ML20136B508

From kanterella
Jump to navigation Jump to search
Ack Receipt of 790803 Request for Addl Info Re Proposed Crystal River 3 High Density Spent Fuel Storage Racks Mod. Forwards Detailed Response
ML20136B508
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 09/05/1979
From: Stewart W
FLORIDA POWER CORP.
To: Reid R
Office of Nuclear Reactor Regulation
References
3--3-A-3, 3-0-3-A-3, NUDOCS 7909060382
Download: ML20136B508 (37)


Text

- _ _ _.

g

_ _ _ _ -__~._____ _ ____

Florida 4

Power September 5,1979 File:

3-0-3-a-3 Mr. Robert W.

Reid, Chief Operating Reactors Branch #4 Division of Operating Reactors U.S. Nuchar Regulatory Consission Washington, D.C. 20555

Subject:

Crystal River Unit 3 Docker No. 50-302 Operatias License No. DPR-72

Dear 'Mr. Reid:

On August 8,1979. Florida. Power Corporation received your letter of August 3,1979 requesting additional information concerning the propos.rd CR #3 High Density Spent Fuel Storage Racks modification.

Attached is our response to the eight (8) items contrined in the enclosure of your letter.

If you reqaire. any additional discussion concerning our submittai, please contact us as soon as possible.

Very truly yours, FLORIDA POWER (DRPORATIOh W. P. Stewart Ma nage r, N uc lea r O pe ra t it...s WPSenhM07 D70 l

790906038) 1 ce-er.v on e,.m, u,. m, s........., s.,, c s......

l s

STATE OF H 0RIDA (DUNTY OF PINELLAS W.

P. Stewart states that he is the Manager, Nuclear Operations, of Florida Power Corporation; that he is authorized on the part of said company to sign and file with the Nuclear Rectlatory Cocnission the information attached hereto; and that all such statements made and matters set forth therein are true and correct to the best of his knowledge, information and belief.

f i

l1. >. Kwo wca l

=

m T.7. $tewart Subscribed and sworn to before me, a Notary Public in and for the State and County above named, this 5th day of September,1979.

~

Notarf Public Notary Public, State of Florida at Large, My Commission Expires: August 24, 1983 l

l (CrockettNotary 2 D12) 1

s RESPONSE TO REs'UEST FCR ADDITIONAL IN FOR.'!AT ION Oues tion No. I

?ravide jus ti f ication for using,1 factors in the evaluation of water slasning ef fects (Appendix C) dit fe ring from shat is reco:s:sended in the cited references. Also, pr 2 vide 5 asis f ar tae calculation of the depth of oscillatin,; sass.

.'u e s t io n N o. 1 - Response Tha.1 factar ased in calculating the height Jll) of tae center af t"

r-

,3 S i wu - -. n o r a s i toov2 tae sat n < v.vn : '+

2."

rd 2:

-.32

S

..s used ;a u?endL< C calc 21ation.

The sa te r 310s11n4 calculacians are revised using the analytical peacedure given to

!!3 7024 "';uclea r Reactors and Earthquakes", prepared by Lockheed Aircraf t Corporation and Holms & Narver, Inc. for Atomic Energy Cocsission.

These revised calculations are given in Attachment A (Appendix C Revision 1).

The results and conclusions of the revised water slashing analysis are essentially the same as those stated in NES Report 31 A0522.

Question No. 2 Provide basis for selecting the impact factor in determining fuel assembly impact loads.

Question No. 2 - Response Clearances are provided between the fuel assembly and the storade cell to avoid interferences during fuel storage and removal operations. The storage cell / fuel asse:mbly clearance (or gap) results in the ' rattling' fuel assembly impacting the storage racks have been analyzed using the linear response spectrum modal superposition method of dynamic analysis with the effect of impacting masses conservatively accounted for by isposing the folloving assumptions:

1)

.ul storage cells contain the fuel assemblies.

t 2)

All f uel assemblies simultaneously impact the storage es *.ls.

3)

A factor of 2 increase in the seismic inertia loadings produced by the i=pacting fuel assemblies mass conservatively accounts for the ef fect of fuel assembly impact.

The impact and seismic inertia loads of the impacting masses are added to the seismic inertia loads of the non-impacting masses.

l WPSemn.'f) 7 3 70

b

]uestion Sc. 2 - Response (Cont inued )

The generated loads and resultant stresses due ta the tapact and seismic inertia loads are added to the stresses resulting tria other loads as given in the load combinations (NES SI A0 522, Rev. J-3eetion 5.01 The m.aximun stresses in the storage cel; and storade rack structure due to the f uel assemoly ispa c t ( r t t : U.i 1,

seissie loads aad va r taus ot he r laads ca.nb.. ed it s e c o r da.:c e..:.. :ae Standac; Revies Plan 3.3.4 are given in Table 3. 2a and 3. 25 af ne NE3 Report S130522, Rev. O.

The selection f an impact f actor of 2 f 2r Crystal Tier has been desons tra:ed to be co.iserva cive.

a e...t...,o a n

... - wi, e

...e i r

-,4

.3,4

,4 g4 :.

the :sults oot ained by tue li ' '

4. ! -

t' M'*

- c i considerably smaller impact factor sould be justifiable tor Crystal R ive r.

Fot a 6 x 6 fuel storage rac k, the f rictional resistance load (base-shear load) obtained by the non-liaear ti=e history seis.nic analysis (NES 81 A0524, Rev. 9) is 34. 36 kips is compared to the base shear value of 30.68 kips given by the linear seismic analysis without considering the impact effects.

Therefore, the ef f ective ispact factor of 1.704 (obtained by applying an impact factor of 2.0 to the impacting aasses of the fuel assembly (see Appendix D NES 81 A0522) used in the design of the f uel storage rack is quite conservative as compared with the actual ef fective ispact factor of 34.36. t,g21, T U 6's Question No. 3 Provide references or bases for internal strain energy equation and ultisate strain of stainless steel as used in Appendix F.

Question No. 3 - Response gives the references and bases for the internal strain energy equation and the stress / strain properties for 304 stainless steel.

Question No. 4 FPC has stated that significant gaps exist between the fuel pool liner and the pool walls.

Provide the locations of those daps and the reasons for their existence.

Question No. 4 - Response Caps between the liner plate and pool valls are assumed to exist at random on the walls. The existence of these gaps are due to the slight 2neveness of the concrete wall surf ace and the slight uneveness of the liner plates possible caused by the buckling of the plates while they were welded to the e= bedded steel.

WPSe:hM'7 370 Ib

h iuestian No. e - Response (lontinued)

It say be not ed t h at the gaps do not pose anv thr a tt ta the s t ructura l integrity of the liner plates.

The revised f ree standi.ng ricks destgn precludes any seismic bracing 7embe rs that sould have been attached :o

te poo ' salis.

uesti;n No. 5

!ae friction coefficient is cited ranging trom 0. 3 ta G. 3.

Any experimental fata ta 'aack thase numbe rs ?

Will set condition effect the

riction coeiticient!

' e s t i ? a. '! :. 5 - im e : -

From Table o-17 of Reference C-1, a coef ficient of dry-sliding f rict ion of.9 is cited far 304 S.S. on 304 S.S.

Table 1 at Ref erence C-2 glies dry-sliding coef ficients for steel on steel ranging f rom 0.42 to 0. 57.

In addition, the table on page 3 of Reference C-2, Attachment C, gives effects of sliding velocity on the coefficient for tild steel on medium steel.

If these results are extrapolated by direct ratio to account f ar the above-referenced coef ficient of.9 for stainless steel, an ef fective dry-sliding coef ficient of friction of 0.33 is obtained far 304 S.S. on 304 S.S. at the sliding velocities representative of the s torage rack analysis (1.0 - 10.0 i n/sec).

Since water is an inef fective lubricant (see Table 2 of Reference C-3, Attachment C), the ef fects of wet conditions on the coefficient of friction should be negligible. This value for the sliding coef ficient is further substantiated in Reference C-4, UK4RC Dockets 50250-669 and 50335-651 which give a value of 0.28 for the dynacic coefficient of friction of stainless steel on stainless steel at representative sliding velocities based on sited references. The lower bound value of 0.20 used in the anal / sis to determine maximum sliding distance is, therefore, considered conservative. The upper bound coefficient of 0.8 was arsitrarily selected to assure no sliding to dete rmine maximum tesasmitted shear loads at the rack base.

Question No. 5 Provide design bases of the spacer bars and discuss the ef fects of these ba rs on the storage cell under seismic conditions.

i l

question No. 6 - ?.esponse As shown in Figure 1, the spacer bars are relatively flexible and rest l

between the shims which are welded to the storage cells.

The spacer bars are provided to zaintain storage cell alignment and spacing and are designed conservatively to withstand the maximum tensile loads resulting f rom the displacement of 50 percent of the storage cells in a

'JPSenhM07 370

l Questica No. o - Response (Cont iaue d )

rack in apposite directions ', splitting )r tne rac< in the 2;ddle).

