, 36 22-19, 22-43, 38-43, 38-19, 30-27, 30-55 ,8. 13, 18, 25, 2,9, 35,,42, 47, 14-43, 46-43, 14-19, 46-19 50, 58 9 22-11, 22-51, 38-51, 38-11, 14-27,'14-35, 46-35, 46-27, 30-11, 30-51, 30-19, 30-43.. 22-27, 22-35, 38-35, 38-27 { 15, 21, 27, 32, 37, 44, 56,. 02-23, 02-39, 58-39, 58-23 a, i FIGURE TYPICAL RW GROUPS (FOR SEQUENCE B)
- 467.C s.
- ~..,.-.,.,, ,.,--n,wer,vr ..,-,,,r.,,_e.n_, ._w m _,m,
tag 3 L Cl 36 06/10785 Revisies 0 W II Regual s Rief Group # Rods in the Group 12 22-11,22-51,38-51,3f,-11,14-27,14-35, y., 46-35, 46-27, 30-11, 30.%1 16 18-07,18,55, 42-55, 42-07,10-15,10-47, e 50-47, 50-15 17, 23, 40, 48, 57, 63 22-11, 22'51, 38-51, 38-11 } 20, 31, 43, 51, 59 30-19, 30-43,'22'-27, 22-35, 38-35, 38-27' 22, 34, 46, 62, 67 18-07, 18-55, 42-55, 42-07, 10-15, lo-47,. 50-47, 50-15 24, 41, 49, 55, 61, 66, 68 14-27, 14-35, 46-35, 46-27, 30-11, 30'-51 28, 34, 53, 65, 70 10-23, 10-39, 50-39, 50-23 33, 45,'52, 64, 69 02-31, 58-31, 26-07, 26-55, 34-55, 34-07 ?. r [ (, ', 39, 72 26-23.,26-39, 34-39, 34-23, 18-31, 42-31 54 All in group 48 + all in group $1
- 71.
18-15, 18-47, 42-47, 42-15 3 j; n
- e i.
l: ~ I! l .i l I'y Vt it
- .j.
FIGURE TYPICAL RWM GROUPS (FOR 8EQUENCE B) (Continued) !,1 f 467 D C. l W. -er-r
- -,-,-,, n v e v n-wn. n,-e w
.,-w- ,.,--,e n,,w n..-w -,--e.- .-,wm w,wm-
Page.38 cf 44 ~ C2/13 F Insson Plan 8 t ELECTRO IfvDRAULIC e0erTROL ) evs"ses l l tsASTER CONTROLLER I i MMert OF RATED .Q..... DUAL REC 8AC PUter SPERO * * * - O La. 455 speed TO '9" LOOP m SPitD C00ffit0L ' ,,..,,y,,,,, DUAL PUtdCTION O STATeGes geget _\\________ 0,,,0,,. , START 84000AL C Eg,myg, g 4 CLOSED WHEN DISCHARGE ggrygess _ VALVE FULL OPlas 680sERATO84 40E E l & CLOBED WHEN FJr. l NEED $UefLOADEDI Q Y PL0st >35E L_ _.__._ m t. A. 10000CA11088 A. CLOSEDWHEN g I CLOSED A O '""e"n " "a'va*" T-y ', 'q "rLOer'"> 3et T t t g a .y-gaw- "T* SENERATOR g g,y 3, LebelT100G BftTWORK ITACs00885TERI 1 r SPERO Y spet0 l0 A CONTROLLER OR t i i 'Y* C00ff ACTE
- SeeOgns FOR FitLD BREARRR CLOSED 1
F----~ p'8"" A L PollTI,O,est,m e A CAM etyRg ,g L DETECTOR 4 sRams - + pDs T eC00P TOR vusa I l. FIGURE RECIRCULATION SYSTEM TIM CONTROL NETWORX gq (SbOwn for A LOOP, Typ. for B) l 4 s -v-- ~,-n-, ..e,-,.- ,. _ -, - -, ~ ~ .w,-,-a,-wn_w, -,-,,,--,-,,,,_,,,,,.w,,--,, _ne--,nnw---
s [ 4 CHART 5.4.6 (DRYWELL SPRAY INITIATION PRESSURE LIMIT) 10-7-84 8 2 E 26 (
- 230
- v. - ~.. ',
230 -r . j g .v,.[,. _ ( \\f,'],1 ' 205 o 205 ,' ? "..' ! -5.7 1.r.t A',' (. 180 2 180 p ;, $. 165 I g <g 155 j,. r..
- -l,,. 2 ^ 1
.,1,,, g mE;130 <;;e<. .7..- iso l w ' 105 105 . h.' ': ' : ' - c ', *
- 1 J
w a0 a F so e 0 10 to 30 40 SO 80 DRYWbLL PRESSURE (PSIG) l FIGURE # 437 i i k ~ ^N* -- + - _,_c T" F MT we w
e o ma , o u/6
- /uu ovvwstuwsy u peu asvu r
- l cut)/(Energy ins 2
o o mg s o V,t
- 1/2 at g = me-KE = 1/2 mv
. a = (V, - 1 )/t A = a.4 A=Ae'I ~ 3 3 PE = mgn
- = a/t a = In2/t1/2 = 0.693/t1/2 vf = V, + a t 2
1/2'"
- M / S Y y,,.p nD A=
[(g /2)
- II I) 4 D
eg = 931.im m = V,yAo -T.x Q.= m,ah I = I,e Q = mCpat 6 = UAa T I = I e~"* g Pwe = W ah ! = I, 10**/ M f TVL = 1.3/u P = P 10'"'I*I HVL = -0.693/u P = P,e*/I SUR = 26.06/T SCR = S/(1 - K,ff) CR, = S/(1 - K,ffx) CR (1 - K,ffj) = CR II ~ "eff2I SUR = 26e/1* + (8 - o)T j 2 T = ( t*/s ) + ((s - o V io] M = 1/(1 - K,ff) = CR /CR, j T = 1/(8 - 8) M = (1 - X,ffo)/(1 - X,ffj) T = (s - o)/(Io) SDM = ( - K,ff)/K,ff o = (Kaff-l)/K,ff = AKeff/K,ff t' = 10 seconos I = 0.1 seconds"I o = (( t*/(T K,ff)] + (s,ff (1 + IT)] / Ijj=Id d 2,2 2 P = (reV)/(3 x 1010) Id gd j 22 2 I = oN R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (f,,g) Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 1010ap, 1 ga;. = 3.78 liters 1 kg = 2.21 lem ] 8tu/hr 1 f t- = 7.48 gal I np = 2.54 x 10 Density = 62.4 1 /ft3 1 mw = 3.41 x 100 5tu/hr Density = 1 gm/c lin = 2.54 cm Heat of vaporization = 970 Stu/lem 'F = 9/5'C + 32 Heat of fusion = 144 Stu/lbm 'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf I ft. H O = 0.4335 lbf/in. 2 e = 2.718
Volume, ft'/lb Enthalpy, sty /lb (Meepy, elu/lb a F 8*" Wetof Evey Ste:m Cc.tet Evep Ceem Wekt (vap Steem l' i e, e. e, a, 4 s 32 0.08859 SLS1602 3305 3305 -0.02 1075.5 1075.5 0.0000 2.1873 2.1873 32 l 35 0.00998 0.01602 2948 2948 3.00 1073A 1076.8 0.0061 2.1706 2.1767 35 40 0.12165 0.01602 2446 2446 8 03 1071.0 1079.0 0.0162 2.1432 2.1594 40 46 0.14744 0.03602 2037.7 2037.8 13.04 1068.1 1081.2 0 0262 2.1164 2.1426 45 I 90 0.17796 0.01602 3704.8 1704.8 18.05 1065.3 1083.4 0.0361 2.0001 2.1262 to I 80 0.2561 0.01603 1207.6 1207.6 28.06 1059.7 1087.7 0.0535 2.0391 2.0946 60 l 30 0.3629 0.01605 868.3 868.4 38.05 1054.0 1092.1 0.0745 1.9900 2.0645 70 I 00 0.5068 0.01607 633.3 633.3 48.04 1048.4 1096.4 0.0932 1.9426 2.0359 30 90 0.6081 0.01610 468.1 468.1 58.02 1042.7 1100A 0.1115 1.9970 2.0086 to I 100 0.9492 0.01613 350.4 350.4 68 00 1037.1 1105.1 0.1295 1.4530 1.9825 300 Sto 1.2750 0.01617 265.4 265.4 77.98 1031.4 1109.3 0.1472 1.4105 1.9577 110 l 130 1.0927 0.01620 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120 l Sas 2.2230 0.01625 157.32 157.33 97.96 1019.8 1117A 0.1817 1.7295 1.9112 130 140 2.8892 0.01629 322.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140 390 3.738 0.01634 97.05 97.07 117.95 1006.2 1126.1 0.2150 1.6536 1.8606 190 I 140 4.741 0.01640 77.27 77.29 127.96 1002.2 1130.2 0.2313 1.6174 1.8487 160 4 170 6.993 0.01445 62.04 62.06 137.97 996.2 1134.2 0.2473 1.5822 1A295 17 0 380 7.511 0A1651 50.21 50.22 148.00 990.2 1138.2 0.2631 1.5400 1A111 140 i See 9.340 0.01657 40.94 40.96 158.04 984.1 1142.1 0.2787 1.5148 1.7934 190 j Sge 11.526 0.01664 33.62 33.64 168.09 977.9 1146.0 0.2940 1.4824 1.7764 300 1 210 14.123 0.01671 27A0 27.82 178.15 971.6 1149.7 0.3091 1.4509 1.7600 210 j Sta 14.696 0.01472 26.78 26.80 100.17 970.3 1150.5 0.3121 1.4447 1.7568 212 1 220 17.186 0.01678 23.13 23.15 188.23 965.2 1153.4 0.3241 1.4201 1.7442 220 1 230 20.779 0.01685 19.364 19.381 198.13 958.7 1157.1 0J188 1.3902 1.7290 230 240 24.968 0A!693 16.304 36.321 208.45 952.1 1160.6 0.3533 1.3609 1.7142 340 350 29A25 0.01701 13 802 13.819 218.59 945.4 1164.0 0.3677 1A323 1.7000 250 j 260 35.427 0.01709 11.745 11.762 228.76 9386 1167.4 0.3819 1.3043 1.6062 260 i 1 270 41.856 0 01718 10.042 10.060 238.95 931.7 1170.6 0.3960 1.2769 1.6729 270 300 49.200 0.01726 8.627 8.644 249.17 924.6 1173.8 0.4098 1.2501 1.6599 200 l 290 57.550 0.01736 7.443 7.440 259.4 917.4 1176.8 0.4236 1.2238 1.6473 290 300 47.005 0.01745 6.448 6.466 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300 310 77.47 0.01755 5.609 5.626 280.0 902.5 1182.5 0.4506 1.1726 1.6232 310 320 89.64 0.01766 4.896 4.914 290.4 894.8 1185.2 0.4640 1.1477 1.6116 320 840 117.99 0.01787 3.770 3.788 311.3 875.8 1190.1 0.4902 1.0990 1.5892 340 340 153.01 0.01011 2.939 2.957 332.3 362.1 1194.4 0.5161 1.0517 1.5678 360 380 195.73 0.01836 2.317 2.335 353.6 844.5 1198.0 0.5416 1.0057 '3.5473 300 l 400 247.26 0.01864 1.8444 1.8630 375.1 325.9 1201.0 0.5667 0.96S7 1.5274 400 l 420 305 78 0.01894 1.4808 1.4997 396.9 806.2 1203.1 0.5915 0.91a5 1.5080 420 440 381.54 0.01926 1.1976 1.2169 419.0 785.4 1204.4 0.6161 02729 1.4890 440 l 460 466.9 0.0196 0.9746 0.9942 441.5 763.2 1204.8 0.6405 0.8299 1.4704 460 480 566.2 0.0200 0.7972 02172 464.5 739.6 1204.1 0.6648 0.7871 1.4516 4s0 j SCO 680.9 0.0204 0.6545 0.6749 487.9 714.3 1202.2 0.6890 0.7443 1.4333 500 t 520 812.5 0.0209 0.5386 0.5596 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520 i 540 962.8 0.0215 0 4437 04651 5368 657.5 1194.3 0.7378 0.6577 1.3954 540 l SCO 1133.4 0.0221 0.3651 0.3871 562.4 625.3 1187.7 0.7625 0.6132 1.3757 560 I 580 1326.2 0 0228 02994 0 3222 589.1 589.9 1179.0 0.7876 0.5673 1.3550 580 i l 600 1543.2 0.0236 0.2428 0.2675 617.1 550 6 1167.7 0 8134 0.5196 1.3333 900 620 1786.9 0 0247 0.1962 0.2208 646.9 506.3 1153.2 0 8403 0.46S9 1.3092 620 ) 640 2059 9 0.0260 0.1543 0.1802 679.1 454.6 1133.7 0.8666 0.4134 1.2821 640 1 660 2365.7 0 0277 0.1166 0.1443 714.9 392.1 1107.0 0.8995 0.3502 1.2498 460 1 640 2704.6 0 0304 0 0408 01112 758 5 310.1 1068.5 0.9365 0.2720 1.2086 480 f 700 3094.3 0 0366 0 0386 0 0752 822.4' 372.7 995.2 0.9901 0.1490 1.1390 700 I 705.5 3208 2 0.0508 0 0.0508 906.0 0 906.0 1.0612 0 1.0612 705.5 L l PROPERTIES OF SATURATED STEAM AND SATURATED l TABLE A.2 WATER (TEMPERATURE) i A.3 (
g a Seewme, fie/it Enthelpy. St/tt tateepy. Sie/it a F Ensegy.Ch/It Prett. T**P toter toep Steam Ceter Loop Stoom Ceter Exp Seoem Csee' Steam h pois F tels A A A 't 't 's t t s s, s, a, e, e, e.esS6 3/AIS 0A1602 3302A 3302.4 0 00 1075.5 1075 5 0 2 1872 2.1872 8 1021.3 aSSS6 e.10 35.023 0.01602 2945.5 2945.5 3 03 10738 1076A 0 0061 21705 2.1766 333 10223 Ele 8.35 41.453 0 01602 2004.7 2004.7 13.50 1067.9 1081.4 0 0271 2.1140 2.1411 13.50 1025.7 e.ls E20 $3.160 0.01603 1526.3 1526 3 21.22 1063.5 1084 7 0 0422 2 0778 2.1160 21.22 10783 sto SJO 64.984 001604 1939.7 1039.7 32.54 10b7.1 1089.7 0.0641 2 0168 2ASO9 32.54 1032 0 E30 SAO 72.83 9 041606 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2.0562 40.92 1034.7 cAO e.5 79.586 0.01607 641.5 641.5 47.62 1048 6 1996 3 0.0925 1.9446 2.0370 47A2 1036.9 48 3.6 85.218 0 01609 M0A M0.1 53.25 1045.5 1098.7 0.1028 1.9186 2.0215 53.24 1038.7 i 3.7 90 09 041610 466.93 446.M M 10 1042 7 11008 0.3 1A966 2.0083 58.10 1040.3 e.7 4 cA 94.38 0.01611 411.67 411.69 62.39 1040.3 1102.6 0.1117 1A775 1.9970 6239 1041.7 e4 &9 98.24 0.01612 384.41 368.43 66.24 1038.1 1104.3 0.1264 1 A606 1.9870 6624 1942.9 as l 1.0 101.74 0.01614 333.59 333.60 69.73 10M.1 11058 0.1326 13455 1.9781 09.75 1044.1 3A 3.0 126 07 0.01623 173.74 173.76 M.03 1022.1 1116.2 0.1750 1.7450 1.9200 MA3 1051A 33 3.0 141 47 0 01630 118.71 118.73 109.42 1013.2 1122.6 0.2009 1.6854 1.8864 109.41 1056.7 18 4.0 152.96 OD1636 9063 9064 120.92 1006.4 1127.3 0.2199 14428 1A626 120.90 1060.2 as 5.0 162.24 0.01641 73.515 73.53 130.20 1000.9 1131.1 0.2349 1A094 13443 130.18 1063.1 SA SA 170.05 OA1645 61.967 61.98 138.03 996.2 1134.2 0.2474 1.5820 13294 13ES1 10H.4' 68 7A 176.84 OA1849 53 SM 53A5 144.43 992.1 11M 9 0.2581 1.5587 13168 14431 1067.4 7A S.O 182.86 0 41653 47.328 47.35 150.87 988.5 1139.3 0 2676 1.5384 13060 15034 1069.2 40 ~ 9.0 188.27 0016M 42.385 42.40 154J0 985.1 1141.4 0.2760 1.5204 1.7964 15628 1070.8 94 le 193.21 0A1659 38.404 38 42 161.26 982.1 1143.3 0.2836 1.5043 1.7879 16123 10723 38 14.696 212.00-0 01672 26.782 26 80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 180.12 1077.6 14 m 6 il 213.03 0.01673 26.274 26.29 181.21 969.7 1150.9 0.3137 1A415 1.7552 181.16 1077.9 15 30 227.96 0.01683 20 070 20.087 196.27 960.1 1156.3 0.3358 1.3962 1.7320 196.21 1082.0 30 30 250.34 0.01701 13.7266 13.744 218.9 M 5.2 1164.1 0 3652 1.3313 1A995 IISA 1087.9 30 4 40 267.25 001715 10.4794 10.497 236.1 933.6 1169A OJ921 1.2844 1.6765 2360 1092.1 40 4 80 281.02 OA1727 8.4967 S.514 250.2 923.9 1174.1 0.4112 IJ474 J.6586 250.1 10953 80 i 80 292.71 OA1738 7.1562 7.174 262.2 915.4 1177.6 0.4273 1.2167 1.6440 262A 100BA 80 l 70 302.93 0.01748 6.1875 6205 272.7 907A 1180.6 0 4411 1.1905 1A316 272.5 1100.2 70 80 312.04 0 41757 5 4536 5 471 232.1 900.9 1183.1 0.4534 1.1675 14208 281.9 1102.1 80 I 90 320.28 001766 4.8777 4.895 290.7 894.6 1185.3 0 4643 1.1470 14113 290.4 1103.7 90 100 327.82 0.01774 4.4133 4.431 298.5 888.6 1187.2 0.4743 1.1284 1.0027 298.2 1105.2 ISO 120 341.27 0.01789 3.7097 3.728 312.6 877A 1190 4 0 4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 0 01303 3 2010 3 219 325.0 868.0 1193 0 0.5071 1.0681 1.5752 324.5 1109.6 140 160 363 55 0.0;S15 2 8155 2 834 336.1 859.0 1195.1 0.5205 1.0435 1.5641 335.5 1111.2 100 ISO 373 08 0.01427 2.5129 2.531 346.2 850.7 1196.9 05328 1.0215 1.5543 345.5 1112.5 ISO 200 351.80 0 01839 2.2689 2.287 355.5 842.8 1198.3 0.5438 1.0016 1.5454 3543 1113.7 300 l t 250 400 97 0 01865 1.8245 1.8432 376.1 825 0 1201.1 0.5679 0 9585 1.5264 3753 1115.8 ISO f 300 417 35 0 01889 1.5235 1.5427 394.0 808.9 1202.9 0.5882 0.9223 1.5105 392.9 1117.2 300 350 411.73 0 01913 1.3064 1.3255 409.8 7942 12M 0 0 60M 08909 1.4968 408 6 11IB ! 350 400 444 60 0 0193 1.14162 1.1610 424.2 760 4 1204.6 0 6217 08630 1.4847 422.7 1112 7 400 450 4t528 0 0195 1.01224 1.0318 437.3 767.5 1204.8 06360 0 8378 1.4738 435.7 1118.9 450 j S00 467 01 00199 0 90787 09276 449.5 755.1 1204.7 0.6490 0 8148 1.4439 447.7 1118 8 900 $50 47693 00199 0 82183 0 8418 460.9 743.3 1204 3 0 6611 0.7936 1.4547 456.9 1118 6 550 400 48520 0 0201 0.74962 0.7698 471.7 732.0 1203 7 0.6723 0 7738 1.4461 469.5 tilf. 2 600 l 703 .502 08 00205 0 63505 0 6556 491.6 710.2 12018 0692R 07377 1.4304 488.9 1116.9 700 S30 51421 0 0209 0.54809 0 5690 509.8 689 6 1199 4 0.7111 0.7051 1.4163 506 7 1115.2 800 i 900 !)! 93 0 0212 0 47968 0$009 526 7 669 7 1196 4 07279 06753 1.4032 5232 1113 0 900 1000 544.5B 00216 0 42435 0 4460 542.6 f 50 4 1192.9 07434 06476 1.3910 53 % 11to 4 1000 1100 5!! 2e 00220 0 37&f 3 0 4006 557.b 6315 1169 1 0 7579 0 6216 1.3794 5531 1107.5 1200 1200 1167.19 0 0223 0 34013 0.362b 571.9 613 0 1184 8 0 7714 Ch969 1.3653 556 9 1104.3 1200 1300 177 42 0 0227 0 30722 0.3299 585.6 594.6 1180 2 0.7847 05733 1.3577 580 1 1100 9 1300 1400 537 07 0 0231 0 278/1 0 3018 598 8 5765 1175.3 0.7966 05507 1.3474 592.9 1017.1 1400 1500 596 20 0 0235 02b372 0.2712 611.7 550 4 1170 1 0.8035 0?283 1.3373 6052 1093.1 1500 2000 635 40 0 0257 0 16260 0.1883 672.1 465 2 1136.3 0 8621 0 4256 1.7881 662 6 10GS 6 2000 2500 65d ll 002c4 0 80209 01307 731.7 361.6 1093 3 C 9139 0 3206 1.2345 718.5 1032.9 2500 3000 695 33 0 0343 0 050/3 0 0850 801 8 218 4 1070 3 0 9723 0 1891 1.1619 782 3 973.1 3000 32982 701 47 0OSos 0 0 050d 906 0 0 906 0 10612 O I0612 8759 875.9 3700.2 i l TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE) i A.4 f
Tempseatwo F Abe poses. ) 100 200 900 400 900 000 700 000 900 1000 1100 8200 1300 1400 1500 (k e 0.0161 292 5 452.3 511.9 571.5 631.1 000.7 3 a 88 00 1350 2 119b.7 1241A 3208 6 1936 1 1984 5 (101.74) s 0.1295 2.0509 2.1152 2.1722 2.2237 22708 2J144 e 0.0841 78 14 90.24 102.24 114.21 126 15 198 08 150 01 161.M 173 86 185 78 197.70 20D 62 221.53 23 g n GS 01 1348.6 lite 8 1241J 1788 2 1335.9 IM43 1433 6 1843 7 1534.7 1586 7 1639 6 1993 3 1748.0 190 (162.24) s 0.1795 3.8716 1.9349 1.9943 2A460 24932 2.8369 2.1776 2 2159 2 2521 2.28E 2.31M 2J509 2.3811 2A e 0.0161 38 84 44 98 51.03 57.04 63 03 69 00 74 98 80 94 M 91 92 87 98 84 104 30 110.76 116.72 30 6 68 02 1144 6 11937 1240 6 12t:7A 1335.5 1384 0 1433 4 14835 1534 6 1546 6 1639 5 1803.3 1747.9 (19221) s 0.1295 1.7928 1A593 1.9173 1.9692 2.0166 2.0603 2.1011 2.1394 2.1757 2.2101 2 2430 22744 2.304 0.0161 0.0166 29 899 33 M3 37.905 41.986 45.978 49 964 53 M6 57.926 61.905 65.082 69 ASS 73433 77 15 4 44 04 IM 09 1192.5 1239.9 1287J 1335.2 13833 1453.2 1483 4 1534.5 1546.5 1639 4 1803.2 1747A 1803 4 e (213.03) s 0.1295 0J940 1.8134 13720 1.9242 1.9717 2.0155 2.0663 2AB46 2.130D 2.1653 2.1982 2.2297 22599 2Jeg0 e 0.0161 0.0166 22J56 25428 28 457 31.446 34 465 37.458 40447 43 435 46 420 49.405 52JAS 95.370 58.35 30 8 GS.05 let ti 1191.4 1239.2 1296.9 1334.9 1383 5 1432 9 1483.2 1534.3 1584.3 1639.3 1893.1 1747A (227.96) s 0.1295 0.2940 1.7805 1A397 12921 1.9397 1.9836 2.0244 2.0628 2.0991 2.1336 2.1465 2.1979 2.228 e 0.0141 0 0166 11.035 12.624 14.145 15 485 17.195 18.699 20 199 21497 23 IM 24 609 26.183 27A76 de t GB.10 168.15 1106 6 1236.4 1285.0 13336 1382.5 1432.1 1482.5 1533.7 15854 1638.8 1992.7 1747.5 (26725) s 0.1295 0.2940 1AB92 1.7608 1A143 1A624 1.9065 1.9476 3.9000 2.0224 2.0569 2.0899 2.1224 2.151 e 0.0161 0.0166 7.257 8354 9.400 10 425 11.438 12.446 13.450 14.452 15.452 16A50 17A48 18.445 19A et a GS 15 168 20 1881 6 1233.5 1283.2 1332.3 1381.5 1431.3 1481A 1533.2 1545.3 1&38.4 1892.4 1747.1 (292.71) s 0.1295 0.2939 1.6492 1.7134 1.7681 IA148 1A612 1.9024 1.9410 1.9774 2.0120 2.0450 2.0765 2.1088 i e 0.0161 0.0166 0.0175 6 218 7.018 7.794 S.540 9.319 10 075 10.829 l'1 581 12.331 13AS1 13A29 14.577 80 4 GS 21 168.24 269.74 1233.5 1281.3 1330.9 1300.5 1430.5 1481.1 1532 6 1584.9 1638.0 let2A 1746A ' 1802.5 (312.04) s 0.1295 0 2939 0.4371 1.6790 1.7349 1.7842 1A289 3.8702 1.9089 1.M54 1.9000 2A131 2.0446 2.0750 2.1 e 0.0161 0.0166 0 0175 4 935 5 508 4.216 6.833 7.443 8050 8655 9258 9A60 10 Ate llA00 llA59 200 h . 68 26 168.29 269 77 1227.4 1279.3 1329.6 1379.5 1429.7 1480.4 1532.0 1584 4 1637.6 1991.6 1746.5 190 l (327.42) s 0.1295 0.2939 0.4371 14516 1.7088 1.7506 1A036 1A451 IAS39 1.9205 1.9552 1.9003 2A199 2.0002 2A794 e 00161 0 0166 0 0175 4 0786 4 6341 5.1437 5 4831 4.1929 6 7006 7J000 7.7096 8.2119 8.7130 92134 9.713 120 h 48.31 168 33 269 81 1224.1 1277.4 1328.1 13784 1428 8 1479.8 1531.4 1583.9 1837.1 18D1J 17462 180 (341.27) s 0.1295 0 2939 0 4371 1A286 1.6872 1.7376 1.7829 1A246 1.8635 1.9001 1.9349 1.9000 1.9996 2.030D 2A e 00161 0 0166 0.0175 34651 3 9526 4 4119 4 8585 5.2995 5.7364 61709 6.6036 7A349 7A652 7A946 SJ23 140 4 68 37 168 38 269 85 12208 1275.3 13268 1377.4 1428 0 1479.1 15308 1583 4 1436.7 1990.9 1745.9 180 (353 04) s 0 1295 0 2939 0 4370 1.6095 1.6686 1.7196 1.7652 13071 13461 1A428 1.9176 1.9508 1.9825 2.0129 2.04 e 0 0161 0 0166 0 0175 3 0060 3 4413 3 8480 4.2420 4 6295 5 0132 5.3945 5.7741 61522 4 5293 '6.9055 7 160 A 48 42 168 42 269 89 1217 4 1273 3 1325 4 1376 4 1427.2 1478 4 1530.3 1582.9 1636.3 1990.5 1745.6 1 (363 SS) s 0.1294 0 2938 0 4370 1.5906 1.6522 1.7039 1.7499 1.7919 1.8310 1A678 1.9027 1.9359 1.9676 1.9980 e 0 0161 0 0166 0 0174 2 6474 3 0433 3.4093 3.7621 4.1064 4.4505 4.7907 5.1289 5 4457 5A014 6.1363 I 180 4 68 47 16&47 269 9/ 1213 8 12712 1324 0 1375.3 1426.3 1477.7 !$29 7 1582.4 1635.9 1940.2 1785.3 (373.C&l s C.1294 0.2938 0 4370 1 5743 1.6376 1.6900 1 7362 1.7784 1Al?6 1.8345 1.8894 1.9227 1.9545 1.9849 e 0 01E1 0 0166 0 0174 2 3598 2.7247 3.0583 33783 3 6915 4 0005 4 3077 4.6128 4.9165 52191 5.5209 200 > 68 52 168 51 269 96 12101 1269.0 1322A 1374.3 1425.5 1477.0 15291 1541.9 1635 4 1889 8 1745.0 (351 60) s 01294 02938 04359 1.5593 1.6242 1.677G 1.7239 1.7663 1.8057 1.8426 1A776 1.9109 13427 1.9 e 0 0161 0 0165 0 0174 0 0186 2.1504 2 4E62 2 6872 2.9410 3.1909 3 4382 36837 3 9278 4.1709 4.4131 250 4 68.56 168 03 270 05 3/5 10 1263.5 1319 0 1371.6 1423 4 1475 3 1527.6 1580.6 1634.4 1688 9 1744.2 18 (433 97) s 0 1294 02937 0 4368 0.%67 1.5951 I.6502 1.6976 1.7405 1.7601 1 8173 1.8524 1.5458 1.9177 1.9442 e 0 0161 0 01E5 0 3174 0 0186 1.7666 2.0044 22263 2.4407 2 6509 2 8585 3 0643 3.2688 3 4721 3.6746 330 4 68 79 1 % 74 27u14 375.15 12"s7 7 1315 2 1368 9 1421.3 1473E 1526 2 1579 4 1633 3 1688 0 1743 4 l (417.35) s 0.1294 0 2937 0 4317 C5%5 1.5703 1.6214 1.6758 1.7192 1.7591 3.7964 1.8317 13652 14972 1.9278 i e 0 0161 0 0106 0 0174 0 018C 1.4913 I7028 IJ973 2 0332 22652 2 4445 2.6219 2.7980 2.9730 3.1471 3 l 350 6 68 92 ILS 85 270 74 375 21 1251 5 1311.4 1366 2 1419 2 I471 8 1524 7 1578.2 1632.3 1647.1 1742 6 (431.73) s 01293 029M 043G7 0.56',4 1.5483 1.6077 1.6571 1.7009 1.7411 1.7787 1.8141 1A477 1379S 1.9405 e 0 0161 0 0106 0 0174 0 0162 1 2841 1.4763 1.6499 1.8151 1.9759 71339 2.2901 2.4450 2.5987 2.7515 1 400 a 69 05 168 97 270 33 375 27 12451 1337.4 1363 4 1417.0 14701 1523 3 1576 9 1631.2 1686 2 17419 l (444 60) : 01293 0 2935 0 4365 0 %G3 1.5282 1.5901. l.6406 1.6850 1 72 % 1.7632 1.7988 1A325 1A647 1.8955 e 0 0161 0 0100 0 0174 0 0186 0 9919 1.1584 13037 1.4397 1.5708 16932 1.8256 1.9507 2 0746 2.1977 500 h 09 32 1% I9 270 51 3?L 38 1231.2 1299.1 1357.7 1417 7 1466 6 lb20 3 1574 4 16291 1684 4 1740 3 1796 9, l (457.011 s 01292 02934 04354 Oht60 14971 15595 16'23 1 65/8 1 6090 1.7371 1.7730 13069 1A393 1 8702 1 \\ l TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED i WATER (TEMPERATURE AND PRESSURE) A.5
