ML20128D378

From kanterella
Jump to navigation Jump to search
Nonproprietary Baseline Insp of Once Through Steam Generator Sleeved Tubes
ML20128D378
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 11/26/1984
From:
BABCOCK & WILCOX CO.
To:
Shared Package
ML19344B929 List:
References
A2014, NUDOCS 8505290049
Download: ML20128D378 (20)


Text

,

7 - - ,

e t ,

f --

.. THE RABCOCK & WILCDX COMPANY

~~~

  • POM OpmA110N 0004F REVISIONS ",T, '
  • "~

.m u. ~ .

l ggs 4 I- 1 i!3 t

es*

I is#

er

  • i!

i*t -

ON- RDPRIETAR Y6Rstoo 15

.i.

I *

!! BASELINE INSPECTION OF 3 OTSG SLEEVED TUBES h

1in jeI /

o /

u g. ,3 ,-

=tt 93 3 , , .

S3a -

i!!

a nil 8II*

M 8le g ,

5C -

g II I .8 :5" %

llh U

I its e ou I 8

!!M 8505290049 850510 III PDR P

ADOCK 05000313 PDR A2014 f.'. W pef & /f aseline Inspection of B

em s.n . , , , , ,.

..,u,

........ . ." f4@ 0TSG Sleevad Tuhas - _

A- 0 4 . . . . . . . . .

..  ?

. THE RABCOCK & WRCDX COMPANY PCM MMTION GeOW REYislONS "h'***

Itd .. . 3

~

Baseline Inspection of OTSG Sleeved Tubes l85 ...

llt 8 I  ;: ..-

8 INTRODUCTION 89 .

Iji The work presented in this report was perfonned to document the inspection

  • I I capabilities of an eddy current examination system employing a standard bobbin til coil probe, for the baseline examination of newly installed OTSG f__.
3 sleeves. A primary area of concern was the ability to detect flaws which are

[lg ;1ocated at the - texpansion transitions, parent tube flaws at the edge of the e 15th tube support plate (TSP), and parent tube flaws at the sleeve end edge.

l. '

g; .Syygggy ,

l-----.-. .. . . . . . . _ _ . . . . . . . . . . . . . .

IE . .

=i* It is concluded that the bobbin coil inspection systen results .in an adequate baseline examination of OTSG mechanical sleeves. The ~ and

~

~

! system is capable of detecting all the flaws in standard 49108 3 '(drawing attached - Figure 2) except the 40% through wall (TW) hole at the

e sleeve end edge. Detectable flaws include a 40% TW hole in the parent tube
  • j. at an expansion transition, a 40% TV hole in the sleeve at an expansion transition and parent tube flaws at the TSP edge. The area at the sleeve end

! 5ei l 123 edge is not considered to be a critical inspection area for the baseline exam 8;' because of the preinstallation EC exam, and the fact that no stresses are gj[ induced in the tube at this location during installation. For_ subsequent

$1. inspections, it is recommended that . . .. .

iI! t .

5any other new applicable developments be ejj evaluated for detecting parent tube flaws at the sleeve end edge.

fl EVALUATION PROGRAM f!g Figure 1 is a drawing of a typical installed DTSG mechanical sleeve. Figure 2 -

E : *, is a drawing of the sleeved tube calibration standard used in this evaluation.

g 31 Figure 3 is a drawing of the " clean" expansion standard which was used to 82 generate mixes to suppress the expansions. -

ib it. A diameter, differential, bobbin coil probe was used in all Iy examinations. A MIZ-12 and a MIZ-18 inspection system, both with 250 feet of l !3i remote cabling and any applicable pre amps, were both evaluated. Several

! eje different frequencies and frequency mixes were tried employing each system.

i rll

!rg Frequencies of between 25 and 250 kHz were evaluated for parent tube defects.

Frequencies between 100 and 600 kHz were evaluated for sleeve defects. Various j 48 2, 3 and 4 frequency mixes employing frequencies between 25 and 600 kHz were j ;y evaluated for detecting flaws masked by expansions ,and TSPs. The best system A2014 Page 1 Baseline Inspection of **',",.

"I -

........ . - . nTSG Sleeved Tubes - A. O A . . . . . . . . .

THE RABCOCK & WILCCX COMPANY Pown oaNutADON GeOUP REvlstows O

=."- .- -. - .

