ML20133C969

From kanterella
Jump to navigation Jump to search
Summary of 950620-22 Meeting W/W in Monroeville,Pa Re Passive Containment Cooling Sys of AP600 Design.List of Attendees & Agenda Encl
ML20133C969
Person / Time
Site: 05200003
Issue date: 12/31/1996
From: Diane Jackson
NRC (Affiliation Not Assigned)
To:
NRC (Affiliation Not Assigned)
References
NUDOCS 9701080156
Download: ML20133C969 (224)


Text

{{#Wiki_filter:~Ih td Q

        , az ury g,             t                          UNITED STATES                              ">

j NUCLEAR REGULATORY COMMISSION O wasniwarow, p.c. === -i

     \,*****/g                                  December 31,.1996 APPLICANT: Westinghouse Electric Corporation FACILITY:     AP600

SUBJECT:

Sup0ERY OF MEETING TO DISCUSS PASSIVE CONTAINMENT COOLING FOR THE AP600 DESIGN On June 20 through 22, 1995, representatives from the Nuclear Regulatory Commission (MC) and its contractors, and the Westinghouse Electric Corpora-tion (Westinghouse) met in the Westinghouse office in Monroeville, Pennsylva-nia, to discuss the passive containment cooling system of the AP600 design. } Attachment I contains a list meeting attendees and Attachment 2 contains the preliminary meeting agenda. Westinghouse submitted the proprietary and non-proprietary versions of the presentation materials used at this meeting in _ Westinghouse letters NSD-NRC-96-4785 dated August 2, 1996, and NSD-NRC-96-4910 dated December 11, 1996. This meeting summary was written following the meeting in June 1995, and does not reflect any subsequent actions. Both NRC staff and consultants and Westinghouse made presentations at the meeting. NRC consultants from Sandia National Lab (SNL) Richard Griffith, Dave Williams, and Ron Dykhuizen began the discussions by presenting an overview of SNL WG0THIC review effort (Attachment 3). NRC consultant Martin Pilch of SNL later presented an overview of the AP600 Scaling Methodology. Mr. Pilch raised a number of concerns about the Westinghouse scaling methodol-ogy including the scrutibility of the Pi group development, heat and mass transfer models, and uncertainty evaluation (Attachment 4). Dan Paulsen of Westinghouse delivered a presentation on the status of WGOTHIC. An outline of a future WCAP report on the MG0THIC sensitivity analysis performed by Westinghouse was presented. The report was expected to be issued August 31, 1995, with an addendum on nodal sensitivity to follow at a later time. (Attachment 5). Dave Spencer of Westinghouse presented information relating to WGOTHIC code uncertainty and the scaling analysis plan (Attach-ment 6). Marcia Kennedy of Westinghouse presented a MG0THIC Analysis of the large Scale Tests. This included a sensitivity study of a base Large Scale Test (LST) model to node sizes along the vessel wall, near the steam inlet, and in the vertical direction. The model was most sensitive to a change in node height directly below the steam injection point (Attachment 7). I During the meeting, Jack Kudrick of the NRC staff presented an outline of an rg overview that Westinghouse should follow to reach closure on a number of passive containment cooling issues. Westinghouse agreed to address the items 6[))

                                                                                                  \

on this outline and present their AP600 analysis plan to the staff at a later ' meeting. It was agreed that Westinghouse and ACRS meeting scheduled for July 26 and 27, 1995, should be postponed until resolution of this overview os0021 NRC FILE CENTER COPY l pm Mya - - j

(Attachment 8). K. Campe of the NRC staff presented the results of a study ' performed utilizing the LST data. Mr. Campe examined the topics of water ' distribution, stratification, and system response times (Attachment 9). At the conclusion of the meeting, a number of open issues were identified and i discussed. A sunnary of these items ini commitment agreements are detailed below:

1. Westinghouse will examine grid convergence for MGOTHIC Distributed parameter model.
2. Westinghouse will examine time step convergence for MGOTHIC model.
3. Westinghouse will examine containment pressure sensitivity to stratification associated with a range of smaller sized loss-of-
coolant accident and main steam line breaks. i

! 4. Westinghouse will strengthen the justification for use of a flat-l topped cylindrical containment model vice a domed model in MG0THIC. 3

5. Westinghouse will further examine the initial pressurization response for the Lumped Parameter model as compared to the Distrib-uted Parameter model.
6. Westinghouse will consider the issues and que'stions raised by M.

Pilch's (Sandia) presentation on scaling.

7. Westinghouse should recognize that their approach to uncertainty may not lead to a success path with probabilities pulled out of the CSAU approach and therefore should reassess its approach to estab-lishing uncertainty.
8. Westinghouse will ensure response to submitted requests for addi- l tional information include a more detailed description of the derivation of the Sherwood number for the LST tests.
9. Westinghouse should justify the velocity used in the mixed convec-tion correlation or eramine the impact of using only a free convec-tion correlation.

i

                                                                                 ]
 .                         -                          -    .     . _ .     --           _                       .                    -     ~
10. Westinghouse and the NRC staff will participate in a meeting to 1 discuss the WG0THIC program overview to be developed by Westing- l house at a time to be later determined. J Original Signed By: l Diane T. Jackson, Project Manager Standardization Project Directorate Division of Reactor Program Management Office Of Nuclear Reactor Regulation Docket No. 52-003 Attachments: As stated I cc w/ attachments:

See next page DISTRIBUTION w/ attachments:

                 .DocketJFile:                                          PDST R/F                              DTJackson PUBLIC                                                TKenyon                               JSebrosky EThrom, 0-8 H7 DISTRIBUTION w/o attachments:

FMiraglia/AThadani, 0-12 G18 RZimmerman, 0-12 G18 BSheron, 0-12 G18 TMartin DMatthews TQuay . EJordan, T-4 D18 ACRS (11) JMoore, 0-15 B18 ' WDean, 0-17 G21 KCampe, 0-8 E2 KCoyne JKudrick, 0-8 H7 DnCUMENT NAME: A:JUN20 95. SUM Ta seeelve a copy of this desunicat,lasceTe in the hem: "C" = sttachment/ enclosure *E" = Copy with attachment / enclosure "N" = No copy l OFFICE PM:PDST:DRPM w BC:SCSB:DSSAl D:PDST:DRPM l l l NAME DTJackson:sg U y CBerlinger TRQuayTibe l I 12A4/96 O DATE /) 12/AV/96 12/9t/96 0FFICIAL RECORD COPY ,

i Westinghouse Electric Corporation Docket No. 52-003 1 4 cc: Mr. Nicholas J. Liparulo, Manager Mr. Frank A. Ross Nuclear Safety and Regulatory Analysis U.S. Department of Energy, NE-42 ' Nuclear and Advanced Technology Division Office of LWR Safety and Technology Westinghouse Electric Corporation 19901 Germantown Road P.O. Box 355 Germantown, MD 20874 Pittsburgh, PA 15230 Mr. Ronald Simard, Director Mr. B. A. McIntyre Advanced Reactor Program Advanced Plant Safety & Licensing Nuclear Energy Institute Westinghouse Electric Corporation 1776 Eye Street, N.W. Energy Systems Business Unit Suite 300 Box 355 Washington, DC 20006-3706 . Pittsburgh, PA 15230 Ms. Lynn Connor Mr. John C. Butler Doc-Search Associates Advanced Plant Safety & Licensing Post Office Box 34 Westinghouse Electric Corporation Cabin John, MD 20818 Energy Systems Business Unit Box 355 Pittsburgh, PA 15230 Mr. James E. Quinn, Projects Manager 4 LMR and SBWR Programs GE Nuclear Energy Mr. M. D. Beaumont 175 Curtner Avenue, M/C 165 Nuclear and Advanced Technology Division San Jose, CA 95125 Westinghouse Electric Corporation , One Montrose Metro Mr. Robert H. Buchholz 11921 Rockville Pike GE Nuclear Energy Suite 350 175 Curtner Avenue, MC-781 Rockville, MD 20852 San Jose, CA 95125 Mr. Sterling Franks Barton Z. Cowan, Esq. U.S. Department of Energy Eckert Seamans Cherin & Mellott NE-50 600 Grant Street 42nd Floor 19901 Germantown Road Pittsburgh, PA 15219 Germantown, MD 20874 Mr. Ed Rodwell, Manager Mr. S. M. Modro PWR Design Certification Nuclear Systems Analysis Technologies Electric Power Research Institute Lockheed Idaho Technologies Company 3412 Hillview Avenue Post Office Box 1625 Palo Alto, CA 94303 Idaho Falls, ID 83415 Mr. Charles Thompson, Nuclear Engineer AP600 Certification NE-50 19901 Germantown Road Germantown, MD 20874

l l

i 1

4 MEETING WITH WESTINGHOUSE ON AP600 PASSIVE CONTAldNENT COOLING SYSTEM WESTINGHOUSE ELECTRIC CORPORATION, MONROEVILLE, PENNSYLVANIA JUNE 20 THROUGH 22, 1995 MEETING ATTENDEES l 58ME ORGANIZATION J. BUTLER WESTINGHOUSE R. JAKUB WESTINGHOUSE M. KENNEDY WESTINGHOUSE B. NUGROTTO WESTINGHOUSE R. OFSTUN WESTINGHOUSE i D. PAULSEN WESTINGHOUSE " D. SPENCER WESTINGHOUSE J. WOODCOCK WESTINGHOUSE  ! K. CAMPE NRC I K. C0YNE NRC i J. KUDRICK NRC E. THROM l NRC i R. DYKHUIZEN SAhDIA NATIONAL LAB R. GRIFFITH SANDIA NATIONAL LAB M. PILCH SANDIA NATIONAL u.tB , D. WILLIAMS SANDIA NATIONAL LAB J. TILLS JACK TILLS AND ASSOCIATES N. ZUBER ACRS CONSULTANT P. BOEHNERT ACRS STAFF , Attachment 1

t AGENDA i i MEETING WITH WESTINGHOUSE ON AP890 PASSIVE CONTAINMENT COOLING SYSTEM

WESTINGHOUSE ELECTRIC CORPORATION, MONROEVILLE, PENNSYLVANIA JUNE 20 THROUGH 22, 1995
Tuesday, June 20, 1995
Summary of Staff Review of WGOTHIC 1 p.m. - 4 p.m.
By
R. Griffith (Sandia)
1. Experimental Basis for Mass and Heat Transfer Correlations

} 2. General WGOTHIC Issues l 3. Lumped-parameter and Distributed-parameter models

4. Models and Margins Report (LST vs AP600)
Status of the WGOTHIC 1.2 Computer Program 4 p.m. - 5 p.m.

By: D. Paulsen (Westinghouse)

1. Overview of 1.2 Version i
2. Mass and Heat Transfer Models l l 3. Water Coverage  !

, 4. Address EPRI GOTHIC Design Review  ;

5. AP600 Analyses Plans and Schedules

.

  • Sensitivity and Uncertainty Analyses j Upcoming ACRS Meeting - Plans and Objectives 5 p.m. p.m.

By: Westinghouse Staff i ' Wednesday, June 21, 1995 i Scaling Analyses 8:30 a.m. - 12 p.m. By: M. Pilch (Sandia) I p.m. - 2 p.m. l 1. Overview of WEC Scaling Methodology j 2. Discussion of SASM and Comparison to WEC Method .

  • Sequences and Success Criteria
  • Top-Down PIRT and Scaling
  • Bottom-up PIRT and Scaling
  • Uncertainly Quantification j 3. Evaluation of the LST l

By: D. Spencer (Westinghouse) 2 p.m. - 5 p.m. a 1. Status of Scaling Analysis j 2. Responses to ACRS Concerns 1 3. Plans and Schedules LST Observations Based on Test Data 5 p.m. - 6 p.m. by: K. Campe, NRC Thursday, June 22, 1995 WGOTHIC Analyses of LST Testr 8:30 a.m. - 11 a.m. By: M. Kennedy (Westinghouse)

1. Modeling Apprcach & Sensitivity
2. Results sr.d Interpretation
3. Extrapalation to AP600 Modeling
  • Basis and Methodology MG0THIC Code Uncertainty 11 a.m. - 12 p.m.

By: D. Spencer Attachment 2

                                                                                                                                               ~

OVERVIEW OF WGOTHIC REVIEW . k ..// presented by v e. Richard O. Griffith Sandia National Laboratories Albuquerque, NM AP600 Passive Containment Cooling System Meeting l 4 Westinghouse Electric Corporation Monroeville, PA !E 3 June 20-221995 - s

    "'      l Sands National Laboratories

f OVERVIEW e Purpose is to highlight key issues and concerns from SNL review

  • Presentations are not comprehensive; insufficient time to cover all questions and issues
  • WEC documentation inadequate to resolve issues of verification and validation of the WGOTHIC code for AP600 applications
  • Technical working meetings needed to address and resolve issues l

in w

  • Still unclear how individual pieces of WEC analysis and documentation fit into overall plan to validate and apply WGOTHIC to AP600 I
                                                                                                                      - @ sandia marianal tabmaimies

I, i OUTLINE ]  ; i e Evaluation of Uncertainties I r e Stratification and Related issues . I e Spurious Enhancement of Heat / Mass Transfer in Treatment of Convection e Experimental Basis for Heat / Mass Transfer Correlations e PCS Channel Issues  ; e Main Steam Line Break (MSLB) Scenario e Grid Convergence e Velocity Predictions i

                                                                                                                        ~

, o Lumped versus Distributed Parameter l j 4 th Sandia Nationallaboratories

                             . ~ .        .

WGOTHIC Review Questions / Issues D I David C. Williams Sandia National Laboratories  ; Presented at i AP600 Passive Containment Cooling System Meeting Westinghouse Electric Corporation , Monroeville, Pennsylvania June 20 - 22,1995 h NOT FOR DISTRIBUTION - MAY INCLUDE WESTINGHOUSE PROPRIETARY INFORMATION th Sandia NationallahmaWe:*

WGOTHIC Review Issues Outline 3l Evaluation of Uncertainties Stratification and Related Issues - 4 Spurious Enhancement of Heat / Mass Transfer (HMX1 in Treatment of Forced / Mixed Convection j ' i

  • Experimental Basis for Heat / Mass Transfer Correlations
  • PCS Channel Issues Sensitivity to flow reductions Wettability of heated shell (above boiling)

Long-term weitability . Main Steam Line Break (MSLB) Scenario I

                                                                                                                                @ sandia sationanabwatmies t

Evaluation of Uncertainties 3ll A Continuing Concern Exists as to Adequacy of WEC's Evaluation of Uncertainties in WGOTHIC AP600 Analyses l Confusion Exists as to Whether WGOTHIC Calculations are Offered as " Conservative" or "Best-Estimate" (BE) BE acceptable only with uncertainty assessment Cannot rely on IC/BC conservatism plus BE containment calculations to make net result conservative unless provide uncertainty assessment

  • Cannot Rely Upon Integral Effects Comparisons Alone Opposing effects may cancel in test analyses Opposing effects may scale differently in AP600 analyses: may not cancel, yet give no indication that anything is wrong Blustrates need for more thorough uncertainty assessment
                                                                                                                                                                         ~

I t

                                                                                                                                                                                      @) % maiionananmaimies t

Example of Canceling Effects h! 1

  • Consider CONTAIN LST Analyses CONTAIN overpredicts P, apparently .underpredicts heat transfer coefTicients '

CONTAIN underpredicts steam concentrations above deck

  • However, with Correct Steam Concentrations, CONTAIN Heat Transfer Coefficients in Good Agreement with LST Experimental Values Uni.pr&Jon of HX ia LST due to low steam concentrations resulting from inability to predict stratification
  • Nodalization as in Past WGOTHIC LST LPM Analyses Might "Fix" the Integral Comparison

! - Would introduce a spurious forced flow, increasing heat transfer, decreasing P, probably improving agreement with experiment, without fixing the steam concentrations - potentially nonconservative for AP600 I .

                                                                                        @) s.4.smionausmamies

Evaluation of Uncertainties (Cont.) Conceptual Decomposition

                                                                                                                   )t        l:

Let U represent an uncertain phenomenon i 8 = magnitude of an uncertainty ' 6 P = 0? bU BU  ;

                                                                                                                              ?

l

  • Sensitivity studies may show BP/dU small
                   =    " Circularity" Concern - Using Code to Evaluate What                                                 1 Matters, But How Do We Know the Code Is Right?

Rely on well-validated models to propagate uncertainties in other models Validation requirements may be less stringent than for the actual DBA j analysis

  • Sensitivity May Depend Upon Other Parameters of the Scenario I

rp SandiaNationaHabwatmies

Role of CONTAIN Calculations In This Presentation

                                                                                                                   ]      I
  • NOT to Judge WGOTHIC, or Judge Adequacy of Design i
  • Scoping Calculations Only: Preliminary and Largely Unreviewed
  • Performed to Guide Our Thinking About What Matters, Improve Focus of Our Efforts
  • May Suggest Approaches to Take, But CANNOT Be Cited As Having "Shown" Anything
  • Examples: Stratification Effects, Spurious Heat Transfer Enhancement, Response to Channel Flow Restrictions i

f5i] sanda nationanabmaimies w w aanosme

                                                                                                                    ~

Stratification: Is the Well-Mixed Assumption Conservative? }4 i

  • WEC Argument (Models & Margins Document):

Acknowledge WGOTHIC LPM overpredicts mixing -

- Stratification increrses steam concentrations in upper part of containment HMX efficiency increases with increasing steam concentration
                           -      Hence stratification increases PCS efficiency: overmixing is conservahve i
  • Are Actually Several Potential Effects of Stratification; Neglect of Some is Not Conservative:

Steam concentration effect

                           -      Reduced surface area for effective HMX
                           -      Increased temperature for a given pressure
                           -     Reduced internal heats sink efficiency, especially below deck
  • Effects Different in~ Transients Versus Steady State ,
                           -     Inferences from LST may not be valid for renood peak                                    l 1

g k = . . . . T@ sandia maiionanabmaimies

Impacts of Neglecting Stratification Effects Steady Effect Transient State Increased Dome Steam Concentrations C C Reduced Effective Surface Area L (NC*) - NC Increased Temperature of Upper Shell ^ L C Decreased Effect of Internal Heat Sinks NC L . p = low importance, C = conservative, NC = nonconservative Nonconservative for the repressurization transient following shell dryout, if this can occur. , I

  • Possible Approaches Include:

Demonstrating potentially nonconservative effects are minor Evaluating dependence upon stratification through sensitivity studies  !

  • CONTAIN Calculations: Artificially Force Stratification Through Definition of Noding gnd Flow Path Specification k (Mi] smsa satiow tabmaios

i Dome Pressure -- Effect of Heat Sinks I 700 .

                                                                                              . . ......                y . . . . . . ,                 . . .....

j o 1

                                  =           base case                                                              -

i 650 - A < .

                           - - h-       - adiabat. atmosphere                                                      '                    '
                                                                                                                ,.                    ,                                          i 6OO         -   .         m      - ediabat. below deck                                                /                 ,
  • l
                               - e-- ediabat above deck                                                  '

E  ! 550 - a ,' adiabat. exterior l r

                                                                                                                          '                                              ~

i - -- i design pressure / e i 500 - o r i

    ?                                                                                           l        P                                                                       \

i 450 -

                                                                                            ,.'       ,'                                    a                           -

v , .a...... 4 f

                                                             - - - - Y' ,q.- .-

w -- -- - .c- - x 400 -

    =>                                                                         -

a/ .  ; m . . i .  ; y

                                                          ," '-'                   g '.-                                         .

i 350 - - r 7.- . m' T, i n. 300 -

                                                                                                                                          -                            ~2 250       -

8 t 200 - i 150e _ i

                                ^ ^ ^ ^ ^ ^ ^ '             ^ ^ ^ ^ ^ ^ ^ '                  ^ ^ ^ ^ ^ ^ ^ '                ^ ^ ^^^^^'                ^ ^ ^ ^ ^ ^ ^              i 100               ^                          '                                ^                               '                            '

i 1 O* 1 O' ' 1 0+ ' 10" 1o' 1 O' 3 j i TIME (S) DECLG Accident Scenario  : 15Feb95 18:12:5 8 contain

1 4 I[ h . 3 c 5 k -

 !                                                                                                                                                            l
!                                                                                                                                                             a l                                                                                   '
                                                                                         ' XX XX \                                                             j i

i 9 i ,

                                                                                                                                                )
                                                                                                                    -            l 20                                  ,
10' <

t hl i [

                                                                                                                                 !( ,                 .

i  : ] ... .......... . . . .; '.... T a

                                                                                                                      .          .3
i. _ ,
                                                                                               .j -   E t..

) 6 - 2 3 - o , a . . - 4 ___ . --. _ __ $ 3 -- L_

                                                                                     #                                  -1 t

Figure 4-1. Stratified nodalization of the AP600 ceniament interior used to simulate stratification effects in CONTAIN calculations. ] T e M

i i i m i Steam Concentrations, Stratified Case I 1.O . O.9 - i

~

O.8 - 78, -~\ hs

                                                                                                                                                                                                                                                                         '                               s O.7                   -

g , , 7.7.~ .~. m_ ,- g . . '. .,. . ,' ,. .\,' . -Ea - c ., so , . . i

s. . - ar#'. - .N-o -
                                                                                                                                                                                                                                                             .a ~ . .                                                                                 -

x 9. - - - -a . q 0.5 - N -

                                                                                                                                                                                                                                                                                                  ',i s                i N                                     ',i
                                                                                                                                                                                                                                                                                                                         \

g 0.4 - N si. '

                                      .m an O.3                      '

s u t. t ie g -

                                                                                                         =         CeN 9                                                                                                                                                            N                                                  s I                                                                                                                                                                                                                                        V-
                                                                                  - - m- - c u 20                                                                                                                                                                                       %                       .