--. = - - = ) Ti"P'Cl*'s F Abe psess. g t. 300 300 300 400 500 400 700 000 900 1000 1100 1300 3300 1400 1500 e 0.0161 0 01 % 0 0174 0 0506 0 7944 0 94 % 1 0726 1.1992 1.300s 14093 1 5160 16711 1.7252 18204 1.9309 goe 6 69.58 169 42 270 70 3M 49 1215 9 1290 3 1351.8 1408 3 3463 0 1517 4 15789 1627.0 16826 1738 8 1795 6 (40620) s 0.1292 02933 04362 0.M57 34500 1.5329 1.5844 1.6351 16769 1.7155 3.7517 1.Pett 1A384 1.3494 18792 e 0.0161 00164 00174 001% 00704 0 7928 0 9072 1.0102 1.1078 12023 1.2948 3.3858 1.4757 1.M47 3.6530 l l pgo n 60.84 169.65 270 89 3461 487 93 1781 0 1345 6 1403.7 1459 4 1514 4 1M94 1674B IHO7 1737 2 1794.3 (503.ts) s 01291 0.2932 0 4360 O M55 0 6089 1.5090 3.M73 16154 1.6580 14970 17335 3.M79 1 8035 18318 18617 e 00161 0 01 % 0.0174 0 0186 0 0704 0 6774 07823 0.849 O M31 1 0470 1.1289 1.2093 1.2835 13M9 1A446 ^ Oss 6 70.11 369 88 271.07 3473 487As 1273.1 1339 2 1999.5 14558 1511 4 15M 9 1927 1678 9 1735 0 1792.9 g5132.)n 0.1290 0.2930 0.4358 0.M52 06085 IA869 1.5444 1.5900 3.6413 16807 1.71M 1 M22 1.7851 18164 13464 f e 0.0161 0.0166 0 0174 c.0186 OGrJe 0 5869 0 6858 0.7713 0 8504 0.9262 0 9998 1.0720 1.1430 1.2131 IJe25 Ses 6 70.37 170.10 271.26 375A4 48733 IM06 1332.7 1394 4 1452.2 1508 5 IM44 IUO6 1677.1 17341 1791.6 (53135)s 0.1290 OJ929 0.4357 0.M49 0.6881 1A659 1.5311 1.5822 14263 1.M62 1.7033 1.7382 I.7783 1.8028 33329 i e 0.0161 0.0146 0.0174 0 0186 0 0204 0 5137 0 6080 0 60 4 0.7403 0 8295 0 8966 0 9622 1.0766 1.0901 1.1529 1 agge 6 70.63 170 33 271A4 3M.M 487.79 1249.3 1325.9 1389.6 1444.5 1504.4 IMI.9 1618 4 1675.3 1732.5 1790 3 (544.58) s 0.1389 0.2928 0.4355 0.5647 0.4876 1A457 1.5149 1.M77 3.6126 16530 1.6905 1.72M 1.7589 1.7905 1A207 e 0.0161 0 0166 0.0174 0.0185 0.0203 0 4531 0 5440 0 6108 0 6465 0 7505 0 8123 0 8723 0 9313 0 9894 1A448 tage t 70.90 170.M 27143 3760s 487.M 1237.3 1318 8 1384 7 1444.7 1502 4 1559.4 1616 3 1473.5 1731.0 1789.0 (55628)s 0.1259 OJ927 0.4353 0.5644 0.4872 1.4259 1.4996 1.M42 1.6000 1.6410 14787 1.7141 1.7475 1.7793 12097 i e 00161 0.0lM 0.0174 0.0185 0 0203 0 4016 0 4905 0.M15 0 6250 0 4845 0 7418 0.7974 0 8519 0.9055 0 9504 lage 6 71.16 170.78 27122 376.20 487.72 1224.2 1311.5 1379.7 1440.9 1449 4 15M 9 3614.2 1671.6 1729.4 1787.6 (567.19) s 0.1288 0.2926 0.4351 0.M42 0.6848 1A061 1A851 1.5415 1.5883 1.U98 16679 1.7035 1.7371 1.7691 1.7996 e 0 0141 00166 00174 0 0185 0 0203 0.3176 0 4059 0 4712 0.5282 0 5809 0.6311 0 6794 0 7272 0.7737 0 8195 1400 ' 4 71A8 171.24 272.19 376 44 487.65 1194.1 1296.1 1369.3 1433 2 1493 2 1551 8 16099 1668 0 17M.3 1785.0 (B87AF) s 0.1287 02923 0.4348 0.5436 0 6859 1.3652 14575 1.5182 1.5670 1.6096 14484 1.4845 1.7185 1.7505 1.7815 e 0.0161 0.0164 0.0173 0.0185 0 0202 0.0236 0.3415 0 4032 0 4555 0.5031 0 5482 0.5915 0.8336 0.6748 8.7153 3000 6 72.21 171.69 272.57 376 69 487.60 616.77 1279.4 1358.5 1425.2 1486.9 1546.6 1605 6 1664.3 1723.2 1782J (804.87) s 0.1206 0.2921 0.4344 0.M31 0.6851 0.8129 1.4312 1A968 1.5478 1.5936 1.4312 14678 1.7022 1.7344 1.7657 e 0.0140 0.0165 0 0173 0.0185 0.0202 0 0235 0 2906 0 3500 0.3634 0 4426 0 4436 0.5229 0.5609 0.5900 c e43 1800 m 72.73 172.15 272.95 376 93 487.M 615.58 1261.1 13472 1417.1 1480 6 1541.1 1401.2 1660.7 1720.1 1779.7 j (621/32) s 0.1284 0.2918 0.4341 0 5626 0.68'3 0 8109 1.4054 1.4M8 1.5302 1.5753 1.6156 1.6528 1.8876 1.7204 1.7516 e 0 0100 0.0165 0.0173 0.0184 0.0201 0.0233 0.2488 0.3072 0 3534 0.3942 0 4320 0 4400 0.5027 0.5365 0.5695 l 3000 6 73.26 172 40 273.32 377.19 487.53 614 48 1240.9 13514 1408 7 1447.1 1536.2 1596.9 1657.0 1717.0 1777.1 (635 00) s 0.1263 0.2916 0.4337 0 M21 0.6834 03091 1.3794 1.4578 1.5136 1.MC3 1.6014 1.6391 1.6743 1.7075 1.73s9 e 0.0160 0.0165 0.0173 0.0184 0.0200 0.0230 0 1681 0 2293 0.7712 0.3068 0.3390 0 M92 0.3900 0 4259 0 4529 2000 4 74 57 173 74 274 27 377 52 487.50 612.08 1176.7 1303 4 1386.7 1457.5 1522.9 1585.9 1647A 1709.2 1770.4 (688.!!)s 0.1200 0.2910 0.4329 0.M09 0.M15 0 8048 1.3076 1.4129 1.47M 1.5269 1.5703 1A004 1A454 1.6796 1.7116 1 i e 0 0160 0 0165 0 0172 0 0183 0 0200 0.0228 0 0982 0 1759 0.2161 0.2484 0.2770 0.3033 0.3282 0.3522 eJ753 3000 h 75 53 17t88 275.22 378 47 487.52 610.08 1060 5 1267.0 1363.2 1440.2 1503.4 1574.8 16M 5 1701.4 17(1.8 (t95.13) s 0.1277 0.29c4 0.4320 0.5597 0.6796 0 8009 1.1966 1.3692 1.4429 1A976 1.5434 1.5641 IA21A 3.0561 1.6688 e 0.0160 0 0165 0.0172 0.0183 0.0199 0 0227 0.0335 'O.1588 0 1987 0.2301 0.2576 0.2827 0.3065 0.3291 0.3510 3200 4 76.4 IM.3 275 6 378.7 487.5 009.4 800 5 1150.9 1353 4 1433.1 15038 1570.3 16343 1698.3 1761.2 005.08) a 01276 0 2902 0.4317 0.5592 0.6784 0.7994 0.9708 1.3515 1.4300 1A466 1.5335 1.5749 14176 1.6477 1A806 e 0 0160 0 0164 0 0172 0 0183 0 0199 0.0225 0.0307 0.1364 0 1764 0.2066 0 2326 0.2563 0.2784 0 2995 OJ19P l 3500 6 77.2 176 0 276.2 379I 487.6 608 4 779 4 1224 6 13382 1422 2 1495 5 1M3.3 1629.2 1693 6 3M7.2 s 0.1274 0.2899 0 4312 0 5585 0 6777 0.7973 0 9508 1.3242 1All2 1.4709 1.5194 1.5618 1.5002 1.6358 1.6691 e 0 0159 0.0154 0 0172 0.0182 0.0198 0 0223 0 0287 0.1052 0.1463 0.1752 01994 0 2210 0 2411 0.2601 02783 4000 A 7s.5 177.2 277.1 379 8 487.7 6065 763 0 1174.3 1311.6 1403 G 1431.3 1552.2 1619 8 1685.7 1750 6 i e 01271 0 2893 0.4304 0 5573 0 6760 0 7940 0 9343 1.2?54 1.3807 1.4461 1.497G 1.5417 1.5812 1.6177 1.6516 e 0 0159 0.0164 0 0171 0 0181 0.0196 0 0219 0 0264 0.0591 0 1038 0 1312 0 1529 0 1718 0 18*0 0 2050 02203 5300 6 81.1 179 5 219 1 381.2 488.1 604 6 746 0 1042 9 1252.9 1364 6 14b21 1529.1 1600 9 1670 0 1737.4 s 0.1765 0.2 % 1 0 4147 0.5550 0 6726 0.7880 0 9153 1.1593 1.3207 1.4001 1A582 1.5061 1.!,481 1.5863 1 A216 I e 0 0159 0.0163 0 0170 C 0160 0 019h 0 0216 0 0256 0 0397 0.0757 0.1020 0.1221 5.1391 0.1544 0.1684 0.1817 4000 4 83.7 131.7 281.0 362 7 APB 6 602 9 7361 945.1 1188 8 1323 6 1422.3 1505 9.1562 0 1654 2 1724.? e 0 1254 0.2670 0 4271 0 5528 0 6693 0 7826 0 9026 1.0176 1.2615 1.3574 1.4229 1.4745 1.5194 1.5593 1596.2 e 0.0158 0.0163 0 0170 0 0180 0 0193 0 0?!3 0 0248 0.0334 0 0573 0 031 A 0.1004 0.1160 0.1298 0 1424 0.1542 7000 4 86.2 184 4 283 0 Su4 2 489 3 601 7 729 3 901.8 1124.9 1781 7 1392 2 1482 6 IM31 163A 6 1711.1 a 0.1252 0.2859 0 4256 0 5507 0 6563 0 7/77 0 8926 1 0350 12055 1.31)1 11904 1.44u6 3.4938 1.53'S 1.5735 r--- TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED) A.6 l
~ a, T T ,,%,,,g,. .3,,,. 4,, n,h,U) I'* I ~ 1-n g /m 7A / N // N ~ [/ A ! / NI lobo Ald%hhK l Ni lrW 8" ~ V A/ /AL I. I sao 2 /d/2Sob [/ N ///3V '* Qf J' l h l I N J I aab' /llmsk / M ll/%J k/ / hLI I lb kfb'WNb N//r%J [ K / f /T / / MI 2 tage .300 Ef 649, #7u a 7 M4[7 7 s ~ i MD R$ ~ 9@4%19 "l I~ fMB47 7 % 9 M' 7 U ~ Ub (MHK MR7?K0A&% W ~ ~ ~ Mawr>w // ~ ~ ~ MMM&M N ~ ~ #MYVAMM ~ ~ \\ MXMHx M ~ '/B M 6MY MMMM 10 1.1 1.2 1.3 14 1.5 1.6 1.7 I8 1.9 20 2.1 2.2 23 . Entropy. StullD, F i FIGURE A.5 MOLLIER ENTHALPY-ENTROPY DIAGRAM A.7
c-PROPENTIES OF WATER Density e MSNO PSIA Temp Saluented (* F) Liquid 1000 2000 2100 3200 2300 2400 2508 8000 32 42.414 82.637 62.846 62.867 42.888 82.909 62.93 82.951 83.056 60 62.38 42.55 62.75 62.774 42.798 82A22 62.846 62.87 62.99 100 61.989 82.185 62.371 82.390 42.409 82.427 62.446 82.445 62.559 200 40.118 80.314 60.511 60.63 80.549 80.568 80.587 80.606 60.702 300 67.310 67.537 67.767 67.79 67A13 67A36 67.859 67A82 67.998 400 63.651 63.903 64.218 64.249 64.28 64.311 64.342 64.373 64.629 410 63.248 63.475 63.79 63.825 63.86 63A9 63.925 63.95 64.11 420 62.798 63.025 63.36 63.40 63.425 63.46 63.50 63.63 63A9 430 62.356 62.675 62.925 62.95 62.99 63.02 63.065 63.09 63.265 440 61.921 62.125 62.42 62.45 62.475 62.51 62.64 62.56 ,62.275 450 ' 61.546 61.66 62.025 62.065 62.10 62.14 62.175 62.21 62.41 4 460 61.020 51.175 61.56 61.61 61.64 61A8 61.725 61.76 6136 ' ' ' 60.505 60.70 61.1 61.14 61.175 61.22 61.25 61.30 $1.50 400 60.00 50.20 60.62 60.66 60.7 80.74 80.78 60.825 61A35 470 490 49.505 49.685 60.13 60.175 60.22 60.265 60.31 60.35 60 575 600 48.943 49.097 49.618 49.666 49.714 49.762 49.81 49.858 60.098 610 48.31 48.51 49.05 49.101 49.152 49.203 49.254 49.305 49.56 620 47.85 47.91 44.46 48.515 48.57 48.625 48.68 48.735 49.01 630 47.17 47.29 47.86 47.919 47.978 48.037 48.096 48.155 48.45 640 46.51 47.23 47.296 47.362 47.428 47.494 47.56 4729 650 45.87 46.59 46.658 46.726 46.794 46 862 46.93 47.27 560 45.25 45.92 45.994 46.068 46.142 46.216 46.29 46A6 570 44.64 45.22 45.30 45.38 45.46 45.54 45.62 46.02 580 43.86 44.50 44.586 44.672 44.758 44.844 44.93 45.36 550 43.10 43.73 43.825 43.92 44.015 44.11 44.205 44.68 600 42.321 42.913 43.017 43.122 43.226 43.33 43.434 43 956 610 41.49 41.96 42.08 42.196 42.314 42.432 42.55 43.14 620 40.552 40.950 41.083 41.217 41.35 41.483 41A16 42.263 41.44 630 39.53 40.388 640 38 491 39.26 650 37.31 38.006 660 36.01 36.52 670 34.48 34.638 680 32.744 32.144 690 30.516 TABLE A.6 PROPERTIES OF WATER, DENSITY 4 A.8
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE I ~ ~ ~ ~ I E E E 5 5 6 Y E I E 5 C 5,~ E 5 I i ~ i R I E 5 E E R" E 5 "_ f E 5 5 5 "_ f L 5 5 ANSWERS -- BROWNS FERRY 1, 213 -85/11/18-K E BROCKMAN ANSWER 1 ~. 01 (1.00) 75% Void Fraction in the core.(0.5) This is because of the increased re/sonance capture' which would occur (due to the longer slowing j down length).(0.5) REFERENCE EIH: L-RO-604 GGNS: Reactor Physics L/P, pp 1.7 - 9, 10, 13 BSEP: 02-0G-A, pp 39 -49 BFNP: Reactivity Coefficient LP, pp 4, Si RO 85/03/01 ANSWER 1.02 (1.00) d REFERENCE EIH: L-RG-606, pp 4, Si Fig. 4 BSEP: 02-2/3-A, pp 177 - 180; 02-0G-A, pp 60 - 61 BFNP: Xenon and Samarium LP, pp 5, 6; RO 84/03/05 ANSWER 1.03 (1.00) c REFERENCE EIH: L-RG-667, p 10 BFNP: R >: Heat Balance LPi RO 85/03/05 ANSWER 1.04 (1.00) c REFERENCE BFNP: XENON & SAMARIUM LP, P.4,12; RO 85/03/05 GGNS: LP OP-NP-514, p. 5-10 'BSEP: 02-0G-A, pp 57 - 60 t
D. 1. PRINCIPLES OF NUCLEAR POWER P-LANT OPER ATION, PAGE a ~~~~i ER566f d fCS, ~EddT Tkk SFfk~dNb"FL6fd~FLdk ~ ANSWERS -- BROWNS FERRY 1, 2R3 -85/11/18-K E BROCKHAN ANSWER 1.05 (1.00) a. 1
- b. 4' (0.5 each)
REFERENCE BFNP PUMP CHARACTERISTICS, PUMP HEAD, PUMP LAWS LP,P.4 ANSWER 1.06 (1.00) d REFERENCE BFNP: GET; Mitigating Rx Core Damage LPep 4 GGNS: OP-RP-502,P.5-7 ANSWER 1.07 (1.00) d REFERENCE Steam Tables BFNP Steam Tables LP, p 8; RD 84/02/02 ANSWER 1.08 (1.00) Core flow increases due to the increased voiding / buoyancy (Thermal Driving Head) that is developed by the increased power (0.5). Core flow stabilizes as the Thermal Driving Head is counteracted by the increastd two phase flow resistance (pressure drop) which develops with the increased voiding (0.5) REFERENCE BFNP: BFN Mitigating Rx Core Damage, pp 3 3-80 t
i 1 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE J- ~~~~iEEE566i5ihiC5,~5EIi~iE 55 FEE"556~ FLU 56"fL6U ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN ANSWER 1.09 (1 00) Delta K / K = (K-eff - 1) / K-eff (0.5) = (.920 - 1) /.920 = - 0.0870 Delta K / K (0.4) Reactivity (0.920) Concept (1.004 -1) / 1.004 = + 0.0040 Delta K / K Reactivity (1.004) = (0.1) Reactivity Addition = 0.004 - (-0.0870) = + 0.0910 Delta K / K Math REFERENCE BFNP: BFN Neutron Multiplication LP, p 10 ANSWER 1.10 (1.00) 0 REFERENCE BFNP: BFN Mitigating Rx Core Dassage, pp 17 - 18; RQ 85/02/01 ANSWER 1.11 (1.50) a. Decreases b. Increases c. Decreases (0.5 each) REFERENCE Second Law of Thermodynamics BFNP: BFN Entropy LP; BFN Energy, Power, and Enthalpy LP; RG 85/03/03 & 04 t y y .,m.
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE y. ~~~~iAEE566 EIEiC5,~AEIi TEIO5 FEE ~I56"EEUi6 fE6U ANSWERS -- BROWNS FERRY in 283 - -85/11/18-K E BROCKMAN ANSWER 1.12 (1.00) (0.5) a. Top peaked b. Each Node has received a different exposure. (LIMLHGR varies eith both exposure and fuel type and only the exposures are dif-(0.5) ferent for each node) REFERENCE BFNP: Process Computer LP, p 13 (Obj #4) ANSWER 1 13 (3.00) a. Recirculation Pumps Tripping (-51.5') (0.51 (0.5) b. MSIV Closure (0.5) c. Effects of HPCI and RCIC - ( 0.5) -d. Scram (on Low Level) o. HPCI and RCIC Pump Trip (+54') (0.5) (0.5) f. Increased Voiding (caused by decreased subcooling) REFERENCE BFNP: Operational Transient LP, Transient #9; R0 84/01/01 ANSWER 1.14 (.75) a. GREATER THAN b. GREATER THAN (0.25 each) c. G5 EATER THAN REFERENCE Air Ejector Theory /Bernouilli's Equation EIH: L-RG-660 BSEP: HTFF, pp 5.63 - 5.68 BFNP EF Off-Gas LP, pp 5 - 7 !'i e i i t k \\ e
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 4 ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN ANSWER 2.01 (1.00) d REFERENCE BFNP LP451, p 9; OI-67 2{2 (1.00) ANSWER g MMVM. (0.5) D. +- (0.5). b. 1060 MW +- 20 MW REFERENCE EIH: L-RQ-727 BFNP: GOI-100-1 ANSWER 2.03 (1.50) c. None b. Unit 1, System 2 c. Unit 2, System 2 (0.5 each) REFERENCE BFNP: RHR LP, p 39; RO 85/01/04 ANSWER 2.04 (.50) zero SPm REFERENCE GGNS: OP-E21-501, p 12, 17 BSEP: HD 14-2-E BFNP: RHR LP; RO 85/01/04 k i .___.,,..-.-r
2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 6 ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-R E BROCKHAN ANSWER 2.05 (1.50) o. The yellow light associated with that pump will illuminate (0.5) b.
- 1) Take the manual control switch to START (Spring return to AUT0)(0.5)
(MANUAL ACTUATION)
- 2) Reset the CS initiation signals (Depress the PB's)
(0.5) REFERENCE BSEP: SD-17, pp 9, 33; SD-01, p 51; HD 14-2/3-De pp 21, 47 BFNP: CS LPi RG 85/01/05 ANSWER 2.06 (1.50) Sets voltage regulator for diesel supplying 4160 Vac SINGLE UNIT (0.125) Shutdown Board as the only source (0.375). operating the,dieeff UNITS IN PARALLEL (0.125) - Sets voltage regulator for diesel generators in parallel (0.375) PARALLEL WITH SYSTEM (0.125) - Sets voltage regulator to parallel with one of the 4160 Vac unit boards via the 4160 Vac shutdown buses (0.375). REFERENCE BFNP: RQ 85/02/04 ANSWER 2.07 (2.50) a. Decrease b. Decrease c. Increase d. Decrease o. Increase-(0.5 each) REFERENCE BFNP: OI-68 s k t
e 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 7 ANSWERS -- BROWNS FERRY le 283 -85/11/18-K E BROCKHAN ANSWER 2.08 (1.50) Utilize the Fire Truck Pumper (0.5). Place a hose through the grating 2 (0.5) and discharge through'?a hose cpening at CCW discharge Gate 4 e to Yard Hydrant (4 8) (0.5). REFERENCE BFNP; RO 85/04/01 ANSWER 2.09 (2.50) 1) HPCI - Loss of power to valves, pumps, and Division II Logic 2) CS - System II will not auto initiate, if needed 3) RHR - System II will not auto initiater if needed 4) RCIC - Loss of Division II logic 5)- MSRV - Loss of Operability & Indication of some valves 'A' MG Loss of Emers 0il Pump, Loss of Speed Control and 6) RRP. resulting lockup of i ts Scoop Tube Loss of Backup Scram capability 7) RPS 8) MSIV - Outboard MSIV DC Solenoids will deenergize 9) PCIS - Loss of power to DC Isolation Valves - Will not Shut Two valves lose normal power and auto swap to RMOV-B asA TMeV-C.
- 10) ADS (0.25 - System /Cemponent; 0.25
. Example 5 9 0.5 each) REFERENCE BFNP: 0I-57; DC Electrical Distribution LPi PCIS LPi RQ 83-84/ECCS LP & ADS LP ( Obj 3, 4) ANSWER 2.10 (1.00) l ) Loss of Normal AC Power (0.25) in conjunction with i l en Accident Signal (0.25) ) Low pump discharge header pressure (0.50) t 4 6 9 -. -.. +, -,
~, l .t. l 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE i ANSWERS -- BROWNS FERRY le 213 -85/11/18-K E BROCKMAN REFERENCE BFNP: LP 47; 0I-70 1 l ANSWER 2 11 (1.00) C i d REFERENCE I USNRC BWR-4 Systems Manual, pp 3.3 3.3-10 'i EIH: NNP-x-1001; HNP-x-1286 l' BFNP: ' FEED and CONDENSATE LP ti . l' l ANSWER 2.12 (.50) 'I Take the Control Switch to RESET
- 1 REFERENCE BFNP: 0I-82 ANSWER 2.13
(.50) Counterclockwise (Slow) REFERENCE ~ BFNP OI-57; 0I-82 ANSWER 2.14 (1 00 I d f REFERENCE BFNP CONTROL ROD DRIVE LP t.- -a e' t } I
r
--w,.y - -- - - +~y .y -
3. INSTRUMENTS AND CONTROLS PAGE 9 ANSWERS -- BROWNS FERRY 1, 2R3 -85/11/18-K E BROCKMAN ANSWER 3.01 (1.00) c REFERENCE BSEPi RTN-033, 0128 SD 26.2i SSM 19-2/3-B EIHi L-RO-705, pp 18, 19; GPNT, Vol. VII, Chapter 9.4 BFNPi Simulator Malfunctions 8, 108; Operational Transient LP, #15i RO 85/01/03, Obj. B ANSWER 3.02 (1.00) p-7 = p-3 + the height of cooler water in the sensing line. Therefore p-7 > p-6 even though p-3 < p-2. REFERENCE BFNPi LP445, p 13, 14; RO 85/01/05 ANSWER 3.03 (1.50) a. Placing these switches in BACKFEED will trip (0.25) and lockout (0.25) the normal (0.25) and alternate (0.25) supply breakers on the associated unit board. (1 0) l b.. The Unit Board to Shutdown Bus Breaker can be closed (for (0.5) backfeed operations). REFERENCE I BFNPt DG LPi RO 85/02/04 ANSWER 3.04 (2.00) i. e
- 11. d REFERENCE BFNPI LP412, p 24; TRANSIENT 420; OI-57, p 53; RD B5/01/02 EIHi L-RG-726 BSEPi RTH 026; HD 17-2/3-B, Section 3.2 i.
l, i. I \\
3. INSTRUMENTS AND CONTROLS PAGE NP ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-H E BROCKMAN ANSWER 3.05 (2.00) 1) Gross Failure of a Trip Unit 2) Card out of Card File 3). Calibration in Progress '4) Power Supply Failure (0.5 each) REFERENCE BFNP: RQ 85/04/03 ANSWER 3.06 (1 00) d REFERENCE BFNP: FWLC LPi Panel 9-5 ARP's ANSWER 3.07 (1.00) b REFERENCE BFNP: RSCS LPi RWH LPi RG 85/02/02 & 03 ANSWER 3.08 (2.00) c. SATISFACTORY.(0.5) - The Test Failed light indicates that the GNC test sequence has halted because of a failed comparison (which is the desired result).(0.5) b. Illuminates backlighting for companion rods (0.5), regardless of their censed position. (0.5) REFERENCE BFNP: RSCS LP; RO 85/02/03 I s k
3. INSTRUMENTS AND CONTROLS PAGE lI ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKMAN ANSWER 3.09 (1.00) eote assymmetrically (0.5 each) REFERENCE BSEP: SSM 25-2-C/Di RTN 029 BFNP LPRM LP ANSWER. 3.10 (1 00) 0 REFERENCE BSEP: SSH 25-2-C/Di RTN 029 BFNP: APRM LP; R0 85/04/03 -ANSWER 3.11 (1.00) a REFERENCE BFNP: 0I-3, p 2-2a ANSWER 3 12 (2.00) c. Increase (45%) (0.5); Speed Demand Limiter (0.5) b. Decrease (20%) (0.5); Limit Switches on Bailey Positioner (0.5) - C leu sessJ m e e.b y i c.t f,,,, 5 d REFERENCE EIH: L-RG-714r Figure 4.1(8); GPNT, Vol V, Chapter 4.1 BSEP: SSM 10-2/3-A, Section 3.2 1.1, pp 25 - 30 BFNP: RECIRC FLOW CONTROL LP; RD 84/04/02 I h
4.* PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE st --- axsiacasicac esarasc------------------------ ANSWERS -- BROWNS FERRY 1,~283 85/11/18-K E BROCKMAN ANSWER 4.01 (1.00) To prevent excessive jet pump vibration. REFERENCE BFNPt DI-74, p 2; OI-68, p 3 ANSWER 4.02 (1 00) Close the MSIV's at the Backup Control Panel REFERENCE BFNP Control Room Abandonment, p2 ANSWER 4.03 (1.00) c REFERENCE BFNP: GOI-100-1, pp 14 - 16 ANSWER 4.04 (3.00) 1. If the reactor fails to scram when a setpoint is reached, then manually scram the reactor. 2. Verify existing conditions by multiple indications. 3. Verify all automatic actions have occurredi if not, place the controls in manual and make corrective manipulations. 4. Trip the recirculation pumps. 5.. Place the mode switch in SHUTDOWN. Place the SDV high water level bypass switch to bypass. 6. Reset the scram (Verify SDV vents and drains open) Manually scram the reactor, reset, and repeat if rod motion is observed until all control rods are fully inhserted. (Continuous'ly monitor flux until all rods are full-in) (0.5 each) REFERENCE' BFNP! EDI-3, p3 2 E e g- ,--g-p
4.* PROCEDURES - NORMAL, ABNORMAb,EMERGENCYAND PAGE l2 --- saaracacicac caarasc------------------------ ^ ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKMAN ANSWER 4.05 (1.00) d D EL E9FE[ REFERENCE BFNP: BF-0I-47, pp 21, 38, 41, 44 ANSWER 4.06 (2.00) Five or more adjacent rods not inserted below position 06, OR Thirty or more total rods not inserted below position 06, AND Roactor water level cannot be maintained, OR Suppression pool water temperature reaches 110 des F. (0.5 eachl REFERENCE BFNP! BF-EDI-47, p 6; BF-EDI-3, Caution - Section 4.0 ANSWER 4.07 (1.00) Spray. initiation above this limit may result in a containment depressurization rate which exceeds the relief capacity of the drywell and reactor building vacuum breakers.(0.3) This could result in the negative design pressure of the drywell being oxceeded. (0.7) REFERENCE BFNPt.EDI-27 EPG-Xs Section 5.5.3, p 174 ANSWER 4.08 (1 00) Ensure adequate cooling / lubrication (from shaft-driven oil pumps) Ensure adequate hyoraulic pressure for HPCI TSV operation. Protect turbine exhausts from water hammer (due to low steam flow with the hi3hly throttled governor valves) (2 0 0.5 each) t 4 t t 4 k i
iF'ROCEDURES - NORMAL,- ABNORMAL, EMERGENCY AND PAGE j$ --- E;5isc55issc 55sissc------------------------ ' ANSNERS -- BROWNS FERRY 1, 213 -B5/11/18-K E BROCKHAN REFERENCE BFNP EDI-1; EPG-X ANSWER 4.09 (1.00) Reset the System (0.5) at the local relay cabinet (0.5) REFERENCE BFNP BF-0I-39, Sections III.E & IV ANSWER 4.10 (1.00) a. Valve is open too far (beyond the LOCA design closure point) b. . PCT could exceed 2200 des F (due to RHR not injecting enough since the LOCA Closure time requirement of the SDC Test Isolation valves is not met ).- o c - e.pswres va b c. u u c.\\.a g,
- 4. % % ?%,it.
