ML20129H028

From kanterella
Jump to navigation Jump to search
Forwards,Per Request,Nonproprietary Annotated FSAR Pages & Rept of 850524 Meeting Presentation Re Implementation of Up to 20% Damping for Cable Tray/Raceway Sys.Proposal Deemed Technically Acceptable.Proprietary Info Forthcoming
ML20129H028
Person / Time
Site: Seabrook  NextEra Energy icon.png
Issue date: 06/03/1985
From: Devincentis J
PUBLIC SERVICE CO. OF NEW HAMPSHIRE
To: Knighton G
Office of Nuclear Reactor Regulation
References
SBN-809, NUDOCS 8506070446
Download: ML20129H028 (37)


Text

{{#Wiki_filter:- 5 SEABROOK STA2 ION Engin:tring Offica E June 3, 1985 SBN-809 T.F. B7.1.2, B7.1.3 PubNC h W h @ NEW HAMPSHIRE YANKEE DIVISION United States Nuclear Regualtory Commission Washington, DC 20555 Attention: Mr. George W. Knighton Licensing Branch No. 3 Division of Licensing

References:

- (a) Construction Permits CPPR-135 and CPPR-136, Docket Nos. 50-443 and 50-444 Subj ect: Cable Raceway System Damping

Dear Sir:

At our May 24, 1985, meeting we discussed the Seabrook Station's Cable Tray Support Re-Evaluation Program and, in detail, the implementation of up to 20 percent damping for cable tray / raceway systems. The conclusion of this meeting was that PSNH's proposal was technically acceptable. However, prior to issuance of NRC's formal acceptance of this proposal you requested that we submit a report of the presentation as well as any changes to the FSAR. Accordingly please find enclosed one copy each of the below listed Attachments. It should be noted that the annotated FSAR pages contained in Attachment A will be incorporated into the FSAR by means of a future amendment. 1. Attachment A - Annotated FSAR Pages 2. Attachment B - Report of Presentation - Part A These Attachments, however, do not represent a complete response to your request because some of the information to be provided has been identified, by its Owner, to be confidential and proprietary. Since we are unable to provide this information to you at this time, we intend to make this document available for your use through our Bethesda Project Office. After receipt of the affidavit required by 10CFR2.790 from the Owner of the information, PSNH will transmit this information to you. Very truly yours, 4 8506070446 8 6 PDR ADOCK 05000443 pgR John DeVincentis, Director Engineering and Licensing Enclosure 3 g cc: Atomic Safety and Licensing Board Service List - Seabrook Station Construction Field Office. P.O. Box 700 Seabrook, NH O3874 j

William S. Jordan, III Donald E. Chick Diane Curran Town Manager Harmon, Weiss & Jordan' Town of Exeter 20001 S. Street, N.W. 10 Front Street Suite 430 Exeter, NH 03833 Washington, D.C.' 20009 Brentwood Board of Selectmen Robert G. Perlis RED Dalton Road Office of the Executive Legal Director Brentwood, NH 03833 U.S. Nuclear Regulatory Commission Washington, DC 20555 Richard E. Sullivan, Mayor City Hall Robert A. Backus, Esquire Newburyport, MA 01950 116 Lowell Street P.O. Box 516 Calvin A. Canney Manchester, NH 03105 City Manager City Hall Philip Ahrens, Esquire 126 Daniel Street Assistant Attorney General Portsmouth, NH 03801 Augusta, ME 04333 Dana Bisbee, Esquire Mr. John B. Tanzer Assistant Attorney General Designated Representative of Office of the Attorney General the Town of Hampton 208 State House Annex 5 Morningside _ Drive Concord, NH 03301 Hampton, NH 03842 Anne Verge, Chairperson Roberta C. Pevear Board of Selectmen Designated Representative of Town Hall the Town of Hampton Falls' South ~Hampton, NH 03827 Drinkwater Road Hampton Falls, NH 03844 Patrick J. McKeon Selectmen's Office ~Mrs. Sandra Gavutis 10 Central Road Designated Representative of Rye, NH 03870 the Town of Kensington RFD 1 Carole F. Kagan, Esquire East' Kingston, NH 03827 Atomic. Safety and Licensing Board Panel U.S. Nuclear Regulatory Commission Jo Ann Shotwell, Esquire Washington, DC 20555 Assistant Attorney General Environmental Protection Bureau Mr. Angi Machiros Department of the Attorney General Chairman of the Board of Selectmen One Ashburton Place, 19th Floor Town of Newbury Boston, MA.02108 Newbury, MA 01950 Senator Gordon J. Humphrey Town Manager's Office U.S. Senate Town Hall - Friend Street Washington, DC 20510 Amesbury, MA 01913 (ATTN: Tom Burack) Senator Gordon J. Humphrey Eiana P. Randall 1 Pillsbury Street 70 Collins Street Concord, NH 03301 Seabrook, NH 03874 (ATIN: Herb Boynton) =.