The interf ace of the spacer 5a rs ta.he starige cells is such that the spacer bars will not st ructura. ly interf ere ith the res po nse af the scarage cells during i seismic event.

?uestica No. 7 Provide additional inf ormatian and results of the pirametric studies which are cited to ;ustify selectind the :ine histary region fra: ) to

!.2 secands.

'ues t ion N o. 7 - 3 4 o.s 3 Initial parasetric studies were performed to determine the adequacy af various finite element lumped sass models and to establish the integration time interval req utred to obtain a proper numerical solution. The finit 2 element models studied are shown in Figure 1 of Attachsent D.

A ten sass model with gap elements was found to pr2 vide a very adequate representation of the dynamic characteristics of the f ree-standing storage rack with fuel assembly impact effects. An integration time inte rval of 0.0025 seconds (1/88 of the f undasental rack period of 0.22 seconds) was found to give stable and proper numerical solutions to the eq uations of motion.

Based upon the results of the parametric studies and the review of the time history data, the time history analyses for the final cases were lialted to the time history regica from 0 to 1.2 seconds. The justifications for selecting the time history region from 0 to 1.2 seconds are further elaborated below.

Far a coefficient of friction of 0.2, sliding will occur whenever the lateral load (frictional load) exceeds 14.0 kips (0.2 x effective vertical wei ht of the ratk).

For Figures 3 and 4 of Attachment D, d

which presents the results of the 10 mass model analysis, it can be seen that the frittional resistance load exceeds 14.0 kips and the sliding response of the storage rack occurs around these times 0.26, 0.4, 0.5, 0.o, 0.76 and 1.15 seconds.

Referring to the base motion time history (Figure 2 of Attachment D), it is apparent tha t these times are coincident with the time history regions exhibiting large base motion acceleration values ( 9.055C), large rates of change in acceleration, and si nificant areas under the acceleration-time curve.

d Therefora, ic can be concluded that, like the linear seismic response (the storage rack will behave as a linear system until the lateral seismic inertia load exceeds che frictional resistance load), the non-linear response also depends upon the base socion acceleration l

value, rise time of the acceleration (rate of change in acceleration) and the area under the acceleration-time curve.

WPSenhM07 37)

juestian No.

Response ( Cont i. ue d )

From the s i; di ng t ine ni s ta cy result s, Fidure 4, tne fallasin;

):ser.a:iins are nade :

Li::'e sliding (0.J1 in.) accurs up to 3.32 seconds.

2.

the saximun slidta; i J. 33 in. ) ac:urs betseen. 3 ' 2nd

!.9 7 seconds, and 3.

se: ween J.oT and..i T secands eu.nulative slidt ag is reduced f r am the naxinus,i 0. 33 :n. to 0.1o in.

as: rap);2:un af rasi.:,

a t ila - r :.: in i;; i: 21 regions:

1.

1.17 to 1.43 secends - sicce this region is cocparable to the region 0.0 to 0.32 seconds, sliding will only increase from

].16 in, to 0.16 + 0.J1 = 0.17 ia.

2.

1.43 to 1.85 seconds - no sliding will occur since the peak acceleration value is less than 0.05 5G.

3.

1.35 to 2.2 seconds - sisce this region is coaparable to that between 0.67 and 0.95 seconds, cumulative sliding will reduce f rom 0.17 in. to 0.17 - 0.05 - 0.12 in.

4 2.2 to 4.8 seconds - so sliding will occur since the peak acceleration value is less than 0.055G.

5.

4.3 to 5.25 seconds - since this region is 46ain comparable to that between 0.67 and 0.95 seconds, cumulative sliding res ponse will increase f rom 0.12 in to 0.12 + 0.05 = 0.17 in.

6.

Scyond 5.26 seconds - the ciitical acceleration of 0.055G is exceeded at times 7.24, 7.71 and 8.24 seconds. However, since the area under the acceleration-time curve at these points is small, no significant additional sliding will result.

Theref are, it was concluded that the uaxinus sliding results for the Crystal River Unit 3 High Density Fuel Storage Racks wou' d not be af fected by the time history motion beyond L.2 seconds.

It should be noted that NES experience vi:h other linear /non-linear time history seismic analysis have indicated sicilar observatior.: and conclusians as above.

~ ? S e=h.10 7 370

~.

lue s : t an ';o. 3

. w..e 22 (i.:u:s er re ct i ve f r i et t anal rea ;;ic a :arce at tecti:tg :ne poo.

'.iaer >1 ate and rack support feet, is sta ted in Response 13, i r,r

aken

.,true:.rt. maa.ysi s e s..;a Repo rt..N.....

3W.,,)..

, he u <;:aua f ra :. e a

. d

. r;ct; >n :arce :s :.te same is ;:.r eseated la,..to.e 3.. at. tae

.aa

., ear l

. ;:e i. 3 t a ry se n.n e a. na. y s ; s.. :.,. 3 ! a. 0 5 *.

h,).a t a ity t' o n : f e rent is m p;i>as, s r ic i a.;

erius f r e e s t a ad i :'..:. e.:d :p c :li sa.n e farce 6 :ia; aa the pooi floor.; ;er.

?ues:ian ;o. 3 - Respense

ec xu.u r uraaa 2.'

h s ~..s a. 5 ' tad a.1 ects: aad >.r.>ald be cacreated u 1

".is farce is distribu:ed aver si.( s uppo rt fee: f ar an average of 3,; M lbs. far ane support foot. T'aese valaes are taken fraa :lte

';cn '.inear Itse ilistory Seis:nic Analysis Report N"S SI.W53, lev. ).

f i

1 l

1 I

i i

l I

1 i

i l

l J

1 I

i JPSe:sn.W 3.' )

M',*'*~**'"

de.w-,a L 7. M C

  • 3 5Fe* ' C'-t % > 8-. _ _ _ _O
a..

kmqC\\ x (

a_.v is i o s.

REF.

l (u. crane ft o w, as.

E w ee.rs oa 77 5 ff=h=A> 7~

fucii.

$m 2464 AxccS

.:agnsee ScoSw,.vs.

ymcis av rs&

f' aw.

<esocc1 u

a m~

dcYr)

Ea,cc.uso ryn o.1, x 6-p ocy Nuc me.n ao s r

.:es u,,sa s~

n.e scao -..-

s w-me:

//

Al'ct. Set S@c. mas secD O,e7hrJuntss P&'!ktdD By docxuerD s0iecans ~r (cA"Pc3 enriM nna N0Lrr762 {

c

//nAwen,

IRC.,

WASx MraN

b. C. y 770 - 7024 :

sG70 moi.

Enc'326-y'

&mmo s'ss'ou,

-.a e

c=cr/ar eeke

.ehr-arterr WMc

\\

u 4 j

P%w EN 7==r dT

+"r

-w.

a k

T 4

L 4

1.

m VspyswaynursuurnosanNunN/'He 71 re VartssasrHssr/McHH HsH4/WH HMul.

~

Dy-emie N::I! A'iW

)!&/

ir ~ed Dynamic.kodel for Fluid Tank Supported on the Ground kus A

S o s m h.

e ew r, koet:ou r,ct acceaueser,M v

.jf M

~

$s 'dAs T*

F~udT Pool

.j.dAg n'A M Mot,.'.ca Tre c.

n MYD R2Dynnr*rr'c

/*<& $$ ude.$.

A di%'7A7s4 s*'ostn.sd Q A*

r PC (4R,W sd sW P&ct.

Acr$

A$

4 St.x, s o Nts 1::5 :r7o

_A-

_--- =

vate PAC,t OF h

    • U Q,,ySrnG S /E2 f 3 Cp e ~ 5 e.

2 4.,-

A REF.

mess a

sino coa 7.ccr taira 7;we~

fbac.

~-

u,iec.s,

o Ac couciute imne.sive-wy.ono nyasmo'c. -,pa?ssuses DiescrLy

/;?copoA'J'7adxc 70 Thi nrxt, mum accer.a;esnox CF -.. 7hs

$~10A?.,o 46

. P c c G..

' Y)E Obr.,;aa7xc,,.

..~' :

)

  • a CCdiL 6*A?A Ti.: A At SC)

'5h I;'

$4 4 *T w i w

/'*4 Us*'MW l A,v c 2 OF l,, *, CsTA 4'cNoT E8vi's'N a=

s< dor 7' */ONAC.

1 I

I

.DydsCtry/C f CONVdC1'"5V6) f6:34/stG$.

/H6 f,,,,4A77M M.m

meosos, ss u-d-

m s

soc.;o obc /$eleA ?o's%fh*

MMb i

"X/ 8(.l (QNNM m

TH E P.bo t.

t,vALL.S.

Af$usersons6*

7W

.P00L s*7A%c7tstG 7'O

.SiE~

sc A!&i'>

Baby 7?)E s:rray; muse,

.:ps'st: eca m 9.o7~.

of 7hiS 0 5 4 s'u n 77 n &-

r?:rnst e~Q./4L.5 7H" i MAX.