85i -

. Li

!!f

]jj and frequencies for detecting all of 'the defects in the sleeved standard was selected and plots of the flaw indications were made. '

5 RESULTS "

88f Both the MIZ-12 and'MIZ-18 were capable of detecting flaws in the sleeve and ,f parenttube)nthefreespanareas. As examination was found to be I llX!

e- optimum for\and quantifying sleeve defects in the free span areas, using either I the MIZ-12 or MIZ-18. A examination was able to best detect parent tube flaws in the free span areas using either system. The ' exam jlg

, -however, resulted in poor phase separation between flaws of different depths l-i making quantification of flaw depth difficult. (48" between 20% and 100%

through wall parent tube flaws). Using the 1 system, the expansion signals 8[r

~

saturated unless the gains were set extremely low. Saturated signals are not jt mixable; therefore, the resulting low gain expansion mix needed for the MIZ-12

  • j system could not detect parent tube flaws. The large dynamic range of the

. system allows for mixing of the expansion signals without decreasing i

!! sensativity. An inspection using the with a a .

mix was capable ~

r: of detecting a 40% TW hole in the sleeve at the expansion transition (defect B te in Figure 2), and a 40% TW. hole in the parent tube at the expansion transition .

,i ,. (defect A in Figure 2). The f mix was set up to suppress the larger i** A second u , . mix was capable cf j2f exbansion in the standard in Fi ure 3.eting all of the flaws in the parent tube free span whi de vi edge of a TSP sample other each flaw, after mixing to suppress a TSP sample. -

Bi! Figures 4 through 8 are plots of the _ 'EC signals generated from St. .

Il! sleeve flaws in the free span region (flaws L K, J. I and H respectively in o;j Figure 2). All flaws are readily detectable and quantifiable. Figures 9 "jg through 13 are plots of the. tEC signals generated frun the parent tube flaws in the free span region (flaws G, F. E, D and C respectively in -

lg;.

Figure 2). All flaws are readily detectable. ,

l 4 EA! Figure 14 shows a plot of the

  • mix EC signal from the 40% TW parent I,

I tube flaw in the free span (flaw D in Figure 2).

,80 Ei! Figure 15 shows a plot of the mix EC signal from the composite of an ja g expansion and 40% TW parent tube flaw at the center of the expansion (flaw M in "Id Figure 2). Figure 16 shows the center of the expansion only, which clearly

!3s reveals the 40% TW parent tube indication. This flaw is v.asily detectable.

o j$ Figure 17 shows a plot of the mix EC signal from the residual of the 1.8 tX suppression of the larger " clean" expansion shown in Figure 3. Figure 18 shows l i8 the first transition of the " clean" expansion only. Figure 19 shows the second

[

,jj transition of the " clean" expansion only. ,

A2014 Page 2 Baseline Inspection of ".'. S /M/O'

.".....".. . . . . nur, 51 eaved Tubes

^

- A. O

4 THE BABCOCK & WILCOX COMPANY POWEt GaNBLADCW OaOUP mavisions "O-

, .m . - - .

gga .

Figure 20 shows a plot of the ; mix EC signal from the composite of an 8IlI jr L*Is expansion with a 40% TW parent tube flaw at the first transition and a 40% TW sleeve tube flaw at the second transition (flaws A and B respectively in Figure r 2);n Comp'are this signal to Figure 17. Figure 21 shows the 40% TW sleeve flaw r

3*gl at' the first transition only. Compare Figure 21 to Figure 18. Figure 22 shows 8

f the 40% TW parent tube flaw at the second transition only. Compare Figure 22 to

-Figure 19. Both of these flaws are detectable.

~

Iji r 3 e

l The differences between the clean expansion EC signal and one with a flaw at i : the transition is clearly evident. However, it would be beneficial for the  ;

, *[ analyst to compare any subsequent inspection data to the baseline EC signals from the expansion regions.

ll 5i Figure 23 shows the i ..  : mix EC signal to the 40t TW sleeve flaw in the

[5 free span (flaw I in Figure 2) from the expansion suppression mix.

  • i jg F_fgure 24 shows the EC signal from the TSP sample. Figure 25 shows the 3 EC signal from the TSP edge placed over the 20% TW parent tube flaw e3 (flaw e on Figure 2). Figure 26 shows the . TSP suppression mix at the

!a same area as shown in Figure 25. The TSP signal is completely suppressed and

  • i. the flaw is readily detectable. All of the flaws approximately 20% in the .