p e r ATTACHMENT A ANNOTATED FSAR PAGES SEABROOK STATION (NON-PROPRIETARY)

~. CA k -y. l SB 1 & 2 Amendment 54 FSAR February 1985 ), This ratio corresponds to a period interval varying from 0.0006 seconds at a period of 0.03 seconds to a period interval of 0.01 seconds at a period of 0.50 seconds. 3.7(B).1.3 Critical Damping Values The percentages of critical viscous damping used for the seismic analysis of Category I structures, systems, and components are based on recommendations presented in Regulatory Guide 1.61. These percentages, which account for i stress level as well as type of construction or fabrication, are summarized in Table 3.7(B)-1. For seismic piping analysis, an alternative to Regulatory Guide 1.61 may be ~ used. These values are shown graphically in Figure 3.7(B)-39. lp4531itT 3."1(a).) *3 4-- u 3.7(B).1.4 Supporting Media for Category I Structures All seismic Category I structures are founded on sound bedrock or on engineered backfill extending to sound bedrock. Engineered backfill was also placed cround all seismic Category I structures. The bedrock at the site is uniform, competent, and nonfragmented. Engineering properties of the bedrock measured in both the field and the laboratory are presented in Subsection 2.5.4.2.a. The engineered backfill consists of either fill concrete, backfill concrete, offsite borros, tunnel cuttings, or sand-cement. Properties of the engineered backfill materials are described in Subsection 2.5.4.5. The type of engineered backfill used beneath all seismic Category I structures was fill concrete, except for safety-related electrical duct banks, five electrical manholes, and the service water pipes, which were founded on of fsite borrow or tunnel cuttings, as shown in Table 2.5-19. Identification of the safety-related-electrical manholes founded on offsite borrow or tunnel cuttings, the depths of offsite borrow or tunnel cuttings qver the bedrock under these particular manholes, the widths of their struc-46 ' tural foundations and the total structural height are summarized below: ~ Depths of Widths of Total Manhole Soil over Struc tural Structural Supporting Numbers Bedrock (ft) Foundations (ft) Height (ft) Material W13/W14 6-12 18 x 18\\ 9 Offsite Borrow W15/W16 6-12 18 x 18\\ 9\\ Offsite Borrow W19/20 15 23 x 23\\ 12 Tunnel cuttings W29/W30 14 19 x 22 15 Offsite Borrow W33/W34 18 18 x 18\\ 12 Offsite Borrow As 3.7(B)-2

A% %,s A yz ~ r Change Required for Increased Damping gg g 3.7(B).l.3 For the Cab'le Raceway' System,-.an alternative to Regulatory Guide 1.61 ~ ~ may.be used. Critical damping levels may be a maximum of 20 percent for inputfacceleration In?els of. 35g and greater for OBE and SSE conditions. -In cases where~ input accelerations are between.lg and.35g, the. critical . damping valves maybe interpolated between 7 percent and 20 percent respectively. 2 i r e t .+ ~ 1, r -. .Tu E' [4 g -e ,,-.;.....,.,_,.,...,, _,,. _., _ ~ _

f3 Agg,4 SB 1 & 2 FSAR ' TABLE 3.7(B)-23 CRITICAL DAMPING VALUES Item, Equipment: Damping Percent or Component Critical OBE SSE Piping Systems' 1 2 Valves, Compact Pumps, Compressors, 1 2 -. Instrumentation, Diesel Generators, Motors ' Heat Exchangers, Tanks & Vessels, -2 3 Control Cabinets, Deep Well Pumps,' Fans, Electrical Conduits, Electrical Switchgear, Filters, Dampers DGL6Y Cable Trays 7 L ) 4 .I e e

