ML20134K477

From kanterella
Jump to navigation Jump to search
Rev 0 to Fermi 2 Colr,Cycle 6
ML20134K477
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/11/1996
From: Myers B, Rubley G, Thorson J
DETROIT EDISON CO.
To:
Shared Package
ML20134K465 List:
References
NUDOCS 9611190135
Download: ML20134K477 (18)


Text

_ _ .-

l l

l 1

i l

FERMI 2 l CORE OPERATING LIMITS REPORT-l l

l CYCLE 6 i .

l

, i l

l l

i l

l l

, l l l l

Information and Procedures DSN Revision DCR# DTC File #

COLR C3cle 6 0 N/A TMTRM 1754.01 IP Code Released By Date issued Recipient Date App li/ss 9L l roved

! 9611190135 961112 i PDR ADOCK 05000341 P P DR ,_.

. . COLR - 6 Revision 0 Page 1 of 17 FERMI 2 CORE OPERATING LIMITS REPORT-CYCLE 6 d

/

Prepared by: A -# s // 95 B.L.My6s/ 'f Date Principal Engineer - Nuclear Fuel l Reviewed by: L ll-6-76 i G. A. Rubley #

Date Senior Engineer - Nuclear Fuel

)

I'fGl.96 J. M. Thorr,on, Date Supervisor - Reactor Engineering i

YYC0clanci ll/6/%

L. L. Bugoci d Date COLR Checklist Reviewer .

Approved by:

$ , [y // f S. T-C Hsieh Date Supervisor - Nuclear Fuel NOVEMBER 1996

. . COLR - 6 Revision 0 Page 2 of 17 TABLE OF CONTENTS i

?

1.0 INTRODUCTION

AND

SUMMARY

. . . . . . . . . . . . . . . .. . ......... 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE . . . . . . ........ 5 4

2.1 Definition .................... ... .... ............ 5 2.2 Determination of MAPLHGR Limit ............ . .... .. .. 5 4

2.2.1 Calculation of MAPFAC(P) . . . . . . . . . . .. ............ 7 2.2.2 Calculation of MAPFAC(F) . . . . .. ................. 8 4

3.0 MINIMUM CRITICAL POWER RATIO . .... . .. .. ............ .9 3.1 Definition . . ..................... .. ....... .9 ,

l 3.2 Determination of Operating Limit MCPR ........... .......... 9 l 3.3 Calculation'of MCPR(P) .... . .. .... ..:. .. ......... 10  !

3.3.1 Calculation of Kp ... ..... ....... . ...........11 i

! 3.4 Calculation of MCPR(F) ..... ... ..... ..... ......... 12 4.0 LINEAR HEAT GENERATION RATE . . .. ... .... .... ....... 13 1 1

4.1 Definition . . .. ..... ......... ...... ...... . 13 l l 4.2 Determination of LHGR Limit . ....... . . ... .. . . . . 13

5.0 CONTROL ROD BLOCK INSTRUMENTATION . . .. ...... 14 l 1 5.1 Definition . . . . . . . . . . . . . . . . .. ..... ... . . . . . . . 14 5.2 RBM Applicability ........ . .... ............ . . . . . 15 i

4

6.0 REFERENCES

. . . . . . . . . .. . ..... ........ .. ... . . . 16 i

I i

l l

i

. _ _ . . . _= _ . . _ m._ . . . _ _ _ _ . . . . _ _

. . COLR - 6 Revision 0 Page 3 of 17 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS .... .. 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS . . . . . . . . . . . 8 TABLE 3 OLMCPRwa AS A FUNCTION OF EXPOSURE AND T . . ... . 10 TABLE 4 - FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS . . . .. ,.. . . I2  !

i TABLE 5 LHGR LIMITS FOR VARIOUS FUEL TYPES . . . . . . . . . . . . . . . . . . 13 TABLE 6 CONTROL ROD BLOCK INSTRUMENU TION SETPOINTS WITH ,

FILTER . . . . . . . . . . . . ... ...... ............ . . . . . 14 i

i c

h 1

I t

l l

l l

[-

i a

i 1

4 4

1

_ =_ , . _ . _ . _ . _ . _ _ _ _ . _ _ _ _ . . . . _ . . . . . _ . _ . _ _ . . _ _ _ . _ . _ _ _ - . . . . .

. , COLR-6 Revision 0 Page 4 of 17 l l  !