j5j parent tube free span located at a TSP edge were readily detectable.

l 8 The only flaw not detectable in the standard in Figure 2 was the 40% TW parent i

gf'l tube flaw at the sleeve end edge (flaw N). Two frequency mixes resulted in it. large residual signals. Thr.ee frequency mixes could suppress the end of sleeve ,

al signal but were then not sensitive to the parent tube flaws. Increasing the a!j taper to approximately in length did decrease the residual end of glgg sleeve signal, but not sufficiently. A ' df ameter bobbin with a _

l gg*. 6was available for a limited evaluation. The _ . . . _

l g, did give increased sensitivity to parent tube flaws at' _ and was lower in

, ,, 8 sensitivity at high frequencies to the expansions. A larger diameter .

t i g *.  ; ' probe specifically designed for sleeve inspections may giye better results

!  :=y for detecting parent tube flaws at the sleeve end. _ . 1-'

., 8 6 any new development in the area of sleeved tube examinations may also prove beneficial for better quantification of parent tube fj! Iu g flaws.

I3i CONCLUSIONS

,ya

!Ig Il The system can be used to suppress expansion signals and still detect flaws at expansion transitions while the system cannot. Therefore, all I

further conclusions are based on the system using e diameter .

8 fB

,g

[ differential bobbin coil. y/ ,

A2014 Page 3 l

~"

Baseline Inspection of ""'~!

. . - . OTCf $ 1 o p v o rf Tohng A. O l

~~

r f. j THE BABCOCK & WILCOX COMPANY

.' rowsm onNEADON 0000P uvmons ==-

  • . " . ..m 3 .: ..

'r

-=

0ltg ASME. type flaws in the sleeve free span of 20% TW or greater can be detected jg, and quantified. -

x .. .

!y" . . . .

ASME type flaws in the' parent tube free span of 20% TW or greater can be gl 8 =

detceted and semi-quantified.

  • j ,

ASME type flaws in the parent tube of 40% TW or greater can be detected in' the

center of expansions and at expansion transitions.

![gg  ! ASME type flaws in the sleeve of 40% TW or grecter can be detected at expansion 1 It transitions. .

ti, je . ASME type flaws in the parent tube of 20% TW or greater located at TSP edges j can be detected.

~ '

$! Thei .1 and . .. system can provide an adequate baseline inspection j I- of OTSG mechanical sleeves.

.'I ,

RECOMMENDATIONS tjg The primary inspection frequency for unsleeved OTSG tubes is _ , . . ...

2.j Therefore, for the full length inspection of sleeved tubes, it is recommended

r that.tht system be. used employing inspection frequencies of- i j!!

n j!I Subse uent examinations should include the same inspection frequencies as the -

basel ne exam and also a review of the baseline data at the expansion regions.

,-)tI l ir  ; probes should be evaluated

g!!

X Tor better quantification of parent tube' flaws and the detection of parent tube

B 5 flaws at the sleeve end. .

l E

g*R I ra Iu

!81 -

a I g

!!W 148.*

.!n l '

A201a D*9" 4

. . . . . . . .. gasel{ne Inspection of 7.* * - 11/21/84 s _,, , ; , ,

.......,3 ...

f C 1 Figure i .

  • ~

0736 NECM AmICAL Si EEVE a ~~r

-=

I, \ ,

i FIGUPS 1 Page 5

p . .. . .

9 O

e 0

6 1

6 k

- ~ . - .s 1 . . .

b .w e

ea e W --

i I

f 4

a 4

st.,

r_i_/* B r e ?

Page 6

nabcock & wucox

.mm N Y sv nerarnea un -

1 a

j =

-= 1 I

T 11 I!! -

g.. .

1.

.I I.g E

1-1 En r

15 al e

a 4-gg i,

~'

in 4r

,; r '

[I e

~

u l' .

t ll . ..

III

'I l-il at l'il Page 7 FI Gif F m 3 -

A5 AllLT

  • *A M i .u.c c
  • %-e O T L, Expar,s_cn Standard "gw r f"11/15/84

. ,-c m,,,,,,,..,, m.,

i1 . CH 3 YERT , . CH 3 HORZ ,j DDeG H0 - 3 ,

10 0 RCN m Ca. 999l b l

^

l was = , - _Ym ul -g i H <

~~=

~, ,

r . =

t

. 1

-k =- __

r4-- ,

r -

J 1

q (i

t al h L -

+ j lf J

, ;"; E- __ .-  : j

= ,; w .