7-w. O s a 1 e ATTACHMENT B REPORT OF PRESENTATION - PART A SEABROOK STATION (NON-PROPRIETARY)

dhchwed b f I e SEABROOK CABLE TRAY DAMPING MEETING AGENDA o INTRODUCTION (R. TUCKER / YAEC) o CABLE TRAY TEST PROGRAM (B. LINDERMAN / BECHTEL) o CABLE TRAY TEST MOVIE (OPTIONAL) o OVERVIEW OF TEST PROGRAM RESULTS (B. LINDERMAN / BECHTEL) o SEABROOK REVIEW (P. McMAHON / BECHTEL) o DESIGN. IMPLEMENTATION (A. DUFAULT / UE&C) e CONCLUSIONS (R. TUCKER / YAEC) e DISCUSSION l l l l c ..,----n- --,n r

s d Nackw w t 6 y2. INTRODUCTION o CURRENT CONSTRUCTION STATUS 4 - OVERALL PLANT CONSTRUCTION IS 86% COMPLETE - 98% OF THE CABLE TRAY AND VERTICAL TRAY SUPPORT SYSTEM IS COMPLETE - LATERAL BRACING IS 75% COMPLETE - AXIAL BRACING IS 5% COMPLETE o PURPOSE OF TE CABLE TRAY STUDY o RESULTS OF THE STUDY - IMPLEMF.NTATION OF TE BECHTEL RACEWAY PROGRAM o BENEFITS OF ADOPTING TE PROGRAM - REDUCE CHANGE 0UT OF CONNECTION HARDWARE - REDUCE INSTALLATION PROBLEMS - REDUCE COMPLEXITY OF ANTICIPATED MODIFICATIONS FROM 100% QA REINSPECTION - IMPROVE CONSTRUCTION SCHEDULE o ORGANIZATION NHY l t I 3 UE&C BECHTEL. 4 D -w-n..--

E. AA&weat 8 75 RACEWAY TEST PROGRAM PURPOSE TO UNDERSTAND THE DYNAMIC BEHAVIOR OF RACEWAY SYSTEMS AND ESTABLISH e REALISTIC DAMPING CHARACTERISTICS, FREQUENCY RESPONSES, AND THE ACTUAL ELASTIC AND INELASTIC BEHAVIOR OF THE SYSTDiS. FURNISH DATA FOR DEFINING BETTER METHODS OF ANALYSIS FOR BOTH e PRESENT AND FUTURE FACILITIES. .o. DEMONSTRATE CIRCUITS REMAIN FUNCTIONAL EVEN WITH PLASTIC DEFORMATION 07 RACEWAY SYSTEMS. DETERMINE CAPABILITIES OF INSTALLED SYSTDIS II; D'.ISTING FACILITIES o TO RESIST EARTHQUAKE MOTIONS. e G

Al66emt 6 f.+ RACEWAY TEST PROGRAM (CONT) METHOD e STARTING WITH THE SIMPLEST DESIGN SUCH AS ONE USED FOR A FOSSIL POWER PLANT, TO UPGRADE THE SYSTEMS BY TESTING.' UNTIL AN ACCEPTABLE AND ' STABLE LEVEL OF BEHAVIOR OF THE SYSTEM IS ACHIEVED.

  • TO EXTENSIVELY TEST THESE SELECIED SYSTEMS TO GENERATE STATISTICAL DATA BASES.