1,0 INTRODUCTION AND

SUMMARY

l i This report provides the cycle specific plant operating limits, which are listed below, for Fermi L Cycle 6, as required by Technical Specifications 6.9.3. The analytical methods used to determine these core operating lunits are those previously reviewed and approved by the Nuclear Regulatory l Commission in GESTAR II. 2a.4.5 The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.67 p .

i l l 1

L  :

I OPERATING LIMIT TECHNICAL SPECIFICATION I APLHGR 3/4.2.1  !

l MCPR 3/4.2.3 1

? l L

LHGR 3/4.2.4 j RBM 1 3/4.3.6 i

& 3/4.1.4.3 l APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE MCPR = MINIMUM CRITICAL POWER RATIO

! LHGR = LINEAR HEAT GENERATION RATE

. RBM = ROD BLOCK MONITOR SETPOINTS

) l l

1 I

i 1 1

f

. , COLR-6 Revision 0 Page 5 of 17 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3/4.2.1 APLHGR 2.1 Definition l

The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to averaging the LINEAR HEAT GENERATION RATE over each fuel rod in the pime.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) U it is a function of reactor power, core flow, lattice type, and average planar exposure. Tic !imit is developed to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA) and that fuel thermal-mechanical design l

criteria will not be violated during any postulated transient events. The MAPLHGR limit ensures j i that the peak clad temperature during a LOCA will not exceed the limits as specified in 1 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 1 and 2 will be met. ,

The MAPLHGR limit is calculated by the following equation:

I AfAPLHGR7 ,w7= AfIN ( AfAPLHGR (P), AfAPLHGR (F))

where:

AfAPLHGR (P) = AfAPFAC (P) x AfAPLHGRg7o AfAPLHGR (F) = AfAPFAC (F) x AfAPLHGR,7o MAPLHGRsro, the standard MAPLHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table 1. Since fuel types may contain more than one lattice type (axially), iable 1 represents the

. most limiting lattice type at each exposure point for that fuel type. When hand calculations are required as specified in Technical Specification 3/4.2.1. MAPLHGRsro shall be determined by interpolation from Table 1.

l

.. t l ,

. COLR - 6 Revision 0 Page 6 of 17  ;

l MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated  ;

by using Section 2.2.1.

I l MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

l TABLEI FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS i 1

l Standard MAPLHGR Limit (KW/FT)

Exgw. Fuel Type GWDS! 1 2 h 1 2 E H H H j 0.0 10.82 10.84 11.73 11.51 11.73 10.75 11.73 i 0.2 12.00 11.90 10.90 10.92 11.79 11.54 11.79 10.79 I1.79

! 1.0 12.10 12.00 11.10 11.1I i1.90 11.62 11.90 10.90 11.90

! 2.0 '. l .36 11.38 12.01 11.71 12.01 11.11 12.01 i l 3.0 11.64 11.66 12.10 11.79 12.10 11.36 12.10 t 4.0 11.94 11.88 12.20 11.87 12.20 11.54 12.20  !

l 5.0 12.70 12.10 12.17 12.02 12.30 11.% 12.30 11.67 12.30 i 6.0 12.30 12.18 12.40 12.04 12.40 11.81 12.40 7.0 12.48 12.38 12.51 12.13 12.51 11.95 12.51 8.0 '

12.68 12.61 12.62 12.23 12.62 12.09 12.62 9.0 12.88 12.84 12.68 12.34 12.68 12.23 12.68 l

10.0 12.80 12.20 13.04 13.02 12.70 12.48 12.70 12.39 12.70  ;

12.5 13.07 13.07 12.57 12.50 12.57 12.46 12.57  ;

15.0 12.90 12.20 12.83 12.83 12.17 12.19 12.17 12.18 12 17 ,

17.5 11.78 11.82 11.78 11.88 11.78 20.0 12.70 12.10 12.18 12.18 11.39 11.45 11.39 11.57 11.39

  • 25.0 11.70 11.60 11.54 11.54 10.63 10.71 10.63 10.88 10.63 30.0 10.80 11.20 9.91 9.99 9 91 10.15 9.91 35.0 10.26 10.26 9 24 9.28 9 24 9.43 9.24 40.0 9.00 9.30 8.62 8.59 8.62 8.73 8.62 45.0 8.76 8.72 8.03 7 ?! 8.03 8.05 8.03 50.0 7.45 7.24 7.45 7.37 7.45 )

50.60 5.88 i 50.80 5.88 55.0 6.84 6.56 6.'14 6 68 6.84 l

l Fuel Types I = P8CIB176-4GZ-100M-150-T 10 = Gell-P9 CUB 353-10GZ-100M-146-T l 2 = P8CIB219-4GZ-100M-150-T 11 = Gell-P9 CUB 331-llGZ-100M-146-T 6 = GETd-P8CWB321-9GZ-80M-150-T 12 = Gell-P9 CUB 366-15GZ-100T-146-T