$4 OJNo dh s4t~f6 sT" O o**

Th6 foo t,.

ldA M.__

YA6

..S_ CT AWied Of TI'ri'

/&MO DyNso*~so'C PasSVAC-5 N

/ !D b??/uc.3r*vt s

oosva to u rEGriedr Potsffudair$

s

.L. ems to s

apexmic mouz ear.ea:evr a

.ey O

(,/sa'us.

f*0tsnut 43 dvwN

.ss&

.t:a~.rd;ti <ar '/4 g,,,ed y_

1 79 ;

s'AMi> ous pacA s:>r67kst$

dan "

7?) & & 5 f

  • V.

'G fe et, hd g-M~Cf".C 0$*

4,e/sG/ht9?

y f*g ofuo' /h 0,.S A

  1. d A./at

.ot.o* C.,e:

A Q e~

Cat < r.t.sc A 7 >~D.

8a#.

.,,a. I

  • EL. IS*8.u#

44

,7 _ v r"

A

'g.

7 7-

-s.

p,w

~

i 24 24o I

g 4 o. 2.

fl -

g"a n.o i

T.-h4 }-

e

'la ao:.3

..f "L

  • .a-

!.= <

gz. <re 5 p.

q.

R##

st e s er-;o J

~7, #y

~;> ' t '5'.F 'o o w D. + m m *. v. ',

me-tW ki.\\ $

wa s tos 2 n al hN l

NES DIVISION t m,u.

D A T E 2 ' ^' PAG E C' 3 Of #~I2

~~

geygTAL.~h m_e_ e-3 3_t'=JU T *f.> redo (>E G e

REF.

Ib6

& Y.

$LO.in o Nta-c-Fr ~6Crf f 5aACa3 c

04 A?xCC$

xxo

/nox.

wnm O,saxcarnewt) occo.e

.waev rne post u

sas.r erea ra

<x7seae 3xsos ExnnsG u.c.c2.

.G:=x.=~x.os. f

.~~-s

&aie-x e

t

$L.C&sM6 S fsCTS AA's 4.WA.'f ;l,@

foA?

A D86 dv.:i'W7" CV./l.y.

Ax x

A/-S D86

&saf 7bf d k $ 7 & L-WE DoO C U

Ca d f' R

7D.

/

s 86

,o 6c.exibcx Poot in The sV-$

Ds:escrood

(

h/,z 40.Z

= 3 3 5'

) /. S).

7"bSeffox2,

.=

TNG e,n u

-n m.w

~

~

n os n

=

265/*0ND AS A

sts bro 80Dy fcod!TMAjNdib WN/29t) w o rH 4?Ss gCrs 7t3 7Ns s m n c ss'e r Acessvers.

o Ynd

//?)/t/L.So 'V6 f0dCei*$

AMt6 WUCATWD W / T' k AS$MCM 7~0 s% f P'c777You$

B CJ7 bon AT*

DAru/r? fl.5.A

= f/.f/2)..ar /8 0' )

MD coondsM usnv r-6 s c,v n e.

c.uear a

rze cassm,aa -

TO D aiT M rr3 O J 6 77v6 C%r"N'Ar c.

s rd AWrf AAo s

dreced (M'). Ibs coavecTYa ca;vre:nt or y

c'cuccas s

we to me o scice art.is-ca ne

,m coceven:

i sd$

A NL/s'.J L 110d 6f full wsd IhrX Da~P7V AMD A7/'t's* k-D sd r

/}~$ ' C A C.C Lt C o 7S'Q C ocuM*X Y cf.eseo sh~f r

(i/r)

'70 Oc7 apt'nr**a 717d'

.S',o s as a 4-4.In & X c

emur.s.

oty.*

s & cwed t,snAE9e M25the?5 446 cH'M sy

<awia-m xvocop, we

,cua m

l ysseR*

rrMsp 5Nlll>

7 Jet?

b v4.

leeds QF M

AiE' C A.

l l

A

" * ~ ' '

k h7

JF"'M..,,.

D/5-4

~~',= e st-5 "'S%- ' c M Uv.E 3 ~

d/

c-.

t.

REF.

D2 A/- 6 D/}$CT*/O 1

l jd7W 4f idAltX s'Ar /7)Jro a.)

42,/, $ < 5:'E an e7

/0**

= 3.:. '

I \\

. d foto* f F* [0 4 512 dsadap is;dR*t s L*.rJ:7,' 4

,r a*

G I

.h-y g" y

S3

~

,.f

_L.

8 F*'Ma **'

E4X l Jmhu o A

Off =

i a _ '__ <- re -.n* r. ** a _

t

' :. 75 %M T2;

  • ...1.

I

, 3 7,,,, ; x., + a m4 e4a n

n. /

Mi

  • J'*

t g

4 *,9' e

f.

.s 3

C 22 >< ~ p.

r77

~'

weaae:

u -Sets x., s hn;*

8 S

Y b

  1. 3 O

, gg, (,

f /f, O K

~

g.s w 4 z/3 -

c' Gwrdt' op-6.oero bj b,fABOVE MRom) e v {37 Jg) g,jg g

The hoc.

gxuuune a

,a.1:v ma

.,e, go.

.5eom me 85 fr/ati20sv/>M s0CC6Es 9.,471oN E.s T-r oos.r 4

$Pt?C124 ya

'PertsoOY* 30 **\\

FT*C A

7?rf d' soruc sEs 0, /3f, C~L

[rr7&l.,$ ivf SMLE e (4,11 0 + JOle L {$.0

= 2/ */ hf d a vlry co<m or or ro m zm a r,raa

~ *

' j. -$'

- 2 2. 2 } - 'O e l 4,.,

, /

6 / '" <

i

,t;.a

.o:,,;.

?

44o *4..R20!.

rm l

Ca a-sen've h ea (Ps) ide~~wf of f.ud/UX s5 fadC x.$Z v'?.*f1 % ? ' i? sis 5 '

1 so*o

)

O/'

0. 527 $ Twis I. So.,5 3_

m'.ee:

4J. - l'a. -evou $

)

g h

4 i

l W = P S. f '

uiz, o.szr(>.nQaah

r. w 35' ez's=103o*e *f. pC * -

a ye -

cu =

g,. g i

/4;".,/.Gt'.

$f.Ed7venn.'y op*

Q:;t:it, s.A;1TTAJb* W47837., W '#,

l SS $ ya,,4, g3 g_

).

  1. l s

s NES 'C5 ::/741

~

,g 9y c..,. 7 d e,,., m._ % <c-r'_.- 2 Tec e.- Nc ',17 J'ac,5 D6 REF.

/. Ob h? L)

Wl1

/* SO 4 L,J

=

, 4, : :

oA:

ld =

CJ Sz 1-

  • S f

'5dC

= 3 g

~;-O 3:39 t

  1. 4)m M6 Cf6*

NGC/Zo^> 7.1*.

J' :: :.::-W %-/

E:F 0 **; * * ~ ? I

$/ttt/A;4

f W /)

f= 0. 3 3 CPb ES

  • FCA mA R.

6w C -Z C. bf g,

0.3 xTS'A

.::. 2 7 3 a T

(.. x 0 328) *

( AA%ulM ' A;*Myt't,sD6 of W C 54* W T/ N f.r fl.us2>

yp saxfxes)

=

t.se 4 7.cas i.ss h )

.e J

.L A; - 2 22 mk-*1 ox 277C m

w:

} = 4o.4f - 3. 5.g -

!=!w-1 5%.

1.ss Y 7xa h

/.S$ s 13s) = 0.30

/2 dwar.n'er Reco

/?.:

W, 94

.s.s ut g = boy 35)(o. 3) ( s,a s <) = ?o a*

k avrex cr 4xedy oc coi m a nees h, z h, =

as h (! 56 x $) - l

/

i-O

/.S0 b.Smh f f.58 h

~ ~

J

\\

E-x h, s

/

CM h I'* SS ' E' f,.10 2

_yy'

~l

}.55L].55)Jo"b('/iOfl3 Nts t ':S. /741 I

I t

A*b$hs N

'?, & ' $ Eb.

N5 Yu a

1 6

NA?.R

<. CJ W5/6-C F;~s C 7~$

f McaS 04

  • 77r?

Jrd;v 7~

/iscV.

77:M~

,C.CG c.;o4Dodm Sy A?A*tyw&-

AA./

A7DDst s&JA4.

M y M p ay.0,cn7sc naa iMPA:='D w c rse ~ m495 70 m e:

JTructvA?ac.,

Baro

us7% t'

,4aya

.'.s A 404D 5.

I i 7;a-C f ritt X 0C d.ceviry

P

' ~~ 4 =.cawr:7s' A

~

wemx em.1:suae xcr5

.or A coes77b.o 22 G8 sear

/

,cdJ./S 7~~e Maat.