USE DATA BASES TO ESTABLISH ADEQUATELY CONSERVATIVE DESIGN CRITERIA e AND PROCEDURES. 9 4 g.o [ . - - =

I ~Y hbc.kw%k 6 y.s i TEST PROGRAM TASKS t TASK A - FIXTURE DESIGN AND CONSTRUCTIOIT TASK B INITIAL - PRELIMINARY TESTING . TASK B - CABLE TRAY RACEWAY SYSTEMS TASK C - CONDUIT RACEWAY SYSTEMS TASK D - COMBINED RACEWAY SYSTDiS TASK E - FATIGUE LIFE OF COMECTIONS TASK F - CAPACITY OF CLAMPS I i I i

E >W +t b h l+ 0 \\ ~. l / W Y l \\g s Y 'y 7, \\s t / < k r x gu4 \\ q c' 9 s: we Q 7 on e, L* y l 3. es.%ps,ch; mw. m"' '. m', -l s (xw A '. .; g4, m, i 's j ,t yq;m QW'{Ig,sN'b - g,' y. y}+v,#k' .' x. 3 Q x s %gzl }:,.g /k / %.,. 1... <4 s R y. s., /x4 s ' f' %(Wi ' t- = ik, L l h.l ~ y +il' y~ l s

1 TASK B CABLE TRAY RACEWAY SYSTEMS 3 i PHASE I TEST VARIOUS TRAY TYPES ON RIGID SUPPORTS l PHASE II NON-DESTRUCTIVE TESTING OF VARIOUS UNBRACED TRAY SYSTEMS. ) 9 J PHASE 111 - TEST EFFECTS OF TRAY TYPE AND MANUFACTURER ON A SELECTED UNBRACED[ i TRAY SYSTEM g c'- PHASE IV TEST EFFECTS OF STRUT CONNECTIONS ON A SELECTED UNBRACED TRAY SYSTEM cp PHASE V DESTRUCTIVE TESTING ON SEl.ECTED UNBRACED AND BRACED TRAY SYSTEMS ' PHASE VI DESTRUCTIVE TESTING ON OPTIMIZED UNBRACED AND BRACED SYSTEMS U e

i f ) I l 3 /oW -

l i

yty* sis

  • __ s !sc h '

1 e l l f MAKE L l TABLE m l ,a w= = a

-?_-=c = 3 _, 3a y n---

'.. v ngr g_ 1 \\ 7t_rWi'"&- ,:.$, u a v 9 $*3* f h* E r-2: e 4 9 i 4 j TEST SET-UP FOR RIGIDLY SUPPORTED TRAYS i l (PHASE I) 4 1

l i

4%ub '- 8 I*S 1 v{- ~~ v v e.~M Peer Eurr=r t==* %gw I ) se* rrors 1 g 3 g s .T 'd (( ] l i ~ Wr 1 ~ .s s {~ 1 l. .:s j-1 J! o-r- 4 TYPE I TYPE IA l. ) l v v v v ~ we,-sara i[] I

  • = n r")

l 4 i: s [],, u m u + w e<tsea s u, c u, _ s m P. P 64aC#s.g -1 9 8th 5 eggs OT****ECS) D (ype. g Pscr) .... c- . ort ic e xsrase: *.mato rror ce nes* ort c 1.nf g[rs.svAND vr9Ts:4 SrnUT FA:>v Rg m ust 1-: sorc reiro enterin m au: oa ::rau s ou proa an mrna. 7 rps F A 7 vor FE e EC m m m f* A_ A-. 7 e I*[3 I[] kW I f k) / { 1 V V I D De m s .',e _M

I W

s M-t U i i W \\,,,,,, I W -s m n ,,Jor"u ~n ,,,,, e nm> y 's .TrP E m a Tror w k g TRAY SUPPORT TYPES TESTED.....

t I' hWp 4 6O ( 2 4 _p m,e s u n s. e c e 3 an on s n n a eo N .u r r aa e e a C rr N a n R-wu O I r r T e o O e a N N c w C s N "R M a c ^ A ^ i' i i;' N t O .g' 1 r ' , i C 3 m ]' G S w. N N C O O R I Lc. T O I C T M r ;':,,,i,. E C N C o N r.s.e A N E mrm