! 7 = 6E9B-P8CWB321-10GZ-80M-150-T 13 = Gell-P9 CUB 331-1IGZ-100M-146-T 9 = Gell-P9 CUB 331-ilGZ-100M-146-T l

! l 1

a

. ~ . - -

^

1 I. <

l

. . COLR 6 Revision 0 l Page 7 of 17 )

l 2.2.1 Calculation of MAPFAC(P)  ;

1 l ' The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P), shall be calculated j by one of the following equations: l For 0 s P < 25 :

No thermal limits monitoring is required.

{ For 25 s P < 30 :

With turbine bynass OPERABLE, For core flow s 50 Mlbs/hr, AIAPFAC (P) = 0.606 + 0.0038 (P -30) l For core flow > 50 Mlbs/hr, . j AfAPFAC (P) = 0.586 + 0.0038 (P -30) j With turbine bypass INOPERABLE.

i l

l For core flow s 50 Mlbs/hr, i l

l AIAPFAC (P) = 0.490 + 0.0050 (P -30)

For core flow > 50 Mlbs/hr.

AfAPFAC (P) = 0.438 + 0.0050 (P -30) ,

1 For 30 s P s !00 :

i AfAPFAC (P) = 1.0 + 0.005224 (P - 100) where: P = Core power (fraction of rated power times 100).

e i

[, . t

. . COLR - 6 Revision 0 '

Page 8 of 17 l 2.2.2 Calculation of MAPFAC(F) l The core flow-dependent MAPLHGR limit adjustment factor. MAPFAC(F), shall be calculated

! .' by the following equation: '

l MAPFAC (F) = MIN (l'.0 A,. x + B,. )  ;

100 I -

where:

WT = Core flow (Mlbs/hr).

j. 'Ap = Given in Table 2.

B, = Given in Table 2.

l i 1 l TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS f

Maximum Core Flow *

(Mlbs/hr) Ap By 110 0.6800 0.4340 ,

i I

l *As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

l l

i 5 l I

4 i

d

COLR - 6 Revision 0 l- Page 9 of 17 3.0 MINIMUM CRITICAL POWER RATIO i

TECH SPEC IDENT OPERATING LIMIT-l l 3/4.2.3 MCPR -

I l

1 l

3.I' Definition l l The CRITICAL POWER RATIO (CPR) shall be the ratio of that power in the assembly which i

. is calculated by application of an NRC approved critical power correlation to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power. )

l The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest CPR that exists ir . )

! the core.

l 3.2 . Determination of Operating Limit MCPR l l }

The required Operating Limit MCPR (OLMCPR) at steady-state rated power and flow operating I conditions is derived from the established fuel cladding integrity Safety Limit MCPR of 1.09 and >

l an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not I exceeded during any anticipated abnormal operational transient, the most limiting transients have l been analyzed to determine which event will cause the largest reduction in CPR. Two different l core average exposure conditions are evaluatei The result is an Operating Limit MCPR which I

-is a function of exposure and T. T is a measure of scram speed, and is defined in Technical ,

1 Specification Section 3/4.2.3. .

l

, The OLMCPR shall be calculated by the following equation: l

\

l OLMCPR = MAX (AfCPR (P), AfCPR (F)) l I

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

l MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

l In care of Single Loop Operation. the Safety Limit MCPR is increased by 0.02, but OLMCPR l i

l - does not change.

1 5

4 l

l l

l l

! )

I l 4

__ __ . . _ _ _ . _ _ . . _ _ _ . _ _ _ - _ _ _ _ ~. . _. . _

l 3 COLR-6 Revision 0 Page 10 of 17 i 3.3 Calculation of MCPR(P) i i

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated by the foUowing equation.

AfCPR (P) = K,, OLAfCPR,nn,,,, l I

OLMCPR ioonoss hall be determined by interpolation from Table 3, and T shall be calculated by l using Technical Specification Section 3/4.2.3.

K i,, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.  !

i l

TABLE 3 OLMCPR ,i,3 AS A FUNCTION OF EXPOSURE AND T 3

i EXPOSURE , 'l CONDITION (MWD /ST) OLMCPR on,i,3 i

1 Both Turbine Bypass and l ,

l . Moisture Separator Reheater l OPERABLE BOC to 8500 t=0 1.28 l t=1 1.33

! 8500 to EOC t=0 1.32 l . t=1 1.40 l

l Either Turbine Bypass or

Moisture Separator Reheater l INOPERABLE BOC to EOC t=0 1.36 1=1 1.44 Both Turbine Byptss and Moisture Separator Reheater INOPERABLE BOC to EOC t=0 1.39 l t=1 1.47 l

l

  • The OLMCPR values reported here are for GElI fuel and bound the GE6 and GE9B fuel types.