t

\ r E M ase . ,

. i FIGUPI 4 - 100% TW, Sleeve Free Span (Flaw L)

ID O N ?99

. CH 3 varr , _ cu a um2 On+a No - 3 I

w-A ,_ .

j .

i 6 <

a i r

~ .

=L- --4-- ,

m, ,

1 N _

f "

7 5, -

2 r__ _ _ _  :

_ . 1 F i N l l  !-

se c FIGUPI 5 - 80% TW, Sleeve Free Span'(Flaw K)

Page 8

?  ?

, ,, j_cH 3 YERT .L 04 3 HOR 2 ,l 00+0.MO - 3 ID e ..O Wl .

> 1

[Y ~ .L ,

, . , . . .Q I

t .-

l 9-I y , , .

. i '

~. ,

j

;.. p g .. . , . ..

_ -b _ - - - =

.; . . . .,. a, - -

. t l -__ l s S , "

R L -

, .. I. - -

l

-rb a-  % .

1

.c .

. _, - r -

d -

s l r' i N

--. ae - - .

l. .

FIGURE 6 - 60% TW, Sleeve Free Span;(Plaw J)

. Of 3 VERT . _ Of 3 HORZ . On+0. HD - 3 ID 9 O 999 M'

1.  ?  !

. . . .QT =~ x . _-- :, _ s g < l m 1 i . .

- 4  ;

n <

r l l

- ~

j _ - l-- . - -

~-

  • f

, u - 1 -

i db y <  : .I i ~i

= -

-E E- -

I

~

r' i N i as FIGUPI 7 - 40% TW, Sleeve Free Span'(Flaw I) [

Page 9

?  ?

, j !_cH 3 VERT . _ CH 3 HOR 2 ,l Op+0L Mo - 3

[ID e W 999 COL 999l l  ;

lll a

',t IIWhm s h_  !

s

-s a .

-u / .;

-m 3 t

~

i --

-=

- [" N,* * , :* l* _-

g .

l -

,.j ;. ! - - - - --

--4-- l . _.

.ll.i.;-

---r

- l -

1. . , .

j 1' '

Jl

.s j j

/ -

ri ,

.. .g L - -

U 4 '

~

a -

i m__ _

i

_-_ e F i%  !

- as i l FIGURE 8 - 20% TW, Sleeve Free Span (Flaw H) l_CH 5 VERT . '_ CH 5 HOR 2  ! 0940. ND - 5  :

.ID 0 0 999 C3_ 999l h P

  • 6 i

! - T

- ._ -----=a I 1 4 T ,

i T  ;

i

m. .

M-- - -

E

- m i k -

a -

. m__ i

= W _

.E -

-i i

i , W ao FIGURE 9 - 100T TN, Parent Tube Free Span (Flaw G)

Page 10 n

3-

'fl.

", ' j ' . CH 5 WJtT . .G S HOR 2 055+E1. O - 5 IID e a m COL m  :

11 i w T . _ _

7- . g_-,====-M-.__

l l ,

( .

1 --

.. . .y

, ':* . - . a m ._ - , - -

l * - -

e ~ -

m

- - .. " ~ . . .

?.c

, _ p -.

, q g -.- ---

~ _

b- . $

. m FIGURE 10 - 80% TW, Parent Tube Free Span (Flaw F)

- cH s verr . _ CH 5 HOE 2 Op4El. NO - 5 ID e a m COL M I

- =

_ -g- 7.==C__.____ i -

i b l '

^

T $

-r- -

! l --

p- . -

u a m Y N

, J _ _0 3 IL___

E

= g g - -

y 2

- =

se e

FIGUPI 11 - 60% TW, Parent Tube Free Span (Flaw E) l l Page 11 i

8 :. cs 5 vtRT . ca s i<wz .I o*++<1. oc - 5 'Io o a 999 ca. m

!< l I ! l v T

~ ._ . e m --2 ._m d i i g i i

> 1 l _ . .

