ML20128G935

From kanterella
Jump to navigation Jump to search
Forwards Submittal Supporting Accelerated Advanced BWR Review Schedule.Submittal for Resolution of Open & Confirmatory Piping Dfser Items Listed in Attachment 1, Including Previously Closed Items for Info
ML20128G935
Person / Time
Site: 05200001
Issue date: 02/09/1993
From: Fox J
GENERAL ELECTRIC CO.
To: Poslusny C
Office of Nuclear Reactor Regulation
References
NUDOCS 9302160193
Download: ML20128G935 (94)


Text

.

)

~

GE Nuclear Energy n

February 9,1993 Docket No. STN 52-001 Chet Poslusny, Senior Project Manager Standard;zation Project Directorate Associate Cirectorate for Advanced Reactors and Liceue Renewal Office of the Ntelear Reactor Regulation

Subject:

Submit;91 Supporting Accelerated ABWR Review Schedule

Dear Chet:

Enclosed are (1) markups for proposed changes to Sections 3.7 and 3.9, (2) results of GE's analysis of BNL (NUREG/CR-1677) Piping Benchmark Problem No. 2 using PISYS, and (3) results of GE's previous analyses of DNL (NUREG/CR-1677) Piping Benchmark Problems using SAP for all four problems and PISYS for Problem No.1.

This submittal is for resolution of the open and confirmatory piping DFSER items listed in Attachment 1, which also includes the previously closed items for information.-

Please provide copies of this transmittal to Dave Terao, Jim Brammer, and Shou Ilou.

Sincerely, beh Jack Fox Advanced Reactor Programs x: Son Ninh (NRC-NRR) w/o Enclosure Giuliano DeGrassi (BNL) w/ Enclosure Norman Fletcher (DOE) w/o Enclosure Maryann Herzog (GE) w/o Enclosure Tony James (GE) w/o Enclosure Roy Loukon (GE) w/o Enclosure Ji n 24

~ #

Jggatgg g oj@$

gt 7, d 8 A

i l

4

- - - - - - - - - - - - - - - - - ~ ~ "

~ ^ ' ~ ~ ~ - - - - - ----~

L

. ATTACHMENT I LIST OF OPEN OR CONHRMATORY PIPING DESER TITJWS ADDRESSED BY FEBRUARY 9,1993 TRANSMITTAL -

OPEN 14.1.3.3.3.41 ITAAC-structural design of small bore piping (Same as 3.9.2.2-5) 14.1.3.3.4.1-1 ITAAC-confirmatory analys on computer model adequacy (Not in 3.9) 14.1.3.3.4.3-1 ITAAC-piping benchmark program (Same as 3.9.1-2) 14.1.3.3.5.7-1 ITAAC-environmental elTects in fatique design, Cl.1. Piping

~

(Same as 3.9.3.1-1,14.1.3.3.5.7-2,14.1.3.3.5.8-1 and 14.1.3.3.9.1 1) 14.1.3.3.5.7-2 ITAAC-method ofincluding erniron effects of fatigue (Same as 14.1.3.3.5.71 and 14.1.3.3.9.1-1) 14.1.3.3.5.8-1 ITAAGenvironmental effect in fatigue design, Cl. 2 (Same as 3.9.3.1-1,14.1.3.3.5.7-1,14.1.3.3.5.7-2 and 14.1.3.3.9.1-1) 14.1.3,3.5.10-1 ITAAC-methodology to address thermal striping (Same as 3.9.3.12) 14.1.3.3.5.151 ITAAC-OBE as a design load (Same as 3.1-1) 14.1.3.3.5.1 &1 ITAAC-minimum temperature for thermal analyses (Same as 3.9.3.1-3)

'14.1.3.3.41 ITAAC pipe support criteria (8 items)

(Same as 3.9.3.3-1(1) thru (6) and 3.9.3.S2) 14.1.3.3.9.1-1 ITAAC-fatigue cumulative usage factor of 1.0 (Same as 3.9.3.1-1,14.1.3.3.5.71, and 14.1.3.3.5.8-1)

- Continued -

f ATTACHMEhT I (Continued)

LIST OF OPEN OR CONFIRMATORY PIPING DFSER ITEMS ADDRESSED BY FEBRUARY 9,1993 TRANSMrITAL CONFIRM 14.1.3.3.3.8-1 ITAAC Dynamic scismic analyses of MS piping (Notin 3.9)

See new Section 3.2.5.3 14.1.3.3.3.8 2 ITAAC-verification of seismic /nonseismic (Same as 3.9.2.13 and ) See item 14.1.3.3.3.8-1 above 14.1.3.3.4.2-2 ITAAC-Pipe flexibility between node points (Same as 3.9.2.2-2) 14.1.3.3.4.2 3 ITAAC-Effects of equipment attached to piping (Same as 3.9.2.2-3) 14.1.3.3.5.4-2 ITAAC Use of Code case N-411 and N-420 (Not in 3.9) 14.1.3.3.5.6-1 ITAAC-High frequency mode analysis (Not in 3.9)

PREVIOUSIN CLOSED PIPING DFSER TrEMS (For infonnation only)

CLOSED 14.1.3.3.3.9-1 ITAAC-Iluried piping design (Same as 3.9.2.2-7)-

See Amendment 23 14.1.3.3.4.4-1 ITAAC-Small bore piping decoupling criteria -

- (Same as 3.9.2.2-4)

See Amendment 23 14.1.3.3.5.2 1 ITAAC-60 year life cycle factor of 1.5 (Same as 3.9.1-1)

See Amendment 23 and 1/30/93. transmittal 14.1.3.3.4.2-1 ITAC-Mass point in dynamic piping model (Same as 3.9.2.2-2)

SSAR Section 3.7.3.3.1.2 is accetable 14.1.3.3.5.4-1 ITAAC-Code case N-411 damping values-

. (Not in 3.9)-

See Amendment 23 ~

14.1.3.3.5.131 ITAAC-Inertial and scismic motion effects (Not in 3.9)

See markups of Sections 3.7 and 3.9 in 1/28/93 and 1/30/93 transmittals 14.1.3.3.5.17-1 ITAAC-modal damping for composite structures (Same as 3.9.2.2 6)

See Amendment 23

+

i ~

s (2/9/93)

MARKUPS OF SECTIONS 3.7 AND 3.9 FOR PIPING DFSER ITEMS

MN 21MIMAE Standard Plant uv n branch line connection to the pipe run and the 3.7.33.1.6 Modeling of Piping Supports elevation of the branch line anchors and restraints.

Snubbers are modeled with an equivalent stiffness which is based on dynamic tests (2) The response spectra will not be less than performed on prototype snubber assemblies or on the envelope of the response spectra used in data provided by the vendor. Struts are modeled

-k the dynamic analysts of the run pipe, with a stiffness calculated based on their 4

length and cross sectional properties. The I

(3) Amplification-by the rus-pipe-must-be3 stiffness of the supporting structure for

[

heavnted-for:-tibed the location of snubbers and struts i/ included in the piping Y

y branch connection to the run pipe is more analysis model, unless the supporting structure than three run pipe di. meters from the can be considered rigid relative to the piping, d

nearest run pipe seismic restraint, The supporting structure can be considered as d

amplification by the run pipe will be rigid relative to the piping as long as the en accounted for, criteria specified in Subsectio_o 3.7.3.3 4 are

@er+ nd~sh M

= c c-i When the equivalcat stat.ic analys.is method is

=

g used, the horizontal and vertical load Anchors at equipment such as tanks, pumps and [

R h )1

-h coefficients C and C applied to the heat exchangers are _modeled with calculated t

h response spectra acceleratio,ns will conform with stiffness properties./ Frame type pipe supports Subsection 3.7.3.8.1.5.

are modeled as described in Subsection D$

H 3.7.3.3.4

'S Q The relative anchor motions to be used in M

either static or dynamic analysis of the 3.7.33.1.7 Modeling of Special Engineered decoupled branch pipe shall be as follows:

Pipe Supports Q

(1) The internal displacements only, as Modifications to the normal linear clastic 9 determined from analysis of the run pipe, piping analysis methodology used with f&-h may be applied to the branch pipe if the conventional pipe supports are required to x

y relative differential building movements of calculate the, loads acting on the supports and @%{

the large pipe supports and the branch pipe on the piping components when the special Ssg4 supports are less than 1/16 inch.

(j gnginected supports, described in Subsection yk A 3.13.4.1(6), are used. These modifications are p k' b (2) If the relative differential building needed to account for greater damping of the movements of the large pipe supports and the energy absorbers and the non-linear behavior of 3 g(

branch pipe supports are more thau 1/16 the limit stops. If these special devices are

.R s inch, motion of the restraints and anchors used, the modeling and analytical inctbodology y

-R g 4. (

of the branch pipe must be considered in will be in accordance with methodology accepted addition to the inertial displacement of the by the regulatory agency at Ihe time of H cy(g!

run pipe, certification or at the time of application, per the discretion of the applicant. <

3.7.33.1.5 Selectice of input Eme Illstories

'3,"7. 3,3d8 a

,t IM$[3/W

/

3.7JJ.2 Modeling of Equipment AI_7 In selecting the acceleration time history to be used for dynamic analysis of a piping system,,

For dynamic analysis, SeismTc Category'l the time history chosen is one which most closely equipment is represented by lumped mass systems describes the accelerations existing at the which consist of discrete masses connected by piping support attachment points. For a piping weightless springs. The criteria used to lump system supported at more than two points located masses are:

at different elevations in the building, the time history analysis is performed using the (1) The number of modes of a dynamic system is independent support motion method where controlled by the number of masses used; acceleration time histories are input at all of therefore, the number of masses is chosen so the piping structural attachment points.

that all significant modes are included Amendment 23 34I

A Hacknenf 3ct Mass effech nill be inc/adea' for egalpmenf whicA Aave a funda' mesla/

fregaency oF /ess Go An.

A simplified mode / of the egajpmenf is inc/uded )n the pjping sysk swa'el.

C ziem No. l+. ).3.s. 4. 2 -C AHachment slo 3n. 3,3. I. 8 Response.

spec /rc<

amoSficanom af Sypor-l AHacAmen,f Awh The respanse spectra provided'.h the Pfainy Anabst will inc/ude amplificafion facfors aire h th e fleNbi/Hy af buiWmj loca/ sfvuctare.s, sacA as stee/ plaftoras ased for sc<pporhhy pipih3 aca' other egaV> ment Alternativeg fAe civil /siracbral egineer will specif the asylificaffon factov k be yp/ied to tie baila'iy vepnse specfret.

( 1+em Ab. ID. 3.3.9. z- &)

/~~m

($+es M. M. L LAVid o*~",

eg J gg g.

g, f y & n;) 3,

~

AM j u,cs in se a,aLeis: o.go &,4eef,, acel, s

twa mp Standard Plant g g 9 4,gg g.je A/a REv n 4

the number of degrees of freedo;;t.are-taken - neer. An additional examination of these sup.

{

more than twice the number of modes with fre-ports and restraining devices is made to assure 8

quencies less than 33 Hz.

that their location and characteristics are d

consistent with the dynamic and static analyses j

(2) Mass is lumped at any point where a sig-of the system, f

nificant concentrat:d weight is located g

(e.g., the motor in the analysis of pump 3.7.3.3.4 Analysts of Frame T)pe Supports 4

motor stand. the impeller in the analysis of g

The design loads on frame type pipe supports (incade (a) loads transmitted to the support by pump shaft, etc).

(3) If the equipment has free.end overhang span the piping response to thermal expansion, dead with flexibility significant compared to the weight, and the inertia and anchor motion f

center span, a mass is lumped at the effects. (b) support internal loads caused by overhang span, the weight, thermal and inertia effects of loads of the structure itself, and (c) friction loads g

(4) When a mass is lumped between two supports, caused by pipe sliding on the support. To g

it is located at a point where the maximum calculate the frictional force acting on the N

displacement is expected to occur. This support dynamic loads that are cyclic in nature y" N(

tends to lower the natural frequencies of need not be considered. ' --""-

the equipment because the equipment fats ml -!!' S ;;.:k ec;ffide W A

4){

frequencies are in the higher spectral range "" 5 :. i: x..a

,.u..;

I1 m.

p%l of the response spectra. Similarly, in the

--N "r "

9 ':, 7 1..,

.2 case of live loads (mobile) and a variable L2.,

._ fT.;;;. To determine the response of 4"

support stiffness, the location of the load the support structure to applied dynamic loads, and the magnitude of support stiffness are the equivalent static load method of analysis ks.

chosen to yield the lowest frequency content described in Subsection 3.7.3.8.1.5 may be

+U for the system. This ensures conservative used. The loads trasmitted to the support by gg dynamic loads since the equipment the piping will be applied as static loads yy frequencies are such that the floor spectra acting on the support, q '6 gs4 peak is in the lower frequency range. If not, the model is adjusted to give more As in the case of other supports, the forces conservative results, the piping places on the frame type support are 'gp4 a

obtained from an analysis of the piping. vin the o

3.7.333 Field tocation of Supports and analysis of the piping the stiffness of the g

Restraints frame type supports shall be included in the g

h piping analysis model, unless the support can be

% -Q, The field location of seismic supports and shown to be rigid. The frame type supports may 5wd T'd j y restraints for Seismic Category I piping and be modeled as' rigid restraints providing they piping systerns components is selected to satisf( are designed so the maximum service level D f {,W the following two conditions:

$) deflection in the direction of the applied load

,$ Wiess than'ytti inch and providing the total Q&

(1) the location selected must furnish the re-gap or diametrical clearance between the pipe Y w )"i cot 5

quired response to control strain within and frame support is between 1/16 inch and 3/16 L "$E g

allowable limits; and inch when the pipe is in either the hot or cold 3

condition. - For a frame type support to be (2) adequate building stren h and stiffness for considered rigid, it shall be at least,Wiimes '200 attachment of the component supports must be as stiff as the piping. The piping stiffness is available.

calculated using the following equation:-

The final location of eismic supports and re.

El straints for Seismic Category I piping, piping Kp = g system components. a/d equipment, including the L

l placement of snubb s,is checked against the a

drawings and instr ctions issued by the engi.

E=

modules of etasticity of pipe wM

-m h be %l

.~

Pee Wc &lW No. 353

& sede / eve /d "

^ " ' " * " " ' ' '

G) b" therefwe deflectim limb' swd be Level b Smd.,/V is a ven w,Ue seWtice

~ - ~ _

~-

~

ABM 224sioars Standard Plant

- arv s I= moment ofinertia of pipe times the mass times the maximum spectral-acceleration from the floor response spectra of

--.b

. L =gW the suggested pipe support - the point _of attachments of multispan spacing in Table NF.36111 of ASME structures. The factor of 1.5 is adequate for Code, Section 111 simple beam type structures, the factor used is justified.

3.7.3A Basis of Selection Mrequencies 3.7.3.61hree Components of Earthquake Motloa Where practical, in order to avoid adverse resonance effects, equipment and components are The total seismic response is predicted by designed / selected such that their fundamental - combining the response calculated from the two frequencies are outside the range of one half to twice the dominant frequency of the associated support structures. Moreover, in any case, the equipment is analyzed and/or tested to demon.

strate that it is adequately designed for the applicable loads considering both its fundamental frequency and the forcing f equency of the applicable support structure.

All frequencies in the range of 0.25 to 33 Hz are considered in the analysis and testing of structures, systems, and components. These fre-quencies are excited under the seismic excita-tion.

If the fundamental frequency of a component is greater than or equal to 33 Hz, it is treated as seismically rigid and analyzed accordingly.

Frequencies less than 0.25 Hz are not considered as they represent very flexible structures and ate not encountered in this plant,

- The frequency range between 0.25 Hz and 33 Hz covers the range of the broad band response spec-trum used in the design.

3.7.3.5 Use of Equivalent Static Lead Methods of Analysis 3 *f.5.1 Subsysteams Other Thaa NSSS

-See Subsection 3.7.3.8.1.5 for equivalent static load analysis method.

3.7.3.5.2 NSSS Subsystems When the _ natural frequency of a structure of component is unknown, it rnay be analyzed by apply-ing a static force at the center of mass. In order to conservatively account for the possibil-ity of more than one significant dynamic mode, the static force is calculated as 1.5 times the I-37171 Amendment 23

ABWR muom Standard Plant nrv n horhontal and the vertical analysis.

When the response spectrum method of rnodal analysis is used, contributions from all modes.

When the response spectrum method or static except the closely spaced modes (i.e., the coefficient method is used, the method for difference between any two natural frequencies combiring the responses due to the three is equal to or less than 10%) are combined by orthogonal components of seismic excitation is the square root.of the sum.of the squares (SRSS) given as follows:

combination of modal responses. This is defined mathematically as:

3 1/2 N

R. -

I R[I j=1 (3.7 14)

R=

I (R )'

g g

i=1 (3.7 15) where where R;j

= maximum, coaxial seismic response of interest (e.g., displacement.

R

= combined response; moment, shear, stress, strain) in th directions i due to earthquake R;

= response to tte i mode; and excitation in direction j, (j = 1, 2,3).

N

=. umber of modes considered in the analysis.

R;

= seismic response of interest in i direetion ior design (e.g.,

Closely spaced modes are combined by taking displacement, moment, shear, the absolute sum of the such modes.

stress, strain) obtained by the SRSS rule to account for the An alternate to the absolute sum method nonsimultaneous ocrurrence of the presented in Regulatory Guide 1.92 is the R

's following:

gj.

When the time. history method of analysis is

'N 1/2 Ph22lRf R,l used and separate analyses are performed for each R=

I earthquake component, the total combined response

.i=1 (3.7 16) for all three components shall be obtained using the SRSS method described above to combine the where the second summatlow is to be done on all maximum codirectional responses from each i and m awdes 4ose frequencies are closely carthquake component. The total response may spaced to each other, alternatively be obtained, if the three component motions are mutually statistically indepe'ident, 3.7.3.7.2 NSSS Subsysten,s by algebraically adding the codirectional responses calculated separately for each in a response spectrum modal dynamic component at each time step, analysis, if the modes are not closely spaced (l.c., if the frequencies differ from each other When the time. history analysis is performed by by more than 10% of inc lower frequeucy), the applying the three components motions modal responses are combined by the simultancoasty, the combined response is obtained - square root.of the sum.of. the squares (SR$5) directly by solution of the equations of motlou, method as described in Subsection 3.7.3.7.1 and This method of combination is applicable only if Regulatory Guide 1.92.

the three componerit motions are mutually If some or all of the modes are closely statistically independent.

spaced, a double sum method, as described in 3.7.3.7 Combination of Modal Response Subsection 3.7.3.7.2.2, is used to evaluate the Y

3.7.3.7.1 Subsystems Other Than NSSS 8hf f Sd 4

3us AmcMment 23 N-

A++achnud 9'

f the "When the response spectrum method of analysis is used, modal responses for modes below the cutoff frequency (specified in Section 3.7) are combined in accordance with the methods given in

)

The responses associated With Subsections 3.7. 3.7.1 and 3. 7. 3. 7. 2.

higher frequency modes (above cutoff frequency) are calculated and combined with the low frequency modal responses according to the procedura described in Subsection 3.7.3.7.3.

These methods and procedures are applicable for seismic loads as well as for loads suppression pool dynamic with higher frequency input such as loads."

c ihm no. l+. I, 3, s.c. 6-1 co-,,f 1) b e,

4

ABWR m-Standnd. Plant ux.n 3.7.3.8.1.9 Design of Small tiranch and Small (b)

When the small bore piping handbook is Bore Piping serving the purpose of the Design

., o

($

Report it meets all of the ASME 4$

(1) Small branch lines are defined a/those,{Jg requirements for a piping design

,4 9 lines that can be decoupled fromdiiTlytical report. This includes the piping and

,A 7) y model used for the analysis of the main run w its supports.

rd piping to which the branch lines attach. As f

-J allowed by Subsection 3.7.3.3.1.3 branch c (c)

Formal documentation exists showing R

lines can be decoupled when the ratio of run N piping designed and installed to the cf 7 to branch pipe inoment of inertia is 25 to 1, {

small bore piping handbook (1) is R

y conservative in comparison to results f1 or greater. In addition to the moment of %

j inertia criterion for acceptable decoupling, J

from a detail stress analysis for all g %,

these small branch lines shall be designed q applied loads and load combinations C

with no concentrated masses, such as valves. 6s 44ed-h-the-41eWg*4pe Ww c.,

in the first one half span length from the, q 4.

(2) does not result in piping that is main run pipe; and will(sufficient flexi M i,4 less reliable because of loss of s

bility to prevent restrainTof movement of 4 flexibility or because of excessive the main run pipe. The small branch line is "kg number of supports, (3) satisfies considered to have adequate flexibility if Mc required clearances around sensitive its first anchor or restraint to movement is % v s components.

at least one half pipe span in a direction' O E*

perpendicular to the direction of relative The small bore piping handbook methodology movement between the pipe run and the first will not be applied when specific information is anchor or restraint of the branch piping. A needed on (a) magnitude of pipe and fittings pipe span is defined as the length tabulated stresses (b) pipe and fitting cumulative usage in Table NF 36111 Suggested piping Support f actors. (c) accelerations of pipe mounted Spacing. ASME B&PV Code Section lit, Sub-equipment, or locations of postulated breaks and section NF. For branches where the pre-leaks.

ceding criteria for sufficient flexibility cannot be met, the applicant will demon.

The small bore piping handbook methodology strate acceptability by using an alternative will not be applied to piping systems that are criteria for sufficient flexibility, or by fully engineered and installed in accordance acuunting for the effects of the branch with the engineering drawings, piping in the analysis of the main run 4

3.7.3.8.1.10 Multiply Supported Equipment and

piping, Components with Distinct inputs (2) For small bore piping defined as piping 2 inches and less nominal pipe sire, and small For multi supported systems (equipment and branch lines 2 inches and less nominal pipe piping) analyred by the response spectrum method size, as defined in (1) above, it is for the determination of inertial responses, acceptable to use srnall bore piping either of the following two input motions are handbooks in lieu of performing a system acceptable:

flexibility analysis, using static and dynamic mathematical models, to obtain loads (1) envelope response spectrum of all support on the piping elements and using these loads points for each orthogonal direction of to calculate stresses per equations in NB, excitation, or NC, and ND3600 in Section ill of ASME Code, whenever the following are met:

(2) independent support motion (ISM) response spectrum at each support for each orthogonal (a) The small bore piping handbook at the direction of excitation.

time of application is currently accepted by the regulatory agency for When the ISM response spectrum method of use on equivalent piping at other analysis is used, the following conditions nucle ar _ power _ plants._

shnujd_be met.

2ZI ASII foM 6#'h" &h Subseehen Y,,4 h

(b,. ffof h kV saewdance

^""*"" "

ye anai ud in i

desi4td m aakdance ^"U MMW h are.

U3a

(})

3

(.C% Alo.14.1,3,3 (>~Jj.ved 2)

l i

ABWR msm Sandard Plant Ptv D are applied to the subsystern model, and the modal a

o forces, shears, moments, stresses, and u

=

+

deflections are determined.

Ou 2

(9) The modal forces, shears, moments, stresses, 3.7.3.8.1J EHect of Differvatial flullding and deflections for a given direction are Mosements combined in accordance with Subsection 3.7.3.8.1.4.

In most cases, piping subsystems are anchored and restrained to floors and walls of buildings (10) Steps (5) through (9) are performed for each that may have differential roovements during a of the three earthquake directions.

seismic event. The movements may range from insignificant differential displacements between (11) The seismic force, shear, moment, and stress rigid walls of a common building at low eleva.

resulting from the simultaneous application tions to relatively large displacements between of the three components of earthquake separate buildings at a high seismicity site.

loading are obtained in the following Differential endpoint or restraint deflec.

manner:

tions cause forces and moments to be induced R = /R[ + R' + P[

(3.7 24) into the piping system. The stress thus pro.

I duced is a secondary stress. It is justifiable to place this stress, which results from R

=equivaleat seismic restraint of free end displacement of the piping reaponse quantity system,in the secondary stress category because (force, shear, moment, the stresses are self.llmiting and, when the stress, etc.)

stresses esceed yleid strength, minor distortions or deformations within the piping R R R

= coline ar r e s poaae system satisfy the condition which caused the

  • Y #

qu antitie s due to stress to occur, carthquake motion in the x, y, and a directions, The earthquake thus produces a stress.

respectively.

exhibiting property much like a thermal expansion stress and a static analysis can be 3.7.3.8.1.7 Damping Ratio used to obtsin actual stresses. The differential displacements are obtained from the The damping ratio percentage of critical damp.

dynamic analysis of the building. The ing of piping subsystems corresponds to Regula.

displacernents are applied to the piping anchors tory Gu.de 1.61 or 1.84 (ASME Code Case N 4111),

and restraints corresponding to the maximum The damping ratio is specified in Table 3.71.

differential displacements which could occur.