4 a

1 .

. COLR - 6 Revision 0 Page 11 of 17 j l 3.3.1 Calculation of Kr i l  !

l The core power-dependent MCPR operating limit adjustment factor. Kp, shall be calculated by ,

using one of the followmg equations:

l For 0 s P < 25 : ,

! No thermal limits monitoring is required.

For 25 s P < 30 :

When turbine bypass is OPERABLE, (K,77 + (0.026 x (30 -P))) x (1.09 /1.07)

K' =

OLMCPR,no,,,,

I where: Kay, = 1.90 for core flow s 50 Mlbs/hr

= 2.23 for core flow > 50 Mlbs/hr j When turbine bypass is INOPERABLE, (K +

j a ri, (0.054 x (30 -P))) x (1.09 /1.07) i A,'

OLMCPR,no,,n, ,

where: Kay, = 2.26 for co're flow s 50 Mlbs/hr

= 3.03 for core flow > 50 Mlbs/hr For 30 s P < 45 :

K,, = 1.28 + (0.0134 x (45 -P))

i l For 45 s P < 60 -

l K,, = 1.15 + (0.00867 x (60 -P))

For 60 s P s 100 :

K,, = 1.0 + (0.00375 x (100 -P))

where: P = Core power (fraction of rated power times 100).

.. . .- . _ _ . - ~~

COLR - 6 Revision 0 Page 12 of 17 I 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated by using one of the l following equations:

For WT < 40 :

MCPR (F) = (1.09/1.07) x (Agx + By) x (1.0 + 0.0032 x (40 - WT))

100 l For WT 2 40 :

MCPR(F) = (1.09/1.07) x MAX (1.20, (Agx + By ))

100 l

l where:

WT = Core flow (Mlbs/hr).

Ap = Given in Table 4. ,

I Be = Given in Table 4.

1 i

l l

l TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow *.

(Mlbs/hr) Ap Be >

110 -0.600 1.731

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

1 l

l 1

i e

t

COLR-6 Revision 0 1 Page 13 of 17 4.0 LINEAR HEAT GENERATION RATE l

l 1

TECH SPEC IDENT OPERATING LIMIT I 3/4.2.4 LHGR I

i

- j 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation per unit length 1 of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. i i

4.2 Determination of LHGR Limit The thermal expansion rates of UO2 pellets and Zircaloy cladding are different in that, during l heatup, the fuel pellet could come into contact with the cladding and create stress. By maintaining the operating LHGR below the limits stated in Table 5 and the operating MAPLHGR below those stated in Section 2.0, it is assured that all thermal-mechanical design bases and licensing limits l for the fuel will be satisfied.

TABLE 5 LHGR, LIMITS FOR VARIOUS FUEL TYPES FUEL TYPE LHGR LIMIT P8CIB176-4GZ-100M-150-T 13.4 KW/FT P8CIB219-4GZ-100M-150-T 13.4 KW/FT GE9B-P8CWB321-9GZ-80M-150-T 14.4 KW/FT '

GE9B-P8CWB321-10GZ-80M-150-T 14.4 KW/FT GE11-P9 CUB 331-11GZ-100M-146-T 14.4 KW/FT }

GE11-P9 CUB 353-10GZ-100M-146-T 14.4 KW/FT GE11-P9 CUB 366-15GZ-100T-146-T 14.4 KW/FT l

I

? .

l .

COLR - 6 Revision 0 Page 14 of 17 i

5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3/4.3.6 RBM i

& 3/4.1.4.3 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block l instrumentation for use in Technical Specification 3/4.3.6 are shown in Table 6. These values are consistent with the bases of the APRM Rod Block Iechnical Specification Improvement

! Program (ARTS) and the MCPR operating limits.