" # *** I
- C AYN REFERENCE BFNP C. A. F.* EPG-M ) ?-
ANSWER -4.11 (1.50) 1) Core Submergence 2) Spray Cooling (0.5 each) 3) Steam Cooling + REFERENCE BFNP: EPG-X, p 2 O t
4eC4 e 4.~' FROCEDURES - NORMAle ABNORMAle EMERGENCY AND PAGE g5 RS6f6E665CIE C6NTd6E~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ' ANSWERS -- BROWNS FERRY le 283 -85/11/18-K E BROCKMAN ANSWER 4.12 (1.00) (0 5) Anber Lamp (0.5) Machanical Flag (0.7 credit for ' Closing Spring Fully Charged') REFERENCE BFNP! OI-57, Section III.A.1 ANSWER 4.13 (1.00) W b -oR 5% (,o.s3 Scram the reactor Trip the turbine N.t@ S.E. REFERENCE BFNP! OI-66, Section IV.A.3 ANSWER 4.14 (1.00) c REFERENCE BFNP! RCI-9, L.O. 'A' 5 O l
V, s. .s ENCLOSURE 3 e U.'S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY BROWNS FERRY 1, 283 REACTOR TYPE: BNR-GE4 DATE ADMINISTERED: 85/11/18 EXAMINER: K E BROCKMAN APPLICANT: INSTRUCTIONS TO APPLICANT: Uso-separate paper for the answers. Nrite answers on one side only. Stcple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at loost 80%. Examination papers will be picked up T.or(4) hours after tho examination starts. % OF CATEGORY % OF APPLICANT'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY _,-_gg ___1_5 ________ 5. THEORY OF NUCLEAR POWER PLANT 16 7 OPERATION, FLUIDS, AND THERMODYNAMICS 27 7L. _ _._-_ _ Zl. ________ 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION yg 77 -99v57 96 r45- ________ 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL IS". co 2 2. y1 a f AA AM MT _2!!!!__ _ _'_~l_'_ ________ 8. ADMINISTRATIVE PROCEDURES, CONDITIONS.AND LIMITATIONS (of.. ~15 40.73 100.00 TOTALS FINAL GRADE _________________% All work done on this examination is my own. I have neither givon nor received aid. IPPLiCAEi"5~55GEIiURE"~~~~~~~~~~~~~ '~ 6 1
- ~
1 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 2 q g g-------------------------------------- QUESTION 5.01 (1.00) STATE for which condition the reactivity coefficient contribution could be MORE NEGATIVE. EXPLAIN your enoice. Moderator void coefficient for a 1% INCREASE in void fraction at 10% void fraction in the core, 1 -OR-Moderator void coefficient for a 1% INCREASE in void ? fraction at 70% void fraction in the core. QUESTION 5.02 (1.00) A reactor heat balance was performed (by hand) during the 00-08 chift due to the Process Computer being 00C. The GAF's were computed, but the APRM GAIN ADJUSTMENTS HAVE NOT BEEN MADE. Which of the following statements is TRUE concerning reactor power? I If the feedwater flow rate used in the heat balance calcu-a. lation was LOWER than the actual feedwater flow rate, then the actual power is HIGHER than the currently calculated power. b. If the reactor recirculation pump heat input used in the heat balance calculation was OMITTED, then the actual power is HIGHER than the currently calculated power. c. If the steam flow used in the heat balance calculation was 3 LOWER than the actual stean, flow, then the actual power is HIGHER than the currently calculated power. d. If the RWCU return temperature used in the heat balance cal-culation was LOWER than the actual RWCU return temperature, then the actual power is HIGHER than the currently calculated power. 6 l &gw Is Tru s $ le e + 6 h / A u s u n y Ard e : Ouh -4 (musma CATEGORY 05 CONTINUED ON NEXT PAGE ummxx) I L
v E D 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 3 y gy g-------------------------------------- QUESTION 5.03 (1.00) The reactor trips from full power, equilibrium XENON conditions. Twenty-fcut hours later the reactor is brought critical and power level is main-tained on range 5 of the IRMs for several hours. Which of the following otatements is CORRECT concerning control rod motion?
- a. Rods will have to be withdrawn due to XENON build-in.
- b. Rods will have to be rapidly inserted since the critical reactor will cause a high rate of XENON burnout.
- c. Rods will have to be inserted since XENON will closely follows its normal decay rate.
d. Rods will approximately remain as is as the XENON estab-lishes its equilibrium value for this power level. ~ QUESTION 5.04 (1.00) Attached Figure 4404 illustrates the ' Combined Head / Pressure Curves for Two Pumps." Select from the figure the appropriate system operating point (numbered 1 through 6) for each of the following conditions. .o. Pumps A and B running in SERIES with the pump discharge valve (0.5) throttled shut from the initial condition.
- b. Pumps A and 0 running in PARALLEL with the pump discharge valve (0.5) fully open.
QUESTION 5.05 (1.00) Which of the following radiation exposures would inflict the GREATEST biological damage to man? a. 1 Rem of GAMMA b. 1 Rem of ALPHA c. 1 Rem of NEUTRON d. NONE of the abovei they are all equivalent (mmmmm CATEGORY 05 CONTINUED ON NEXT PAGE
- )
4 L
'e 5. THEORY OF NUCLEAR' POWER PLANT OPERATION, FLUIDS, AND PAGE 4 3 g-------------------------------------- GUESTION 5.06 (1.00) Attached Figure 4 408, ' Reactor Power versus Core Flow Operating Map', illustrates how CORE FLOW changes with respect to REACTOR POWER without forced circulation. EXPLAIN why incremental in-creases in power initially produce very rapid increases in core flow, but eventually reach a point where further power increases produce no increase in core flow. (i.e., why the curve turns up!) GUESTION 5.07 (1.50) STATE whether the following thermodynamic properties INCREASE, DECREASE, or REMAIN THE SAME as they apply to the steam between the inlet and outlet of a REAL TURBINE. c. Enthalpy b. Entropy c. Quality GUESTION 5.08 (1.00) Shortly after-a power increase from 75% RTP, Off-Gas Activity increases at an above normal rate. Sampling confirms an increase in short-lived isotopes in the reactor coolant. The I-131/I-133 ratio is approximately 0 5; the activity concentra'. ion appears to be exponential to the power level. STATE the type of Fission Product Release that is indicated. (0.5) a. The incident continues to evolve to such a point that ALPHA ensitters are released. b. STATE the type of Fission Product Release that is now indicated. (0.5) (xxxxx CATECORY 05 CONTINUED ON NEXT PAGE xxxxx) i i +
o 5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 5 _______________ICS THERMODYNAM OUESTION 5.09 (2.50) Attached Figures 4425 A & B represent a transient that could occur at a BWR Givent (1) A High Pressure Heater Tube Leak occurs at Time t = 1.6 min (2) No operator actions occur (3) Recorder Speed = 1 division = 1 minute EXPLAIN the cause(s) of the following recorder indications: a. Total Steam Flow INCREASE (Point 1) (0.5) % sJ m D ONSISTENCY (Range 3) (0.5) b. c. Power INCREASE (Point 5) (0.5) (0.5h d. Feedwater DECREASE (Point 7) 0. Given the above conditions, STATE how CRITICAL POWER would vary as a result of this transient. (INCREASE / DECREASE / RMN THE EAME) (0.5) QUESTION 5 10 (2.00) Attached Figures 4 426 A, B, a C show Process Computer printouts for cn OD-6, Option 1 and Option 4. Is the Neutron Flux profile in Bundle 31,32 TOP or BOTTOM peaked? (0.5) a. b. Would the highest powered node in Bundle 31,32 appear on a P-1 odit taken at this time? EXPLAIN why or why not! (1.0) c. EXPLAIN why the LIMLHGR values for Bundle 31,32 vary at each (0.5) node. 5 r (mmmur CATEGORY 05 CONTINUED ON NEXT PAGE
- )
I ? e
. ',,,.e 5. THEORY OF NUCLEAR POWER PLANT OPERATIONe FLUIDSe AND PAGE 6 GUESTION 5.11 (3.00) Attached Figures #429 A & B represent a transient that could occur at a BWR CIVEN: (1) HPCI inadvertently initiates at Time t = 1.3 min (2) No operator actions accur (3) Recorder Speed = 1 division = 1 minute EXPLAIN the cause(s) of the following recorder indications e. Total Steam Flow DECREASE (Point 2) (0.5) b. Reactor Pressure STABILIZATION (Range 8) (0.5) c. Reactor Level INCREASE (Point 13) (0.5) d. Reactor Level STABILIZATION (Range 14) (0.5). O. Reactor Power INCREASE (Point 16) (0.5)~ f. Feedwater Flow DECREASE (Point 18) (0.5) QUESTION 5 12 (.75) Attached Figure # 285 is a simplified sketch of a SJAE. For oach of the pressure relationships given below, STATE whether the pressure listed first is GREATER THAN, LESS THAN, or EQUAL 4 TO the pressure listed 4econd. NOTE: THE LOCATION OF THESE PRESSURES CORRESPOND TO THE POINTS INDICATED IN THE FIGURE. a. P(1) as to P(3) (0.25) b. P(1) as to P(5) (0.25) c. P(2) as to P(4) (0.25) (mmmmm END OF CATEGORY 05 mamma) (mmmmmmmmmmmma mammmmmmmmmmmm) 6 I ~ ,m
o
- ',,, e 6'.
PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE' 7 GUESTION 6.01 (1.00) Which one of the_ follow'ing EECW loads will be 'shed' automatically if EECW header pressure decreases to 50 psig?
- a. Control bay air conditioners
- b. RBCCW Hx's Drywell Hydrogen and Oxygen analyzers c.
- d. Control air compressors GUESTION 6 02 (1.00)
Unit 1 is operating at 100% RTP, with recire in Master Manual. The 'A' .' AILS LOW. Pressure Regulator unit, which is governing, O W.t6)q, y,,8 w e
- A** O 'h h b d ASSUME!
1. No Operator Actions 2. All other EHC control settings are normal
- 3. Starting Parameters o
TCV's - 100% Steam Flow Position 0% Steam Flow Position o BPV's .o Power - 100% Rated Thermal Power o Pressure - 1010 psig NOTE! FIGURE 4 374 IS ATTACHED FOR REFERENCE Which of the following most accurately describes both the INITIAL RESPONSE and FINAL STATUS of the different parameters and components. a b c d INITIAL RESPONSE e TCV's l NO CHANGE ITHROTTLE CLOSEITHROTTLE CLOSEI NO CHANGE o BPV's ITHROTTLE OPENITHROTTLE OPEN 1 NO CHANGE I THROTTLE OPEN o Power i DECREASE NO CHANGE i INCREASE I DECREASE o Pressure i DECREASE I NO CHANGE I INCREASE I DECREASE I l i I FINAL STATUS I I I I I I I I o TCV's 10%(MSIV Shut)I < 100 % i ~100 % i NO CHANGE o BPV's 10%(MSIV Shut)l 0% 1 0% 1 0% o Power 10% (Rx Scram)I > 100 i > 100 1 < 100 % o Pressure IAs contro11edt >1010 psis I >1010 psig i <1010 psig Iby SRV's and i I i lHPCI/RCIC I i 1 (xxxas CATEGORY 06 CONTINUED ON NEXT PAGE xxxxx) t
i ^.' e l e 'e l 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 8 - GUESTION 6.03 (.50) Reactor pressure is 900 psig and RHR-System I is running in response to a valid LPCI initiation signal. STATE the approximate expected FLOW INDICATION on the RHR System Flow Recorder (System I), on Control Roon Panel 9-3. 4 QUESTION 6.04 (1.00) Attached Figure 4 457 illustrates the ' Core Spray System Pipe Break Detection Instrumentation'. STATE the pressure relationships between Points 6 and 7 while operatinS normally at power? JUSTIFY your cnswer. QUESTION 6.05 (1.50) STATE ALL of the positions for the EDG ' Operational Mode Switch" -AND-DESCRIBE the function of each position as it relates to voltase regulation. GUESTION 6.06 (1.50) DESCRIBE the alignment and flowpath (per the Fire, Explosion, and Natural Disaster Plan) that you would use to boost Fire Protection water pressure. j ASSUME THAT SUFFICIENT HEADER PRESSURE CANNOT BE MAINTAINED Be specific as to plant / system locations. QUESTION 6.07 (2.00) LIST four (4) conditions that will initiate the annunciator 'RPS ATU TROUBLE.' (xxxxx CATEGORY 06 CONTINUED ON NEXT PAGE **xxx) i i i N l i
6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 9 . 0UESTION 6.08 (1.00) The reactor is being started up. Assume the following! o Reactor Power is below the LPSP o Rod liithdrawal Sequence B is in effect o No RWM errors or blocks exist o The RWM Normal-Bypass Switch was positioned to Bypass following complete withdrawal of all RWM Group 6 rods to Position 36 The operator incorrectly attempts to continue withdrawing Group 6 rods to position'48. Which one of the following most correctly details the outcome of this operator error? NOTE! FIGURES 4 467 A - D ARE PROVIDED FOR REFERENCE a. Rod withdrawal will occur with NO Rod Position Restrictions. b. Rod withdrawal will occur, provided all Group 6 rods are maintained within 1 notch of each other. c. Rod withdrawal will NOT occur beyond the RWM Withdrawal Limit for Group 6. d. Rod withdrawal will NOT occur beyond Position 36, due to RSCS immediately imposing a Rod Block. QUESTION 6.09 (1.00) Assume that APRM 'B' currently has fourteen operable LPRM inputs and is reading 65% power. Which one of the following indication (s) and/or action (s) will occur as a result of one LPRM (of the fourteen remaining LPRM inputs to APRM 'B') FAILING DOWNSCALE. ASSUME NO OPERATOR ACTION a. LPRM Downscale Alarm - APRM 'B' reading < 65% b. LPRM Downscale Alarm - APRM 'B' reading > 65% c. LPRM Downscale Alarm - APRh INOP Alarm - Rod Block - APRM 'B' reading 65% d. LPRM Downscale Alarm - APRM INOP Alarm - Rod Block - Half-Scram - APRM 'B' reading 65% i CATEGORY 06 CONTINUED ON NEXT PAGE xxxxx) (**x** I t i 8 9
6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE LG _________u___________________________ QUESTION 6.10 (1.00) A Reactor / Plant Startup is in progress and preparations are being onde to start the first Reactor Feed Pump (RFP), in accordance with -BF-DI-3, 'Feedwater System'. Which one of the following lists (a through d) correctly specifies the conditions which should be estab-lished prior to resetting and rolling the turbine? (a) (b) (c) (d) FWCS Mode Switch i Sg1 Elem i Sg1 Elem i Sg1 Elem 1 Three Elen AC TGDP l Auto l Off I Auto I Auto RFP Suction Valve i Open 1 Op'en i Open i Open RFP Discharge Valve i Closed l Closed 1 Open i Closed AOP 1 On 1 Off I Off I On RFPT Trip Status i On i On 1 Off I On (Blue Light) QUESTION 6.11 (1.00) STATE ALL of the automatic signals which will CLOSE the RBCCW Sectionalizing Valve (FCV-70-48). GUESTION 6.12 (.50) A DG automatic initiation signal is present and the operator depresses DG A's Control Room Emergency Stop PB. STATE the action i which the operator must take from the Control Room to reset the automatic start lock-out. 00ESTION 6.13 (.50) DG 'A' is the sole supply to SD Board 'A'. When paralleling the Normal Power Supply back to SD Board
- A', the synchroscope should be turning slowly in the ________ direction.
FILL IN THE ABOVE BLANK GUESTION 6.14 (1 00) Attached Figures # 477 At B, C, & D represent four (4) CRD water flowpaths. Which one of the Figures most correctly displays the CRD Exhaust water flowpath following a ROD INSERTION? l (xxxxx CATEGORY 06 CONTINUED ON NEXT PAGE xxxxx) [ f I ! i ) i
.,[ s i ~ 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE tl .e GUESTION 4.15 (1.00) The plant.is operating at 23% power and both Recire Pump M/A Transfer Stations are in MANUAL and' set'for minimum speed. The 'Recire Flow B Limit' annunciator is CLEAR. For '_the following instance, STATE how the speed of Recirc Pump 'B' will change (i.e., INCREASE, DECREASE, REMAIN THE SAME) and WHICH COMPONENT (S) of the control / positioning system is/are LIMITING. NOTE: FIGURE $ 474 I.S PROVIDED FOR REFERENCE i o. Recire Pump
- B' M/A Transfer Station manual. potentiometer is turned fully in the counter-clockwise direction.,
QUESTION 6.16 (1.00) For each of the following RHR systems, STATE the RHR system (s), (unit and system), IF ANY, with which it can be DIRECTLY cross-connected. Consider only Unit-to-Unit cross-tie capabilities. c'. Unit 1, System 1 b. Unit 2, System 1 OUESTION' '6.17 (1.00) ? 1 For the following situation (i) select the correct Feedwater Control System / plant response from the list (a through e) which follows. ASSUME THAT NO OPERATOR ACTIONS ARE TAKEN
- a. Reactor water. level decreases and stabilizes at a lower level.
- b. Reactor water level decreases and initiates a reactor scram.
- c. Reactor water level increases and stabilizes at a higher level.
d.. Reactor water level increases and initiates a turbine trip.
- e. N_one of the above.
i. The plant is operating at 70% power, in 3-element control, when One.(1) MSIV F, ails Shut. (xxxxx CATEGORY 06 CONTINUED ON NEXT PAGE **xxx) .i 5 4 I ~ .~
.',,.. o '6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 81 i til GUESTION 6.18 (1 00) Answer the following with respect to the Rod Sequence Control System: During the~ performance of SI 4.3.8.3.a; concerning RSCS Operability prior to startup, a ' TEST FAILED' light is received (Panel 9-28) after depressing the 'COMPARATOR CHECK A' Pushbutton. STATE whether this s indicates a SATISFACTORY cr UNSATISFACTORY response. JUSTIFY your response! ? l (xxxxx END OF CATEGORY 06 xxxxx) (xxxxxxxxxxxxx xxxxxxxxxxxxxx) I e s i 1 i t 8 6 I -l
.i ~ 7.' PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE L3 ~~~~ 56f6E66f6AC~CE TR6E~~~~~~~~~~~~~~~~~~~~~~~~ R-------------------- QUESTION. 7 01 (1.00) DI-74, 'RHR System', cautions the operator NOT to start an RHR pump I
- for SHUTDOWN COOLING until after the Reactor Recirculation Pump for the associated loop is shutdown.
STATE the basis for this caution. QUESTION 7.02 (1.00) Per~the ' Control Room Abandonment' procedure, STATE the preferred tethod of scramming the reactor if you are UNABLE to do so prior to leaving the Control Room. 00ESTION 7.03 (1.00) e A cold (185 des F) reactor sts/artup is in progress per GOI-100-1, ' Integrated Plant Operations'. SELECT the proper sequence for per-forming the following steps from the heatup and pressurization cection of the GOI. 1. Pull rods to raise power to mid-range 7 on IRH's. 2. Reset HPCI Low Pressure Isolation. 3. Place a Reactor Feed Pump into operation. 4. Close Reactor Head Vent (FCV's 3-98/99). 5. Raise the Pressure Regulator setpoint to 920 psis. 6. Verify / Open Outboard MSIV's. 7. Reset RCIC Isolation. 8. Switch SJAE to nuclear steam. a. 1,6,4,7,2,8,3,5. b. 4,6,1,2,7,5,3,8. c. 6,1,4,7,2,5,3,8 d. 1,6,5,4,7,2,8,3. QUESTION 7.04 (3.00) LIST ALL of the immediate actions required by EDI-3, " Reactivity Control.' (xxxxx CATEGORY 07 CONTINUED ON NEXT PAGE xxxxx) 1 r L. } ( L2
4 7." PkO'CEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE pl ~~~~Ri616.E66iUiE"_C6ATR E~~~~~~~~~~~~~~~~~~~~~~~~ 96 L6 TE QUESTION 7.05 (1 00) A main turbine-generator startup is in progress per BF-0I-47. While conducting system checks at 1800 rpm, you receive a turbine High Vibration alarm and a report from the Turbine Building AUD of a squealing noise coming from the HP turbine. Which of the following sets of actions is correct, per 0I-47. a. Check bearing oil flows, temperatures (oil and metal) and seal steam header pressure while maintaining turbine RPM to clear the rub. b. Trip the turbine if unable to verify / restore proper oil / seal steam flow and clear the rub / vibration within the allowed 5 min-ute hold period. c. Immediately trip the turbine and verify the lift pumps runninsi
- DO NOT engage the turning gear.
d. Immediately trip the turbine, break condenser vacuum, and verify the lift pumps running. ENGAGE the turning gear when the zero speed alarm sounds. QUESTION 7.06 (2.00) LIST ALL of the conditions under which Standby Liquid Control injection is MANDATORY as per EDI-3, ' Reactivity Control' or e EDI-47,' Failure of Reactor to Scram when Required i 6 QUESTION 7.07 (1.00) Anue 'Drywell Spray Initiation
- Limit', is i
Attached Figure 4 437, used in conjunction with the CAUTION provided in EDI-2, ' Con-tainment Control". i' l 'If torus pressure e:<ceeds 14 5 psis AND torus temperature and drywell pressure are below the jl. Drywell Spray Initiation Pressure Limit, then l initiate drywell sprays at rated flow.' STATE the basis for this Drywell Spray Initiation Pressure Limit. l (xxxxx CATEGORY 07 CONTINUED ON NEXT PAGE xxxxx) Ii 1 e i i l ' i li i ,i'1 3
7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE iD ~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~EA656L6656IL C6NTR6L QUESTION 7.08 (1.00) GOI-100-11, ' Reactor Scram *, cautions that if BOTH loops of RHR are placed in the Torus Cooling Mode of operation, then either I.L. 74-59Y or I.L. 74-73Y must be illuminated. a. STATE the significance of these lights NOT BEING ILLUMINATED. (0.5) b. STATE the adverse consequence which could occur if this caution (0 5) were not /dhered to. 4 QUESTION 7.09 (1.00) Per DI-57, ' Aux Electrical Systems", a visual inspection is to be conducted following every 4160 vAC breaker operation. LIST the two (2) items which are to be checked. QUESTION 7 10 (1.00) You receive the following annunciators while at 72% RTP: OFF-GAS PRESSURE OFF-GAS HI TEMPERATURE You confirm the the Off-Gas System has ISOLATED. STATE your Isimediate Actions, per DI-66, Off-Gas System". i t (xxxxx CATEGORY 07 CONTINUED ON NEXT PAGE xxxxx) t 1 a l ) i I ]
7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE to ~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~E56f6L66fC5L C6NTR6L QUESTION 7.11 (1.00) Which of the following is a valid limitation applicable to Radiation Work Permits for Routine Entry (RRWF)? a. An individual with a quarterly exposure limit of 350 mrem is NOT allowed to enter on an RRWP. b. The maximum allowed daily dose on any combination of RRWP's is 100 mrem. c. If both an RWP and an RRWP are in effect for an area, then EITHER permit may be used for entry. d. An RRWP can be used for entry into a HI RADIATION AREA, if a ' chirper' is worn by the entrant. QUESTION 7.12 (1.00) Concerning 01-75, ' Fuel Fool Cooling and Demineralizer System': I c. LIST the two (2) criteria which require the RHR Supplemental Fuel Pool Cooling mode to be placed into service. (0.5) b. LIST the two (2) locations to which fuel pool water can be sent upon receipt of a SKIMMER SURGE TANK LEVEL HI alarm. (0.5) GUESTION 7.13 (1.50) Fuel Loading is in progress when you notice an unexplained increase in SRM count rate and an indicated reactor periodi you suspect that an inadvertant criticality is taking place. LIST the Immediate Actions, EXCLUDING NOTIFICATIONS, you are required to take. (xxxxx CATEGORY 07 CONTINUED ON NEXT PAGE xxxxx) e i t i s I
1 ,.i ~ '. 7. . PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 11 ~~~~55656E655CIE~C6NTEUE~~~~~~~~~~~~~~~~~~~~~~~~ GUESTION 7.14 (1.00) Nhich of the following is a symptom that you would expect to see a os a result of a ' Jet Pump Failure', per 0I-68? lb a. DECREASE in failed jet pump flow. b. INCREASE in core differential pressure. c. INCREASE in reactor power (APRM). d. INCREASE in indicated core flow. k peng: -ryis is por A R13de 3Reic o 1 (xxxxx END OF CATEGORY 07 xxxxx) (xxxxxxxxxxxxx
- xxxxxxxxxxxxxx) i I
l i l l i l' l * ! 4 t i
J i '. O. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE tt QUESTION 8.01 (1.00) Which of the following scenarios requires application of the Power Transient Fuel Cladding Safety Limit of the Unit 1 Technical Spec-ifications? a. Reactor power is at 70% RTPi a steam leak to the Drywell occurs and Drywell pressure risesi the reactor SCRANS at " 2 psisi Diesel Generator auto-initiation does not occur, but manual start is suc-cessfull the reactor is brought to a cold shutdown condition. b. Reactor is in Start-Up, at 7% RTPi power is increased by rod pulli the reactor SCRAMS at 10.5% power, by APRM'si level and pres-sure are maintained by normal systems for the plant status. c. Reactor power is at 42% RTP; the main turbine trips due to an EHC malfunctioni the reactor SCRAMS based upon the Turbine Trip; the BPV's control pressure thereafter. d. The reactor is at 18% RTPi 1-1/2 BPU's are open in preparation for turbine warmup; controller f ailure reduces pressur e to 875 psisi MSIV's close; the operator then manually SCRAMS the reactori level and pressure are maintained by normal systems for the plant states. GUESTION 8.02 (2.00) STATE which Emergency Classification is appropriate for the following d2finitions. a. Events are in progress or have occurred which involve actual potential substantial degradation of the level of safety of or the plant. b. Events are in progress or have occurred which could develop into, or be indicative of, more serious conditions which are not yet fully realized. Events are in progress or have occurred which involve c. octual or imminent substantial core failure with the poten-tial for loss of containment integrity. d. Events are in progress or have occuf'rred which involve an actual or likely major failure of plant functions needed for protection of the public. (xxxxx CATEGORY 08 CONTINUED ON NEXT PAGE xxxxx)
1 e 8. ADMIN.ISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 19 QUESTION 8.03 (1.50)
- Emergency Maintenance - Maintenance that requires action...'
Por OSIL-21, LIST three (3) of the conditions which are applicable for issuing an Emergency Maintenance MR. QUESTION 8.04 (1.00) Por OSIL-32, ' Reactor Core Limits', if the Nuclear Engineers are not Providing 24-hour shift coverage, LIST the four (4) times /occa-sions when core limits MUST be checked. QUESTION 8.05 (1.00) Por OSIL-43, STATE the minimum level of qualification required for FIRST PARTY VERIFICATION of the following checklists. (0.5) a. Electrical Component Checklists (0.5) b. Valve Checklists QUESTION 8.06 (1.00) The release rate of radioactive liquid effluents, excluding tritium cnd noble gases, shall not exceed _____ during any calender quarter. a. 1E-7 Ci b. 2E-4 Ci c. SE-1 Ci d. 2E+1 Ci (***** CATEGORY 08 CONTINUED ON NEXT PAGE xxxxx) ,,s ... _ - _,. - - + - - r
- '. t 8.
ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PACE to OUESTION 8.07 (1.00) Per OSIL-43, which of the following is the proper method for CONFIRMING the position of a locked valve. a. Turn the valve hand wheel in the OPEN directioni confirm the locking device integrity and proper installation. b. Turn the valve hand wheel in the CLOSED directioni confirm the locking device integrity and proper installation. c. Turn the valve hand wheel in the DESIRED POSITION directioni confirm the locking device integrity and proper installation. d. DO NOT turn the valve hand wheel - confira valve position by observing the stem positioni confirm locking device intes-rity and p per installation. OUESTION 8 08 (1.50) MATCH the personnel listed in Column A with their DIRECT SUPERVISORY RESPONSIBILITIES, listed in Column B, as per OSIL-9, ' Delegation of Authority *. COLUMN A COLUMN B o. Unit 1 ASE 1. Cooling Towers b. Unit 2 ASE 2. Intake Structure c. Unit 3 ASE 3. Unit 1 D/G 4. Switchyard 5. Radwaste I 6. Unit 3 D/G NOTE: ASSIGN ALL DIRECT RESPONSIBILITIES AN APPROPRIATE PERSON 1 (zumas CATEGORY 08 CONTINUED ON NEXT PAGE *x***) 'l i .I I !I t ll i L-A
g, :, S. ADMINISTRATIVE PROCEDURES, CONDITIONSe AND LIMITATIONS PACE 3J OUESTION 8.09 (1.00) Which of the following correctly describes the TS dpfinition of an ' Instrument Functional Test.' The adjustment of an instrument signal output so that a.it corresponds, within acceptable range and accuracye to a known value of the parameter which the instrument monitors. b. The injection of a simulated signal into the instrument's primary sensor to verify the proper instrument channel response, alarm, and/or initiating action. The qualitative determination of acceptable operability c.by observation of instrument behavior during operation, includinge where possible, comparison of the instrument with other independent instruments measuring the same variable. d. A test of all relays and contacts of a logic circuit to insure all components and instruments are operable per the desi3n intent. L (xxxxx CATEGORY 08' CONTINUED ON NEXT PAGE xxxxx) I i t 1 a I
.,,s t f 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, CND LIMITATIONS PAGE st QUESTION 8.10 (1.00) Units 1 and 3 are operating at 75% and 100% RTPe respectively. Unit 2 is in Cold Shutdown. During the performance of SI's (4.7.8) on SBGTS Trains A, B, and Ce the following deficiencies are noted: SBGTS Blower / Fan A is INOP SBGTS Train C Decay Heat Damper (FC0 52) is stuck OPEN Maintenance estimates 3 to 4 days to accom'plish repairs. Which of the following most accurately details the allowances Cnd/or limitations imposed by the Technical Specifications in this instance? NOTEt APPLICABLE TS's ARE ENCLOSED FOR REFERENCE a. No TS restrictions and/or actions are required by these deficiencies. b. Reactor operation and fuel handling is permissible only during the succeeding 7 days. c. Place Units 1 and 3 in at least Hot Standby within six hours and in Cold Shutdown within the following 30 hours. d. Place Units 1 and 3 in at least Hot Standby within six hours and in Hot Shutdown within the following 30 hours. QUESTION 8.11 (1.50) Brown's Ferry Standard Practice 12.17, ' Administrative Control for Plant Operation,' establishes plant policy for the control of containment isolation and safety systems during an emergency. o. STATE the evaluation which must be made prior to resetting (0.5) a Primary Containment Isolation. b. LIST the two conditions which allow operator's to override cutomatic operations of engineered safety features. (1.0) NOTE! DO NOT CONFUSE THIS WITH THE GUIDEANCE FOR MANUALLY SECURING AN ECCS SYSTEHr AS PER EPG-X. l (xxxxx CATEGORY 08 CONTINUED ON NEXT PAGE xxxxx) .,-,.--.-----,r. --~.,
.s' 8. 40 INISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE u s GUESTION 8.12 (1.50) Unit 1 Technical Specifications specify for REACTIVITY CONTROL... 'A sufficient number of control rods shall be oper-able so that the core could be made subcritical in...' LIST the three conditions / assumptions which must be met to varify this ' Reactivity Margin - Core Loading.' QUESTION 8.13 - I)E L uw Unit 1 is operating at 75% rated therme.1 power. Operability sis are performed on all of the MSL Radiation Monitoring System Channels. MSL Radiation Monitoring System Channels A and D test UNSAT per the SI. Mainte:.ance has no estimate of repair time and will not be able to comence troubleshooting and repairs for 16 hours. Which of the following actions most accurately detail the allowances and/or limitations imposed by the Technical Specifications in this instance? NOTE: APPLICABLE TSs ARE ENCLOSED FOR REFERENCE. TriptheTripSystem(s)associatedwitheitherMSLRad. a. Mon. Ch. A or D; Power Operation may continue. b. Initiate insertion of operable rods and complete insertion of all operable rods within 4 hours. Initiate an orderly load reduction (reduce turbine c. load) and have MS Lines isolated (close MSIVs) within 8 hours. Trip the Trip System (s) associated with either MSL Rad. d. Mon. Ch. A or D; and take the actions detailed in choice
- b. above.