<;u O

r C_ N e xe. Mg

,r l

hw N 1 ir ra r ne f O .nn.u m t-C r t e s n f , nee A A T e. orr r-T T a naa E-S R s c,wv D Q O r r 4 e ~nvo P - r-B_ F P N W D U Q l Q S ,;-.;l' H f, i;' O

;,,,,iA C

E N N Y A N A C R = I i! i T 1 e tem t 4m a r E e m 7_ m W. \\ A_ r a C e

3,,,,,.

R r T I 5-1, O e C z H v ( N* E n-C a

  • f,,,,,,

N st h-V A .r l O a e w 1 C. ,..r t. l t t 1 .o.e a r ..u .-.t w l. e a e I

Fe 1 hbcbWM b TASK C CONDUIT RACEWAY SYSTEMS TEST VARIOUS SIZED RIGID CONDUITS ON RIGID SUPPORTS PHASE VII NON-DESTRUCTIVE TESTING OF RIGID CONDUITS SUPPORTED ON PHASE VIII VARIOUS UNBRACED SUPPORT SYSTEMS PHASE IX DELETED DESTRUCTIVE TESTS ON RIGID CONDUIT SUPPORT SYSTEMS WITH PHASE X VARIOUS TYPES OF STRUT CONNECTIONS' PHASE XI DELETED e e

-e. Abck med 6 fiz. 8 O e . TASK D COMBINED RACEWAY SYSTEMS COMBINED TRAY-CONDUIT RACEWAY SYSTEMS WITH STRUT-TYPE PHASE XII HANGERS PHASE XIII DELETED 9 d o 9 m i I l l I i' L

U lp;a e ,Ii ~ C# ,9# .c r. [ Mfy %~ N 'I 9 '.. $E h NNf. ~ N l y__r--- vg a 5 R g o q h .f,9 .0;r ,.:s ,~ L ' e \\\\ O 'r ' *, 5 ^ ,s Q A A*

  • G 5

0 - '. @a :*. . n, w C n C C m 'v M Q l g 0 y w .lb t o .,;'s-...x [. ,i i _. s.e 0 s . m 'v k j l

h. T[nrFi TJ' UW v

<4 L e_. 4 ec Z <e, o o o J ---o m 2. 'c. 4 l ~ ,->s.',

^,,

%_ V 'g ' [. # ' '^ ".w'"'] o q q m. 7,.~ g j CL. g o d O 5 ,5,[ .'n,: ?.. u y ^ 2+ o., & w a, g ^ r 3"',

  • :F -.0#

ggJ x,. o r i e +- o . m s (#3 fe ~ S,. g? %o tsJ ':: 's > ? ~.,;., 5.,..;, y'). U Y O , ' b, '^::;,,' ; . { ' ^',, ,,,,..-{ . ~ <. s., +< .^ g ^ ~,g >Yf 4 eF m O <.'s'c. r E l Q ~E 4 m. g PQw' A y + c'W, N es' ^ v I ,e

9 9 9 ... 9 .... 9... i ~ w n*: x ly.m k-r A-> m 1 [l l g, ir ,.. m ro, 3,3 3 g .g .fg j ,,e Q.# EE n r *: s - @ % p'H -l eee a t-a. . c_J .; ET 3 --MJ .) _~ e-- , -4 ? .rA /.i *:e:L, m- 'g,2 d e i b museet Y c r z. 9 ,.--e , 4 3 erj d "c< C (--- e o e'-4 s-

  • mil **~~ ~~ cwestre Annruer systen 1

2 wum m e-o cp e s-~~1m s . J e-) 1 ~ y- - w e'; I g 9 u 1 2 _@ i u 1.-a WQ L ;x - ;: 4 e-