0.2 -

                                                                                 . . . . . . . . c.
                                                                                 - . _                      . - cou 7 g 4 ---. g', -
  • O.1 -

A con 3 m .

                                                                                                        - - ^^^^^'

O.O - ^ ^ ^ ^ ^ ' - - - - - - ' - - ^ ^ ^ ^ ^ '

                                                                                   -                                                                            -                                                                                               ^                     -                                -         - - ^ ^ ^ ^ ^

1 O' 1 O' ' 1O**' 1 O* ' 10*

  • 1 0' '

TIME (S) DECLG, No Recirc. t > 50 s (Stratified) 11May95 17:00:44 contain l __ ___ _ . _ . _ _ _ _ _ _ _ _ _ _ _ - .- _ _ _ _ _ _ . _ _._--____-___-__.-__._-___.m__-______.____._______._________m__._._______________.-___m.-_.____._.._----____________-_____---__m_. _ _ - _ _ - _ _

 . . - - . . -      -     ... . . . - - . - - - - - - - .                         -         - - ~ - .-- -                              . . . . . . - . - . -                . - . -                       . . . . - - _ . -

450 Effect. of . Stratification I

                                                                                                                                                . . .....,                                                                   i 425               -

400 ----------__--___- 375 ' i s s

  • 350 -
                                                                                                                                    's                                                       -

s 325 m a Ch.

                                                                                                                                           '(    s v
                -w    300              -

s E! 275 - S

               =>

m \ - m 250 -

                                                                                                                                                         \

w - E 225 - i 200 - N - 175 - b ~'

                                                                                                                                                                          ~              -

s,

                                               --G--                base case                                                                                                         -                                       -

150 3 C straftfied 125 - design pressure - 100 - - - ^ ^ ^ ^ ^ ' - - - ^^^^^' - - - ^ ^ ^ ^ ^ ' - - - ^ ^ ^ ^ ^ * ^ ^ ^ ^ ^ ^ ^ ^ 1 O* 1 O* ' 1 O * *' 1 O* ' 1 O' ' 1 O*

  • TIME (S)

, Dorr,e Pressure, DECLG Accident Scenario, Late Times 3Apr95 16:38:44 confoi,n h Sandia Nationallaboratories

450 fe I

                                           =     =

tr Hfic ti. n (L

                                                       =                              .

te .Times) . . , , , , [ 425 - 4 400 _ i 375 - . 350 g r _ i

                                                                                                               ,e-                  -
                                                                                                                                         - -N                    e n         325          -
                                                                                                                                                                              -               i O                   I e

EL. ' g 300 l ,- _ of o 275 " ,d m '  : m 250 'l ' - , w <  ; oc o t

     '      225        is l}

200 ' i s 175' E 's - 150 - ~~~~~*-- - - e- - bas. cas. _

                                                                                                                      =            stratified                                                 !

125 -

                                                                                                                 - - - desigri pressor.

100 ' ' ' ' ' ' O 100 200 300 400 500 600 t 3 TIME (10 s) i Dome Pressure. DECLG Accident Scenario, Late Times l 3Apr95 16:38:44 contain l . rww westsee

Experimental Basis for Heat and 3 Mass Transfer Correlations f

  • Parts of Documentation Unclea:
               -  Gr and Re apparently defined with channel diameter as characteristic
length; yet Nu increases ~ linearly with x/d
               -  Which WGOTHIC heat transfer correlation is being compared with l

experimental values?

               -  What convective regime applies to experiments? To LST? AP600?
               -   In mixed convection expression, why drop 0.75 multiplier of Nu,?
  • WGOTHIC Entrance Effects Appear to Conflict with Experimental Data, Yet Not Discussed
  • Criteria for " Good", " Adequate" Agreement Not Defined and Defended .

Problem in other documents also  : k . . . . r,ii) w naw te,*s

Mixed Convection Model 3 i:  ;

  • WGOTHIC (V1.2) Mixed Convection Model opposed 3 3 '
Nu mix = (Nu nc + Nufc)V3 i
t t

I Assisted Nu,,,, = Max'( Nu ,c - Nu'c f )U ; Nunc; 0.75Nutc I i

  • Factor of 0.75 Dropped from Nu,In Assisted Case -

l'

                   -    Assisted case implies Nuu , 2: Nu, always; justification required
                   -    (Not the most important concern about this model) t l
                                                                                                                                                                        '    i I(

kbM b EEW M3999

            -         . . . -    -   - .       - . . . ..     -.         .. ._   ... - ..     . - . . . . _ _ . - _ _ _ _ . . . ~ - . - .

o nce .sg P'0"r!.. Cu2 I, i i 1 4 i i i

,co l 4

.i i - i em - i i

see -
.ao -

a i ) E

  • _ .ao -

a ! e . i

-        8                                                       =

a een - a j , j i

                                                  =
                ,no     -

a } m I e ' - - ) 8

  • 1 2 3 4

) . Dimensionless Heignt (x/c0 3 i m Test Onta + w correlation d l Figure 3.1 1 Local Nusselt Nwnber Compadses for Huset Test 1 e w ass. 4 m s .

                                                                     }.3

i l I wesmessac Pusene.s- "aF l . 1 l 4 d I i e f 8 i i

ss -

s l u l i

                      *   ~

f 5 i .

               ~,

f e.s - E h, e - 1 . t ,.s - 1! . E_ - a . m = - - -

                                                                                           ~
               ]      ,    - . s'ese.
                                  --        ni                           .
                    e                          s                e                 g        se oi   n.i.ni. t.n.sn cuo a Data Pelffts                      Mean Value (1.179)

Figure 3.14 Compadsen of Predided to Maamired Local Nasseh Numbers for Huset Tests

       . w ine. ti m s                                         38

i

               #Drf>Geotst PeretETast CLus 2 l

i i i a l d i .i i 1

I
                                                                       -                                                                                                             1 a
as -

i 1 i . m  %"

                                                 "                                                                                           Ma
                                  *   -          m'E_                                             m

[ .

                     $                            'h                                                                                      , .
                     .e                                                                             =.,

g"[4 ." i,  !. , .

                                                 =                                     "
Y l ] es -

1 - i ! 3 ' ! I i & l i e , 8

  • e m , ,
tamames 4

Asyneles Nwnber d j e Test Data _ ween C0.350 i i .- i 4 i ) I i i

Figure 3J.3 Comparison of Predicted t& Measured Sherwood Numbers for the Wisconsis Condensaties Tests 4
         = w w..wi m s                                                                        3.n

i Lack of a Bridge to AP600 Applications 3 l

  • Correlations are Clearly Not Unequivocally Conservative '

Predicted / Experimental ratios > 1 as often as < 1

  • Correlations Might Be Defended as Best Estimate (BE)

BE only acceptable with uncertainty assessment

  • What Can Be Said About the Uncertainty in the HMX Correlations for LST and AP600 Applications ("SU")?
                       -  Effects of different geometries Effects of scale
                       -  Systematic trends and implications? Weak trends apparent in UW condensation tests but not im other results cited                                                       ;

l

  • What is the Sensitivity of P Calculated by WGOTHIC to HMX Correlation Uncertainties ("dP/dU")? '

i - LST versus AP600, shell interior & exterior, transient & steady state, etc. l I i

                                                                                               @ Sandia Nationallaboratories

WGOTHIC Mixed / Forced Convection Models) t WGOTHIC (V1.2) Treatment Credits Mixed Convection on the Shell Interior I Forced flow Nu re based upon velocities calculated for wall nodes -

                                                                                                                   !.#I Free convection Nu, from the McAdams correlation Combined using the mixed convection model l
  • Treatment May be Fundamentally in Error Postulates that a flow driven by a global free convection can be treated locally using a forced convection model i Roughly equivalent to equating a convective boundary layer flow to a free- .

stream How

                        -   Mixed convection model may double-count the free-convection flow
  • Illustrate Using Simple Free Plate Problem
                        -   " Thought Experiment"                                   .

CONTAIN calculations at "LST scale" and " full scale" frii) sandia Nationaltabwaimies i

                     *         " Thought Experiment" Free Plate Problem
                                                                                                                                                                            )l Consider a cooled vertical plate in open volume with bulk gas at rest Clearly only natural convection is present (zero free-stream velocity)

If nodmHw and use WGOTHIC as in LST/AP600 analysis, nodes next to plate cool and gas flows downward WEC treats this flow as " forced flow", i.e., as a free-stream velocity Actually, this is boundary Dow; effect already accounted for in McAdams correlation (double counting)

  • CONTAIN Simulation Nodalization analogous to WGOTHIC LPM analysis of LST/AP600 wall regions (thin wall nodes, etc)

Flow resistances set as in WEC analyses (?) - more info needed Scale to LST and examine scale effects by scaling up x10 (" full scale"; LST actually 1/8 scale) Initial conditions: P=0.4 MPa, T,=410 K, T,=402 K, steam: air =2:1

- Boundary condition: Plate temperature held fixed at 375 K
                            -     No steam sources; rate of pressure decline measure of HMX efficiency Compare results with Nu= Max (Nu,,Nurc) vs Nu=Nu,c I

k frii) saga nacionananmanies

__ . . ._. . _ . . - . - - - . - - - - - - - - - - - - - - - ~ " ~ ~ ~ ^ ^ ^ ^ ~ ~ i , 1 4

                                                              !                 !                          A

. { ' i

                                                              '                 '                           !                                        .E     '

a i i 13 *l i 14 l 15 1.75 m 3 i j 4 1 1 . II

                                                           . ,I

____I,.________. - l  ! 1 *: 7 e 16 E l e e i l 1 ( _ _ _ _I(________. - l s i 2 p!i

                                                      /

8 e e 17 0.875 m "h ' I I If_. ' p .,_____I______. , . i 1 4 3 b'i r 9 i 18 j i 8 j .  ; \

                                                           .l_ _ _ _ _l_ _ _ _ _ _ _ _ _ .
                                                      /       I                 I

! 4 :1 10 I i 19 l

                                                      -       1                 I s       e                 s i

i l i i 5 in 11 e 20

                                                      -       :                  I i                                                              ,                 .

i 6  :-l 12 l 21 i I '

.i_____i_________. _
                                                              ,                  i                          a i                                                              i                  e i                  1 24                           23               22 l                                             '
                                                           -l                   l                       1.75 m s

i, I 't i 1 ! 3g . O I j l -+ + 0.738 l*-1.476 m H l 0.0762 m  ! 1 i l l Figure 1. Nodalization Diagram for Free Convection Problem, t.ST Scale i

                                     ~
                                                                                                                                                                                                                  )

CONTAIN Results, Free Plate Problem ' l

  • Including the " Forced Flow" Enhances HMX ~29% LST I

! Scale, ~38.% Full Scale This enhancement represents an eKect that is spurious and . nonconservative Enhancement somewhat sensitive to flow resistances j

     -   Enhancement insensitive to plate temperature (345 K cases)
  • Wall Node Velocities ~2 m/s LST scale, ~4 m/s Fall l l

Scale Similar to WGOTIHC velocities of 1.5-3 m/s in LST 212.1 and 2221 (versus experimental values of only 0.3-1 m/s) Enhancement of HMX abr comparable to WGOTHIC " mixed conwection"

  • Interpretation
     -  Downward flow at wall is "real"; however, represents boundary layer flow whose eKects are accounted for in free convection correlation (McAdams)

Erroneous to use in forced convection correlations as if free-stream velocity I th Sandia National!abwarmies

Forced / Mixed Convection Model, Conclusionb l i Using an Analogous Approach with CONTAIN Clearly ( Invalid - l - Magnitude of effect increases somewhat with scale No known differences between CONTAIN and WGOTHIC LPM mode i . justify use of this approach in WGOTHIC LPM i

  • Possible Complicating Factors
                  -        "Real" free-stream flows may exist in actual containment, but the spunous effects noted here won't go away Treating momentum advection might change the magnitude of the effect, but the free plate problem would still yield a spurious forced flow effect            ;
  • WGOTHIC Distributed Parameter Mode Would Still Exhibit the Problem in Some.(Unknown) Degree i i

I

                                                                                    @) sando saiions tab aimies i rww ersa spot i

i PCS Channel Issues D i

           ~                                          .

Preliminary Analyses by R. Viskanta Suggests Potential for Reduced Flow in the Channel Exists Detailed amnerical solution of conservation equations in the boundary layer Simplified representations of PCS downcomer and riser Calculation showed strong recirculation pattern in downcomer inlet, reducing flow through PCS Flow velocities in the riser :s; I m/s Dry sheII, but sheII wetting not likely to affect downcomer inlet recirculation

  • Investigate Sensitivity to Flow Reductions with CONTAIN t CONTAIN can shed no light on whether flow restriction occurs, can provide insights as to implications sf flow restriction does occur ,

Perform calculations for base case and cases with downcomer inlet reduced 4 by 20 or 100, and with inlet closed off entirely (no flow through PCS)  ! h Sanda National tabmatmies

1 i t 4 Flow Velocities in the PCS 7 - = ease - i

                             -- e-- Area /20 casl
                            ,O--           Areo/100 6    -

Area = 0 -

                     -                                                                                                                                                                                                                                                              l 1

O 5 N  ! v E -

      -.s_     4    -

s i _o_ - - 2 2 -- -

                   ..                                                                                                       m s

u - i

                                                                                                                                                                                                    ~~

1 - e

                                                                                                                                                                                                                                                            -s s                   :
                                                                                                            -                                   -                                     __                            o,
                                                                                                                                                                                                                              ;g ---.- .~.,                       ..o-p.u. - ,...

_.o- l O -n

                       - - - r r r., .-o_ - - - . _ .-:                                                                                                                                                                                                                            :

1 O* 10+ ' 1 O*

  • 10" 10" 10 *
  • t TIME (S) i Ef fect of Downcomer inlet Obstruction t SMay95 17:2 0:13 conf airs l

f$1 Sandia National Laboratories t

i t 450 Effect .of Downcomer inle t Obstruction l ! 425 - 375 - . 350 - g '_  : 9  ! m 325 - O \  ! a_ g 300 -

c. '\ ,

W

s. ,,

275 - u., N 2 250 -

                                                                                                                                                                                                                                            's .

w g 4." s . a- ' . 1 225 - s . . .

                                                                                                                                                                                                                                                                  . ' 1a .

200 -

                                                                                                                =         Base Case                                                                                                                                  W'              -

i

175 -
                                                                                                         - - * - - Area /20                                                                                                                                                          -
                                                                                                         ....g...

150 g Area /100 - I I - - e- - Area = 0 > 125 - _ _ _ desI n9 pressure -

                                                                                                               - - ^^^^^'           - -^^^^^'

100 - - - - - ^^^^^' - ^ ^ ^ ^ ^ ^ ^ ' ' ' ' ^ ^ ^ ^ ^

                                                                                                                                                                                                                                                                                     +5         I 1 0+ o                   10+ 1                10+ 2                              10+ 3                                                      10+ 4                                 10               i i

TIME (S) Dome Pressure, DECLG Accident Scenario i SMay95 17:2 0:13 contain

               \                                                                                                                                             -

i t t l b

                                                                                                                                                                                                                                                                                                               -           q i

! l 700 Effect of Downcomer iniet Obstruction

                                                                           =                      '

I  ! 650 -

                                                                             =                                sas. case                                                                                                                 .

j t

_,_e.-

Area /20 f ,- 600 ,/ g  ;

                                                                     . . . . . . . . Area /too a                ,                                                        -

i

                                                                                                                                                                                                                                                 .e e- - Area = 0                                                                                                                                       -             '

550 -

                                                                     - - - design Presswo                                                                                                                              ./                 ,.-

j ,/  ! 500 -

                                                                                                                                                                                                                                   ,A                                                                        ,

E i \ a 450 -

                                                                                                                                                                                .Ik ./                                                                                                                      -

w ,__,__. - - - - - - - _ a ------- -- w

                          =>

400 -

; \

en - I/ m :P . w x n. 350 ( 't a g; -

                                                                                                                                                                                                                                                                   =

t t 300 '  : 250 -a

i. -

2OO' ql -, in.*..........g...............4:- su 150 - = - 100 ' ' ' ' ' O 100 200 300 , 400 500 600 TIME (iO3 s) l Dome Pressure. DECLG Accident Scenario SMay95 17:2 0:13 confoin. g Ph Sandia Nationallabmatmies

L PCS Channel Issues (Cont.) ]

  • Shell Boiling Has Potential to Minimize Sensitivity of Reflood . Peak to Channel Flow 2Maur cip,.c.aurization somewhat more sensitive to channel flow issues
         - Late dry sheII operation much more sensitive
  • Reemphasizes the Importance of Shell Wetting Issues
  • Wettability of Shell Under Boiling Conditions Requires
Evaluation
         - Can thermal stress affect load <arrying capacity?

Wettability After 10,20,40 Years of Operation a 4 4 Potentially Important Concern 4 - Environmental contamination (oils, smoke, dust, effluvia from vegetation).

- Can wettability be determined by testing? ,

I

         - Can wettability be recovered if found to be impaired?
         - Minimum acceptable wetting fraction for reflood? For 24-hour criterion?    I I( _

m --, ,

i Main Steam Line Break (MSLB) b l

                                                              ~
  • MSLB Accident Scenario Requires More Attention Efforts to ajate have emphasized DECLG
  • Steam Source is Higher In Containment Than In DECLG  ;

Potential to reduce effectiveness of below-deck interrmi heat sinks

  • WGOTHIC V1.0 - VI.2 Differences Greater for MSLB than DECLG
           -  MSLB may be sensitive to mixed / forced convection issues                      ,
  • WGOTHIC V1.0 & CONTAIN Indicate Margin May Be Smaller Than For DECLG
  • Taking Credit for Forced Convection Likely Important
           -  Validation of velocity distributions over heat sink surfaces may be a key

. issue I _ h Sande Nationadabmatmies

I i 4 e W Gothic Review NtTmerical Methods m _. - -

                                                                                             @ g"                 s 1

Grid Convergence f . Numerical DNfusion

               . Velocity Predictions l               . Lumped versus Distributed Persmetere 4

!, . Conclusion i I l

            -e n=== orwwwmenmiu mr me==.m e

) vms .,. e-- - f W GOTHIC Review Su_m. mary of grid convergence concerns @ m.  :

               . Sandla is concerned with the grid independence of the                                                j w GOTHIC resuNs:                                                                                !
                            . First order schemes are by definition the lowest order of securacy.
                            . First order schemes converge very alourty as the grid is                                j
                           . . refined.
                            . First order upwind schemes ahreye gM a reasonable locidng result (even N not converged).
                            . No mesh convergence reeutts have been presented.                                        ,

m ., =p=- _

i First order schemes are by definition the . j f lowest order of accuracy

                                                   , , , .       --                                                                     ME                                  s I
                                                         . The largest errors are due to numerical diffusion.

4

                                                         . Simple example of numerical dWusion in a flow aligned with i

the grid: i 1 j nm,essenen wem ewusten j ener1 eneesop

  • anera one sospo 4 7eewmeones noess) l j
                                                         . The numerical diffusion causes excess mixing of heat, gases, j                .

momentum, etc. t sme , =;: _ _- . 2 l ? i Numerical diffusion in 2 D can even be j worse

                                                                                                                                        $.gg,,                                s

)

  • The flow velocHy is reached into two components l.

e

m
                                                                                              .-   A                     --                       -

k 161 i l'l l II l l l 11I IIII j tuuis senseen men au esep aseens one om, ese oneesep 4 j

}

) 4'. esent esAWeen l . Excess mixing will result from numerical diffusion l

.                                                  *ms                                            4                                  er                     -

t

4 1 W GOTHIC Review { Sl_ow Convergence of First Order Methods @ E s i 1 - l 1 i } h mesh slae i j . One solution cannot give confidence in the results.

                                                       . TWo solutions still so not determine how close the results are to the asymptotic solution.
                                                       . A minimum of three solutions are required to demonstrate gr'id                                     -

convergenoe.

                                                    -                                  ,                                         = , =                 .      .

W GOTHIC Review Calculation of Internal Velocities

                                                                                                                                        @ g. .-           _

s

                                                       . velocity utimsta are required:
                                                            . for input into the heet and mass transfer calculations.
                                                            . for the mixing of the various conetthents.
                                                       . A elly boundary condition le used along with a well drog for-rnulation.1he drag formulation seems to be strongly mesh
                                                   *m                                ,

r; -  :-

l l j W GOTHIC Review l Us_e of Correlations

                                                                                              @ g.              s i                                                                                                                    i j                       .                                                                                            l
    . N ie unclear what is the propsr heat or mass transfer correte.

l tion to use for the flow conditions and geornetry of concern. j

                 . Typically one uses correlations for unHorm flow over a flat j                    plate or internal pipe flow.

j . What is the correct distance parameter? 1 . What le the correct velocity? ! . Use of any correlation can still result in the CORRECT heat or i mass transfer coefficient N INCORRECT distances or veloc6-l ties are used.

 *=55                                                     .r.                          ~-

W GOTHIC Review . VeTocities for Correlations?