The static analysis is made three times: once Strain energy weighted modal damping can also for one of the horizontal differential be used in the dynamic analysis, Strain energy displacements, once for the other horizontal weighting is used to obtain the modal damping differential displacement, and once for the coefficient due to the contributions of damping vertical, different elements of the piping system. The element damping values are specified in Table The inertia (primary) and displacement 3.71, Strain energy weighted modal damping is (secondary) loads are dynamic in nature and calculated as specified in Subsection 3.7.2.15.

their peak values are not expected to occur at the same time. Hence, combination of the real in direct integratiou analysis, damping is values of inertia load and anchor displacement input in the form of a and $ damping load is quite conservative. In addition, anchor constants, which give the percentage of critical movement effects are computed from static damping, A as a function of the circular analyses in which the displacements are apphed to produce the most conservative loads on the frequency, u.

Components. Theref re, the Primary and yfa NA R. 43 3.E 4-7_

secondary loads are combmed by the SRSS method AS M <We 6sc ij-fl]-J cla'mpj 5, nof[e md for analy/ _9 mme e.,er y&), ASM6 cd w,,,

(

w i

06soebi

% mmu

?WY

/ v1 acc 0r&u ENlftit'c r -

y

ABWR

[Inser1 Me/Mz. )

mim Sinndard Plant nn n l

The results of the data analyses, vibration COL license laformation requirements.

amplitudes, natural frequencies, and mode shapes

-A are then compared to those obtained from the Thermal stratification of fluids in a piping theoretical analysis.

system is one of the specific operating conditions that is included in the loads and Such comparisons provide the analysts with load combinallons that are contained in the added insight into the dynamic behavior of the piping design specifications and design reactor internals. The additional knowledge reports. It is known stratification can occur gained from previous vibration tests has been in the feedwater piping during plant startup and utilized in the generation of the dynamic models when the plant is in hot standby conditions for seismic and loss of coolant accident (LOCA) following scram (see Subsection 3.9.2.1.3). I f, analyses for this plant. The models used for during design or startup, evidence of thermal this plant are similar to those used for the stratification is detected in any other piping vibration analysis of earlier prototype BWR system, then stratification will be evaluated.

plants, if it cannot be shown that the stresses in the pipe are low and that movement due to bowing is 3.9.3 ASME Code Class 1,2, and 3 acceptable, then stratification will be treated Cornponents, Component Supports, and as a design load. In general, if temperature Core Support Structures differences between the top and bottom of the pipe are less than 50 F. It may be assumed 3.9.3.1 leading Combinations. Design design specification and stress reports need not Transients, and Strrss Limits be revised to include stratification.

This section delineates the criteria for The design life for the ABWR Standard Plant selection and definition of design limits and is 60 years. A 60 year design life is a loading combination associated with norraal requirement for all major plant components with operation, postulated accidents, and specified reasonable expectation of meeting this design seismic and other reactor building Sibration life, llowever, all plant operational components (RBV) events for the design of safety related and equipment except the reactor vessel are ASME Code components (except containment designed to be replaceable, design life not components which are discussed in Section 3.8).

withstanding. The design life requirement allows for refurbishment and repair, as This section discusses the ASME Class 1,2, appropriate, to assure the design life of the and 3 equipment and associated pressure retaining overall plant is achieved. In effect, parts and identifies the applicable loadings, essentially all piping systems, components and calculation methods, calculated stresses, and equipment are designed for a 60 year design allowable stresses. A discussion of major life. Many of these components are classified equipment is included on a component by component as ASME Class 2 or 3 or Quality Group D. In the basis to provide examples. Design teansients and event any non Class 1 components are subjected dynamic loading for ASME Class 1,2, and 3 to cyclic loadings, including operating equipment are covered in Subsection 3.9.1.1.

vibration loads and thermal transient effects, Seismic related loads and dynamic analyses are of a magnitude and/or duration so severe that discussed in Section 3.7. The suppression the 60 year design life can be assured by pool.related RBV loads are described in Appendix required Code calculations. COL applicants will

38. Table 3.9 2 presents the combinations of identify these components and either provide an dynamic events to be considered for the design appropriate analysis to demonstrate the required and analysis of all ABWR ASME Code Class 1,2, design life or provide designs to mitigate the and 3 components, component supports, core magnitude or duration of the cyclic loads.

support structures and equipment. Specific Cornponents excluded from this requirement are loading combinations considered for evaluation of (1) tees where mixing of hot and cold fluids each specific equipment are derived from Table occurs and thermal sleeves have been provided in 3.9 2 and are ccatained in the design accordance with the P&lDs, (S) ~res. 4

--C-specifications and/or design reports of the -as-4ta-quanehur-k:

  • a %gve-an*MALR_

respective equipment. See Subsection 3.9.7.4 for has-aircad%m mformettrovidingshe e(

3 9'II Amendment 23 IV l. 3. s.5,8-/

!% /,33.1/-/ )

-.e..

A +VacAnen f z.

Nea) thircR gato.

in section 3.9.3,)

(Ztne NO. I4./,3,3,5/2-l)

Pi ing hads che No.. th e-__ % mal exp usion of f

the pi g m 3 e d M es m a) meAor.wemenh ch.nygorfs we wcla/cd A hc pigr3 lona.cor4innSns. All are e n % fed > J._ k m in w opershb3 modes

%eladd in khe -(,&ipe cuation.

eoment w0es are

% pin 3 sys kw,s AHCMfierahv3.tenpers tues of Iess Pi

,or egual _3o _150 ?F_a.ra. _notreguiree/

h 6e n

anaI zed be ffermal eyamion Joa &y.

y J'

(

C&DV1 3<?. 3, I )

- (.1+em No. J4. /. 3.5.S.M-l) 2ow press 5~el_^) Sin]-.ijs}hu.owt derface wi}h

+he reacdor. coo /M pressc<<e bcuu,cla <y Mt/I yned...ividh ei}her.a he desi scAech)e 40 nili colculated}Nckness,or a. pipe. Hallthic Kness

,oye for _ a pressare epal to

o. + finnes Me rescfor coohnt system presswe.

4 w-.

ssbR payc s.'l-g

Standard Plant av n 41,1c/ ( E ponae a u) e.a.as w.. m a ml++t o y,, '

,u,,,,,,. y bcalks.dat**s446r+r4eemfuhhetnni gradient *c.

I' I' 15 0 'I la-6ke-pip m!', (3) feedwater piping outside 52 3 3 7 /~O containment that is designed so cyclic loadings and stresses are no more severe than experienced by Class I piping inside containment. 4+e4*b.J2-

+eetir 3M .3-fee-GOL-ilertrrM*hmnenonG m u h + ms,ntu a -

4 f t15et' ~

N fdCk/HCh.f f 3.9.3.1.1 Plant Conditions

%.e All events that the plant will or might credibly experience during a reactor year are evaluated to establish design basis for plant equipment. These events are divided into four plant conditions. The plant conditions described in the following paragraphs are based on event probability (i.e., frequency of occurrence as discussed in Subsection 3.9.3.1.1.5) a n d correlated to service levels for design limits defined in the ASME Iloller and Pressure Vessel Code Section ill as shown in Tables 3.91 and 3.92.

3.9.3.1.1.1 Normal Condition Normal conditions are any conditions in the course of system startup, operation in the design power range, normal hot standby (with condenser available), and system shutdown other than upset, emergency, faulted, or testing.

3.9.3.1.1.2 Upset Conditina An upset condition is any deviation from normal conditions anticipated to occur often enough that design should include a capability to withstand the conditions without operational impairment. The upset conditions include system operational transients (SOT) which result from any single operator error or control malfunction, from a fault in a system component requiring its isolation from the system, from a loss of load or r~ver, or from an operating basis carthquake, o :. standby with the main condenser isolated is an upset condition.

3 9-1s t Amendment 13

1 i

ATTTACHMENT 5 FOR SECTION 3.9.3.1 (PAGE 3.9-18.1)

Severe thermal transients that will be evaluated for possible effect on plant life are temperature rate changes faster than 830 C/ Hour, when the total fluid temperature change is greatet-than 38'C.

The Safety Relief Valve (SRV) discharge piping in the wetwell and the SRV Quenchers are subjected to severe thermal transients during SRV blowdown events. Therefore, the COL applicant will perform ASME Class 1 fatigue analyses of the ASME Class 3 SRV discharge piping in the watwell and the SRV Quenchers. The purpose of these fatigue evaluations is to confirm that the fatigue cumulative usage factor is less than 1.0, and the fatigue stresses are less than their allowables. The fatigue evaluations will include the SRV blowdown thermal transient loads, thermohydraulic loads, Safe Shutdown earthquake loads and the Reactor Building vibration loads due to SRV blowdown. Environmental effects will be considered in the fatigue analysis in accordance with the requirements for ASME Section III Class 1 carbon steel piping specified in Subsection 3.9.3.1.1.7.

The SRV discharge piping in the wetwell will bs analyzed for SRV blowdown thermal stresses due to a step change in temperature inside the pipe from 32*C to 166*C. In order to minimize piping thermal stresses, no shear lugs will be welded to the SRV discharge piping.

The fatigue analysis of the SRV Quenchor will be performed in accordance with ASME Section III, Subsection NB-3200. The quencher will be analyzed for the heat transfer transient during SRV blowdown where there is a step change in temperature inside the quencher from 20*C to 166*C, and the outside of the quencher remains at 20'C. The fatigue evaluation will also include the SRV discharge pipe applied thermal loads, thermohydraulic transient loads, Safe Shutdown Earthquake loads and the SRV blowdown Reactor Building Vibration loads.

See Subsection 3.9.7.2 for COL license information requirements.

nO. li I.3.5.C.9-l,l'hI3.5 S % Al'3*39I~'D C Hem t

l 1

ABWR Standard Plant nv n 4

4 to accomplish its safety functions as required The MS system piping extending from the out.

)g N

by any subsequent design condition event, board main steam isolation valve to the turbine i

3 stop valve is constructed in accordance with the y

For active Class 2 and 3 pumps, specific ASME Boiler and Pressure Vessel Code Section

+} stress criteria to meet the functional III, Class 2 Criteria.

)ykD kf requirements are identified in a footnote to Table 3.9 2. For piping and valies there are no Turbine stop valve (TSV) closure in the main

!H%

specific stress criteria for functional steam (MS) piping system results in a transient y

requirements. The ASME code allowable stresses that produces momer.tary unbalanced forces acting are applied to assure functional capability under on the MS piping system. Upon closure of the emergency and faulted design conditions.

TSV, a pressure wave is created and it travels 313, /, /,7 at sonic velocity toward the reactor vessel l

y 3.9J.l.2 Reactor Pressurt Yessel Assembly through each MS line. Flow of steam into each MS line from the reactor vessel continues until The reactor vessel assembly consists of the the steam compression wave reaches the reactor reactor pressure vessel, vessel support skirt, vessel. Repeated reflection of the preuure and shroud support.

wave at the reactor vessel and the TSV produce time varying pressures and velocities.

The reactor pressure vessel, vessel support throughout the MS lines.

skirt, and shroud support are constructed in accordance with the ASME Boiler and Pressure The analysis of the MS piping TSV closure Vessel Code Section Ill. The shroud support transient consists of a stepwise time. history consists of the shroud support plate and the solution of the steam flow equation to generate shroud support cylinder and its legs. The a time. history of the steam properties at reactor pressure vessel assembly components are numerous locations along the pipe. Reaction classified as an ASME Class 1. Complete stress loads on the pipe are determined at each cibow.

reports on these components are prepared in Rese loads are composed of pressure times area, accordance with ASME Code requirements, momentum change and fluid friction terms.

NUREG-0619 (Reference 5) is also considered for feedwater noule and other such RPV inlet nonle The time history direct integration method of

design, analysis is used to determine the response of the MS piping system to TSV closure. The forces The stress analysis is performed on the are applied at locations on the piping system reactor pressure vessel, vessel support skirt, where steam flow changes direction thus causing and shroud support for various plant operating momentary reactions. The resulting loads on the conditions (including faulted conditions) by MS piping are combined with loads due to other using the clastic methods except as noted in effects as specified in Subsection 3.93.1.

l Subsection 3.9.1.4.2.1 oading conditions, design stress limits, and methods of stress analysis for 3.93.1 A Recirrulation Motor Cooling (RMC) the core support structures and other reactor Subsystem internals are discussed in Subsection 3.9.5.

The RMC system piping loop between the recir.

3.93.13 Main Steam (MS) System Piping culation motor casing and the heat exchanger is constructed in accordance with the ASME Boiler The piping systems extending from the reactor and Pressure Veuel Code Section lit, Subsection pressure vessel to and including the outboard ND 3600. Stresses are calculated on an clastic main steam isolation valve are constructed in ac.

basis and evaluated in accordance with NB.3600 cordance with the ASME Boiler and Pressure Vessel of the ASME Code,Section III.

Code Section III Class I criteria. Stresses are calculated on an clastic basis and evaluated in 3.93.13 Recirculation Pump Motor Pressure accordance with NB.3600 of the ASME Code Section Boundary 111.

The motor casing of the recirculation inter.

nel pump is a part of and welded into an RPV I*N Amendment U

AHadmed I

3.9.3.1.1.7 Environmental Effects on Fatigue Evaluation of Carbon Steel Piping Environmental effects on the fatigue design of ASME Section III Class 1 carbon steel piping will be evaluated in accordance with GE document, 408HA414 (Reference 9). Additional fatigue evaluations for environmental effects are not required for any of the following conditions: (a) Wster temperature is below 245'C, (b) Fittings, such as elbows and toes, that are conservatively designed and analyzed using the ASME Section III stress indicies and (c) For transients having total cycle times of 10 seconds or less and no tensile hold time, provided that the

~

oxygen content of the water does not exceed 0.3 ppm.

Environmental effects are considered by increasing the local peak stress through four factors used as multipliers to the stress indicies. The four factors are:(1) the notch factor, (2) the mean stress factor, (3) the environmental correction factor, and (4) the butt weld strength reduction factor.

(.:tews No. 14.1.3.3.S.7'?-)

(3) '

ABM smioaxe Standard Plant

.-__arv n 3.9.3.4 Component Supports NF4231. The critical buckling loads for the Class 1 piping supports subjected to faulted The design of bolts for component supports loads that are more severe than normal, upset AN is specified in the ASME Code Section 111, and emergency loads, are determined by using Subsection NF. Stress limits for bolts are given the methods discussed in Appendices F and XVil

+.

in NF.3225. The rules and stress limits which of the Code. To avoid buckling in the piping must be satisfied are those given in NF.3324.6 supports, the allowable loads are limited to 1

multiplied by the appropriate stress limit factor two thirds of the determined critical buckling

[

for the particular service loading level and loads.

stress category specified in Table NF.3225.21.

g Masimum calculated static and dynamie i*

Moreover, on equipment which is to be, or deflections at support locations are checked may be, mo.nted on a concrete support, sufficient to confirm that the suppoit has not rotated 9

holes for anchor bolts are provided to limit the beyond the vendor's retommended cone of action 9

anchor bolt stress to less than 10,000 psi on the or the recommended arc of loading.

nominal bolt area in shear or tension.

p Suppoftts for ASME Code Section til Concrete anchor bolts (including under cut instrumentation lines are designed and k

type anchor boits) which are used for pipe analyzed in accordance with ASME Codelection support base plates will be designed to the lil %section Nij d

j applienble factors of safety which are defined in

+

I&E Bulletin 79 02,' Pipe Support Base Plate The design of all supports for non-nuclear H

V Designs Using Concrete Expansion Anchor Bolts,'

piping satisfies the requirements of ANSl\\ASME l Revision 2 dated November 8,1979.

B31.1 Power Piping Code, Paragraphs 120 and l 121.

3.9.3.4.1 Piptog For the major active valves identified in Supports and their attachments for essential Subsection 3.9.3.2.4, the valve operators are ASME Code Section Ill, Class 1,2, and 3 piping not used as attachment points for piping are designed in accordance with Subsection NF' up supports.

to the interface of the building structure, with jurisdictional boundaries as defined by The design criteria and dynamic testing re.

Subsection NF. The loading combinations for the quirements for the ASME 111 piping supports various operating conditions correspond to those are as follows:

3 gm gp used for design of the supported pipe. The component loading combinations are discussed in (1) Piping Supports All piping supports are Subsection 3.9.3.1. The stress limits are per designed, fabricated, and assembled so ASME III, Subsection NF and Appendix F.

that they cannot become disengaged by the Supports are generally designed either by load movement of the supported pipe or equip-I rating method per paragraph NF 3260 or by the ment after they have been installed. All stress limits for linear supports per paragraph piping supports are designed in accordance with the rules of Subsection NF of the ASME Code up to the building structure

  • Augmented by the following: (1) application of interface as defined by the jurisdictional Code Case N 476, Supplement 89.1 which goverus boundaries in Subsection NF.

the design of single angle members of ASME Class 1,2,3 and MC linear component supports; and (2)

(2) Spring llangers. The operating load on when eccentric loads or other torsionalloads are spring hangers is the load caused by dead not accommodated by designing the load to act weight. The hangers are calibrated to en.

through the shear center or meet ' Standard for sure that they support the operating load Steel Support Design *, analyses will be perforrned at both their hot and cold load settings.

in accordance with torsional analysis methods Spring hangers provide a specified down such as:

  • Torsional Analysis of Steel Members, travel and up travel in excess of the USS Steel Manual *, Publication T114 2/83.

specified thermal movement. Deflections l 3 N Am4Adm4 At 13

ABWR dC#

"0 l'"/13 Pl./ 40*/d 7) msime

'"n Standard Plant gg g due to dynamic loads e checked to confirm that they do not-f_"

.:d: d; :fG-2,

' 6 i'im - :'-

M

      • s; thbwp;:P : ! I::: -^' '-h :: ::::9 eep+ahl: !::d: -

d:: u p r"' ---

f (iless n o.14, /. 3.3. (,-/> gn, wen) z;)

Snubbers A he operating loads on snubbers t

(3)

['1I#ff 4S MN

[#IdW fe., sefs e, RI)V o LO ads d

i,'::c:; :,','"R's'M:1*du,'r,' ' '"" 2';;

MecAania4ad bd<sa HPc c

a operating conditions. Snubbers restrain Snud$$rs y/// fl /qf/ g/7tN i

e lati n ad to e associated liferen

  1. 3 840CN off##IUIf [DT tial movement of the piping system support f, tic /ra r 3 3 [ g /7 yg/4/yg/g' /j, sys/cus, anchor points. The criteria for locating snubbers and ensuring adequate load

$hubbf/J Md p[esl Mr

/n dC(df 481eC :,

capacity, the structural and mechanical (sjil A A S g g g e c /f m ggd,ggg/fm Ms performance parameters used for snubbers and b'T# Mfd / S Ed+10b 8#[f/c'df I.

the installation and inspection consider-Vc/ocl/yi#d ations for the snubbers are as follows:

Seus/iers cons /s/* o@ A

/awihb dIr[

"#!Nh ~ / #i al')ll4f fife CV'P

  1. /

(a) Required Load Capacity and Snubber Loca.

^

Cleh anel l0'f Csimed b)'0a elevis af tion The loads calculated in the piping

/O bo'./M/N f/fu(/AfC G E I'd f

dynamic analysis, described in Sub-section 3.7.3.8, cannot exceed the ol/(f e+1M $nuf,/,gyg opogya/r.73 inubber load capacity for design, gfyggf gj M7'#g j

normal, upset, emergency and faulted j

4 b ftArvic cygy,f3-gue(s a3_ tar)),,p-f conditions,.

b"O dut>

act

  • ' i assiv& hovel opera}Nn fiv A d l'

snubbers i,ali,ks)rauocratinys yeater e c/evice.s cabiet, oao, cog,k s

go bys i dyna?"k

"*Y, Pansiens od tonrracs, resisface.

cyclic. ioad tesh us!!

be cuducted h n'd.1 the,,e<for,nece oHA C A /<a"lic eo,,.in>I valae. These y

so, suers vill be sebjechd h J namie, eye /ic load feth I

a+

j,sss grea k e than w epai in o,e-Aalp -/Ae caladated safe shWoun ea<h asKe

/oact Ion the snubler,

'39311 Amendment 2.3

.___.m.

MM zwtocAs Standard Plaat arv n i

Novembee 1977. Also NEDO.240$7.P. Ameadment i

1. Deceinber 1978, and NEDE.2.P 24057 f

Amendment 2. June 1979, 4.

General Electric Company, Analytical Model for Loss of. Coolant Analysis in Accordance with 10CFR$0, Appendix K. NEDE 20$66P, Proprietary Document, November 1975.

5.

BWR Feedwater Nonle and Control Rod Drive Return Line Noule Cracking, NUREG-0619.

6.

Gen eral Ele ctric En vironin en t al Qualification Program, NEDE.243261*P, Proprietary Document, January 1983.

Functional Capability 6: t:.-!: lue-o k Vi in] $ $5%1 U'5.NMI!M ' ArQG y,f 3

j 7.

Essential Mark it vs.t.-

y e n o.in 985,.

y;,/ gggy N I--

/

Septeaber-tt18t prep.,.4 b7 "*talia,

Columbus-Laboratorie: S m-~=1 m r'rie Company.-

8.

Generic Criteria for High Frequency Cutoff of BWR Equipment, NEDO.25250, Proprietary Document, January 1980.

9.

(seeral Glw+k 4"Y""Us n;; ca< bon steeIs, ifo 6 HA W % Aet 1 f-

+

MI Amendment 16

i (2/9/93)

PYSIS RESUUTS BNL (NUREG CR-1677)

BENCHMARK PROBLEM NO. 2

j i

GE-NE i

ABWR PROGRAM l

l DATE: FEBRUARY 5, 1993 Tot N.PATEL FROM M.HERZOG /

f SUDJECT! ANALYSIS RESULTS FOR PIPING BENCHMARK PROBLEM No. 2

REFERENCES:

1. "PISYS-Piping System Analysis Program",

GE Document No. NEDE-24077 l

2. " Piping Benchmark Problems' Dynamic Analysis Independent Support Motion Response Spectrum.

j Method" NUREG/CR-1677,' Volume-II-August'1985 l

1.0 PURPOSE j

To'present the results of the-piping dynamic. analysis performed using the PISYS-Piping Analysis Program (Reference 1).

Benchmark Problem No. 2 provided in Reference 2-was analyzed.

2.0 DYNAMIC ANALYSIS METHODS The dynamic analysis was performed using,the following response spectrum methodst'

1) Uniform Support Motioni(USM) Method,
2) Independent Support Motion 1(ISM) Methodiwith square: root some of-the squares (SRSS)f combination of-support' group--

]

contributions.

3) ISM' Method.with absolute sum combination'of support.

-group' contributions.

For all three solution methods, the SRSS1moda1' combination was-performed first, followed.by the combination of support group.

contributions, followed by the SRSS'interspatialtcombination.

.-The Benchmark-results provided:in. Reference 2, were not

~

calculated %in taa-same order as. described above.-Instead,"the support groupLeontributions-wereLcombined-first,' followed by the.

interspatial--combination,-followed by.the modal combination.

~

Due to this difference'in:how the fina11results are calculated, the PISYS results for Method 3 are up to 10% greater than the Reference 2 results.

t

,_l-

. _ _ x, _

a._ _

.a.

.-. ~ _ _ _ _ _. _

3.0 DESCRIPTION

OF ANALYSIS PERFORMFD Benchmark problem no. 2 is shown in Figure 1.

A complete listing of the piping model and dynamic loads input data is provided in Appendix 1.

The following output results are provided in Appendix 21 modal frequencies and participation factors displacements and calculated loads for the three analysis methcds.

4.O

SUMMARY

OF RESULTS Tables 1 through 3 provide a comparison of the PISYS results with the Reference 2 results.

The analysis results for the USH method and for the ISH method with SRSS combination of group contributions are identical to the Reference 2 results.