Trip the Trip System (s) associated with either MSL Rad. Mon. Ch. A or D; and take the actions detailed in choide e. c_. above. (xxxxx END OF CATEGORY 08 xxxxx) (xxxxxxxxxxx'** END OF EXAMINATION xxxxxxxxxxxxxxx) e 6
6 g a # ~% t. f G t N j 'd .\\ k
- t
$g \\ .f M N t D 3 N "/ \\ M O 5 y ~ g- ~ w ~ g ~ w ~ \\ \\s c Q N. 2 ~ 6 ~ d w 1 s \\. 4 I. \\* N.4 N 8 i e = t i lk J
'i l t- ,)- e M z .i E = = = = ~ 0 I 1 O ***. %3 g 1 I E L . 1 t Dt P $ 4 1 \\ EL i /n*.% E T _E 0 G C.L _M E* I 0 w e.05 N E L 1 I PR oi1 T XT _T A R I P N EN TS 9 N L O _M A I AO M C TT T TE L E =MW SN MR U 0 _NN I NI T MW 9 I o,O S L I L R I N N O c P O E _P E CD T O L NT I N E S C MF I PM P E A IL MP W
- MIL 0
L US M
- U O
O P L 1P N 8 S I R F5 T _N g "*. C P W. N
- _mN O
O CP
- EM 0 L P
C E E '_R N U 7, N W P F A I L I O L E". T E L R D M E P o E T E R J N 0 r G N P 6 O S o I G M P C I S M ED x U N D C P 0 E I o L I t 5 T A T I s A U A D D R o R R 0 0 T E M ) 2 3 4 R e N P I PA E O C 0 R 3 r E N I O P I L T A A L 0 l R i U U T CE 2 I A RN I I NCL L 0 I 1 I _0 0 0 0 0 0 0 0 0 0 0 0 9 8 7 6 5 _4 3 2 1 b: 2 1 0 1- = 1 1 0 EW3ObJ43:IWZh ggF4E bgwQ W I $ gM,g o;$gg % E
- i. :
>I NNE,IllgS gg I
- i
'J f l!\\!l ,jjl f! llii
p m. i lwsiobI s t si )tsac e j' WOLF MAETS ENOSRUT ERUSSERP ROTCAER es ni e 4 e esoi oses oies ose ere ose y i r' E i I f i l i i sweiem *os si )we m*es sa WOLF MAETS LATOT WOLF EROC 61 31 8 4 0 021 001 08 08 04 02 O I i t r f j i i i i t i 1 i t [ l fneve %001 newop NOITALOSI ARTAEM PM A41 A 524 f ERUGIF
__y t -.. .-i..... 1 t )th/etI e i ag )nEwoP s( c WOLF WF LATOT MRPA gg gg e 4 e sti oot s7 os sa o I s I 1 s i
- q 5
4 I a > I )saHcus( )oisP( LEVEL LESSEV ROTCAER ERUSSERP ROTCAER l os os 04 os oa ot o oosi oosi oos oos oos o i I l. I soeg ,g,,, NOITALOSI RETAEH PM tweyn i ) s.uc
I ~ 4D-6 TNERMAL DATA IN FUEL iSSEMBL% IX,JY = 31,32 8/24/84 0800 'Bl0VMS FEttY - 2 CTF 'WT FBUN FBUNAV W WBUNAV FIOFF XE MFLPD KZMF MFLCFR MCFR EBUN - DNS 2103. 192.15 2.984 2.7.52 0.127 0.119 0.988 0.0946 0.406 19 0.4165 2.9774 27548.75 17~32 63i CPR BATA ~ MFLCPR MCFR ELCPR EKFLO ITYP SIZE PLIM h-0.4165 2.9774 1.240 1.000 2 8x8 13.40 "I ECCS LIMITS - AP2AT ELEY MAPLHCR LIHLHGR 0.474 19 5.02 10.60 I EZ POW RELFWR , QUAL VF LPKF FLPD PKLHCR 1. 0.0360 0.2897 ~ -0.0260 0.000 1.183 0.097 1.304
- 2; '
O.0818 0.6583 -0.0236 0.000 1.104 0.206 2.764 0.7025 -0.0202 -0.000 1.099 0.219 2.938 l3'. 0.0873 ~ 0.7276 -0.0166 -0.001 1.098 0.227 3.040
- 4*
0.0905 !3. 0.0936~ 0.7525 -0.0128 0.017 1.099 0.235 3.146 ' 6,.
- 0.0971 0.7815
-d.0089 0.044 1.100 0.244 3.270 U7. 0.1014 0.8157 -0.0049 0.075 1.100 0.255 3.416 'S! 0.1085 0.8723 -0.0006 0.110 1.102 0.273 3.656 19 0 0.1144. 0.9204 0.0039 0.147 1.102 0.288 3.860 0.1207 0.9709 0.0087 0.185 1.103 0.304 4.073 LO : s k i'.; ' - 0.1383 1.1126 0.0193 0.h70 1.,103 0.348 4.670 0.1309. 1.0531 0.0138 0.225 1.103 0.330 4.420 ? 'L2 ( l31** 0.1431 1.1512 0.0250 0.313 1.103 0.360 4.830 le rtT /. Q.1449 1.1'653 0.0309 0.349 1.102 0.365 4.886 L5 fli, 0.1515 1.2182 0.0369 0.380 1.101 0.381 5.105 L 6.1 0.1559. 1.2540 0.0431 0.407 1.101 0.392 5.253 L7)),. 0.1528 1.2294. 0.0494 0.431 1.100. 0.384 5.146 t$js - 0.1580 1.2708 0.0557 0.453 1.099 0.397 5.317
- ~
. 0.1619 1.3026 0.0623 0.472 1.099 -0.406 4.556 4 L. 0.1604-1.2903 0.0688 0.491 1.098 0.402 5.391 i i? 0.1570 '1.2626 0.0753 'O.507 1.098 0.394 5.275 .0.0815 0.522 1.101 0.375 5.021 . 0.1490 1.1981 ~- T 0.1367 1.0997 0.0873 0.535 1.109 0.346 4.639 0.1122 0.9023 0.0924 0.546 1.125 0.288 3.861 FIGURE # 426 A i 5 l
[ / \\ .I T .Z ' TN CR FL EKF MAPRAT MAPLMCR. LIMLWCR 1 99.000 99.000 0.013 8570. 0.093 1.106 11.943 2 99.000 99.000 0.013 22614. 0.225 2.582 11 486 3 ~ ~ 99.000 99.000 0.013 26635. 0.250 2.767 11.069 .4 99.000 99.000 0.013 29360. 0.264 2.868 10 851 f5 99.000 99.000 0.013 30408. 0.276 2.962 10.735 6 99.000 99.000 0.013 30559. 0.287 3.071 10.711 7 99.000 99.000-0.013 30308. 'O.298 3.200 10.751 8 99.000 99.000 0.0.13 31132. 0.322 - 3.417 10.619 9 99.000 99.000 0.013 30810. 0.337 3.596 10.671 0 99.000 9.9.000 0.013 30441. 0.353' 3.785 10.729 1 399.000 99.000-0.013 31040. 0.385 4.096 10.634 2 99.000 99.000 0.013 31329. 0.408 4.315 10.587 3'.. 99.000 99.000 0.013 30849.. 0.418 4.456 10.664 4 ,99.000 99.000 0.013 3018.6. 0.418 4.507 10.770 5 .99.000 99.000 0.013 30798. 0.441 4.708 10.672 6 99.000 99.000 0.013 31298. 0.457 4.845 10.592 7* 3.481 4.086 0.303-30446. 0.442' 4.747 10.729 8 3.342 3.858 0.321 31078. 0.462 4.905 10.628 }0 ~ - 3.210 3.649 0.340 31233. 0.474 5.025 1.603 9 3.092.' 3.467 0.358 29424. 0.458 4,969 10.846 1 -2.987 3.307 0.375 -27167. 0.44; 4.860 11.027 2 2'.898 3.171 0.391 23202. 0.403 4.597 !!.416 2.824 3.059 0.'405 18940. 0.355 4.205. 11.843 4 2.776 2.977 0.416 1337.9. 0.286 3.429 12.000 r .y, r .h ii ? l I
- . ~.
FIGURE # 426 B f ,7 1'
i \\ \\ c 096 0FT10N 4 8/24/84 0800 580W($ FERET - 2 t i TME 12 NISMEST RATIOS OF A.SUNDLE MAFLNGR TO ITS LIMITING LNCR. ~ ~' FOR ALL BWNBLES IN THE CORE ARE 31 NAFRAT NAFLNGR . LINLNGE. 'ITYF . EXP L.J.K I.T.K. I - 0.572 5.79 10.12 2. 34252. 154.4.19 19.49,19 5 ,9 0.572 5.7) 10.11 2 34307. 65.2.19 41.14.19
- 0.572 5.78,
10.I3 2-34193. 60.1.I9 19.I4.19 j' 0.572 5.79 10.11 2 34289. '38.3.19 41.48.19 0.533 6. 6'4 12.00 5, 11936. 119.3.20 9.36.20 - 0.553 6.63 12.00 5 11946. 96,1.20 51.26.20 l 1 .0.552 6.6@ 12.00 5 11988. 130.4.20 51.36.20 - 0.552 6.62 12.00_ 5' 12034.
- 13.2.20 9.26.20 r
j 0.552 6.67 12.10 6* 13290. I54., t9 21.48,t9 3 0.551 6.67 12.10 6 12718.. 154 t.19 19.50.19 0.551 6.67 12.10 6 13317. 60.2.19 21.14.19 l 0.551 6.67 12.10 6 13297 65.1.19 39.14.19 ~ [ NUMBER.OF BWNDLES WITN MAFRAT GREATER THAN 1.0 IS 0 h 3 I 4'; y FIGURE # 426 C i i I i t
FIGURE # 429 A g 1905 EVENT INADVERTENT NPatSTACT pgggg_ i 1 \\ l O i 4 I s d ' i. f .. - - " " ' ' ~ f .a l o~ so do 'I O lo 10o tao o d> 16 is is CORE FLOW TOT AL STE AM FLOW fi (X1 MILLION Ibs/hr) ( X 1 MILLION Ibs/ht) i f. M it 1 i k l l . ) J i / 7 / 10
- - l 1
s se e i eso ero ese 101o toso toso o' d 16 ta is j i RE ACTOR PRESSURE TURBINE STE AM FLOW .t .] (pste) ( X 1 MILLION thothr) n- ...o =
FIGURE # 429 8 20s EVEDT twAevEntneff MPGl GTARY POCEQ teso 8 \\ I i i I i I i l 1 i l 4 f I 1s i l l l l c' soo soo soo 1:00 1soo o to 30 so 40 so so REACTOR PRESSURE RE ACTOR VE4SEL LEVEL f'. (PalG) (IN C H E S) 4 1 l at i' i l' 4 1
- s
!i l i I so l ) d ' *- =...
- j I
17 1s 1 1s , ~ a - - y ) m <l 4 is 1s - ---'~ ]I'. 1 l o as so 7s too 1:a o 4 a 1 i s i APRM TOTAL FW FLOW ( X 1 MILLION lbs/ht)..... _.. -...'.1 f (t POWER) 2 i --v-ea** =vv-,,$.-,w....$m8,.' O* ((,,
STEAM JET AIR EJECTOR S t**:* M d ?
- *.* 5 *
- C '
,2g .e r.. h M. W ',*. ;P O-) *. P.,* $* i.af"**')* -* *.- .=. ?'*?f7f.** N.4:** Supply fL37 P(5) ~ -. -. ~. - P(4) 8 e l (2) Main Condenser i l l l I L l I FIGURE f 285 6 I H n 1 e l.,.____. -... _ _ _ _ _... _ _ _. _.. _... _ _,,,. _ _.
of 37 1M5 Requalification Rev. 0 w I e J. ckp]xM T ?. 2: _ q#p!! t !! s - t s II Y T Ill,'I m. m. iMi! iMi! 2 dt l@#i Wi,.-1l
- E!g, 9-r' 9;
- E i
i fg 5 jid'C&fbkN!6r-ilH) lL= r .i m__ g lElIllEQl j,!lili 0 5! t S 3 \\ = FIGURE ELECTRO-HYDRAULIC CONTROL LOGIC ' W37Y
06/19/44-Lessen Plas 3 'a .e DRYWELL STEAM DRYER D / d 2 ) Eg U -x 'or t ) k D- -. - - - -.' d so ~ Il peAH 1:. I l g Nl U 1 % STANDBY LIQUID CONTROL.- l 'h I !Iii l k l FIGURE CORE 5 FRAY SYSTEN FIFE BAF.AE DETECTION INSTRUMENTATION i N =
Page 13 cf,1 06/10/s5 Revicion 0 WK II Requal RW Crous Withdraw Position Check RW Croup Withdraw Positioe Check 1 00-43 28 00-06 2 00-48 to s3 s4 ~ s nn La 30 42-44 4 00-4a 31 12-16 5 00-48 32 14-16 6 00-36 33 00-08 7 00-22 34 06-08 l 00-14 8 35 34-36 a. 9 00-08 sa aa 4a 10 l 00-04 u 16-20 11 36-48 38 12-16 12 03-20 io on.nA i 13 14-18 40 28-32 (*( 14 22-34 41 22-26 15 04-06 .42 36' -3s i 16 00-06 11 16-32 l 17. 20-22 44 20-30 18 18-30 45 08-12 19 34-40 l 46 16-24 20 08-12 47 38-40 - 21 ' 06-10 48 32-36 22
- 06-12 49 26-2a 23 22-28
- se M-42 i h '51 . 3?-16 i 24 20-22 52 25 30-32 12-14 l 26 40-42 53 08-10 'l 27 10-14 I 54 36-40 l I FIGURE TYPICAL CONTROL ROD WITHDRAWAL SEQUENCE
- 467 A (SEQUENCE 3) s I
e - - - = - " ~
Pzge 34 cf 36 "04/10 F Revision 0 WK II Requal ( RW Crous Withdraw Position Check' RW Croue Withdraw Positter Check t-N 55 28-32 56 10-18 51 40-42 58 42-48 59 40-48 60 38-48 61 32-36 62 I 24-30 63 42-48 ~ 64 14-16 65 10-14 66 36-40 61 30-34 i 68 40-42 69 16-20 70 14-16 71 00-06 72 06-10 I I . _l l l I I I t l l ( FIGURE TYPICAL CONTROL ROD WITHDRAWAL SEQUENCE
- 467 8 (SEQUENCE B) (Continued) e 4
0
Pa82 35 cf_,{6. 44/10T Revisioar0 WK II Requal RtM Croup # g. Rods in the Group 1 30-31, 38-39, 46-31, 38-23, 30-15, )2-23, 14-31, 22-39, 30-47, 38-55, 46-47, 54-39, 54-23, 46-15, 38-07, 22-07, 14-15, 06-23, .... ~
- y.,
06-39, 14-47, 22-55 2 38-31, 30*-23, 22-31, 30-39, 46-29, 46-23,. 38-15,22-15,14-23,14-39,22-47,38-47,l. 54-47, 54-31, 54-15, 46-07, 30-07, 13-07, 06-15, 06-31,'06-47, 14-55, 30-55, 46-55 3 26-27, 34-34, 42-27, 34-19, 18-19, 10-27, 18-35, 26-43, 50-35, 50-19, 42-11, 26-11, 10-11. 02-19, 02-35, 10-43,' 18-51, 26-59, 34-51, 42-59, 50-51, 58-43, 58-27, 34-03, 18-03, 42-43 4 34-27, 26-35, 34-43, 43-35, 50-27, 42 19, [, 34-11, 26-19, 18-27, 10-35, 18-43, 26-51, 42-51, 50-43, 56-35, 58-19, 50-11, 42-03, 26-03, 18-11, 10-19, 02-27, 02-43, 10 51, 18-59, 34-59 5 22-03, 22-59, 38-59, 38 03, 06-19, 06-43, 54-43, 54-19, 14-11, 14-51, 46-51, 46-11 6, 11 06-27, 06-35, 54-35, 54-47, 30-03, 30-59 7, 14, 19. 26, 30, 36 22-19, 22-43, 38-43, 38-19, 30-27, 30-55 ,,8, 13, 18, 25,,29, 35,,42, 47, 50, 58 14-43, 46-43, 14-19, 46-19 9 i 22-11, 22-51, 38-51, 38-11, 14-27, 14-35, 46-35, 46-27, 30-11, 30-51, 30-19, 30-43 ~ 22-27, 22-35, 38-35, 38-27 , 15, 21, 27, 32, 37, 44, 56,. 02-23, 02-39, 58-39, 58-23 FIGURE TYPICAL RW CROUPS (FOR SEQUENCE B) i"
- 467 C 6
e 4 v0 ,,_,,-.m._,.,__,.,__.._.r.., y
Page g cf 36 <04/10/s5 Revision 0 W II Requal i ~ 3WH Group # Rods in the Group 12 22-11, 22-51, 38-51, 38-11, 14-27, 14-35, ~ 46-35,46-27,30-11,3d-51 16 18-07, 18,55, 42-55, 42-07, 10-15, 10-47, 50-47, 50-15 22-11, 22'51, 38-51, 38-11 17, 23, 40, 48, 57, 63 20, 31, 43, 51, 59 30-19, 30-43, 22'-27, 22-35, 38-35, 38-27' 22, 38, 46, 62, 67 18-07, 18-55, 42-55, 42-07, 10-15, lo-47,. 50-47, 50-15 24, 41, 49, 55, 61, 66, 68 14-27, 14-35, 46-35, 46-27, 30-11, 30-51 \\ 28, 34, 53, 65, 70 10-23, 10-39, 50-39, 50-23 33, 45,'52, 64, 69 02-31, 58-31, 26-07, 26-55, 34-55, 34-07 k,, 39, 72 26-23,26-39, 34-39, 34-23, 18-31, 42-31 54 All in group 48 + all in group 51 4 71 18-15, 18-47, 42-47, 42-15 3 s' t 1 l t I' FIGURE TYPICAL RWM CROUPS (FOR SEQUENCE B) (Continued) f 467 D e t i l ~ --
__.m. -m ..m ,__m,_ 0184 it Os @ !-l t I I 'lv-k 1-F g l y i ;:h I I! l i ___a___ y_ s 11 _ _ _,i i i is l,!,5 -b !, jd e' fo'e' i (< + : 4 : gig a -w :s 1 3..i. g"
- gi i.
I a r i u e + + :+ @i l i,I ll lW] l T _ p :: n ? P I m--
- f: > T--w sf
~ =l I e l mu e n -@ ( a e r I i i I _ _ _ _ ; u _ _' '_______ if I, t_____ y l l*i 1p_: 2 i l n 3 i i g (j' = = ? li .g .I f; v P. i!, osa: r ', I i 1 a 3 e u N b h gpb b ( ll [*: n e e f E ~ j p. 4 C C II-v" = i, NOyo I 8i 3v {i p ( p M gW B d !lit ! #j 4 NX N 4'! (l H : : -- - iy it' g.3 g.p 4 5 l-i g i;+ Vl> a a l' / T '{ (5 l j= = j: ed k( q (. 3 g) 2.3-37 a
e ( IEf fId ll M t- }- 5 l h4 N I! "= i !V__"___7__'__________ p l} l I Ii i !!l -b " G" j!l>T i lIl!' J 9 I M : M: M :li =I1 I i A 8 _'I-- w s Is I .f_T 51 + l H : y 'el @i T_k en.g g t_<, i
- s}i l 4
'f' I n
- l E]
$-V '~ l l I g: 5_T-w C ?q1_l sj l e x -e != B l i n 2 ll g: g.@.e -j l @3 C' I L____ ____J tJ E t- - - h l= E 4 E rf I gg l /- 4 E -ji_C [ g ? II +_G U [g g t t yo I!, ese:r'l ls 9 e t... u .i Pl! o @9 ( E h. = 'h f Q: @x A n "p g _o a n J el cp c ~* o 4 = p', N =l[ i
- f $Y e
l V 1 : 'al e
- Q '3f l
(1 6 o i I. ,e. \\.- r \\.- (- l g =y e =' i; c.g 1 i a 4 I!+ !1-1 (= i i O@ E$ h l 2.3-37 " ;,. n,_ J _....._ _.fr1 *._ _ _ _ -,." "~-~l'*!_*__, ~ _ _ _ __ - _., _ _..EC. i .-__.._,_-.I'_~[--
110$ @!-l t-I I ll-y-h t- }- gl6s [i l G-lik[:lnlfc'____,,.__!II_____ o I
==: '1 $ 5 II" ,[ 11.a. ..a i, i i = = i 1i( )', gi I @llf.*J, % %* r-- s I Wa IV ii ___ g !i g M til l 111 T_1 U 2-b l Il i i n FI 8 T [.Oe
- n p"i r
_jH-q ll l l O C i l @< o II P @) (r i e e v i g i ii i f i_____ l= f ____~4 _ _ _ _ _ - ,____a t__ g = ,,p ,g :, /. r / i EE +1 E Il g [ l k'. M ~~ @') i!! A L! If .i o m e O-E i,,l,l (sH C w I' f + 5: = b 4
- l __ @j :
x g M. __w- %? - d,,i j,*I4 hP r! b c r
- p. 4 p,
- e n
n "o. 2 +,)g fu o ig., x~
- k. i s~
1:: : _ - il lrt'.3j 7 d a 3.J.!, i o 1 -i n A E l1 2 (> i iN e@ [p ,g 2.3-37 l ,-----,-,-v.-.-,----.rs.-,--.-c--,,3-,,A - er--r-,- -.-,1 +w
0184 e .(- itOs @li i I ,!'Ttn l dI h j ll @m g,[:g'f*,I_________I,' d i l p ] ~ 3 I ilii, g a l p___ !i g + +!!lH 1-- M : i w l! 'E M: M 4 W l, r}1 f 5 ll1-r i c y < < g .9,,t_ l ,g - I __
- (1l l
@I n l T [.g ._1 e rvi__w :s l 4e p: 2. O $l l @ lli l ..e._e j;
- j e9 <<
Is i_ ____a u__ _ _ _i II_ E yt la d[ .g_. 18 =
- i. l0 i
r (.. ? k 15 _6 1.d l y O' i' g l. R = I!! me :r'co! I Nl e>_ p tri. > .i = mi e4 e G
- I (pI I
= + ar* = p$9 =:9 {' =_x g c a*' d 6 "ifi T! = A g L gjis.!p..> a e , r. <p-,: o ,d x 4 x {1 i s n I s U a = I p: + E O 6 4 ix
- t
[ 't 1 r' n i' 2.3-37 j e ,,,-..,-----,,.,,--,,-,-,----,-.,.-e- -,-e-
Page 38 af 44 08/13 F Lessca Plas 8 e l ELECTRO \\ NYDRAuf.IC CONTROL SYSTEM I MASTER CONTROLLER NM02% OF RATED .O-... DUAL RECIRC rump SPEEo O Lo 45% speed TO 1* LOOP - SPEED CONTROL ' M/A g 9 gang,g, DUAL FUNCTION O STATION gesIT \\ ,,,,,,' Ai-r SETTING CLOSED WHEN DISCHARGE , START SIGNAL Q l.IMITER VALVE FULL OPEN GENERATOR 40% l SPEED GUNLOADEDI 38% CLOSED WHEN F.W. y FLOW >20% L _ ____ _ ___ __ _ _._.J GEN SPEED INDICATION
- d. CLOSED WHEN A CLOSED g
n LinullTER y _ REACTOR WATER S WHEN RFP g ~ [ V 75% LEVEL
- 27" E L" >
C ,,b v-11,- f. ,E,D 5[ IftNC NETWORK g (TACHOMETER) 1 r SPEED Y SPEED IND TOR A W TROLLER 4 6 , CONTACTS SHOWN FOR FIELD BREAKER CLOSED p_FE_EDS_AC_K q, l ER A FA LURE CAM gp L DETECTOR 4 ~ POSIT SCOOP -= BRAKE W MOTOR TUSE s' FIGURE RECIRCULATION SYSTEM FLOW CONTROL NE'IVORK gq (ShOwn fOr A Loop, Typ. fOr B) p,- -, _ _, _ _... - _. ,.,m, ae-es .s et 's 9 7 99999" 9
~ f l i CHART 5.4.6 (DRYWELL SPRAY INITIATION PRESSURE LIMIT) 10-7-84 9 25 2 o ~~ , ^ ' - gas E 230 l (
- 230 e
EW g g 205 i i. I.. ~ $ I, '. ~, - 130 2h180 f 04 .'. : t t., =_, g$130 ,/.. ~( ? 155 g g 155 '.l-el 2 ... - 130 l l g!'o5 /;Mr ? - p 1( E!.:: ios 60 0 10 20 80 40 80 80 I i DRYWELL PRESSURE (PSIG) i i FIGURE # 437 e v - - - -.,-,-. -- -. --e.,, - -,. - - - --
5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE n --_ 9 pggggggggggg-------------------------------------- ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN ANSWER 5.01 (1 00) 70% void fraction in the core (0.5) There is a larger % change in water volume for the same increase h a.:t-yo7. V F haut. -o11.- % ed p:& 4 ou c.m - A.u ty Stwac. (3.45% vs 1.1%) (0.5) o c REFERENCE p% yG g4g c4 EIH: Reactor Physics L/P, pp 1.7-9 10, 13 BFNP: Reactivity Coefficient LP, pp 2, 3; RO 85/03/01 ANSWER 5.02 (1.00) c REFERENCE EIH: L-RG-667, p 10 BFNP: Rx Heat Balance LPi RO 85/03/05 i 1 I ANSWER 5.03 (1 00) e REFERENCE BFNP: XENON & SAMARIUM LP, P.4,12i RO 85/03/05 GGNS: LP OP-NP-514, p. 5-10 BSEP! 02-0G-A, pp 57 - 60 i ANSWER 5.04 (1 00) .i a. 1 b. 4 (0.5 each) REFERENCE BFNP PUMP CHARACTERISTICS, PUMP HEAD, PUMP LAWS LP,P.4 9 i + 1 I 1 l i
5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 2. y y g-------------------------------------- ANSWERS -- BROWNS FERRY 1, 213 -85/11/18-K E BROCHMAN ANSWER 5.05 (1.00) d REFERENCE BFNP: GETi Mitigating Rx Core Damage LP,p 4 GGNS: OP-RP-502,P.5-7 ANSWER 5.06 (1.00) Core flow increases due to the increased voiding / buoyancy (Thermal Driving Head) that is developed by the increased power (0.5). Core flow stabilizes as the Thermal Driving Head is counteracted by the increased two-phase flow resistance (pressure drop) which d2velops with the increased voiding (0.5) REFERENCE BFNP: BFN Hitisating Rx Core Damage, pp 3 3-80 ANSWER 5.07 (1.50) c. Decreases b. Increases c. Decreases (0.5 each) REFERENCE Second Law of Thermodynamics BFNP: BFN Entrary LPi BFN Energy, Power, and Enthalpy LP; RG 85/03/03 & 04 ANSWER 5.08 (1.00) a. Gap Release (Small Fracture or Crack) (0.5) (0.5) b. O s.4 %k s.. %6s c U ) i ) l 1
5. THEOR,Y OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE g ggggggggg-------------------------------------- ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKMAN REFERENCE BFNPt MCD LP, p 16; RQ 85/02/01 ANSWER 5.09 (2.50) EHC opens BPV's to control pressure (0.5) a. b. EHC Load Limiting (0.5) c. Increased Subcooling of Feedwater (Reduced fw Heating) (0.5) d. HP Heater Strin3 beginning to isolate (0.5) o. Increase (0.5) REFERENCE BFNP: Operational Transient LP, Transient 4 14; Heat Transfer LP, p 7; RG 84/01/01 ANSWER 5.10 (2.00) e. Top peaked (0.5) b. NO (0.5) Only the 12 most limiting bundle nodes appear on the P-1 edit. (The OD-6, Option 4 shows the 12 most limiting bundles in the core at this time) (0.5) (1.0) c. Each Node has received a different exposure. (LIHLHGR varies with both e::posure and f uel type and only the e:-:posures ar e dif-ferent for each node) (0.5) i REFERENCE [. BFNP: Process Computer LP, p 13 (Obj #4) i e i h .i ,l - t s
5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE M --- 9 3 9 ggggg-------------------------------------- ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN ANSWER 5.11 (3.00) a. CV's closing to maintain pressure. (0.5) b. Higher equilibrium pressure at new power level. (0.5) c. ' Swell' due to pressure decrease on HPCI flow demand. (0.5) Stabilizesathig[her level to compensate to FW flow demand. (0.5) d. o. Increased subcooling (due to lower FW temperature from HFCI). (0.5) f. FHCS fo11owin3 steam flow. (0.5) REFERENCE BFNP: Operational Transient LP, Transient # 20: R0 84/01/01 ANSWER 5.12 (.75) -a. GREATER THAN
- b. GREATER TPaN c.