                                                                                                @E       _
    . The velocity profile near a cold waN may look as follows:

G)

    . W!iet voloolty should be used as input into the correlations?
                 . The actual velocity will very signincently as a function of the wee distanos.
                 . The calculated velocity distrtation near the boundaries is                                       i Ekely to be mesh dependenL                                                                      l
                 . There is a potent!al factor of 2 error in equation (Egn. 8.18, WCAP 13247 page A 107) which predets velocities.,
                 . How wls it be demonstrated that a proper host and mass transfer coefncients wul be generated for the AP600 where one has to scale the experimental date?
 ,:mm                                                      .,
                                                                                         =g =              __

i

W GOTHlO Review i;

{ Use of wall function correlations um - - - @E s t I . ! m oo , Y l ) W l u J l . Wallfunction correlations accepted in aerow applications where uniform flow conditions exist outside of the boundary wyer. l . A model needs to be developed to determine what is the { proper velocity and distance to use in the cortglations for the l AP600 application. b i A procedure has to be developed to assure that the correct } velocity la extracted from the numerical solution. l l i i W GOTHIC Review

                                                                                                                                            @E Lumped vs. Distributed Parameters                                                                        s
                                                . Distributed parameter model allows momentum transport between adjacent cells via advoction and diffuelon.
                                                . Lamped Parameter model only aNows momentum Weneport via advoction.
                                               . RA'enuals state that momentum advoction terms should NOT be included "for flow paths connecting two lumped parameter volumes or a lumped parameter volume to e subdivided vol-u m e."

) ! W GOTHIC Review . i Lu_mped vs. Distributed Parameters

                                                                                                               $ A*                     s i                     . Consider an loothermal 2.D charging flow:
                                                                                                       - s

! i i i 1 4 1 T T T Y 4 Y ( => wp i 4 i 1 4 1 j 1 i 1 1 i 1

                                                                                        ~.              .-

i 4 4 l I ] I Lumped Parameter Distributed Parameter j . Distributed parameter results:

. always seem more reasonable.

l always show flow features are larger than mesh size. j . In significantly different velocity profiles. i  ! j 6 % 96 ,,,, cp -- - _ == l - i l W GOTHIC Review l Numerical Methods -- Conclusions i . sandle feels that current etste of the art does NOT allow simu-l lation of conteinment with distributed parameter method. j . flow features are emeller then grid sine

. first order differences yielde exceso mixing
                      . Surden of proof le on Westinghouse to demonstrate accuracy j                         of distrewted parameter resulte vis:

l . experimentalcomparteens ! . grid convergence studies' ! . esperate effecto studies ! . uncertainty stumes i j . Correlatione beood on oeiculated flow velocities should be carefully reytowed. 2 Are the velocities converged?

                            . Are the velocities correct?
                            . Are the correlatione correct?

I l A REVIEW OF THE WEL AP600 t SCALING METHODOLOGY Martin M. Pilch Richard O. Griffith Sandia National Laboratories Jack Tills Jack Tills & Associates June 21,1995 l

     ,                                                              Monroeville, PA E

l l e422eie@ % PP1 I EJ m i

                                                                                                                                         .__..___i
OUTLINE Introduction Overview of WEL Scaling Keyissues Detailed Comments Sequences and Success Critena .

i Top-down PIRT Top-down Scaling Bottom-up PIRT, Scaling, and Validation Uncertainty Quantification Summary G4224f1846* rnigM1 LTJ -

                                     . _ . _ _ _ .._____._.___-________..________.___.___-_...___._____.____.______________._.________..________._________________._.___________.__._._____.___f

i PATH TO RESOLUTION Common Elements to SASM and CSAU Success Scenario NPP PIRT Criteria Selection U g > Frozen Code Experimental V

Requirements .

Assessment &

 ,                            (SASM Element 1)                                                                                                                  Ranging
y of Parameters U

Evaluation and (CSAU Element 2) Specification Code Development

                                                                                                                             +

(SASM Element 2) MOmlC) T Sensitivity and Database and Uncertainty Analysis Documentation " (CSAU Element 3) (SASM Element 3) p V Technicalissue Technical issue Resolution with Resolution with Special Models & Code Calculations their Uncertainty and their Uncertainty i

l INTEGRATED CONTAINMENT

RESPONSE

L Separate Effects Tests

                    - Basis, validation, and uncertainty of all important                                !'

processes for NPP regimes. Integrai Tests

                    - Direct simulation
                    - Identify unexpected phenomena
                    - Test interaction of separate effects                                               !

Compensating Errors

                    - Individual models can be wrong and still predict integral                          i result.

t l 6422*1es6 mig PP1

HISTORY OF WEL SCALING Ad hoc Scaling of LST Tests . - Flooding Rate - Same Film Thickness

- Airflow in Riser - Same Velocity j
                - Steam injection Rate - Match Containment
                - Peak Pressure - Overdnven                                        !

[ - System Level Scaling is Retrospective System Level Scaling Still in a State of Flux

                - WCAP-13246                       July 92 Textbook                ;

' - ERl/NRC 92-1222 1992 SASM i

                - ERl/NRC 93-202                   Feb.94  WEUNRC Mtg.
- WEUNRC Mtg. July 94 SASM, inside Only
                - WCAP-14190                       Nov. 94 Inside/Outside          i i
- WEUNRC/ACRS Mtg. Mar. 95 Addresses Comments t
        .mm mm
                                                                         $ Sandia t

HISTORY OF WEL SCALING (continued) Documentation is incomplete and has not kept up with changes. When will WEL converge on a final product? l

          .n -m m
          ~

KEYlSSUES i Incomplete with many unresolved concerns. LST never intended to be a sequence simulation.

            " Snapshots in Time" reflecting integrated coupling of internal / external phenomena.                        l Coupling not prototypic -i.e., forced annulus flow.

Useful separate effects data with confounding influences. Internal condensation and heat transfer with ) concentration gradients and natural

circulation.

l . , - , , G3 g Mim i

l l l l KEYlSSUES l 1 Concentration gradients (stratification) and ' circulation are not yet shown to be prototypic. . Important external phenomena measured

                                            - Evaporative film heat transfer

)* - Film subccoling

                                            - Film thickness and coverage External phenomena are not yet shown to be prototypic
- Forced vs. buoyancy driven flow 4 .
                                            - No downcomer                                                       i i

r S4224f1WES- mig.PP5 O_ i

FAILURE TO GEOMETRICALLY SCALE RISER FAILURE TO SCALE FILM FLOW RATES Distortions might exclude phenomena that might occur, may include phenomena that is not important, and might result in different  ! heat and mass transfer regimes. LST tests represent a more narrow range of validation than we would like. f I I l. ' National l taboratories i f

KEYISSUES WEL has large amount of useful separate effects data from LSTs and set tests. Top-down scaling must be completed to ensure that all important AP600 phenomena are identified. Bottoms-up scaling must be completed to demonstrate that separate effects data and models are scaleable to AP600. Assessment and validation of WGOTHIC cannot be completed until top-down and bottoms-up scaling analyses are complete.

   ~
              .    %m E-

' KEYlSSUES i Define strategy for handling modeling uncertainties . , - Modeling uncertainty + conservative initial conditions may not meet success criteria. r Comparisons of code predictions with integral data cannot be used to define margins Two possible approaches ' ! - Conservative initial conditions + demonstrably  ! conservative modeling approach.

                                                      - Best estimate evaluations with initial condition and modeling uncertainties propagated through the analysis, l                                                         e.g., CSAU for peak clad temperature.

e422 eness ndePPS LTJ -

SEQUENCES AND SUCCESS CRITERIA .# DOMINANT PHYSICAL PROCESS MAY CHANGE FROM SCENARIO TO SCENARIO AND PLANT TO PLANT i DECLG MLSB PHASE BLOWDOWN REFLOOD PCS BLOWDOWN Top-Down PIRT None None Yes Yes Top-Down Scaling Ranking Ranking Ranking Ranking LST/AP600 None None Yes Nonc Comparisons Bottoms-Up PIRT None None Yes None

    & Scaling Uncertainty                None                        None                                                                                                                                            None                None Quantification INSUFFICIENT ATTENTION TO REFLOOD PHASE OF DECLG SEQUENCE AND MSLB SEQUENCE

TOP-DOWN PIRT

 . #             RECOGNIZE AND FOCUS ATTENTION ON ONLY THE IMPORTANT PHENOMENA AND PROCESSES CIRCULAR LOGIC: CODE > PIRT > CODE CONCERN THAT WEC PIRT IS INCOMPLETE , INCONSISTENT, AND DOES NOT                                                                     ;

ADEQUATELY TREAT ALL PHENOMENA HOW DO LOCAL PHENOMENA EFFECT INTEGRAL RESULTS E.G., , a SECONDARY FLOWS IN THE ANNULUS OR STARTUP FLOW IN THE ANNULUS; BOTTOMS-UP PIRT NEEDED BUOYANCY RANKED HIGH AND STRATIFICATION RANKED LOW j REFLOOD PHASE PHENOMENA NOT ADDRESSED WEC PIRT MAY NOT REPRESENT CONSENSUS OF TECHNICAL COMMUNITY  : ONE MAN EFFORT, GROUP WITH DIVERSE BACKGROUNDS PREFERRED, WEC/NRC/ACRS MEETING COULD FILL THIS ROLE JUSTIFICATION AND DOCUMENTATION OF RANKINGS GENERALLY WEAK

TOP-DOWN SCALING

 .#    DEVELOP A SET OF PI GROUPS FROM THE CONSERVATION EQUATIONS THAT CAN BE EVALUATED IN A SCRUTIBLE FASHION TO ESTABLISH SIMILARITY (OR DISTORTIONS) BETWEEN EXPERIMENT AND NPP SYSTEM LEVEL RESPONSE
  #    CRITERIA WE LOOK FOR i

CONSERVATION EQUATIONS MUST EXPLICITLY REFLECT THE IMPORTANT PROCESSES IDENTIFIED IN THE TOP-DOWN PIRT  ! THE COUPLED EQUATION SET SHOULD BE NORMALIZED IN A CONSISTENT MANNER t l EACH PI GROUP SHOULD BE A CONSTANT THAT IS WRITTEN EXPLICITLY IN TERMS OF INITIAL CONDITIONS, BOUNDARY CONDITIONS, AND l GEOMETRY. DEFINES OPERATING CONDITIONS OF THE TEST. l PI GROUPS SHOULD BE EVALUATED IN A CONSISTENT FASHION FOR BOTH NPP AND EXPERIMENT CONDITIONS i IMPORTANT TERMS AND PARAMETERS IN THE DOMINANT PI GROUPS l SHOULD BE THE FOCUS OF A MORE DETAILED BOTTOMS-UP SCALING l  ! l - _ - - . l

TOP-DOWN SCALING i TERMS APPEAR IN THE ENERGY EQUATION THAT NEVER APPEAR IN THE TOP-DOWN PIRT; E.G., HEAT TRANSFER TO POOLS DEPENDENCE ON PHYSICAL SCALE IS NOk' EXPLICIT (OR OBVIOUS) IN TH WEC SCALING GROUPS LSTs ARE SNAPSHOTS IN TIME NOT SEQUENCE SIMULATIONS; THERE IS NOT JUSTIFICATION FOR RELATING TEMPORAL SCALING (NPP) TO STEADY STATE TESTING WELL MIXED CONDITIONS ARE ASSUMED IN THE WEC SCALING; EXPERIMENT DATA AND Fr EVALUATIONS STRONGLY SUGGEST OTHERWISE ' WEC ACKNOWLEDGES RESTRICTED BELOW DECK CIRCULATION AS A SIGNIFICANT DISTORTION. THIS CONCLUSION DOES NOT FLOW FROM THE TOP-DOWN SCALING. WHAT IS THE BASIS? DOES THIS DISTORTION LIMIT THE UTILITY OF THE LST DATA FOR CODE COMPARISONS? TREAT GAMMA IN A CONSISTENT MANNER; SPECIES VALUE OR MIXTURE VALUE

h TOP-DOWN SCALING ~

            .      WEC NORMALIZED BY ENTHALPY OF STEAM SOURCE, WHICH INTRODUCES AN ABSOLUTE TEMPERATURE IN THE DENOMINATOR. HOW HAS WEC                              l RESPONDED?                                                                           '

i TEMPORAL DECOMPOSITION BASED SOLELY SOURCE HISTORIES. . WITHOUT JUSTIFICATION, QUASI-STEADY HEAT TRANSFER THROUGH SHELL, QUASI STEADY FILM FLOW, AND QUASI-STEADY ANNULUS FLOW ARE ASSUMED. TABLE NEEDED WITH CHARACTERISTIC TIME CONSTANTS FOR ALL PROCESSES NEEDED.  ! PI GROUPS ARE TRANSIENT QUANTITIES ~BECAUSE WEC NORMALIZED BY 4 THE TRANSIENT STEAM SOURCE. THIS PROCESS IS A " SENSITIVITY STUDY", AN " ENERGY PARTITION", AND A " CLEVER WAY TO RANK" BUT IT IS NOT A SCALING AP'ALYSIS. i i l

TOP-DOWN SCALING USE OF THE " SCALING CODE" IS NOT SCRUTIBLE AND ITS USE INTRODUCES ITS OWN SET OF APPROXIMATIONS AND ASSUMPTIONS USE OF FIXED EVAPORATION RATE (PRODUCT OF ANOTHER CODE) ARTIFICIALLY DETERMINES WATER COVERAGE ON THE SHELL j i VAPOR DENSITY VARIATION IN THE RISER IS ASSUMED LINEAR STABLE STRATIFICATION OF THE ATMOSPHERE IS PRECLUDED BY THE  ; WELL MIXED ASSUMPTION SCALING GROUPS WRITTEN IN TERMS OF DEPENDENT VARIABLE (HEAT FLUX THROUGH THE SHELL) THAT CAN ONLY BE EVALUATED BY THE CODE. THIS IS NOT SCRUTIBLE EXPERIMENT DATA FOR DEPENDENT VARIABLES IS USED TO EVALUATE THE PI GROUPS FOR EXPERIMENT EVALUATIONS. THE DIRECT USE OF EXPERIMENT DATA IS UNACCEPTABLE, SINCE IT IMPLIES THAT AN EXPERIMENT CANNOT BE SCALED WITHOUT ITS OWN DATA. i

TOP-DOWN SCALING THE REFLOOD PEAK IS DEPENDENT ON HEAT TRANSFER TO STRUCTURES BUT NO PI GROUP REPRESENTS THIS IN THE LST EVALUATIONS (MOST.LST TESTS ARE STEADY STATE AND THERMALLY SATURATED) LST 220.1 (BLIND) IS A TRANSIENT TEST WHERE INTERNAL HEAT SINKS ARE IMPORTANT. WEC HAS ATTEMPTED TO SIMULATE STRUCTURES BY REMOVING INSULATION FROM THE LOWER VESSEL WALL THE LUMPED CAPACITY DISTRIBUTION OF STRUCTURES IS NOT THE SAME AS AP600. HOW DOES THIS SCALE? CAN THE PI GROUPS BE EVALUATED WITHOUT THE SCALING CODE OR RECOURSE TO EXPERIMENT DATA? ENERGY TRANSFER TO THE ATMOSPHERE TO THE RISER SHOULD BE EXPRESSED IN TERMS OF AN OVERALL RESISTANCE THERE IS NO WAY TO RELATE IMPORTANT PI GROUPS IN THE ANNULUS TO CONTAINMENT PRESSURE. THE MARCH PRESENTATION ON THIS ISSUE IS VERY CONFUSING AND POORLY DOCUMENTED. EXPRESSING HEAT TRANSFER IN TERMS OF AN OVERALL RESISTANCE MAY HELP. . LST DATA INDICATES THAT THE DOMINATING RESISTANCE TO HEAT TRANSFER IS THROUGH EVAPORATION NOT CONDENSATION AS THE WEC SCALING SUGGESTS.

I i i TOP-DOWN SCALING IT IS NOT APPARENT HOW THE WEC SCALING ADDRESSES THE ISSUE OF WATER FLOODING RATE  ! THE CURRENT SCALING METHOD SHOULD ADDRESS EXPLICITLY THE  ; I CRITERION USED IN SELECTING THE STEAM INJECTION RATE. ARE THE TESTS OVERDRIVEN AND WHAT IS THE IMPLICATION OF THIS. I l I

i I

i i 1 t I

BOTTOMS-UP PIRT, SCALING, AND VALIDATION

 .#  FOCUS IS ON CLOSURE RELATIONS APPEARING EXPLICITLY IN THE DOMINANT PI GROUPS HEAT AND MASS TRANSFER COEFFICIENTS, CHARACTERISTIC VELOCITIES, WETTING FRACTION, ETC.
  # DETERMINED THROUGH SOME CAUSAL RELATION TO INITIAL CONDITIONS, BOUNDARY CONDITIONS, AND GEOMETRY.
  # IMPORTANT CLOSURE RELATIONS REQUIRE THEIR OWN SCALING, INCLUDING A PIRT AND EXPERIMENT VALIDATION

, i i l l r

BOTTOMS-UP PIRT, SCALING, AND VALIDATION THE CURRENT SEPARATE EFFECTS INFORMATION NEEDS TO CONSOLIDATED OR A " ROAD MAP " PROVIDED i ANNULUS FLOW

l NO SCRUTIBLE COMPILATION OF ISSUES RAISED IN WEC/NRC/ACRS MEETINGS EXISTS E.G., CONSIDER ISSUES AFFECTING ANNULUS FLOW HYDRODYNAMIC LOSS COEFFICIENT, ATMOSPHERIC CROSSFLOW ON THE '

BUILDING, RECIRCULATING FLOW PATTERNS AND FLOW INSTABILITY NEAR THE DOWNCOMER ENTRANCE, ENTRANCE REGION EFFECTS, CROSSFLOW BETWEEN THE DOWNCOMER AND THE RISER, HEATING OF THE DOWNCOMER GAS BY THE BAFFLE, EFFECTS OF BAFFLE SUPPORTS IN TERMS OF DRAG AND CHANNELING WATER FROM THE SHELL TO THE BAFFLE, SUITABILITY OF USING FORCED CONVECTION CORRELATIONS IN A BUOYANCY DRIVEN ENVIRONMENT (SKEWED VELOCITY PROFILES) ISSUES LIKE THESE CAN BE ADDRESSED IN A BOTTOMS-UP PIRT THAT SUMMARIZES THE KEY CONCLUSIONS AND REFERENCES THE APPROPRIATE SUPPORTING DOCUMENTATION

l

 .           BOTTOMS-UP PIRT, SCALING, AND VALIDATION ANNULUS FLOW (CONTINUED)

MOMENTUM EQUATION ASSUMES QUASI STEADY FLOW VELOCITIES MATCHED IN THE LST ANNULUS TO PREDICTED AP600 VALUES. THIS INTRODUCES A REYNOLDS NUMBER DISTORTION. AS A RESULT, THERE ARE DIFFERENT HEAT TRANSFER REGIMES IN THE LSTs AND THE AP600. TREATMENT OF THE LOSS COEFFICIENT IS NOT CONSISTENT BETWEEN AP600 AND LST. VALUE USED WAS OBTAINED FROM 1/6 th SCALE FACILITY OF AP600. LST HAS NO DOWNCOMER AND THE L/D RATIO IS DISTORTED. HOW DOES THE LOSS COEFFICIENT SCALE. AIR / VAPOR DENSITY IN THE RISER IS ASSUMED TO BE LINEAR. WEC SCALING ANALYSIS IGNORES THE CHIMNEY REGION i

I i i l BOTTOMS-UP PIRT, SCALING, AND VALIDATION l i ANNULUS FLOW (CONTINUED) l l PI GROUPS FROM THE EXTERNAL MOMENTUM EQUATION ARE EVALUATED l USING MEASUREMENTS OF KEY VARIABLES THE DOWNCOMER IS NOT MODELED IN THE LSTs; CONSEQUENTLY, KEY i PHENOMENA ASSOCIATED WITH THE DOWNCOMER (FLOW STABILITY) CANNOT BE ADDRESSED t INTERNAL HEAT TRANSFER WEC HAS NOT CRITICALLY ANALYZED EITHER THE AP600 OR LST HEAT TRANSFER PROCESSES TO SUPPORT CLAIMS REGARDING WHETHER MASS TRANSFER PROCESS ARE FORCED OR FREE CONVECTION THESE PROCESSES HAVE DIFFERENT SCALING IMPLICATIONS j t

 .                    BOTTOMS-UP PIRT, SCALING, AND VALIDATION MIXING WEC' ARGUES THAT THE AP600 WILL BE WELL MIXED WHEN LST DATA SUGGEST OTHERWISE. WEC ATTRIBUTES THIS TO THE FACT THAT FLOW THROUGH THE LST SUBCOMPARTMENTS IS RESTRICTED WHILE THE AP600 IS NOT.

HOW CAN WE USE THE LST DATA TO VALIDATE CODE PREDICTIONS WHEN THE FLOW REGIME IS NOT THE SAME IN THE EXPERIMENT AND THE NPP? Fr NUMBER SCALING SUGGESTS THAT BOTH AP600 AND LST SHOULD BE STABILY STRATIFIED IN THE DOME DURING THE PCS PHASE, REGARDLESS OF RESTRICTED SUBCOMPARTMENT FLOW WHAT IMPACT DOES FINITE CONTAINMENT (VESSEL) DIAMETER HAVE ON THESE CONCLUSIONS? I . THERE IS SOME AMBIGUITY IN DEFINING THE SOURCE DIAMETER IN THE l Fr NUMBER ANALYSES. l l l _ _ _ _ _ - _ _ _

i BOTTOMS-UP PIRT, SCALING, AND VALIDATION i MIXING (CONTINUED) .