The analysis results for the ISM method with absolute sum combination of group contributions are within 10%~of the Reference 2 results. The difference in analysis results is because PISYS combines the final results in a different order than what was used in Reference 2.(See Section 2.0)

5.0 CONCLUSION

The PISYS computer program eccurately calculates piping system dynamic loads and displacements due to Envelope Spectrum excitation and Independent Support excitation.

-L-

~.

4 4Y Z/

X br i

s

@~

5 puf{,

6 s

34 i,

u 17

~I A

4,

%Q BENCHMARK PROBLEM N2 2 Fi ave 1

3._.

i TABLE 1 SUPPORT FORCES FOR ZNVELOPE SPECTRA METHOD AND INDEPENDENT $UPPORT MOTION WITH SRSS OF GROUPS support PISYS NUREG 1677 PISYS HUREG 1677 No.

Envelope Envelope SRSS Group SRSS Group (Lb.)

(Lb.)

(Lb.)

(Lb.)

1 90 90 53 53 2

65 65 46 46 3

177 177 113 113 4

708 708 441 441 5

-446 446 257 257 i

6 206 206 123 123 I

7 164 164 98 98 8

373 373 221 221 9

58 58 32 32 10 198 198 124 124 11 103 103 66 66 12 378 378 103 103 13 192 192 114 114 14 245 245 116 116 t

+

b b

)

_4_

m. _ __ _... _. _.. _ _.

_ _ _ m... _.

TABLE 2 SUPPORT FORCES FOR INDEPENDENT SUPPORT MOTION WITil ABSOLUTE SUM OF GROUP CONTRIBUTIO!1S Support PISYS NUREG 1677 Percent No.

(Lb.)

(Lb.)

Difference I

i 1

83 76 9.2 2

77 70 10.0 3

158 156 1.3 4

619 607 2.0 5

367 350 4.9 6

190 184 3.-3 7-149 146 2.1 8

316 301 5.0 9

49 45 8.9 10 179 169 5.9 11 94 91 3.3 12 165 152

-8.6 13 175 170 2.9 14 172 158

.8.9

't

}

_f s

5-

TABLE 3 PIPE MOMENTS AND DISPLACEME!iTS COMPARISON TYPE MAXIMUM RESULTANT HAXIKUM DISPLACEMENT oP liQliEILT_Iln-1baJ (In.)

MET 110D PISYS NUREG 1677 PISYS NUREG [677 ENVELOPE 20828 20769 0.09 0.09 Element 9 Node 4 (Z direction)

ISM with SRSS 13067 13045 0.06 0.06 Group Element 9 11odo 4 (Z direction)

ISM with ABS 18316 18176 0.00 0.08 Group Element 9 Hode 4 (Z direction)

) _ - - - _ _ - -

d idbll 5

4 APPENDIX 1

~

-)-

'i

4

_m2.mw.um--___.m._m

APPE!1 DIX 1 TABLE CF CONTENTS Page No.

1. GLOBAL COORDIllATES OF PIPE JOINTS 9

2.

SECTION PROPERTIES TAliLE 10 3.

PIPE ELEME!1T DATA 11 4.

RESTRAINT ELEMENT DATA 12 S. JOINT LOAD INPUT DATA 13 6.

ENVELOPE RESPONSE SPECTRUM INPUT 14 7.

INDEPENDENT SUPPORT MOTION RESPONSE SPECTRUM INPUT 16 4

W W

D K*

us S=

4Q ma e

MOOOOOOOOOOOOO 000000000000 W Me nen e=.=.=.S ep0.. O =. =. =. O. O.O O M M. M. e gN W

00000000 WWhhemmechh=OOO=peWOO*=Whop

=

= Mohs =mhMNeeWN NNNNNN4 Mh=N 4

==NNN NNN

=N E

=

0g O

60A00000000000000000 O 0000S000000 Q

T m W N N N N. N N N N N. N W O O N. N. N N.

.O.O.O. N. N.N.N N.N N.O.

O wp Ovevemppeeepem=WOppepO=OO*OWeeppeWN OOMvtWTTTTTTTmMmW TTv emmTTTvvvve 1

i

=========NN

NNN========

O' s

e" i

O MOMOh00000000000000 00000000000 M M. M. e d W O M M. M.e dx

... W M =.O W M M. M M M M.M M.M M M W e.O.

J OOOOWTNheenmaneuemeTT=OOmempTTNemek

=MohmOOOOOOOOOveNN OOONNN9 0000 N

===========NN

===NNN

==**

Y W

Je O

E E

HU W4 WMWWWWMWWWWWWWWWWWWWW U

WJ k

Eb E

=n W>NM>NM>N k*=Mn

.===hhh==*OO===

EE W

W

=W

=NMTWGhemO*NMTeche#O=OOO*==NNNEEEEE 00 000000000==========NN000000000*>>>>

0 M=

000000000000000000000444444444W#WWW W

W

> =

W L

MN WNeTOWNeTOWNeTOWN#TOWOOOOOOOOOOOOOO EE

==NMMTTWWehhapeOO*NN

=

W

=

C E

E E

Ok

@=hMmW=hMSW=hMmM=hMmpOOOOOOOOOOOOOO O

=E

==NNMTTWWehhwemOO==N M

=

O b

M A

4 T

M TOWNeTOWNeTOWheTOWN# 400000 COOOOOOOO NE

==NNMTTopWhhammOO*=N O

M W

=

=

N

=

N Mme=hMGM=hMSMehMMWahMOOMOOWOOMOOOOW W

-NNMMTppWehemMSO==N O

O O=

=

N

==

0 O

OO O

9 >

I e

mm a

O N#.TOWNmTOWNeTOWN#90WNONOOOOOOOCONMW e

4

=>

NNMMTepechenemO==N O

O O

=

N i

4

==

0 O

O 000 O

3 m

e SmA 0

=

Wx whmme=hMme=AMem=hMap==OOTOOh000*OOT J

==NMMTTOWehhameOO=NO O

O

=

=

=

====O O

O O

O O 4 m

m

> 0 W

=NMTMWhomO=NMTechemO=NMTOWhe#O*NMTW N

O

==========NNNNNNNNNNMMMMMM e O O3

=

T E

f'-

4 est m

N O

W W

W 0

2 2

N U

O m

N O

N e

0 O

I KO WR Q G.

l Le EM QW WO N

N n

E 0

W

==

e Y

d K$

W J-e 3>

=

  • O O

%Q n,

Ca ag 0.

WW W

4 es E

O u

g a

a S

p O

N W

=

3 O

J d

%K W

d O'

O O

E LS M

E O

4 G. W h

0 t'

W.4 3

N O

W K

T

    • W W

KQ e

4>

si WU n

4 L

=

X4 p

Wh e.

O E

O E h

w 9

W W

W I

- L a -

W O

O

  1. b i

a g

w J

.O O

.e.u. N.

E 4E O

W

.N 3>

9 L

l

(

N W tee m

9 E

4 E

O>

ee 8'

-O

-W N

O 0

mE

=

h 3

  • e en go e

O >

p

  • U 1

U e

i N

yg e

W WK W

e w

T -' W g

- - -... -. + -

~-

i K

WW O

O WN 00, M. M.

p e

WW e

W MM

.e.

W 48 Ow WW OO O

O y

NN N

v.

.e on O O.

.T.T.

.v e

6

.M.

W O

w W

W L

O W tir OO O

O O

O O

MM g

g O. O M

M O

g-3 MM WW NN e

e MM hh O

e

.t wp w.3

.J WW WW W

W MM MM M

M

=

EO i gr OE e

> = >

NN4NNNNNNNNNNNNNNNNN WG

=3 O

w m

OOOOOOOOOOOOOOOOOOOO w e o e o e e e e am o e e e e e M e n en n E

MMMMMMMMMMMMMMMMMMMM A

i A

E OOOOOOOOOOOOOOOOOOOO w

em 1

u

[

w l

O O.O O. O. O. O. O O O.O O O. O.O..O.O. O. O O q

=.

E N

K OOOOOOOOOOOOOOOOOOOO N

e C

E W

LO w

.J

  • = 4 m W W W W W W W 44 W W W W W W W W W W W J

8 at 8

A W

N M T 44 W h e e O..= N. M.T. W *W N e..m. N N O.=

b OO

. =.. * * =.

O

>O u.

E S

5 2

2 3

N M T e @ h e e.e.= N M..T. W e. h. a. m. O

=

OO OOOOOeee.=.

..NN t$

8= "4 0000044499999M9998G0 d

O E

OOOOOeSSSSSSSOOSSOOO O

e n

W kW

>4 WWWWWGWWWWWWWWWWWWWW 3.4 04 W

E

.* N M T W W h e # 9.

M. M..T. W. G. N.e.e O, 4

.O.

a E3

-NMT 0888 me.O N.MT..N.e.d.388..._

..N o.

a

, O, -

g O

.00.

O O.

~-.

tW 5.5885_58,35._55358335588 W.

~

' (.e ' 3-E>

(4 44 44444 4444 4

P 3

e w e' gg as agggs 3333 g-e e6

.J

>= ea w w e- > end W ea > > > ** W 8*

  • M > Ina >.

N W

WWSSWMSSWWWWWSWWWWeW N

. Q e

.8 m-w

.O 2O tse W Wtaf Wesatal WtsetaitafWIpfW W W taf W W W

..A. A.k & & A. A. L. A.L. 6 A. L. &. A. L. L. &. &. A.

=.

=

a Q Ind kALkL&A&bb&&L&&&4bbk O

w e.

A.

W g -_

N M T W e h e m O = N.M. *T W e. h. e. #. 9

-a3

. =. = =

. =.... N

-N-4-

N g

w

.e.-..

-,",.. g 1

h t

L r

W T

V T

T T

T T

T T

e o

e e

p

.8

<=

F W

W N

O D

E bO bb bb bb bb bb bb bb N

a e.

W.*

.4 MM4 Rwm E

wou u

+.

00 00 OO DO 90 4J%

OO 00 00

.J&Gk W

em.

O Ow a=

MA A

4 M

e N

00.

00 00.

00 00 00 09 OO

. 0 0

= *

  • O O O

w N

O W

W W

W W W W

W W

N E

=

0 0

0 0 0 0

0 0

0 E

W 0

0 0

0 O

O O

O g-4 O

O O

O O

O W

W

==

ua>

O O O.

O.

O. - O.

.J 8(

==

kJ

== +

e=

=

en

.===

m q

E V.

E b

W4A L

Q u 4 uus O ' ===

=

==

  • O O

O O

O O O O O O O

O O

e e

w y

a u

(

5 0

  • O 3

O MO=

. W W W W W W

W W

W W

W W W W W

W.J 4 O

O O.

O 8

8 O

E J

g g

0 t t O.

O.

8 8

8

=

4 e 3 e 3 e a..

e=

.==.

==

e-

==

O A M

M O L r

- O E W

E

>==

e.

E O

W ee

== >

W M > N N > N M

N-

== >

~

4 W

G E E E N N

E E

b' E

A E

.N e

e e

e o

e e

e e.

W X

N M > N M > N W

O E 0 E

~ >

H A

e-3

-v W

v W

D a

W.

V V

u u 9 a

O J B

E S

S 5

.S 0 -.J W

4 4.'4 4-4

.-4 4

4 4 m'

e e

m e

=

X > N M > N M

-N k

==

M W

h h on.====

O e

e=

ee e-

N N

* *=

h s=. = =

N N

N k.

B K

w e >

O >

>R O

O e

MW-0 O

O O O O

O O

k.

e e E WG 4

4 4

4 4 4 4

4-4 W

W W

p e

.e E

N N o=

N

- e en e

me

= 4 O'

O-4

=

WE

==

em e=

h.

N h.

.= = '==

h e

e M

e E

K

.L==

= 0 --

O'

'O

=

e=

=

N N

N O

- en sa '

=

==

0.>

b9 O

O --

O

-O O

O O

O O

-O O

O O >

p

> W E

em N'

M T

W e b

e

' 6

=

N M

V g'-

W

=

'=

' =

en

=

N.

-m

W e

W w

O O

O E

O

- o

\\

O w o a

~

> e e

I a $

a N E N E E 4 E 4 W

w A

.J

$W

$u O

E O

N h

=

O A

=

0 u E u E u

e K

E 4

m E

4 E

E e O e O O

O' O

W s O w N O

> 0 0

> 0 m

4 e

a h e

em m

a >

L-p 3

3 o a o &

A A

T E

v 5 0.

O

=

O O

O N

N m 4 m 4 e

e e 0 e O N

w N

e

.J 4

i

.A O.

E

..O e

m 0 3 =

0 E

l

  • =

N N

m.

O e O T'

T

lli

{ll1j l]1 M

M S

S C

C N

N S

S E

E R

R 9

I O

2 2

M 8 M

/

E E

\\

L L

}

S S [y O

O R

R P

P t

[

N c

O O

C C

R I

I A

m T

T M

A A

R R

E E

T L

L T

E E

E U

C C

E U

C C

O P A

A O

P C

C S

w C

R C

R S

N A

O A

O Y

I Y

I 2

T 2

T 0M N t 1 l 1 e01 l 0 S

9I N

8 SS1 40Sc0O000SS 3

W E 9SS899OO0D000OO8

- U E S0e0O09O0 R

EW f

Ei M - - - -

3 t

t M

- 0T E EEEEEEEtEEEtEEEE

/

0T E EtEEEECEE. P U

1

/

9C C 0eS0e09SO P U 0C C 9099DG9eG00e9000 0 0. 9 E O 8. 9 E 0

A 0eO0999Oe.

S A 9099O49c009e9000 2 S

1 P L 00O0229O0 A

. P L

9099S9Se400S5049 308 R

sO6 1513 1282S P

7 7.S. 3 3 3 7.O 5 E

l R82S P 9 9 7 9 7 9.S. S. 4 7 4.l.

E3 S

0 7

0 T

E3 S

667S1221l 52448S2 P

Y I

33S71t 4S1 7

7 L

P X

B 4

C

=

O

=

S 4

C 8

=== = *

=

0 E

R R

0 E

1 A

E E

1 P

S' T

/

S T

/

P T

M N

//////////////// R N

/////////

S US E

US E

S I

sE I

2 e

2 NE*

I C

D 9

9 I

C O

O 322t tS f S s n0O0 ER I

M ER I

D 322t1SS I 1 1 I S 899SeOOOO 8

E 008S0OOO00OOO0D0 LTE F

I 0

E LTE F

I 2

U BNPRF R

SNPRF R

2 AEYOEN E

EEEEEEEEE0EEEEEE AETOEe E EEEEEECEE S

t 0

A T

TTDO P 00 GOO 0e0O00eOO30 T

TTOS P O049G9900 0

1 N

F CCI 94OOS074S253SC79 F

CCl O046S299 2 1

N 43233878SS8 MORA Y

L e983S S94s 7

ROMA T

L 9SI 3 I O

9. O. S. 8. S. 7 3 58I 8 2 8. S. S. 5 U UFSP A 9 4 8 1.S.S 8 0 E O

U UFGP A

I l R

'l I

RRR S

C RRR NI R

T 1 SS111 24S O

P O P TETEI R T

1 S63 112234S78t 1 2 TETEI 5 t

E CSCLPC C CWCLPC C T

S EREARS E Ef EAMS E 1

S 2

P PUPCAE P PUPCAE P 2

9 E

SteSSDD S

SI SSSS S 8

E I

4 S

. 8

, 4 8t 4

R i'

4

+.

,1 1

~

l

\\{.

I C

E

  • e w

U f

E A

n W

W e.--

g g.

L

\\b N

N E

E W

W

.'.a ;

.6 8

8 41 E-

- 4, 2

U-O U

g me E2 R

a 4

E-W e=

.J W

O 3 4

4 3'

u O

E 4

O A u

. e %

U g-W E

4 O

e

> =

N C 0 0==

O E === = O O O O O O O O O =.

COCO e

w OOOOOOOOOOOOO C;

e W

g a e e e

-~ ' 'E

-==

L 3

O000 OOOJ

  • U. W W WteltafWladW W W W W W WWWW N

O>

W' OOO

$$6000000-L '- 3 4

OOO OOOOOO O. W S e'e:s e p e c e O

'O000 M

O Se M

Chhoo.

MOS 4

.J

'OOO 6 9 9... A. f. 4. O. S. $. $. O. T a=5eNe L

e e==. T -

O 8"

O >

p WM.

. '==

A N

p e e e- === en = s= M M a= M N

h -

NN=n e

O 9

U-

V..U-e a o e e
O W

E 0

W

=

ena -

=

A e

A NN%%

2 O

3e Ws 8

N

- N.

&W

==

. U U

O e~

Q - M N N se ao en se em en aOO s

==== O O WK

==

e W

0000.-

.J M W b

' = = 0000000000000

  • - ed '

-N e-e

' e X & K te.

--E e e e e e e e e e e s-N e. W WWWW 4W>QWE W

W W W qaf les W taf W tea tad tea the taf

_0000-N'

>>QQ O00000000000O C

== = G.' M e O O h

U C==

.000TeeNTNMS00 I

heeO EOe<

es O =meM.=asOeheeO-

= = - -0 N. o M. e.

5 5 im. e t O

C. h. e N. e. e mt h. e. N. e T. o. -

gga 3==

g-

-@ ~ kh a== 4 o= W > taa== N >

e h== s=

= N M p h a = N O-4 U

U.6 L U - U

  • w

- se tt '

tee las 4 E e W

i e.. Inf.'

te te e4 O O ge -'

N

-. N 4 0 4 las A

e

-W'

.=

=

r

e:

9 (1

g P

e a

nU m

e.t E

C P

f 3

3 L

A U

R

=

[

E l

3 3

4 a

a t

N >

N n.

l E u E u nas w

.J. W

.4 tea e

se O A O

A U

M

& O A

w R

2 l

u

.O.

.O.

u a

E a

W E

W 4

M N

w W

r D

e

.J 2

ens W

C O u

u e G u

u l

0 A 4

4 0

u e

u o

O O u

a u

u w w 4

O 0

W e

s W

l N

N i

et c O

a

=. - O O O O.-...= -.- -

O E

e at I

e las 00000000000000000 e

w C0000000

==

tse E

e e o e e e a e e e e e e W

E e a e s e e e e

.=

N O=

W Inl ini ini tai taf Inf W W tad had W tad W tad W lad W O

tad led taf Ind taf taf W W W L

C00 u

C0000000000000000 000 u

C0000c00 L

M

=

0

. O.

W 00000000000000000 N

O O

4 00000000 U

hQW A

OOOOOmWNWOOOOOOOO mos.

.A 00090000 E

lad a K es N E A

N N. O N. e. N. T. T. e= W M M e h h. N. M.

== E e N N A

@ e O. O. N N se O fB Q

las M u se ta6 M th n

O O

P*

.A M

==

N N N T e ** ** **

  • b W is M e e N==

> =

== =. N N N T W M N

Y A

e O

e O

V A

CD e e e e e e aeee L

K K

O E

(

tas Ina

=

==

3 e

E

%%%%%%%%%%%%N%%%%

3 E

NNNNNNNN to te In4 e

nas wt N

W

=

x tia N-O u

O

.u.

O

==

m.

==

a E

Wg 0

M N N N

...=... O O O ens og O

MNNNN...

=

tad

.J > W b

=

0000OOOOOOOOOOOOO

.J > taa A

=

00OOOOOO e

ins N

3 asELEE E

s e e a e e e a e a e e a e eMEEh 5

e a e e e e e a N

e

.A 4 lasa= 0 w 2 ana W tas Ina taa W tas las nna tad w w and w tas nas W W

( tas > O tas R W

tas nas taa and tse tad taa ned a

.J O

E

>>OO A-COOOOOOOOOOOOO = st o >

>>OO C0000000. O

    • A 6

u u==

OOOOWWehmeaWh***=mO k

u u==

0OOOOeem A

ECE4 >

.J Ownee-TMvoveOmaec ECE4 >

e OMammev=

J JIn G &

4 O e O O.

  • O. h== e h e W v O
  • M. O.

3 3hGA 48 O== 6. N. T O

  • O

~

==

u N At GC E-GC WWg 3== g

+..

G >

> tad > W== GE e=

== N M e====== N N M v c h m==== N

> nne > ent== M >

na M M e e = e=

O taa U e u.J A W u

u u.4 A u - u k

A led C tea 4 E to taJ -

Ind ens ( E m ent -

e=

a N

L L 3 L U 4 tad L

& u 4 tad N

O 3 MF eQO M

40 m et O O e e

3 e

Y C

=

  • I{j

)l j'

.l c

~

S s

S p

R s

S a.

R n

M T

T U

U P

P N

N I

I

}

~

M M

l U

U R

R 2

T 2

T M C M

C E

E L

E L

E 8

S 0 P D P c

R P

S P

S N

N C

O O

C 2

I I

R N E T

T E

A A

S R

R 5

E E

N L

L N

E E

S O

C C

S O

C C

O P

A A

O P

C C

s S

C R

C R

S S

A O

A O

Y E

Y E

2 T

2 T

S R

1 f 1 1 3 8 f 1SS 0

N l 5 1 l f n1 1 S 5 S 00I f 0

N S S 21 S

R 0O0000O0OS E

O00OOO00O0O00OO E

OO00 I

E M

E M

S EEEEEEEEEE

/

0S E

EEEEEEEEEEEEEEE

/

02 E

EEEE P

T 0000000000 000P C

0C0000000000000 000P C

0000 P

T U

A 000000000000000 4

0. 0. O 0000000000 3 0 U

A 0000

0. D R

8500055500 508 L

000000000000000 i08 L

0000 R

997258 9988 1 R92R P

77047331 0088877 l R82R P

3304 0 O E3 S

S E3 G

S 0

O 7

997437991 1 P

Z S

l l 224SS5337119 l

P M

I 2233 7

4 P

e O

e D

4 P

eee=e

====e 0 P R

R 0

P 1

E Z

3 U

S T

/

S T

/

U

/ / / / / / / /// M N

/////////////// M N

////

S US E

US E

S 2

ME NE I

3 I

9 I

C D

C' D

9 I

f f 1 I 5 f S 000 ER I

O 3222f 1 S l 5 l f 5 l 00 ER O

3228 I

8 E

OO0S0OO001 LTE F

0000O0OO0OO0O00 LTE F

I 0000 8

E I

t 2

BNPRF R

l NPAF R

2 t

L EEEEEEEEEE AEYOEN E

EEEEEEEEEEEEEEE AEYCEN E

EEE5 L

0 0000000I S0 T

TTOO P

000000000000O70 T

TTO0 P

0003 9

1 P

82755 39 I 20 F

CCI 000028250543S$0 F

CCl 0000 P

8 3 255899I 40 MOMA T

L 055948 270497SS0 MOMA f

L 0$03 8285090I 55 U UFSP A

U UFGP A

0SS8 0 8 5 9 2 8 2 7 0 5 4 2. S S.5.

TETEI R T

l 4S3 e

T I

I f

RRR NI R

RRR NI R

t O

T l

225SS9l 1 2 TETEI R T

1 34S3 1 2244S7812 CGCLPC C

CSCLPC C

T L

EREAMS E

EMEAMS E

t L

2 PUPCAE P

PUPCAE P

t 8

U SNSSDO S

SNSSSD S e U 9

l 4 M e M l

t 018 2 T'.' G 1 10-2 8 -C2 -

80.470 - P ~ l 8 Y'3 0 0 WRC PCOOLEM 2-DULT I PLE S U _ P P. 0 0 LT - QESPO2S E1 - sP E C T-Q U M I O P U.T n.gsg33

~

S.0000E-OI

/-

7.5000E-Ol 0.55100-01

/

1.0700E 00 0.C930E-Of

/

2.2500E 00 8 E470E-01

/

2.2500E.00 1.8519E 00

/

'2.3000E-01 2.E833E 00

/

l.7000E-Ol 2.C000E 00

/

1.7000E CPECTCUM TABLE Mun8ER =

S

.WUMOEQ OF ENTRIEq

=

II

, -CPECTRUM TYPE

= PER000/'

ACC CCALE FACTOR 386.0

=

-F4MPl886 COEFFICIENT =

2.000E-02 DESCR5Pil0M YSROUP2

=

SPECT2AL PERICO

/

OBSPLACEMENT-04-ACCELERATION' l.0000E-03

/

3.7000E-Ol 0.4500E-02.

/

3.7000E-Of

8.2500E-Fi

/.