  • c ~

bs.--e w ? t -t e-! e-Hl I s t. p' _.,hg' w s 9)L_ . f . -_e -e i t @lI e/ eig g e' s t c s 2._, ei .s e*s O* 8m rr secr a m s cr u m sacr a m w w v ~ ~ ~ ~ ~ ~ ~. TESTED COMPOSITE HACEWAY 1.AYOUT - SECTIONS -t L, PHASE XIl,l t

c. h acN w m k $ q\\S ~~ \\ TEST VARIABLES e TRAY AND CONDUIT TYPES e TRAY AND CONDUIT LOADING e HANGER TYPES e HANGER LENGTH e HANGER CONNECTIONS e NUMBER OF TRAYS NUMBER OF CONDUITS e e CONDUIT SIZES CONDUIT CLAMPS e FITTINGS o BRACING e INPUT MOTION DIRECTION d I f l t r f I l i

2 CABLE TRAY FIVE DIFFERENT TYPES OF CABLE TRAYS WERE SELECTED TO BE TEST D< i e LADDER TYPE MANUFACTURED BY B-LINE SYSTEMS INC. T' e LADDER TYPE MANUFACTURED BY METAL PRODUCTS CORPORATION. I A,- c e PUNCH BOTTOM TYPE MANUFACTURED BY B-LINE SYSTEMS INC. a m l e TROUGH TYPE MANUFACTURED BY HUSKY-BURNDY i e ALUMINUM LADDER TYPE MANUFACTURED BY P-W INDUSTRIES l l ALUMINUM GUTTER WIREWAY WITil COVER MANUFACTURED BY SUN METAL PRODUCT WAS ALSO TESTED. l l enume I l l

3 1 i TEST'MOTIN As= SNAP BACK - FIXED SUPPORTS E-y f HARMONIC MOTION g EARTil0VAKE MOTION i i / 43 4 t e

l e g

. erut.ws.+:..y 1

l h'5., =, -.,0 bi dl . a d udki i . c... e.., =..m ;..... -. g.,,9l j jli' 4 1 f I CABLE TRAY ~ o

P ho 9

s n ^ STRUCTURAL I

RESPONSE

I [ ,f = . :.n ie.nwW :.,t DYNAMIC PROPERTIES OF BUILDING i-Af ,, o. J ./ g ... = ,1 l I- !- sy.,p,'p w-q hl) g $y9

ANwi,: m ::e :i.c+....A.

( ( 4. J 1 4 g i., i {L 1 -q a j STRUCTURE U l,) I + .s., ,e et 80 INPUT MOTION us-STRUCTURE

RESPONSE

SPECTRUM i t e g

O A-%kweut 6 411 e TEST PROGRAM MOVIE

j /%%.ah 6

g. 2o l

SUMMARY

OF CABLE TRAY TEST RESULTS - STRUT SUPPORTED TRAY SYSTEMS HIGH DAMPING WITH VALUES RANGING TO 50% OF CRITICAL FOR TRAYS WITH e CABLE LOADING FROM 25 TO 50 LBS/FT. DAMPING REDUCES TO 7% OF CRITICAL WITH NO CABLE LOADING. DAMPING INCREASES WITH INCREASING FLOOR RESPONSE LEVEL. BRACING / RIGIDITY IS DESIRABLE BECAUSE IT INCREASES THE RESONANT . FREQUENCY, DECREASES DEFLECTIONS AND INCREASES THE DA! PING IN THE ' SYSTEM. CA3LES DO NOT APPEAR TO INFLUENCE OVERALL SYSTEM RESPONSE EXCEPT o FOR DAITING AND THEIR EWS. ALL STRUT SUPPORTED CABLE TRAYS TESTED SURVIVED WITHOUT DA11 AGE. o TriESE SYST.W.S WF.E TESTED AT INPUI LEVELS (ZPA VALUE) 0F 1 TO 3 G'S TO TE SEAF2 TAELE. 6 6 s -r-- g-.- 9 .,,7 a -rw-p -P --v-

eI I M ARGOR P TSET E 1 iT l iT W I E W T W V Y E E T I R I. V I L E S, B R W I E I N I N I A W T O V T O A

W I

E E D P 4 E T R D K M I A L O V T A D A C E N I R W i R E R A l M E D T E K U T N N T O C I A A S O O R T L Y R D C S P S B A o o. o o o E I S ,i