/2.a:2.c

.d.v D

$. 6 6 - IN3 ) = 17 80, mr

,cco e 7;v2 um su.e.cace y m2 FuEt.

JD W AxckS.

7%E f;ckvyticn d werEA

.hBES$ulf i; W

,~~~ a~

470A?46d

/24CCS t.$

  • cas h

'i'~ ]

g,.,o 3.

g r,

e.,

w, G

.siw u t 2

z c-x h

-Sish /7

?

4.

/

$5 WA f$Y$hUYY

/E" s.

g cosnjz.

2

  • f,

/W U

z

.%4 h j,7,

g J"

A.

wm:

,) = i t.O M

9 ( 082) = 0.a,o A

.co.z ' re w*

'f 2 4 (4.C -S) w,;n = ms.= -w d

i w

TI?f Co a x c,n d FOCLs

,%e f/vcY or

,c:xcc.*

4.

4s.

1 Pz -

.n cy'

!.:. ', !!2) p'~

~

=

4 4

3 r.

3 u

, g,o7 /,$,

A

~

fQ, %) [0 50)

$so e,

/

& nd n

l

'~

NES 105 f2/741

r--

i

.a

.=w -s_.-e.r-a _ s re.s.

G y.

.s 4dc.SC

$40ws46-EWEc?S-i --

~

~

/. 870$

m /, -- [

d-

=

g 5-h, a '), c ( * -

mm

,ea.,c zo a ^

.w.u w.a A,so vf r :u. A =ot (57) a i;, a t.:. f: s 3mac6E La:t uA*'L"e SeJ4.1< E' t h a To.,; w a (r7. )

n 4 8:

of =

/.E 708

-,, a l.,

f _.,.

t

's:-

a

,/ L

4. tS'

~

7arzc coaanvr facce ca.c secac.ccEf x

' M,9 gggY/

/2.

1 LoN:u./.:foss:

  • /r16~

A?A vc r*S 0*

7NE CE7Mik,eD C a c c u w n o,,v s oc r.-6 t,v x r E x Sce n.w &.

c F rc'c 72 04 Tr>c=

SPDJ!"

Fud7

,d.4 c < S 2ksf 7C A;MJ A//S DM Sv6N7'

/ J or'Cc727 s /7x7*

7% d

&~;RJ76;W

~

of SMO y o s' r?x?

ca du'c' CT!W suc73;g a'4fSSu.46' N

4 7" MA,/

d '? ci v n 7 7 0 4 l ~?,8 5 p~c"E7" l

l

/CASCAE 7"t16 ID/*

J~s,J/ffAcd On" iM

/Litti!T=

,$ceccre s.ccc.s.

ME coavectrue unts;nt swr.e on

,4 si:1eocer,exc,e:

( c. 2 G3 ",)

/h Usissik-

/b s*N I"

(.'d si*'/

AG / tic 75 TO 7h6 7"oT*AL MS9.s %o4TML.

$6s ^,,rrric.

.cND str:Acc7' f044E 5.

d srbs*r.twet? GW42 S In X/.s CC'.,0va75D F04' af

,< A *:. f s N 6-A*)

Acaor10/J4L.

W/';cJ:wlsC rir /t 4/JO' I;C4W-'Es W41572

/7)A".S 70 7?2i?

j'2',4) c Y.~.JR4l.

4,s/Et'6H7"".

/ /7 6~2 d F C Ail s,

A'"N,Y S40 a *'snb=

  • ~
,a o 75x we'u Mnd

<W.5's Hi5~N 4 r./7 isfd-ct's oA jAf f M T*

,51iB-AdCCS.

~

l NES 505 2/74)

C o - e */.sec =-5 cW & :.:s at E-4)

' M G~

Evelt ;

~

2 E-30 '

/ -=, G c

'T~ 1

,,3

  • i:

dhes rr,f DaPor c :-

,M N6

'2

., -lC 2),

8 4Ce 2 5

'?h CA 17's P"

t' *-M, l I W l.

I

  1. e

&vnas ma ss d= cw n=

.wo7~-.

t

~

l

/. S.A.

&%_ J want.

faexx5 n wos

.s-

.g*

70 r*L*owa

,os

.c s

s 90 aay.

t.o*

,: sersh aus Dxrur,> />;1 J.S.L =

i.5 (/Q) = 24 O og (4: 2 '- 2+

  • )=

j.f. 2 assm nc.

fm.

1 wernr or waswe ik

/77anu) =. 4L. 4 e

7,,33

/000 WflW GS~

CaNo17?terasCD WsemX,

f,2,4

~~

o m / 24. < 3 x / w,. 1 = l =i A*. x.

.s Esr]nt.sairr fon.CES

.{ fa )

Wl C -4 i wmEC W=//.O. ? '**

74db 7nf

~

i

=

A/

. -bs 7

/j

/T '/

i 4

.2 '-

[ U = */d x //50.2== 8 l6.1 Wo

=

Tadh A

6 V3

~

6ewlry or, % s.s 4 m ec ( m an au) =;,, _

Ceunm c.c 1

ho =

% (2A0) = 4 O ost On 7.s -r

\\

\\

ne s,,-w nas

<s - acwwa e n,u,, Q 7*h e~

sCet-STXuCTtu2cf

/5 A &O.

//M d.4/5Lhll' '.

ACLa* ladle 7Yrk) v4tuni{/JGh:

C/31;csA W

7'h 6 1

C. M

/.///.s'2&I'Cl

/4 W ^I**fA)

M.'s=4WH SMM

?-

Cast

,4

?2# 3D

": ^3 o PL.

es/O A?/s rec'2) o s

7"n*ti~

l'cAJZFXA7/M Wa7 @!**f.

j$f8/b-l

+~,ll ?h *

^.O T. O C

Zers Asc so*/f fadCf :::

t

'4ES*C5 1/748

i pg..,.... w..

-~

~.,. _.

w.

' O <. 4

? me_c-e h e R,-._cm,q L REF.

OM V

" ' ')' "

W Tor;uC M Aucsisa~ Regg ho':

7L35 l j 6 / f.,. / ( / 6. 2 - ?.o )

h ' ~"

a

= / O D.e Y

lh pgpeg fm Q4 O2./= -Q; A2.:e -

,4 s '.o s

=, j;,, [

(' 4

..o).

w.f.

m

~~

=

O "Il-7 7:Cb

/.T3 w 'rd :

.,,, gj g ep, 9

1

(-1 4

Vi = [0 5 ;7 0.5*s ') IMhfl SS x ISi fi ')2(,,$

b 0'

s 403. 7 ? u.-

a = /9 24.C

=

i Nx' nxc fac, w 0.Wuerma-use w ',

tsgy wj, iQ

\\

    • Y m'b I.SB x /.sas) - 3.,,7g w, y, pg3 7(me) =

27 2r

,.f. ~'

.2 ~ ~S 4-

>.,.E 24

'P '

ca j,7g3 T ~

b8c~

$/c~czx4 at

/=0.284 cps 4 = o._5o

~.u. o am seq)

G 7r x. 2.s4 M

f o.

e

{

AM W &S4 Elhe $

tvu-fossN^

/, 5 s A

ece TDr'n(e L

l.S9

q L-o n.

a -s. va n...: l 1.

4-

~

([, gg))'. o 3 I i O*WEs.=dD we'et ' )3.3

  • wh1.59.~p1S)-

/G

, 80 *.

M.

'me m,vs k, _f g_,

/

4

= g, g i

Em.

  • 4*4**l' 1

.t*

/

e e

L t) d d d C 71 d /*Co2Ce l

l t

~,.#

  • H.

@=

H G h.sa.4 w t 1-Q;~

N:r

.'. e c o.

.g 8 *f'O5 f.:"a) :r. t :.). ' s L

Nts 105 I: 774)

g Ntb DI.lSION WC

"'PQGE CF_

Z se_m. et _. w m _.w,,,.,y

__ m. s.

m au S"' r or CM of 7"o7xc

.onines,sa-nees hi:

'lt135

) - di f / L.%. ; ?.a \\

_ a.3

'7 % 35 r 8/?,..I n,,,e p _ n 0 *Ve:.We-Mac.s -

?

{

=

-~5. 5 ~

(n 9

we-, u~r nac n

/ SS f h p. _ g,3 C 5;7

~$' h ww:

=

en c -t i.2, = (b.5;7)o. ;;*a *) T:ah I.50 x JS;:p(j tzc. g h ' S. M3 u = /9 f?#

g, 3 +

ll O M C 58* Of 0WM 7744-WA?M : QL

/S$

y ggg}y 7,Q )

a A

n-Q wir i.se usa.9. g.,ng

~

,,,, m

-[Me CO,

/

2 2 //

2,

arroce, rs e ce. ors 2: e cf << 'iry cx ras so..o w er, a-c a.enne w

4 ss.cc. rever-M f.p.45' - la 5 2 ) = l5.13 ' w rhe-Awe m

o.e aws-7nc w

.su e.aca-oc 7ze nnr s"~JC A.st*x $.