GREATER THAN (0.25 each) REFERENCE Air Ejector _ Theory /Bernouilli's Equation EIH: L-RO-660 BSEP: HTFF, pp 5.63 - 5.68 BFNP BF Off-Gas LP, pp 5 - 7 8 e n; 4 4 9 E 5
6. PLANT SYSTEMS DESIGN, CONTROL, AND INb;RUMENTATION PAGE g ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKMAN ANSWER 6.01 (1.00) d REFERENCE BFNP: LP451, p 9; OI-67 ANSWER 6.02 (1.00) c REFERENCE BSEP: RTN-033, 012; SD 26.2i SSN 19-2/3-B EIH: L-RO-705, pp 18, 19; GPNT, Vol. VII, Chapter 9.4 BFNP Simulator Malfunctions 8, 108; Operational Transient LP, 415; RO 85/01/03, Obj. B ANSWER 6.03 (.50) er o spa REFERENCE GGNS: OP-E21-501, p 12, 17 BSEP: HD 14-2-E BFNP RHR LPi RO 85/01/04 I ANSWER 6.04 (1.00) p-7 = p-3 + the height of cooler water in the sensing line. Therefore p-7 > p-6 even though p-3 < p-2. REFERENCE BFNP: LP845, p 13, 14; RO 85/01/05 t I l t ? k I t t b t i i
60 PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE ANSWERS -- BROWNS FERRY 1, 213 -85/11/18-K E BROCKMAN ANSWER 6.05-(1.50) SINGLE UNIT (0.125) - Sets voltage regulator for diesel supplying 4160 Vac Shutdown Board as the only source (0.375). UNITS IN PARALLEL (0.125) - Sets voltage regulator for operating the diesel diesel generators in parallel (0.375). PARALLEL WITH SYSTEM (0 125) - Sets voltage regulator to parallel with one of the 4160 Vac unit boards via the 4160 Vac shutdown buses (0.375). REFERENCE BFNP R0 85/02/04 ANSWER 6.06 (1.50) Utili:e ths Fire Truck Pumper (0.5). Place a hose through the grating opening at CCW discharge Gate 4 1 (0.5) and discharge throvsh a hose to Yard Hydrant ($ 8) (0.5). REFERENCE BFNP: RQ 85/04/01 ANSWER 6.07 (2.00) 1) Gross Failure of a Trip Unit 2) Card out of Card File 3) Calibration in Progress 4) Power Supply Failure (0.5 each) REFERENCE BFNP RQ 85/04/03 ANSWER 6.08 (1.00) s t E I i 1
i 6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 7 ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKHAN REFERENCE BFNP: RSCS LPi RWM LPi RD 85/02/02 & 03 ANSWER 6.09 (1.00) D REFERENCE BSEP: SSH 25-2-C/Di RTN 029 BFNP APRM LPi RO 85/04/03 ANSWER 6.10 (1.00)' a REFERENCE BFNP OI-3, p 2-2a ANSWER 6.11 (1.00) Loss of Normal AC Power (0.25) in conjunction with en Accident Signal (0.25) Low pump discharge header pressure (0.50) REFERENCE BFNP: LP 47; 0I-70 ANSWER 6.12 (.50) Tak'e the Control Switch to RESET REFERENCE BFNP: 01-82 ANSWER 6.13 (.50) Counterclockwise (Slow) l i _f-
40 PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE e ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN REFERENCE BFNP: DI-57; OI-82 ANSWER 6.14 (1.00) d REFERENCE BFNP CONTROL ROD DRIVE LP ANSWER 6.15 (1 00) a. Decrease (20%) (0.5'); Limit Switches on Bailey Positioner (0.5) l \\o=* $9eed me e n. t.n\\ %vh REFERENCE EIH: L-RG-714, Figure 4.1(8); GPNT, Vol V, Chapter 4.1 BSEP: SSM 10-2/3-A, Section 3.2 1.1, pp 25 - 30 BFNP: RECIRC FLOW CONTROL LP; RO 84/04/02 ANSWER 6.16 (1.00) a. None b. Unit 1, System 2 (0.5 each) kEFERENCE BFNP: RHR LP, p 39; RQ 85/01/04 d e 4
08 6NT AYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 9 ANSWERS -- BROWNS FERRY 1, 2&3 -85/11/18-K E BROCKMAN ANSWER 6.17 (1.00) 1. e REFERENCE BFNP! LPt12, p 24; TRANSIENT 420; 0I-57, p 53; RO 85/01/02 EIH: L-RG-726 BSEP: RTN 026; HD 17-2/3-B, Section 3.2 ANSWER 6.18 (1.00) The Test Failed light indicates that the GNC a. SATISFACTORY (0.5) test sequence has halted because of a failed comparison (which is the d2 sired result).(0.5) REFERENCE BFNP: RSCS LP; RG 85/02/03
7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE to R 6f6E665CdE~C6NT66E~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ANSWERS -- BROWNS FERRY 1, 213 -85/11/18-K L DFOCKMAN ANSWER 7.01 (1.00) To prevent excessive jet pump vibration. REFERENCE BFNP: 0I-74, p 2; OI-68, p 3 ANSWER 7.02 (1.00) Close the MSIV's at the Backup Control Panel REFERENCE BFNp Control Room Abandonment, p2 ANSWER 7.03 (1.00) c 4 REFERENCE BFNp GOI-100-1, pp 14 - 16 ANSWER 7.04 (3.00) 1. If the reactor f ails to scram when a setpoint is reached, then manually scram the reactor. 2. Verify existing conditions by multiple indications. 3. Verify all automatic actions have occurred; if not, place the controls in manual and make corrective manipulations. 4. Trip the recirculation pumps. 5. Place the mode switch in SHUTDOWN. Place the SDV high water level bypass switch to bypass. 6. Reset the scram (Verify SDV vents and drains open) Manually scram the reactor, reset, and repeat if rod motion is observed until all control rods are fully inhserted. (Continuously monitor flux until all rods are full-in) (0.5 each) REFERENCE BFNp EDI-3, p3 5 i 2 l
1 7. PROCEDURES - NORMAle ABNORNAL, EMERGENCY AND PAGE st l ~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~E56f5 LEG EAL CE TRdL ANSWERS -- BROWNS FERRY in 213 -85/11/18-K E BROCKMAN 1 ANSWER 7.05 (1.00) d TELET6 REFERENCE BFNP BF-0I-47, pp 21, 38, 41, 44 ANSWER 7.06 (2.00) Five or more adjacent rods not inserted below position 06, OR Thirty or more total rods not inserted below position 06, AND Reactor water level cannot be maintained, OR Suppression pool water temperature reaches 110 des F. (0.5cachh REFERENCE BFNP BF-EDI-47, p 6; BF-EDI-3, Caution - Section 4.0 ANSWER 7.07 (1.00) Spray initiation above this limit may result in a containment depressurization rate which exceeds the relief capacity of the drywell and reactor building vacuum breakers.(0 3) This could result in the negative design pressure of the drywell being oxceeded. (0.7) REFERENCE BFNP: EDI-Zi EPG-X, Section 5.5.3, p 174 ANSWER 7.08 (1.00)
- a.. Valve is open too far (beyond the LOCA design closure roint) b.
PCT could exceed 2200 des F (due to RHR not injecting enough 'since the LOCA Closure time requirement of the SDC Test Isolation valves is not met). - or. ess.cc3 va\\ve \\( c,( y 9 tr e % h %t C F b L E C'T b* " W5 5-
- 1 -
it-1 8 t / .=. ..,M,
7. PROCEDURES - NORMAL, ABNORMAle EMERGENCY AND PAGE lt ~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~"~ d6f6L66fCdL C6NTR6L R ANSWERS -- BROWNS FERRY le 283 -85/11/18-K E BROCKMAN REFERENCE BFNP: C.A.F.* 6P6 ~ 7 3 T. ANSWER 7.09 (1.00) Amber Lamp (0.5) Mechanical Flag (0.5) (0.7 credit for ' Closing Spring Fully Charged') REFERENCE BFNP: OI-57, Section III.A.1 ANSWER 7.10 (1.00) Scram the reactor Sc % % e M S-b "'.3)
- O
(,b Trip the turbine MedkV5 S O- -;;,- a,; REFERENCE BFNP DI-66, Section IV.A.3 ANSWER 7.11 (1.00) d c. REFERENCE BFNP RCI-9 LPr L.O. 'B' ANSWER 7.12 (1.00) a. 125 des F in Fuel Pool -ene-Fuel Pool Cooling System becomes INOP (0.25 each) -b. Condensate Storage System Condenser (0.25 each) i REFERENCE BFNP: OI-78, 4 e 1 t j
7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE t$ ---^s;Ei5c5EiExc EEsis5c------------------------ ANSWERS -- BROWNS FERRY 1r 2&3 -85/11/18-K E BROCKMAR l ANSWER 7.13 (1.50) Stop all Fuel Handling (0.25) and Evacuate the Refuel Floor (0.25) Manually Scram the reactor (0.4) and verify all rods full-in (0.1) Stop the CRD pump (0.25) and Isolate RWCU (0.25) (Do not reseme fuel handling operations w/o approval of the pit Supt) (N/A) REFERENCE BFNP: BF-GOI-100-3, ' Refueling Operations' ANSWER 7.14 (1.00) d REFERENCE BFNp BF-0I-68, pp 28 - 29 a 6 I I e I t 0 +
8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE pg ANSWE'R'S'-- BROWNS FERRY 1, 2R3 -85/11/18-K E BROCKMAN ANSWER 8.01 (1.00) d REFERENCE EIH: U1TS, 1.1.c BFNP: U1TS, 1.1.B ANSWER 8.02 (2.00) c. Alert b. (Notification of) Unusual Event c. General Emergency d. Site Area Emergency (0.5 each) REFERENCE EIH: GET Handbook, pp 57, 58, 60, 61 HNP-x-4420, HNP-x-4520, HNP-x-4620, HNP-x-4720 BFNP BFN-IPD, IP-1, p li RQ 85/04/01 ANSWER 8.03 (1.50) 1) Place the plant in a safe configuration, OR 2) Prevent the loss of power generation, OR 3) Remove the plant from a Limiting Condition of Operation, OR 4) Correct a serious personnel hazard. (3 0 0.5 each) REFERENCE BFNP: OSIL-21, p1 .i i i ( l 1 .1 L e 1
9. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE pr ANSWE'RS'-- BROWNS FERRY 1r 213 -85/11/18-K E BROCKMAN 4 ANSWER 8.04 (1.00) 1) Beginning of the shift, AND 2) Middle of the shifte AND yo 3) After any power change of yM'MWt, AND 4) After any unexpected power change. (0.25 each) REFERENCE BFNP: OSIL-32 ANSWER 8.05 (1.00) c. ASE b. 4th Period Student (0.4) - Operations (0.1) (0.5 each) -REFERENCE BFNP: OSIL-43, p1 ANSWER 8.06 (1.00) d REFERENCE BFNP: U11S, 3.8.A ANSWER 8.07 (1.00) b REFERENCE BFNP: OSIL-43, pp 6, 7 k O 9 8
8. ADMINISTRATIVE PROCEDURESe CONDITIONS, AND LIMITATIONS PAGE 14 ANSWER 3'-- BROWN 5 FERRY le 213 -85/11/18-K E BROCKMAN ANSWER 8.08 (1.50) c. 1, 5 b. -- 3e 4 c. 2e 6 (0.25 each) REFERENCE BFNP OSIL-9e p1 ANSWER 8.09 (1.00) b REFERENCE BFNP: U1TSe 1.0.V.3 ANSWER 8.10 (1.00) c REFERENCE BFNP: U1TSe 1.0.C and 3.7.B ANSWER 8.11 (1.50) o. Ensure inadvertent transfer of significant amount of contaminated fluids will not occur. (0>5) b. Continued operation of the engineered safety features will result in an unsafe plant condition (with regard to either personnel or operability of safety features). (0.5) The plant is in a stable condition (in which technical specifications clearly indicate that) operability of the -ongineered safety feature is no longer required. (0.5) REFERENCE BFNP: BF SP 12.17; RO 85/01/02 i l \\
l 80 ADMINISTRATIVE PROCEDURES, CONDITIONSe AND LIMITATIONS PAGE l1 ANSWERS -- BROWNS FERRY 1, 283 -85/11/18-K E BROCKMAN ANSWER 8.12 (1 50) (1) Highest worth rod (0.25) fully withdrawn (0.25) (2) Xenon free (3). Cold (68 des F) (0.5 each) REFERENCE EIH: U2 TSe 1.0 'SDM' BFNP: U1 TSe 3.3/4.3.Ai RQ 84/03/05 & 85/02/04 ANSWER 8 13 (1.00) e. DETLET6 REFERENCE BFNP: U1 TS 3.1 4 ~5. 2 A l I i:: E i
Revie:d 2-b 81 .f. I 1.0 DEFDr!TIONS i the sesseeding frequently used tares are explicitly defined se that a unifera $sterpretaties of the specifications any be achieved. A. Safety Limit - The safety limits are limits below which the reason-able asistamance of the cladding and primary systems are aneured. Escoeding such a limit requires unit shutdown and review by she Atomic Baergy Caumissies before resumption of unit operatian. Operaties beyond such a limit any set ta itself result la serious sensequences but it indicates as operettamal deficiency sub>t to regulatory review. .o B. Limittaa Safety Systen Settian (LSSS) - The 11mittag safety systea setting are settings sa instr eestation which initiate the automatic protective action at a level such that the safety 2dmits will not be exceeded. The region between the safety limit and these settings represent margia with normal operation lying below these settings. The margia has been established so that with. proper operaties of the instrumentation the safety limits will never be saceeded. C. Limitian Conditions for Operation (1C0) - The 11mittag conditions ' for operation specify the =4=1== acceptable levels of systaa perforesace necessary to assure safe startup and operation of the facility. Ilhas these conditions are met, the plant can be operated safely and absoraal situations can be safely controlled. 1.' la the event a Limittag Condition for Operaties and[er ' g associated requirensato cannot be satisifed because of a cireestances la excess of those addressed in the specifi-cation, the unit shall be placed in at least Est Standby 1 within 6 hours and La Cold shutdown within the following 30 hours misse corrective asasures are complated that permit operation under the permissible discovery or until the reactor is placed in sa operational condition in which the specification is not applicable. Exceptions to.these requirements shall be stated in the ladividual l specifications. This provides actions to be taken for circumstances not,directly provided for in the specifications and where occurrence would wielate the intent of the specification. For example, if a specificatism calls for two systems (or subsystems) to be operable and provides for explicit requirements if one system (or subsystem) is i taoperable, them if both systems (or subsystems) are inoperable the mit is to be in at least Est Standby la 6 hours and in Cold Shutdown withia. the following 30 hours if the inoperab'le condition is not corrected. l ' f N .M em L u f. '. %. --$.*l'a$w5 .. ;w -+ i l
Raviced 2-6-81 r a. i 1.0 SEFDf!Titl8 (sesttaped) 2. When a ' system, sube'ystem, trata, samposent er devise to determined to be inoperable solely because its easite power seusma is inoperable, et eelelybecause its offsite power searco de inoperable. it any be seasidered operabh for the purpees of satinghs the requiremente of its applicable Limiting Ceeditism for Operatism. provided (1) its iserresponding effeite er diesel power searco de operables and (2) all of its redundant eyetem(s), subsystem (s) erain(e). I sempement(s) and devica(s) are operable, or likewise entisfy these requirements. Unless both conditions (1) and (2) are satisfied, the unit shall be placed is at least Est Saestby within 6, hours, and in at least cold shutdeva withis the following i 30 hours. This is not applicable if the unit is already in Cold Shutdown er Rafueltas. This prevision describes what attittenal condittoas' toast be satisfied to permit operaties to samtinue i sensistent with the specifications for power eeurces, when an offsite or easita power source is not operable. It specifically l prohibits operaties when one divistaa is inoperable because 1 its offsita er diesel power source is inoperable and a system, subeystem, train, composant er device in another divistem is inoperable for emother reason. This provision permits the - requiremmats associated with individual systems, subsystems. ) trains, coupensats or devices to be consistaat with the requirements of the associated electrical power source. It allows operatica /s to be ;.... ' by the time limit of the requirements associated 49, f with the Limittag Condition yor Operatima for the offsite er - (.;* , diesel power source, not the individual requirements for each system, subsystem, trais, component er device that.is' determined ') to be inoperable solely because el the inoperability of its l: offsite or diesel power source. l n. marun 4 1:- 1 l \\ 2* 4 /. , x..- } i t a.L:,k.i.l.gif- .c... G E:M&E5?h .=:m 5 ki'.k.' =-
1.o wrmtxons <eont'n FEB 06 C81 .:fr l ~ E. Operable - Coerability - A system, subsystes, ~ train, component, ~. or gewice shall be Operable or have operability when it is .e sapable of performing its specified function (s). Implicit in this. definition shall be the assumption that all necessary attendant instrumentation, controls, normal and emergency alactrical power sour'ess, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perfsta its fune-ion (s) are also capable of performing their related support function (s). F.- Operating - Operating means that a system or component is performing 1ts intended functions in its required manner. 4 C. Ismediate - Immediate means that the required action will be initiated as soon as practicable considering the safe opezation of i the unit and the importance of the required action. E. Raactor Power Operation - Reactor power operation is any operation with the mode switch in the "Startup" or "Rm" position with the reactor critical and above 11 rated power. I. Eat Standby Condition - Hot standby condition means operation with coolant temperature greater than 212*F, system pressure less than 1055 psig, the main steam isolation valves closed and the mode ~ switch in the Startup/ Rot Standby position. J. Cold Condition - Essetor coolant temperature equal to or less than 4 i 222 r. (.k.'.) E. Bot shutdoen - The reactor is in.the shutdown mode and the reactor coolant temperature greater than 212*f. L. Cold Shutdown'- The reactor is in the shutdown mode and the reactor \\ coolant temperature equal to or less than 212*F. 4 M. Mode of Operation - A reactor mode switch selects the proper interlocks for the operational status of the unit. The following .are the modes and interlocks provided: 1. Startup/ Hot Standby Mode - In this mode the reaictor protection scram trips initiated by condenser low vacuum and main steam line isolation valve colsure, are bypassed when reactor , pressure is less than 1055 peig, the reactor protection system is energized with IRM neutron monitoring system trip, the APRM 151 high flux crip, and control rod withdrawal interlocks in service. This is often referred to as just Startup Mode..This is inteaded to imply the startup/Ect Standby position of the mode switch.' G 3' .g..." % ,/ 2 M p-j k b a ~ ~ . ; 4ar t.
- 41
.f
- a__
- .; _.._._.. o.c_, M M.rM'8e3ipe M.fS
__ ~ hw.p.ww%..Sid_ _. J mm _ __ _
~ AUS 151984 1,1HITIt!C C0'IDITIONS FOR CPERATION RURVFII.t.ANCE kijg,UIRENDfTS __ 3.1 REACTOR PROTECTION SYSTEM 4.1 DEACTOR PROTECTT0t! STKTEM gplicability Applicability Applies to the instrumentation Applies to the surveillance of and associated devices which the instrumentation and asso-initista a reactor scram. ciated devices which lettiate reactor scram. Objective. Objective To assure the operability of the To spectfy the type and frequency reactor protection system. of surveillance to be applied to the protection instrumentation. ~ ~ ~ ~
- Specifiestion 5pecification A.
When there is fuel in tha vessel, A. Instrumentation systens shalf the setpoints, minimum number of be functionally tested and trip systems.and minimum number calibrated as indicated in of instrument channels that must Tables 4.1.A and 4.1.D respec-be operable for each position of .tively. the reactor mode switch shall be as given in Table 3.1.A. ./ M. 3. Two RPS power monitoring ? 'lj"' channels for esch inservice' f RPS HG sets or alternate source shall be operable. '~ when it is deteratined that l
- ~ '
a channel is failed 'in the 1.With one RPS clectric unsafe condition, the power monitoring channel other RPS channels that-for inservice RPS MG set. monitor the same variable or alternate power supply shall be functionally inoperable, restore the tested immediately before inoperable channel to the trip system containing operable status within the failure is tripped. 72 hours or remove the The trip system containing associated RPS MG set or the unsafe failure may be alternate power supply untripped for short from service. periods of time to allow functional testing of the other trip system. The trip system may be in the untripped position for no more than eight hours per functional test period for this testing. .h v 31
- .mmm. 4%%1
_ _. _ w
1 j DEC 121983 LIMITING CONDITIONS 508 ONRAT&0H SURVIIL1JMS RangitBIENTS g. l 3.1 REACIOR PROTECTION 813138 4.1 REACIOR Pt9tECf1BI SIST51 3.2 Vith both RPS electrie power 3. The RPS power maattering mesiterlag shamaels for sa systes Amstrumentaties inservice RPS lEl set er alter-skalt Tee deteralmed operable: ante power espply Aaeperable, restore at least one to 1. At least esse per 6 months operable status withia 80 by performanee of shamael minutes er remove the feastional tests, assedated P8 MD set er alteraste power supply *from servie. l I j -d.t l .o a 32 I... ~ \\ 4 s u .... -..: c., .s 3-Vfj 9 4 + %
- T4kN a..~..-..a.,- m n.
..~ -. .. un w-
~ M 4 d eh, p .^ ). { f 1983 -[ 5 .. 4 DEC1 ~ p I RF. ACTOR-PHOTF.CTION SYSTFJi (SCRAtt) IllSTRIRV3ffAT!fW' Rf? TAIN.E 3 1.A ( t '*~ Hin. No. 4.
- I A.
Operable flodes in which Function Inst. I b t He Operable m Startup/flot Aettem(81 Channelo Shut-Per Trip Trip Level Setting' down Refuel (7) Standby _ lhm System (1)(23) Trip Funetton X X X X 1.A 1 Mode Switch in Shutdown 1.A s
- f.
- X X
X X I 1% nuel Serne 3 High Flux (120/125 Indiented X(22) X(22) X 4 (5) 1.A IRM (16) X (5) 1.A j off scale X p i# 3 Inoperable 1.A er 1.9 X APMt (16) (24)(25) 1.4 er 1.R .High Flux (Flow Bissed) See Spee. 2.1. A.1 X w 2 High Finn (Fixed Trip) $120 $ X(21) X(17) (15) 1.A er 1.R f 2 1.A or 1.5 [' 2 High rius 1155 rated power X(21) X(17) X (11) (11) X(12) 3.A er 1.5 (13) t 2 Inoperative 23 Indicated on Scale j[. t 2 Downseale X(10) X X' 1.A 2 Migh Remotor Pressure $1055 pain 3 2 Mish Drywe11 X(8) X(8) X 1.A [,.' Pressure (til) W 2.5 psig j 6. 7, lri - f Level (14) 15386 above. vessel zero X X X 1.A Frw 2 Reactor Low Water i T 'd: fk$(M.- West Seren Discharge d 50 collone x X(2) X X 1.A 2 .Migh Water Letel In Tank x(2) x x 1.A (Ls-85-45A-D) F.[ Migh Water Level in East $50 de11one X 2 $) Screen Discharge Tank (LS-85-45E-H) j 8-ht{.5 '
h: ~ Taaf2 3.1.A asacTom PacTscTION SYSTEN (SCRAs4 INWTMpumpthT20N BB0elmetsNT ( Nic, geo. gg, operablo sendee in m ich Fenetion j2ae** Nest no a.or.I,te I NIS shot-startop/ mot g Trio 14 vel settine ig!m Defuel fil-f3 tit D' IRB A** I'" I II I d t 11(13) Trio Function Nela Steam Line tecla= X (3) (6) .I(3) (6) X (6) 1.A or 1.C $ 105 Valve closure 4 tien Talve closure X(4) 1.A or 1.D 2 Turbine Cont. Valve Fast Closure er & 330 kgg Twrttee Trip Turbine stop Valve X(a) 1.A or 17.0 e 4 $ 105 1Anive Closure closure J. af .W 5 set &154 pelg X(10) X (10) X (10) (19) 8 Turbine First stage 4 2 Pressure Permissive i 2 23 In. 35g, vacuum X(3) X(3) X
- 1.A or 1.C 2
Turbine condenser Imv Vacuum 2 Main Steam Line Nigh 3X 1eormal Full Power X(9) X (9) X(9) 1.A or 1.C Radiation (143 sackgrouna(20) e y 30 'u .). , i., '. y? a s ,.9.. (g.
- 1;-
t. b '* * ' i ( j' 0
t f* e ~ MAY 19 982 mrs mR TAntz 2 9 w .\\ 1. There shall be two operable or tripped trip systems for each -{ s 3. \\ function. If the minimus number of operable instrument channels per trip system cannot be met for both trip systems, the appropriate actions listed below shall be taken. A. Initiate insertion of operable rods and oomplete insertion of all operable rods within four hours. la refueling mode, suspend all operations involving core alterations and fully insert all operable control rods within ene hour. 3. Reduce power level to IEN range and place mode switch in 3 the startup/ Rot standby position within 8 hours. l l C. Reduce turbine load and close main steam line isolation I valves within 8 hours. Reduce power t'o less than 305 of rated. D. l 2. scram discharge volume high bypass may be used in shutdown or refuel to bypass scram discharge volume scram with control rod block for reactor protection system reset. 3. $ypassed if reactor pressure < 1055 peig and mode switch not in run. 4 sypassed when turbine first stage pressure is less than 154 psig. S. IRM's are bypassed when APRM's are onecale and the reactor k,i,.}. mode switch is in the run position. 6. The design permits closure of any two lines without a scram being initiated. 7. When the reactor is suberitical and the reactor water temperature is less than 212*F, only the following trip functions need to be. operable A. Mode switch in shutdown s. Manual scram C. Nigh flux 41RM D. scram discharge volume high level E. APRM 155 scram 8. Not required to be operatile when primary containment integrity is not required. 9. Not required if all main steamlines are isolated. - ,.. s ' 4. ) 5 .~i '? 75VWE Y%h ~~- .o._._
e gg
- 10. Not r;quirCG to to cporablo wh?n the rocctSr proostro 400001
/ head is QSt tic 3te'4 to tao vscoc1.
- p
- 15. The APRM down*cale trap f unction is only active when the reactor mode swatch is in run.
- 12. The APRM downuc.11e t. rip is automatically'bypanued when the IRM. instrument.ition is operable and not high.
- 13. Less than 14 operable LPRM's will cause a. trip system trip.
- 14. Channel shared by Reactor Protection System and Primary Containment and Reactor vessel Isol tion Control System.
A channel failure may be a channel failure in each system,
- 15. The APRM 15% scram is bypassed in the Run Mode.
- 16. C'hannel shared by Resetor Protection. System and Reactor Manual Control A charnel Enflure may' bc a channel failure System (Rod Block Portion).If a channel. in n11 owed to bc IHOPr.RAnl.E per Tahic 3.1. A.
in each nyntem. the correnpundinr. functlun in that nnac channel may be inoperable in t the Ruactor Manus! Control System (Rnd Block). 17; Not required while performing low power physics tests at atmospheric pressure during or after refueling at power levels not, to exceed 5 MW(t).
- 18. This function must inhibit the automatic bypassing of turbine co..trni valve fast closure or turbine trip scram and, turbine stop valve closure scram whenever turbine first stage pressure'is greater chn or equal to 154 psis.
T (,s,,,, ?,
- 1. A or 1.D shall be taken only if the permissive f ails
- 19. Action in such a manner to prevent the effected RPS logic from performing its, intended function.
Otherwise, no action is required.
- 20. Tnc nominni setpoints for alarm and resctor trip (1.5 and 3.0 t'ines background, respectively) are established. based on the normal backgroun.d at full power. The allowsbic setpoints for alarm and reactor trip are 1.2-1.8 and 2.4-3.6 tines bac)tground, respectively.
- 21. The APRM High Flux and Inoperative Trips do not have to be-operable in the Refuel Mode if the Source Range Monitors are connected to give a non-coincidence, High Flux scram, at 5 x 105 cps, The SRM's Ahall'be opershic per Specification 3.10.B.1.
The removal of eight (8) shorting links is required to provide non-coincidence high-flux scram protection from the Source Range Monitors.
- 22. The three required IRM's rer trip channel is not required in the Shutdown or Refurt Modes if ht'icant four IRM's (one in' cach core quadrant) are connected to give a non-coincidence, High Flux scram.
The removal of four (4) shorting links is required to provide non-coincidence high-flux scrsm protection from the IRM's.
- 23. A channel may be placed in an inoperable status for up to 4 hours for
- l .g j required surveillance without placInn the trip system in the tripped condition provided at icsst one OPERABl.E channel in the same trip system is apnitoring that parsmeter. h 6
- N..Gl,. - *C
- k
_ _... n ;__ & >- m
- u'.=-a
~ asc - ' - -i.~.q...n= m y = M e_
DEC1 1983
- 24. The Average Power Range Monitor scram funetien is varied (ref.
) Figure 1 1-1) is a funetien of roeirculation loop flew (V). The trip f setting of this function must be maintained in aseerdance trith 2.1.A. t.
- 25. The APRM flow ' biased neutron fluz signal is fed throust. a time constant aireuit of approximately 6 seconds. This time constant any be lowered er equivalently removed (no time delay) without affecting the operability of the flow biased neutron flux trip shannels. The APRM fixed high neutron flux signal does not incorporate the time sonatant but responds directly to instantaneous neutron flux.
e4 S l m I t 2 T.
- c. ; :.. -
v4 t 6 e e 9 9 g e e e 36a. s ,,,I J i ia.e,) - s
- .y %sy9y.w.my_;
4 ;_- M M . - ___.. __ - -- _ ' _hsW;4_,n..._3:,. i.... _ _ _ _ _, _ _ _ _ _ _. _ _. _ _ - - -.. _ _ _ _ - ~. _,
AAft0N SURVE!LLANCE REQUIREMENTS .. g a g _conntTIONS FOR Ott: p yROTECTgvg 1NSTRUMENTAT10N 4.2 FROTECTIVE INSTRUMENTATION Applicabillty Aeolicability ~ Applies to the plant instrumen-Applies to the serve 111ance re-tation which initates and con-quirement of the instrumentation trela a protective function. thist initiates and controls pre-l tactive function. obSective Objective 1 Te assure the operability of To specify the type and frequency protective instrumentation. of surveillance to be applied ta ) protective instrumentation. Specification ' Specification A. Primary Contain' ment and Reactor A. Primary Containment and Reactor 1 Buildinr. 1 solation Functions Su11 dine Isolation Functions l When primary containment inte-Instrumentation shall be func-1 -arity is required, the limitinr. tionally tested and calibrated ] as indicated in Table 4.2.A. ) conditions of operation for the instrumentation that initiates primary containment isolation-Systes logic shall be function-i are given in Table 3.2.A. This ally tested as indiesced in includes instrumentation that Table 4.2.A. initiates isolation of the reac-ter vessel. reactor building,
- c. I
'l main steam lines. and initiates ~ ehe stanJby ans treatment system. y R. Core and Containment Cooline 5. Core and Containment Coolint Systems - initiation & Control Systems - Initiation 6 Control The limiting conditions for Instrusentation shall be func-operation for the instrumenta-tionally tested, calibgyted and tion that initiates or controls checked as indicated in Tabis the core and containment cooling 4.2.5. systems are given in Table 3.2.5. This instrumentation must be System logic shall be function-operable when the system (s) it ally tested as indicated in initiates er controls are re-Table 4.2.3. quired to be operable as speci-fled in Section 3.3. Whenever a system or loop is made inoperable because of a required test or calibration. the other systems or loops that so f. N ', 'N s L - ~w~%.NyM2 lt ' .2.- .GSd ..w_ - --._ ~, ___ e
== .-.g. - +. 3 - - -- ,.r ,,,,,.y-,-,.-e-, .e-- -.-y-
-ns.t.cu A4..