f =

I

h,, ,' 'Z - - - 3 _ ,

.y=- -

=- . m ,

--v = ,

r* _

p  ; ,

b- t --

=e g g - ._) -

-z _. .

b, i L_

Hm, i , #

. . - . . . , _ ~ _

FIGURE 12 - 40% TW, Parent Tube Free Span (Flaw D) i _ CH 5 VERT . . CH 5 HN2 .l O n+E1. HQ - 5 ID 9 O E C3. 2 l

~

l ,

i

  • i - - - w

_ z _w==- - c ng ___.--- .

I I .

~t~ \

i i

i l -

= = = - ,

7-

-_ i

-v= t

_ l'"

' i L , - -

, j'  ?

i -- i W -

5 - 1 I

M ,em h

-. m ,

O E se FIGURE 13 - 20% TW, Parent Tube Free Span (Flaw C) j Page 12

. . .e

{ I . CH 1 VERT .l_ 04 1 HGt2 ,l U@*El. NO - MIX

  • 2

'ID 0 DOW 8 CG. 9l 1 . .

!  ! l i  : i

I 8 i
i I I I,

== '  !

l l

j , - . -

i

..=

f

' l. . . .

.t

,l .

r-

'([ ::q,;.J. -

.-~.

sl ,

n 1 I _ _

t .

l l -. i . ;- -

A..

l 1

~

~ ~

-m -

r-FIGURE 14_ .4 0% 'N. . Parent Tube Free .Soan _fFlaw D) .

n j l_CH 1 YERT .l. CH 1 HORZ .i CD+0. HD - MIX

  • 2 lID 0 R0W 8 C:1. 9l i f -

l m

i l

-I <

4 1 Il l

4 .

3 t

j FIGURE 15 - Composite of 40% W, Parent Tube in Center of Expansion (Flaw M) -

Page 13

. p

! ;_ CH 1 VERT .l_ D1 1 HOR 2 .

O D + G. NO - MIXe 2 ;ID ep 0 COL SI

,I l l l t

.4 i*

. i 1 .

e **=-.

21

.^.

, :t v.

.1: ." e.34 YOLTS 83 UEfi 48 % p ' -

' {. *

l .- .
. .

1; g'

'. 1 y l

s'-

  • eummune-

. _c ,

2-1 I -

i l' I y

w FIGURE 16 - 40% TW, Parent Tube 'in Cen'ter. of Expansion .

.Showino Flaw M Only 1

! l_ of I WRT .j_ CH 1 HOR 2 CHrHEL HD - MIxe 2 IID ea e COL e l

j ,

I

- ! 1 1 j.

l I

I l

b b

b I,

3e FIGURE 17 - Residual Clean Expansion Page 14

V t l_ CH 1 wai . _m iHom:,l

- .. co+e. No - MIxe 2 ID ep e Ca. e I l

'. :l l 1

l 1 t

- t I.

t 1 i *!

I T i I

l .

j

. '. =c

. - ' u ,r . -

.3 ; e. ,

j. .: :.

.. . . ] . :' .

\ ..

.u '-,

,-l I i 4

'a 7 f _. Vi g - -

p l .

i 1 - -

1. - ~ . -. .

t I "

se _.

PIGURE 18 - Res'idual First Transition at Expansion

._ i l'.

Shown in Figure 17 c o+e. No - MIxe 2 to e acu o cat e l 1 cs 1 vExt .:1. cw 1 Hamz .i I

h >

I I.

b -

I

~

I

- . q -

i 1

l l l-l

, e se FIGURE 19 - Residual Second Transition of Expansion Shown in Figure 17 Page 15 L

y.

  • = CH 1 VERT,l_CH 1 HOR 2 ,l de+EL HO - M3W 2 ll0 90 8 Ctt. 9 l l  !

- i I

}

i

=d l I ' a .

t t *

-=

t-

, . , . . _ o l -

l s

'. g l . , '

i .