CONCENTRATION GRADR.'NTS ARE OBSERVED IN THE EXPERIMENTS, NOT SHARPLY STRATIFIED LAYERS AS PETERSEN'S ANALYSES MIGHT INDICATE l 1

' ARE THE ATMOSPHERE CONCENTRATION GRADIENTS OBSERVED IN THE EXPERIMENTS PROTOTYPIC? WHAT PHYSICAL PROCESSES CONTROL THE MIXING AND HOW CAN YOU PREDICT GRADIENTS IN THE AP600? FLOW THROUGH THE SUBCOMPARTMENTS IS RESTRICTED IN A NONPROTOTYPIC MANNER IN THE LST TESTS ' , HEAT TRANSFER TO STRUCTURES PLAYS AN IMPORTANT ROLE IN THE REFLOOD PEAK AND MOST OF THE STRUCTURES ARE IN THE SUBCOMPARTMENT. THE LST TESTS CANNOT VALIDATE FLOW INTO THE SUBCOMPARTMENTS. i

BOTTOMS-UP PIRT, SCALING, AND VALIDATION HEAT TRANSFER RESISTANCE WHAT CONTROLS HEAT TRANSFER FROM THE ATMOSPHERE TO THE RISER? NOT EXPLICITLY ADDRESSED BY WEC SCALING, BUT WEC STATES THAT CONDENSATION IS LARGER THAN EVAPORATION. SNL BELIEVES THAT EVAPORATION DOMINATES THE RESISTANCE. THE DIFFERENCE IS TRACEABLE TO WEC's WELL MIXED ASSUMPTIONS. t i

BOTTOMS-UP PIRT, SCALING, AND VALIDATION WATER COVERAGE ACRS WAS NOT CONVINCED THAT WEC COULD PREDICT % DRYOUT AS A FUNCTION -OF FILM THICKNESS 1

  • i MOST OF THE AREA COVERAGE DATA IS FOR UNHEATED SURFACES, OR NONPROTOTYPICAL HEATED SURFACES l
  • THE SCALING CODE USES A FIXED EVAPORATION RATE (30 POUNDS PER SECOND) FROM WHICH THE WATER COVERAGE IS DETERMINED.

l ESSENTIALLY FULL COVERAGE IS PREDICTED.

  • i i

i l i

UNCERTAINTY QUANTIFICATION i DBA ANALYSES MUST SHOW THAT THE SUCCESS CRITERIA WILL BE SATISFIED WITH A HIGH DEGREE OF CONFIDENCE j WEC USES CONSERVATIVE INITIAL CONDITIONS i BEST ESTIMATE CODE CALCULATIONS l MARGIN CANNOT BE DEFINED BY SIMPLY COMPARING INTEGRAL CODE PREDICTIONS WITH EXPERIMENT DATA BECAUSE OF THE POSSIBILITY OF COMPENSATING ERRORS j RESOLVING POWER OF THE DATABASE IS LOW FOR SOME KEY ISSUES MODELING UNCERTAINTIES PERSIST AND AN UNFAVORABLE COMBINATION COULD LEAD TO FAILURE IN MEETING A SUCCESS CRITERIA WHEN CONSERVATIVE INITIAL CONDITIONS ARE ALSO EMPLOYED WEC NEEDS TO MORE CLEARLY ARTICULATE A STRATEGY FOR HANDLING MODELING UNCERTAINTIES: CONSERVATIVE OR BEST ESTIMATE WITH PARAMETER UNCERTAINTIES (CSAU)

O Q E D TICOM O U S E O

                                                                                                                                                                                                                                                                                                                                       ~

WGOTHIC CODE STATUS i ! Gothic 3.4c Code Package Purchased from NAI 28 December 1990

  • Prepmcesser/ Solver /Postynressew l Gothic 3.4c Code Package Dedicated 30 October 1991 i

WGothic 1.0 Code Package Configured 2 October 1992

  • Free / Forced Convection Heat & Mass Transfer
  • Wall-to-Wall Radiation
                                                                                                                                                *Sr.urated Film Assenption 24 March 1994 WGothic_s 1.1 Code Configured                                                                                                                                              .
  • Mixed Convection Heat & Mass Transfer WGothic_s 1.2 Code Configured 25 Octobei 1994
                                                                                                                                                *Subcooled Film Enthalpy Model
  • Modification hi Mixed Convectitm Limits ,

l WGothic_p 2.0 Code Configured 25 October 1994 g

 $
  • Inctwporate CLIME emmlets into Preprtresstw e

v, . _ . . . . E senses as woottec 98RC Proomsensten se ssm an .

                                                                                                                                                                    ~ _ . . - . . . - .                                        .      -. .-       -.                                                   -   ,_

O WEDTIUCHOUDE O . HEAT / MASS TRANSFER MODELS Free Convection Component

  • McAdams Conclation  ;

Forced Convection Component . t i

  • Colburn Conclation Mixed Convection
  • Assisting = Boundary & Bulk Flow in Same Direction
  • Opposing = Boundary & Bulk Flow in Opposite Directions t fees ard fre ferred l f

I I 1 2 of 5 - e ' Snaeus of WrGOTHIC 98RC Presoresekort temmeesde. PA * . N N Jure test

O W E D T I C3 C H O U G E O AP600 WATER COVERAGE Duration of Transient Used to Select Coverage Fractions  ; thnne thune thnne sue sue sue sue

                                   'thne                          Top                                                                              Mu            IkW                Top           Mu              Mu            Bot (Isr)                                                                                                                                                         Top             Bot

(%) (%) (%) (%) (%) (%) (%)

                                                                                                                                                                                                                                           ~

0.183 2.167 5.167 5.667 9.167 15.17 21.17 l 26.17 ' t t Coverage Fraction Held Constant for Duration of Transient -

                                                                                                                                                                                                                                      ~

3 of 5 m . . Sentes of WQOTHIC NFIC r. _ _ - -

                                                                                                                                                                                        =

Mwetenes.PA . OD00 June test

O WECTIQQHOUDE O

                  .                                                                                                   DESIGN REVIEW Gothic 3.4d was Reviewed All Issues from the Review were Fully Resolved Most of the issues Raised were Related To Documentation
  • Ice Meh Energy Imbalance not an issue for AP600 Three Recommendations were Provided ,

6 i e e a l Status of WGOTHIC NRC Presesemiten Menseoves. PA N N Ase ten '

0 WEDilGQHOUCE O AP600 SENSITIVITY REPORT

                                                   ~

Application of Westinghouse-GOTHIC to the AP600

1. Introduction 4 II. Overview of W-GOTHIC t

Ill. Timestep Sensitivity IV. Initial Conditions V. PCS Effluent Recirculation and Shadowing VI. Noding Sensitivities , VII. Water Coverage Sensitivity Vill. Bipwdown Sensitivity to PCS , IX. PCS Water film flow rate sensitivity , X. Intemal Heat Sinks XI. Mixing within Containment XII. Summary of Sensitivities and Results l l a Status of WWGOTHIC , Mmeessate l N N June 9908

WGOTHIC CODE UNCERTAINTY - Presentation to the USNRC . June 21,1995 By D. R. Spencer Westinghouse Electric Corporation Monroeville, Pa i e co c9 O O'

 ~7 E!

to 3 a,

l i i I i 4 !. Comparison of Measured and WGOTHIC Predictions of LST Pressures with Lumped l Parameter and Distributed Parameter Evaluation Models ! Large Lumped Parameter Predictions Distributed Parameter Predictions Scale Measured j Test (psia) Predicted had Pred Meas Predicted Bad Pred Meas

(psia) Meas Meas (psia) Meas Meas 1

202.3 44.6 47.9 1.0740 0.0740 43.0 0.9641 -0.0359 i M.l A 24.91 28.68 'l.1513 0.1513 25.97 1.0426 0.0426 212.lB 30.25 35.30 1.1669 0.1669 31.05 1.0264 0.0264 l i . 212.lC 37.54 44.95 1.1974 0.1974 38.88 1.0357 0.0357 i 213.lA 24.5 27.8 1.1347 0.1347 24.8 1.0122 0.0122 i l 213.lB 29.7 35.3 1.1886 0.1886 30.7 1.0337 0.0337 214.1 A 47.25 48.83 1.0334 0.0334 46.20 0.9778 0.0222 1 - j 214.lB 44.63 49 88 1.1176 0.1176 44.73 1.0022 0.0022 l 216.lA 31.45 34.88 1.1091 0.1091 30.79 0.9790 -0.0210 i i 216.1B 49.71 59.28 1.1925 0.1925 50.09 1.0076 0.0076 i ! 217.lA 43.8 46.3 1.0571 0.0571 f 217.1B 51.3 67.9 1.3236 0.3236 218.'A l 43.5 48.3 1.1103 0.1103 43.6 1.0023 0.0023 i ! 218.lB 50.4 59.8 1.1865 0.1865 53.1 1.0536 0.0536 219.lA 35.80 36.95 1.0321 0.0321 36.42 1.0173 0.0173 219,1B 42.66 45.46 1.0656 0.0656 44.70 1.0478 0.0478

                                '19.lC                  23.24                   30.46                 1.3107          0.3107     26.95       1.15%       0.15 %

! 221.1 A 20.4 25.0 1.2255 0.2255 22.5 l'.1029 0.1029 l l 221.1B 26.6 31.8 1.1955 0.1955 29.7 1.1165 0.1165 j . 221.lC 64.3 65.7 1.0218 0.0218 i 222.1 33.43 39.50 1.1816 0.1816 35.26 1.0547 0.0547 4 224.I 45.8 57.3 1.2511 0.2511 l j 224.2 56.4 69.8 1.2376 0.2376 60.1 0.0656 1.065u l i .I -

                                                                                               't

t 5 4 STAT 1STICAL ANALYSIS OF INPUT DATA 1 i I The analytical approach used to determine the code uncertNnty for each evaluation model: l P,,, = F,P ccone (1) l i The normalized error for test i is: . . 1 ! P-M

e=

(2) 4 M, e i where: 3 P = the pressure predicted for test i by EGOTHIC and M, = the pressure measured in test i l i l The sample sviance is: l (3) i s: = { (E-e')2

                                                                                                                      ..i        n

] where n is the number of tests in the sample population and the bias is ) . (4) j i = { .*'n i i The population variance is s c = s' (5) (n - 1) The prediction multiplier is I (6) F" = (1 + 6) where (7) 6 = i - 1.645o Statistics on EGOTHIC Distributed Paranwter Model Predictions of LST Mean (Bias) n s a 1.645o 6 F. 0.0362 20 0.0469 0.0482 0.0792 -0.0430 1.045 Statistics on EGOTHIC Lumped Parameter Model Predictions of LST Mean (Bias) n s a 1.645o 6 F. j 0.1610 22 0.0800 0.0819 0.1347 4.0264 0.974

 %.             - , - - . - , . .-              -             - - - - . , -                                                                  -.                                +           -     -

b f a l f f. l 8 1 f

7~ - - - - - - - - - - - - - - - ~ ~ - - - - - - ~ ~

i I 6- ~ ~ ~ - - ~ ~ ~ ~ - ~ ~ - ~ ~ - - - - - - - ~ ~ - - - - - - - - r 5- - - i t 4- _ - - _ . - - - . . - _ . . . . _ - - _ _ _ - . _ . - ~ ~ _ . - J i i 4 i 2- - - - - - - - - - - - - - - - - - - -- b

                                                  ~~----                                                                     ---                         --                     ~~~~~~~~

. 1-4. 0 i i i ' 1 , 0.06 -0.02 0.02 0.06 0.1 0.14 0.18 4 Normalized Pnsasure Difference I. ! Frequency Distribution for Distributed Parameter W, GOTHIC Predictions for LST i 1 4 p 0.4

                                                                                                                                                          ~ ~ ~ ~ ~ - - -

0.3 - ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ c Ses 0.2~------ - - - --~~ -- - -~~~ tomsy -- - -- - D 1 0.1- --- - - --- G o--~~-~~~-~~---t--~~

                                                          %@                                             -     _ o _ r,                             o VQ 0-      - - - - -                            - - D- -- *-                                                                                -- - - -

o 9 - -- am n o -- c - 'A - -

                                       ,            95% ProbatHhty Lirrut                                                                                                       A
                                         -0.1-    - - - ~ ~ ~ ~ ~ - - - - - - ~ ~ - - - - - - ~ ~ ~ -                                                              --M-----

72 2 0.2- -- - - -- -...... ......... .... .1.Mlt Mrft..... ... Net Emr.... ... 3-(0.079) ( 0.043)

n. 0.3 ).

0 10 20 30 40 50 00 70 Measured Pressure (psia) M., GOTHIC Distributed Parameter Model Predictions of LST Measured Pressures

l 1 i i I i 8 . l l - i f g . . _ . . . . . . . . _ . . . . . . . . . . . _ i . l 7- - - - - - - - - - - - - - - - - - - ~ ~ - - ~ ~ ~ ~ ~ ~ - - - - - .

i. 6~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~- ~~~- * ~ ~ ~ - -

5- - - - - - - - - - - - - - - - - - - - - t l 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 l,

                                     "      - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                              ~ ~ ~ ~ ~ ~ ~ ~ - - - - - ~ ~ ~

i j g. . . . . . . . . . .. . . . . . . . . . . . . . 3

                                                           -0.025 0.025 0.075 0.125 0.175 0.225 0.275 0.325 0.375 t

Ncanalized Pressure Difference

                                                                                                                                                                                                                     ~    l Frequency Distribution for WGOTHIC Lumped Parameter Predictions of LST i                                                                                                                                                                                                                          l d

1 l ! I

i i

i

  • l l.

l 1 e I l I g 0.5 1 1.645 P g o4 l , (0.135) i o . 0.3 - - - -- O o t . o 0.2-

                                                  - Mean Predeben- --- - o S ON o y m- -                                   - - --- - -

t:t l o,3 ------___..-_c-___.M___- . _ _ _ _ . . i l 95% ProbabMy Lmt , @, y l M 0.0 - ----------

!,                                E
0. , . . . . . . . ----{--~O---- k-Ses Not Error 1 (0.161) M 096) i c., 42
                                  ~
 .                                          0                    10                      20                           3'O             40                   50                       6'O                         70 i                    .

Measured Pressure (psa) l l l WGOTHIC Lumped Parameter Model Predictions of Measured LST Pressures 1

TIME STEP SIZE AND CONVERGENCE . A design review group (DRG), comprised of nationally recognized nuclear thermal-hydraulic code experts, was convened by EPRI to review GOTHIC Version 3.4D. The expert review team concluded:

                    " Based on the DRG test cases, reports by users, and the technical review, the DRG concludes that the                             '

solution technique of GOTHIC _S is stable and convergent." The effect of the time step on the predicted pressure was funher examined by Westinghouse by halving the time step for LST 212.1 Comparisons of the distributed evaluation model prediction to the reference case showed the largest  ; change during the transient portion was less than 2% Any errors due to time step size and convergence are already embodied in the pressure prediction uncertainties,- , so it is not necessary to include them again.  ; Convergence and' stability do not comprise significant errors. i 'l 4 I

\ l CODE UNCERTAINTY VALIDITY RANGE i internal condensation on the evaporating and subcooled surface areas:

                                                                                          *                                                                      (vg)" A ,
                                                                                               , g' e - m ' ap " T ,1                                                                                     gg)
  • sc ' ,p, T, P,, Q,,,

l and for external evaporation: p

                                                                                              * , , 0.023 T. In(P,/P,,) v,, A,                        ,

i

                                                                                              *_ sea T. ma o_.

Inside containment 0.51 < Sc < 0.52 for tests without helium and Sc <= 0.72 with helium. . De temperature ratio is limited in range to 1.09 < TJru< l.36 inside and 1.22 < TJr.,, < l.45 outside. n and C, correspond to the coefficient and exponent on the free convection correlation chosen. De overall pressure uncertainty must account for individual pressure variations due to: he deviation of the LST pressure measurement from the actual pressure, De LST nodalization, Test initial and boundary conditions, Phenomenological model uncertainties, Velocity, temperature and gas species concentration fields De _WGOTHIC predictions and measurements embody all of these contributions to the pressure uncertainty. ___.____.__.__._m._.._ _ _ _ _ _ _ . _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ ._. _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ . _ _ _ _ _ _ _ _ - __ __ _m._ __ __ .-_ . .____ _ _ _ _ _ _ _ _ _ _ _ _ _

m .. . _ _ _ . .__ _ _ . _ . . - - . . - . _ . . . - . . _ _ _ _ - _ _ _ _ _ . _ _ . . . ._.~.. --,_ _ .._. - _ . . .- ._ _ - _ ._ -.

                                                                                                                                                                                                                                                           ?
                                              'Is60e 51 Besse et hhesered I.sT ttrerester Pnessmeters for .W4:4DYNIC Solidivided headet lineeveh                                                                                                           f
c. dens am l de c.. .eunene lival .eami le R ner c . dens . Paran eeers m. sussu.. led I .gual I t

Test AP9 la G . W. Me in (#Q. AP@ la G (#U. , IP / ) IP # ) . IP# ) 212 t A H 206 0422 1 2 set? 14 6 3220n H 214 110) .307 .517 2 n7el2 3 27 0 505 I 94el2 11.3 32385 0 307 925 .357 .632 3.22el 2 2 27 ! 212 IB D 235 L I 212 IC 0 200 06M 296el2 8 61 31573 0464 745 406 .798 5nie12 1 da L 2il l A 0 2U9 0422 1.27e12 17 6 32450 0 213 131s . lass .516 2 tl2el2 1.17 r 21315 0 232 0 527 ISeel2 Il l 28289 U Hs 792 .Mo .665 3.Inel2 0 87  ! 0 610 3 5tel2 5.M 30065 .5 M 461 .420 .541 5 93el2 0 55 213 5C 0.272 0.767 2 02el2 3 46 2een6 0477 632 .392 .902 3 See12 1 110 216iA 0241 4.50:12 29416 0 965 329 .452 I.M4 3 02el2 0 79 21615 0.275 10% 3.71 0 748 385e12 5.70 33100 0 586 540 .437 .938 653e12 1 09 217IA 0 282 i 0 718 48912 6.34 32584 0 630 623 .431 .890 7.86el2 1.26 21715 0 291 0.789 3.79el2 6 55 32557 0622 612 .4 38 .991 6 46e12 I ne s 218 l A 0 281 0 738 4.73sl2 6 93 32148 0 651 866 .4 M .919 7.6tel2 1.16 118.15 0.294  ! 219.I A 0 072 0 118 7.lleil 77.5 31861 airy 0 - - -- --

                                                                                                                                                                                                                                                           \

0 072 0.129 8.02 ell 82.5 29681 alry 0 - - -- -- 219.15 0 059 3644 .066 .205 .279el2 4 (N) 219 BC 0 098 0.184 3.74 ell 49.1 35529 7.46 ell 33 6 32553 0 106 3421 216 .384 1.10el2 1 25  ; 22B li A 0 155 0264  ! 3 47 ell 42.3 32209 0 001 3002 045 .255 207el2 3 20 22115 0 079 0222 i I 196el2 79 0 28276 dry 0 -- -- -- .. 2211C 0 094 O ll4 r 407 .748 43fel2 1 76  : a 0 583 2 4tel2 10 8 329 % 0 179 929 2221 0 253 l 0 131 2589 245 224 5 95el2 9 58 j 0 193 3 69el2 27.4 34137 224i O 166  ! 012n 1499 .345 All 10 7el2 4 52 0 220 18 158 6 Diel2 15 2 32381 224 2 i

                                                                                                                                                         .
  • l i

Application of Pressure Uncertainty to'AP600 Calculations The range of applicability of the code pressure uncertainties is limited to the code version, noding option, momentum equation form, and heat transfer models selected, as well as the dominant parameters characterizing the test. To calculate peak pressures for AP600 requires that any differences between AP600 and the test basis  ! be identified, and for.each difference any bias and uncertainty be evaluated and combined with the code uncertainty. Dese are: internal Scale - AP600 is approximately 8 times larger than the LST.  ; External Scale - De LST riser hydraulic diameter is 1/3 that of AP600 while the vertical scale is I/8 that of AP600. Geometry - The LST had no flow communication between the simulated below-deck compartments and the steam generator compartment. j Dimensionless Groups - De AP600 internal Grashof number is approximately 8' times that of the LST. l De AP600 riser Reynolds number is 3.5 times the peak LST value. De LST internal heat sinks have little effect on the steady-state pressure, while in AP600 the internal . heat sinks are significant until a few thousand seconds into the LOCA transient. e l n i i i

                                                                                            - - - _ _ - - _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ = - - _ . _ - - _ _ - _ - _ _ _ - _ - _ - _ _ - _ _ _ _ . _

I

Scaling Analysis Plan to Complete REVISE PIRT , identify specific transport phenomena $ Support all choices / rankings with quantitative basis such as Pl values DERIVE CONTAINMENT RPC EQUATION Present derivation and assumptions s Terms representing fluxes, work, heat transfer, concentration changes i PRESENT Pl GROUPS IN CONVENTIONAL MANNER In terms of initial and boundary conditions To show characteristic lengths ($) To emphasize independent dimensionless groups (p) - To define relative resistance to heat / mass transfer ' Parametrically evaluate effect of concentration (stratification) i indicates items that can be completed for July ACRS meeting. Parentheses indicates examples, rather than final - work. All other items will be completed by Sept 30,1995.

 ~             _ . _ . _ . . _ . .                                       _ _ . . _ _      . _ . . _ .      _ _ _ _ _ . . . _ . . _ _ _ . _ _ . _ _ _ . . . _ _ _ _ _ . . _ _ _ _ . _ _ _ . _ _ _ _ . _ _ _ . .