-4.SO90E-Ol I.8140E-Ol

/

8.S900E-Ol 2.2220E-OS

/

8.S000E-Ol 4.C480E-01

/

S.0000E-01 iS.C820E-01

/

1.5000E 00 7.2730E-Ol

/

2.8700E 00 8.8890E-Of

/

2.8700E 00 1.0390E 80' 3.0000E-01 2.C000E 80-

/

l.7000E-Of

> SPECTRUM TASLE seUMBER =

6 NUMBE3 0F ENTRIES

=

14 SPECTRUM' TYPE

= PER000/

ACC' CC LE FACTOR

=

384.0 LCCMPIIe9 COEFFIClLWT 2.000E-02

=

OEOCORP.Tiom

= 2SODUP2' i

-SPECTCAL' PERIOD

/

OISPLACEMENT-DO-ACCELERATION l

.1: 0000E-03

/-

S.S000E-Ol S.7100E-02

'/

S;SO90E-Ol

-7.0000E-02

/.-

S.S900E-01 1.2540E-01

/

1.0000E 00 9.9380E-Gl

/

1.3000E 80 1.8180E-03

/

1.3800E 00-2.2220E-Ol

/

1.3800E 00 3.7040E-OS

/ '

1.0000E 00 S.CS20E-01 1/.

l.9800E 80.

7.2730E-Ot.

/

3.SSOGE'00 9.8890E-Of

/

3 SS00E 00 882T 81-'

10-28-92i IO 470.

P.I S YJ$ 0 6 NRC PRDOLEM 2 U

L' f't.P L E

's u P P. O R.T R E S P ON S E S P EC T R UM I N PU T M-RSRSS l

._ g g--.

~~v v

v v

v.

e w

"CIS2T SI 10-28-C2

-10.470 P I OYSOO NRC PROSLEM 2 Q O'L T I PLE S U P P.0 R T RES PON S E SPEC T RUM I NPUT M-RSRSS 3.5567E 00-

/

3.6200E-03 2.0000E 00

/

2.0000E-Ol 2.5000E 00

/

2.0000E-01 CPECTRUM TABLE NURSER =

7 leUMeE3 0F ENTRIES

=

IS PEROOS/

ACC CPECTRUM TYPE

=

-CCALE FACTOR

=

388.0

=

2.000E-OS CAMPilee COEFFICIENT 00CCIPilom

= XGROUPS

-SPECTCAL PER100

/

OISPLACEMENT-DR-ACCELERATION 3.0000E-03

/

S.SO90E-Ol O.0400E-02

/.

S.5000E-01 0.6500E-02'

/

7.7000E-01 8.CISOE-OS

/

9.0000E-01 1.SISOE-01

/

1.7500E 00 l'7400E-Ol

/

2.0S00E 80 2.1370E-Of

/-

2.0000E 00 2.9240E-01

/

1.8000E 00 3.6360E-05

/

l.4600E 00 4.9320E-04

/

1.7000E 00 0.86SOE-01

/

2.4000E 00 7.2730E-Of-

/

4.lS00E 00 S.3890E-OS

/-

4.lS00E 00 3.6611E 00

/

4.2000E-01 2.9000E-00

/

1.0000E-01 CPECTRUM T ASLE sounsER ' =.

S NUMSE3 OF ENTRIES

=

14 CPECTRUM TYPE

= PER000/

ACC COALE FACTOR

= 3es.O SAMPIN0' COEFFICIENT =-

2.000E-02 OE:COIPTION

= YOROUP3

'CPECTCAL PER500

/.

OSSPLACEMENT-DR-ACCELERATIDN 3.0000E /

2.3000E-Of

3.0 400E-02

/

2.3000l-OS 4.0400E-02'

/

2.9000E-01 0.0000E-02

/

4.2000E-03 1.13SOE-01.

/

7.3000E-OS 1.SISSE-01

/

1.3200E 00 1.OS20E-01

/-

li3200E 00

'3.8310E-04

/

S.8000E-01 0.S550E-01

/.

S.3000E-Of 9,26SOE-ol

./-

'2.0000E-Of I tillE 00

/

3.7000E-Ol

=49821 08 10-28-92 30 470 P I $ Y S O6 NRC PRDSLEM 2

nUL T I PLE SUPPORT R E S.P O N S E S P ECT RUM I N PUT M-RSRSS J

-m

6 W

W W

W U

E W

W G

E e

a E

E 3

3 L

L Q

E e=

.=

f E

E 3

a Gh G

E

{

N >

N E U E

U W

tad

.W

.J tad

.J 6

m

.O A

C ti E

A W

L W-2 E

O O

O U

.=

.=

-E qg U-tad

.E.

ned 4

4

. W E

E W

has enf 2

.A J

E-tas ini 6 0 U

U

@ ' O U

U

- O L

4 0

-A U

e U

e en O U

q U

E en 4

O 4

O W

e e

a=

W N

N

= =

0 E

==================a-==

O-E * * = = * = = = = = = = * = = =

W E

0 3 000 e

W 000000000000000000 e

taa COOOOOOO

=

e e e tea C

e e a e e e e e e a e a e e e e e e ind E

ee a e e e e e

= = -

W taa W N

OM taf tid W W taf tea tal taf Inf Ist tal Ind W ana las in# tad tad tal s

OT Ina tal tal taa Inf naa laJ Ina taa L.

0OO 0004 U

000000000000000000-

'OOO U

00000000 L

000 m

-O

.O3 4 000000000000000000 O O

  • O.

4 00000000

=A WGOGOcce E

C 000 eOW

-0

=A N N G E. O @ O O O T O m W O e @ @ T e= MOW

= *= N. M. e T e $ M== h N S en e M M N

==$eNE N N. T.==.==.== 6 M-O O'

eeT

== E e N E A

e 0 WM G

st ens M G

  • * - +. +

e- === N M M N M h

e====== so M W W M N ** **== N T $ e N M

=

' f%

NN=

L N

=

T L

e C

e O

T L

e e a e e eeee e

' O C.

E E

O

==

W W

=

3 e

s s

3-sss E E

ssssssssssssssssss 2

ssssssss O

3 es W

to ins se -

=

=

N N

2 tas ins O

O tA U

C tas E

==

=

- = =

0 M N N N N==== ===== ===== = O O O O 0

M N N====== ===

4 OOO taJ E

=

e. thi OOO

.J > taa te.

0OOOOOOOOOOOOOOOOO

=a > Ino E'

.= OOOOOOOO e

W

=

N e E & E te.

E e a e e e e e e e e e e e e e3 lmb E

e e e e e e a e N

-e

=8 taa W W 4 tad > c tea E - tea tan w las tea Ina W tea taf Ins las taa and tal Inf W W tas Ina 4 W > O taf E ene had tap nas las Ins ina and nad ' e

.4 O

T=O

>>OO A

COOOOOOOOOOOcceeTO >- >>O0

-L 00000000- O A-

=

A O@O es.

U U==

000OOO$Ne*MNM=mWeO A

U U==

000WGNTT

  • =

NMO.KQE4

.J OMmeMMacheh-hecene ECE4 >

.J O s e n e= c O =

O = T e== a= n a h h.==. 0. N O O M. e. p 3 3 te. O L 4

O. O. h.==. W e h. S.

  • = Thn 3

3 te. O &

4 Eg&- 3.=

E

==

EEE E.=

E

.=

0 > '

==N

> taa > tas = E

> = M M e N = = e= N M e h h a====== N. > Ind > tal = E

>== m e==== = M T O

==

O U.J & W W

U U *e & U U

>: ' =#

tai taa 4 E et tad led tal4 C 9 tal -

  • =

.a 61 L U 4 taa A

L

& U 4138 L

N e c - 3

'WE#WQQ W

W #m00 e

3,

~ e=

.=

(L_pt

CISOT 81' 30-24 10.473 P I SY SOO MRC PLOSLEM 2 QUL T I PLE

$UP POR Y.

R E'S P ON 5 E 5 PEC T RUM

$ N P UT n.nsass 7.5750E-03

/

5.3500E-01 1.0SSSE 00

/

8.5000E-01 1.3072E 00

/

8.5000E-05 1.5873E 00

/

S.1400E-01 2.5000E 00

/

2.7000E-01 CPECTRUM TASLE NUMBER =

la

'NUMSE2 0F ENTRIES

=

IS CPECTRUM TVPE PER000/

ACC

=

CCCLE FACTOR

=

386.0 CAMPING COEFFICIENT

'2.000E-02

=

DESCOIPTION

= YOROUP4 CPECTCAL PERlOS

/

OISPLACEMENT-OR-ACCELERATION 1.0000E-03

/

2.1000E-Of 3.C700E-02

/

2.1000E-OS 0.4800E-02

/'

2.8000E-OS 0.7300E-02

/

3.6000E-OS-1.C330E-01

/

4.2000E-01 1 2820E-OI

/

7.3000E-08 1.5850E-OI

/

1.0200E 00-1.8520E-03

/

I.0200E 00 2.3tSOE-03

/

S.8000E-OI 4.9140E-OS

/

S.5000E-Ol-0.00SOE-03

/

S.8000E-OS-7.2730E-01

/

8.5000E-03 l.0695E 00

/.

1.2000E 00 1.3072E 00

/

1.2000E 00 2.5000E 00

/

3.4000E-OS CPEOTRUM TABLE leURSER =

12

leURSE2 0F EllTRIES.

=

15 CPECTRUR TYPE

= PERS0O/

ACC

'COALE FACTOR

=

388.0 DARPINO COEFFICIENT =

2.00CE-02 DE;CCI PT1998 -

= 2SROUP4 CPECTRAL PERIOD

/

OBSPLACEMENT-OR-ACCELERATION l.0000E-03

/

2.1000E-01 S.C700E-02

/

2.3000E-Of 5.4100E-02

/

2.8000E-Ol~

0.7300E-02

/

3.6000E-ol I.0330E-01

/

4.2000E-OS 1.2920E-Og

/

7.3000E-01 1.5150E-09

/

l.0200E.00 8.8520E-Ol-

/-

1.0200E 00 2 3350E-Ol'

/

8.5000E-05.

.sssat os' 30-28-92 40 470

'P 8 5 Y S O 5 NRC PROSLEM 2

'lU L T I P L E' 8 U P P O R T.

RES PON S E

'S P E 4 Y R U M' i N P UT M-RSRSS

-Zl'

4 M

M M

M M

M e

M M.

e E

E EE e

3W

=NMevenvpehemO=N 3

Ee e = ea 3

>{

L u.J L

W*

2 A

E W

.=

=

OO O

O O

\\

E 00 O

O O

.E

.J 3

4 ena W W

W W

3 e

a OO O

O O

E O

OO O

O O

E M==

0O to O

O t

e

  • OO c.

O O

N g o

.a

...,.. c3.

t y

=<

CD O

O W

WM O O === 0 0 0 0 0 = 0 0== 0 0 =

W

.4 W

X

.J W

m

=4 e

O k

K Q

A (i

.J H E

M A

W LN u

O OO O

O O

u

=

O 90 O

O O

E U

42 W

.J B

W W4 W

WW W

W W

W X

O OO O

O O

.A O O

OO O

O O

0 00 0

0 0

2 E

=

3*

O OO O

O O

O O

W Q

W O

4 O.... O O.

. O.

g.J E "-* ***** ""

s E

EW W

O a.

W 3

=

m u.=.= = a O = >

w w OOOOOO 4

K O

O O

O O

=

e e e e

E O

O O

O O

=

WWWWWW W

>.J M

COOOOO O

4 W

W W

W W

L OOOOOO k

UN O

O O

O O

W OOOO00 K

O O

O O

O O

M eeONNT

=

W=

O O

O O

O O O 0

O O

O O

O O

A W W # =* = M L4 O

O O

O v

L D

.A

....... O.

9 A

L M tm

== 0 O O== O O== O 0== 0 0 = O O X

0 4

O.

A

.E.

=

m 3

K 3

ssssss

  • 0 N

M N

==

e s

== ** a= O O O 4

e e

W C00000

=

es N

e e e

.= >

N e

.4 WWWWWW U

E

.e O

000640 x

-J he=Memd O

l

  • = A TWMehO W

4W

*=00========hhh==

2

=0heOO Ke O O O N N N E N E N *===*= N N N j

mONOMM 6=

>4 OOOMMMMMPa>OOOOOO

==

E M.A 444WMMmWWW 444444

=

O >

V W h== = N O W

O A

E

.J A

.4 N

3 N

e 3 m

e 3

%e 4

i APPENDIX 2

i 3

3

'S 5

t :3, -

I~r

APPENDIX 2 TABLE OF CONTENTS Page No.

1. EIGENVALUE

SUMMARY

TABLE 25 2.

MODAL PARTICIPATION FACTORS FOR ENVELOPE RESPONSE SPECTRUM ANALYSIS 26

3. UNIFORM SUPPORT MOTION RESULTS 27 4.

RESULTS FOR INDEPENDENT SUPPORT MOTION METHOD WITH SRSS OF GROUP CONTRIBUTIONS 32

5. RESULTS FOR INDEPENDENT SUPPORT MOTION METHOD WITH ABS OF GROUP CONTRIBUTIONS 37 I

i l

g4-

- - _ - - _ - - _ _ - _ _ - _ _ ~ _ _ -

a W

W D

O O

O E

E NMNNNNNNNNNNNNNNNNNNNNNNN 00000000D0000000000000000 I

e e e e e e e e e e a e e e e e e e e e e e e e e EO WWWWWWWWWWWWWWWWWWWWWWWWW 3=

modOceomeemece4T=ONheOOMT CW eTNeNTOO-MNovceMNTN==h==e

~4 shC==TmTNN==e=woemNhm mmoM XM N = = m e M O O m e h T = h h e m e =. e =. h h h v.

(Q EE

=N====NN=NMMMMMN=TeeMTTNW E

wo pecWomeeseTTveescTT%Toept QQ W

GW WE Ok HJ EW

=e vmMmMMTmTNWNNeeNmOecTMMOm 04 O==OOO===O-OO=OO*NOO===NO RJ C000000000000000000000000 W

===00=====O=====O0=O-0000 E

C000000000000000000000000 EW e o e e e e e e e e e e e e

a Du WWWWWWWWWWWWWWWWWWWWWWWWW W

C4 whomeTNam-eO=MmNeshmemvem W

~J NTTNONdMSWNAMTOhpTWO= Team e

=

Mw OmMeeOTp=OvehnemeOOT=TNem

)

=

(M

. N m M Q n e h. e.= M O.Y.M. M O N.M o v e M O N. O.

N e g=

N m o

O Wec==hhhhmm SNe#==#-m====

N E >

e E

D W

e 6E W

J J

e 00 MN=NMMaN=anMM=NaMNNMN===N J

J

\\

e o

e O 4 W

OW G

(

t.s WW E

A B J

OE A

E' h

O 4

O U

(

(U E

(

EJ E

-w 3

  • Om vmMeMMTmTWeNNGWNDOmevMMOM E

Rd O==OOO===Q=OO=OO=NOO===No O

J 0000000000000000000000000 O

O P

Q=

-NNNNNNNNNNNNNNNMMMMMMMMM e

  • OW 0000000000000000000000000

_ O u E

=E e e e e e e e e e e e e e e e e a e a e e e e e e Q

u E=

WWWWWWWWWWWWWWWWWWWWWWWWW W

W 4

WM ape #MOGh09886WMOOAMWOTNO=

M W

A=

m=MhWGNhWGSGSN=heevmNnamW E

WhC=NeNNeTMNSTSGMo@emTNOW O m W G.W. S. =.W.T.O.h. e s.T. N. N.# W N W M T N. e.h a 8 E

>A E

ahd9TMMNNN======mmmeheeTV W

3 W

=

L O M

>a O===>===========NNNNNNNNN W

WN 0000000000M00000000000000 Em

=

=

WE WWWWWWWWWWWWWWWWWWWWWWWWW G

W W

DW WTWONTveOvehh=OmhMTemove=

0 W

h OZ MOhoomNomeew=NTeenSO==Mee A

T 3

W=

chMeeOOONeTTOMTe=MNep60Mm T

E MNehenNeneh

. N. m h. e D. O O = M b w. O. O.

O e

J O

e m===NNMMTve99thh=======NN a

=

4 W

D E>a

===NNNNNNNNNNNNNNNNNNNMMM W

N (uW 0000000000000000000000000 N

Q 3 E

JEE e 3 e

3W=

WWWWWWWWWWWWWWWWWWWWWWWWW e'

e J

W u3>

-NNTMh==cN==OehMcN=hMMheM J

N KON AN=mheN==ONNecWhhpMOveeme N

e

(

0

-WO hee.ch= mmh =gNmepeceMmTOhm 8

4 O

GE4 O

e m e = M O O. M W o. @. e m n e. m n. c h h T. h C. N M.

=

EE

=

=

ehm===NNNMMMMTTT99@ hem===

i

=

E W

X l

=

O W

e W

-NRTp@hemO=NMTWehemO=NMTO O

W e

DJ

  • e==e=====NNNNNN

> 0 e

CW

=

0 N '

e Em' N

e

(

e

=

=

J

=

G M

M S

M C

S N

C N

S S

E E

R R

gg 2

2 M

M E

E L

L B

s O

N l 21 25 01 3 5 1 t 1 1 1 1 S t 21 f 1 2212 o

R S

ZD O000000000O0000OO00O00000 R

P t

P R

i EEEEEEEEEEEEEEEEEEEEEEEEE C

S c

9233t 92049904000230777073 C

O O

E 1 218 68658s47954239658 541 9 R

C I

R 5662538709a09793374390389 N

i I

7 4 2 0 7 3 6 0 2.s..t 41 073042625400 S

D C

S4257141 414111221 8234S432 V

Y A

5 L

- N 2011 22532:lll 1 f 23f 31f 1 1 21 6

L F

VO 0000000000OOO0O00O00O0000 O

A I

0 A

T EEEEEEEEEEEEEEEEEEEEEEEEE S N C

41 4S8DS7710273039I 2l 58699 8

N N

E 923S91 4362t 396393 O4077044 Y

A R

7346t36t4ss710993S09544S5 Y

A O

9 8 8 9.S. 3 3. d. 8.s 2 8 2 9 2 5 0 3 4 1 918O4 I

O D

5 612fR9211223211SS271 313 4l I

M i M I

T P

U

- N 01 01111 4 51sS t f I 1 l232s1 l 23 P

U A

xO 0000000000OOSOD0O000O0O00 R

I R

P T

EEEEEEEEEtEEEEEEEEEEEEEEE 3

T C

067460009s9539S0S228t 382S 0 i 7

1 E

4871 9905760947400381 478 02 7

4 C

R 022241 491 s3OO7797l 844741 8 4

C C

0 S.4 0 6 3 2 0 2 s.9. S. I 3 0 0 0.l 8 ?1 2050 I

0 E

O 0 E 1

I 1 21 241 21 841113333S3' 3111 2 1

P P

7 Y1 4440244504s771 08739 009574 9

2 R

CZ 5070092596s61249634894381 2

0 NT 373860002.e44534865901....

5 568 9

A ER 8

E UE 92571 5280srt 29785 37555039 8

E 2

P OM 1 1 1 22334aeS65770001 35600 8

6 E(

1 1 1 1 1 1 1 22 8

0 R

4 1

N F

1 N

L O

O A

t t

S P ER 1234S67890l 234567oS01 2345 e P O

DE 1 I 1 1 1 1 1 1 t I 222222 7

6 OS t

9 2

O MM s

3 E

U e

E M

M t

4 R s

t m

UNIFORM SUPPORT MOTION RESULTS Page No.

COMBINED NODE DISPLACEMENTS & ROTATIONS 28 4

COMBIMED PIPE ELEMENT FORCES & MOMENTS 29 COMBINED SUPPORT ELEMENT FORCES & MOMENTS 31

lll lll!I l!1

,llI I

if1lfl!

j 1

M S

M C

S N

C N

S S

E E

R R

- N 2O 04444444444444444444o I

1 0000000000000000000l T

A EEEEEEEEEEEEEEEEEEEEE T

3607254864779s9524609 O

60761 726237743972O537 R

3903263825S1 301 82S472 01 957658S46042S292261 0 3 3 6 7 6 4 7 S. S. 6 9 8 2 2 3 0 2 2 5 3 7344444333333S78921 1 2 N

vO o44333334444444444449 00000000000000000000 I

t T

A EEEEEEEEEEEEEEEEEEEEE T

623324933399306662364 O

21 2454030239723332560 R

262379502272376662079.

2S9 03696245 404777036S 004709666047S.

.S.1257.s6.

8 5

S491 1 f 1 1 6SSS78885464I 2

S r

N NO xO 943444444444444444449 000000000000000000000 T

I O

T i

A EEEEEEEEEEEEEEEE EEEE I

T 246899e2432773S48456S.

e O

82990e7674O8824508764 T

R 436293s224S1 0992598 33 E

37298909S03377989274t 69093723.I 56877729837t 6

ADO TM 8 71 8766S4321 8 t 2671 331 2

2 2

O M

T 47 M

T E

R.

00 E

L A

00 L

A t

S

/E S

O D P

O O R

SA R

P P

H N

TT P

P YS 2O 822222s222222222822SS.

NN C

E I

00000oo900000000080OO I t C

E R

NL T

JJ N R Oo R

N R

A A

EEtEEEEEEEEEEEEEEEEEE ED L

5Ss279s0S2S0S94640l5t C

s 9244943247S94O03l 4 79 TT MM e

393832S976S39S24e3023 AA s

L A

79175 7e1 12344S82321 99 L

ER R

7 4 7 9 3 2. e.9 3 3 3 3 3 3 3 9 0 2 0 9 4 DS 6

A O

T EE 6

A CF 1

2796374S6S6S6641 4172 f I t R O 0 OU 0 O A4 CC S

0 N

CC O

L YD 98S3Stt2222223458223S OO V

M

.t 98m9See9500000000000O Y

M PD f

S

.A EEEEEEEEEEEEEEEEEEEEE 23 3

$U L 0678723t94S40342S773G 00 M

8 39296t2t 9201 3303S768O 1

I M

e H

27s94e579837466St 723S EE I

g P U A

89e99t18S865447S8791 I

29 P

U OT I

.R 4 7 4 9 8. s. 3 7. t 4 9 8 8 4 8 3 9 1 25.S..

40 R

L T

85 R

E 4

S2S4123332211 4801 3391 79 0

T N

08 0

T 7

E' M I

7 4

C F

- N 9t 4

C O

I xO 92222222s22222229222S 0

E t

00000o00e00900000000O 0

E ON 3 f

8 1

P A

EEEEEEEEEEEEEEEEEEEEE T'

P NO L

3S032e92SG344SSt 70982, N

6 S. 7t 99e5s9St 5330S827432 E

S 2

I O

N 7924e9s6O87242576S229 M

2 9

T A

541 8 S440S7084t 474S51 7 EN 9

DT R

0 0 2,3 7 7 7 0 4 0 0 0 7.S. 9 7 8 S 8 3 7..

CO 8

E 3

T AI 5

E 2

EA 91 34444241 223S84S22l 3 LT 2

8 s

PA 8

0 NN ST 0

N s

1 N

O I

1 I I E

OR O

S O

1 SS A

'NM t

0 P

C TL.

UU e P MM NE MN T

8 D

! S

.,......... 234567Ss08 MM 2

I I 1

S 2

OO A

0A.

234ssrt905 8

8 E

O JL 0000eooe018 t8 9 1 1 1 S l22-AA 8

E CC 4 A

' L 0 0 0 0 D o o S 8 0 0 e 0 0 0 0 0 O O 0 0-MM 3

l e

I l

(

l l;lll!

l'

'4382T 69 IS-28-92 10.470" P I 5 Y. SLO O C2C PROSLEM 2

Q E S P O N $ E 4 P E C'T RUM S T R ES 5 REP OR T RESNCSM Q E 9"P O N S E S P EC T RUM A N A L Y S I 3 --- S T R ES S R EPO R T PtsyS PAGE 7

3-D 5 T RA I GH T OR CURVED P 1 P E E L E M E N T 5 EL EMEN T T Y PE I

COMS I N EO ELEM EN T F0RCES A NO M OM EN T S COHS S NEO ME TH OO 4

LOA D CA 5 E I

T O L 0A 0 CA SE 3

... rI mA L ELEM LOAD ENO AXlAL Y. Awls 2

,.X I S TORSION Y. Axis 2-AxtS NO CASE FORCE

$NEAR SHEAR MOMENT MOMENT MOMENT IT 008.

54.823 177.395 90.577 5822.262 7003.623 16348.197 002.

44.823; 177.395 90.577 5422.262 3189.750 7833.336 2T 002.