/sGd s'rMUt'.

44:v/cA?Cri d 4.,es':n 9 C s44tf.Tsc.oe:f CN 7?:e A44'C$

As E*WCuaAL-2>

g [a &v'" /4) TO s

p,, f f* E C*'h J ~ 'E

.ss ekxc 10 :

r. g A

Sh f 5 M

-z M'

f*

  • M dY g f g e ga. /

.s

12. L f pv,

./ =- /6 A.

en,

0.299 5 h **

    • O 2- /Y n

w'*

3. t 7 2 ~c' ne coumnve
%za xx roar-wsdtw ax mer

<a h = l

/.fis &

,i., (3. njo.297f (**N

~

c',

n lk 3

7 o

j 3J})

S d}a';

L jy f%

~

k =

? ST/C I

h k) y$f Cosh

\\

e-

/

=

... ' 4,

,t t)

,, 4 o~c

'1

,E e

Q' "~2'j"r d'Sb b

i

~

.=

y j z is g t/ a.

,ou

' C. 25

)

70 m C :w ASCTo u*f R/. s M J' 40 CA: =.C,, *,1 x *To _,' M r.s,e.5 i.

NES 1C5 f2/74)

..-.......n..~

n" N ES DIVISIO N __. _....-..

C H ito.

EI

. '1 I

~#

4' O F-.E DATE JACE g.

e 2vs.:u

% xa~ -*$ c 2=r.

- s_ % w w,

.~

$., 47?'2'l'

$4 C.%dr N'dir=

$FFECl~s

~

N' ygw$

iW

.'. 7 25Sucr$"

or 7~hc=

Dd7xic.6D ~~ ' C4Lcus.47/ods

, $4,D$s/iN&.

C#

THE "~~ 4/ATEA.

~

~MS od 7Ni

.SPt ?>r. '... O./ E!.

.Sc::S LA'

?"O A:>cx.

m ::7.erw":s* !

I

.By A

Ef /

.bdf CA?2v7'

/5 0

  • C.* M I~I47' am<t?

GeAv/Ty.

M oc*

CF 7~h5 dowsmi;/>'ve?*

&A it~-3E' A>ACCL*$ ~

.. /5 i5. fo$

A E3?7~

At#90 M 7h 6 sexicx.s ' "' ~stesuc71'N&

/sY

$4,/

/d f itr' d t Ys M N 7~

~ '~

Fcada oc I,02 x.,;,a.s Ara-A,.mde:0 yo

,ad

/b O*'Vr'C,u#-

sCec,,t*

37ADUCMsAg?.

Ys*76

/s:rs)X,/CWo*d" GATE 32 FCAl'C&3 A3CG Accowssr*ED i"3Mfl' By AW*s*Vf. sw&

A*Dbs'71onJAf W

/ YO<OOyN ns*vs,'c, sexO

73l?As*>6 tid I

a u.0?EiN?

st34ss 7t3 The 3 73C u c 7t.sst A l 4de:i&7" WM to46',

.,cwy u.osaM S u.2s w a'n G

,.,, er HAA sN.W&*t/sS**if;,qn7~

fMFdd.$

M 7?>e

.G'92'3.!!'

f~uGT.,

,8AM;*4 MGrC71,s44'.

\\

t 1

i i

1 d

i l

I 1

]

l

.em

. h

,.n

LNAu.

s -

Dait * - ' E' PA G E

" ' - OF

~' "

A NES DIVISION CySNL?EEa3 TPE%' TJ L h ~ ?^(45 AEF.

& n a,. x.

0~

$" M A

=3 A>

& g7Ncu,;ggs pwgry,,a,,

53CKN M kgWW (g g,o g g g yj g go g

, o

_e,

/ 's< we,

Zac.,

Mm; vans a. c..

. rig.., - 1 Q

cudW c_omm, gs,w,

t

<-2 " Specification for High Density Spent Fuel Storage Racks, Crystal River Unit No.

3", Specification No. SP-6486, Florida Power Corporation, February 25, 1977.

1 e

l l

I i

i 4

}

NES t05.2.741 J

~

d

'~'

. ~~. :.~. _.

~~

7 PAS $/ frRxi:d ws- ~ ~ fx/63?&-/ ABSodends/

~f :

. :-..~

~

CHMAAcr6R/SToC* $

~'.$221sWLfss

$2EL oc 52;i..../>

W/W4-AC&GJ ' CouTAr*J. _.. W

.S7FAS$l

~

3:3xin P4cA:5e7/US ~ ~AA/a

-. y;ME' c"Ae';V67' A8So n /n 3Al CMAAM af71cd of.

AMM27LeiD 304 Jrarialass Sis 22:.

acucGenm&

siy W

duiove=R.sc E/ dc.rzac

(::;nenfony AND.. -

Sud.ffbvn4TfD Af' 7D C#'46 /E575 wmce. sy as.

\\

ANALYSi$ OF DYMAMIC TENSILE TESTS Dynamic tensile test data relates strain energy (per unit voltane of material) to total strain C,'In the plastic, high-strain region of the stress strain curve. To construct the dynamic stress-strain e

relationship from this data, assians that:

Dynamic 3

S ta tic r.

Kc (Ensineering r

stress-strain) n 0* = K E The energy is C

E = (4 Vdc = K G

dE f

n de J

E.

K n+1 C.r

=

n+1 By plotting the data E vs % on a log-log scale and fitting a straight line to the data; the exponent (n + 1) is easily deter-eined. Analysis of dynamic test data for Type 304 stainless by this method results in the effective stress-strain curve given by (T = 128.500 C

Static test data for the same material gives approximately I

7 = 105,ooo C.25 1

l l

l l

l l

[

l 10-5 6

7 8

9 1<

. ~.

C 8-s-

7 o.

I T

I 5'

1 Y

DYNAltlC IMPACT TENSILE DATA

/

3 ENERGY vs. STRAIN

]A 1

~

(G.E. RESULTS) i

-/

c 1

4 10k STAINt.ESS STEEL

,f 1

=

3 i

1 M

J h

_ /

f-a i

i.

. i

.,l'

- 3 '

...t.

.,i j.

6.j t.

i

.r.

3

.I e

A

+

'.i pi y

.,,.,**6

,4,

^ ~,,

1

~w..

J, 1 -

i

,9

,7 i.,,1 t

r-

^

^

~.

t I

IMM y

1

. 1 c.

79 0,,

, y.

. m e

i i

n

..u

-1 1

..I

.y

/

.J

/

/

/*

s

.g _

..p.-

e.

I e

./..

/.

.i.

,,....i..,.,.,,

.....,...j,

/

,, i

.,,,,,..a.,,.,,,,,,

./

.i....,,

.i.,.

,,,.,,,,i,,,,,,;.,,,,,,..,.,,

e i

. I /)i!ii# 1 e, ti

!,it.e

.i, i.I 4 5 4 i

i i,

,.p.,

,,3,

,,,,,g:,,g e

i

_/ + 1 ie ii i.e,i t....

i.

..i;, i, i t..

,...i.,i,,,

i,

,,,,,g,,,,y

,,,,,,,,g,,

, i e "i e

ieiI' i.e....

6

. i - i i, i i.

l.,,i...i.i:..j,...),ilg,..nl

, i i.

i iieii ;

p,

.t.

it ea.,i it, i

..,;. i i....i....i.,,,,,,,,,,,., i;..

3.1 0.2 0.3 0.4 0.5 0.5 0.7 0.S 0.S t

UNIFOR>i STRAIN, (, IN./tti.

A

t

.p-i t

j I

I i

t t

3 wg;

? ~ ~

n i

O i

. e i

i 1

o g.

/

?

.A f

t

- /

m 1

1 /

4

{

-a f.

e

/

t

/

6

/

. /

e p

6 e l i.

i f i

i

/

6 i

i i

8

/

~1 f

?

JI

/7 4

! ! I.

jr f

i l

. ?

I

+[ _

~

I p*a=fa w*mia i.

=*vpw.

. 4 { !

.f 4

  1. inasw ; a.. i s s.%. 4waa, t

i 5

f.

i t (TDrte. (*Datw ma**

3 i

/

g

. I.,

/.

3 i

i.

i

/

l u s,,.,.. m..

--e e,r 3

t i f

.a

. asn s.ww as

.# s..

i f

b _i

./

i

. i

)

%-L.

JAN. is t.

E%tli.

[

/

4.

/

6

,, t i

/ '

i t

(TDatu ma*rq f

-I i

q f-I a a an em. ri a a a n

.m en a k _ e v m a. t a j.

.u.wa.

e uaein ws sw 6e a 6.on s.s I

e l

" 5._.

/

i i

I t

id. L U I N /." I f # __ iU J L i 1.=A e -.

I 4

r

/

i 4

, i i

a v.

I i

i f

/

/-

t i

I I

.C I+

t 6 i I

.e i

e I

M 4

.f i

F i

Yf-.

a_--55 i

__mm e

a e

i b

e t t e

i F

t i

i azf 6

i r

I_

a,

_-_'3 J J

IU 4 'J JU e / O i.