- Li iiiNC sc+--Itt0NS 90s OPttAtt0N ODRTEtLLMICE RIOurtEMB1ETS s
3.3.8 teve and Cdetainment Coelina 4.1.8 Core s'ad Containment toe 11am [- I. ..et attt.tten t..et.e1 iv.t - i.itt.tte.. = t.e1 are required to be operable shall be seneidered operable if they are within the required serve 11 1ensa testias fregeeney and there le se reason to suspect that they ass laspetable. C. Centrel Red Block Actuetten C. Centre 1 Red Block Actuties The 11eiting senditions of lastrumentatten shall be imaggies-operatise for the instrumen-ally tested, calibrated and ehecked tatten that initiatesscontrol se indicated in Table 4.2.C. ved block are given la Table 3.2.C. System 1esic shall be funesdemelly tested as indicated la Table 4.2.C. DELETE Now covered by note 7.c. \\ \\ ~ D. Off-Gas Post Treatment Isolation Of f-Cas Foot Treatment isola 1I: ion Fanetton Functions i O gj - {-
- 1. Off Cas Post Treateent Monitors g, Off-Gas Post Treatment ?tonitorinz System i
..p V (a) Except se specified in (b) betraentation shall be fune-below, beth of f-gaa tionally aested ca11 braced'and post treatment radiation checked as tadicated la Table j annitors shall be operable 4.2.3. i l during reactor operation. The isolation function Systes logic shall be functies-ally tested as indicated ta trip settin5s for the Table 4.2.D. monitorn shall be set at a value not to exceeJ the equivalent of the stack release limit specified in specifitation 3.8.5.1. s I 51 ,e i 3 mse' t \\ g$ 4d^9 l t _ __ _ [_j ' [ . h N
- f 6
e_nffft10C CONDITIONS POR OptAATION IURTR?_*Md IIOUMIMDffS 3.3.9 Off 4ae Post Treatment feetation b.3.9 Off 4aa Poet Treatment Isolatisa Functions Function s. .l (bi Free and after the date Q that ame of the two of f-see y poet treatneat radiation omastere te ende er found to be inoperable, seatinued rosater power operetten te l permissible dertas the meat ( seven doye, provided that i the toeperable monitor ta tripped in the deuapeale l
- position. See radhties
- annitor ney be out of eervice for four hours for fumational test and/
or as11bration without the asuiter being ta a downscels tripped sendities. (c) Upon the loss of both off-gas poet treatment radia-tion monitor's. initiate an orderly shutdown and shut the maiseteam isolation valves or the off-gee I olation valve within m N! action 3. Brywell 1.eek Detection 3. Drywell .e e The limitias condittene of opere-Imatrumentaties shall be saltirated ties for the instrumentation that and sheeked as indicated in Tabla d ^ 'annitors, drywell leek detecties 4.3.3. v are given la Table 3.2.E. f. Sveve111ence Inserv=entation p. Surveillance Instrumentation The limiting senditions for the lastrumentaties shell be salibrated instrumentation that provides and shocked as indiasted in Tabla surre111ance information readeuts 4.2.7. are givsa in Table 3.2.F., 8. Centret teen teetation 6. Centret toen taelitie's The limitias senditions for faatrumentation shall be salibrated tastrunestation that isolates and thacked as indiaated in Table .. - the sentrol reca and initiates 4.2.0. the sentrol resa energency pressurisaties systene are gives la table 3.2.0. 58 / .. ~ ~ ~ -A w :6_ b e m a w _ N e 6 a_ - _- L
~ JUL 22 se I {[ SvavIILt.Alect m20UtRINDfTS r LtMtTtiet etT1ous Tot OrtaATION 1 l 3.2.5 Flood Protection 4.1.m Fleed Protection The unit sha21 be shutdown and serve 111ence shall be ;_ 1,A-placed in the sold conditime en the instreanstaties that - when Wheeler Reservoir lake mootters the reservoir 3mval se stage rises to a level each tadicated is Table 4.2.5. that water free the reservoir besime to run acrees the pumping staties deck at elevatten S65. j Requiremente for instrumentation that aseiters the reservoir level As given ta Table 3.2.5,. 3 2.I Meteorological Monitoring 4.2.I Meteorological Monitorina Instrumentation Instru:nentation The met'eorological monitoring instru-Each meteorological monitorig $attru=ent mentation listed in table 3 2.I shall be, channel shall be demonstrated operable operable at all times. by the performance of the GANNII, CECK at least once per 24 hours and the QLUGE:. 1. With the number of operable CALIBRATION at least once each 6 months. meteorological monitoring channels 3 less than required by table 3 2.I, ( restore the inoperable channel (s) to operable status within 7 M ys. 2. With one or more of the meteoro-logi: a monitoring channels inoperable for more than 7 days,. prepare and submit a Special Report tn the Commission, pursuant l to specification 6.7.3.c within the next 10 days outlining the cause, of the malfunction and the plans for restoring the system to operable status. (. ?3 ' L e
%M LIMITING C0tIDITIONS FOR OPERATION SURVE!LLANCh REQUIREMDr11, 3 2.J Seiscie Monitorina Instrumentation li.2.J Seismie Monitoring Instrsenentation 1. The seismic monitoring instruments 1. Each of the seismic mo,nitoring instru-listed in table 3.2.J shall be ments shall be demonstrated operable operable at all times. by performance of tects at the frequencies listed in table li.2.J. 2. With the number of seismic monitoring ' nstrunents less than the manber 2. Data sha13 be retrieved from all ilisted in table 3 2.J. restore the se(smic inntnunents actunted inoperable instrna.ent(n) tu operuhlc afuring n ncir.=le uvent anel nnalyy.ece status within 30 dayu. to AcLemine the snar,nitudu of the '4 vibratory cruiin.1 motion. A Specini 3 With one or more of the instruments Report shall be submitted to the listed in table 3.2.J inoperable for comissinn pursuant to specification more than 30 days,- submit a Special~ 6.7 3.D within 10 daye describing ~ Report to the Comission pursuant to the magnitude, frequency spectrum, speelficatinn 6.7.3.C within the next and rer.ultruit effect ugen p1:uit 10 days deceribing the cause of the featurec important to nat'cty. malfunction and plans for restoring the, instruments to operable status. 6 m e z... 4 e j e e $1s y-6 's g 5 .m :. g % esiM % i W LTE m_.M.. .ve . a.: .m.,. x ~.c.~ w. --o.~--.-
1 .^ n ,A. f f*. f. 0 .l f Y TABLE 3.2.A PRIMARY CONTAIlWENT ANO REAc1OR BUILDING ISO 1ATION INSTRUIENTATION Minimum Iso. Instrument Channels operable per Trip Sys(1X11) neet ton 911. Imvel seteine Actton ris ammarks
- 2 Instrument channel.-
a 530" abovg vessel sero A or 1 Below trip setting does the peactor Low water level (6) (8 er:d D followings g a. Initiates peactor Building Isolation b. Initiates Frimary containment Isolation ( Groupe 2,3,ead6) e. Initiates sors 1 Instrument Channel - 100 + 15 psig D 1. Above trip setting isolates the Beactor Eigh Pressure shetdoun cooling section valves of the RNR system. 2 Instronent Channel - a 378"above vessel seco A 1. setor trip setting initiates anin steam Lihe Isolation peactor Imv Water Level (t.IS-3-56A-D. sw 81) 5 '2.5 pets A or 1. Above trip settinig does the as 2 Instrument Channel - Righ Drywell Pressure (6) (8 and E)
- followings a.
Initiates Reactor Building J (PS-64 *56 A-D) s Isolation b. Initiates Primary Containment Isolation c. Initiates SGTS f 2 Instruzent Channel - 3 times normal rated 8 1. Above trip setting initiates min Nigh Radiation Main Stean full power tackground (13) steam Line Isolation g Line. Tunnel.(6) 2 Instrument Channel - 2 825 Peig (4) 3 1. Below trip setting initiates Neth Steam Line Isolation Imw Pressure Main Stean ( Line 1. Above trip setting tratiates Mein' 2 (3) Instriement Chennel - 5 1405 of rated steam fice 3 steam Line Isolation Eigh Flow Main Steam Line m "U i M 4D l H t .ll.t
1 = r. p I Taste 3.2.A j pmIsenar courAI:eesser AWo manCica suILoIns ISOEATION INSTWOMENTATION ) Minimus No. [1 - . Instrument. Channels operable menerks 4 ,ris Imeet settins action fin _ Q 'Per Trip Sys(1X11) y-- lo. C a 1. Above trip settine initiates j 2 (12) Isotsument channel - 5 200*r Main Steam Line Isotation. I Nsin Steam Line Tunne! c. Bigh Temperature C 1. Atowe trip setting initiates 2 (14) Instrument Channel - 16 0 - 100* F Iso 14t10r of Reactor water Reactor Water Cleasup cleanup I, ins from Beactor an3 f System Floor Drain Fesctor Water Return Line. j l Nigh Temperature l 2 Instrument channel - 100 - 180er _C 1. .:ame ss a'.ove n{ j- {l g Reactor unter Cleanup system space nigh l Temperature i-P 8' ' 1 Instrument channel - s 100 nr/hr or downscale c 1. 1 upscale or 2 downscale will a e. Initiate scts Beactor Building venti-b. Isolate reactor zone and E lation nigh Radiation - refueling floor. Close atmosphere control system. i ;, Deactor tone , c. .j 'a. Initiate SOT 5 M 1 opocale or 2 downecate will l 3 1 Instrument Channel - 5 100 nr/hr or downscale r '4 Icelate refueling floor. Reactor Building venti-b. Clo.:e atmosphere control system 0) j, lation Nigh Radiation - c. - 4 f { Refueling Ione j hl. Instrument Channel Charcoal Neaters 5 2000 cfm a and 1. Below 2200 efs, trip setting cesar-SGTS Flow - Train A it.*t. Heaters 5 2000 cfm (A or F) coal heaters will turn on. 2(7)(9) 2. Below 203C cf a, trip setting R.it. Nesters heaters will shut off. 2(7) (0) Instrument channel charcos1 Reaters 5 2000 cfm N and f. Selow 2000 efs, trip setting chst-l SGTS Flow - Train B R.H. Beaters 5 2000 cfm (A or F) coal heaters will torn om. 2. Below 2C00 cfe, trip setting R.N. l Westers heaters will shut off. F charcoal Reaters $2000 cfm N and 1. Below 2000 efa, trip settin, cfi.ar-coal heaters will tuts on. ,2 (7) (3) Instrument channel SGTS Flow - Train C R.H. Heaters 5 2000 cfm (A or F) ) trip setting R.N. Selow 2000 etc,4% of f. 2. l U '. heaters will st Neaters I p rg. ~ .f [ *. g,. a i M' .i h,,.% k. y
- y
(., L : ( l. 1 ~ -s s I, 1i TAht.s 3.2.4 '"* " " C'* 3""E# " * "" " 8 '# " * ""I'" * * ** *** 3 " Minimum No. Instrument i Channels Operable Per Trip Sys(1X}}) yunct ion Trio 1evel settime action fin aemarke 1 neactor svilding Isolation ast s 2 e es. a or r 1. selee trip setting presente 9 cynr10es trips and system perter. Timer trefueling floor) L2 hens f rom initiating isolation '( N or r 1. Located in unit 1 only 2. Par.-Lasive for static pressere 1 Instrument Channel -
- /A y(.
static Pressure control cos.t rol (SGTs A, B, or c on). Permissive (refueling channel shared by pesmissies on floor) ruetor sone static pressere cent. t. p Located in unit 1 only 1 static Pressure control s 1/2= 11 o a or r 1. 2. Controle static pressere of e Pressure petalator (Re-refuelinf floor dering reactor i feeling Floor) heildang teolation with SGTs rur.nine. l i i s t s 2 seco. O or A 1. Below trip setting presente 1 Reactor Building teolation spurious trips and system perter-or N Timer (reactor sonel bations from initiating isolation r, 'it I 1. Permisolve for static pressere I 1(9) Instr'unent channel - N/A control (ssTs A, e, or c on). Static Pressure control channel shared by pesmissive on b sormissive (reactor ret ating floor static pressurg f,,
- eone) s, control.
I 1(9) Static Pressure control 5 1/2" 15 o i I 1. controle static pressere of l reactor some during reactor l' Pressure Pegulator (reactor tuilding isolation with 34Ts sone) runnis.g. l l L. A 1. seter to Tomte 3.7.A for list of 2 (10) Group 1 (Initiating) Lorate N/A valves. 9 1. Refer to Table 3.7.A ter list of g l-C 1 Group 1 (Actua tion) Imgic N/A valves. 1[. r-i Y. M i d.
- g f:,
P 4 l W. 'd :
s . TABLE 3.2.A P3t1 MARY CDerTADelt. t? Alto REncTOR BUILDING IsotATION IISTRIIMSWTATICIt 1 Minimum No. [ Instrument Channels Operable per Trip Sys(l)(}}) Function Trio Level Settine Action (11 Remarks 2 eroup 2 (Initiatin l Imgic N/A A or 1. Refer.to Table 3.7.A for list of (3 and E) valves. D 1 Group 2 (RHR Isolation. N/A Actuation) togic I Group 8 (Tip-Actuation) N/A J logic 1 ercup 2 (Drywell rump M/A R Draine-Actuation) Logic F and'G 1. Part of Group 6 Logic. 1 Group 2 (Reactor Lailding N/A s pefueling Floor, and Dry-well Vent and Purac-Actuation) fogic y, 2 Group 3 (Initiatin1) Iogic tI/A C
- 1.
- Refer to Table 3.7.A for list of valves.
e, N/A C 1 Group 3 (Actuatiohl Logic 1 Group 6 Logic N/A F and G 1. Refer to Table 3.7.A for list of valves. l-1 Group 8 (Initiatinql togic N/A J 1. Refer to Table 3.7.A for list of valves. lj 2. Same as Group 2 initiativue logid. 1 Reactor Building Isolation N/A N or F 1. tagic has permisolve td refeltling b A floor static pressure regulator. V (refueling floor) Logic 1 Reactor Builditur Isolation N/A N or G 1. Logic has perales19e to reactor p (reactor zonel Iagic or A zone static pressure upgetator, g O L-L CA f.i k[ s... a y ; )l.- .d, tl. Q- ?l r g
,% M /% .X ..y j ( ^ / ... e i TRSLE 3.2.A Minimus No. Instrument ' Cliennele Operable ,,,,,g, Per Trip Sys(1XII) p ,,i,,,,,3,,,,,,, 1(7) (0) SBTS Train & Imple WA L er m ad M 1 (73 (9) SGTS Train S Imgic WA L or I f. b-1(7) (8) SETS Train C Imgie N/A L or own l Static Pressure control WA E or F 1. Imcated in unit 1 only. '1 l p (refueling floor) Logic I f Statie Freesdre Centrol WA I 189) (reactor sonel Logie-i 3 } h Defe'r to Table 3.2.3 for ScIC and NFCI functions including Croepe 4, S, and 7 valese. i 5 s k r"" i N N g p F h i -e.
- o,*
ante 5 FOR TABLE 3.7.A JUL 22982 g 1. Whenever the respective f actions are required to be operable, there shall be two operable or tripped trip systeme,for each function. If the first ce1ve cannet be met for one of the trip systems, that trip eyotes or logic for that functies shall be tripped (or the appropriate action listed below shall be taken). If the colmen cannot be met for all trip systems, the appropriate actien listed below shall be takes. A. lattiate an orderly shutdown and have the reacters ~ l in Cold Shutdown Condition in 24 hours. f B. Initiate an orderly test reduction and have Main Steam Lines l Anstated within e1Aht hours. C. leelate Reacter. Water Cleanu'y System. D. leelste Shutdown Cooling E. lattiste primary centstament isolation within 24 hours. ' F. The handling of opent fuel will be prohibited and all operations ever spent fuele sad open reacter walls shall be prohibited. C. 1selste the reacter bu11 dias and start the standby gas treatment system. M. leanediately perform a logic systes functional test on the logic in [ the other trip getensand daily thereafter not to exceed 7 days. 1. Ne action required. Reacter sone wella and ceiling designed above j ovetten pressure of the SCT3. I J. Withdraw TIP. K. Manually 1selste the affected lines. Refer to section 4.2.E for the L. N*"b'NN*t o i "is do* '
- e r'aN* actions H or action A and F.
If two SCTS
- I trains $eterminedtteinoperabetakerae actions A and T is t a channel la failed in the unsaf e condition.
2. When it the other channels that monitor the same variable shall be functionally tested tamediately before the trip systen er logic for that function is tripped. The trip systes er the logic for that function may remain entripped for short periods of time to allow functional testing of the ether trip system er logic for that function. 3. There are four sensorE per steam line of which two aust be operable. 4 Only required in Run Mode (interlocked with Mode $ witch). S. Not required in Run Mode (bypassed by mode ow',6ch). 4 S 60 - 8 o k e e -^_-
l' ~ OCT 161984 4. Channel shared by Rps and Primary containment & Reactor vessel Isolation control system. A channel failure may be a channel failure in each system. 7. A train is considered a trip system. 4. Two out of three SGTS trains required. A failure of more than one will require action A and F. 9. There is only one trip system with auto transfer to two power sources. 10. Refer to Table 3.7.A add its notes for.a listing of I_ solation Valve Groups and their initiating signals. A channel may be placed in an inoperable status for up to four hours for gg* required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.
- 12. A channel contains four sensors, all of which,must be operable for the channel to be operable.
70'er operations per=1tted for up to 30 days with 15 of the 16 ta=nerarure swit=has operabla. ~ In the event t' hat normal ventilation is unavailable in the main steam line tdnnel, the high temperature channels may be bypassed for a period of not to exceed four hours. During periods when normal ventilation is not available, such as during the performance of secondary containment leak rate tests, the control room indicators of .he affected space temperatures shall be monitored for indications of small steam leaks. In the elvent of rapid increases in temperature (indicative of steam line break), the operator aball.promptly close the main steam line isolation valves. i
- 13. De nominal serpoints for alarm and reactor trip (1.5 and 3.0 times I
background, respectively) are established based on the no:..a1 back-ground at full power. The allovable serpoints for alarm and reactor trip are 1.2-1.3 and 2.&-3.6 timas background, resnectively.
- 14. Requires two independent channels from each ph/sical location, there are two 1ocations.
~ 61 g' e a.
.eg i l L3H171NC CON 0!TIONS FOR OPERATION SURVEILLANCE REQUIREMENTS [ = SEP 15 581 4 .1 cow?ArNMENT SYSTEMS s 3.1 ggf.q M.NMit!.T 1.1DI D I g g g hility Koolicability ) Applies to the operating status Applies to the primary and i of the primary and secondary secondary containment containment systens. int eg rzty. 4 geiective Obiective i integr1*.y of the To assore thee primary and secondary To verzfy the integrity of the containment systems. primary and secondary containment. I.9fifIJSf.11T L Spe ci f i ca tion A. Primary Conn i,0fant A. Primary Containment 1. At any time that the irradiated fuel is in 1. Pressure Suoeressice the reactor vessel, ChemDer and the nuclear system is pressurized a. The suppression above atmospheric chanber water level pressure or work is be Checked once per being done which has day. Whe e r W / the potential t is added to the i drain the vessel, the pressure suppression suppression socl by pool water level and testing of' the ECCS temperature shall be or relief valves the maintained within the Pool temperature shall f ollowing limits be continually monitored i except as specified and shtll be observed in 3.7.A.2. and logged every 5 minutes until the heat l a. Minimum water" level = addltion is terminated. l -6.25" (differential pressure control >0 paid) -7.25" (0 psid dif feren-tial pressure control) b. Maximum water level = - 1" 2 i e f 227 t 3 An' F-' a I , I N_" M4 .M. Q4,
' tavised 124-78 r[' 2.IMITING CONDITIONS FOR OPERATION SURVEZLLMB3 REQUZM 3.7 corrAriettist SYSTEMS s.1 gpwam stems
- c. With the suppression pool water temperature > 95'F initiata pool cooling and restore the temperature to <
95'F within 2T hours or be in at
- x.... ~r lesst hot shutdown within the next 6 hours and in cold shutdown within hours.ollowing 30 the f d.
With the suppression pool water temperature > 105'F f-during testing of F-ECCS or relief valves.' - ~ ~ stop all testing, initista pool cooling. and follow the action in specifi-cation 3.7.A.1.c aboves e. With the suppression pool water temperature > 120*F following reacter isolation, depressurize to < 200 psig at nomal cooldown rates. f. With the suppressiin. pool water temperature > 110*F during startup or power operation the reactor shall be scramed. \\ ( J.l g 228 e y O
.~ SEP 19 984 LIMITING CONDITIC38 FCR OPERATI(RI SURVEICLIENCE $30tPEREMNTS 3.7 COMAYNMENT SYSTEM 8 4.7 COMA 1100ENT SYSTEMS B. Standbv Gas Treatment System .3. Standter Gao Treatment E.XE1.El 1. Except as specified in Specification 1. At Itast once per 3.7.B.3 belcw, all year, the following ' three trains of the conditions shall be standby gas treatment demonstrated. systemi i a. Presegre.orop across the shall be combined EEFA operable at all times filters and when secondary charcoal containnent integrity adsorber banks is required. is less than 6 inches of water at a flow of 9000 cfm it 105). b. The inlet heaters cm each cireelt are testes in ac a rcance with Alts! B510-1975 and a're ~ capable of an output of at j least 40 ku. c. Air distribution is unifom ( within 2C5 ^ across HEPA filters and charcoal adsorbers. 6 236 .a _,-er -,--w-wwwr-. .ww--------o-w--
( REVISED: 5-4-79 4ITING CONDIT10BS FOR OPERATION SURVEI15ANCE REQUIREMENTS 4.1 Colfth1NMElff SYSTEMS 3.7 CONTAINMENT SYSTEMS 2. a. The tests and 2. a. The results of sample analysis the in-place of Specification cold DoF and 3.7.3.2 shall be halogenated Performed at hydrocarbon least once Per tests at k 105
- Perating cycle desip flow on or once every it REPA filters and sonths whichever charcoal occurs first for adsorber banks standby service shall show k995 or after every DOP removal and 720 hours of 1995 halogenated system operation hydrocarbon and following remova1.when' significant tested in Painting, fire accordance with or chemical ANSI M510-1975.
release in any ventilation zone
- b. ~ Tht results of communicating laboratory with the system.
carbon sample analysis shall b. Cold DOP testing show 1905 shall be radioactive performed after methyl iodide each complete or. removal when partial tested in replacement of accordance with the EEPA filter AMsI N510-1975 bank or siter 030*c. 955 any structural R.E.). maintenance on c. System shall be the system shown to operate housing. within,f 101 de. sign flow, c. Malogenated hydrocarbon testing shall be performed after each complete or partial replacement of the charcoal adsorter bank or i after any structural maintenance on 237 the system ( housing. Amendment No. 50 r 4 1 ~ 'r
7 ,inrneo casernEs rea orinnrren sownru.nmen anoaramemSEP 281983 i 3.7 comraranan.nm
- .5 comrarman smm.