Condensation PI Group for Energy Transport to Evaporating Fraction of Containment Surface The pi group based on mass transport for condensation is: x,g;;J = C' Gr""" '@ M* In * (1) Sc'-a tp, T, P, O. Because the pi group can be written: x - wr, and t - VA,,,,, e can be written:  ; e ,  : a eg= C' Gr -'" '4 M"in == (v9)' (2) Sc '-a t p, T. P., L l where the length scale is given by: , t 1 _ ^==, _ I==pA. ' L  %  % 2 i Note that: The Schmidt number inside containment is limited to 0.51 < Sc < 0.52 L I The absolute. temperature ratio is limited to 1.1 < Tn < 1.4 The value of n is limited to 0.27 < n < 0.40 for free convection. Only values of n less than 1/3 decrease mass transfer, so n-1/3 < 0.06. t i t h

 - . ..- - ._           . - - ..-. -- - .- ..-- - ...- - .-.                                        ..- - -               . - .   - . - .. - - .-~. - _                             -.. . . - - . .         .
              .                                                    -                  .     .               .       ---.i
                                                                                                              ~

Evaporation PI Group for Energy Transport to Evaporating Fraction of Containment Surface The pi group based on mass transport for evaporation is: fib, _ 0.023 T, in(P /P,,,) v A, I

                                                                                                                                ~

rfb,,,,,, Re* T. S c O. Because the pi group can be written: x = mt, and t - V/O

                                                                                                         ,,, e can be written:

0.023 T, in(P,/P,,) v, '

                                                                        "a*
  • Sc " T. R o2 L -

where the length scale is given by 2 1 _ A, _ f, A*"' 1 (6) L V, V, , t Note that - i The Schmidt number is limited to values 0.51 < Sc < 0.52 The absolute temperature ratio is limited to 1.2 < Tn < 1.4 ' The Reynolds number only appears to the power 0.2 l t [ r

l Transient water coverage mapping for 219.1 (RC057J L 0 30 00 00 120 150 180 210 240 270 300 330 _ g ,, ) . l [ l l [ i g wet t l h btly WGI l ew i i i t J oo -m . I

d--*a .-o. A_ , , ,+-+. se.4_a., g...mu. _ ,-_h ,ie_&,,, e & A- A _&Ae+A_J..aa h-- e _ J . 4_A AA_ 4 4M+,us-.e -4..he ,s&a _*h_.e4- Ma.,a

  • 4 . . -%a J . . -.- -

q - s-i \e

  • r ... l .

1 s a i i S - e , - l s 1 i

                                                                                                                                                                                       )

1 + w id 1 1 . 4 I 4 i 1 1 i e 4

)

I i e i

           .                                                                                                                                     1 4

l

i 219.1 (RC057) TEST DATA Outside well temperature (Ar.0.8.2LC) , c,U  ; i e l

                                                                       .i E

h 1 h 1 , l h e i

n,w -km,Ne 1,,m _n .e s xma, -,-4&e .spge 44,_,, s. w,,1._,A-,u,.a..s4,4 W4&_p,_o .g m-,-n n, 4 4 ,A 1 .s_ ,,. _n ., ,en,,m,.a, g . M .. e 4 l i d e i < 1

O W

4 W p - p l 5 . O O i O

 ;            E v                                                                                                                                         .

J a l'

   ;          s --

i

  • l  ! O i  ! e
i. N i i n

i j 1 I i t J e ts , e 4 e 9 1 l i

                                                                                                                                                                              )

J Ad -- " - - - --e-4*e 64W4- -u4-.A- A-4 4 A E----3 4--%s-- 2--e+ r - - _4-m++M-- Je<+h A 4AA -AJ& Amk -Ad a h-4 4 4 I A ' i g (* e

                                                                                                                            . .- g                          ,

l

i i h

i - t i e '* a i i t F-I O l- ' D l 1.LJ b t.O O O - CE v . F

        *                                                            ,                                                                                        i w                                                              ',                                                                                         l i

i i 1 1

Y #~" ' ' -a --- 4 1 A $_ ____ , , _ g 4 6e

                                                                                          "#  = heg g O                                                                                          -
      *                 \

4

     .           g  V                                              ,

g e O 9 k 0 W Q . (n . LLJ

  • m b

D O O tr v i CN 1 O A B

 >        e i
                 \

W 9 9

g hr JuBW %9 4eaMeph 4 $4 4 , i a: . 9 i i j s j i l i* f I-i . O i < e

W W

l 1 w l O d b D O I O

   ,       cr v          .

i w. e 9 _1 I _ 9

n ,M , 6a 2--M--b-4-I;- 0-46em * ,- a,,a - A. - --m-- L -A- -* ~ - - - -A+ - - i--~ u b - m 2 A- & T .-

                            %\s y                                                                            .
           !                                                                                                                           =

l \ .

                                                                                                                                                  -- - q t.

f 9 i H  : O p C/)  : LLI . . i F- l A

  • i LO O

O E P e

           ,N                                                    .

1 I i e I i

                           \

u e

213.1 (RC050) TEST DATA . Temperature r? ratification ~

                                                                                                                                                          -    (q
                                                                                                                                                                 'b)

I. . I

                                                                                                    +                                                                     0 t*

i I. ,

                                              .                                                                                                                          l l

i e , i i t l

                        ~
                                                                                                                                                       --          I'              -

l i e r m I _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . .-. - . -- __ _ - _m

_ . . - - i 213.1 (RC050) TEST DATA .  !

          -         .                                      Temperature stratification (Rad. O in.)                                       -

h by i t I L L i a l s l 6 b i 6

                                                                                                                                             .           p
     .   . .       .        --       ..         . . . . . - . . . . . . -    . . . . . . . = .                     . .

219.1 (RC057) TEST DATA _

   -         Axial temperature stratificatiori (Rad. O in.)                                                            ,   g N

1 . t

                                        .                                                                                       I i

I 4 0 M

y .. . . . - _ . . cT . 8 e e S C s l 6 I. 4

          '                                                  9 e

e

                    &                                                        8 g

a O e e I e O e a e p l . I 5 \ t I I I

  • A esemIS S

d a

e M* _ WG __ W WW + 6 - @

                                       ,a I
                                                      )

l I i l l l l i

      -                                                       l-t 1<<--

i Q 1 l l C ' l[ l d q i

%M N     N 4     1 O

Q l I < a , V t I CD e l = b ,! 4 I I

Some estimated LST time response values Test ' Stm.flo  % wetting P T P T .

        #      w                                      romp                                                                ramp                      resp. resp.

time time (Ib/sec) (psi /hr) (deg/hr) (hr) (br) nummmmmmemummmmmmmma - - nummmmmmme =========== - nummmmmm maammmm

                                                                                                                                                                   ~

DOS D HS 0.34 100 0.436 0.485 -0.298 1.45 1.0 0.61

                  'O.49      87.4                       0.664              0.664                                           4.17        1.51           1.0      0.61 213.1 0.72      52.3                       1.42               0.450                                         -0.602       1.43            1.0      0.61 002                                       D        Bulk                      .         .                                  t 0.12      0.0                       0.607                            1.56                               1.60       1.41            9.2      5.8                            -

219.1 . O.12 99.5 -0.315-

                                                                                      .110                              -0.376       -0.766   -

1.4 1.4 .. .' i

                                                      .                          EOS                                         O    -
                                ~

0.15 96- 99 0.450 0.343 4.2 221.1 0.15 0.0 1.72~ 0.297 4.2 noa- o aulk -

                                                                                                                                                                                        .i l

222.1 0.60 92-100 0.566 0.647 0.511 0.91 l

                                                                                                             .                                            .                                                  i t

i 1 ll . r , 4 : b-f# , 4 O e e, m-p A e e es s e T a m e A e W D T S e r E u s . T s e

             )        r p

0 l 5 e 0 s s C e V R ( O 1 3 1 2 4

                    ^

see 9 m g- eim M WMw& H* M mmh ** 213.1 (RC050) TEST DATA . Vessel pressure /

                                                                                                                                                 ' 6 e

e I i I i l 1 i I. , t L M

s_. -.w.- .- - . . .- .a m. --s--- .- __& m----s --a.=----ab -= -----us-a .s s* - --- - - - A --. - ~m... . A.-- -a-- 4 g M O* O' O O NO g

                               .%g                                                  .

t 4 F<- O - 9 . C/) 1.U. n 8 O O [

       ~

T". v-N 9 I

  =-s.u-        -- -                 J =-as4   - a w - m sa    a 4 a    _- --- L-,   as._     m- , , - - - ,am   mu,a   ma-sa O MeWg I               #                -

l

l 1

i ! l l l  ! i a I l i i

            ?
             !e<<

i

i. O l-
             . CO                                                                                                              l
             .w*                                                                                               -

l

             ' F-l
              'AO                                                                                                              l D                                                                                                         <

O  : O  ; CC . s' l T"'. b l 4 j

                                                                                                                      .        I

i Q. = 0.tm + On. + 4 + Q. Q, - Q,1m = 'mc,CdT/dtD]n, . l l + [me,CdT/dt)],

                                                                                                                         +' [kAldT/dx)],

S 9 W t 9 a 9

 ,,-...-.-_,.._.,,.--.-_,.,_r            ,   - - . - . , , , . ~ , . . . _ _ . , . - . - _ , . - _ _ _ . _ _ _ , ,          -,-.,-.,_.,,..__-_,.e

1 . i d 4 i I i 4 Q. = Q.tm + On. + Q. + Q. i ~l-4 . d j Q, - Q,1m = [me,i dT/dt?]n, . . i 4 l + [me,i;dT/dt)], .l

                                                                       + [kAidT/dx?],

l l 1 I . e M a 6 e l

     .,     az__._..            . . . - 4..a s.. u.w.-- .s-.__m-- m. a.#+__.        m4.-..--em     a-.444*.-.-s a ma-. ..%-44--.sa..,   ._*aa     i.--    .ma-    _m   -L'.=a_u------
)

f ._- _ i' i sw%s l 14 . ] , 2 <f T 4 t k l* i & a i W !- Lu - 1 3 l A . b l

O j O
O i Cr .

2, v !g. . I T"" 4 N 4 l. I 2 l

i. .

i 4 4 i il 4

          - --         ,          ,                                            c .-
              *d4         e-   -i+- - 6 4     -.5-  ++ ie.i i4i Ed4 % J 4-5 A Aa-I     --*    *Wa-     M   -- E-*-       -           -A ..s.- -h-a   4   4 - 4 l                     ...
                    . f)s \                       -                       -        - -
                                                                                           ...~ -.-...

4

              %y                                                                                         .

N i e l t

                                          =
                  ,                                                                                                                                             l i
    <W<

a l i VJ ~ i LU i

   '>~                                                                                                                                             .            l O                                       -

LO O O CE v w e a b ( 4 4 e i . l 1 l l 3 0 1 1

e.AvgA 44ma..a e ed-adeJ.ma. e.4-..h4d As444 M m m.>4__sJa.am 4,___. .a ..a.d-Aw*m aw .Mmm4a...AJ A4 6e.4 *h.wh .% a- E,_.A-,.g-. . '- . . w,aaa _ _ . - 2_ 2_ m__ shA-_a,r I e  ; 'I d c  % J e * , I r i t I d g t i 4 I. d W<< O ,

                                                                                                                                                                                                                ~

W W y - b

c. -

O O IX

~~-

T"' e N - l e 4 1 k

            ,h   --.   - m     - - X -   sm--__ -.3-- i- - I.e u-   - -      s. - --.4-_a s.-4 & 4 4 4m d  _._am._m   a u m 2   n-ha-..   .3d4, - _.,,

i

                                                                                                      -mee em ...
,              3     1 f
        \r'                            e                                               .                            -

e i

        ,                                                                                                           1 i

J 0 .f i 1 . e 8 4 o e ! I 4 1 1 i a - O j ' l k i b i I J 1 1

e M:' 1 i .

  • A .

l 4 F<- Q W . W ' LLJ & b b m . O > O , CE a < C w e N t 0 4 1

 . ~ . . -      . . . . _ _.       ...m     _ . . . __.a m. u._.xm.m..i.-_. . . ._ ._m ._.      __m.__ . = . _ _ . - .....-_..__uu-.-.4m~               .u..m.-._,            %.__-      u...,_.   ,____._um     .._u.   .__

i 1 4 l i l l l

                         .                                                                                                                                                                                                       l
             *t                                                                                                                             ,

e i V . I i I

                                                                                                                                                                         .i i

I i i <* i t i e R 1 0 I e t 4 4 r e y S 1 i h I 8 l 1 l l 1 1 l l i l i

           =                                                                                                                                                                                                                    i l

J f . 4 0 I I

i WESTINGHOUSE ELECTRIC CORPORATION i PRESENTATION TO UNITED STATES NUCLEAR REGULATORY COMMISSION 1 WGOTHIC ANALYSES OF LARGE-SCALE TESTS . Marcia D. Kennedy l

June 22,1995 1

M ET 5

                                                                                                ~
                                                                                                                             /
                                                         ~

Topics of Presentation t

 . Large-Scale Test Distributed and Lumped Parameter Evaluation Model                      -

Development (WCAP-14382, Section 5.0)  ; i

      - WGOTHIC Distributed Parameter LST Noding Studies (WCAP-14382, Section 5.2)                                                                           '

Local Noding Studies with Dry Baseline Tests Noding Convergence with Phase 2 LST .

      - WGOTHIC Lumped Parameter LST MNel (WCAP-14382, Section 5.3 & '

6.3) l

 . Application of LST Distributed and Lumped Parameter Evaluation Model's Noding to AP600 Evsluation Models (WCAP-14382, Section 6.4) 2

r  ; LST Noding Development Process L Baseline LST Lumped Parameter, WCAP-13246  ; t 4een**eene********eenenenenanne  ; 4  :

                                                                                                                                                                                                                    ~

Baseline Dry LST Distributed Parameter Noding Studies', WCAP-14382, Section 5.2 4 l 4 l I  ; 4 4 I i Phase 2 Detailed Distributed Parameter Model, WCAP-14382, Appendix A 4 I 4 i 4 ' 4  ; 4 I Phase 2 Distributed Parameter Evaluation Modef, WCAP-14382, Sections 5.2,6.2 & 8.1 4 4 l I i Phase 2 and 3 Lumped Parameter Evaluation Model', WCAP-14382, Sections 5.3, 6.3 & 8.2 t

  • To be discussed today  !

me

j Noding Case Study Parameters The effect on the following predicted parameters was assessed as the noding was changed: s

       . Vessel Pressure l
            - is depende~nt on the heat and mass transfer and is a primary measure of              ;

code success  : I

       . Velocity Field                                                                           I i
             - affects local calculated heat and mass transfer rates                               !
             - affects the mixing of steam and air within the vessel l

l . Axial Steam Gradient  ;

             - is an important parameter in calculating local internal mass transfer rates        l l                                                                                                   I t
                                                                                              /

I

Local Nocling Studies with Dry Baseline LST . . Baseline Large-Scale Test Description l , . Baseline Large-Scale Test WGOTHIC Model - Base Case i i . Local Noding Case Studies

    - Noding Along the Vessel Wall
    - Noding Near Steam inlet
    - Vertical Noding Throughout Vessel
- Lecai Noding Studies Conclusions                                                                                                                                                                      ;
                                                                                                                                                                             ~

i

. Application of Local Noding Studies                                                                                                                                                                    ,

t i [ 5 .

Baseline ~ LST Description Measured Data Summary for Basejine Test 103.1_ ase Case Steady State Conditions 'b Ambient Temperature (F) Ambient Pressure (in Hg) Ambient Relative Humidity (%) Vessel Intemal Pressure (psia) Steam inlet Temperature (F) . Condensate Flow Rate (Ibm /hr)

'                                                                                     l Annulus Velocity (ft/s)
                                          -                                            i Extemal Water Flow Rate                                                       !

L  ; I i i

N I D i i ' i i i l l

                                !                                  Plexiggag, l                                  Buftie l

j . l . I .- / i i

                                 !                                                             1
                                  !       HOT LIGHT y                       STEAM-RICH             y l

I lit a

                                !!i          _
         +        (.-
                                \l                                 i i
                                   !                                                           l I    COLD DENSE rating                  l    AIR-RICH Ogk D Level
                                 ,j                                      Pressure Vessel
                                    .,   s Steam Supply Line Baseline LST Facility

Dry Baseline LST WGOTHIC Model -

       . The vessel without representation of the full-scale plant internals is a relatively stringent test of the code's ability to predict axial stratification of air / steam
       . The empty containment vessel makes it easier to vary the noding with minimal effort
       . One quarter of the facility is modelled since the vessel is symmetrical about its center
       . The simpler model has a short run time so that more cases can be run to contribute to understanding noding effects
        . Applicable to tests with buoyant steam plume such as the AP600 Phase 2 tests

) Y

                 -_              - --_ _ __ _ _ ---- _ _       __                _ __ _ _ ---      -- ----   _ --- _ J
                                                                                                                                                                                                                               %  i q                                       .

I Height (ft)

                                                                                                                                                                                  -i 24                                           I I

2s d2 i i 24ss I i 1/4 Symmetry l i= Boundary I

                                                                                                                                                                                   ~l~ 21                                         .
1 I
                                      . . .                .                                                                                         .                                         20
                                                .                    .                 .                        .. ...,. .                                                                                 is u
                                                                                                                                                                                .i                                                ;
4 3.....;. .. .;. . .. .........;.. . . . - . .. .. .. . L i . rs l

v.:.. . ir so

                                                                   ....... . ,.. .. .. .. . ...,....                                                                                            $ 5 25 u..:                                        .

l

                                                                                                                                .                      .                                                                          i 4
                                            ..                                                                                                                                        :                                           t l

r, e, .... .  :

                                                                                                                                                                                                                            . j
                                           . ; .:. 4. . . . . . . . . . . . . . . . . . .'. . . . . . . 4. . . . . . . 4. . . . ;. . ; . . l , 13 38                                                                              ,

t

                                                                                                                                                                    .                                                             I r,

p: to $2 B3 le 44..:..>...;........>........>........>...........g..<..' Wall 3 '. :. ' : .

j
v. .

7 45

c. . . . . .

x . .. .. ..

                                        ?.       ::: .                   :                                      .
                                                                                                                                                          .            . . . Stor m in 47s A.ir           '

Annulus '.4.>.>...;........>........>........>........:....<.4..- j. t y .i.)...;..........................................  ;  ;  ;  ; f p .................

                                                                                                                                                               .        ...      4.  .I L 4 as                37s v                       .         .                  .                   .

7 . . . , g g..p M ......... . . . . . . . . . . . . . . . .................. 0 o

                                                                                                                                                                         .       .I Vg                                  <

1 26 4...... 4........ ; .......4. . . 4 . J . -

                                         . ;;4 al                         -

e . . . 4............ . . . . E R1

                                         &                                 M                  K
                                                        ...                                                                                                     ,,.                            Radius (tt)

Large-Scale Baseline Test .EGOTHIC Model 1

                                                                                                                                                                                                                                  )

M O b) r 1 i . i  ; i 1 l 1 l l

                                                                                                                                                     .         l l

f

         -                               Vessel Height (ft)                    -

Predicted Measured

                                               ....e....

inside Vessel Wall Temperature for Base Case

U i D )

                  ~

Wall Center

                                                                                                                  -        t                  i n

g - ~ , - _s T ,t  ;

i .. - - __

' PF g f gA i i

               '                                                                                                        ;      I 4                                ,.         .                     ,

I v, , , /

                                                                                                                        '     4l
                                                                                                  /             /

1 t s - nr 4  ; i

                              'et t l                                                                                                                              g ii
                                                                                  /                f            /

g 4

                                                      ;            s a

1.69 _ p / f N fy 4 ftis 4 a .

                                                                                                 ,                        t j        -            -              -                                ,

vv n 14 ft/s l s " - - - / Operstng Dock l 4 l

                                                       -             -              -                                            i
                                  l ~' '             '         -              -                   .             .        . .

(;' ' ' . . . . . . .. r-- - . . _ _ _ t - - - - - - - a 3 ,~ f Om Vmax =34 011500 (ft/s) ras .asa0.si Channels = 16 27/ Velocity Field for Baseline Base Case . l

                                                                   ~

Baseline LST WGOTHIC Model Results

 . The predicted vessel pressure is 25.4 psia, less than 5% overpredicted
 . There is agreement between the measured and predicted trend in axial wall            ,

temperature

 . Noding sensitivities will be compared to the results from this base case model t

I i i t i l

                                                   .                                    t
                                                 -                              /.b i

Local Noding Case Sensitivities - Along Vessel Wall Five sensitivities were made to the node size along the vertical vessel wall (cases a.1 through a.5) . e

                                                                                /d

e e e g ,

                                                                                                                                                    . e.   .        e. 9        .
                                                                                                                                                    . .    .        t 9                          g                                  9 t

8 I

  • I 8 8 ,

8 8 9 , e a 8 8 9 8 8 3 8 8 g 4 , e , 8 8 9 8 0 8 e g a g 8 8 0 0 8 0 e 8 I g e g 8 8 8 8 8 0 8 g e g e , 8 8 8 8 8 8 8 8 g 6 g 8 8 8 8 0 3 8 8 I g 8 , 8 8 8 8 8 e 8 e 8 4 e g 8 8 8 8 8 e 0 4 8 3 9 g g 8 8 9 8 I O 8 8 e 8 e 8 8 0 8 8 3 0 e e 8 9 g e , 0 8 8 8 0

                                                        ,                                                                                                                                                              8                          g                                  8                   g     e      ,

8 8 8 8 8 0 9 I 0 8 e a e I O 3 0 - 9 g

  • 8 g 9 g g 8 8 8 9 g 3 9 4 g 8 g g 8 3 g 9 0 g 8 g I e e g 8 9 8 8 e 3 8 g a g 9 g i 8 g 9 9 3 a

0 g 8 g g 0 t 9 4 3 3 8 g i g 9 0 g I e I # g I I g g I e e 9 0 g 0 8 e e 8 e 4 g 9 e I t 3 9 i a g g 8 g e

                                                                                                                                                     $ 9     g       9     0 e                    e     8      e 9                                            8                            a I 0    g       8               3 t                    g     e      g 0        g                                  8                            e 0 0    g       9 8                   g      6 8                            g                                                                  3 9 6    g       8     9         e t                   g      4      ,   .