.V 6

I i

e

..is...

1

., 4.v a. i, i a f i.e.

I 1

i t

h a

i i

e i

4 g

i.

I 3

i i

wa u,

uw I

O

., c s

m

~

tr sg

_w L*

O y

w

.c im =

1

~

P*

P*

-] - c.

4 l

m_s m-

_w a

1, i ^

3 4.-

R i_3 t

.a g

, _Q g

f

'LJ *

. g t I >=

p e

a

- o

. : m V

I

~

q %

t

== -

,y, y

.c,-

  • L g

1 g

_ ~

O O

w %

o w

1

='

w i y e.

L y,,

~g m -

.~

g.

?

2 -_-

a s.

i g

-3"

_J i n t.

I 6

Eta u

q y

O Y

c m._

ap I

\\

i i

w v 6 ;.,,

- ^ d.

i m

I

.g w

4 m--'

e m

m i '

1

\\

en p

. c6 e

n i

b.

W 6

aw.

=

1 --y

.o, I

F

% w, g

s. r,

y i

w

, ;s.

~.

t la g

ei t

,6 g

g

'l 6=

- u't3 o

{

l G

m.

g.

g

' i

\\.

I r"

mm, m

-m w

' I a

i i

4 76, 4

I i

.g

.g.

'2

'^ -

'^

^

I g

.g i

g 9

_m l

i i

6 a

i c

i s

i.

e

.\\

6

.\\

-e

,y, f

i i.

I g

u g

,g

  • i e

f

\\

r

.\\

i

.., i c3 kJ f

. 6 I

cT - 1

e.. \\

8 i

< 1 6

I I

hS*

T*

F'"

b.

l*

I g

6 I

O **

\\

i="

ti I

RA

\\

i2 e

8 i

_a g

3 C

.c-G P"'

1 i

\\

g.

\\

\\

\\

T

\\

I g

\\

\\

\\

6

\\.

\\

i 4

l l

\\'

1-i t

4 v.

t.

\\

s e

a 1-l T

i P

\\

\\

i.

C T

1 1

i

=^

\\

\\.

(

I

\\

\\ 6

\\

e I

k Ne i

6

' i f

\\

\\

\\

r A

A A

\\

\\

i i

\\

\\,

I

\\

1 g.

i e

\\

\\

-1 i

O s

g g

1

==

\\

I k'

\\

l 9

\\ l

\\

N i

1 i

A6

' \\

N i

A'

\\_

\\

4

\\ _

\\ _

\\

i N.

N.

N i

I

\\

~X

' t I

  • I N

g e

O s-p^

=6 me M

w w

.i. - w.

.-4

j... '.

1 n

l In n - ag

. J l

1 I

i i

f a

}

1 l

I

Static Stress-Strain Data 304 Stainless Steel 3

Stress, 10 ps:

i Test Nominal

.2%

So.

olameter Offset Strain, 2 of Samoie, fielo incnes Point 10 20 30 90 50 55 60 1A

.375 33.4 58.1 68.9 76.4 31.2 84.5 85.

Is

.375 31.9 57 9 68.7 76.8 82.0 85.0 85 2A 357 33.4 59 0 69.1 76.9 82 3 84.9 85.

2s 357 32.75 58.2 69 3 77.0 82.0 85.0 85 3A 340 32.85 59.1 69 0 77.0 82.2 85.4 85.

s 340 32.8 58.3 69.5 78.1 82.8 86.0 86.

4A 309 32.85 58.o 70.1 77.4 83.0 85 5 86.

48 303 33.6 58.8 70 9 79.0 83 8 87.o 87.

5A

.252 34.75 60.6 73.4 80.6 86.2 88.5 87.8 58

.252 33 95 60.'2 71.6 78 3 84.3 87 3 87.9 6A

.206 34.6 62.75 73 3 82.1 87.5 90.5 90.

6s

.206 33.15 60.4 71.1 80.2 84.8 88.3 89

. 178 34.95 59.8 73.3 81.0 86.8 89 2 89.4 7s

.178 35 7 62 9 75.,4 83.4 88.8 91 3 91.8 8A

.146 36.4 62 9 75.3 83.1 88.5 91.5 88

.146 37.65 65.0 76.9 85 2 90.0 92.7 91.5 nax.

37.65 65 0 76 9 85.2 90.0 32 7 91.5 30 Min.

31 9 57 9 68.7 76.4 31.2 84 5 87.8 85 Avg.

34.0 60.1 71.6 73.6 84.8 87.7 89 7 86 5

t l

Dynamic impact Tensile Test Data 304 Stainless Steel (GE Results)

~

l Test Nominal Average Uniform Energy Absogbed,!

No.

Diameter Strain %

In-Lb/In>

Inches 1A 357 18.75 15,730-

)

.:;7

. '+

3,3:3 2A 34c 20.5 Ifr250-2a 340 20 7 17,450 3A 309

25. 0 21,400 33 309 24.8 21,260 4A

.252 34.6 31,760 na

.252 34.2 31,765 SA

.206 48.5 47,530 58

.206 48~.4 47,070 6A

.178 47 7 52,340 6s

.178 47.1 52,460 7A

.146 46.5 47,730 7s

.146 39 2 41,720 It should be noted that the analytical calculations are based on the dynamic stress-strain properties of the ann.aled 304 stainless steel that were gene-rated by the General Electric Company for the design of pipe whip restraints The dynamic stress-strain properties for the annealed 3%

stainless steel show stress values 39% greater than the corresponding static stress values.

The GE data is substantiated by tensile tests performed'by NES on the " stretched" material (elongated 22% in the module test).

Thae, tensile tests indicated that the stress values at yield and ultimate strain for the stretched material are 38% higher than the stress values at 22% elon-gation and ultimate strain respectively for the unstretched material.

6 l.

9 Ya

.<<NE7/ C 6; Vent'6f

/$ SOU4TED

_ LJ /n/ - 7;w 5"_. /~u[i.

e m s,.r

o ar-r/os. ox w km -m o,_ ~

i bro &

Y$m l

5 h

YY MhW e

p

/ C 1

A-M[(

,b

(.

ae E

M b/ #

.r Fixrc TJ _

7*-C

/A/73'4./At

$ 7;;E'4 sat.62 6 CA-f O C s%f ~

R G:. _ syvexw cecc.

!ni ditsexxt J r,ac w 452.e es y - - --

~

oc excx cosvrAefs's!ad memecae is carxisica f.eam m e-zyax,,,,c rest rors n or - a ures s,w.<a seuy 76C ue/7~ J/04 ures f 0,c" 7MT /724 2 /A 4.

M

@!Mi-47RA/AJ s.J 77,,6 Af4Str C,

,=rs6,W~ $7MA/W AS4e *0.<J Of 7Ms M, l

$72.nid

c. u xs/6~,

sGeom fade &/ :

E;;5EMAc

$1X ist EsAGr4f #f dim 446 A { = / val

-bg w aa:

st=.-,,a a co r,,, ass.. i ->

7hx7' Agld" E Frf cT? sad' sl/ A d s o,n'B w 4 7'M G"

$. E.

o A-C<,oss-sec r.ame.

xxer of rus coms=<ess os MdEM6 0/*

TA d 17CA?.,04 4' C.grul'..

J. =

Lensw of ther comoxt=s's,*c.o,moruarats 6, =

373CosN i

f /? 3

$0W/bl631Y C Pr@6 70.372ESS Asp.:02xid.

1 04 M 61de&y Accxace

/7>G7k aas y staux76 T7ve Ex729eux4 ruxaric ae;esy to r>e wreeuxc s7zsta erxey Eg

'K M V

  • a JAL (Het)

. - t jfk54 /Th)/1f

&ff y

Y

, 2x AML,,

/CAyJesu.m

.I;dlESS = ' G.::-

/ (g #

U1 'vdr-rr<E st]A.a'.

A 6 0c110 4 l.0 Ab $,.572c'15is /d Y 4:: rys,o:,vi.ver

.,:l'rRucrJ,e;4 c.

g ge se,c475 x eg' cat et.sc xr2=D u :;s sa.

E!.A:nc

/rse17 sacs Of

.s7xucruA?AL

,wcysis.

-~ -

.u a z.a.c ze: := n.:.i:ss.

Table 6-16.

COEFFICLENT OF FRICTION-IDENTICAL METALS ' Ccemue.i, REFEJtENCES

'The Fncucn ard Luancauco of 5oi.ds. F P Bo. den asd D Tabor.Paru land II.Ctton:

P Tss. Par 1 IM!. Part !! b4

' ! *uence cf CN-norbed FJ.us on uses co and Fneues of C:cas Iroo* D H B ;a.ev..% ASA 'N 0-4'~5.e4 3 '*t hem of Che=uorbed F.i:ss ofianous Cases on AJheses ar.d Fncaca of Tucsces, D H. Su;s'ei. / trp nas 4'.:5-s:DM

- ' ~ - -

... w.a. 4.i en. ort is.