TABLE 6 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER 1

I Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.6 IPSP 62.0 63.6 HPSP 82.0 83.6

! LTSP 117.0 118.8 ITSP 112.2 114.0 HTSP 107.2 109c DTSP -

94.0 92.3 where:

LPSP Low power setpoint: Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint l HPSP High power setpoint i LTSP Low trip setpoint

! ITSP Intermediate trip setpoint

HTSP High trip setpoint

. DTSP Downscale trip setpoint j I

I  :

. - - _ _ _ __ _ - - - ~ . .. . . _ _ _ . . . _ _ . . _ . ~ . _ _ . _ . . _ - - . - . _ _ _ _ . - _ . _ _ _ - . . _ . _ _ . . , _ _

COLR - 6 Revisicc 0 i Page 15 of 17 i I ,

i 1

5.2 RBM Applicability Technical Specifications 3/4.1.4.3 arxl 3/4.3.6 describe the conditions under which the Rod Block Monitor System must be OPERABLE. In addition to these requirements, at least one RBM channel must be OPERABLE when moving control rods with THERMAL POWER greater than >

or equal to 30% of RATED THERMAL POWER in order to protect for mechanical overpower ,

limits.

l l i l

l I

I i

t f

?

[

l 1

I

(.

1 i

6 l .

r I

i l I

i

. -o. COLR-6 Revision 0 Page 16 of 17 3

6.0 REFERENCES

i

1. " General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 13 i
2. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant l Accident - SAFER /GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984 ,
3. " Fermi-2 SAFER /GESTR-LOCA, Loss-of boolant Accident Analysis," .

NEDC-31982P, July 1991, and Errata and Addenda No.1, April 1992  ;

4. " Lattice-Dependent MAPLHGR Report for Fermi Power Plant Unit 2 Reload 5 Cycle 6," GE Nuclear Energy, J11-02923 MAPL, Revision 0, November 1996 l
5. -" Supplemental Reload Licensing Report for Fermi Power Plant Unit 2 Reload 5,  !

Cycle 6," GE Nuclear Energy, J11-02923SRLR, Revision 0, November 1996  ;

6. Letter from T. G. Colburn to W. S. Orser, " Fermi Amendment No. 87 to Facility l Operating License No. NPF-43 (TAC NO. M82102)," September 9,1992 l l  :
7. Lety from J. F. Stang to W. S. Orser, " Amendment No. 53 to Facility Operating l License No. NPF-43: (TAC No. 69074)," July 27,1990
8. " Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990
9. Letter from R. J. Howard to M. K. Deora and H. L, Hubeny, " Operating Flow

, Dependent MCPR and MAPI:HGR Thermal Limits," TDEC-PE-134, ,

l September 30,1990

10. " Power Range Neutron Monitoring System," J. L. Leong, DC-4608, Vol. IX DCD, Rev. O, September 29,1992 and DC-4608 Vol.1 Rev. D
11. Letter from B. R. Fischer to B. L. Myers, " Fermi-2, Cycle 6 Replacement of Leaker Bundle YJ2624," LB#262-96-167. October 14, 1996 l

l 12. Letter from R. J. Bragg to B. L. Myers, " Fermi-2 Cycle 6 Rod Withdrawal Error i

! Analysis," RJB;96-27, November 1,1996 i

i 13. Letter from R. J. Bragg to B. L. Myers, " ARTS . Multipliers Update for Fermi 2 Cycle 6," kJB:96-29, November 1,1996 l 14. Letter from C. J. Papandrea to Dr. Simon Hsieh, " Fermi 2 Cycle 6 Safety Limit i

- MCPR Results " CJP2:96-163. August 23,1996 l s

- - -- - a - , - .

- , - . . . - - . . ~ - . . . _ . - , _ - _ - - . - _ . . . - . ~ - - - - _ . . . . - . _ . ~ . - - - . . . -

t . .-

COLR-6 Revision 0 '

Page 17 of 17 '

6.0 REFERENCES

(cont'd.)

15. letter from R. J. Bragg to B. L. Myers, " Fermi- 2 Cycle SLMCPR Licensing Clarification," RJB:96-22, Rev.1 October 28,1996
16. Letter from B. R. Fischer to B. L. Myers, " Fermi 2 Cycle 6 SLMCPR Licensing Clarification - GE Proprietary Information," LB#262-96-159, October 8,1996 i
17. Letter from R. J. Bragg to B. L. Myers, " Detroit Edison Questions Regarding the Fermi- 2, Cycle 6 Reload Licensing Report," RJB:96-34, November 5,1996 i
18. letter from Andrew J. Kugler (USNRC) to Douglas R. Gipson (Detroit Edison), ,

" Fermi Issuance of Amendment RE: Cycle-Specific Safety Limit Minimum Critical ,

Power Ratios for. Cycle 6 (TAC NO. M%373), dated November 5,1996 l

l  !

{

l '

i l

l 1

1 4

?

$ i i

3 4

8 1

i l

. . - . . . _ . _ . . . = . -_

_ _ __ _ - _ _ _