9 e 0 9 g 9 6 3 9 g 8 , i g I 9 g 9 0 e 8 g e , t , 9 e t e g 0 e , e , 0 e t 9 g 9 9 0 e 4 g 4 e e 4 8 g 0 8 g 6 8 9 g 8 g 6 e 9 6 g 8

  • 8 g g g 6 3 0 0 g 8 O 8 e 8 ,

0 g 8 9 3 8 0 0 8 8 4 g 3 3 t I g I O g a . n . a .

                                                                                                                                                              .       a      n        .

5.92 5.66 5.16 4.16 3.16 2.16 1.16 0.660.330 Radius (ft) 6.1 6.18 , 6.22 . Local Noding Case Sensitivities Along the Vessel Wall - Base Case . _ _ _ _ - _ _ _ - - - - _ _ _ _ _ , _ _ - _ . _ _ ____ __ - - ~ m - - + . . - ~ , e - e.,. e,_.,.. ---,-e _e a e, s _.

                                                                                                                                                                                                                                           .                                              .                                           ..        .    . t
                                                                                                                         .                                                                                                                  l                                             .                                                  .        .

e . . . . ,

                                                                                                                                                                                                                                                                                                                                             ;        ;      1 4.16         3.16                                                                                                          2.16                                                           1.16                       0.660.330 5.92 5.66 5.16 Radius (ft) 6.1                                                                                                                                                                                                                                                     -

6.22 . Local Noding Case Sensitivities Along the Vessel Wall - Case a.1

                                                                                                                                                                                                                                                                                                                                                    /3_

e

e g

                                                          .                       *                   .              e            ,                    g      .

4.16 3.16 2.16 1.16 0.660.330 5.92 5.66 5.16 Radius (ft)

                                                                                                                                                    =

6.22 Local Noding Case Sensitivities Along the Vessel Wall - Case a.2 K

                                                 *
  • 9
  • s
  • e . e G E g 8 g 8 g I g 8 9 9 3 4 g 0 g 3

9 9 9 g 8 e I g 3 4 8 0 g 9 g e , 3 9 I 8 g 4 g 0 3 e 8 g 4 g 9 g 8 g S 9 0 e 4 g 9 e # e 6 6 g 8 g I e a g 0 g 8 g 8 g I g 9 8 g 0 g 8 g 6 g 4 0 t g 0 g e e e g 9 0 8 3 8 g 8 g 3 9 8 e 8 e 0 e 9 e 9 0 8 e 8 e 8 e e 8 g 8 e 0 e 0 $ g 8 8 8 0 'l 3 e a 4 8 g # 8 0 0 g e e 8 8 e 8 9 9 g e 4 8 . O e 8 e 0 0 e s 8 8 e 8 e t i 3 0 9 9 e 8 e 8 9 g 9 0 8 6 8 8 9 9 0 0 8 8 I e 8 e 0 I e 8 8 9 8 0 I e g e 8 ' e # 4 0 0 g e 0 8 0 8 0 9 0 3 0 8 8 # 6 0 0 e e . 4.16 3.16 - 2.16 1.16 0.660.330 5.66 .5.16 Radius (ft)

                                                                                                                                                                                                                          =

6.22 Local Noding Case Sensitivities Along the Vessel Wall - Case a.3

                                                                                                                                                                                                                                                            //

_ _ .__ _____ _ _ _ _ _______.__ _____ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ ~__________________w- __ _ _ _ _ _ _ _ _ _ - __ _ _ _ _ m__._ __ __._ ___ - _- e

                           .       .            l                                   .                      .
                   .        .       .            l                                    .              .
                                                                                                      ;       '     l
                    .                .            ;                    .              l                             .

l

                    .         .       .           l                     .              l              .       ;     .
                     '        '        '                                '              .              l        :    :

4.16 3.16 2.16 1.16 0.660.330 5.66 5.16 Radius (11) 6.1

  • 6.22 Local Noding Case Sensitivities Along the Vessel Wall - Case a.4
                                                                                                                             /2 i

G

   . -  .    -                       -   .-            . , - . - -          -~. ,          .- --                                m___.. .
                                                                                                          -m           .

5

                                                       .                                          .            .           .            ,                     .        g 3            .       I            .                        ,                    .         g
                                                                                                  .            .           .                                  .        g I            .       .
                                                                                          .                    .           .            g                              ,
                                                       .                     0
                                                                                                  .            .           .            g                      .        g
                                                       .                     8            .                                .                                   .        .
                                                       .                     8
                                                                                                  .            .           .             g                      .       g
                                                        .                    I            .                                 .                                   .
                                                                                           .      .            .                         g                              g
                                                        .                    0
                                                                                                  .             .           .            g                      .       g
                                                        .                    I             e
                                                                                                   .            .           .            g                       .       g
                                                        .                    8             .                                .            .                       .       .
                                                                                                                            .            .                       .       g
         *                                              .                     8
                                                                                 .            .       .            .                                                 a n            -

a - a - . 4.16 3.16 2.16 1.16 0.660.330 5.92 5.16 Radius (ft)

                                                                                                                                   =

6.22 Local Noding Case Sensitivities Along the Vessel Wall - Case a.5

                                                                                                                                                                               )

_ _. ._- : s. . . s N gT z u

                                               -                  -               \         l*     .
                                                                                                                              .       i 4        l4 y                      -

fs p a a 8 '

                     ;,w              -

f'o

                                                                       #                                     I                #

5 l

                .r9 f
                                           -         t                -

tg t.* i s

                   ,4      -                                                                                                                                            .se i
     >                                                                                                                                                                  u.
   .I'                                     _          -               s               t         t              ,                ,              1                        ,T
                                ~**                                                                  4               a                         ,
                      \   %

_ _ _ - ts - ,

                                                                                                                               -        s pl         '

T)

                                                                                                                                                                        >               l
                   ,\-_                                                                                                                              -                                  ;
         ,s                     -          -           -                 -              -         s-                    -          -
                                                                                                                                                 ]                       tt) .          J
         ='                                                                                                                                                               ai
  • Q u) ,

G3 i O t ts C G3 a) { g +- +- - +- -  : s . .

                                                                                                                             ,.                                            m u                                                                        N             t,                                                                        cc j--

O (

                              ~           r             -                 a           t          1.                   ,
                                                                                                                                  '                                       .q)
                    ,/ -

I U)

                                        -                                              i         t.                    ,                   8                               CD r d ,. -                                            ,                                       ,

CD e- ' \ I] ',. '

                    ,4
         .          ,}     \
                                  ,          -          t e          'if          t s
                                                                                                                          .        i        s
                                                         /                             i         i-              .     ,                     ,  k s -                                           ,                                                         ,

E~* u,

                    ,s-

_. /

                                                                                         -        n.

j , s__ _ __ A & $ m * ** f g , 5 l ' -R

                                                                                                                                                                                                 ~

Summary of Node Size Along Wall Sensitivities Case Vessel Maximum Steam P.R. Steam P.R. Pressure Wall Velocity in Dome Below Deck (psie' (ft/s) base 25.4 1.69 0.33 0.11 a.1 26.54 1.16 0.35 0.07 a.2 26.2 0.9 0.34 0.10 a.3 25.23 0.68 0.33 0.04 a.4 25.74 1.59 0.34 0.08 a.5 26.35 0.92 0.34 0.03 e l 3/ l _ - _ _ _ _ _ _ - _ _ . - _ . - _ _ _ _ _ = _ _ _ - - _ _ - - _ . - - _ _ . -- - - - . - --

Summary of Node Size Along Wall Sensitivities.

 . The overall flow field was essentially unchanged
 . A significant increase in node width (a factor of 13) caused a relatively small                  .

decrease in velocity (60%)

 . The magnitude of the predicted velocities along the vessel wall for all cases are so small that the heat and mass transfer to the vessel wall are dominated by free convection i

I I l l

                                                                                   .2.2            ;

i

ji . l:L . llI : I!llfi h  ! ?

                          ~

i . _ 2 _

                                )

2 b e s a t ( c l e e z i n i s

                     )            n      )

3 m 1 i d a b e b t e e s s a e s S a c e r a c r ( c ( d n e

    ~a                e i

z  : e v o s a i s N m w i n s e t e d i e r s l i n e s i t a a v w m e r i a c i t . t f e n s 6 t s i n 2 e s e 4 h a w S . t a t o e e s y r t t d o a n n a d n e c t C u a l e o j d n g g b a i n n g m . i ~n n e a o i d d i d e o i d o o N t a v N o n t s N l a e l h e h e l c l e a - a i t r - i d a t t c e o V R L ~. .

1

                                                                                                                   *       *                                                                              "s s 's l
                                                                                                 --                1       .s
                                                                                                                   %        a          ,             .
                                                              *G.'

agen- _C K hh 8.'"""

                                                                                                                     "      s                         .        j                  8

[# - l?

  • i l ,
                                 *
  • e
                         ..                                                                                      '                                              :s                 !             *
            'r '                                                                                         !       lt           .                        .       j!                  l a                                                                                                             -
                                  -             .                                     ,                                                  ,                      i l

O I i i s .

                                                                                                          ,a ,,>,
                                       .                                                                                                                                                              32 It              x
                                                                                                                                                                                                      .e_
                                       %                                                                                                                                  2=                           x
                                                                                                                                                                                                      .e k                                                                                                                                                    gra~ i r
                                                                                        -              s             s s __                              s y

g g

                                                                                                                         /\ s                             t, y
                                                                                                            --*          3 3 -1 '_,/f                                                                  >

3

          ]k* s'a      -         3 3 ts (D

m c0

                                                                                                       -           ..                                                                                  O 81 z              I l. l                                                                              y
% * .
  • a.

g

                                             *--                *-                                                                                                                                      c0 l

u G-.-*-- _ .- - N t. . m p .-

                                                                                        ,                  i           t.       ,
                                                                                                                                                            '                                           M
                    /_~                                                                                                                                              5                                  m i          I-       ,

8 O o r m

                                                                                                                        ! i*                   '
                                                   '                   \                 s                      j                                             i       ,

j -

                                                        ,                 e               .                  tf         i..,i                                           .

i 1. . . ,

                                                                                                                                                                         ,k
                                                                           /               ,

s , _ R

                                                                                                                                                                             = ,~.
                    ,     \                                                                                                                                      *
                                                                                                                !          \         '            .                                          i
                                 %        .-e.

f - /\ ~ ,

                                                                                                                                    's s                              3                  T                ""2".              T                                                   . ./

Ih33 l  :. s I

Summary of Node Size Vertical Variation.Near Steam . Injection Case Vessel Maximum Steam P.R. Steam P.R. Pressure Wall Velocity in Dome Below Deck (psia) (ft/s) base 25.4 1.69 0.33 0.11 b.1 24.97 1.84 0.29 0.22 In case b.1 the code entrains from a larger layer causing more mixing below the steam injection location

                                                                                                         . Detailed axial noding just below the steam injection location is important for                                                                                                 I predicting the noncondensable axial stratification                                                                                                                               .

2h

                                                                                                           *       ^ ~'      "                 .-              _ . . . _ . . _ .

e , , , g e g

              **
  • e 9 9 0 g e g 3 t t t 0 0 g g t 8 g g y t g 9 9 g I 8 g 4 g g 0 g 0 0 g 9 0 0 g 9 g g 9 3 9 0 0 0 0 I g 5 g 8 g 8 0 g 9 0 0 0 g 0 g 9 3 9 9 8 0 3 0 8 0 g g 8 g 9 3 0 8 3 I g 0 0 g 9 g 9 0 0 9 3 8 g 3 0 g 0 g 8 9 g 9 9 3 9 g g I g 8

8 9 0 0 e 0 0 g 3 8 g g 9 9 9 9 e 4 g e 8 g 8 g 9 g 6 9 3 0 8 g 9 e t 3 9 8 g 8 0 e 8 I , 0 g g t g 0 0 g 0 8 0 g 9 g g 3 0 0 g 8 9 4 g 8 g g 8 e 9 9 0 8

  • g i g 3 0 g 8 9 g 8 9 3 i g g 9 g g

4 4 9 0 0 't g 3 e g g 0 e 8 4 g 9 0 8 g 0 g 9 g 0 g i e 3 0 8 g I g 9 g 0 t g 8 8 e 0 g 4 g 0 g 0 g 8 0 g 8 9 a 4 g 8 3 9 0 g 8 9 e 9 9 g 8 g e 9 6 g 9 4 g 9 4 3 0 g g 3 8 0 g 6 0 4 I g 8 g 8 0 0 9 e 0 g I g 3 0 g 0 t g 8 8 8 3 9 g i e g 8 g 0 g 8 0 g i 9 I e g 3 8 9 g 9 9 0 g 0 g 9 3 9 9 g I e s 9 8 g 8 3 e 9 g 0 9 9 g 8 0 3 4 e e 8 9 g 8 0 0 9 t g 0 g e 0 0 g 9 9 3 0 e t 3 4 g 9 9 ,g -0 9 e 0 8 0 0 t 0 0 ,

                                                                                       ,    9      t                                     0      t     B  ,

4 0 8 0 , , O O 0 0 0 0 0 0 . 0 . . t e , 4 i . 4.16 3.16 2.16 1.16 0.660.330 5.92 5.66 5.16 ' Radius (ft) 6.I 6.18 6.22 Local Noding Case Sensitivities Base Case

                                                                                                                                                           .x.
                                                                                                                                                                                                                                                                                                                                                                                     .                                       g a
                                                                                                                                                                                                                                                                              .                           a                                                                             a                                     .
                                                                                                                              . a         a 4.16                                                      3.16                               .2.16                         1.16                                                               0.33 0 5.92 5.66 5.16 '                                                                                                                                                                                                                                                                                              '
                                                                                                                                                                                                                                                                          .                                 Radius (ft) 6.I 6.18 6.22 Local Noding Case Sensitivities Near Steam inlet - Radial Noding - Case b.2                                                                                                                                                                                                                                                                                                                                                          .

27 e

      - - _ . _ _ . _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _ . _ _ . - _ . _ _ _ _ _ _ _ _                                                  _ _ _ . _ __ _ __ _                                             __                                                                                                                                                                                    +-

__ _ ___ _ _ _m.. .-_m _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ - - _ _ _ . _ . _ _ _ _ _ _ _ . __. . . _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ . _ _ . _ ___ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ e g

                                       **                                                  *    *                             .
  • g I
                                                                                           .    .                                                 .                           g
                                                                                                                                                                                                                         ,                                                                 g
                                       .8                                  .                                                  ,
                                                                                                                                                  .                                                                      g
                                        . t                                g               .    .                             g                                               g                                                                                                             ,
                                                                                           .    .                                                 .                           g                                          .                                                                  g 9 9                                 .                    ,

e

                                                                                                                                                  .                           ,                                          a                                                                  g
                                        . O                                g               e            ,
                                                                                                                                                                                                                         ,                                                                                                      j g

8 8 , 9 . . 9 g ' 0 . . . . . 9 , 9 g i 9 . 3 . , , 8 g

                                                                                                                                                                                                                         .                                                                                                      t o

e . g . . g , s

                                        . .                                .                     ,                                                .                           g
                                                                                                                                                                                                                         ,                                                                  g t ,                                ,              ,                                  ,
                                                                                            ,    .                                                ,                            g                                                                                                             ,                                  ,
                                         . .                                                ,    .                            .e                  .                            .                                          ,                                                                 ,                                   ,

n , a . _ a a . 4.16 3.16 2.16 1.16 0 5.92 5.66 5.16 Radius (ft) 6.1  :  : 6.18 . 6.22 Local Noding Sensitivities Near Steam inlet - Radial Direction - Case b.3 , b

                                                                                                                                                                                                                                                                                      .M                                    .

e

                                                                                                                            -a.          a      a           m CS I

3 Il i i m, p-- .-- --. .- - j\ ' , I l s 's * ' is *

            ,           ,       /           -
                                                       '                                               ,                   fco                         i 8

m

                                                                                                                                                                          \

tt l - t ' 6

                                                                                      'ge       t, 4
                                                                                                                             ;                          ,        o        l
                                   /

i ,4  ; c) I u)

                                                            /                                   It               1 m

o

               ,)            \        -

I }{ i 6 , 1 N ' g .9  ;

                                                                                                                                             -ca.

4 4

               ,k U
u. l f\ -

s- --- - -

                                                                                                                             /
                                                                                                                                        ,ap             ,

t g # N% . .

                                                 -e.        --e.          -o.

g  % .-e. 1 ! 4

2. -2. 7 7 " ~~$ $4 -

m .- h

                                                             *s                                                                                               .

cn

                                                                                                                                                                 .C-O Z

5 -.

                                                                                                                                                                  .9 g            . - - - -             -            --          _.           ;               ..       .
                                                                                                                     .        ,_                                  u u;, ,                   -             -        -            -                v           < .      .
                                                                                                                    .                                               m     '

i [ , i t. , I [ _  % s . ' '

                 ,/                                                                                                                                               t E                        C
                                               -         -                              t        t.                  .

8 m I Q) U)

                                                -          A                            t*       t        -

i o l g;. 4 j i , { Q) V) W

                  ,   ;s              -

s f , ih 1, . . , . m

                                                              /                          i        t.         .         .                                                  l s ,                                          ,
                                                                                                                                             ,R_~
                                                                                                                                             'j
  • r
                                                   -.         -              -             /      h           ,

s -

                   ,y                                          -                           -       , , .

g A - e. D 3 A Y er -e. m _ #

                                                                                                                                ' , ,f
         ,-                                                  5
                                                             -5
  , :!      j
                    ;;             h             t. !      l     ll        l i!              l l   !; i- :

o s - m _ - o r e d f h nn aowo t - r a - m 2. tcf l e a balpa n t e .k _ s emn g n S Rc e si o i i d kD t al o l i r ' cad n a rd - N. e t mw ao el e 1 1 8 0 9 0 i i nea don ue ar v i l i d a a - n SB 0 0 0 l fht r

t. n o .

et r e h

                                                                                  ~e i

t R. o bo u t t a

                ~

i Pe . m,n f o ' - r gess n a m om n ae o - V aD e 3 3 4 3 2 3 i i ncod i t c Si n n t l 0 0 0 ae i a t r sit na e f u - d eb c k - a y sen a t i e R i c i hs wd - ml o et , - e ue mnl u hm aa l ae z mV i l sd i i xl l ) 9 5 3 pt s iu . S a a /s 6 6 8 t e dt s l M W (t ndi s e e f 1 1 1 ao is yge f d yn g o n o t utnx i in _ N e bei cora l r u t ea cm l e e . f o e l jek vh s s s )a A 0 3 3 2 i ndl bc l t y' s ereis 5 5 5 aie m tsnsd an V P (P mi a n r 2 2 2 h o ai e e e ei t mi t smdh nt t nw o i mc t e s e er ow ee uj e hm s 2 3 h f c o

-                         a             a C                               T 3. oe         nl         Tu Si n                        b    b   b                                         l
                                                           .bnb                       .p
                                                                                                                                                                              ~

Local Noding Case Sensitivities - Vertical Noding Throughout Vessel The boun&iles were removed at elevations 0.042 ft. 2.5 ft. 10.52 ft. . 17.5 ft. 19.86 ft. leaving a total of 9 elevations in the vessel for case c.1 9 3/

   -- - _ _____ --____ -           -=-__--___m -
                                                   - - _ ______ma ---a- m  ___ - __ m -_m - - - -mer---- ---- --     -- - -   --r -*--_ - ----   _s-_ ___.__    _ _ _ _ _ _ _
                                                                       ~

N

                                                                                                                                                                                                                                             ~'

Q i t 29 Het ht (ft) I 25 62 l i 24 5 l 1/4 Symmetry 1- Boundary

                                                                                                                                                                                                 .I
  • 21
s. 3 ,0 4 g g ., . . . .
                                                                                                                                                                              . . j. , .,. 19 76

, 44.s. .

                                                                                                        ..f.       .... .i... ... ,. .. ...;.... . . ' .            .

1 17 50 J.4 .. ... .... .. ... 4........ ..... . .; . 4.. 4. . . ' g

                                                                                                                                                                             . < . . < . . .,,, 16 25                                          .        ,
                                                                                < < .; . ) . . . s .                 .   ..).      . .......                                                                                                            1 I
                                                                                      *;.).......
                                                                                                                           ..........).................4..*..                                                 13 38
r. ,. .
                                                                                                                    ......)........>........>........ ...<..<.."                                              1052 Saffle                             4 4.;.                 .. 6.
: :l Wall . . . . . .
                                                                                                                                                                                                              ? 86
r. . .  :

0 .