54.264 138.049 62.460 5122.262 3189.750 7839.996

003, 54.264 130.043 82.460 5122.262 2236.067 1772.682

'30 003.

63.497 53.244 80.412 5122.396 1770.487 2236.067 CENTER 44.941 51.473 80.412 4427.997 3354.643 2252 854 004.

42.010 S4.053 80.482 2763.704 5525.774 2229.505 43 004.

72.895 49.324 83.557

'2760.185 5527.567 2229.505 CENTER 71 384 58.203-53.557 705.474 6330.975 2065.889 00S.

64.670 59.458 03.557 2139.993 6419.021 8348.789 ST-005.

85.039 47.695 800.574 2284.267 6434.132 1948.789 004.

85.019 47.595.

100.574 2214.267 6863.168 1964.824 ST 006.

904.36S 35.260 108.889 2284.267 6863.168 1964.824 007.

904.386 34.260 108.889 2214.287 7427.589 2105,908 73 007.

131.833 699.843 26.238 2214.267 2l05.S05 7627.58S CENTER 252.400 857.280 26.238 2782.192 1242.864 4747.613

.008.

464.473 S27.352 26.238 2970.000 799.739 12046.584 83 008.

446.278 588.847 32.495 2969.991 799.774 82046.584 CENTER 997.395 333.324 32.498 2783.744 1468.325 17799.758 009.

SSS. SOS

'999.463 32,491 2027.247 2483.349 20580.373 ST 009.

638.588 53.588 392.113 2022.596 20580.375 2487.839 080.

438 Sil S3.588 392.889 2022.SS6 14850.884 3046.132

. LOT 010.

415.324 72.299 384.763 2022.536 14850.814 3046.132 Oll; SIS.324

'72.299 384.763 2022.S96 18943.578 4072.572 IIT Oll.

594.637 134 067 368 994 2022.596 19943.578 4072.522 052 594.637 135.067 368.994 2022.596 13332.107 3382.784 88828 08 80-28-32 10.470 P I E Y $ 0 6

-NRC PROSLEM 2 tEOPON $ E.

8 PEC T rum S T AESS REPOR T'

RE3MCsM

~

-Z V

a 8

8 8

e a

i e

4 e

4 8

4 9

m e

e e

e e

a 4

9 e

e i

e e

e W

e e

o e

e

(

e e

4 e

e e

e e

e M

e e

a=

s e e=

4 W

e

.J

== E e E

==

6 N end e g

M L

4 4E e N@

@O O

W W=

==

mO OT

=

O a= T n

u i

e Q 6 NO mN N

h NT

.T O NO O=

T N

>= n A

=

u u

m i

E NEa o@

W@

wet T=

=0 0N N@

m@O e en gg O

3 e

e e

.=.

e

=

0 m

W e

==

e

-N NM M=m eo eO MN N#

MMe

@T W

G t

e e@

@M M. = = *= m St MN N@

N

@M e

O E

E e

4 e

AT T c' Mee ed O

OT Te 40 N e N==

T e

e TN NM MTh h6 O

Ne eM TAM M em M 8 W

e e

e o

ou

@==

e e

e N

==

E e

i e

e e

naJ t

(#.1 >*

e E t e

e

.J e

M M tel e s

( E e AO OT T

T TT T==

Am m=

T 0M

==

inJ e

a Oe h am oo e O

Oe eO Oh AT

=

A

>= m N

=

6

> Ee

@M Me en en @

@m M O.

=. @

@m WOm OM N

O e

W e

.. =

.N M

O e

a MM MM MV=

== W

@O

@=

=M eed es e W

e H

e M==

=e its On mO en M@

O@

N St O O i

e NT TM MVe e=

=

AN N@

mmN eo e

>A 4

(

e A@

@M MNN NM M

M@

@T MMM MW 6e 4

e O

Om

==

E==

e u

o N

N e

e O&

e e

e R>e a

O O2 e e

= Lee t WD e

(

mEe TT TT T

.= = * ===

00 00 0

WW i

KO4 oo oe e O

OO OO 4N NN N

e ee N

sa KW e

O OE8 ft e ee e@O DO OO an e oc d=h hk O

s

>=

s

.O

.N N

s

.J a

NN NN NdO DO 00

@== N NN O.

I

@W

@W W.===

N O ME e

M i

se e ee eO OO OO OTM MM N

6 i

NN NN NW MM MM MQN NN

  • = e WD

>O 4

W M

c=

6 g

t

=

=

wu

=>

e 1

6 g

i W

e MK e t4

>E e

E==

=(

t

+

MW e de TT

me MM MW me e

e NN

{

mo e

Q

< Z t OO hN

=

b P=

MM oe M

M NN e

e N

>=

8

  • W e ee MM N *= N OO vv hb c es o.
e. p

>

N EW N

9

. a=

.M 0

E 5 e

e a

NN MNM St M ee TT TT

  • = an==

A P=.

to

=.

- E E

Ind i *=

e W

e

= = = mm M. St MM eM hh MM A

.N hA tal W N

m ned J

Q e

e t

  • * =

M NN NN

= * = =

MM ft M

.J O

m Z

e O(

e e

N 3 et M8 e

O A

e s

==

m O

A ff MQ e

Ku e

.J 4 E

L W

e e

A and

  • = = =

e

(

e 4Q U

U e

e u u r3 m(

e O mK e

>s E

Q e

== 4 e E

>W e

p(

M iaa e ee NN O

M en e TT TT OO e

O OO O

W 4

4Z e M cl e@

en am TT

=

MM hh St M

OO 6 O

.J >

t WC e W 4

= = *

  • t0 @

9e N M ee WW O to NN hOh en p E4 M

W e

s

),

s

.e f? M M 96 TT T e Pt

  • = = =

p N

.N

@ e$

3Q

( W e

U.J e

= =

@W N N. h e$

W t

t OO em a W

se em e O."J TT

  • = * =

T

.T ft m e

W Z

t K

4

=

@N em *=

NN

  • * = =

NTM

= =

EJ T

M O

N t

t O

N Ne O

E (O

6 O

8 N

==

a= N N

W e

e a

==

=

M 8

6 4

EE

> m t

4 W

E e

T e

== W W

e 6

.J tal e to 3i 6

to 4u8 E.J E

E t

e

=K s =- ee se e TT eo OO MM O

es = = =

=

=

et s

ZO XOe MM W@

p o

NN ee et et NN M

st

=

W

=

T M St M TT

= *

m se TT hah MM e.

W 3

A 3

4 4 ta= 4

  • = * * = = = =

>. =

a WQ e

.N

.O g

o N

5 e

e TT WI e P= h N NA ee TT

@W M== T CO 81 u

e EZ e

ae MM se mm e en TT ee T

.T TT QG e T

C P=

t e

MM MM Ne

= = = =

NN NN MMN NN M

O *-

N W

e We e

O O

%E

@ s V

U W

t e

N T

m T

u A

t

.J W e

O==

0 lad L

4 C

es a

M s

WE a

EO

=

L e

e A

I e

4E W

e e

N W

e OO O.

Q N

e O

a 2

e

.g

.g

. O==

C&

e m

e' W

t WW W

e N.M.

.M T

.T and am. WW

@N Ne e et m had O W

>=

e e

==

=

=p=.

. = =. =. =. = = = = =. =

a= *= N NN G

e ed OO 3@

a Ps N

i za e

OO OO OaO OO OO OO OO O a., O e

o a

e owe W

n 4

e e

O O

t

= =

4 to a u

u EW >

c

==

E W

t O4e

=

8 A

a ee

.J u e

== at C E O

E a

i 3 3 O

=

e e

EE e

nu E

.E.

=

0. L W

t E

e e

e=

a

>=

m

==

O lea e

QQ WCe N

M o

h a

e O

4O x

.E=

e

.T M

e

.J t

.J E e

.=

.=

=

=

.=

.=

.=

.=

N

(

N E

f uu ens e

EQ E E N

e enJ Ink e

e e

es

. = =

s e

=

  • N

I Y

s 4

3 E

G A

=

P r

S Y

S L

M I

M S

P A

S c

C u

a N

S S

E I

E R

R r

3 E

S T

A R

C O

P 0

E A

R 0

L m

S S

S TO L.

Y

}

E NT 5

2m N

T 4

3 3

4 4

4 4

4 3

3 R

E NT 0

0 0

0 0

0 0

0 0 E

N.

l T

MI aE E

E E E E

E E

E E

M RM 5

2 4

5 6

2 3

G 3

S O

TO.

3 2

0 t

7 9

l 6

1 2

Y

. E SM.

6 8

S 6

I ME E

0 0

5 3

2 Y

.M R

L R

1 5

7 7

0 S

1 1

2 c 0 0 0

0 M

R

.E S

E

. L O

. E L

D

._ e OA S

D P T

1 8

2 1

F 2

2 2

2 2 2 2

2 2

O P

R

$T NC NE.

0 0 0 0 C

0 O 0 0

0 0 9

0 C

R I C

~

P E'

P E

N A

AR.

E E

E E C

'E E

E E

E E

E E E

I

. C R

RO.

S 2

4 4

2 6 5 5

3 5

t 3

4 5

C R

R

$I O

TF S

8 7

4 S

3 7

S 8

6 6

4 3

a N

S 0

S.

4 0

4 0

6 7,

M YA SA E

4 7

S.

0 7

8 S

R S 6 l

5 ' t l

3 1

2 7 4

2 8

3 S

LR E0 S

AT CL 6

E 6

E NS R

0 R T

X Y

Z.X Y

Z X

Y Z

0 R

AE 0

CT..

7 S

l 3

5

. 8 T

UN.

7

?

7 1

1 1

0 O l

1 l

S T

1 1

5 R

F '-

RI 0 0 0 1

t 1

2 2

2 R

R a R R

S'

.Y S

TO..

0 0 0 0

e 0

0 0

0 T

T T

T T

V M

4 SP.

A A A

A A

A A

A A

S S

S S

S

. S S

U-

/

1 M

T.

M 3

R NO EN.

. P U

PI 1

1 1

7 7

7 1

1 8

7 9

1 3 5 P

U S

O.

T2 EO 0 0 0 8

1 8

2 2

2 0

0 8

1 9

I C

MH PJ.

0 0 0 0 0

0 0

0 0

0 0 0 0 0 R

.0 T

0 T

7 E

ET 7

.4 c

E 4

C P

LE T'

0 E P

N o

E

.1 S

EM I

t P

Y A

R R

R R R

R R

R R

P R

O O O O O O O O O T

T T

T T

S

- T TE M

M M

M M M M M

M U U U U U S

2 E

DO SP C

C C

C C

C C

C C

R R R

R R

2

.. 2 EY N

N N

N N

N N

N N

T T

T T

T 3

'S EE RT A

A A

A A

A A

A A

S S

S S

S 0

E T

8 E

2 N

NN 2

.. - S N

DE S

0 O

II AS 0

O E

OA 1

N 1

7 P

S$

LC.

O M

O t

S

'M M 9

. S P E

. E M

0 P

E 0O lE l

2 3

4 5

6 7

S S 0 2

3 4

l

,7 O

L

- 2 T

R CC.

Lt 1

I 1

1 1

7 S

E' 2

<C E

E 8

E

_ I 4

4 i

RESULTS FOR INDEPENDENT SUPPORT MOTION METHOD WITH SRSS OF GROUP CONTRIBUTIONS Page No.

  • COMBINED NODE DISPLACEMENTS & ROTATIONS 33
  • COMBINED PIF2 ELEMENT FORCES & MOMENTS 34
  • COMBINED SUPPORT ELEMENT FORCES & MOMENTS 36

-32.-

S S

S S

n R

s S

u R

M M

. N 2O 044444444444444444550 I

00000000000000000001 T

1 A

T EEEEEEEEEEEEEEEEEEEEE O

030t 45451 s05803740023 R

850491 933s97534I 8251 6 Y

66491 438 st 0532091 7840 T

02347820097325 6637326 Q

207909s31 01 3325273623 R

O 422232222222234553 791 O

P

- M P

y0 04443333444444444444o E

E l

0000000000000000000l l

1 Q

A R

T EEEEEEEEEEEEEEEEEEEEE O

$74709745046762227006 R

26332705s937024447506 L

5751 58955309052225402 L

37503l 9461 46363334893 053654388e6920 A

A 28760I 1 5

4 O

2 32571 I I 1 21 2345444331 4 O

5 o

- N O

NO XO 944444444444444444440 M

M T

I O

T 000000000000000000001 I

A I

T EEEEEEEEEEEEEEEEEEEEE M

e O

64235t 958I 3620l t 362S4 M

T R

6668 78963 S6064l 942503 u

E 3822320623843I 070S43 9 U

AD 339988 5644839S477t 532 R

O 004663947372007902026 a

3 1M

..5654433223 9 1 1 33S1 224 2

1 2

T t

3 0

M C

47 M

C 00 E

E R

L E

-S 00 L

E B

S

/E O P 0 P P

R 2

SA P s H

N TT P

5 TS 2O NN C

s22222622222222292258 I I C

I R

NL T

O00000000000000000000 OO R

N E

A A

JJ N

E EO L

EEEEEEEEEEEEEEEEEEEEE 2'

O S

32742582S97Ot 90032034 TT 5

MM

-N 29523777220S9 1 2039432 AA N

A 88482902840S999004S86 m

89000136S7I 45 DD ER R

2773941 l

EE 6

O 387904.I 9 9 0 0 0 0 0 8. S. 8 I 7 1 0 O O

T 1

RR CF 4S32433344444262f31 UU 0

P 0 P 3 1 A4 CC 0

S N

CC 5

6 L

Y0 OO 9

E 9603222222223345S2238 7

E f

P0 f

0000000600000000O0000

$ Q A

23 6

A

$0 L

EEEEEEEEEEEEEEEEEEEEE 00 I

l S

242St084SS79OS2I e7S99 H

N 06607497S407SS7S73384 EE I

P T

A 0S236S92071 9335S43069 47 P

T OT l

R 95906I 21 3139204t 37663 20 49520830228968 09 A

Q l

T S.985,0. S. 3 39 E

A S l'.

71 0

O 3 O N

4133112299 1 39S1S19 3 7

7 EM I

P F

N S3 4

P 4

O XO 932222226332222202238 o

P 0 P I

t ON 3

T 000000000000000000000 1

U A

T U

NO L

EEEEEEEEEEEEEfEEEEEEE N

S 0p2007854S880l S9$91 20 E

S 2

I 0

N 9t l 2

930671 3792S0002574 M

1 7t 6776023698l365331 2 EN 9

C 7

A DT R

0574444972227i$3 03383 CO 8

E 1

T AI 8

E 3 3 9 6 9 9 9 5.S. 9 1 073.S020020 LT 2

2 EA PA L

l 31 L

e 561 22223 22S1 1 SS331 0

NN ST o

P C

t P

S I

8 I S E

OR e

I S

l SS A

MM n

C T

C TL UU o

T MM NE MM 3

L T

L D

t S I I 234567090l 2345878901 XX 2

h 00 A

oA 1

t U

O JL 0000000001 l 119 11 1 1 3 22 AA 8

u

, CC L

0000000000O0000003000 MM 8

I 8

e

g 4

I e

e 9

e 4

0 1

4 e

e e

e A

6 e

e e

s e

a 6

e e

i e

e D

W i

4 e

t 4

6 8

L e

6 6

e s

e M

t a

e b

e

.A

=E e

te.

W 4

xW t gg te L

e

(

( Ke A@

eT e

A A

e e@

to N

==

A h

a Ne eo OO an U

e e Oe vN Ne N

v g

@M M=

m N

N N

T=

=T vO g

M M

e E

net tA C O@

h@m eee eM Mp OWO O N. O Nm me

@O w

U t

t N.

O _

.N g

e

=

t Me@

@@m

m. A NN oNN NvM N@

@T TT e

E e

e MN N@

O - et D.=

a O Oe e

es e

.O

@M M fi vi e E

E e

k i

M en en =

T== M fi e =* = N N= M eOM M M 95 eB e@

@N e

e OT T **== M =

N

.= =

==

TOA A@N

= =

=N NN W

e e

4

==

T N

e O e=

N

==

i e

e

==

=

E t

i e

==

4 4

W t

W t=

a

+

E o

.J e

M wW e C

e

( E e A fi Me ti A

v fi n en

N

== c ee es en e a

K W

t e Oe e to

@N e

e N

T f"n O Om *= m e

e AT TM fi V O

e

>C*

NN hr Men 000 T=

a= O pmN Noe om ei e mW O

e W

e

- et N.

N -

et -

L e

e

@M M fi en @ e O N ft

@N Ne NTM fi *= T Pt M eT Th L

W t

W t

OO OO

@. et O

N h as ee e

e W

.m CO Oe eA W

e e

NO OT

== T T eNO O fi fi e Meh hee eM fi== *= en W

>L 6

(

l TN N== = fi M M=T TT TT

= en A *= Nm e@

@v CB 4

4

==

0 96 m

E E=

1 u

e N

T e

e OL e

a w

e E> e w

L i

O OE W

i

-= W e to WQ i

(

MEe en an o en M

V e e====== c et en vT TT TT W

4 EOt en un o en

== m en h

ee e EB e

i T

ft fi et fi fi MM tal EW e

O DEe NN NN Nve TmM NN NN N h tw Tv vv vv g

a e

. es.

.O

.o. e v.=,

g

. et e

eJ e

ee an e oeA o e. O S en. fi di O e ee an an ep e et en M s

e fi ft M fi ei. an O

N NN NN N

a e a v Tv vv vv to E o

W e

NN NN N 96 h heT TT TT TCe e 96 f4 M fi ft 49 fi et tft t

e ti f4 M fi si en== = 0== = = =

e= e=

== te en

e. T *=

aa==

em,=. = =

en to 3 e

>O 6

h an h

h I

4 N

e=

en Wu a

E>

e C

e E

E i

W t

3 i

WE I 3

n= K e

E=

-4 6

\\

O I

MW e St m AA

==== m e

ee et 44 4

e OO m St NN E

h 44 O e

O (I i

=

N N

en 6 m 86 p

en N

N OO ft ti h

A.,

N.N

. =

m e.

NN NN el e m beh 00 MM NN N

N >

e s ee 00 e

EW N

i a = e.

.N

.k

. en.

.N E u E u a

a e

MM em

=ca MeM TT mm Tmv NhN em TT

==

g N

.N m 96 me St St W

W t e=

n W

4 e an et et 6

o en

.p

@W eW =.=

.J W

I t

t

==

M T

N

= = a

  • = = =

.J W

e Z

e O(

l M

p

==

N e

O L

e i

O L

U WG t

Iu e

E L

W 4

t L

IA

= =

s

(

e u

l i

U U

M(

e O te E e E

1.2 W

6

== 4 e X

W p

n et ea v N

m O

OO Nh hh

>E 4

44 (

XW e M f4 hh N

e =

W 6

4Z t NN

@W M

p 54 e== me e e e W

  1. e NN

==

to eeN 6O NN

== e b e a se 6h Ae ee J>

e WO a se I ee oe e e N.

. W3

.. =.

e.

+h E

E e

s 4 44 e

u.A e

NN 9% N eNM h== N el 44 TT OeN h e et e to an a Nh c O s

a

== es se N. fi N

+T M fl NN ft. ft N

=m MM VT hh O

E e

E t

=

h e

T*M ft *=

0 L

0 L

e i

N M

=

=

(O e

O e

T N

t4 W

e t

e W

to M

4 4

6 W

e t

tse E

9 T

4 M

E e

t

.4 ted e I4 X

3e e

<ue

==

t e

== E e OO N 90 m et e e to e ee O

V b

NN PD Pt M 9%

=

E e

EO MQe es e ee O

fl en et OO NN

==

h e

em St m Ah pe

W W== N NN OO hee mmh=

et e to to L

e" L

t 44e m et ee

>=

e WO e

O. =6

.O

.e E

M fi e6 a N==

T N *=

NN W1 O 96 ft E

s e

oe eo e T==

v =. =l T

e TT oo N

e. * = ma hA eW O

e CZ e

TT TT T

.T 4 O e

a M

m MN NTT MM fi ft MM C

O N

W e

W>

a T

ft T

e h

T L

lad 4

e

=

f4 T

L L

e

.A laa e

O L

L e

O ik

=

to e

lee E e

3 s

e 3

4 6

O a

e in N

W e

QQ O

e N

.g e

Q e

3 e

.g

.E

.E

. e end St

  1. O O **== N e

4 M

t WW tes e

== N fe ft et taf T T eaa e ee

@h h led e e

lee 4

e OO OO O *= 0 O>0 OO OO O>O O>G O== = = ===

e tes N

E e

EI e

00 00 OEO CEO CO CO ORO OCQ CO 00 00 N

t eJ E

e QWe ins W

tai ted J

O O

e e===

4 et e u

u u

u O

L lad 4

O( e

=

L em L

8 83 e Aua

=

C s

e

==

  • =

44 I

EC e

O" j

O >

lee a

E s

e=

en a

e m

=

l taa e

OO WO6 wa N

M V

en e

h a

9t O

=

.4 8

s

.J E t

==

  • =
  • =

.4 N

E e

uu W

e N

e 3 led 8

4 e

3

=

e s

=

E T

C 9

e i

e e

e e

6 s

e e

e e

t i

e se e

e a

8 e

e a

e a

e 6

4 e

a w

e e

LS e

t 4

e e

A e

e e

e e

e W

4 4

e W> a W

e

.J

== E e to

=

6 xwa g

W 0.

I

(

(Ee ee eO O

@c p.=

@O O fg c

=e y

.=

E e

e Oe ON te M t'

e aN NO

=M Mw O

e P. M N

.=

g E nee Me e@

t' e e em

=0 M@

@O e >= m

@ t%

T O

gn M

M

'e g

a s.

.e Q

E a

e

=

4 Os

@N NNe m== *= O TN NO eMM el et e

E e

e ee dQ

.e se se e e >=

hA e

.O en N O

g E

i 16 e

85 te eQ O = 85 m en p

Ne eM TMM eW M

t a

N=

=N NOT T fi fi

=T TN

== n N

=@

M e W

t t

e N

e O=

a e

e

=

N

=

E e

e e

e e

sea e

84 > $

P*

e

= E e 6

~

.4 e

M Xwe M

e (E e a= =

a= h N

@T T=

  • * * * * = *
  • PB

==

@O g

w e

e Oe Th hO O

T T@

eO ee WD N

ee m =

0 e

>Ee M *= =. c oAe e=

e eso a

.e

=, 0 N. m 6.

O O

me O=@

me h

O O

I a

@p e et MNO O *=

=O

@ St me O m S*

MN A

W 4

W e

Th hM M

et We M M

eT Te P=

.n O si M

O tal e

e N 96 m fi M N ti fi h h

Pl M nT M P. e si O O

enk

    • L e

(

e TN N==== N = * * * **

f4 M f4 **

N e==

NT st e E

a N.

M N 8e g

K==

t Q

s

==

6 e

OA e

e W

I Ek 4 m

6 O

OE e W

e

== W 6 y

WD e

(

wee TT TT T

C OO OO OO OO O

T TT W

s KOe e= h P. h N

O OO OO TT TT T

M M f9 m

O w

Ew e

C OEe oc on OO C0 ee g

e a

o. T O.
s. w.

who e@

n O

M

.T N

O g

e

.J e

ee ee se >= 0 00 00 P=>=

b P.

AeO OO t

6 NN NN N -

OO OO O. to ee e O WE e

W e

hh h Pi 6,= M ee ee eeM M f5 M

M e

e a= =

a= =

m

- = = = e=

e= m se

=

Ne W

M3 a

>O a

e h

M=

e e

tee u 6

E>

a E

4 e

E k

K e

W e

3 i

Wm.

3

>K e

E e=

== ( l E

t X lad e ee >= h se em TT e St en >= h N

N OO E

WO a

O

'I E s

=

fw N O

O eo ee hh MM O

O TT C

T N

N >

6 e te a h P.

TT e a= m es e i

EW N e

.O O. O.

ee OO T. QN T.

NN O

e N >

g to O e E

O i

e e

oe M Pt e m. W Pt M NN TT 96 m

T

MM E

U ena e >

a W

e We si e M

M NN M fi ne m St O

.O OO laa taA o

ti isa

=a W

e a

e 80

  • * * =
  • = * = = = = * =

m N

.A W

e E

s O4 s

M O

3W = =

  • e O 4 e

e

==

m O

L E

WG e

20 e

.J 4 5

L W

4 i

A W

a===

I

(

e 4U U

e e

u E

W<

6 O due

>e W

X W

e

== < t E

W

>E a

to 4 W has e

@ WI.