4. Each train shall be operated a total of at least 10 hours every month. e. Test sealing of gaskets for housing doore shall be performed utilising chemical smoke generators during each test performed ior compliance with specification 4.7.3.2.a and specification 3.7.3.2.a. i { 3. From and after the 3. a. Onca per date that one train ePerating cycle of the standby gas automatic treatment system is initiation of made or found to be each branch of inoperable fer any the standby gas reason, reactor treatment system operation and feel shall be handling is demonstrated permissible only from each unit's during the succeeding controle. 7 days unless such circuit is sooner b. at least once made operable, Per year manual l provided that during operability of each 7 days all the bypass valve active components of for filter the other two standby cooling shall be gas treatment trains demonstrated. shall be operable. e <-f j 238 r 1 4 .c - r.m%_,r-_._,---,--_- -g ,-,gp--.-~,%_
......a. -.ee . LgM..ITtWC CCH31710HS FOR CPERATION SURVEILuMCE REQUIRZMENTS J. 7 gg gAlt0.1ENT SYSI M S 4.7 CONTAINMENT SYSTEMS c. When one train of the standby gas treatment system becomes inoperable the other two trains shall be demonstrated to he operable within 2 hours l and daily thereafter. 4 If these conditions cannot be met, the reactor shall be placed in a condition for which the standby gas treatment system is not required. A' i I l 239 O f',- AMENDMENT No. 50 s,. e L 'G ., & ;r
.-w6 oc s eiiit. cow ,,c6curn, cut)/(Energy ini 2 , a mg s o V,t + 1/2 at [ = mC* KE = 1/2 mv ~ . a = (Vf - 1 )/t A = 1,*4 A = A e* 3 3 PE = mgn v = V, + at
- = e/t a = an2/t1/2 = 0.693/t1/2 f
2 1/2'N
- U*1NI O W = v :P nD A=
[(t1/2)
- II I) 4 D
t.E = 931 am m = V,yAo - T.x a I=Ie Q.= m. h o Q = mCoat 6 = UAc T I = I e'"* n I = 1,10-*/ M Pwr = w ah f TVL = 1.3/v sur(t) P = P*10 HVL = -0.693/u P = P,e / t SUR = 26.06/T SCR = S/(1 - K,ff) CR, = S/(1 - X,ff,) CR (1 - K,ffj) = CR (I - "eff2) SUR = 26s/t= + (a - o)T j 2 ~ T = (t*/s) + [(s - oV Io] 'M = 1/(1 - K,ff) = CR /CR j T = 1/(o - s) M = (1 - X,ffa)/(1 - K,ffj) T = (s - o)/(Io) SDM = ( - K,ff)/K,ff a = (K,ff-l)/K,ff = AKeff/K,ff t= = 10 seconos I = 0.1 seconds o = [(t=/(T K,ff)] + [a,ff (1 + IT)] / Ijj=Id d 2,2 2 P = (reV)/(3 x 1010) Id gd jj 22 2 I = eN R/hr = (0.5 CE)/d (meters) R/hr = 6 CE/d2 (f,,g) Water Parameters Miscellaneous Conversions I gal. = 8.345 lem. I curie = 3.7 x 1010eps 1 gal. = 3.78 liters 1 kg = 2.21 lem 1 ft' = 7.48 gal 1np=2.54x10]8tu/nr Density = 62.4 1 /ft3 1 mw = 3.41 x 100 Btu /hr Density = 1 gm/c lin = 2.54 cm Heat of vaporization = 970 Stu/lom 'F = 9/5'C + 32 Heat of fusion = 144 Stu/lbm 'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf I ft. H O = 0.4335 lbf/in. 2 e = 2.718 1 6
m V.lvm., ft'/lt Enth. ley. Sty /It> Entr.py, Str/lb a F l ' ;'e 7,* t, i, m 8 a. a, 4 5 32 0.08859 0.01602 3305 3305 -0.02 1075.5 1075.5 0.0000 2.1873 2.1873 32 35 0.09993 0.01602 2948 2948 3.00 1073.8 1076.8 0.0061 2.1706 2.1767 35 l 40 0.12163 0 01602 2446 2446 8 03 1071.0 1079.0 0.0162 2.1432 2.1594 40 45 0.14744 0.01602 2037.7 2037.5 13.04 1068.1 1081.2 0 0262 2.1164 2.1426 45 80 0.17796 0.01602 1704.8 1704.8 18.05 1065.3 1083.4 0.0361 2.0901 2.1262 to 80 0.2561 0.01603 1207.6 1207.6 28.06 1059.7 1087.7 0.05$5 2.0391 2.0946 40 30 0.3629 0.01605 868.3 868.4 38.05 1054.0 1092.1 0.0745 1.9900 2.0645 70 80 0.5068 0.01607 633.3 633.3 48.04 1048.4 1096.4 0.0932 1.9426 2.0359 to i 90 0.4981 0.01610 468.1 468.1 58.02 1042.7 1100.8 0.1115 1.8970 2.0086 to 100 0.9492 0.01613 350.4 350.4 68 00 1037.1 1105.1 0.1295 1A530 1.9825 300 310 12750 0.01617 265.4 265.4 77.98 1031.4 1109.3 0.1472 1.8105 1.9577 110 180 1.0927 0.01620 203.25 203.26 87.97 1025.6 1113.6 0.1646 1.7693 1.9339 120 130 2.2230 0.01625 157.32 157.33 97.96 10192 1117.8 0.1817 1.7295 1.9112 130 1 140 2.8892 0.01629 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140 i 150 3.718 0.01634 97.05 97.07 117.95 2006.2 1126.1 0.2150 1.6536 1.8686 150 160 4.741 0.01640 77.27 77J9 127.96 1002.2 1130.2 0.2313 1.4174 1A487 140 l 870 5.993 0.01645 62.04 62.06 137.97 996.2 1134.2 0.2473 1.5t22 1.8295 118" 180 7.511 0.01651 50.21 50.22 144.00 990.2 1138.2 0.2631 1.5480 1A111 100 190 9.340 0.01657 40.94 40.96 158.04 984.1 1142.1 0.2787 1.5148 1.7934 190 200 11.526 0.01664 33.62 33.64 168.09 977.9 1146.0 0.2940 1.4824 1.7764 300 210 14.183 0.01671 27.80 27.82 178.15 971.6 1149.7 0.3091 1.4509 1.,7600 210 212 14.496 0.01672 26.78 26.80 100.17 970.3 1150.5 0.3121 1.4447 1.7568 212 i 220 17.186 0.01678 23.13 23.15 188.23 965.2 1153.4 0.3241 1.4201 1.7442 220 1 230 20.779 0.01685 19.364 19.381 198.33 958.7 1157.1 0.3388 1.3902 1.7290 230 l 240 24.968 0.01693 16.304 16.321 208.45 952.1 1160.6 0.3533 1J609 1.7142 240 l 250 29225 0.01701 13.802 13 819 214.59 945.4 1164.0 0.3677 1.3323 1.7000 250 240 35.427 0.01709 11.745 11.762 228.76 938.6 1167.4 0.3819 1.3043 1.6862 260 t 270 41.856 0 01718 10.042 10.060 238.95 931.7 1170.6 0.3960 1.2769 1.6729 270 200 49.200 0.01726 8.627 8.644 249.17 924.6 1173.8 0.4098 1.?501 1.6599 200 290 57.550 0.01736 7.443 7.460 259.4 917.4 1176.8 0.4236 1.2238 1.6473 290 300 47.005 0.01745 6.448 6.466 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300 l 310 77.67 0.01755 5.609 5.626 280.0 902.5 1182.5 0.4506 1.1726 1.6232 310 l 320 89.64 0.01766 4.896 4.914 290.4 894.8 1185.2 0.4640 1.1477 1.6116 320 I 840 117.99 0.01787 3.770 3.788 311.3 878.8 1190.1 0.4902 1.0990 1.5892 340 360 153.01 0.01811 2.939 2.957 332.3 862.1 1194.4 0.5161 1.0517 '3.5678 360 340 195.73 0.01836 2.317 2.335 353.6 844.5 1198.0 0.5416 1.0057 1.5473 380 400 247.26 0.01864 1.8444 1.8630 375.1 825.9 1201.0 0.5667 0.9607 1.5274 400 1 420 305.78 0.01894 1.4808 1.4997 396.9 806.2 1203.1 0.5915 0.9165 1.5080 420 j 440 381.54 0.01926 1.1976 1.2169 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440 1 460 466.9 0.0196 0.9746 0.9942 441.5 763.2 1204.8 0.6405 0.8299 1.4704 460 l 450 566.2 0.0200 0.7972 0.8172 464.5 739.6 1204.1 0.6648 0.7871 1.4516 400 i 500 680.9 0.0204 0.6545 0.6749 487.9 714.3 1202.2 0.6890 0.7443 1.4333 500 j 523 812.5 0.0209 0.5386 0 5596 512.0 687.0 1199.0 0.7133 0.7013 1.4146 520 540 962.8 0.0215 0 4437 0 4651 536 8 657.5 1194.3 0.7378 0.6577 1.3954 540 i SCO 1133.4 0.0221 0.3651 0.3871 562.4 625.3 1187.7 0.7625 0.6132 1.3757 560 550 1326.2 0.0228 02994 0.3222 589.1 589.9 1179.0 0.7876 0.5673 1.3550 580 ] j 400 1543.2 0.0236 02A38 0.2675 617.1 550 6 1167.7 0 8134 0.5196 1.3330 Goo 620 1786.9 C.0247 0.1962 0.2208 646.9 506.3 1153.2 08403 0.46S9 1.3002 620 5 640 2059 9 0.0260 0.1543 0.1802 679.1 454.6 1133.7 0.8666 0.4134 1.2821 640 l 660 2365.7 0 0277 0.1166 0 1443 714.9 392.1 1107.0 0.8995 0.3502 1.2458 660 i 640 2708.6 0.0304 0.0808 0.1112 758 5 310.1 1068.5 0.9365 0.2720 1.2086 680 7C0 3094.3 0 0366 0.0386 0.0752 822.4 172.7 995.2 0.9001 b.1490 1.1390 700 705.5 3208 2 0.0508 0 0.0508 906.0 0 906.0 3.0612 0 1.0612 705.5 TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED i WATER (TEMPERATURE) L A.3 i
~ _ _ _ _ _ _ _ _ _ _ _. Volume. U/te Enthelpy. Otv/ite Extt py. Ste/4 a F Emergy. Stefte i PN88-I'*# Water Evap Steam Water (vep Steem Water (vap Steam Cater Steem Poes. f pose pela F A A g s, e, e, j 't 't 's f t A, s, s j E0886 32.018 0.01602 3302.4 3302.4 0.00 1075.5 10755 0 2 1872 2.1872 9 1021.3 GAe86 f t e.10 35.023 0A1402 2945.5 2945.5 3 03 10738 1076.8 0 0061 21705 2.1766 383 1022.3 E10 1 0.15 45.453 0 01602 20043 20047 13.50 1967.9 1051.4 0 0271 2.1140 2.1411 13.50 1025.7 Ell e.20 53.160 0 01603 1526 3 1526 3 21.22 10615 1084 7 0 0422 2 07?S 2.1160 21.22 1028 3 S.20 1 E30 64 484 001604 10393 10393 32.54 10b7.1 10893 0 0641 2.0168 2.0509 32.54 1032 0 1 30 l SA0 72369 0.01406 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2.0M2 40.92 1034.7 3A0 e.S 79.586 0 01607 641.5 641.5 47.62 1044 6 1096.3 0.0925 1.9446 2.0370 4742 10369 Es i G.6 85.215 0.01609 540.0 540.1 53.25 1045 5 10981 0.1028 1.9186 2.0215 53.24 10383 E6 I &F 90 09 0.01610 466.93 466.94 5510 1042 7 11008 0.3 1A966 2.0083 58.10 1040.3 33 SA 94.38 941611 411.47 411.69 62.39 1040.3 1102.6 0.1117 1A775 1.9970 4":39 10413 cA j &9 98.24 0.01612 36s.41 348.43 66.24 1035.1 1104.3 0.1264 1A406 1.9870 4624 1042.9 as 1.0 101.74 0.01614 333 59 333.60 69.73 1034.1 11058 0.1326 13455 1.9781 89J3 1044.1 33 3.0 126 07 0.01623 173.74 17336 94.03 1022.1 1116.2 0.1750 1.7450 1.9200 94A3 10513 3A 3.0 141.47 0.01630 11s 71 118.73 109.42 1013.2 11226 0.2005 14854 1.8864 109.41 1056.7 a.e 4.0 152.96 0A1436 90 63 90 64 120.92 1006.4 1127J 0.2199 14428 1.8626 120.90 1060.2 4A S.O 162.24 OA1641 73.515 73.53 130 20 1000.9 1131.1 0 2349 14094 13443 130.18 1063.1 SA I SA 170.05 OA1645 61.967 61.98 138.03 996.2 1134.2 0.2474 1.5820 12294 1 Mal 1065.4' SA 7A 176.84 0.01649 536M 5345 144.83 992.1 1136 9 0.2581 1.5587 13168 14431 1067.4 7A ' S.O 182.86 0.01653 47.328 47.35 150.87 988.5 1139.3 0 2676 1.5384 12060 15034 1059.2 SA 9.0 188.27 0.01656 42.385 42.40 1 %.30 985.1 1141.4 0.2760 1.5204 1.7964 15628 1070.8 94 30 193.21 0.01659 as404 38 42 161.26 982.1 1143.3 0.2836 1.5043 1J879 141.23 1072J 30 14.696 212.00-0 01672 26182 26 30 180.17 970.3 1150.5 0.3121 1A447 1.7568 180.12 1077A 14.806 15 213 03 OA!673 26.274 26.29 181.21 969.7 1150.9 0.3137 1.4415 1.7552 181.16 1077.9 15 30 227.96 0.01683 20.070 20 087 196 27 960.1 11%.3 0.3358 1.3962 1.7320 196.21 1082.0 30 30 250.34 0 01701 133266 13 744 218.9 945.2 1164.1 0.3652 1.3313 1.6995 IISA 1087.9 30 40 267.25 0 01715 10 4794 10.497 236.1 933.6 1169A 0J921 1.2844 1.6765 2360 1092.1 40 80 281.02 0.01727 8.4967 S.514 250.2 923.9 1174.1 0.4112 1.2474 J4586 250.1 1095.3 80 4 00 292.71 0 01738 7.1 H 2 7.174 262.2 915.4 1177.6 0.4273 1.2167 1.6440 242A 1098.0 80 70 302.93 0.01744 6.1875 6205 272.7 907.8 1180.6 0 4411 1.1905 1.6316 272.5 1100.2 70 80 312.04 0 01757 5 4536 5 471 232.1 900.9 1183.1 0.4534 1.1675 1.6208 281.9 1102.1 80 90 320.28 0.01766 4.8777 4.895 2903 894.6 1185.3 0.4643 1.1470 1.6113 290.4 11033 90 100 327.82 0.01774 4.4133 4.431 298.5 888.6 1187.2 0.4743 1.1284 1.6027 298.2 1105.2 300 120 341.27 0.01789 3 7097 3.728 312.6 877A 11904 0 4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 0 01803 3 2010 3 219 325.0 868.0 1193 0 0.5071 1.0681 1.5752 324 5 1109.6 140 160 363 55 0 0;815 2.8155 2.834 336.1 859.0 11951 0.5205 1.0435 1.5641 335.5 1111.2 See 4 180 373 08 0.01827 2 5129 2.531 346.2 850 7 1196.9 0 5328 10215 1.5543 345.5 1112.5 ISO 200 351 80 0 01839 2.2689 2.267 355.5 842.8 1198.3 0 5438 1.0016 1.5454 3543 11131 300 250 400 97 0 01865 1.8245 1A432 376.1 825 0 1201.1 0.5679 0 9585 1.5264 375.3 1115.8 250 300 417 35 0 01889 1.5239 1.5427 394.0 808 9 1202.9 0.5682 0.9223 1.5105 392.9 1117.2 300 f 350 41173 001913 1.3064 1.3255 409.8 7942 12040 0 60 % 08909 1.4968 4066 1118 1 350 l 400 4:2M 00193 1.14162 1.1610 424.2 760 4 1204 6 0 6217 0 8630 1.4847 422.7 11IE 7 400 450 4t.5 s 6 0 0195 1.01224 1.0318 437.3 767.5 1204.8 06360 0 8378 1.4738 435J 1118.9 450 \\ 1 500 467.01 0 0199 0 90787 0 9276 449.5 755.1 1204 7 0.6490 0 8143 1.4639 447.7 11188 900 $5J 476 94 0 0199 052183 0.8418 460.9 743.3 1204 3 0 6611 0 7936 1.4547 456.9 1118 6 550 600 48520 0 0201 014962 03698 471J 732.0 1203 7 0.6723 0 7738 1.4461 469.5 1116.2 500 i M.503 08 0 0205 0 63505 0 6556 491.6 710.2 1201 8 0 6928 0 7377 1.4304 488.9 1116 9 700 800 514 21 0 0209 0.54809 0.5690 509.8 689 6 1199 4 0 7111 03051 1.4163 506 7 1115.2 800 1 900 5)! 93 0 0212 0 4796S 05009 526 7 669 7 1196 4 0 7279 0 6753 1.4032 523 2 1113 0 900 l 2000 544.53 0 0216 0 42435 0 4460 542.6 f 50 4 1192 9 07434 06476 1.3910 5306 1110 4 1000 1100 550 2d 0.0720 0 376(3 0 4005 557.b 631 5 1169 1 0 7573 0 6216 1.3794 5131 1107.5 1100 1 1200 =67.19 0 0223 0 34013 0.362h 571.9 6130 11848 07714 0 $969 1.3693 556 9 1104.3 1200 1900 57742 00227 030722 0.3299 585 6 544 6 1180 2 03842 05733 1.3577 580.1 1100 9 1300 i l 1400 517 07 0 0731 0 27811 0 3018 598 8 576 5 1175 3 0 7966 05507 1.3474 592.9 1037.1 1400 t 1500 SW 20 0 02 n 02h372 0.27/2 6tlJ 550 4 1170 1 0 8035 O!233 1.3373 605 2 1093.1 1500 ) 20M C35 80 0 02*,7 0167% 01883 672.1 4652 1139 3 0 8625 0 4256 1.7b81 662 6 IOGS 6 2000 i 2500 66d 11 00266 0 10209 01307 7313 3616 1093 3 C 9139 0 3206 1.2345 718.5 1032.9 2500 3000 695 33 0 0343 0 050/3 0 0850 801 8 218 4 1070 3 0 9723 01891 1.1619 7823 973.1 3000 1 i 3298.2 701 47 00W8 0 0 050d 906 0 0 906 0 1.0612 0 1.0612 875 9 875.9 3708.2 1 i j i TABLE A.3 PROPERTIES OF SAT,URATED STEAM AND SATURATED WATER (PRESSURE) i A.4
I 4 Tempeesheee, F Abe press ) 100 200 300 400 900 000 700 000 900 1000 1100 1200 1300 1400 3500 (k e 0.0161 392 5 452.3 511.9 471.5 631.1 890 7 3 6 88 00 1150 2 1195.7 1241.8 1288 6 IBM i 1984 5 (101.74) s 0.1295 2.0b09 2.1152 2.1722 2.2237 2.2708 2.3144 e 0.0161 78 14 90 24 102 24 114.21 126 15 138 08 150 01 161.94 173 86 185 78 197.70 209 42 221 6 e 48 01 1345 6 1144 8 1241.3 1784 2 1335.9 1364 3 1433 6 1483 7 1534 7 1586 7 1639 6 1993 3 174 (162.24)s 0.1795 1.8716 1A369 1.9943 2.0460 2 0932 2.1369 2.1776 2 2159 2 2521 2.28M 2.31M 2.3509 2.38 e 00161 38 to 44 98 51 03 57.04 63 03 M 00 74 98 30 M 36 91 9287 98 84 les 80 110.76 Ils72 l 30 6 68 02 1146 6 11937 1240 6 1287.8 1535 5 1984 0 14334 1483 5 ISM 6 15466 1639 5 1843.3 1747.9 (19:J1) s 0.1295 1.7928 1A593 1.9173 1.9692 2.OlM 2.0603 2.1011 21394 2.1757 2.2101 2.2430 22744 2.30 i e 0.0161 0.0146 29 899 33 M3 37.985 41.986 45.978 49 964 53 M6 57.926 61905 65.882 49358 73233 77 / 38 6 48 04 168 09 1192 5 1239.9 1287.3 1335 2 13838 1433.2 1483 4 1534 5 1546 5 1639 4 1883.2 1747A 18 (213.03) s 0.1295 0.2M0 1A134 18720 1A242 1.9717 2.0155 2.0563 2At46 2.1309 2.1453 2.1982 2 2297 22599 2.3 1 ? e 0.0161 0.0166 12.3 % 25 428 28.457 31 466 34.465 37.458 40 447 43 435 46 420 49 405 52.38B 55 1 SS 4 68.05 168 11 1191.4 1239.2 1286 9 13M.9 1383 5 1432 9 1483.2 1534.3 1586.3 1639.3 18e3.1 174 l (227.96) s 0.1295 0.2940 1.7805 1A397 1A921 1.9397 1.9836 2.0244 2.0628 2A991 2.1336 2.1465 2.1979 2.2 e 0.0161 0 0166 11.035 12 624 14.145 15685 17.195 18 699 20.199 21.697 23.lM 24 689 26.183 2 de t 68.10 16815 1186 6 1236 4 1285.0 13336 1382.5 1432.1 1442.5 1533.7 1585.8 16388 1992.7 1 i (26725) s 0.1295 0.2940 1.6992 1.7608 1A143 13624 1.9065 1.M76 1.9860 2.0224 2.0569 2.0899 2.1224 2.1516 1.180,7 e 0.0161 0.0156 7.257 8354 9 400 10 425 11 438 12.446 13.450 14.452 15.452 16.450 17.444 18.445 88 6 48.15 168 20 1181 6 1233.5 1283 2 1332 3 1381.5 1431.3 1481 3 15?3.2 1545.3 1638.4 1892 4 1 l (292.71) s 0.1295 0.2939.1.6492 1.7134 1.7681 14168 1A612 1.9024 1.M10 1.9174 2.0120 2.0450 2.0765 2.10 e 0.0l61 0 0166 0.0175 4.218 7418 7.794 S.560 9.319 10.075 10 829 11 581 12.331 13ABI 13 A29 14.577 to 4 48 21 148.24 269.74 1230.5 1281.3 1330.9 1380.5 1430.5 1481 1 1532 6 1584.9 1635 0 1492.0 1746A J (312A4) s 0.1295 0.2939 0.4371 1.6790 1.7349 1.7842 1 A289 32702 1.9082 1 9454 1.9800 2.0131 2.0446 2.075 e 0.0161 0 0164 0 0175 4 935 S.548 4.216 4A33 7.443 8050 8655 9258 9460 10460 11A00 11 A59 100 h 68.26 168 29 269 77 1227.4 1279.3 1329 6 1379.5 1429.7 1480 4 1632.0 1584 4 1637.6 18914 17M.5 (327A2) s 0.1295 0.2939 0.4371 14516 1.7058 1.7586 1A036 1A451 14839 1.9205 1.9552 1.9883 2A199 2.0002 1A e 0 0161 0 0lM 0 0175 4 0786 4.6341 5.1637 5 6831 6.1929 67006 7.2000 7.7096 S.2119 8.7130 9.2134 9 120 A 48 31 168 33 269 81 1224.1 1277.4 1328 1 13784 14285 14798 1531.4 1583.9 1637.1 IG91J 17462 18 (34127) s 0.1295 0 2939 0 4371 1.6286 1.6872 1.7376 1.7829 1A246 1 M35 1.9001 1.9349 1.9600 1.9996 2.0300 2 &592, e 0 0161 0 0lM 0 0175 3 4651 3 9526 4 4119 4.8585 5.2995 5.7364 6.1709 6 6036 7.0349 7A652 7A946 i 140 6 68 37 168 38 269 85 1220 8 1775 3 1326 8 1377.4 14280 1479.1 1530 8 19834 1636 7 1990.9 1745. (353 04) : 0 1295 0 2939 0 4370 1.6055 1 6686 1.7196 1.7652 1.8071 13461 1.8828 1.9176 1.9508 1.9825 2.012 0 0161 0 0166 0 0175 3 0060 3 4413 3 8480 4.2420 4 6295 5.0132 53945 5.7741 6.1522 6 5293 '6.9 See A 48 42 168 42 269 89 1217.4 1273 3 1325 4 1376 4 1427.2 1478 4 1530.3 1532.9 1636.3 1890.5 1745 (363 55) s 0 1294 0 2938 0 4370 1.5906 1 6522 1.7039 1.7499 1.7919 1 8310 12678 1.9027 1.9359 1.9676 1.9 e 0 0161 0 0166 0 0174 2 6474 3 0433 3 4093 3.7621 4.1084 4.4505 4.7907 5.1289 54457 53014 6.1363 180 6 6847 166 47 269 9/ 1213 8 12712 1324 0 1375.3 1426.3 1477.7 1529.7 1582.4 1635.9 1640.2 1745 l (373 Cat s C 1294 0.2938 04370 15743 1 6376 1.6900 1 7362 1.7784 1A176 1 8545 1.8894 1.9227 1 9545 19849 2A142, i e 0 0161 0 0166 0 0174 2 3598 2.7247 3.0583 3.3743 3 6915 4 0008 4.3077 4 6128 4.9165 52191 5.520 200 m 68 52 108 51 269 96 1210 1 1269 0 1322.6 1374 3 1425.5 1477.0 15291 1581.9 1635.4 1689 8 174 I (331 AC) s 01294 02938 0 43G9 1.5593 1A242 1.6776 1.7239 1.7663 1.8057 1 8426 1.8776 1.9109 1.9427 1.9 0 (161 0 0166 0 0174 0 0186 2.1504 24662 2 6872 2.9410 3.1909 3 4382 3 6837 11 9278 4 1709 4.413 250 h 68 65 168 63 270 05 3/5.10 12635 1319 0 1371 6 1423 4 1475 3 1527.6 1580 6 1634.4 1688 9 1744 2 1 e (400 97) s C 1294 0 2937 0 4368 O M67 1.5951 16502 1.6976 1.7405 1.7601 1.8173 1A524 1.8458 1.9177 1.9442 e 0 0161 0 0165 0 0174 0 0186 1.7665 2.0044 22763 2.4407 2.6509 2 8585 3 0643 3.2688 3 4721 3 674 m! 68 79 1 % 74 27u14 375.15 1257 7 13152 1368 9 1421.3 1473 E 1526.2 15794 1633 3 16880 1743 4 (417.35) s 0 1294 0 2937 0 4337 C5%$ 1.5703 1.6274 1.6758 1.7192 1.7591 1.7964 1A317 1.8652 18972 1.927 1 330 0 0161 0 0165 0 0174 OC:26 1.4913 1.7028 1.8973 2 0332 2 2652 2 4445 2.6219 2.7980 2.9730 3.14 i 350 A 68 92 IES 85 270 24 37521 1251 5 13114 1366 2 1419 2 1871 8 !!24 7 1578.2 1632.3 1687.1 1742 6 l e (431.73) = 01293 0 2935 0 43G7 0 5664 1.5483 I.6077 3.6571 1.7009 1.7411 1.7787 1.8141 1.8477 13795 1.960 e 0 0161 0 0106 0 0174 0 0162 1 2841 14763 1 6493 1.8151 1.9759 2.1339 2.2901 2.4450 2 5987 2.75 400 a 69 05 168 97 270 33 375 27 12451 1307.4 1363 4 1417.0 14701 1523 3 1576 9 1631.2 165 (444 60) s 01293 02935 0 43M 0$M3 1.5782 1.5901 16406 1.6850 1.7255 3.7632 1.7988 12325 13647 1.895 1 e 0 0161 0 0166 0 0174 0 0186 0 9919 1.1544 I3037 1.4397 1.5708 160)? 14256 1.9507 2. l l 500 6 69 32 109 19 27051 115 38 1231 2 12991 1357.7 1412 7 1466 6 lb20 3 1574 4 16291 1684 4 1740 I (457.011 s 01792 0 2934 04364 0 R60 14971 15595 16'23 165/8 16090 1.7371 1.7730 1.8069 18393 18702 ~! a l TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED 4 WATER (TEMPERATURE AND PRESSURE) A.5
-_m 1 Abs pseen. T M 9e'lleth F D/sein ); (est.tssupt 100 300 300 400 SCO 400 700 000 900 1000 1100 3200 1300 1400 1500 l' 0.0161 0 0lu 00174 0 0186 0 7944 OMM 107M 1.1992 1.300s 14093 15160 16711 l.7252 l ates 1.930s gg8 > 69.58 169 42 270 70 3M 49 1215 9 1290 3 1351 8 1408 3 1430 1517.4 1571 9 417.0 1482 6 1738 8 1795 6 (N620) s 0.1292 02933 04362 0.M57 I4590 1.5329 1.5844 563b1 1649 1.7155 IF517 1.7ebt 1A:34 1MM 38792 e 0 0161 0 0166 0 0174 0 0186 0 0704 0 7928 0 9072 1.0102 1.1078 12023 1 2944 1.3054 1.4757 1.M47 1.6 1737.2 17,530 7eo 6 69 84 149 45 270 89 3M61 487.93 1781 0 1345 6 1403.7 1459 4 1514 4 IM94 16248 IM07 43 j $03.Os)s 0.1291 0.2932 04360 O M55 06889 1.5090 3.M73 1 6154 14580 3.6970 1 7335 8.7679 18035 18334 18617 e 00161 00lM 00174 0 0186 0 0704 0 6774 0 7423 OAM9 0 9631 1 0470 1.1289 1.2093 1.2885 1 3M9 1A446 ges t 70.11 169 88 271.07 34 73 Eta 1273.1 1339 2 1399.1 1455 R 1511 4 ISH 9 1622 7 47E 9 1735 0 1792.9 pl32.) o 0.1290 0 2930 0 4358 0.MS2 03445 1.4869 1.5444 1.5900 1.6413 16807 1.7 t h 1 M22 1.7551 18164 13464 e 0.0161 0.0166 0 0174 0.0186 0 0234 0 5869 0 4858 0 7783 0 8504 0.9262 0 9998 10720 1.1430 1.2131 1.2825 i gas 6 70.37 170.10 271.26 375.84 487.83 1260 6 1332.7 13M 4 1452.2 ISM S IM44 M20 6 1677.1 17341 1791 6 l palAS) s 0.1290 0.2929 04357 0.M49 0.6881 1A659 1.5311,1.5822 16M3 1.M62 1.7033 1.7382 1.7713 1.5028 1A329 e 0.0161 0.0lu 0.0174 0 0186 0 0204 0 5137 0 6000. 0 4079 0.7603 0 8295 0 8966 0 M22 1.0264 1.0901 1.1529 lege 4 7043 170 33 271A4 34.M 487.79 1249.3 1325.9 M389.4 '1448.5 1504.4 1541.9 1618 4 16M.3 1732.5 1790 3 4 3 44.58) s 0.1289 0.2928 0.4355 0.5647 0.6876 1.4457 1.5149 1.M77'14126 1 6530 1.6905 1.72 M 1.7589 1.7905 1 A207 e 0.0161 0.0146 0.0174 0.0185 0.0203 0 4531 0 5440 0 6188 0 6865 0.7505 0 8121 0 8723 0 9313 0 98M 1.0468 i 330s 4 70.90 170.M 37143 376 08 487.75 1237.3 1318 5 1384 7 1444 7 1502 4 1559.4 1616 3 1673.5 17310 1789.0 gb628) s 0.1389 02927 0.4353 0 M44 0.M72 1A259 1.4996 1.SM2 1.4000 1.6410 1.6787 1.7141 1.7475 1.7793 13097 e 00161 00lM 0.0174 0.0185 0.0203 0 8016 0 4905 0.5415 0 6250 0 6845 0 7418 0.7974 0 0519 0.9055 0.9544 333 4 71.16 170.78 271A2 375.20 487.72 1224 2 1311 5 1379.7 1440.9 1449 4 1556 9 1614.2 16714 1729 4 1787.6 g67.19) s 0.129B 0.2926 0.4351 03 a42 0.6M8 1A061 1A451 1.Mll 1.5483 1.6298 1 6679 1.7035 1.7371 1.7691 1.7996 e 0 0141 0 0166 0 0174 0 0185 0 0203 0.3176 0.4059 0 4712 0 5242 0 5409 0 6311 06798 07272 0.7737 0B195 34se t 71AS 171.24 272.19 376 44 48745 11M.1 12961 1369.3 1433 2 1493 2 1551 A 1609 9 1468 0 77M 3 1785.0 pS7AF) s 0.1287 02923 0.4348 0.5436 OA459 1.3652 1.45M 1.5182 1 M70 1.6096 14484 1.GM5 1.7185 1.750s 1.7815 e 0.0161 0.0166 0.0173 0 0185 0 0202 0.0236 0.3415 0 4032 0 4555 0.5031 0 5482 0 5915 0 6336 0.6748 0.7153 leap 4 72.21 171.69 272.57 376 69 487.60 616.77 1279.4 13545 1425.2 1486.9 1546 6 1605 6 1964.3 1723.2 17823 904.87) s 0.1206 0.2921 0.4344 0.M31 0.6851 03129 1.4312 1.4968 1.5478 1.5916 1.6312 1.6678 1.7022 1.7344 1.7657 e 0.0140 0.0165 0 0173 0.0185 0 0202 0.0235 0 2906 0 3500 0.3988 0 4426 0 4836 0.5229 0.5009 0.5900 0 6743 3000 a 72.73 172.15 272.95 376 93 487.56 615 54 1261.1 13472 1417.1 1480 6 1541.1 1801.2 1660.7 1720.1 1779.7 5 21/12) s 0.12M 0.2918 0.4341 0.5426 0.68*.3 0 8109 1.4054 1.4768 1.5302 1.5M3 1.6166 14528 1.6876 1.7204 1.7516 e 0 0160 0.0165 0.0173 0.01s4 0.0201 0.0233 0.2488 0.3072 0 3534 0.3H2 0 4320 0.46e0 0.5a27 0 5365 0.5695 3000 6 73.26 172 60 273.32 377.19 487.53 614 48 1240.9 1353 4 1408 7 1447.1 1536.2 1596.9 1657.0 1717.0 1777.1 33580) s 0.1283 0.2316 0 4337 05621 0 6434 CA091 1.37M 1.4578 1.5138 1.5403 1.6014 14391 1.6743 1.7075 1.7389 ' e 0 0160 C.0165 0.0173 00184 0.0200 0 0230 0 1681 0 2293 0 2712 0.3068 0.3390 0.3692 0.3900 0 4259 0.4529 1 3500 t 74.57 173.74 274.27 377 82 487.50 412.08 1176.7 1303 4 1386.7 1457.5 1522.9 1585.9 1647A 1709.2 1770.4 i tem.ll)s 0.1280 0.2910 0.4329 0 Mot 0A815 08048 1.3076 1.4129 1.4766 1.5269 1.5703 1.60M 1A456 1 4796 1.7116 e 0 0160 0 0165 0 0172 0 0183 0 0200 0.0228 0 0982 0 1759 0.2161 0.2484 0.2770 0 3033 0 3282 0.3522 0.3753 I 3000 A 75 83 17t S8 275.22 378 47 487.52 610 08 1060 5 1267 0 13632 1440.2 1503.4 1574.8 1635 5 1701.4 17(1.8 j (t95.13)s 0.1277 0.29;A 0.4320 0.5597 0 6796 0 8009 1.1966 1.3692 1.4429 IA976 1.5434 1.5641 1421A 1.0561 1.M48 e 0.0160 0 0165 0.0172 0 0183 0.0199 0.0227 0.0315 0 1588 0 1987 0.2301 0.2576 0.2827 0.30 0 0 3291 0.3510 3200 6 76 4 175.3 275 6 3787 487.5 609.4 800 8 1250 9 1353 4 1433.1 15038 1570.3 1634A 1698.3 1761.2 005 00) a c 1276 0 2902 0.4317 0.5592 0.67M 0.7994 0 9708 1.3515 1.4300 1.4866 1.5335 1.5749 14:26 1.M77 lAsO6 e 0 0160 0 0164 0 0172 0.0183 0 0199,0 0225 0.0307 0.1364 0 1764 0.2066 0 2326 02H3 0.2784 0 2995 0 319e 3500 6 77.2 176 0 276.2 3791 487.6 608 4 779 4 1224 6 13382 1422 2 1495 5 1W3.3 1629.2 1693 6 1757.2 a 0.1278 0.2899 0 4312 0 5585 0 6777 0.7973 0 9508 1.3242 1All2 1.4709 1.5194 1.5618 1.sc02 3.6355 1.M91 e 0 0119 0 0164 0 0172 0.0182 0.0198 0 0223 0 0287 0 1052 0 1463 0.1712 01994 0 2210 0 2411 0.2601 0 2783 4000 A 7s.5 177.2 277.1 379 P 487.7 606 5 763 0 1174 3 1311.6 1403 G 1451.3 1552.2 1619 8 1685.7 1750 6 s 01271 0 2a93 0.4304 05M3 0 6760 0 7940 0 9343 1.2754 1.3307 1A461 1.497G 1.5417 1.5812 1.6177 1.6516 e 0 0159 0 0164 0 0171 0 0181 0 0196 0 0219 0.0268 0.0*91 0 1038 0 1312 0 1529 0 1718 0 18*0 0 2050 0 2203 I 9300 e a1 I 179.5 279 i 381.2 488.1 604 6 746 0 1042 9 1252 9 13(4 6 la52.1 1529.1 16h39 1670 0 1737.4 4 s 0.1265 02661 0 4747 0.5550 0 6726 0 7880 0 9153 1.1593 1.3207 3.4001 lAbt2 1.5061 1.L441 1.5663 1A216 0 0159 0 0163 0 0170 0 0160 0 0195 0 0216 0 0256 0 0397 0.0757 0.1020 0.1221 0.1391 0.1544 0.!684 0.1817 'l 4000 6 83.7 1Bl.7 281.0 362 7 4P8 6 602 9 73E I 945.1 1188 8 1323 6 1422.3 1505 9 1562 0 1654 2 1724 1 i s 0 1258 0 2670 0 4271 0 5528 0 6693 0 7826 0 9026 1.0176 1.2615 1.35?4 1A229 1.4743 1.5194 1.5593 1596.2 i e 0 0158 0.0163 0 0170 0 0100 0 0193 0 0713 0 0248 0 0334 005730031A 0.1004 0 1160 0.1298 0 1424 0.1542 I 7000 4 862 104 4 283 0 3u4 2 489 3 601 7 729 3 901.8 life 9 1281 7 1352 2 1482 6 15631 16396 1711I e 0 1252 0 2059 0 4256 05%7 0 6563 0 7/77 0 8926 10350 120$5 1.31'I i1904 144u6 1.4938 1.53'5 1.5735 s i I TABLE A.4 PROPERTIES OF SUPERHEATED &?EAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED) A.6 C.