  • m c t u

~-.-

4-

s..m..

, r..r..

u.. 3..

C., s.s a '. n..= i.3 * " Tor-T 3 H 3

..cy. ASTN

.n u:e u.ae* oa i.:c 5.44.:a af 'u. c a Vcu; S.a; e 37-aJ. i ne. p 2 44 - '!.

s The inhera of Crvsus Stracture and Sorrie Properucs of Hesagonal NeuJs om Ftruos ame A4a asJ Al Joa:nos. 4ser. ;I 4C$-4I4. Ibe.

' "Fncaon sad Wear of Statmaa". E. Ratnaowcz, John WJey 4 Seas. 363.

8. "'The Laencacos of Gold". W. Aarler. Wear. 6 44-65. 1 % 3.
9. " Advanced Beatus Technology.EE Bassos and WJ. Andersee.. NASA SP-38.144.

Table 6-17. COEFFICIENT OF FRICTION-IDENTICAL ALLOY PAIRS Cot.ruv or Eciso.vo L Bsp. amo Don..Ao H. 34.cu.sv Coef5 cents of Knece Sliding Friction for Pairs c(Identical Metal Allo,es Cerften,.ie/fner '

y Laabrwesed Cambnessat Ontor Sohd)fhn Drr-siduer V.ws.m, ents t' ens **

Moss

.** as

  • vtace w=cs R 3 steel oc 1000 stasi 01 04- 08 0 3 til Scirsee 3:1M,trci ca 3:100 swei

'J l 04- 08 0 J fin 50

!)

4ao-C 5.S. on 440-C 53.

OI

.04- 00 0 4 til

.5 C

M455onM455 11 S4-De 0 9 sti Seasre Cast vos on casa roo e

)1 04- 04 Y

I 0.J (4.

M.I tool steet os 04- 00 j

0.5 (1)

M-l tool saaet t

Brass on brass O. I (2) 0a.OsfD l 0 444)

Rene di os Rene el 4.1 04 08 0 4(Is 40

!acorief ce inconef OI 04 08 0 5 f!)

Segure Hastasioy D co Hastruoy D 01 Cermet K 16; 8 os 0 *:li seaure CI

.)4- 08 0 * (!)

O Cermet K 16: 8 Stett,te Star J os 01 04-os O.3 t!)

03 a1, 5scite Sur J Co-S Mo os Co-15 Mo o og 0 sa Ti-I: 5a om Ti-l: Sa 33i))

o3 Te-se Al ce Ti-16 Al t

03(3) 9e ela i

i 0 $ 0)

JJ e3) tt atssaame with e -_.r; eel ----a g etadas.oe and servenece unast.iers

  • Dais teve PsASA-.Le.m ames,ts csear. acepe tare edaa=s e, erverrecs e.meers e p=<enenosa RITERENCES 1 "Advsaced Beanns Tectaoiosy'*. EL Be and W J Andersom.. NASA SP.18.1%4
. "Frcues and Wear *.I V Kraretiam anesterwortas.1%$ avsaame u an Ess;sa iraes.atos
3. "Fneuos and Wear of Hexagonal veuas and A3ovs as Retated ta C.yut 5tra.re sad Latta Para.=e'rn D H Bueswy and R1 Johnsee. J5L f Tress.. t 1*l-1J 5..%4 4 7nct.oo and West of Materws". L Rapiso.scz.Jone Wi.ey & Soes.1%3.

1

- -. - - - - - - - - - - - - - ~ ~

5M; I C. ;.

Endard

  • dan 6m f or Me:.an:, cal ngineers by 7.

Sareister ar.d Lione'. 3. Marks ; Mearaw Hill 3cck Oc=pany Seventh Idition.

static A.c sI.1 DING Ct)ErricTENTs or ralcTION 3-33 TaWe 1.

CoefBoasts of Stone and Suding Fncties

'L6erumma artenre unasante the selbremet esad, eusasswo.a smaanteemme give the eserums. See fewmene)

$saa e Ad.as

>7 G remar D'7 Cremst aare ne en an re n==

9. 79 i t s : 0**1 e.

3.e! ? * ? 'e - ' e '

e t

' 8 tl t s.

9 300 3.. e 48:

4.

  • Me b p 0 0 307) tit. p a 864 1 d) l 8. 8032 ('t. as

. a n.t ;5. as i

8 le.u

, 8.168 t ). en) 3.12 41. es k

WJ sine se m:.d red.

O fa tiet 8 1.7

  • t a e 09 e 3 e.

y

4. 21 ll', 0 99 i t. es e s v. a. ea Read sene6 en green.ne.

(

(

Bare saams en emeenas (ASThi Me.1)..

8.70 (II) 0 23 y t. 68

0. )) ( 44
3. t 6 s t. N 0 Il 41. se 8 to e 1. d i 9 Se ( f. es S. 6 8 ( 8. a0 4 345 t t.

)

Eerd sand se bebenes (J2734 No EL...

4.42 (t el

e. IJ e t. at

' O.35 i 8 t)

8. t 4 f I. M 0
1. es I e.8 e
a. Set is, en 0*
  • I. d

.. 3. 87.1. di l 8 34 il. es

.. ( S.64 (li. u Eerd send en bebknas (AKT38 No.18..

9.23 g 1. 6e 915 81. 6e

... l S.12 t l. se i

. O e.3e t t. es

... ' 8. 3 0 4 8. 4

..., 1 3.435 40. 4 I S.II t l. es 1

Wad send en endumsmo adeur..

4

... ! 9.097 (2. 3 Mand sness es _-.

erumme.

W e same en emoser mee.

.. s.

8.se 03 ! e IF3 #L ft

..i.

3 let ta fl

..... ' O.t 43 (I L a) 0.21168 l e. Ill e t 2)

W de easel se emma ires...

.) s.tl(18) 1 0.) (8 f)

9. 95. e in e. ) s t 1. /)

N.ed samme se amed...

. 'utaas es maad semi

.g

4. ee ( 3) s.118 ( A as

., 0.48 III.......I.

41-= en amnd seed..

O. e7 i 31 Mesessem me saad seed......

.., e. 6 6 22). ' O.94 (22. 39....., 0. 42 (3)

Wagemeems se emagemenem.

p i

Teeenen Tseme.

. I a.04 a;2) i 0.6e #21 A Teoen se smaus..

.. 4 8.2 I221

e.44 22) i S.4e(R f)

.4 h eerence se asesseme eartando..

0.12 f 21 e3 e

Te enremes se eene...

. 3. $ e 22' O.84 (32. e4 h emenremseseeneser

..l e.Il a 23) i Le.none eastems en aree..

.. e.8 2h 3anewed amatame en seeser...

S. Il a 23)

Semese omrinae se aren.

... l e.4 i2h i

Casamrom en made ammet.

Ceoose se ande emess....

... e. 31 e 83.

. g. 46 ( 5),

4. Jo e sa 8.18#37 3

% eased se e.sem6.

C. 8 0 616)

. ; 3. ll i):

0.82(A es

..g Senna en and sammt.,

.. e.31 ( 83

4. es as Beans se amesarms..

8.2 ah i O. 34 s ee '

1.ae as sess ases.....

. e.85 (16) 8 Maeem Ceses,mena se ease won..

8. 21
  • h 9 N en as woe...

.. l t,el(16a i en emme arte..

s. 29 r h '

e.32 f n

s. es e T,1 l Lamme se cass aree

..1 t..., t6i,

-- ee -

e3,

i G ase se aseen..

S.94 i si ' O. es a se,e e.es s):

e. se r3. e.n
8. 205 m it. es, 4. 'O rle E 0. li4 4). e Cerame es sum...

Gerees en en e emnet.

e. 3* ila Game en esmae.

t.78 e le. In 8~esast en sanam I.30 : *e8 8.11. t o 4 t't

  • t.

Cast. rem en east woe...

9. 64 t t' S 19 e le s Dee.e l

c e e

e. -,.

s.22...

.,c: r.

e.

s ene - es -

6.u a,

...e o, e.

6.sef;e es Cens es ena f

. __ t..

6.14 et

. S.]! gto

0. 412 gg es Weser se uma iposenamu 8,to i9p

' 8 S2.b Casairsese ena.

l 9 e# 8 95 9.171 r 9. e)

Lammener se ease asse..

I

, 8. Se t o

8. Se il n t

t si e se Immiamand onese.e as semed

. [ 9. 3) ( 12) e an att re j

Dunes reetse henrums es sand..

0.45 til, et I

(I) Camehma. !" ome. AJWK.1830. ' *) C' rse. f - ead Seere=ee. bem. A ff.1938 'li Beare med Sm th=E. 7=ema. Asp &at. l$3&; e tt Detem T=eas. AJ # f..De9 4 3. Boy s sej Reeeremes T een,

(

4JME.1944; set teamm. Jenk f. seese Wee med afea. ille ? tienen and Temeis /ser 2 et af.