Ah M

M ma MM e St M 99 M

N St m O

W e

4E6 OO ut #==

0 N ce OO P= P=

NN O

e TT e e W

.A >

e WD eW e 00 00 h P=

E e

)=

e S. O M.

=. =.

H M.

T. T T. O m.

m e.

E4 >=

e g

T T

4 E

4W e

O el e

em T4 O V 88 P= h e@

>= P=

P= >=

6 P= 0 89 #9 30 O

e 4

ee MM V

P M ft eW TT e 49

==

  • 9e = = =

P*

e O E

e N

6 m a=

  • = * =

== 6

= =

E.A T

N O

L e

e N

'T

'== %

h

= a O

L-(O t

O e

.=

M W

4 6

e

=

e W

M S

A 9

EE taf I

e I=

Ine E

4 V

e

  • = ene W

M i

e

.4 eld e e

E 3e e

e=

4ue Ee

=

e e

== at e h P.

ea e M

NN es e TT

= =

N e==

=

E e

EO MQe

= = *

  • P= 8%

O MM N P*

P. A NN mPO NN tad P*

e e

e

( es. e M@

O. O.

M. M M.

N. N e===

eW

= =

T ee O

> = =

e WQ g

T

. P=

K N

W e

e 00

= = = epO MM 89 M We== pec $6 0 48

  • E e

W e

EE e

TT

=

P.

.T NN NN MM ee et. - -==

O O

e a

NN NN== W

= * * = = = = = =

N ** =*

O O

A W

e Wp e

N T

%2 Me h

T esJ e

e

==

em a

W A

e a one e

O=

O A A

e O

E

  • =

W e

eed E e

EO

==

3 e

e 3

e 4

(E se e

e e

N esa e

OO O e

O N

gn e

E i

.g

.g e

N. M M.T.

Twm

.. Ne e en m taf C D *=

EA e

W e

led M tie e

e e=

e= P=.

es tak e

s o =,=

> =

==

= = = =

e > es ce es G

e W

N E

e EE e

OO OO OEO OO OO OO OO OEO OO 3 et E

N

.J E

e Owe ena w

(

.3 O

C e

==

4 e9 4 u

u E anJ >

0

==

A ina e

C et

- E l

..=

L A

4 et AS AUe

== W E

e a

3 l

==

W 6

%E A

.ME-E

  • =

O

(*

IaJ e

E e

e=

m

==

e

=

0 tea e

QO tas O e N.

M e

h e

et O

4O M

E V.

e.

k

.J

.A e

.J E e

= *

=J

==

=

e.

==

(ne

(

.=

N K

e U Q.

tag e

EO E E e e 3 ind e

a e 3

=

e n

T E

t 8

i e

4 e

6 6

e e

4 i

e e

en a

4 6

e e

e e

e e

i e

e e

e W

4 e

Q 4

4 e

e E

e e

e e

s e

e4 e

e e

a M

4 d

a 14

==

9 e

g to L

e

(

I E

1 4

g w

e E

e an E

e e

a.

e e

==

e E

8 4

g e

A e

4 e

e e

e e

8 e

e e

e e

e e

I e

6 e

M s

E e

a g

e 6

0 4

i O

e saa e

s s

L e

w I

laj l

e W

e

(

e E

s a

g E

t u

e e

i O

e e

se e

s ys L

e O

e en i

e go W

e W

e a

taa E

e O

e E

E a

g e

.A e

\\

a=

4 M

e 14 e

W e

e y

W 6

>0 e

e a

W e

I s=

a E

E e

k i

T M

M T

T T

M M

M E

GC e

tes I>s O

O O O

O O

O O O 3

W e

-Ee e

i e

3 e

E==

(W 4 W

IaJ W

tea W

nas W

tas W E

E e

Of C e T

en h

O N

N M

=

E to e

O

>0e M

M O

h M

M N

M se N

tad - t eEe O,

O.

10 T

=

0 0 0 0 0 E U N

N e

P=

to O

s EW ens e

M.

N >

E u o.J e

E e

a M

T em T

tad 6

e to 4

44

.J isJ e tad e

e

.A anJ G

e Q(

I e

O A

e I

==

N==

N

==

N N

N N

N N

=

N O k E

44 "

e EO ewe O O O O O

O O O O

O O O O O E

A W

e

== u e A

W

== 2 4

4 (Ee tal las W tel iak he W

nel tad tai laa taf

  • Je taA u

e EO4 N

e e e h

O N

m e==

N

  • = n e

u E

Ma e

Q > ti. a O

m N O

M e

M ft e.n

==

h M

N e=

E E

W 6

a M

a.

O.

=.

M.

  • =

N N

e a=

T N

e N.

E tad

>(

e 40 (

W e

=

W e

E 4

O T==

M

  • =

W

==

T N.==

St N

e JK e

WO e

E 4

e E

4>

e U.J e

W Q

s e

e O EM e

E

=

4 O A e

la e

X > N X >

N X > N O A

( tad e

O U>a

    • e
  • M e

e ut e

33e se

==== h A

>=== *===

0 Q

=

m M

e ta=

E== e O

O O

==

N N

N GE E

E E

T tea e

>Ot O

O O

O O

O O

O O

8=

> tee E

e T

SA4

(

(

(

(

(

(

(

(

et te W

W tt e

44 E

e e

I e4 E

36 t

D*

4 e

s

>t

.=

E 4

EO W30 L

e

&== g a.

p.

A p.

k, m

pg g

>N e

tad O== 0 e O

O O *===

  • N N

N O

O

=

E 8

A '"I e

O O O O O

O O O O O

O O

O O

E O

4 EE e

o O 4

8 O

O A

tal e

and P -

a h

v A

the e

a T

A A

4 A laJ t

0 A A

e E

e O A a=

to a

WE

==

6

  • =

3 e

et t

E E

E E

E E E

E E

3 e

er e

O O O O O O O

O O >

t-

  • =

6

> end e K

E z z z 2

2 2

x 3 3 3 3 3 80 N

tse s

OO to A e u u u u u u u u u E

E E

4E et N

9 4

teJ > a E

E E

E E

E E

E E

e=

m e

W 4

nae saa Eet 4

(

(

(

(

(

4 4

4 m

W G

W W

e ene s

e e

and N

3 s

XX e

N e

ma E

s O til e e

.J O

O e

= = - -

4 se e C

i

~

A tai e

04 e b

A e

as 5

-e U e C

e e

==

==

  • =

W 8

EE e

O k

ned e

E e

O

>=

ha e

OO ens O e

== N M

T p

to P.

e e O *=

.N M

V A

.J e

.4 E a

.= =

=.

.J -

fle 2

e UU tad a

N e 3 and i

e e

3

=

e e

T C

=* *"

RESULTS FOR INDEPENDENT SUPPORT MOTION METilOD WITH ABS OF GROUP CONTRIBUTIONS Page No.

  • NODE DISPLACEMENTS & ROTATIONS DUE TO X DIRECTION RESPONSE SPECTRA 38
  • NODE DISPLACEMENTS & ROTATIO'IS DUE TO Y DIRECTION RESPONSE SPECTRA 39 l
  • NODE DISPLACEMENTS & ROTATIONS DUE TO Z DIRECTION RESPONSE SPECTRA 40
  • PIPE ELEMENT FORCES & MOMENTS DUE TO X,Y AND Z DIRECTION RESPONSE SPECTRA 41
  • SUPPORT ELEMENT FORCES & MOMENTS DUE TO X,Y AND Z DIRECTION RESPONSE SPECTRA

.46 __.__ _ -. _ _ _ _ _ _ _ _ -. _ _ _ _ _ - _ _ _

M 8+

a w

H a

Q

'e s

s s

s A

A R

R p

u M

M N

20 055444455SS5544445S5l s

00000000OO0000000O0i f

1 A

Y EEEEtEEEEEEE4EEEEEEEt O

7866st 5S44633eI 46922s R

9626439t 6s0506S8 42747 T

456734444709494477836 T

6S84O249564346440346 3

R 97S01 0240459I 5 7 9 3 2 9. e.

R l

. S33 2 O

O

. 7SSS66I 1 791 5 9 1 I 1 I P

N P

e V0 E

054444444444444444450 E

l 00000000000000000001 f

1 R

A A

to T

EEEEEEEECEEEEEEEEEEEE i

O 9s5S697047S39666306S 8

R 9

3692549636t 43777685S L

989509423003096662994 L

791 34041 744579000399 A

059547953022490003384 A

5 D

2 l 91 233331 s1 1 1 1 2223 1 93 0_

S O

N o

NO N0 O4444' 4444S5SS5S44S5SO M

M T

l O

f l

00004000O0OO0O00O0Ol e

A CO I

T EEEEEEEEEEEEEEEEEEEEE M

s O

59097I 92t 64S00496t 672 M

T R

931 77S995 sot 61 395e649 U

E 846J4t 793SS399O28S02s U

AD 09SS777023 2394S3 e3472 3.

R 9 8 4 1 3 4 3. S. 9 1. 9 a.

R O

56I TM

. SS.4321.

2 T

2 T

33. 2il 1 I 1 1 97S4361 46Si W

I O

M C 47 M C E

R.

00 E

L E

S 00 L

E o P P

O P:

e

/E S

C SA R

P S

H N

TT P

S T' S 2O NN l I C

932223S222222223933S9 C

I R

NL T

000009S990098000000O0 uO 4

m E

.A A

JJ h E ED L

EEEEEEEEEEEEEEEEEEEEE 34?6923SS347S TT S.

S O

G 7924 opt f

MM N

2977S7237S2091 2e20093 AA W

N A

369733S99S2348499D098 N

ER

.R 402029l 22333333697947 aD EE 6

O 1 3 6 9 3 8. G. 8 3 3 3 3 3 3 3 4 5 8 9 9 0 S O O

T 4R CF O P 45111 511111 11 11 82831 6 bU O P AI CC S

N CC S

S OO t

YO.0S6333333333335S93339

'Y E

Y E

I P' D

-T 9O9999899009000O00000 8

R A

24

. 5 R EEEEEEEEEtEEEEEEEEEEE 00 SO L.931SS736Se190SS90S5 S

3e 1

H N

93 9tS929GSl43t 286339S EE I

P T

A D9S9D292S3e39372O1 S0t 49 P

T d

9D1 749402S90247S6O3s 74 DT R

I R

T 6121 9 9 7 8 4 8.I.S.9933 7S.93 74 R

l E

06 0 O 21213S7S643223 429341 3 99

. 0 O 7

. EM 13

. 4 P

7 4

P N

. P D

MO

)

93332223S333322293' 339 0

0 P

L

.I ON A

T 00000089O000000400000 1

1 U

N

. A T

U I

L EEE8EEEEEtEEEEEEEEEEE N

NO F

-.S 64970S097eS3SI 4970704 E

S 2

I

(

.N-49087S39 99890S787929S R

2 5

A 737988997S797003S447e EN 9

DT 1

R 91 0422237S223378 S439S CO 8

E T

462400021 21 28000O2260 AI

. 3 E

LT 2

2 EA Sl24Se1 l I L'

. 2642s PA L

32791l 1

0 0

NN a ST

'. 3 O

P 1

P I

3 I E

DR I

S I

5 Ba A MM 9

0 T

C TL UU

. 0 T

MM NE NN j

I I 1

L T

L O

S I

XM 2

E 00 A

OA 1 234S6789el 2345678901 I

CC; L'

0008O0960OO$0000000O0 MM

- 0 U

y S

U O

JL 0000S0800sl18 1 1 1 3 1 1 22 AA

. 8 4

1 N

M:

I!

l!I L '

i +

1 4

1

6-p e

4 4

K g

e e

E E

e E NO OVT99999vvvvvvvvvvv90

=

=0000000000000000000*

4 e ee a e e e e e e e e e e e e e e e e e WWWWWWWWWWWWWWWWWWWWW O

eMTMNNamevnevNoweeMok E

mONMMeeONamhNovechMT vnNNNe==mehe=eechhhem SNNMTMmOMceneveem=Ne

E m N v e. n e e N O Q a M =.N e. e m e O M. O.

E' O

N**NeMMMMMMMMNNNN===N O

L e 3 L

>O W

=

OTvvvvvvvvvvvvvvvvvYO W

W

0000000000000000000

E 4

e e e o e a e e e o e e e e e e e e e e e E'

WWWWWWWWWWWWWWWWWWWWW O-mehewehcheMevenceNNhv K

mheeemehvmenomeeeNeMM J

NOOMOONOSMOhMNNNNTNew J-cAvheeveOT-MOONNNeeMe 4

evm.eN.e.O.N.eO.neMee.e.eeQOT.

4 e

O N

==NMeced====NNNNN=N=M O-1 O

e 3 0

20

  • O E - >

=

09999vvvvvvvvvvvvvvv0 E

O.

-OOOOcOOOOOOOOOSOOOO=

=

4 e e o e e e a e e o e e e e e e e e e e e g_

=

WWWWWWWWWWWWWWWWWWWWW E

e O mesomeOONh00emMM=ehem E

E OvMme=meMmmevchhhemv0 3

W enhaaves-NhWeeNO=hehe 3.

40 OmmeMhMahv=Om=hvmW=en E-I E

O M c N e w e n e.m m e M.e n O. O n. e O N.b.

>E N

GNMNNNNNNN=====NN= MMS N >

O E u eh C U W

W OO W

J W

W OO J

W O

NW e

O.

L L

O L

U W4 K

L e

E eE L

W-we NO EE u

=

mMNNNNINNNNNNNNNSNMem

==.

O-900000 00000000000000 00 E

j rd EJ W

4

. 4 e e e e e e e,4 eo a e e e e e e e e e e 99 3

W WO J

WWWWWWWWWWWWWWWWWWWWW W

O q OOWveSGOhSOONOW=Nehme W.

EE X

Mw ehethepee9hveONMvMe-

'44' E

4 heepmWORGMe##vO=OaveN-E WE E

vvh0=v499====Neveehee 40 O O O

O.O.T.O.O.O.M.e.e.O O.O.O O.O. M O M e. m.e WW e

O-QW O

L WSWMN=N=NNNNNNNav=eNG.

Eg 33' OL 4

UU S e eW UG e e J

>O 00 W

=

900MNNNNNNNNNMenewNMe

'W' LO

> 005000099999990000000 W

E J

WWWWWWWWWWWWWWWWWWWWW 09 4

4 e e e e e e e o e e e a e e e a e e e a NT e ' E WO g

Thv=OevMGemeO9pMO=SW=

e s

=~

=

=Z s

S=vMNghWNeSe=Ome===Me WW L >

4.

WeeMeependevmeone-sha

'NN L

Op E WevhWge#4h==NhecOmene Me E'

S G. O N. O G. M. S. e. m e e v e. =. G. e. h. e n. e.

ON E-W Me

- - O O O GNaN==NNNN===dbMeWN==-

O h

WE S. O.

h.

v' L

e3 Ne 9-L-O a

XO O-L J-

  1. MNNNNNMGMMMNNNNpMMMS O

L.

=

OE 4

000990900099000909000

=

=

3 E

4 e e e e e a e a e e a e e e e e e e e e 3

20

=

J 'WWWWWWWWWWWWWWWWWWWWW E

e A

W,

=ce==O=TenSMeMveevens W.

N

E MhM==$9=Sev=GOehovahm E.

N=

U 4

eaveO99eeeMyceemme=OO WE e

Q>

N K

Mece=OceeOveeMham=Osv UO' s

N-W e

e =. =. M. e. m e. S N. M. m e O. s e n. t m e h n

(='

m-W-

W4 J>

N' e

J Vv=====m=Nve=WN=NeeNe L4 e

J O

ME e WM 9:

- = -

L-

=O

=

L

==

W

'O g e

4

=1 se 4

=

O >

u.>J O-;>

.EE EW

>-.J O

=a

=

J

<mi 3 - 00 4

04.

N-

.NMweehemO=NMv NemO.

MM' M'

OOOOOOOOOe.===

ne.=-adesN-O.

9J

. 4 eg e 3

]

=

=-

'40-J OOOOOOOOOOOOOOOOOOOOO EE

'i

=

-T.'E<

i j

l a

.h

.O

-e t

o=

L W

u.

e

-W e

4

-G 4

E 4

E

'?

e 6-e E

-C e E NO 0 9 T T T T T T M e e T T T T T T e p aft e *

=

  • == O O O O O O O O O O O O O O O O O O O a=

4 e e e e e e e e e e e e e a e e e e e e 4 led W tai led tad W taA taf W W tal tai tea tal caJ Lad W tad las taa tad O M e M e N== m m a h e T e N

  • W m h N O N E

hevvMSMMWO=MhMSMmOMOT e=

T #== M T M e M e m O N # O O W P= M h A O M M M O e W M N O O W a= @ O== T N v M N O

  • = M T C. O. e p W e M N== 0. h h. W. N e M N F.

E

-E O

M N M M M N N = m W h *= = M M W h e T

  • N O

aE

>O 0TTTMMMHTTTTTTT*.TTTO taa -

tad

=

  • = 0 O O O O O O O O O O O **

O O O O O =

E 4

-e e e e e a e e e e e e e e e e e e e e-g taf tai tad led tai had tad Ise las tad % tai taA laa inJ W tai taf Inf lad one O

O N M M T W 9 M W '.s e e h N h h Pm e O O N E-O P* T e O e 6 e O P. A P* N $== = a= **== m O -

+

J T M P= M S O N A f m a e e e W W W== M O N

-.A N N T Pm O ===== N e =* O e== e e e es M== Pm 4

O. te. N. W. f4 T W f M. T T m. e. e. =. =. **. e. O. e e 4-n O'

N Y M >= S======

  • M ** M T W W G te W T M em M O --

M O

e E O

20

  • O E

e

=

mvvvvvvv%TT96mTTTTTOO E_

Q 0 0 0 O O O O O O ? O O O O O O O O O O== -

4 e e e e e e e a e e e e e~e e e e e e n

==

=

taf W W nas las taf naa tai las tea taa 2 4 tal W ta8 anf tai tea tal ene taa 1

E e

O== M M S O N T es N T h s w ='. e G Pm T m T O

.E c

E V MS O O emeesOO W e e MPmP W O O a= e 3

inJ O e e e O e O O W W M $ e e W N @ ** P= W e 3

}

' et O O T e e P= >= A & N O Pw M N M M== e T p e e '

E O

ti, M =. =. e M. e =. an e. m. o. e. N.==. 0. M. m. O. M. V.

E

--l n= E

- N >

  • = W e N e e T T M N== e= m e N e te a e= a N '

.N-G

-E u

T P.

E u s

taJ E

  • OO tad J

tai M

OO

=a tad 9

%W G

O A

O 4

. W4 E

te Z

eE A.

4D P= to NO EE

= =

o' 7

U

> OOOOOSeeOOOSOOOOOOOOe 00 E

e N N ed ed af 9 ef 98 N N me af N N af S ed ed e e

=

ft 2 =a C

'W 4

(

e e a e e e e ee e e e e a e e e e e e e at at -

E-tal

- les O -

=J - tai tal tas les taf W taf W taf taf tal tai est W W taf tai tea tai taf W C'

O m es

  • e e e O T $ es >= e n N O a= g as T 3

-9 W - EE E - M== M e e g af G $ em T M e a e S e es e es >=

((

I; 4

S e M T T e S h M e= e e S 40 # 6 e es = S e E

tad E E

O e T M M ** M 80 M T T g a h 9 e 4 >= es e Oe-T. e. a of. e. e. S. e. e. e. e. e. O. O. O. es. e. M T, h. *, -

tea ans --

W/ O 0-O g3 u en.

O L

==== G h e es S M e W e s p e e M o M a v a 33

-O A'

n. te eS..

uu

(=

UU se n

=J

>O

'OO g g g M af N es et af M M M M M T p e M M M e.

'>- ' tal

> - tal

=

-LQ

-> 5ee999960000900000000-e E

(

4 e a e e a e e e e e a e e e e a e e a e-'

es M

-W E-MO J WIIS W W W W W he taf tas W tal W tal tad tad tai tai tal tal-OO 3 A e=

e== T e >= 9 9 9 e *= e O e a P e9-e e

=

- = =

S==

S

== 2 5

e M. M. T T T N 3, T

  • O O..T M== M..e e S -: T af.-

6 tai t

. es. g g e h. k... n. O O 7

G.

e.

n hh Ok

-E M

.e O Pm T. N. es. P= es as G. M. e. e. 9.== N N. T S. O. =. M -

M

'E E

e...-

T.es

.W M

=-

t O O T = M M==== es as = m T es M e== W em M e N T

. as a -

O' O

P.

Ina E -

.e a ps.=

T-E T.t P.

O

,=. xO

=

QE ' 4.

OOOOO9999099990000000 4.

O-A' O E a

S M N te N 90 es C6 9 M M N N N me to S es N M e

==

3

'E

.(

e e-e e

.e a e e e e a e e e e e e e a e e; e=.

=

3' E0

=-

J tailas las ha nas tas taf tea las W tas nas las tas W tas tas Ins taa W W 3

6 W,

9=hekeOTehesmestehp==

W-N

2 OSTem$=STGGeWSSMMMOMO E

=

N 4

@ e T e G $ 9 R P= T esp = = es

  • T T ## M e m taf E

- m

. M E

OeeP eseses e M e= a es O S T O e M M e e UO e

O>

e e. T. M Pm P* P=== e6. T. G M M G =. # G M M. T. *=.

at =

m Ink e

tad N-W4

+

.J >

'N e-'

J n P= N M 49 M M es M M G em N te >= M M.=

M,=.

A(_

e J

l-

~ O EE

-e se >= -

O l-A

.. A

.g

=

. = = = laa

.Og

.=

es -

==

ee. (

=

. u.

>J O >

0 >

.E E --

> J

.; e _

.E tad g.

=.:

==

.J 8ts OO 4_ 0 4 -- =esMTeeAee9.esMTeWP.em.em xx N

=*===a========.

es as g4-m-

3 Ie 3 O

  • e J. OOO9OOOO9 s

- * =

  • uu. =a

'OOOOOGOSeeeeOOOOOOOOO

.sE

=

,. =. -

.,,,. g.,

9 e

e e

e a

e e

e a

e e

e e

e e=

e e

e e

e e

e e

i e

i e

a e

W e

e G

s e

4 e

e 4

e e

e e

e e

M e

e 1

M>

e M

e

==* E e

=

e Xue M

A e

<Ee e P% M=ev AT=vgo P.

OA

.= M N

O e.=

h P.

Y ee w

O e

a Oe v=MANN

-NhhNv o

Mv M== v M

OM ev 0

0v e

4 M

e NEo m e O O =. M e Ps 0 0 M P=

veMvmeeee MMameeeNM

=v

(

g e

e

.T N

. = = -

.N

- - P.

P=

g e

e e

e m e a= TN m M== m N P%

Pm NM@M#eMM M N e en v M M M== We e

E e

e OMCvOO M en 4 m O e 2

OO TT

.Y d

Tv.Ov e

ve E

E e

o en d M M O h 4 Y M e. Ps M Nve=C=mNe eMpaNNeMO no N

p=

O NAN Y

e Nn=

e=

e a

M=MNMO

=

W e

a-Ps N

e o

h e

e e

N

=

E e

e e

e M. >E W

e e

e e.

e J

e XW e E

a

( Ee MAMmC=

P= Ps m e= = M N

NN hO O

= ve em N

Ne E

W i Oe P% veeNe T o e v es==

==

mN e P=

N N

M==

c e = = =

h e o e O >=. m h e oO O

O e

> Ce et M== on e. O e

a 6

M e M P= 8e v O, M v, M v et v O e O.

.M N

. en.. v

.sl a

am 8% e en N *= es e an eeO== N. P=== e. e== m en A

e e

v = v e v P%

o e P e P=. e WO L

O es v se

  1. l en ee O

fe Ye NO

.M ve W

e

(

e

=

n se P. M ev v et veaheeM=v

N M e e O 'T e

M W

e en en O.= *= N e N.O.== N

== v W

e e

>A a

E e

.=

N c

. N e,=

N.

am M v s= M e= e= M N Y p p

=

$1 e

e Ps N

e M

O O

E E=

=

e em N

em N

O e

e CA i

w i

M e

E> a en a

OE e M

i e

-W i e

WO e

e mea et m e e O O m ete e O O e== to en M

=

e OO

m o=

W e

e EOe OOesOO O O m as O O O

mo

=w O

O m P=

mu N

vv W

O. E i

= =.ft m O O

=.=. e m O O M W m =. m en c e N M o c e = =.M d C.

g EW e

N P*

p e

. se.