SEABROOK CABLE TRAY SUPPORT TYPES ..,,,,, j,,. j.,,,,,,:,,y. ;.., e.,. ;,s.- /.e I 8 p.' ~ {..,.,;.f. ] ; '.,,.,',,'..: '1., ; .~.,' q

  • 3 1.. f n.,.
  1. .';.]".**e..

.f'.h*.,j,7.',.7e..'.' ~ f ,*.a. '....* } 4 ... y'.

J.'

...,....~ c ' ',.18.. n :, J.. ~, ' n. _ L.,; _ l / \\ I IN A w,'/ l@ I \\ @ls l@ @I l i n l N i i i

c. :,;

63 ( 6 6 6

)..

g .6 I .I. ' ' l I i I r 9 D-

r...

4 A1 o< l! l l@ iP I i g- ' s.d .'i 6 6 r 4.: i _o_____ (..e s s i i I l \\ '.'. r y 4 - i u.,... i ,n* I@ 'g:: c o< @ ll l @l 8 I l i ,s b b p.,. s ~. l l

.
.?

I e -t ea. l l N f f F g- ._.dji s' _q O Tves PLAN

~~ SEABROOK CABLE TR AY SUPPORT TYPES CONC OR STEEL l ////////////////// //// //// \\ / / CABLE TRAY (TYR) f' i / s TRANSVERSE 30 (TYP) mist =s:sina URACE n mEmmmmbu i --e e i LE TW il ii Pl0 g Yp) yp TR AY SUPPORT P1001 - 'W" "L" ( TY P.) ~ = r \\ T (TYP) f SIDE ELEV FRONT ELEV b. E x /~ N s' / N \\, 'c TRANSVERSE BRACE / s ,, g' NOTE : "L " VARIES FROM 5'-0~ TO 10:0" x 4 BRACE (TYPEVERYl y TRAY) TYPICAL TRAPF7F-TYPE TRAY SUPPORT TYPE d6')

SEABROOK CABLE TRAY SUPPORT TYPES ////. _f_f / / ////. I ~ CONC OR ye} o STEEL 1 i g (P1004 TRA S RT i i j TYR ) / p c' / Y AXlAL BRACE P1001 "L" f- 'W (TYP ) <t-FRONT ELEV SIDE ELEV D f //> ,/ M,/ N l ,,9 NOTE: " L" VARIES FROM 5'- 0" TO 10'0. [/ AXI AL BRACE ~6 / (TY P. EVERY T R AY) t s TYPICAL WALL BRACED TYPE TRAY SUPPORT TYPE m G, ,..,-n

SEABROOK CABLE TRAY SUPPORT TYPES ///x. ni _us 'm y 'jl CONC OR TRANSVERSE f-C ABLE r.T eel. BRACE / ,TR AY p i M i p ,1 t i. (NRI i Glumada h i. i, - P1004 4 __ j (TYR) p [ CABLE M n (TYR) TRAY y- / y i: i, si ,,,/ g ,a -7 r. [ I_ "L" _l Cf _'W'_~ ~ ( MAX.) f 10*- 0 " _ ~' SIDE ELEV FRONT ELEV f' f / f TRANSVERSE / / / f /. BRACE ~ Q = g%g 9A ~ of ~e -e - / -A (TYR EVERY I N N-4 TRAY) ,c t e /g N, TvoirAI piano Tn ecilIbic Tvoc T D AY clIpDORT TYPF M

b.p&T(of @ 1 f 4p. ~ M h Y E A Y R A P D Y T R E T E T D E P D 4 E T L o Y L E 1) BW 0R B o T B 0 A C p A MT 1Y 1 T C ES P( u a= .,f$<. { gg. l l S R [i La = _ ( / E V i n a P E W L Y a_ E n s a a T f = j/ k///j // NAIg~ .,i,f r,. r' ' ly j