                                                                                                              .                .             .             .            .         . .                   J R.
: .  :  : . . : . Steam in Air . . . . .

4;c,.>... a ........>........>........>..... ..:... 4. 4..- 478 - Annulus i L{ { * .3 . . . i . . . . . . . . ; . . . . . . . .'3 . . . .3 . . . . . . .p . . . . . . . . . f..

                                                                                        ..                                                    .            .                                                              37,
                                                                                                                                                                                                                             . *. . y a as i

p .. . p . . . . . i

                                                                                                                                                                                    . .      . ,                      Q                                  l
                                                                            >                 . . ..p....         . . . . . . . .. . . . . . . . . .p.........
                                                                                                                                                            ........      ....g..g..p                    . 2                               ,

t

                                                                                  $.t...                       .                               .            .             .                    .

Vessel  :.: . :. :.  : . 1 25 Wall

                                                                            .      44..L..L...;........e........'.................;..4..4...l  .

nr. . . .... . . . ......... ... 0

                                                                                                                .               m              .

SM On in ..

                                                                                           . io                                                                             ,,,                              Radius (ft)                   ~
                                                                                     .n Large-Scale Baseline Test .EGOTHIC Model

6- - 4 - _ . _ . - a -r1. l Zs .- l .e___ _ = s.  : i p{l _e

                                                                                                 =
                                     .e N

6s n l s i it, 6

                                                                                                          .                  g                 I 1

_ I! l

p. -

s i t t ,

  • 4i j; ,_

l t i t t , I \ I $ , f 1 N

                                             /                  ,

tf i,i 4 a O

   -               t
                                                                                    $          I                  e                 k                            m
                                                                                                                                          )
     ~
                                             -                    ,                                  b                     b                                     CO
                                                                                                                                          ~.                     o
                                                                                      ,        t-                                     _
                                                                                                                                                    ,           u C

g

                                                                                          *-    h                                                                           ,

f 2 e " 2 it:qn e > m , 3 Ss g , O O m CU

                                                                                                                                                                   .O O
                                                                               =                % *                 . ,                                             D 3
                                        =e -         .e -            e.--

p *-- =e- - N t. , j- _ ._

                                                                          ,           t            t.      ,

u.

                                 -           ~

j . S b 5 i t,, . , 8

                                                                                                                                                                        .9.

I Q ij i - '

                                            '            \                #

4 , 4;- i t, - . . .

                   ,;       s      -

i ). .

                                                                                                                                       ,E e                ,

s R_~ r g\ saw

                                                            -=-              -

f ' , gs - # /\ s a g N N ',,g ** 3 3 abA43 S l

                                                          -S

Summary of Vertical Noding Variation Throughout Vessel Case Vessel Maximum Steam P.R. Steam P[ Pressure Wall Velocity in Dome Below Deck (psia) (ft/s) _ _ - .

 . base                25.4                  1.69                                                    0.33                                   0.11       ____

c.1 25.3 1.65 0.32 0.13 _ I

     . The velocity field of case c.1 approximates the base case flow field
     . The predicted results are minimally affected I

s e e

 -    Local Noding Studies Conclusions                          -
        . Noding sensitivities were performed to study the effect of noding in the following areas:
             - Noding along the vessel wall
             - Noding near the steam. inlet
             - Vertical noding throughout vessel
        . The model was most sensitive to a change in the node height directly below the steam injection point i
         . The other noding modifications had a small impact on the predicted results i

4 S T) O

Application of Local Noding Studies to LST Phase 2 Model

    . The baseline LST noding sensitivity studies are applicable to. tests with a buoyant plunie such as the AP600 LST Phase 2 tests
    . The conclusions from the noding sensitivity studies on the baseline test were applied to develop the detailed distributed parameter Phase 2 test model
    . The more complex intemal geometry, a wider range of steam flow rates,' and              '

the external water applied to the vessel surface of the Phase 2 tests were taken into consideration when developing the detailed distributed parameter phase 2 test model

    . Since the Phase 2 LST is symmetrical about the 0-degree:180-degree line, the model is a 1/2 symmetry representation of the facility
    . The detailed distributed parameter model and comparison to test results were discussed with the U.S. NRC at a meeting in Monroeville on April 11,1995. It is also discussed in Appendix A of WCAP-14382.

I t

Application of Local Noding Studies to LST . h Phase 2 Model Noding Along the Vessel Wall

                          - not of extreme importance in the ranges of node sizes studied
                          - a node width of 3.5" along the vessel wall, and a
node width of 9.5" adjacent to this was used (similar to Case a.5)
                     . Vertical Noding Near Steam inlet
                          - important for predicting mixing l               .
                          - three small elevations were used below the steam injection location
                     . Radial Noding Near Steam Inlet
                          - insignificant effect due to increasing the width of

! the node into which the steam entered ! - since the Phase 2 tests have a different steam inlet

geometry due to the steam diffuser and the steam

! generator compartment, the node width for this' test was modelled to be approximately'the same width as l the steam diffuser

                      . Vertical Noding Throughout Vessel                                    !
                           - minimally affected the flow field and the mixing of noncondensible gas
                            - since the steam enters the containment at a higher elevation and it was necessary to model the heating l

I and evaporation of the applied exterior water, noding in the vertical direction was not spared j

i n P

  • i b

f t l i I I l l Figure 519 Nading Diagram of thesausd %W Parameter W e 'MW6*W2h.D .,f ' *'*H 5 34 R evisto v 0

                                                                                                     .N "O

I h l l 1 l l l _ Figure 5 20 Plan View Detaded Distributed Parameter Model Above Opersdng Deck Level 5 35 REu$ ION 'l

      . ow o:$.eu:6. 5 ..t ie usues

I e l 4 4 e i i 1 f _ Figure 5 21 Plan View of Detailed Distributed Parameter Model at Operating Deck Level 5 36 REs f 5t0% i

      . =mo o:6.co:6.se..<io wias
 .   !   '     :      ;t       ! ! '          ;:                  lr       ; ii       :,

I I  :. :  ; Y

                                                     ~

- ) . A . 1.. . 2 - 1 2 t s e T T l S e g n d L o i d 2 M o r gN e t e i nt e dn s oe a m a Nmr - h r t P a t na P ep h t i d e t mm r o t u aC s - w b p s n i e mde e i t r od o d u c s Cn i s t S n i D rE u e l

                                                          -            c          g gt odg                          n g  d                                                             n                         -

e nraa ein o i -_ r l d _ e i a i deDd C o . v t e on o s N - n D s NedN e f o o ( e Gn r i d cm a a l e i a u n C s a d u i tr a nu eg l S t i t o _ g C t S etepn g a c n e e VSOA i n i l i s s - - - - d p d a a o p o B C N A N . . . .

i  ;
 .!i         ;!  l      l l!!:i            t;!:>:                  i! ; I     !ff   ,
                                                                                      ..l-!I

_ L. 4 - g n _ i d o - N - l a d i t r e V

         .                                                 1 d

e . s s i e a c t . i r - i v f o t i s e l n . s o s n i s e t a e S v e v. . e e l e ht s t a n a d i C e v s n e o i t o . c m a v nle e r e es gs e r l e e e e r 1 1 w vV nt s f o ou i e l a r Coh d a t t o gg n u t tt

                                                       . .      a nu            o tt
                                         .  . fff g

n dr o i b ff940 i oh e 13.089 12111 v a h e NT T . . . * . l

                                 '                                                                      m, 4

9 , l i i  ! J l l 1 i i i 1 i 4 5 1 1 a 4 4 4 4 Figure 519 Noding Diagram of Detailed Distributed Parameter LST R gvisso w 0 v' m 002 W twies 5 34

      - - . ~       ..         ..            . - . . . ..... - -                         - . , .

I d 4

i .

a r i j a 1

l 1

d 1 .1 i r i 4 1 4 i i i l l 1

 !                                                                                                                                i a                                                                                                                                  !

i i j i

       =                                          .

i Figure 5 22 Plame A.A Through Steam Generator Break Location RE Wfo% ')

                . m uocc:e.co:6..se.,t inaia5                    5 37

r o

          ,                            -      i            ;

Ij- _ s r - . . ~ . .

                                              -                         ~                                          -
                         -       i          '              -

l {i / 1 in s d o 9 t

                                                                                        ~

e s

                \ ,                                 'I         a     ,l                                                            a
                                                                                    \                  m                         C mw                       d n

s t - e.s. m _ a

                                                                                                           .i.
                                                                                                              .                    e           ,
v. 1c s .

a C e s a. B . r _ o f _

   -                                                                                                                               d l
                                         .        ,    '        ,           , .                                                    i e
  • F
                              .          .        .                                                                       ^           y
   -                            .                                                                                                    t i
                 -                                                                                                                     c o

e l V

      .                    -  .         ,        .               .           1      (4 ,         ,

m+,s _ _,iif t t - _ _ _ a o

          ._ 4 ,                   b                        n           l l
                                                                                      )    ,

m=

m. .

e.a

s. . .
              *7, v.1c.,. .

c'

Summary of Vertical Noding Sensitivity Vessel Maximum Air P.R. at Air P.R. at Case Pressure Wall Velocity Dome-90 -63" F-0 - (psia) (ft/s) _., 25.8 1.67 0.58 0.97 base 26 1.70 0.56 0.96 d.1 _ _ . _ - Flow field and noncondensible gradient were minimally affected Yb

Convergence Noding Case Sensitivitie~s Steam Generator ~ Compartment i

 . It has been established in the local noding studies that vedical noding directly i

below the steam injection is important to predicting noncondensable concentration, therefore this noding was not modified

 . Azimuthal noding was modified in and around the steam generator compartment l

i i i a fY

                     ..     . - . . - . _   . - . .  .    . . . - .  .      ... - - .. = - - -       -- .. .- - - . - , . - - .

i-3 i 4 1 ~ 1

                                                                                                                                     %v 1                                                                             m a

4 2 4 t

 )

d ( i 4 1t 4 i i i 1

  • i -

t + s 1 J I i i 1 i 4 1 i i } , 4 9 4 4. t' = J, j - 1 ( 4 J

 ;i M

M t T l Figure 5 24 Man View of Model for Staasa Generator Cossparuneet Noding Sensitivity . i

W38 Center q , [ i _ , , _ , , *f 3 b s s i i 1 dL

                               /
                                                                                               '    k
                                                                                                                                                                                       ,g f        '           .

1 _. _. ,

          .                         r     .
                                                                                                 ,6                                                                                    }                              f           I s    .
                  ,g g                                                                                                                     n
                                                                                                                                                                                                       /     /        t, f

f f., i i, Ik 16

                                                                                                                                                                                        /               f     I         r 1    -

6 d' l i O O

                                                                                                                                                                              "                             s
                                        ~

f / i j .s as k d b i l

                                                                                                      .                                                                                0                      '

J ' k k/ ll k[ 6

                                    \

I s ~ l

                                  /
                                                                                                                                                                              %      ~
                     .       %     ,                                                                                                                                                                  f wi      smesse m                                                                v5B2eenm                                                                                                                                       -

Tone . 5002 26 rene.50st o .m o,,,,,,,, . 4g. Velocity Field for base case and case e.1 , yy

i Summary of Steam Generator Compartment Noding , I Case Vessel Maximum Air P.R. Air P.R. Pressure Wall at at F-0 t (psia) Velocity Dome-(ft/s) 90"-63" base 25.8 1.67 0.58 0.97 e.1 27.5 2.70 0.63 0.78 l i i Significant differences between the base case and case e.1 velocity field and , noncondensible gradient [ r

                                                                                             .                    So ;

t I f

Convergence Moding Case Sensitivities - Open and Dead-Ended Compartment Open and Dead-ended compartments were each modelled as a single lumped parameter volume to create case f.1 , e f i t e i t t t S/ t l

Cm  % I 6 - - - was

                                                                                                                    % -             -h l

i was s , s y m  % 1 / .. - , t / .. , d g d 6

                    .                        I            e                .                     ,                           .                 4        i                   .

Ik ii . ik I ai I ai I I ik 'l 1 t , d d O o O i ,

                                                                                                                                                                          ~

ik i in $ l l is , in .

                                   %        N i                                                                              %    N i                                                                 .
                                                         /                                                                                            /

s , s , . s  % Vmes .550400 M Vues*5 N M10 M Tone.50014s Tune - 500145 0888805

  • 80 N Channels = 16 2 Velocity Field of Base case and case f.1 for plane A-A 5~2 O

v. 4 i

                                                                                                               \

i l It l l l Figurs 5 28 Mame B.B Through Open Compartment

       . .wom20:6.co:e..k .,e 6.osie,s                5 43                        REvislow 0

. / i l y ( i q l

   . 8-W                      N               ,

t ws _ _ L

                                                                                                                                             ~

ss ' . - B-B Mg e n e e n N~' " r e p l a

                                                 -                                            O                                                 p
                                                                                                                    )                          1 P

s R( f f 7 A,6 2 e v432 o1 s0 - s g4g- -

                                                                                         .                            I 0s 5d                      a s

ee e n c moh n na VTC d h n a e s _ a c es ( , r , W q a W N , g  %  % - b _

                       -                                                                                                                          r        _

o _ - f d

                              'N l
                                      'w   .          -

i e F

                         -                                                                                                                          y t

Mg i c n e e o e r l e p N%"* - . O .

                                                                                                              .                                    V l

e fh( / s 7 Au6 2 n 43 2 e1 _ NNN- s m0-I m 0s 5.len r e e en n a . t n moh C e VTC -

b i

 .         Summary.of Open and Dead-ended Compartment Noding Case    Vessel               Maximum                              Air P.R. at               Air P.R. at Pressure             Wall Velocity                         Dome-90 -63" F-0 (psia)               (ft/s)                                                                                              i base    25.8-                1.67                                  0.58                     0.97 f.1     26.1                 1.68                                   0.58                     0.94          _

Minimal differences between base and case f.1 1 i [ i i f

  • t i ", .
! lie!  !; '
! i i ;I! !:  :

1

                                                     !          ; ' I ilI!f G

s g e n

 -                  n  l a

i p d o 2 N g n r i n l a i b u m o g c n , A d e

                     -   v1 o

mg s i e ee r s i t v sa a c ' we i t i s eae t n l gr e nc a o S ' et e ee r n s ga a dp el C 0e g 9g l n ei n i hs d t a o t a o N yt r n

                                          ^

e ai de c ns n ua e oc - g be r e daes v ob n ne o h eh t ~ C Tin

                                                                 -~- ... . .                     -          _ _ _ _ , _ _   _

l N i G 4 I l . I i I i i , l I i ,  ! I  !

       !.                                                                                        i l

t, I i i 1 I Figure 5 29 Plan View of Model for Angular Noding Sensitivity t 4 weQDC03 00Me.k opf IWi#$ $.44 REviSON O

a.J- n w a e ~ _ m. . s m, a a- a n- -.s---- -a., i - - - - . . [

             ,g,                                                                                                                         '
             't6                     -       -   .
                                                                                                                                        .                      1 l
                                '        '     -                       .              s      s, s               ,

i I

                          **%%%                        %           e.-
                                                                                 - -       -         aa
             } _,l                                                                                                                               o n

4 E.m. m gi;g - CU r- -

                                                                                                                              .         ,         O            l a

9 5 4 0 g C. \ ca 1 G m CU O m. I CU D n - - - - .. w

  • O t . .9 u

3 1

                               '    t    '     -                       .               ,     w ,.                                                   .g         '

LL.

                               'r~~                    .e- -

2 Y -

                                                                          ^
                                                                            ~
                                                                                      -    a
                                                                                           -         ee          .

p

                                                                                                                                  *nw y-              -

1 U I

0

                                                                                                                  -N I     -            _

EI s ,,e j

                              ~                 -  -              I         .     .
                                                                                        \

N,

            ,s        .
                                                     *     *j C

a

      '                                                                                                    3 Q

I  : D

                                                                $5                                          Q)
 .li i    =                                                   -

5 V l o . '

          \                                                                                                 O 2

I C n - 4 2n 9 G

          \ N___2                                                                            a g

l e-e CU O r C CU Q) m (U s _

                                                                                                           O
 *           /                      .

y

                                                  * /d                                                         @
                                                                                                )   1 (U

U Q o J e w

                                                                                                              ~

Q b , g

     \ --                                                                                                      u.

l ) m 9 l QW' y5 1 l j l i J

J i

                                                     =        -
                                                          .=
    ; 21             ,     , ,                                                _   ,

j .

    ,                                                                         i e 4 i/        p                                        *.        L
                                                  ' # /

Q C m k E 8I V t g , , . O

               \
                                  /                                                     E E

O , E R 2 l f" ,e NM- . . _ , j i f m

                                                                                          'O m

(U O t C CU

                                           "       "     "   -                              e m

il ,,1 - - , ,, , (

,                                                                                 n O
                         -                       , , .                                    O
    !                                                                                        6.

O m

     !         ,     ~       .       .          ao
                                                                     ..                     3 It i

2 a-

                                                                            !nm                   !

s----<-*' . , , i a l E I

l Summary of Angular Noding .

                                                                                                                              ]

Case Vessel Maximum Air P.R. at Air P.R. at Pressure Wall Velocity Dome-90 -63" F-0 , (psia) (ft/s) base 25.8 1.67 0.58 0.97  ! g.1 25.8 1.68 0.56 0.97 _ j i

        . The velocity field for the single plane is an average of the two planes that it replaced from the base case                                                                                           l
        . Noncondensible gradient essentially unaffected i
                                                                                     .                                    O

t

                                                                                                                  .                                               s Convergence Noding Studies Conclusions i
        . Noding sensitivities were performed to study the effect of noding in the following areas:
             - Vertical Noding                                                                                                                                     i
             - Steam Generator Compartment Noding
             - Open and Dead-Ended Compartment Noding
             - Angular Noding
        = Only the chauga in the number of nodes in and around the steam generator                                                                                 t compartment prcduced significant differences from the base case i

i f f, It b t i

                . _ _ _ _ _ _  ____________________.___-.________________-.____________________________________________-._________________________________________J

l 'O 3 j Application of Convergence Nocing Studies ) l Noding study conclusions were applied to reduce the ! number of nodes in the detailed distributed parameter i model to create the LST distributed parameter evaluation model i . Vertical Noding (case d.1) l - minimally affected the flow field and the mixing of i noncondensible gas ! - the number of elevations was reduced, t -

                                                                                              ~

l . Steam Generator Compartment Noding (case e.1) l - both vertical and azimuthal noding are important -

                              - noding in and around the steam generator l                              compartment was left unchanged i                   . Open and Dead-Ended Compartment Noding (case f.1) l                              - modelling these compartments as lumped i                              parameter had a minimal effect on base can results l                              - this is incoporated into evaluation model l
                   . Angular Noding i                              - deleting the angular division at 90 had a negligible l                              effect (case g.1)
                              - however, this division was le.ft in the final model
. primarily to provide a more consistent node size i distribution throughout the vessel i

i 1

i l

l Application of Convergence Noding Studies There were two additional changes made to the detailed distributed parameter . model to create the LST evaluation model:

   . Extended radial divisions at a radius of 2.6 ft. and 5.2 ft. through the entire               .

vessel .

   . Modeled the dome as a cylinder r

l

                                                                                                       ~

v/ 4 i

 . . - -      - . - - . - .          -     . . - - . - . -             _ - - . . .                  . . - - . - - . - . ~ - . .             . - - - . _ .      - . .

1 i g . i 180* l .....-- _ ._ 7.4' \p 167* , _ _ _ 7.1 ' O i 157.N' ' 6.3' i ff p

,. /\ ,M ,,,,
                                                                                                       . _ -_                    s.e,   .                 .

1 / / \ / ! 135' / #\ / l l 7 ,Y \ , _ _ _ 4.1'

                                /N               /              /        \              Y i

g/ / \/g

                                                                      /4 l                              /
                                         /                                                \

4

I
                            /

f

                                             /
                                                   )s         \

f \ p . _ _ _ e.s'

                     /               ,/                          k                 / y\  \

j l / si \ - - - 1.9' f fs \ . I l lIfl/ l l '/c8 I s4 y g y

  ,o.                                                                                                   ____o'

_ _ g _ a _ _ ._3 ,

                               \                           \      \                  \/
                                                                                           /

I I i \ \ I

                                  \ \g                       \        \            /s s          -

g - _ _ _ 1. , '

                                   \                           \./ I '
                     \               \
                                           \                     Y                      N
                         \                    \               / \                           '            . _ _ _ a.6'
                                       \                   /          \
                            \
                              \

g X )\ \ N

                                 \      /\g                                              N Y
                                       \

s\\ s N, _ _ __ _ 4.1' 45 N

                                          \                      \                s N                 N                  N
  • s _ _ __ _ s.a.