O.

.v

.e

.. O

.N g

e

  • )

e n

e eSNNvN eseNNvv m e v M 91 0 v==. @e vvmapMNbv

==

Pm

.OO e P=

O M Ps Te

.N vv e

N I

N Ps e p h >=

P% A e m P= P=

ME e

M e

OOweOO COeeOO O = @ e e O O N== e O M O m O = en h op W

e e

======== v v

.=e=e=e=

v v a= n a= m =vNN P=

em Ps a N v==

em M3 e

>W e

m v

6 N

e9 y

e e

a=

M Wu o

EO e

E 6

e E

E e

WO e

3 e

Mse 3

kw o

EE

-(

i t

5 e

XW e en en M M== =

maNNNN M

MN N=

e to M M==

NN at MO e

O

( I e N P= e w e e opNNon v vN NN N

v ve da

=

00 O.W O ct M M M = M.

00 4

N a

e M e StetM M C O M M es e e m

=.M = O N O M = M-e EO N

4 v.

.N

.N v -

.e

.. = =

E u t

e e

vveseee e el e e N N e== a Ps O >= v M. V eOeMe.MMMM NN E

U W

e>

e e

MMVVep

= *= M M V V

=== N a N tp e *

=N Ne +e NN ese l

J w

e e

e h

v e

M c

a W

M 2

e O

e

==

N

==

N e

e O

L e

e O

k U

en Q t

E **

e E

L M

i e

A e

= =

a

(

e u

a e

u f1 M4 e

W MNe W

D W

e

== ( e X

enf

>W e

ve c XW e MMMMOO e s v v Pe M A

Me ya M

p NT TN

.N e e.

Ps P et M

e 4Ze M M P P= M M N h O O P= 8%

O ON

= Ps e e eO e es v

em NN e v e. O. S P* N. h.

E JM e

WO eee v v.v v.S m==== p p e m v = O. fe O *=. N. a m.

E e

e

. We Se

.v

. We es

( e4 e

uE e

==== 0 O O O O O O e e 8t

  • = * = m e e P* es e N se M h e o e e e ee a M

==

e O e o e

e Y v e as v v.

MMT400 N.NN NN M

N NN.pN E

e E

e

=e

. = = =

m e

==

am M

N O A e

e

=

=

M N

v M

O A

(O e

0 e

v3 M

e e

e e

et M

e b

e W

e e

a=

anA E

e

=

e M

E e

e

.J W e e

W 3e s

<ue an e

e

== M e a= sa Se e a e e n h P. e e M

ee Mm N

h eO *= O M

= =

=

W e

EO x0e CONNem emMMme v ev 6e v

P=

Ch O=

v de eg 00 T.N v M.T N M.h L >

e (6 e

== e= e s. e m P*h0Dvv MONMMvmP=v

>=

e WD e

v.

We -

W

.m

  • N p

=eeeeve 6o E

e e

e e m We O O OeemOO e e e e P. e e to =

  • O. >N o. N M

.N MM u

e EE e

NNeptv N N etn v V N.Noa cM M

N O O e

e e

N e

m v

V O

O Pm saa e

end >=

e N

e M

N v

M h

v A

tai e

e v

4 L

e JW e

O A

A e

e O

4

=

e e

WE e

3 e

e 3

e e

W W

e e

e N

W e

QO O

e N

. et

..g

.W en e

e I

e

.g

.g

.g

. v enA o e ena p y end O 6e o

e M

e ens W ene e

= N e. N.= N NMNMNM M W v Mtaiy M W v e

end a

e OOOOOO C0000O O > O 0 0- 0 0 > 0 OMOOPOOMO 00 m

ed N

E e

EE e

000000 000000 CEOCE002O OROCE0020 OO M

e

.J E

e Q ena e W

ene W

W and end i

J N

M

.= u Nu Mu

    • O Nu Mu

=

0 O

O e

=

4M e N

M

==

4 A

W e

Q( e

=

==

L e

ee Jue C

e e

==

==

  • =

M e

EE e

=

0 m

W e

e e

e 0

W e

OO 4Oe

==

N M

v p

=8 J

e JEo d

N E

o uu ed e

N e D end e

e 3

=

s e

O., 9

i 1

s*

?

,i,.

2 E

G A

P 5

v ST.

S iN.

xE S

P AM.5609 7642 836720 5

54 22 3

5 32 61 2 20242 S

O.

G 446492 8

68 79 5

6 57 45 1

7 9798 G

2M.8736 A

S 437968 52743 3 3 5 0. 2

, 2 S892.776324 38388 A

R

. 7 8

4.

R 1

. 398 8 65948S 451 4264.56 1 3.26325.39678 04264 1

M 5989 629894 4. 83 66 8

5, 9 0668S M

N 2903 569036 626367083 644704362 67849 4223361 9 244316906 1 1

. 1 1 1 1 1 1 1

E 9

4 5

8 P

01 1

1 3

3 5

4 M.

1 E

sT T

iN.

T xE L

A AM.3434

. 7726 857462 3

37 60 5 6

64 03 3

31 632 R

- D 1 841 49 4

84 82 8

7 67 58 8

51 489 E

G YM 1 207 032077 8 6970867 06 95694 O

L 3, 9 6890577.6 P.

P

. 4358 0431 86 571.

2

. 9 0

8 5548 1 9.087 5 0.6 983.5 45.84. 9 3

1 1

3591 8 E

A

- 2338 643386 2. 38 291 1 9 E

01 1 4 461 340 694080645 456928559 41 472 E

TP N

2255 1 1 22$6 8

1 31 1 0 7

1 4 31 43646 R

4 0

0 4

8 8

3 R

Rl I

1 1

1 OP F

S NT.

8 P

ON.

S E.

I ED SM.8864 8 1 8866 1

88 - 66 8

7 45 1 2 - 7 22227 RO.8899 E

448899 4

58 69 2

7 70 52 4

66448 E

OM.7764 RE T

7 7 6 7 9 0 6.2

' 5491 777766 42 332.5 54 44556 A

.1 6

9.. 6 R

V 5

. 6656 1 1 665S 21 683576 1 6.7 28 3 4 0 6 3.9 8

88994 8

T 2

- 4433 4444 33 4

44 23 4

4 94 77889 T

5R

- 0077 550077 5730t9763 675?99325 S5005

. 1 1 11 1 11 8 9

8r11 82 4

t 61 291 1 8 3 S

$U YE 5

a 1

6 1

1 i

2

. 8 2

EC ND M

M A

E0 U

sR.

U TR MM A

8 A

XE.0046 667722 7

74 48 8

0 05 90. 4 33998 0

55565 R

5O O

6600 334400 7

72 21 1

9'.93 84 AH.5577 2

T 007799 5?58401 81

0. C 0 4 9 4 7 0 7 S.

2.

.1 1 1 581 2

T MD 2

9 4

. 8.

4.

M C

. 9977 442233 35.1l3 3 8.1 1 341 4 50.IS24.25 9878 009 8 2 M C E

T T

2277 223388 2

1 99005 E

~

8 1

1 L

E 3

3 4

S 9

8

. 1 1 2 L

E S

H D

1 0

1 I

2 8~

6 O P D

P R

$G NI P

P S

P S

8 I A

C C

R SA E

sR R

N E

iA M

E

~

YR SD ME 8888 442233 6

78 41 S

4 i 1 4 1 3 5

44449 AM.1991 5 775533 1

02 96 S 2

62 17 4

88440 8

LT EO 177 337766 4S.41 8024 881 S.

6. 8 38887 331 2

3 1

N Y

8 N

6 3

0.

4 AS CM

. 5688 442200

9. S 1t 2 7. 0 6 4 2 8 5.6 4 06.66 3249 31 2

88446 6

O 4422 113322 1 1 S52 6 O 5

1 9

.1 1

N R'

131291394 17 1

5 441 1

7 0

6 O P O

P 4

0

. S 1

AD O

1 2

2' S

S S

S 3

F Y

E Y

E M.

l 5

R S A LE.

U AC.9933 T

IR.6698 9S88S5 2

50 06 1

6 98. 48 6

33447 3

I R

NO MO.771 804400 7

03 93 9

4 04 03' 3 33550 P

1 AF.

0 9 4. 7132.172 88089 P

Y 1

887733 3481 61 268 1

T1 EO 0.

3 9

8 S

441 3 4 R

R 2255 8 17700 1 1 9 6 7.9 8 9. 9 21 2

99951 01 4. I C

NN 3344 443366 5

1 44 8 3 44009

.1 4

0 O 01 91 43 1211 4236S 1 1 224 0

O 7

E ET 8

8 7'

4

- 9

^

7 4

P E

1 1

1 4

P P

LE s

0 P P

0 P

S EM 1

1 U

Y U

S T

S 2

E DD O

.R 2

.a.d R.

.R 9

9 N

.R EE E

. 5656 676767 7E87r87'E8 0E90E90E9 90909 8

E T

. 0000 000000 0T00T00T0 0T00T00T0 01 0I 0 8

E 2

N..

NN

. 0000 000000 0N00N00N0 0N00N00N0 09000 2

E E

E E

E E

1 L

L N

DE.

AS 3

I 2

3 1 C 2C 3C lC' 2C 3C 1

2 3

0 0

O OA 2

I i P

1 P

E 1

P S6 LC.

M I

I 1

S MM n

0 T

E M

T 6

B T

O T

E 0O EO.

G 7

S S

T L'

L 1

L LN.

2 R

CC 2

E 8

U E

S U

8 I

4 M

I I

e e

e e

e e

i e

e

.]

e e

e e

I e

e M

e e

i e

e 4

e e

e i

e e

e e

a e

ee e

e t

G e

e e

a e

a e

e e

e e

eh 4

. e e

Wk e e

=E 9 l

M e

kWe I

e 4

4 4

ee OmTseN

=AmMNN eMOwoo MW=NON W

9N AN W

O e

e aM mamMMN

  • OMNN=

TTeed Tome *

0 Tm =*

e I

4 W

e N

eT e.eeeTp e M e e. p N.

m.em M O M N

=WQPhe

@ e W h. W N e.

s 4

g a

e

.q

. N <

e e

e=

9meMe meM*PM eNoeem No Neo egeNees e

E o

4 e deem =

eseMue

=*=MMT de AT e

Mh 09 E

i 8

8 M hOTAMe O. pe. h a s e N e e e m e.

meses ech.emme e

aN NNN.

NNNN =

M=Ne

==

=e=,eMN W

e e

e e

e e

E e

e e

e W

e w>e Ea U

e e.

J e

n e

. Ohmese h.

me e= W 5

'r 5

e se eT

=NMe=TN h.t h.

h @v Nem SN Oedmee

TNe Nh6eee h*ea ep=

p

a. p

??

e e

ee e = 4. N. h e e >=

O eA

c. h e e.

O. h.

O M. m N. e. e M.M N. N e e.

M e n. N. e T e.

A Q

6 e.

e

.,e e.

H M..N e w N o A

e eM MNehMO N== h e e s WeeNem eMN e

W e

4 en eO= hee O p e. e e s=

g. eochg one A

e.Me

=

W e

e M.

=e>=MAe seMAme enThme m e h.

em O. M e m = T o W

8 2

e=

MNTM*h NNMNhp

  • a= N== m M

=e M *

.e T=,

8 e=

=

9 m

W U=

e

=

e e

e Ok a

w e

M e

8k e W

L e

OE e M

e e

=

c e

WO e

e M

eA NNNNhh NNNNhh NNMMMM NNMMFM N M.

M.

W e

e e ** e e T T **== e e T T **

  • T T e= = ** **

T T ** ** ** em T

a a

W er W e

0 ee k

g e

e=

e.

T T e. n. e. e.

9 T. o. m. e. e *

  • e. c. h h

= = e. c. h h WO. e. n.

N

.e c

l>

e fe e9 meeeTT eeemTT em * = s. e=

e=

  • a= e= en eeeempee t=

e N

em P. h e e S 9 hNee99 TTMMWe TTMMe T -

M e

en E e

n ev n00000 nne*nen e e n n e e e t M..M. N O

ee M e*

O e

e*

e

== ee

.=wNN e

e eM N

g a3 e

>W e

M e

e a

WU e

EO e

E e

e E

g u

e WD e

3 8

.es E e 3

r[)

>a e

EE

=4 e

.+

e

=We,

.O.O m e. d t e.T.,8 8 M.M8. M. e. e. e. m.

TT h,.me,T e eh T T,

.O e

O.

Tse.

M e..ww NN hs.h.. e...N h

A N

e=

e e.e.

t W e. n. n e.

.=

w e=

w N -

e EO N e.

h E 4 e

e eN e s t e s*

  • Weeeqq' *=NNTT W W e s t ep h S. h g e= W M E U W

e>

e ee esOeen me@STT MMTTem NNMAge N N ene

.NT.

W.

.a ens e

e eN

=== h 4 NN h-e

.e W

E e

O e

N N-e 8b e

a O k a-WW t

E*

e t

c.

a e

i n.

a

.. e e

e u

e e

u W

W4 e

W WWe g

-a W

e

=4 e a

W

>W e

WO I

W e

' MWeS hhWNWG es@eMM pgaphh pegede g 99 NM et I e e hhWWwe S&phhh' Wvaste p a.a..A A A e

TN

=p W

JM e

WO e e e N.

e m e. s. e. s. e. s. p e =. =.

M. M. e. p N. N. - e. s.

=. p p

e. N e. h. n. e. et.

3 3

e

> e W$eeMM d e s. ea s W P &. h W h. M e T

.t M e

UE ee NNw MM N N em.T 9 9NN-NNNNTT we=NNTT N eM 99 e-O MMT 9 0 e

eN NNhhMM i

R e

75 e

w=

w*

h e

e A e

e

-Y, h

O-A 4 c.

e O

e a m e

e e

W W M

e b

> W e

6

> W E

.e a

e

  1. 3 e

e J

e d'

W.

3e e'

4 e0 >= q eehh ea = M M TTTTee' sea==N e

N pa

' =

=

e e

=

W-e Re W

ee e SSTT phSm NNSSNN

@ @ h >= A T'

= No A >

e-( b 4 S.

e.. s. e. e. n. -

. e. s. N. N.

h h. e e==. =. -

$. 0. e. s. h..

e.

. S. eM b. e.

L;->-

>. - e WD e

e 5

e eT -39T99T emeeTT >= >. T T = e=

- hheeMM-A e n dit e m 5-w.9 p e h h M A.= =m e p p U

e

.EE ea 9

e m ets W e e P. h e= = s e = e.4m.M-

  1. 9 e

eT

.vg'.

=Tg w w A. A

= =. N 4 M

ep N O O h

W e-W>

e p

e e.

T. - A W

e e

T A

e JW e

Q~

A A

I e

O' -L

=

n e

WE e

=

3

> e e

3 e

e W-k

.e e

W N

inf e

OO e e

. N to e

E e.....,..

.g..

.g e x-s M

e WW ini

.NwN,N

.N M N. M. N. M

.M T M..T M =T T W p T ens W 9 -

e.e..e e= a e= 3 m ene

.e e

se = = e- -

e= e. e= em e=.

.= e...

.

=

a= e e.

= e= e= e= -

e

'W N

E e

WE ee-03933e seesee seeses 9e3333 933333e N

e J

E e

O sal e

.M-

' ea. -N M

= N _ M e= 'N M

    • W ' NW

.M.

..,0 sa N

W W

J 0

O e

=

ge.e 6-W e

e-e e Ge JWe E

e.

e

.=

-4_ _.==

M

,e' EE e

.k

.e O

==

en -

enf

'e

, W9e e

E e

e=

. e=

ene.

6 OO-N.

M.

9-e=

e=

.J

'd e'

W e

JEe' e

e

.=

ee a

=

'N'_3-5

-e UU N

+e-naa e-e

e 3

' l*& L.

~

_.,_,,_,,.__,2,..

lIl

)J jl jljll)li l

4 EG A

P 5

7 ST.

im.

xE s

P AM 6

447365 405051 20T060 030304 7

29 9

S O.24 s

2 493 427 904070 62S200 272708 3

95 3

S ZM.3 a

692.S42 905020 66t 3 44 681 549 2 e 0 6. 9.

R 82 n

m

.e Y

. 38 64321 2 402020 64s588 485983 2S8876 M

4 330347 5

9 7

49231 8 36355 7 5

73. 5 M

w

. 78 731 8 1 3 3

8 3

68 631 5 1 63459 0o809t

. 1 6 1 2 3264 1

2 4

1 171 1 1

731 1 t 1 8 3 E

. 4 S

8 1

I 1

M E

ST;N.

Y T

L wE.

M.

R 3

948 338 403081 51 1 782 3 77922 3 s9 2 R

a. O. 3 1

51 1 ?1 2 1 07020 91 201 2 1 50523 7

O7 2

E O

TM.5

5. t,, 4. ? 8 7

.. 3 9 4 s. 4 3 391 63 8

9 07070 6

3 2 C. 5. 203 O

L

.8 P

1 2029t 8 009080 202073 4298t5 837S97 P

3. 5 E

A 1 1 34S7 1

4 7

2443 44 458 343 6 2S 9

E 74 48 4349 3

9 361s3 3 688L38 635448 E

TP M

51 11 3 1 1 1

8 1

21 s1 44 18 11 41 7

372 R

4 1

4 R

Rt G

1 OP F

S 4T.

S P

ON.

S E.

I S

EO SM.

00001 00001 9 002299 S02299 0 92 4

8 1

E OM.0RO.40 0 0G0000 000009 559955 S59933 5

79 7

E RE 000009 000000 9 9.s s 7 7.

3. 3266.5 996477 64 A

T

. 223599 22S599 236503 R

V 5

. 1.S 000000 000000 T

2 332233 332233 3

82 1

T SR S

. 8 44ss68 44666S 4326e0 S

. 5 2a

-22 2

242 S

SU YE 0

2 9

1 1

EC 4O M

M R

EO sR.

U U

TR MM sA r

R uE 5

447733 S46633 99SS44 887799 2 26 6 R

4 SO O

2 228899 S59944 663366 662244 0 C9 0 AM.58 (F

2 T

008833 S.S. 9 9 6 6 227777 669833 929363 2

T MO Z S.2 0

0.

M.

C 3 9. 2 4 M C

. 83 663 1 44 004466 449o66 443355 3939 E

T i

4 1 1 2222 222233 77ss99 S5S622 2

4 E

L E

. 3 11 13 3

1 91 L

E S

M O

. 4 2

4 S

O P 1

O P R

Ss Nt m

P S P S i3 A

C C

R 5A E

SR.

R E

t A.

m E yR SO uE 8 442299 223388 S6s13 t 448877 S

4S 4

AM.28 8

994433 994466 S5t23 i 444444 S

92 8

S S

LT EO S.7 888888 996599 S. 8 s 1 9. S.

88593 3 S. 2 11 926 N

Y 3

d A$

CM 9

888811 S59689 99ss4S 999989 S4.76

2. 5 278 7 6 O 112244 224489 44n1 5S 229922 S 7

6 O

N R

. 92 a2 9

8 0 P

. 5 2

2 0 P AD

. 0

..3 S

5 S

3 F

Y E

y E

M 1

S R Lt.

S R

U.

T Ae.

m.

3 SS7799 771 1 66 443366 5S9999 4

84 S

S 3

I R

N9 M9 8

SS1199 S86611 99t s44 1 t 2244 9 51 2

P T

AF.9 9 S.S.6 8 8 0 S.S. 9 9 4 4

.ss88 336866 49 P

T 8 5 6. 2 8 1 1

Tt EO 9

9 9988 21 87eF R

R

. 98 tt4477 t9 S588 04rr89 t t C

MH 4

SS8844 S58844 66ss77 SS681 1 7 47 6

0 O 5

11 11 11 11 1

9 O O 7

E ET 5

9 9

F 4

P E

. 1 4

P P

LE 0 P P

o P 1

S EM t

U Y

U S

T S

2 E

. OR O 2

9 W'

. R

.R

.R 9

8 EE E

. ES S6Ss5s 676767 2s2e28 8989t9 9E09Ee 5

E T

TI l 1 I i1 t 1 8 1 1 11 1 t i3 1 1 1 1 1 t 3 1 T21 *i 2

N Nm NS O0SS8O 000800 0OoS89 0990S0 0N0#ms

. s E

a

. E E

E L

L N

OE.C 0

O 8 B 2 3 1

2 3 1

2 3 I

2 3 I C 2C o

AS.

I P

E OA.

. s P

1 P

eB M

LC.

I 4

1 S

MM t

B T

E M

T 7'

T T

8 e

T J

E OO EO.

S 6'

F S

9 E

. t L

T L

L LN.

I 1

I I

1 2

R CC 8

U E

s

'U 1

t i

t

I e

a s

e e

e e

e e

e e

e e

e M

e a

e e

e e

e e

e e

e e

e a

W e

e e

6 e

4 e

e b

e e

e e

e e

M e

e e

Wk e e

  • = 8 e

.=

e ar ud a M

L e

(

eb

=

  1. ENATE W

e e

eM O sa Neep O

N e e

e 14 e

N eeMh OeMOh6 4

0

== e 4

e

-M

=

0 g

O g

e e

eeeN hoheem E

e eM

.N NNmMTe TMOp e M m ea C

2 e

eeeP OeeAeT O

P a=

s e*TN

=Nm 4

0e e

Neee W

e e

e M=

4 ee e e

e M

em

=

E e

e e

e esf e

W to e M

e em 2e

.J e

m tas e C

e 4

eT T

N6mN*M K

W e

e e-e eeeTeh N

O N N O

e e

e= O h O

O. c. N M r. e.

e-O e -

T O

e e.

e J

e T.

A e

eome eTWeNN e M m es he c eMO.

eeeeNh W

4 e

eA T

W e

emMe Tme e

M A

nel

>E e

3 e

N MseMNM Ne e

e=

a=#

O e

e M

ee e 6T m

M k=

=

a a

e-

=

4 e

O&

a h

e W

e Ek e W

A e

OE e S

e 4

== w e a

WO e

e W

em N es en TTNN W

e e

E ee v Ahhhvv O

O

  1. 9 O

taf O

O e O l

NW e

O 6 h60 d e T T. O O-O O

G.

E C

e e

T, eennen T M O se e

emen P. M O a=

~

W e

N eM e e @' O e e==

  • yn M T

ME e

W N NNOONN A

O e

e N

NN Oe a

Oe a

w w3 e

> ens e

T v=

c vM e o

e em so lad u

's EO e

s E

e e

E 4

e e

WD e

a 3

e WKe 3

>N e

CE

=(

e O

e x ans e -

e.

eeNN..

s MO e

O (xee o eeOOO e v e

A c c T. v. e. E.

e =

0 h

N

  • t 4
  • e aweT-,

e EO N e

.c.

n e

O n p E

W E

U e

e e ** T em OOMMee 6 k a

k eM. f9 e e e e = a=

tad W N 6 e em 9 N 09 e=

w W, tai e

e s

a sm **

W

  • =

T

.d. Ine

.A 5

e Q

e M

3W Ne e

e e e

b 8A e

e S W e b Q

b E

n0 0

E =>

J4 E

A M

e 4

h n

en==

e 4

e (O

i u

e e

u 5

W4 e

taf - MWe

) e E

tad e

== ( e S u l

>W e

WO M tea e e 9 e e, s= m a O

O e

4 Fee O

== e= a= = A P.

e=

v om O

e h

e m ak e

WO e w e v = =.

e. s p e= M. M.

K4 N.

> e im a

p 2

Q e

(a e

ut a s e. e MMwwwM 30-M.

O.

+

ev. MMeeve eNv-NMew e o 0 0 e

0- E e

4 e= h om ao em CJ a=

a=

e=

E e

N e

e N

- e ee-e 0

t (O

e O

e

== %

h.

e A

M O

-O e

e e

e W

-e M

e tan e

3C tad e

e end E

I a

e

== W i

i O

O, e

e

.4 ed e e

W 3e e >

4 e E4 09 e vvhhea

=

e=

e e

a=

E e

EO M

ee e WGNNhh lei h

6' e

  1. 9 O

e-M v

e=

-6 e=

46e,e e e 9

h. h. 9 6. e. e.

b en e

WD e

E' e

to.

N.