Ista & Tendnamma penL #ee.1430 '96 ndarm sama A, 4.e Snemesa i624. 'tu Cie7emme Tasma.

4JM2. Lles. till Tease

,e=, a ps.ed A,s. 16u. !!) trumma. Genered Dee.as.ee se i.ereen.sa.

AJMK.19ff. (13J Brasse ese Ad

" L,, Geommes Cumnesames se L eresseme. AJ Af f..N?. ties Saar.

e e

l i

i RIFE.ENCE C-2: Continued l

l i

t t

imac of Sunace Fs ms. Carnpoed'* oewrwd a.owerug of t.ta ce5rient of fnetaan rses anse or su.ac.ce :Uma u nit preme.ot on meta., svnaces. Tae rasuetsons hated is

'he foscemg tas.'e were ootaa2.ed with ox2de fdma formed oy heata:g tn air at tempers-tum f:ca 100 to 500 C, sai sulphade Ens produced by unmerneo is a 0.0:: pemot socaam salpnade edutaan.

Static CoeScients of Trictee f.

i came ame ery ' on.e. saa sas E

si.w.

a i

e.7s en e 3, s.se e.u C.

O.21 i,

s.16 O.re i

Efect of Sidag Valecity. It has genera 3y been observed that coet5cienta of fnetaos reduce on dry surfaces as siadans velocity inerename. (See :*ssulta of radway brane ence i

Dokos measured thaa reduct4on in friction.'or mald steel os rnadusm steel tota besce.)

a l

Valuse an for the average of four tests wtth haga contact pressures.

ad.as= sy.

pe

. e.eeen e.ees e.e e.

e se see 1

e.n

e. e e.se s.1: e.:s e.se s.ie e

i i

i l

3

.- - -.- - ------ - - ~ - - -

t l

I, FEFERE';CE C-3:

S:ancard Handbcok cf ' abricatun Engineering by O'Catner and Boyd;.M: Craw Hill 3cek Cc pany, i

1-21 LUBEICAT' ION FEDICIFLES Tahle 2. Genera 2 Tahle et Frhtime Nh e t

Q,,,

s 'am =

For mana smaame l

G l.

l r

l 0.M.2 Qana. unionsionaad seriaans Ianvet en alver Imather en seed Nyhas am sammL T.amspenses en shose:

Osna ummelar mannis enher thma Copper en espour

1. M.3 these wish %-w hamme.

Bream en brass enal stressere Chromaean en ehreamsman Osna, semine mannas weh eleme.

Twaanosa en unnesen 0.65-4.36 pneased hemmemmel seressere Inns on sans Cena, daense earessure alleye _ '- f easr en sommi S. M 1&

weak aemts - - W Bohenasenseest eenaass auther a hand meani er knad naamanni Caesual h Rahhar en other annannis 0.M 4 Teema en other anaerunas 0.13-4.04 Greeksne er eartes en askar O.1 M.08 annaarnaas For !

' 7 5-

-i sorteams (ee,ared by Iseed luhnemat) laufertree S -

4Fm samalma, asewesadaslaquad Game as for ensna r

Innsty etessawe astrismas mennes suriname h mamaralaula.somedag

0. H. L8 er un-
  • ,2 - - 9 le triemand welen.

Also meant surfases mesammaar en-whenhoogr lower lehrnented but asseanned to re-move aumenanmaata Eishir edeusave imhnsame:

Minermi suis wth *1skremey" adds-taeum, faaer enh, seed armah letrasmaan Mose2 on w er manal en ase eneel es seemi 0.1 M.os assal i Nrles se maal W=ml an inasse2 t Nylee en arten 0.3 M.10 Tor enNebnemied eartasse Hard 3.sals erwured by a shas l Tha land als es esmal

!arw of ears asenal 0.3 M 08 kasanals latunanand by a layer el{

0.30 4.00 graphata er molyndsmess d>

1 w:h asher eases er esen-pounded by* a hadst i

Ier hydrodynamannar letrtenset marf ese 1

l A aussplete Send Sla, prodused by 0.01-4.001 l

the eLadsag metase, espareams thel eurf s (The made et nennon-1 taan sensemar spese snar as '

seemes aseek an enom of to feed l I

I 4

l l

l I

l Referen:e C 4

'.5NRC 3.)e'<e E 252 709 T 2 <er ?M n ?; ant, J its 3 and *'.

Supple =en:i;

.::rza t t:n, ?rapo,el %d;f t ea:: > n at :.:e 5: eat Fuel 3torage F.acility, 7;;r.22 ' ;-e r

t c

..; n :c: pan r, :; i=t, F'ar da, ie:rua ry, ;)77.

.'SNRC Joe <et 5C 3 3 5-a 5.

5.

2:;e 2 an:. Un;:

s pe r.: 2 2e; 3 t ar t.;e Facility ?!ac:fi ca;; >n :. A. R. !! ar t t.a ?)we r a.'.d. i gn: -:c=;any, ':iasi,

Flarida, August 31, !977.

)

I l

I

.....t i

m :::: lea:s >;.: : ::.wa

,;...Je;

.t

ne 2.;a.y s. 2

.ete u.cc et ;es:.

data provided my teferenc e. f Jr itainleu steel in at er ( >.. : ) 2.*)

it a celocity ai 3 :s, sec ).

s si:icas.'aise ().4)

..is e.<:rapala:ed ta a st atic value C].55). tad a cynaal.: ca12e (J.2s).it a velocity

ypical of the analysis.

The extrapolation us based an la:4 provided by Ref erence 2 indicati1g :he eriect on coefitcien:.)i friction ai :he re;ative velocity.

References 1.

P. Mofsano, 4 ear 3ehaviar af Frte: ion.'interials and Protective Layers with Regard to taeir App 1L:ation Passt3111 ties ia *.later Cooled Nuclear Reactors," F arderundsvorhabes NtfT-Inv.

Reakt-72/S11. Kraf twork '*nian, August, L173.

2.

E. labinowicz, " Friction and Wear of.%terials~ P. 131, John Wiley and Sons, Inc., 1966.

4? Senh.43 7 e i,.

l

e3

\\

\\a 6 Sliding Element (typ)

(-

r3 i

I I

I 3

n O

D 4 j

2 l

l u >..u.r:.

)

I o

Z 2

l

= men.

?

Neo-Lianer Spring Vith Cap (typ) 10fH

-en e 6 e

t I

d i2005" Cap (typ) 9I H

,5

  1. Teel Assemblies (typ) 44 H sw. e 3 0t M

=w. a 4 gStorage Cell 7 y 3

Strature (typ)

I I

e

'2 2

10-MASS MDEL 4-MA88 3E8EL With Cap Elements With Cap Elemoses ATTACNO3f7 D l

TICl2E I

$70Mct RAG MATHDIATICE, m t

~

i m.

t i

~

. +

n !.

W W 'I 1

4 in M

i v

p.

l M

4 y

l O

~ *

.c

.e Ar Y

g i

)

l <,

t

,,a w

in m

z e

4'.

=

g._.

N

,.

  • g y

...... e 3-.

?$

M

- s m C

H
c

-.6

- a O

t l

t

. y' O

f

+

89 i.

i I

G j-ev!

e W

en.

gE

~

"M tt

?

9 i

4E gA E

m me b

e.-__=-

. O.

i N

g........_._...y I

e 3

I a

l..

t.

I 8

. e.

j

~

~

8 i

1 1

,.1,..

j l

i O.

.s....

eine l.

4 g

~.

.....i.....-a*

f

.. w..

4.

4 O

f s

p -.

a e

i 1

I 6

5

'N O

I l

l 3

I (1*6 Ol'O Ge*O O

M*W M*b (1*S=

l (D) N011YtTID3Y d

s

1 i

1 dI d'$i. lE..

)

i l

F

re 3 it> rage 3 sc s ir.e t tac.i.

v.: s. n u e.:

3a -. ;..i ;. 3 rv

.iace as igure 3. 2 on page 3-5 La ';E5 Joeunent

';o. ilA5024 Noa '.t aear I lme 'lis tory Jets'aie Ana l.sia "le pe rt.

itar ige Rack ii. iin; Time 'listary 3ame as Figure J. ; on page d-4 in 'iES Docuneat No. 31.W524, Noa-Linear T ime discary Seismic Analysis Report.

Figure 5 Horizonta. Earthquake (SSE) Ti:se History Same as Figure 3.1 on p ge 5-3 in NES Docu=ent No. d1 A0524,.Non-Linear Time History Seis: sic Analysis Report l-8 i

'4PSeeJ107 3 l')

l

e D

.l p/

ie t'

Oi I

i

%l l

l l

Fuel Storage Call IIWh I

/

1/8 Fillet Weld (Typ)

/

Shim (Typ) i N,

Grid Structure

/

l p.'s3 N,

i fl~

I

\\4

/

r:cwz i