N N i N N N N

                                                                                             %                                     6.3'                              :

N . _ _

                                                                                 %                                                                                   1
                                                                                                  ~ _ _ _ _ 7.1-

__ _ 7.4' o

               .- -        .- --             . . _.    - - - . . - - .. - . . - - - ~ - - . - - - . . - . . - . - - -                                                                           -     -

l k I V i d _ _ _ :s a-r r r r - , - - r - - -;- - - i - r - , - - m; - - - - t' r _ _ _ _17 2

                        .t_

I It J _ _ L _ _ J _ _,__ _ _i_ _ _ i2 _ _i t _ _ i 2 _ _ I I I l ;i g _i _ i 1 1 I I I I i l l 1 I ,i i l i l i I l 1 I I i ! l i ) i l i I l l l l 1 l1

I I I I I l l l 1 1
                                                                                                                                                               ,iI I     I   I          I     I                                                                              l              l 7--*--4--bl-l4 i                           l                l al_pa__5__4-                                                                                                                                                      '

l I I I I I r-- l-- l 1 l l l  ; I I

I I I I I i l l 'l I j i i

j i i i i l l l l 1 l I i i

I I I I I l l l l l I .

i i l1 I I I I I I l l l l i l ! I I I I I l l l l l j q _ r q _ _ p _ _ 4 _ _ _i _ _ _l;___7__p__4__ _r _ _ _ _ to.s-j i i i l I l l l 1 l l i J 1 I I I I l l l l l l i l l l 1 1 I l l l l l l i l l l 1 I I i l l l l l l1 - 1 I I I I l l l 1

                                                                                                                                                                ;     i i i

I I _r __h__ __L___I___}__h __ _p ____76 I I I I I l l l l i i l l l l l l l l l i J_LJ__L__J__p___l___ __ q_L _ _ _ _ 6.4' J _ L J _ _ L _ _ J _ _ p _ _ _i_ _ _ _ ,__. .___ ,__ _q_L _ _ _ _ s.r J_ L J _ _ t _ _ J _ _ p _ _ _y _ _ _ _ 4 _J. _ _ _ _ s.4' I I I I I i ___(--

                                                                                                                                                  /                    I I          - -    4.e.

Al i 1 .I 1

                                                                                                                           ~--

I - T-- - - I 1 16 ~ - - 4,3, rTl- 7--l-~~ l 1~

                        .4 _i_ 2 _ _i _ _ 2 _ _.                                                                           .__             _               _ _l_  ,

7 q . - _ _ _ 3.6' I I I l l g i 1 1 I l 7.4* g g l 7.4' i I' l- l I I I 7.1' i l

                                                                                                                                             =

I g71' 6.2' i  ! b i , _7_

                                                                                                                                                .g__________e
                                               !      I                    I                                              I            i 4.1*    g,g,                   i                                              i        2.6' L9'                           y                1Y Figure 5 34 Distributed Parameter Axial Noding for vessel
                                  - - - _ . _               . - . . _ . ~ _ -                               . . - - -                             - . .                        . _ .            . - - _ . - _ .

d

                                                                                            --______________arr 1

i -

 ,                                                                                                                                                                                                           N G

_ _ _ _ _ _ _ _ . , ________________e4.r ) i i I ______________ _ _ _ _ _ _ _ _ _ _ _. a os l

______- ______ ________i,-  ;

_ , __ __ __ _ ier p .. p_7__q__g___i___,__7__,_ _y__.,__ 7 _ _ _;. _ _. _ts.r

_J__L__l__y___;___.4__L__l__7 i I 4 l

_ _ 11.a e i I I I I g i i , l ! 1I I I I I l l I l  ; l l I , i I I I I 'l ,  ; l l l

                                                                                                                                          ,             l     l

{

l. I1 I I  ; I I I I
                                                                                                                                          ;             I     I I I             I           I         I                                        I             I                    I                          l    l

,  ; I  ; 1 I I I I l l l - A _ _ _14s 4_sa__p__a__[___l___,__p__4__%ll_1 j .. , 11 I I I  ; i i i I , l y 1 I I I I l I I I l j

i l  ; 1 1 I I i j l l l l 1 I  ; l ,

I I I I I l l 1

                                                                                                                                           ;              l   l i                 l l    l          l           1          1                                       l              I                   l            ;             l   l
                                                             ;                 l I     I         I            I         I                                        [              l                   l                          l 1g                          10.9'
.. q _ p. q _ _ p _ 4 _ _ h _ _ _l;_ _ _ 7 _ _ p _ _ 4 _ ._

4 I I I I I l l l , l l g l 1 I I I i l l l 1

                                                                                                                                            ;             i I                                                     ;

l i I I I I  ; l l l l g l1 I I l i I j l I i , i i l l I I I l l l g i I ' l

    ..          _               __h____g                             ______

__h __ _ I _ _ _ _ 74 l I I I I l l g i I J _ L _1_ _ L _ _ l _ _ 7 _ _ _p. _ _ l __ q_L _ ___w _u ____w J_u2__t__2__r___I____ J_LJ__L__J__p___p___ _ 4 .J . _ _ _ _. s.4'

           ,lll                             l         l                                          .__- -Hr _ _s 1, ,. L. r_ _ _:"                                          _

_ r 7 _ c _ , _ _ _,_ _ _ ____w u_2__u__A__. .__ _ _ _I_ 7 q . I I I l l I 1, i l l I g '4 7.4' g l l g l 1 I l I l 7.1'

                                                                                                                         =                                  g 7.1' :                                               !                                             l                   l                      M a                                                                                                                            I wl*

l

                                                                                                                       ~                     w l

I 1 l l l

                                                                                                       ~T~     i
                                                                                                                            'b~~~~~~~~~~'

4.t' gg, g e EA' 1.9' IY O'

                        - - - - -                     .                    .    . . . , . . e. . v . .e
                                                                                                                         . .e a ,, ,,,, i,,,

w w A D I O g ,c - - l t . h i 6 , . i . , ii

                               '\           %            --           ,            g   d .-         s Y

O

                                                                  ,                                                       2            l

__- , g t,s!!- .9 . i 3 jr - i I I. I W l V  ! C  ! CU Q

            '                                                                                                                s CU O

E, G

                                     *        *       .                                                               I W

g l O i * . g 0 l u. l #

                                     .#     '       .                      .        %   W--e g       s
                                                                                                                               >=
                                                                                                                              . :lll 0
                           .
  • r w e.-- e.-- -
                               ^

W

  • is .-

g- - ;M i t U

b Summary of Distributed Parameter Final Noding (Evaluation Model)  ; Air P.R. at Air P.R. at Case Vessel Maximum Pressure Wall Velocity Dome-90 -63" F-0 (psia) (ft/s) ~ base 25.8 1.67 0.58 0.97 final 26.0 2.49 0.61 0.37 l

   . The flow pattem is essentially uneffected
   . The maximum wall velocity is greater than the detailed distributed parameter model but is still within the. range of measured velocities of 1-3 ft/s (WCAP-14135, Test 212.1) i
   . Comparisons between measurements and the evaluation model for additional LST are given in WCAP-14382, Section 8.1 f

8 t

                                                                                                                                   ~
                                                                                                                                                                            .o....

LST Lumped Parameter Evaluation Model

                                                                  . The noding is derived from the baseline large scale test (with no internals) lumped parameter model in WCAP-13246
                                                                    . the vessel intemals that exist in the Phase 2 and 3 tests were taken into consideration                                                                                                                                                 .

t I i [

                                                                                                                                                                                                                                           ](<

i

J a

 !                                                                                                                                    N j

k

l 4

i i i 1 f i 1 i s } - 1 a 4 j i i

i. .

e,

                                                                                                                                'l a

J t 4

)

Figure 5 37 Elevation Noding Diagram of LST Lumped Parameter Model REvlsio%- '8

          . ma. cow..<t.w imnos                                     5 52
,             .s .

4 h N i m 4 i

                -    Figure 6 9 Plan View of LST Vessel Lanped Parameter Noding from Operating Deck (4J Feet) to Upper laternal Gutter (14J Fest)
                     - . - , . . _ , . . ~ , . .                        A. i s                                 REvisios: 81

i 1

                                                                                                       - n,        ;

k l

                                                                                                                   )

1 _ l l l 1 1 1 l I 4 Figure 610 Man View of LST Vessel Lumped Parameter Noding from Upper Internal Gutter (14J Feet) to Top of Yassel

                 ~ ~ ~ ~ - ,.       .-,w                  A. l R                            REvlsios: 0

LST Lumped Parameter Evaluation Model 1 Results obtained by comparison to tests showed that the lumped parameter model results in two competing effects: ,

       . Over-mixing of noncondensables in the vessel which penalizes the heat and        .

mass transfer rates .

       . Over-predicting the velocity in the vessel which enhances th.e heat and mass transfer rates. The predicted velocities were 5-8 ft/s. The measurements show the velocities are 1-3 ft/s along the vessel wall.

l 74 l i

N i LST Lumped Parameter Evaluation Model These competing effects re.sulted in a slight over-prediction in vessel pressure as shown in the table below (case 1) for Test 212.1 A. . To eliminate the competing effect due to velocity, only free convection is used I to model heat and mass transfer inside the vessel. This conservatively biases the results toward a higher-predicted vessel pressure. The resulting predicted vessel pressure is tabulated in the table below for Test 212.1 A (case 2). j Test 212.1 A Vessel Pressures j Vessel  ; Pressure (psia) measured 24.9 i case 1 26.1 j case 2 28.7 i i f) ( l'

Application of LST Distributed and Lumped Parameter Evaluation Model's Noding to AP600 Evaluation Models (WCAP-14382, Section 6.4) Discussion of Section 6.4 handout i G t e j

i ! l l . N b l 6.4 Application of LST Vessel Noding to Full Scale Plant Modeling . i The noding characteristics of the WGOTE!C LST distnbuted and lumped parameter evaluauon models

proside guidance for setting up the full scale AP600 plant evaluation models.

I ! 6.4.1 Noding of the AP600 Distributed Parameter Evaluation Model i The AP600 distnbuted parameter evaluation model should have the following charactensues consistent i with the LST distributed parameter evaluation model: } !

  • The LST analysis was based on a 1/2 symmetry model in order to decrease the run time:

however, the entire AP600 will be modeled as full symmetry to account for the asymmetric j plant layout. l

  • The containment should be modeled by coupling distributed parameter above decic and lumped l .
                          -             parameter below decit.

i

  • The upcomer, downcomer and chimney should be modeled using the lumped parameter f
formulation of the code.
  • The elevation, radial, and azimuthal nodalization should contspoed with the LST distributed parameter evaluation mortel.

There should be the same number of elevanoes in the LST model and the AP600 anodel. The AP60 upper dome should be modeled as a cylinder similar to the LST model. The AP600 elevations should be de6aed by passing lines through the same geometrical loranoes as the LST inodel when possible. The followina guidance is siven to desannies elevation boundaries:

                         ~                                                                                                                         7 h

I a , 1

                                                                      -             <'                                                    REvtslov 0

l a m The following should be used to determine the radial divisions for the AP600 model: D F ]Mg ) i i 4 i

               . "fhe following guidance is given for determining the azimuthal divisions in the AP600 distributed

! parameter evaluation model. For this discussion, the break is located at approximasely the 180-degree - l azimuthal location. The asymmetry of plant must be accommada M in determining the azimuthal boundaries. Since the entire vessel is modeled, the AP600 model will have approxianasely twice the number of uimuthal locations of the LST model: e ~D} / 612 Noding of the AP600 Lussped Parameter Evaluation Model The APf00 lumped parameter evaluation model should have the following characteristics:

  • The containment vessel should be modeled usmg lumped parameter volumes.
  • The upcomer, downcomer, and chimney should be modeled using the lumped parameter formulation of the code.

l I i

             . The elevation, radial, and azimuthal nodalizadon should correspond with the LST lumped I

parameter evaluation model. The same number of elevations in the LST lumped parameter model should be used in the AP600 {

  • lumped parameter model. The following AP600 lumped parameter elevation boundanes are ,

, recommended: [ 1" I ( 1" j [ 1" l [ 1" [ 1" gu The plan view of '.he model Detween the operadng deck and the crane rail should look very similar to j the LST lumped parameter roodel. There should be i.. '" radial rings and their boundary j determmation should use the same basis as the LST lumped parameter model: * [ 1" i ( . ]" i j j [ . 1" From the crane rail to the top of the vessel ' 3]" radial rings should be in the AP600 lumped parameter model. [' 1" Between the operadas dock and the top of the vessel thers should be [.. ]" azimuthal sections. Determmation of the azimushal evisions for the AP600 should use the same basis as the LST lumped parameter model [ I" DrvninN O

        .=.._          DY EkN b
   ' 99>- Q O D t

i

                         %%B936\

hl,An w\r " Aqd_ jJ i

                    )

Is Q % T T c , o d 3 Ts ' v m3hCWDN CDDT _ g

                    -e N o c h B M W ( ( [ q'                            -

A h

                        }\ gy assmp,   V 7 7q    7' s

T$ tSih M S % s 2 wq&Tkw CODI m::;* a ^

                                                     <    QGW m rs7s
  • Nh bD -s_Oh MM
  • o \% (CVQ k ' i ~
                        ^\                          wN\bl\.Mh l

sqwf hveuip,ymuc[ < e s

                        % mx                       s A                                      comenn
 %e.

(%gww sm w g, 5'EW S% h d E t v a*** emnucas l l Attachment 8 i

% s & a - -i uu -.--.-n .2 1.tx i. -n,n., .- ...-__.n.~. a s-- . - a se ., , _s

         =        TES7S             -~__

a .,a

              %evi bDv% -- ?'

S E W . % ~ L5T

                 %@v.N3. %oe 3                                                                                   l
                 \N S 4 -                                                                                        ,

7 t,s%9 l vs4xu g - @ N(gw$ 1 i g ,

   ,                                \
                                      \

I i

             %      CDPE~

NMN \-\ S ., l i e

   ,4-v- , - -4, 4- A-  -ws    e 2 - s           --A     J .&. -s.-pJ-  ->ah-    u.-a-k+ ~ n~

T u xOR$ uww w WnTT sx j \ 3 ) _ \wwwsW N i i i

                                                \                                                 i
   $D 7 Eb $ - C$h cM                                                      o u g.v Q SYdS A

l l i

 ,,,_m + J             a .

_L. _ J .._-+_- A 4,,s.-- -

                                                              ..._L.6 .-.--.M   J .a-A_ - aw4_ J  - .s2 _ __

e

l S %%NM ' ,

l I wowws , l l 5 h Lsh 9wwhvsCe Eg3 2

                                    % D b M D % s s . C .e s iii. d g                                        i i

m e 1

                                                                        - (O ,6)

I ,, + i f= i to i

O

! O i T v i a j

P \

l ! O , l 7 N

6 o

2 i G l

             .C I              CL.

l O.

M

! E

O

! g ' W i 8 w 1 . G I ~N < 3 .f W

C -
                           ~

4 M 4 l i C M 6 i

  • l l

1 1 Attachment 9 l

_ (a p) A

 . S i   .

e

I i
 )
 )

e l I l

                 ~

219.1 (RC057) TEST DATA outside won tanperature (Az.0.e.2_1_c) i I o O 9

                                              ~

L i

I 219.1 (RC057) TEST DATA , Outside wall teTweture (Az.120 El.21_E) 1 i e

     .                                                                                                                                                                                                                                                           i i

t 6 i k I r I I  ; 9 Yv i

  .A,J    aew,a   4 e. es      .L se.au. 9 . _ -   4- es ._.m,A,A -s.maa J de'u 46..1+4+A. 3*i-_.4.4JJ--.aJr__4_ -

ha ,_h___ouu_. .L m e. M w , _ _e.&

                                                                                                                                                      -    , 4 e uma h.- A,,4g...a 7

e

f. ~ O 3 J

I 4 e 1 1

         %s 1

W i < Q

D LJ

) O I b O O O CE v e e e h M

                   .. .. - . - . . _ .~....~.n   .z-~.-a-
          '~

_. (a ,6) l O

                                                          \

F-M LD m b D

 . O
 . O E

v T-e S M

          ~A   -a4- -- -.4 J: -2. A 4 m.Ed--c.J.4--a A 4 -wah z . *A--h 4- -C2 e   - L..a sa d m.d so ma---

M k< o (,n LLJ m b D O O CC v e w W

l

                                                              ._ (a p) s i

Q CO , Lij l LO O O E T"". N

e*u+4 4a 4 ,a 4 4 .. Oe., ,-- 6d-+-eA--e- h E A-*AM^A L- 5 *C-~ h -h4.m_.- -.

                                                                                                                         ...a                   G.,             a se _ -_                                    .,.e.w_sw am Ah% 4ih 4-w_J_. h_.4aAm,A.e.A _4 2 44 usa  wa _ 4 G ,_& h4- _m. 44Ae___e   A 4- - _ _

I 213.1 (RC050) TEST DATA Temperature stratification i i l i f

          ,                                                                                                                                                                                                                                                                                I 9
                                                                                                                                                                                                                                                                                          'T
                                                                                                                                                                                                                                                                                           \_/

213.1 (RC050) TEST DATA Temperature stratification (Rad. O in.) I I 4 4 I

                                                                                                                                                                                   ?

I I I I I  : 9 YU

219.1 L'RC057) TEST DATA Axial t_emperature stratification (Rad. O in.) i I O e f I i s l L f i t I  ! g 9  ! Y%J i I f i

                 ..a, , A a am,4 1 A_a - A -k - - - - A..W a,_, n. a,ea - ,a w   4    "
                                                                                    --- - +- m W.~,

f 6 m 5 b D e. e t k i 1:

                                                                                                    )

i B R . 1.e e N M

                                                                                                                                                                                                                                                          ~

219.1 (RC057) TEST DATA Axiot temperature stratification (Rod. O in.) I 4 h i 4 i l 9

                                                                                                                                                                                                                                                                                                    ~L
                      !   ; i i
                                    ).

9 ~c% - s e l u . a v e s n op s e r e i m t T - S L d _ t e a i m t s e e m . o S I

a-- 14 k. _x .-.- -aaG .-S.-.a _,._ w u A-,A m a .,nu 1Ma .e ,+ b -wae-.w, e 2-ne ,-- - M- - ns_.a, 4mgom _s_.. 4 4 d (Q ,6) ) I l. I 4 l 2 H< Q CD e

                   )

l F- E

m w *

! b

LO I i O $

o3 cc

v-1 a

a e 4 i ( 4 I

                                                                                                       ~

4 r

  ]

4

        .           L i      * , b I < b     -  j m

e i b s. I 9t e h 4 S M.

    ~

h 4 4 e_ a. A _ T

 +                                                  -

A _ D - T S e r E u s T s e

     )        r p

0 l 5 e s 0 s CV e R( 1 3 1 2 e i I

i . , I i 9 'O 3 m 4 e E A l

 ^

A T A D T S E T

        )

0 5 0 C R ( 1 3 1 2 e I I

l 213.1 (RC050,'i TEST DATA i I 4 I i i i l 9 '

                                                                                                                             %.)

l

 ..-a.   . . . + - - - . -. - . - . . . , -. - -     . . _ . . - . . , - - . . ~ . -   s-  -- .-     . . _ . _ - - - - . _ ~ . . . . . . . - - - - . . - . , . . . . . . - . - - _ . . -

i 4 k j i 4 i i Q, = Q.im + O hs Y Y w e i i O, - O,1m = [me,CdT/dt?]s, . t i

                                                 .                                               + [me,CdT/dt>],

i

                                                                                                 + [kAddT/dx?l, 4                                                                                                                                                                                                     1 l

l l 9 e A

           -.~~.<2m..-- , _ , -u-,     4 --A.,2.a.e. - a--4 m.-4 a 44 a m e a ,.wA-4..a . . . - + -a aa=4 <a~u..4.m   as.., mu..

I

                   <=

g Q M , W  ! F- I O b D

      -o
      -O CE
    , v i

e e N M

 -M-m  o -4.w. mao   a Wn'a4 A4 an-eeA A- -- A ,4 L,' .s,.,,,n.ank+ b.-<J a S m. 4 2M4g ,

L&-N--Qm a=am -- a sma--&4,,x-me4.++Atsm s L m b A ,a,nh ,um.ausk.AA 1mpA_u_. ,w_a,a 4 O ,b t i a M e 4 e k< o , M LJ F-m O D l O i O  ;

             %                                                                                                                                                                                  i v                                                                                                                                                                                    .

I F N  :, 9 h W

i n & L - i 9D 1 - A 4 T A D T ) _ S C _ E T B ( _ e

       )     v 7

r 5 u c 0 . T C a _ R t l _ ( e D . 1 9

.       1 2
                   \

i

__,.,,n. .,,e , ,,-. m d4,n--,M.m4,- a,6 5 .n +4t ._a.e.w,_, & _ m M.Jt -E A Jh A Jia a i _.4 , X 4S A A,,6._ asJ.G.A_.3,-&h- , . -%M_ dam, w, C 4 s' A,4m gaua_m -_.4Ad .maA. 24maAA4W a46mn_,_m,e an Ad AJ_+si,.+ak.u.4__. k 5. s 4 iw W

                                                                                                                                                                                                               ~            Oi ,6) i

) 1 ? A-i i i s J l t 4 Y ?\ l -

d 1

to

                                            )
i. l

, 3 i

                                   -J                                                                                                                                                                                                                    -

2

                                            %me
                                     ~

i ! } > l .

                                     )

1

                                             +

O

                                       /

9 e e I h M

a 34 , , _ , , , __.m 4 k 4 &_4 4 ..W-4 A e-- .4.-w.b.. - hs. ww .4- 44h 4Sah--

  • h DA 2L e -.&%Aa 2 a & e-1--- .ee-4 4 A - -A _ _.- 4 4- %

O' 2.19.1 (RC057) TEST DATA Delta T curve (82 C) i , I e t i 1 i g I 9 c

                                                                                                                                                                                                                                                                            %.)

r

                                                              -_.__ _ _ _ _ _ _ _ ~ _ __ - _ _ _ __ _ _ _ . _ _ _ - _ .____ _ _ _ _ _ _.._ _ _ . _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _                               _____

i 1 l m , _ (a ,b/ i i i 1 w., 4, 4 1 I l l e l e i O 9

            )
            =
            )
            ),    >

1 O O e i m M}}