,, T r ,l ,2 ,a. ..m_ A-.,-....... hU/ /' / A/ IM N/ /\\ l i IX 1 nnonj / ul 7A / N // [V
- M /
7% .I I Ni bM/A / N/ //T / l co /[/ M /N / 7s / /ALI. I sao ; M Al % / N ///3V /ll(b, 7A / / AL.' I anb' 5/ I M l/f%j I ni i ni in wy>w n Wi) N//f%'> {lf-h4 H 1390 . m. /$YbO$7 N /f%f/ h /,V PL i / / r a ~ I A i -7%/ ill. Y%#7.mun WBNK n ~ KE77K/ MMWM5 /y
- ZWM#9 fy l
~ _ UMY4E&M EEM&W ~ JDM A5(/?5/ RMYM 10 1.1 1.2 1.3 14 1.5 1.6 3.7 1.3 1.9 2.0 21 22 23 ,tatropy. Stuf fD, F FIGURE A.5 MOLLIEit ENTHALPY-ENTROPY DIAGRAM A.7 f
3 PROPEL 4 TIES OF WATER Donalty e (Ibstit') PSIA (*F) Liquid 1000 2000 2100 2200 2300 2400 2500 3000 l Temp Saturated 32 62.414 62.637 62.846 62.867 62.888 62.909 62.93 62.951 63.056 50 62.38 62.55 62.75 62.774 62.798 62.822 82.846 62.87 62.99 100 61.989 62.185 62.371 62.390 62.409 62.427 62.446 62.465
- 2.559 200 30.118 80.314 60.511 60.53 60.549 60.568 60.587 60.606 60.702 300 57.310 57.537 57.767 57.79 57.813 57.836 57.859 57.882 57.998
~ 400 53.651 53.903 54.218 54.249 54.28 54.311 54.342 54.373 54.529 - 410 53.248 53.475 53.79 53.825 53.66 53A9 53.925 53.95 54.11 420 52.798 53.025 53.36 53.40 53.425 53.46 63.50 53.53 53A9 430 52.356 52.575 52.925 52.95 52.99 53.02 53.065 53.09 53.265 440 51.921 52.125 52.42 52.45 52.475 52.51 52.54 52.56 - 52.275 450 ~ 51.546 51.66 52.025 52.065 52.10 52.14 52.175 52.21 52.41 460 51.020 51.175 51.56 51.61 51.64 51.68 51.725 51.76 5136 50.505 50.70 51.1 51.14 51.175 51.22 51.25 51.30 $1.50 480 50.00 50.20 50.62 50.66 50.7 50.74 50.78 50.825 51235 470 4!G 49.505 49.685 50.13 50.175 50.22 50.205 50.31 50.35 50 575 500 48.943 49.097 49.618 49.666 49.714 49.762 49.81 49.858 50.098 510 48.31 48.51 49.05 49.101 49.152 49.203 49.254 49.305 49.56 520 47.85 47.91 48.46 48.515 48.57 48.625 48.68 48.735 49.01 530 47.17 47.29 47.86 47.919 47.978 48.037 48.096 48.155 48.45 540 46.51 47.23 47.296 47.352 47.428 47.494 47.56 4729 550 45.87 46.59 46.658 46.726 45.794 46.862 46.93 47.27 550 45.25 45.92 45.994 46.063 46.142 46.216 46.29 46A6 570 44.64 45.22 45.30 45.38 45.46 45.54 45.62 46.02 580 43.66 .44.50 44.586 44.672 44.758 44.844 44.93 45.36 590 43.10 43.73 43.825 43.92 44.015 44.11 44.205 44.68 600 42.321 42.913 43.017 43.122 43.220 43.33 43.434 43.956 610 41.49 41.96 42.08 42.196 42.314 42.432 42.55 43.14 620 40.552 40.950 41.083 41.217 41.35 41.483 41.616 42.283 41.44 630 39.53 40.386 640 38 491 39.26 650 37.31 38.006 660 36.01 36.52 670 34.48 34.638 l l 633 32.744 32.144 690 30.516 l TABLE A.6 PROPERTIES OF WATER, DENSITY A..
ENCLOSURE 4 REQUALIFICATION PROGRAM EVALUATION REPORT Facility: Browns Ferry Examiner: J. Munro, K. Brockman, S. Guenther Dates of Evaluation: November 18-21, 1985 Areas Evaluated: X Written. Oral X Simulator Written Examination 1. Overall. evaluation of examination: Unsatisfactory 2. Evaluation of facility examination grading: N/A Oral Examination 1. Overall evaluation: N/A 2. Number conducted: N/A Simulator Examination 1. Overall evaluation: Unsatisfactory 2. Number conducted: 15 Overall Program Evaluation Satisfactory Marginal Unsatisfactory X (List major deft-ciency areas with brief descriptive comments. Written:~ SR0 (1/8) = 12% R0 (3/7) = 43% Simulator: SR0.(5/8)=63% R0 (5/7) = 71% Overall: SR0 (1/8) = 12% R0(2/7)=28% TOTAL (3/15) = 20% L ~Submi d: orwarded,: Appro d I [ u d. / J L
- j. a. wusee g... a nan
~
- a.,. -
ENCLOSURE 5 SPECIFIC COMMENTS (1.0) 1.07 What is the QUALITY of a 540 degree F vapor-liquid ~ mixture whose specific enthalpy is 1175 BTU /lbe? a. 0.559 b. 0.816 c. 0.964 d. 0.971 ANSWER d Reference Steam Tables BFNP: Steam Tables LP, p 8; RQ 84/02/02 TVA COMMENT We believe that question 1.07 would be a valid exam question provided the equation used to calculate the value of quality be given on the exam equation rheet. We expect the licensed operators at BFN to be familiar with, and capable of, determining the value of quality using this method. We do not feel that the importance of this calculation is such that it justifies memorizing the appropriate equation. ) C I r E i J
ENCLOSURE 5 SPECIFIC COMMENTS ~ (1.0) 1.07 What is the QUALITY of a 540 degree F vapor-liquid mixture whose specific enthalpy is 1175 BTU /lbe? a. 0.559 b. 0.816 c. 0.964 d. 0.971 ANSWER d Reference Steam Tables BFNP: Steam Tables LP. p 8; RQ 84/02/02 TVA C0!9fENT We believe that question 1.07 would be a valid exam question provided the equation used to calculate the value of quality be given on the exa's equation saeet. We expect the licensed operators at BFN to be familiar with, and capable of, determining the value of quality using this method. We do not feel that the importance of this calculation is such that it justifies memorizing the appropriate equation. e s e b a 9 k n
~ ~ ~ (1.0) 2.02 The main ~ generator is on-line at 800 megawatts when a hydrogen leak in the generator reduces hydrogen pressure to 45 psis. Using attached Figure #451 (Estimated Capability Curve): a.- STATE the maximum leading REACTIVE load allowed on the generator if a power factor of 0.80 is to be maintained. b. STATE the maximum REAL load allowed on the generator if a power factor of UNITY (1.0) is to be maintained. ANSWER .a. 675 KW +- 15 KW b. 1060 MW +- 20 MW Reference EIB: L-RQ-729 BFNP: GOI-100-1 TVA C0liMENT Concerning the main generator capability curve. Generator H Pressure is 45 psig. 2 s. State the maximum leading reactive load allowed on the generator, if a power factor o'f.80 is to be maintained. The answer key gives credit for 675 KW i 15 KW. The curve is in 1000 KW and asked for reactive loading, not true (real) loading. The correct reactive-loading for leading reactive, with s .80 power factor and 45 psig H2 Pressure in generator. 510 x 1000 KVAR i 20 = 510 NVAR leading (incoming) reactive. t "I C b ( F 1 L L l m
1 l ~ (1.0) 1.08/5.06 Attached Figurat #408, ' Reactor Power versus Core Flow operating Hap *, illustrates how CORE FLOW changes with respect to REACIOR POWER without forced circulation. EXPLAIN why ine:emental increases in power initially produce very rapid increases in core flow, but even-tually reach a point where further power increases produce no increase in core flow. (i.e., why the curve turns upt) ANSWER Core flow increases due to the increased voiding / buoyancy (Thermal Driving Head) that is developed by the increased power. Core flow stabilizes as the Thermal Driving Bead is counteracted by the increased two-phase flow resistance (pressure drop) which develops with the increased voiding. Reference BFNP: BFN Mitigating Rx Core Damage, pp 3 3-80 TVA COMMENT The concern here is that " key" words and/or phras'es will be required to receive full credit. As long as the applicants show an understanding of the event that is taking place, then he should be given credit. i T E r 9 L L e 6 c- .-,_yy,,,,, - --....wx - .~r JM
1 (3.0) 1.13 Attached Figures f'.30 A & B represent a transient that could occur at a BWR. - GIVEN: (1) A Total Loss of Feedwater occurs Time t = 0.8 min (2) No operator actions occur (3) Recorder Speed = 1 division = 1 minute EXPLAIN the cause(s) of the following recorder indications: a. Core Flow DECREASE (Point 2) b. Reactor Pressure INCREASE (Point 8) c. Reactor Pressure VARIATION (Range 12) d. Reactor Level DECREASE (Point 14) ~ e. Reactor Level REDUCED INCREASE (Point 16) f. Reactor Power DECREASE (Point 17) ANSWER s. Recirculation Pumps Tripping (-51.5") ~ b. MSIV Closure c. Effects of BPCI and RCIC d. ' Scram (on Low Level) e. EPCI and RCIC Pump Trip (+54") f. - Increased Voiding (caused by decreased subcooling) Reference BFNP: Operational Transient LP, Transient #9; RQ 84/01/01 TVA COMMENT The concern here is that bey" words and/or phrases will be required to receive full credit. As long as the applicants show an understanding of the event that is taking place, then he should be given credit. It is impossible to remember the exact description of each numbered point on the transients. e S l t L e s 6
.----y
,m
1 QUESTION 5.01 (1.50) STATE for which condition the reactivity coefficient contribution would be NORE NEGATIVE. EXPLAIN your choice. Moderator void coefficient, for a 1% INCREASE in void fraction at 10% void fraction in the core, .OR-Moderator void coefficient for a 1% INCREASE in void fraction at 70% void fraction in the core. ANSWER 5.01 (1.00) 70 void fraction in the core (0.5) There is a larger % change in water volue for the same increase (3.45% vs 1.1%) (0.5) REFERENCE RIH: Reactor Physics L/P, pp 1.7-9, 10, 13 BFNP: Reactivity Coefficient LP, pp 2, 3; RQ 85/03/01 - TVA COMMENT The BFN lesson plan on reactivity coefficie.nts (attached) discusses the fact that as void content in the core increases the boiling boundary moves lower in the core and the voids produced here have more effect on core reactivity because they are located in an area of higher neutron flux. We believe that either answer (NRC exam key or TVA lesson plan) should be acceptable for full credit. l t D t g 8 -,----m--- -,,,-,m- ,.-,ww-- nr-,,--, - - - e.- w-+-g-,-v ---me--
- = Page 5 ef 19 BFN-10R85-3-2 9/4/85 Revision 0 IX. Lesson Body Instructor Notes ~ A typical approximate value for a,is -1 x 10 3 K % voids OBJECTIVE A j Factors affecting a,: Transparency 1 a. As moderator temperature increases, j a does not change. A change in OBJECTIVE B.1 vIidcontentdoesnotresultfroma change in moderator temperature. b. As void fraction increases, a,becomes OBJECTIVE B.2 more negative. When only a small number of voids exist, they are at the top of the core. As void content increases, the voids move down into 'the high flux regions of the core where they have more effect. Transparency 4 c. As fuel temperature increases, a .becomes more negative. Fueltrals-OBJECTIVE B.3 i fers heat to the moderator. Above saturation, this will increase void I fraction. The same reasoning then applies as an increase in void frac-Transparency 5 tion. OBJECTIVE B.4 d. As core age increases, a,becomes less negative (overall) Transparency 6 a actually follows the curve of I'ffsize. or the inverse of " effective" c$ As core size is small, the change in leakage is very significant for a 1% void increase..For a large core, a i 1% increase in voids is spread out l over a much larger area so the effect on density is less, therefore the change in leakage is less significant. a then actually varies inversely wItheffectivecoresize,beingmost negative near the middle of core life when core size is smallest. Over core life, core size increases, a,becomes less negative, t t t G O
(2.5) 5.09 Attached-Figures #425 A & B represent a transient that could occur at a BWR. Given: (1) A Bigh Pressure Bester Tube Leak occurs at Time t = 1.6 min (2) No operator actions occur (3) Recorder Speed = 1 division = 1 minute EXPLAIN the cause(s) of the following recorder indications: a. Total Steam Flow INCREASE (Point 1) b. Turbine Steam Flow CONSISTENCY (Range 3) c. Power INCREASE (Point 5) d. Feedwater DECREASE (Point 7) e. Given the above conditions, STATE how CRITICAL POWER would vary as a result of this transient. (INCREASE / DECREASE /RMN THE SAME) ANSWER s. EIC opens BPVs to control pressure b. EHC Load Limiting c. Increased Subcooling of Feedwater (Reduced fw Beating) d. EP Heater String beginning to isolate e. Increase Reference BFNP: Operational Transient LP, Transient #14; Heat Transfer IP, p7; RQ 84/01/01 y The concern here is that " key" words and/or phrases will be required to receive full credit. As long as the applicants show an understanding of the event that is taking place, then he should be given credit. It is impossible to remember the exact description of each numbered point on the transients. e 5 9 9 p. I L L
i .(3.0) 5.11 Attached Figures #429 A & B represent a transient that could occur at a BWR. GIVEN: (1) EPCI inadvertently initiates at Time t = 1.3 min (2) No operator actions occur (3) Recorder Speed = 1 division = 1 minute EXPLAIN the cause(s) of the following recorder indications: a. Total Steam Flow DECREASE (Point 2) b. Reactor Pressure STABILIZATION (Range 8) c. Reactor Level INCREASE (Point 13) d. Reactor Level STABILIZATION (Range 14) e. Reactor Power INCREASE (Point 16) f. Feedwater Flow DECREASE (Point 18) ANSWER a. CVs closing to maintain pressure b. Higher equilibrium pressure at new power level c. " Swell" due to pressure decrease on HPCI flow demand d. Stabilizes at higher level to compensate to FW flow demand e. Increased subcooling (due to lower FW temperature from HPCI) f. FWCS following steam flow Reference BFNP: Operational Transient LP, Transient #20, RQ 84/01/01 TVA COMMENT The concern here is that." ey" words and/or phrases will be required to receive full credit. As long as the applicants show ac understanding of the event that is taking place, then he should be given credit. It is impossible to remember the exact description of each numbered point on the transients. f C n
(1.0) 2.14/6.14 Attache'd Figures #477 A, B, C, Si D represent four (4) CRD water flowpaths. Which one of the Fi2ures most correctly displays the CRD Exhaust water flowpath following a R0D INSERTION 7 ANSWER d Reference BFNP: CONTROL R0D DRIVE LP TVA COMMENTS This question requires a great deal of time to go through each figure and the point value does not reflect this. The markings on the prints were not clear. Also, there is not a correct answer. The answer key indicated that "D" would be correct. This answer shows the return water going back through the cooling water line of the rod that is moving. This would not be possible since the cooling water check valve would be closed since drive water pressure would be greater than cooling water pressure. This question should be deleted. If (2) had stated return water from exhaust header to/through other CRDs, then (d) would have been a correct answer. [ Reference your figure #477C (2)] i I t e i i t t, t
~ -(1.5) 6.15 The plant is operating at 23% power and both Recire Pump M/A Transfer Stations are in manual and set for minimum speed. The Recirc Flow 3 Limit annunciator is CLEAR. For the following instance, STATE how the speed of Recirc Pump "B" will change (i.e., INCREASE, DECREASE, REMAIN THE SAME) and WHICH COMPONENT (S) of the control / positioning system is/are LIMITING. NOTE: FIGURE #474 IS PROVIDED FOR REFERENCE a. Recire Pump "B" M/A Transfer Station manual potentiometer is turned fully in the counter-clockwise direction. ANSWER a. Decrease (20%) Limit Switches on Bailey Positioner Reference - EIH: L-RQ-714, Figure 4.1(B); GPNT, Vol. V, Chapter 4.1 BSEP: SSM 10-2/3-A, Section 3.2.1.1, pp 25-30 BFNP: RECIRC FLOW CONTROL LP: RQ 84/04/02 TVA CONNENT The answer key states for the second part of the question " Limit switch on Bailey Positioner." An answer of " setting of the low speed mechanical stop should also be given full credit since this is neraally how it would be addressedi", Ref. Lesson Plan 8, p7 - Recire Flow Control System e 9 e C t t
(1.0) 4.05/7.05 A main thrbine generator startup is in progress, per BF-01-47. While conducting system checks at 1800 rpo you receive a turbine Eigh Vibration alarm and a report from the Turbine Building AUD of a squealing noise coming from the IP turbine. Which of the following sets of actions is correct, per 01-477 i a. Check bearing oil flows, temperatures (oil and metal) and seal steam header pressure while maintaining turbine RPM to clear the rub. b. Trip the turbine if unable to verf fy/ restore proper oil / seal steam flow and clear the tub / vibration within the allowed 5 minute hold period. c. Inmediately trip the turbine and verify the lift pumps running: DO NOT engage the turning gear. d. Immediately trip the turbine, break condenser vacuum, and verify the lift pumps running. ENGAGE the turning gear when the zero speed alarm counds. ANSWER d Reference BFNP: BF-01-47, pp 21, 38, 41, 44 TVA COMMENT l A. This question is concernidg rfbration problems due to rubbing j at speed 1800 rps of a emigr.etely warm turbine during startup. Our procedures make this a judtement call based upon the severity of the emergency. Additionally, it will support either response (c) or (d) as being correct. This is based upon the fact that neither response is delineated, but ( pulled out of conteri from the 01. B. Justification for response (c): 1. As stated in the question the turbine was in startup and testing at 1800 rys plateau. Following our pre-warming procedure, an ideal first stage bowl metal temp. is approximately 60 psig and approximately 300*F. l 01-47 says to maintain 250' - 280*F 47, p21. ( 2. 01-47, p42 states that the shaft may be stopped and not l be on turning gear if first stage bowl metal is < 300'F, if oil flow is maintained, which is part of response (c) " verify lift pumps running". t l l l l l l L
3. At this' point, oil flow will remove heat and prevent bearing metal dama2e. Preventing the shaft from rotating will prevent further damage due to rubbing until expertise can be susmoned, to evaluate the turbine. 4. Page 44 instructs that under an emergency condition to break vacuum. With 1800 rys and " squealing noise" being developed by itself would not justify breaking vacuum, considering the damage to the condenser internals. Additionally, the " caution page 42" states do not open the vacuum breakers until all steam flow to the condenser is stopped. 5. The response (c) or (d) will: Trip the turbine immediately a. b. Evaluate the status of the turbine as it slows down. 1. If excessive vibration and abnormally fast slowing down rate is experienced, breaking vacuum would be justified. 2. If vibration is higher than normal with only slightly increased slowing down rate, breaking vacuum with possible condenser internal damage would not be justified. When turbine i.s' roll.ing down insure adequate oil c. flow and insure s~naft lift pumps are operating. d. With the turbine in the moderately warm (* 300*F) as opposed to a vara (* 480*F) turbine first stage bowl metal temp., the stored energy to be removed from the shaft as heat will not exceed the heat removal capacity of the oil system _(see attached letter) and will prevent damage to bearing metal surfaces. When zero speed is reached and, knowing that metal e. to metal contact exists with the above mentioned turbine metal temperatures, to prevent further damage it could be left off turning gear until turbine expertise could respond to the site. i f. Therefore, either (c) or (d) response will assure turbine rolls down safely with minia a damage to t other related pertinent equipment. e b e i 0 l'.- ,,2 .m ..-_..,,._,__..,__......,..,mw,-
(1.0) 4.10/7.08. G01-100-11. " Reactor Scram", cautions that if BOTH loops of RER are placed in the forus Cooling Mode of Operation, then either I.L. 74-59Y or I.L. 74-737 aust be illuminated. a. STATE the significance of these lights NOT BEING ILLUNINATED. b. STATE the adverse consequence which could occur if this ~ caution were not adhered to. ANSWER Valve is open too far (beyond the LOCA design closure point) a. b. PCT could exceed 2200 deg'F (due to RER not injecting enough since the LOCA Closure time requirement of the SDC Test Isolation valves is not met). Reference BFNP: C.A.F. TVA COMMENT The bases for this is to ensure adequate LPCI injection requirements will be available, at least one loop of RER is maintained with its associated torus cooling throttle valve throttled to a condition such that it associated indicating light is illuminated. Ref. EPG-X, p 139 (page attached) This ensures that the valve will close in time to prevent robbing LPCI flow to the.,ve'ssel. o b k E e n
u' UNOFFICIAL QQEY gly - ;.---.... ::aeee
- .x
- mme;;.;,;;,;
CAITTION IT BOTH LOOPS OF RHR ARE PLACED IN THE TORUS COOLING HODE, THEN EITHER E L.74-59Y OR I.L.74-73Y HUST BE ILLUMINATED. M
- :. ;. : :. ;. ;. :. :. ;. ;. :. ;. ;. :+;. ;. ;. ; ;. ;.
DISCUSSION: To ensure adequate LPCI injection requirements will be available, at least cne loop of RHR is maintained with its associs.ted torus cooling throttle valve throttled to a condition such that it is associated indicating light is illuminated. j f O e e e ~ e 0 W e 4 e e e E e 8 n
i (1.0) 4.13/7.10 You receive the following annunciators while at 72% RTP: OFF-GAS PRESSURE OFF-CAS II TEMPERATURE You confirm the Off-Gas System has' ISOLATED. STATE your immediate Actions per 01-66, "Off-Gas System". ANSWER Scram the reactor Trip the turbine Reference RFNP: 0I-66, Section IV.A.3 TVA CONNENT This question could be misleading since an "offgas system isolation" normally refers to closure of the FCV 66-28. This auto closure is only initiated by the offgas post treatment radiation monitoring system. The actions for this are on page 39, IV.G of 0I-66. A High temperature and High pressure will cause isolation of the SJAE only. Also, High temperature and pressure'are an indication of an offgas explosion. The actions for this start on page 50 of 01-66,IV.Q.8.C. Thus, the only immediate action that would be required is " scram" the reactor. W e E z ^
~ ~ (1.0) 7.12a Concerning 01-75, " Fuel Pool-Cooling and Demineraliser Systems": a. LIST the two (2) criteria which require the RHR Supplemental Fuel Pool Cooling mode to be p1;ced into service. b. LIST the two (2) locations to which fuel pool water, can be sent upon receipt of a SKIMMER SURGE TANK LEVEL II alarm. ANSWER a. 125 des F in Fuel Pool One Fuel Pool Cooling System becomes INOP b. Condensate Storage System Condenser Reference ~ RFNP: 01-78 TVA COMMENTS (7.12a) The answer key states: "One" fuel pool cooling system becomes INOP... The OI states: the " fuel pool system becomes inop". Stating "one" should not be a requirement for full credit since the intent is for a total loss of the unit's fuel / pool cooling system. Ref. 01-78, 4.a. e 9 l O I e a 1 I L
(1.0) 8.04 Per bSIL-32, " Reactor Core Limits", if the Nuclear Engineers are not providing 24-hour shift coverage, LIST the four (4) times / occasions when core limits HUST be checked. ANSWER 1. Beginning of the shift, AND 2. Middle of the shift, AND 3. After any power change of 20 MWt, AND 4. After any unexpected power change. Reference BFNP: OSIL-32 TVA COMMENT The answer key states: after any power change of 20 MWt. 44 This should be 40 MWtr'r RefertoGOI10F1,}p50,IV.C.6. P l 1 ( l 9 m 9 N l n kk l l t
(2.5) 2.09 During reactor operation at 98% Rated Thereal Power, a ~ Loss of 250 vde Reactor M0V Board A occurs. LIST five (5) different systems and/or MAJOR COMPONENTS that will be effected prior to transferring power -AND-STATE one example of what the effect will be. EXAMPLE: IF 250 VDC RX MOV C BAD BEEN LOST --- RCIC - IDSS OF POWER 70 CONDENSATE PUMP ANSWER 1. EPCI - Loss of power to valves, pumps, and Division II Logic 2. CS - System II will not auto initiate, if needed 3. RHR - System II will not auto initiate, if needed 4. RCIC - Loss of Divisiot II logic 5. MSRV - Loss of Operability & Indication of some valves 6. RRP "A" MG Loss of Emerg 011 Pump, Loss of Speed Control and resulting lockup of its Scoop Tube 7. RPS - Loss of Backup Scram capability 8. MSIV - Outboard MSIV DC Solenoids will deenergize 9. PCIS - Loss of power to DC Isolation Valves - Will not Shut
- 10. ADS
- Two valves lose normal power and auto swap to RMOV-B & C Reference RFNP: 01-57;'DC Electrical Distribution LP; PCIS LP; RQ 83-84 ECCS LP & ADS LP (Obj 3, 4) TVA COMMENT We do not consider this a valid question. It is impossible to remember all feeds fron all electrical boards at BFNP. t We have annunciation, electrical prints, OIs, ARPs, and electrical sorts to determine this information from. We would not use " memory" if this event were to occur. This question should be deleted and not use3 on any future l examinations. ~ i The answer to (10) is incomplete as the two ADS valves will swap: 1 to Rt$0V-B and I to RMOV-C 1 k i v%., _r. A-
(1.0) 8.13 Unit 1 is operating ~at 75% rated thermal power. Operability sis are performed on all of the MSL Radiation Monitoring System Channels. MSL Radiation Monitoring System Channels A and D test UNSAT per the SI. Maintenance has no estimate of repair time and will not be able to commence troubleshooting and repairs for 16 hours. Which of the following actions most accurately detail the allowances and/or limitations imposed by the Technical Specifications in this instance? NOTE: APPLICABLE TSs ARE ENCLOSED FOR REFERENCE a. Trip the Trip System (s) associated with either MSL Rad. Hon. Ch. A or D; Power Operation may continue. b. Initiate insertion of operable rods and complete insertion of all operable rods within 4 hours. c. Initiate an orderly load reduction (reduce turbine - load) and have MS Lines isolated (close MSIVs) within 8 hours. d. Trip the Trip System (s) associated with either MSL Rad. Hon. Ch. A or D; and take the actions detailed in choice b above. Trip the Trip System (s) associated with either MSL Rad. k e. Mon. Ch. A or D; and take the actione detailed in choice
- c. above.
/ ANSWER e Reference ~ RFNP: U1 TS 3.1 & 3.2.A TVA COMMENTS l I. Following thefactions detailed in our Technical Specifications i for tabler 3.1.A RPS and 3.2.A PCIS we would reduce turbine load (initiate an orderly load reduction) and have main steam lines isolated (MSIVs closed) within 8 hours. a. This is response C on question 8.13 b. This is based upon the notes for tables 3.1.A & 3.2.A. 1. We could not meet the minimum number of operable trip system for both, trip systems. e a
2. When this step 'could not be met f6r both trip systems the applicable action step must be taken. i
- a. - table 3.1.A Step 1.C
- b. - table 3.2.A Step 1.8 c.
As additional clarification: table 3.2.A instructs "If the column cannot be met for both trip systems, the appropriate action listed below shall be taken". 1. Column in this case is minimum of two (2) operable / trip system. 2. We could not meet minimum operable per trip system so action item 1.B must be followed. 4. The attached copy of NRC-TVA correspondence addresses the interpretation of the same table notes. / e 9 e i + i ^
.R*; 8* / n-. y,.- f[.4 NUCLE AD REguLATCRY COMMISSION
- satt 1.ket:M10feCE uNeis') sfATss
{ mgotow se s/ 101 MAnlETTA sTa(ET.N.W. ATLANTA. GBonotA 30323 gg g. NOV 01585 [g ssee Valley Authority {~ Mr. H. G. Parris k-9- .,,C Q / Manager of Power and w v nw e <. -e m n Engineering (Nuclear .,,. ; d Q Q ,/ / SN113 Mi 41onary Ridge Place) .. ',.. I ,,,q g j sos-a 1101 Maru t Street / }5,'.. !s w. Chattanooga, TN 37402-2801 [" 4 = Gentlemen. .m 5 % c-v. s i t ine 4
SUBJECT:
APRIL 19, 1985,YOUR LETTER R. H. SHELL TO DR. J. H AND 296/85 INSPECTION REPORT NOSATED i RESPONSE TO VIOLATION. S0-259/85-06, 260/85-06 the requirement of Hote 1. A to suspend allIn your g g q g 9 'l" I g g-violation occurred in that you met your response and determined that, technicalland f operations involving core alterations Nevertheless, we are concerned about you one hour. We have reviewe y, 'a violation did not occur. d you offer. per trip s, stem is not met, the inoperable triFor example, r response and the interpretations that as specified by Technical Specification Table 31 erable instrument channels i logic implied by your interpretation of Not p system should have been tripped inoperable in refueling or shutdown modes ..A, Note 1. Following the e 1. A. all IRM's and SRM's could b inoperable instrumentation until you pl without any requirement to repair the believe you intended this interpretation anned to move fuel or startup. response to provide clarification of your positi You are requested to amend yourWe do no We further note on. Standard Technical Specification formatcnd unam You should give serious considerations to ar converting to the. We are withcrawing the specific violati transmitting Inspection Report Nos on' identified as Item 4 in our lette} 50-259/85-06, 50-260/85-06 and 50-296/85-0 h Should you have any questions concerning this l t e ter, please contact us. Q Sincerely, h st !.
- t
s J } 2
- L
~~ r. 4 ~
- ...v
/ } s (* J. Nelson Grace / Regional Administrator cc: '(See page 2) ' i i k i t
e. m._............------------------ -.... J ) 1tenA Technical cycificatter. 3.1J re tu;re. tt.at..i:=:. :. resctor is snutda. n with the reactor ::ede :witel.1:a "lidw!" L:.:.1 c...: liiterwdinte Rar.ce Monitor (IRM) high flux c:rrr.: c.: up rhus.e wur t!.rev owr & Lie channel: per trip system. { Contrary to tne absve, :n.'sti.: ry it. M05, L:. 1M O.si.:.elt. "A ar.d "C" j were ir.operatie in reset:r prc,teetie:: trip.:/utsc. "A" Icavir.;; or.ly two cha:inels, "E" ar.d 'J", cNrs:de 't. ti. rus;, et.e trip systen. This is a Severity Level l'. .iol..t.;op (Sup;ae:a.* c D Lp;,11 cable to Ur.it 1. 1. Admission er Dr.113'_ of thb'LU.'lin! Yin v.:.'ic. TVA denies ti.e viol:. tion. IP,te 1. A for ". :::.i.ie.al Ly.cification Table 3.1. A can de fo'1cwed whe:: the mi::it=2.ud r of operatile instrt:nent channels per trip syster. cs::n:.: be art for Lcth trip systems. "In q l refueling mode," it st ite::, "susp?nd all ejeration: irxpivir.g core alterations ar.d fully in:crt all operaale,r.cntrol ro'.ar within one hour." These re.;uircents were wt. 2. Reinsons For *,he ViMatieri !!/A R 3 Ccrreettve :M.ms Wich l'a'n ihu.Jf1%tII.itlui.hantJi.ithjcVed [ N/A = i s 1:. Correctig.jl.e:23 Wh1ch Will B.W;gri19 Avs1!1J3. tite Violatiors !UA 5. Date When P:11 Crolistice WiH k.Schiev-t.1 0 !VA I(! i e i t r l i I i q.. . -m -__.= _.-_-.
- = -__= - ~ = = - -
= _. -.,:. m.; m ....w,-=- "M Id 5
g ENCLOSURE 5 GD WtAI. CONMENT Due to the length of the examination, the four hour time limit caused several applicants to rush through parts of the exam-ination without being able to fully add:ess each question. Also, even though it is not required to explain why a given asswer is selected, if the applicant does so, this should be looked at to determine if his reason is valid. G e s d 4 s e e e D: l I i t t ~}}