  • o :

1) T L 0R L 0 R Y 1 A P (T O W P O - P E US Y A h R YA T R Y E E T A P P E R Y E Y T T L 1) T L D 0P B E A 0Y 1 L C P (T L A D 1) A 0P L 0 C 1Y P (T L (, fL / C n / /- K / / O s _~ t / i i / r i i i / O R W i i W / V /. 4 E /. i i i e i B / ~ ~ ~ ~ L / A / E / f i E / L "0 X / 8 L A / S O A '0 M l '0 X.

)

EW 1 - A ( 4) '0 M ')0 R4 1 N ') 0R 1 ( 0 Y 0Y 1 1 T T P( P( M LL .A OEW l ";) 3I l li i i

ppp If 9 3 O h = / 4 E E Y P / 00 P A Y /.! 1 P Y R 4 T / T T 1) 0 0R / 0 0 Y E 1 / T L P 1 P( B / [ A / C Z. _~ n /. e [ S / V / i E 8 / W / E o / W L P / i i l/ E n Y j ,'g T / / /j j, # j = / i, L n L T / R / i A \\ W 1) 9 0 O 0 R O 1Y 4) F l P P( 0R P 0Y 1 T U P( 1c / S l l.A ogW Y h) Q A f R (2 2 4) T E 4 )g E 0P P 0 Y P 0 YA Dy 1 E r Y P( Y T R Pg ) 1 T Vfg ,' f T / 0P L T B E. 9 I_ ~_ / 0Y //. T P( / 10 1) A 0P / j L A 7 0Y C C 1 P( /- T 8 i a / e / K f .[ / V "r. .= V O 8 i i .s s / E i i i O w E W L R / L /. e 8 i E B / i_ E l i i = A / / i i / E / 0 u 3 / \\ S /. 0 / 3 /. /.\\' 4 s / 0 / 0 / 1 P / / j i ,i l, )i j

/rbbwb B

y. zs i

I ~ l 3 i g l 5 k 3 I I. ~ b IE El e si u, 5 3 51 E El, = E. a u ~ o l D At z I E, ew I m: M l

  • IlE I

l E i eZ l r k 2 N I 1 I 2 I I J R S Y P e .<m--==E O e G D e 7..

W fy C 84 r IMPLEMENTATION OF 20% DAMPING AT THE SEABROOK STATION DESIGN o GUIDELINES HAVE BEEN DEVELOPED TO ESTABLISH THE SIGNIFICANT CONTROLLING PARAMETERS SUCH AS CONFIGURATION, TRAY MATERIALS, STRUT HATERIALS AND CONNECTION HARDWARE.' INSTALLATION o DETAILED SUPPORT DRAWINGS FOR EACH SUPPORT WILL BE ISSUED TO CONSTRUCTION. c ALL SUPPORTS WILL BE REINSPECIED TO THE DETAILED SUPPORT DRAWINGS. APPLICATION c USE OF THE 20% DAMPING WILL BE ON A CASE-BY-CASE BASIS. c APPLICATION EXAMPLES: e RESOLUTION OF CONSTRUCTION FABRICATION PROBLEMS c SIMPLIFIED PISOLUTION OF INTERFEPINCES WITE FIELD RUN COMPONENTS o OPTIMIZATION OF CONNECTION SIZES c OPTIMIZATION OF CONNECTION CHANGES

Akkowl 6 p CONCLUSIONS o DAMPING IS DEVELOPED' BY CABLE MOTION. -o. SEABROOK CABLE TRAY SUPPORTS ARE ESSENTIALLY RIGID. o 20% DAMPING OPTIMIZES DESIGN. o ENGINEERING / CONSTRUCTION SAVINGS CAN BE REALIZED WITHOUT DECREASING THE QUALITY AND SAFETY OF THE SYSTEM. o DeiEDIATE IMPLEMENTATION IS REQUIRED TO REALIZE OPTIMAL BENEFIT. . -}}