(*

O e-8 e e m. p Semesq O

e CE e *=

T e6 e e e e v.

OG vMM=

m M se -

O O e

e as A a=

. en a e N

  • = 40 0 O A

W

- e Wk e

N

%3 T e e

efe r e

h e

A O. - L Ine e

e a

M N 64 oce A

e J and e

O en O A A

4 e

O 6

=

W e

taa 2 e

EO 3

a e

3 e

a 45 W

- > e e

e N

W e

QO O e

O N

m-e E

e

.g p-e 49 e

W tai taf amWO O== 0 a= 0 em E&

e'

-O nse -

> e e e. > N.NNNNNN-G 9

W N

E e

EE eOEO OOOO9O 3W 5 a

'9 e

.4 3

e O and e taf 4

end

=d O

O.

== 4eeMu e.

N 09 EW

e. -

e e*- A

== h W

e 04e b

e~

W5'

.A O g

== E i

C e e

i

=

W e.

EE e

MN Q >'

tad e

E e

. 4O m a x

3 e.

==

O.

e.

. &ie e

OO ins O e O

i.. >

.J

.A e

.J B e N

4 a=

4 e.

s i

N

.E e

uu W-e Eu E E C E

( ' l =e J.- D tal e

e e-3 e

a-

..a

j'il' 11 1lI

{ll

'!!l1I l

s E

c a

r 5

7 5

8 S

P s

S A

sa R

R.

M M

T T

R R

O O

L P

P A

E E

7 n

R R

R i

Q F

S S

P S

S E

E E

R 9

R 5

T 2

T S

S S

S S

TE T

E mD M

N T

334 333 333 444 444 444 333 333 232 M

R EO NTN 000 000 000 000 000 000 000 000 000 U

E I

U R

M MM AE EEE EEE EEE EEE EEE EEE EEE EEE EEE T

RM.

S80 334 S45 S27 73S 788 S8S SS3 75O R

TO.

S O

000 757 I S3 8S5 028 492 235 t 87 Sf S f

2 T

E SM.

S. S. 3.

533 050 6S3 061 374 M

C

- L R

3Sf 1 1 4 1 23 32S 22S.

S.82 44S.

a O S.

2 T

MO g

E 127 1 S2 333 222 M C E

Y t

L E

- E t

E S

D s

O P T

1 1 1 3 f 1 f 1 2 1 1 1 1 1 2 1 f 1 1 12 1 28 1 f 2 o P R

5T N1 NE.

040 0o0 O0O 000 00O 0o0 000 000 0O0 R

P S

C.

P S l

I N A

aR.

EEE EEE EEE EEE EEE EEE EEE EEE cEE C

RO.

7S0 D3S 37S S04 I S4 SC7 SGS 2t S s3S C

R S1 E

930 I S0 440 50$

S08 0S9 S4S 843 70S R

TF.

M E

YA SD E

S. S 0 05.S

t. 5 4
5. O. 0 031 383 034 m E S

480 1 04 S

R 345 2S4 4S1 223 581 24S SS1 314.

5St S

LR EO M

M AT CM S O S O NS R

O P T

MMX YYY ZZZ MXX YYY ZZZ MMK YYY zZZ 0 P AE

. 0 UR.CT.

S S 1t I 11 1 4 1 5 777 777

?77 1 1 1 111 1 t 1 5

S R

F Rt 0eO 000 000 t 1 1 1 1 1 t 11 222 222 222 0DD 000 000 c00 000 c00 000 000 000 v E Te.

Y E

M 1

AAA AAA AAA AAA AAA AAA AAA AAA AAA SP.

5 R

S R

U-T T..

i I

R N4 EN.

P T

PI 18 9 t t1 8 11 777 777 777 111 1 1 1 91 3 P

T 72 EO O

009 cc0 000 1 11 1 1 8 1 1 1 222 222 222 I

R PJ.

009 OO8 000 000 000 000 OOO OOO 000 R

C MM 0 O 0 Q 7

E E7 7

4 P

E 4

P P

LE T

0 P P

N

. P 0

1 S

EM I

1 U

T A

RRR RRR RRR RRR RRR RRR RRR RRR RRR U

R OOO OOO OOO OOO OOO OOO OOO OOO OOO S

T TE.

CCC CCC CCC CCC CCC CCC CCC CCC CCC 2

MMM HHM MMH HMH MMM HMM MMM MMM MMM S

2 E

D D' SP.

NMh NNN MNN NNN MNN RBR MNN BNN wNM 3

9 ET S

EE RT..

AAA AAA AAA AAA AAA AAA AAA AAA AAA 8

E T

s E 2

M NN 2

L a

L 0

O DE.

S I AS 123 3 23 1 23 I 23 123 123 1 J3 123 i23 0

1 P

E 1

P OA.

P SB LC.

M I

I 1

S MM 0

T E

M 0

T E

OO EO t

2 3

4 S

8 7

8 S

T L

L.

LN.

s L

2 R

CC 2

E 9

U E

s U 9

t i

4 M

i ll i

IiIIill!

1 lll1 lll

))

s S

ta S.

a c

R M

M T

T a

R o

O P

P E

E Q

R S

S S

S E

E o

R T

T a

S c

n M

. 7 U

U

. 4 Q

R 2

T 2

T 3 C 0c0 000 OcO O0O 008 M C E

E L

E L

E e

G o P 222 222 1 2f t 2f f 22 O P P S oS9 R

R 000 000 00o h0o P S EEE EEE EEE EEE EEE C

Et 9 8O7 S20 927 949 C

ts t 33

?S3 S1 7 O2s 994 R

e 127 m E a

E S25 t 22 t 89 S. 4. s.

0 1 2S f 13 31 4 213 312 S

0 R.

O 0 6 O O P 0 P 777 9SS tt3 S3s SSS S S 000 0OO it8 I 1l t I I S

RRR 6RR Ra3 R3a aRR Y

E TTT 7TT TT7 T7T TTT Y

E SSS SSS SS3 SSs SSS S Q S

R-I S

t P

Y 777 999 t t t 333 SSS Y

P i 006 009 t t i 18l t tI 0 000 009 OOS S8e eSS S

R 3 0 I

0 O.

7 7

4 P

P 4

P 0 P 0 P 1

F 1

U O

U TTT TTT TTT TTT TTT D UUU UUU UUU UUU UUU S.

ss 2

RRR RRR RRR RRR RRR O

2 C

TTT TTT TTT TTT TTT 1

9 SSS SSS SSS SSs SSS T

O E a

3 E

C h

2 L

I t

O 1 23 i 23 1 23 i23 123 n

0 I

P t

8 P.

sE I

T a

s f

C T 3'

4 A

L o

t 2'

o 8'

T L

t 1'

, 1 1'

1 R

f L

2 R

2

)

e t

O e u l

I s

S C O

,+

l!

,]

1

<1;l' i

iII

1 4

p(

e 1

i L

i i

(2/9/93)

GE's 6/1987 COMPARISON BNL (NUREG CR-1677)

BENCHMARK PROBLEMS s

{ l_-

l-

occ5P/ED 0

Juti121987 1

,Lj Vr%\\sN i

CENERAL ELECTRIC COMPANY 175 CURTNER AVENUE SAN JOSE, CALIFORNIA 9512$

i PLANT PIPING ANALYSIS i

1 f

DES!CN MEMO PDE-6-2087 N

DRP #A00-03074 i

BENCHMARK ANALYSIS OP SAP AND PISYS

~

TO NUREG/CR-1677 PROBLEM i

i P

esMM/,

PREPARED BY:

4-G. Paynshtein 9

APPROVED BY:

O

_ \\'. 2L." Thoepson..'Mana ger FM nt Piping Analysis;

'0 APPROVED BY Uf/. ILLd44 E. 0.~' Swain.

4anaser Plant Design' Engineering.

t JUNE 1987-4

CP8707/ CAL 87

~.

.z.

.. =.

., _ ~. _

O d

IMPORTANT NOTICE REGARDING CONTENTS OF THIS rep 0RT t

Please read carefully The only undertakings of General Electric Company respecting internation in this document are contained in the contract between the customer and General Electric Corpany, as identified in the purchase order for this report and nothing contained in this document shall be construed as changing the contract.

The use of this inforestion by anyone other than the customer or for any purpose other than that for which it is intended. is not authorized; and with respect to any unauthorized use. General Electric Company askes no representation or verranty, and assuees no liability as to the completeness. securacy. or usefulness of the information contained in this document.

l-GF8707/ CAL 87 TABLE OF CONTENTS PAGE 1.0 ABSTRACT.

1-1 2.0 BACKCROUND.

2-1

3.0 DESCRIPTION

OF SAPG04 AND PISYS, 3-1 4.0 NRC BENCKMARK PROBLEMS.

4-1 5.0 COMPARISON OF PISYS AND S APG04 PREDICTION WITH BENCRMARK PROBLEM.

5-1 6.0 MET 110DS COMPARISON.

6-1

7.0 CONCLUSION

7-1

8.0 REFERENCES

8-1 GF8707/ CAL 87... -......

1.0 ABSTRACT A benchmark analysis of P15YS was performed in August of 1979 and documented in NEDO-24210. "PISYS ANALYSIS OF NRC BENCNMARK PROBLEMS".

The analysis established that PISYS predicted dynamic responses consistent vith the NRC benchmarks when applying the enveloped response spectra method of analysis.

Although independent support motion analysis was employed in 1977, no benchmark problems existed. The purpose of this report is to document that the PISYS and SAP programs predict responses cons 4. stent with the 1983 NRC Benchmark when the independent support motion method of ana$ysis is emploved.

Gr8707/ GAL 87 1-1

2.0 BACKCSOUND General Electric vos the first to implement independent support notion dynaste analysis of piping in 1977 using the sap program. The independent support sotion method was developed by General Electric to eliminste the conservatism associated with applying the envelope of spectra at all pipe attachment points to the entire piping system.

Subsequently the independent support motion method was incorporated into all major piping programs used by industry.

In 1985, after the independent support motion method had been videly accepted for piping analysis, the United destes Nuclear Regulatory Commission issued NUREG/CR-1677 for confirming the correctness of computer programs predicting responses by the independent support motion method.

Since the analytical methods used in the NUREC/CR-1677 bench mark calculations are the same as those used by General Electric in 1977, the NRC bench marks provide official confirmation of the correctness of the original General Electric methodology.

CF8707/ GAL 87 2-1

~

3.0 DESCRIPTION

OF SAPG04 AND PISYS The SAP program was originally constructed from three earlier prograes developed under the direction of Professor E. L. Wilson, Department of Civil Engineering, University of California at Berkeley. The element library and static snelysis options were taken f rom the SOLID / SAP Program, the eigenvalue extraction algorithms were incorporated from coding that was originated by Dr. K. J. Bathe, and the forced vibration and response spectrum analyses were adapted from the original version of Professor Wilson's SAP Program.

The espebility for ASME Class 1, 2 or 3 piping analysis was developed by the Engineering / Analysis Corporation under a contract with the General Electric Company at San Jose. Later, the capability of the program was further developed and expanded within the General Electric Company at San Jose for independent support motion seismic and dynamic snelysis and for fluid-mass-effect evaluations.

PISYS is a specialized development of SAP for use in the analysis of piping. The basic solution routines of SAP have been combined with an input isnguage translator specialized for modeling piping.

The SAP and PISYS programs have been benchmarked against one another to verify that the solution routines give consistent load predictions.

GF8707/ GAL 87 3-1 L

SAP was selected for the primary benchmark verification presented in this report because the input for the piping models could be directly applied.

The predictions of P15YS are identical to SAP since they have the same solution routine; therefore the benchmark comparisons are equally valid for SAP and PISYS.

GF8707/ GAL 87-2

I

C a

(1 -

l t

+

.i i

4 NRC BENCHMARX PROBLEMS-L 540 tes Ef I

CS z

u S42 t61 02*

I

$4,,3, 07--

-t.-

J]

A37 g,,7,33 08M3 01 09 10- - -- f]

Y i.

X 11-- -----f)

. - - --f]

544 te; j

13-- - -f]

2 j

[

$43 ly; 14 -.-

-f g

D *'----- f]

16 -------{ }-

17M) 5 18------.() pS46 (101 19--- ---()

20

$43gg3 21 4

AS1115.16,171 j

??

36 23 N35 r

24 N34 -

-548 (121-

% 33 q 8-26 547 til)'-

32 28=

33.

27 550 114) 30 29' NOTO 549 (131)T.

NUWBCRS IN PARENTHESES A#E

~

SUPPORT CLEWN15 i e 11.2.,i BENCHMARK PROBLEM NO.' 1 4-1

..2.

.a.---

_. -_ _._.~

m__

i l

i B

L

[

M 4

Z/\\X 4

Rb i

%g o-e p)o i

h 3

e 6

et-s p$s Li vn

  • n g

47 A1-ga s.

1 i.

g*

ah..

"5_NC-MARK PRC3'24 Na 2

' I 4-2 w

L 4

,N+

e 4 --

v.

pn

, - ~,

.*.gw

-r e

,-er

>---r yw

,ye--

r i

A-,,-

+


w---

-~

+, -, - - -

L M

'h 3

Q '$

sig 5

m m\\-

e G

E G5 h

c ' M

e, s

l5 M

h.

Y a

~

$ _6 g

g jg A, f.

g

=

g

\\l 9

i y

u 7

k

's e

W 4

=

E Ey o

5 O

$2.4(%

/

s Dk Q

fg o

4-3

1. -

4 4

.a

.~,.s

+__-s.

~,--u.<_.

4.C.-mm=-2. ma

.e+-

~us-..su-r--

...w,u.h-~-~.-4_-

-ma.

=#-.-+.-m.-.

I I

4 i

i S

\\

5 3

G m

n 5

75 g m

2 I

P C

I K y

S v

E L f

?

ar 4.

f J

g.

W s

h O"

I G

B

\\

l 4=4 t-

,, ~,...,

ll

5. COMPARISON OF P!SYS AND SAPC04 PREDICTION WITH BENCFMARK PROBLEM 1.

1 METHOD ENVELOPE SUPPORT

.IE~ ~-

6??

P15YS SAP lLB)

[LB)

ELEMENT I

i 93 93 93 2

107 107 106 3

89 89 88 4

l.14

'2 234 234 5

! 84 84 84 i

6 100 100 100 7

39 39 39 8

78 78

-78 l

I 9

28 28 28 i 10 78 78 78

! 11 59 59 59

)

i 12 185 185 185 I

l l

13 221 221 220 14 89 89 89-15 1 120 120 120 16 57.

l 57 57 17 56 l

- 56 56 l

l l

l l

GF8707/ CAL 87 5-1

~..

COMPARISON OF PISYS AND SAPC04 PREDICTION kf!TH BENCHMARV PROBLEM 1.

(CONTINUED)

~

METHOD SQUARE KOOT OF THE SUM OF SQUARES BY GROUP SUPPORT NURLG 1677 PISYS SAP ELEMENT

[LB)

(LB)

(LB) l 1

, 86 86 86 2

, 93 94 92 3

81 81 80 4

'202 204 200 5

74 73 72 f 84 83 81 6

7 34 33 32 8

45 45 i

9 26 26 25 10 57 38 38 1

11 53 52 51 12 136 126 126 13 fl52 146 145 14 95 97 94 15 84 84 83 68 66-3 l 67 I

16 17

[ 74 l

75 73 1

GP8707/ CAL 87-5-2

\\

COMPARISON OF PISYS AND SAPG04 PREDICTION WITH BENCHMAPI PROBLD11.

(CONTINUED)_

MElHOD ABSOLUTE SLH BY GROUP NUREG 1677 PISYS I

SAP SUPPORT N ' \\

ELEMENT

[LB)

(LB]

(LB) 1

!!7 121 NA 2

126 133 NA 3

109 114 NA l

4 278 289 NA NA 5

100 103 g

6 113 117 NA l

7 44 44 l

NA I

8 65 63 NA 9

35 36 NA 10 63 62 i

NA NA 11 72 74 i

12 185 17b NA 13 204 204 NA 14 131 137 NA NA 15 116

.118 16 92 96 l

NA

(

I 17 103 106 i

NA l_

l L

l CF8707/GA1.87 5

'3

NRC BENCHMARK COMPARISON PROBLEM 2 SUPPORT NUREG 1677 SAP NUREG 1677 SAP ELEMENT ENVELOPE ENVELOPE SRSS CROUP SRSS CROUP

[LB)

[LB)

[LB)

(LB) 1 90 90 53 52 2

65 65 46 46 3

177 177 113 110 4

708 708 441 430 5

446 446 25't 252 6

206 206 123 130 7

164 164 98 104 8

373 373 221 216 9

58 58 32 31 10 198 198 124 121 11 103 104 66 65 12 378 378 103

-98

!13 192 192 114 120 1

1

, 14 245 245 116 114 I

CT8707/ GAL 87

.5 - 4

NRC BENCHMAFK_COMPAk150N FROBLEM 3 SUPPORT NUREG 1677 SAP NURLG 16??

SAP i

ELDiENT ENVELOPE ENVELOPE SRSS GROUP SRSS GROUP t

(LB)

ILB)

(LB)

(LB) 1 11 11 4

4 2

7837 7824 6845 6790 3

4472 4470 3100 3064 4

8931 8928 2923 2905 5

359 361 524 404 6

729 732 1144 874 7

784 784 1068 817 8

1043 1043 1416 1284 i

9 1378 1378 1666 1591 10 3408 3404 2776 2684 11 1448 1444 1736 1699 12 1688 1624 3160 3152 13 87 81 2408 2397 14 1370 1368 2408 2397 15 9930 9943 12711 l

11240 16 58341 58290 77406 76930 17 10767 10760 12661 12350 l

18 3031 3029 2834 2800 i

i 19 15459 15850 l

4923 4910 894 803 793 896 20 j

GF8707/ CAL 87 5-5

Yasm-=-

a--a~-o

,,a-o a.e a

A smJ 6

1--*=,mm-nAmLA---A=

m-

>-m sma-Am--hu

+Jm-uK-m-

A ns 4-

&~4 4

44 4% e A

-u.8-w--W 4 %,

>46n-

--4--

NRC BENCHMARK COMPARISON PROBLEM 3 (CONTINt'ED)

SUPPORT NUKEG 1677 S Al' NUREG 1677 SAP ELEMENT ENVELOPE ENVELOPE SR$$ GROUP SRSS GROUP ILB)

(LB}

(LB)

(LB) 21 169227 169100 89089 88830 22 34378 34330 28458 28020 23 1697062 1696000 599310 547200 24 6792 6786 4953 4885 25 801 800 831 813 26 303 303 312 308 27 7447 7443 4412 4371 28 11991

!!980 5898 5820 CF8707/ GAL 87 5-6

- i-

L 5

NRC BENCHMARK COMPARISON PROBLEH 4 4

(CONTINUED)

St'PPORT NL'kl0 16 7 7 SAP NUREG 1677 SAP ELEMENT ENVELOPE ENVELOPE SRSF CROUP-SRSS CR0l'P

[LB]

[LB)

[Lb)

[LB) 1 3724 3722 2416 2415 2

2390 2412 4497 1502

'3 l

2156 2154 1523 1521 4

42 42 24 25 5

2466 2478 1484 1489 6

4850 4850

-2524 2523 7

4765 4769 3028 3031 1

8 3825 3822 2094 2081 2300 9

3482 3481 2302 10

-2101 2191-1265 1307 i

11 61

$0 34 34 12 6660 6659 5043 5038 1

13 2669 2670 1857 1856 14 6554 6553 5308 5304 i

15 i

109 l

109-84 84 16 5015 5013 3878 3871

-l 4

2593 2590 17 3334 3334 18 4739 4738 3706 3700 l

19 861 867 l

681 682 I

20-64 64 36 36 CF8707/0AL87 5-7

l NRC BENCHMARK COMPARISON PROBLDi 4 (CONTINUED) r,UPPOR1 NURLG 16??

SAP NUREG 1677 SAP ELD!ENT ENVELOPE ENVELOPE SRSS CROUP SRSS GROUP (LB)

(LB)

(LB)

(LB)

/

2 1 2312 2313 1297 1298 22 2079 2078 1227 1227 655 655 23 1153

!!51 l

24 1829 1815 863 860 25 883 879 531 131 26 869 850 437 436 27 1858 1860 988 989 28 257) 2563 1674 1665 29 1349 1339 1006 1004 l

I 30 106 108 68 69 4370 4369 3588 3590 31 l

32 1770 1357 905 906 I

I 33 1170 1148 589 558

'34 970 982 685 692 35 749 i,

729 347 318 i

t 36 l

2952 2947 1876 i

1807 I

5-8 GF8707/ GAL 87 a,

HOMENTS AND DISPLACEMENTS COMPARISON MOMENT DISPLACD1ENT

'ARI ABLES

[1N-LBS)

[1N)

TYPE OP THE NUkEG PISYS SAP NUREG P15YS

~ SAP PROBLEH N HETHOD 1677 1677 g

ENVELOPE 1478 1584 1581 0.1222 0.1279 0.1254 ELEM #3 NODE #33 1

SRSS GROUP 4193 4189 4120 0.2757 0.2822 0.2745 ELEH di NODE $32 0.3827 0.3913 ABS GROUP 9035 9433 NODE #36 NODE #32 i

0.0204 18501 0.0224 ENVELOPE 18505 2

ELEM $1 NODE #2 0.0166 11315 0.0170 SRSS GROUP 11621 l

ELEM #1 NODE #2 0.0060 60106 0.0057 ENVELOPE 60150 3

ELEM #1 NODE #2 0.0076 34732 0.0076 SRSS GROUP 35408 ELEM #2 NODE #2 4.90E-05 433674 4.85E-05 ENVELOPE 433014 4

ELEM fl

-NODE fl 3.22E-05 277929 3.22E-05 SRSS GROUP 277825 ELEM di NODE #1 GF8707/ GAL 87 5-9

6.0 HETHODS COMPARISON The following bar chart prepared for benchmark problem one provides a visual comparison of the differences in the predictions of the different analytical methodst unifore response spectra (URS), and independent support motion (IMS) combining groups by absolute sum (ABS) and sum of the squares (SRSS).

From examination of the chart, the following conclusion can be drevnt the difference in predictions using the saec methods are small independent support motion predictions are significantly less than unifore response spectra when groups are combined by sum of the squarest and independent support motion with combination of groups by absolute sum provides predictions significently greater than grouping by sum of the squares and is often greater than uniform input.

I CF8707/ CAL 87 6 - l'

~

i 1

NRC BENCHMARK PROBLEMS NUREG/CR 1677 l

PROBLEM

  1. 1 l

LEGEND NRC/URS l

2=-

M MRC/ ism / ABS g

w maczisM smsS

' E==--

I l

ssbbb PISYS/ ISM /SRSS

[

l PISYS/ ISM / ABS i

E PISYS/URS l

e i

~

l I

f l

e, ~ :-

f R

M s

1 2

3 4

5 HEAVIEST LOADED SUPPORTS

- ~

a

7.0 CONCLUSION

As can be seen from examination of the tables comparing load predictions the SAP /PISYS soluti n routines predict loads identical to or consistent with the four benchmark problem predictions. The evaluation reconfirms the verification for enveloped response spectra and extends the verification to independent support motion analysis.

The benchmark problem combined the modal responses by the square root of the sum of the squares method.

In application. General Electric combines the modal responses by the double sua method in accordance with Regulatory Guide 1.92.

If the bene. mark problems were computed using i

double sum the predicted loads would be somewhat higher, The comparion of predicted responses are in excellent agreement for all four bench mark problems. The small differences that occur can'be attributed to differences in the way the progress interpret the input for the piping mathematical models. The method of calculation originally implemented by General Electric in 1977 has been secepted as t

. correct by the publication of United States Nuclear Regulatory Commission NUREG/CR-1677.n 1985.

L L

1 '.

l l

l GT8707/ CAL 87 7-1 4

3

.,ib

,w..

-r-

,s'via-

8.0 REFERENCES

l.

" Piping Benchmark Problems Dynamic Analysis Independent Sup..ct Motion Response Spectrum Method". NUREG/CR-1677 BNL-NUREG-51 cM Vol. II.

2.

"PISYS Analysis of NRC Benchmark Problems". NEDO-24210 79NED295 Class 1. August 1979.

3.

"PISYS - Piping System Analysis Progtem". NEDE-24077.

4

" SAP - Structural Analysis Program", NEDO-10909. Rev. 7. 79NED165R.

9 m

i GF8707/ GAL 87 8-1