I I

!l;l -

4 I

, g .  ;

i , i 1

--se ' FIGURE ~20 - Composite of 40% W Parent hoe naw at - --

First Transition (Flaw A) and 40% TW Sle_ eve .

  • Flaw at Second Transition (Flaw B) - 1 Exoansion Suporession Mix i
, 04 1 VERT .l 04 1 HCRZ , OD+EL HD - MIX
  • 2 - !ID 9O A QR. 9

+

if I I

l i:

'i .  !

c' 1

e l __

I I I -

1

.I '

i 4 immempj

  • n FIGUPI 21 - 40% TW Parent Tube Flaw at First Transition Shown in Figure 20. Compare to Figure 18.

Page 16

w , 9

~

I l_ 04 1 VDtT .l_ m t HoRz ,l On+<1. m - mix 0 2 10 en e ca c' g )

i j

?[ i I

i

I e ,

s .

.=

- i

. . i ,

e  %

.j- -

{ ><, 3: .

l . .

~

I l

I i l .:

.y _..

--l FIGURE 22 - 40% TW Sleeve Flaw at Second Transition Shown in Figure 20. Compare to Figure 19.

o*+<L m - mixe 2 jro e a e ca. e l!_oi 2 votr .l_ 04 1 toRz .!

1 I .

1

- - ~ . _ . _ '

p

'l ,

l i

1.

p_4 se

) ( -

FIGURE 23 - 40% TW Sleeve Free Span _(_ Flaw I) .

Page 17

. s

  • s '

. .H J 45',,,H J '4f.T . '.44*{L N - 4 ID a . tea 3 (ci, 4;

.=u .

4 i

. . t

^ .

i .

+:  ; y . I- .. ,

- I e t .

.T t,  :

.. .N- .. -.--

=

? l . 'i . . .

'g , ,

, i  ; '

.i .

. i.

".."'.'st

'f ..,..... ......

.i...I

. . . , 1 r

. . [ l 4

~ -

i 4 .  : i ., 3 .: a - .s c

.l i l 1

, ,. ; . t,_' .

I I. .

e i' lli .

1 L

.q i.,

is 1

[l

> a

. i J A  !- ' '

4

~

,! ! I- t f -

g l FIGURE 24 - TSP Sample Over Clean .Section of Sleevec

~

Tube

. ._ tw 4 wtz .i_ ca 4 war .: onw No-4  ;

a cat a e t .

p g...

had T l .  : .  : .  :  : i i i .... .... .. . .. ........:

. i l

.............t. ...... ....

.i . ,

, i , ,. . . . . , .

.i .

1  ; m . . 4

.....j 't

~

l i L + . .  :

I . - r-a T . . . .

i i

. . . 1 T., -

g i, .l g e f r .

a i + l  ! - --

l! ft i i I I

i l i i I i l

' t' -

r -

I

i .

l _

, l I .

I l t

., i . > i a ' l

. i e I er w

FIGURE 25 - TSP Sample Placed at Edge of 20% TW Parent Tube Free Span (Flaw C),

Page 18 ,

. . ~ . . . . . . - _ . . < . . . . _ . -

. 1, . .

r_ r.H M i cal _ cH m I war.j clo+n m - s:txo 1 -

+= a ca. el

. 4 ,

!  ! 1-  !  ! -

l l i .

i f -

i

i 4 -
= . -c i  :

? 3 *

.r-t w b i - l i

Ili T

l - -

i .

g a .

JP i ME 8 s

1 - - -

.. a - -

=

1 -

+

's

.7

,.,l - "

. .,.9 g ; W .

i ..

.; ,5.l* ,r,  :. ,.. .ig C; R., .

': . ;;y. :;

. gmp__?-

. ... . . , . . + ._

m, - -

m .

i _

e. .

y ...

.{

.]

. l. .- :4f.'.~-l,.

-~'.:,

,3 , lt .,

.q _

...e, .

i 4 '

l 1..

1 t 1 i

1 .+ -

e.

. I 8

_4 T _4_

{ -

l T

~

T .. _- ._

FIGURE 26_- . Same as Fiqure 25. But Using -

I k

e e

G #

=

b 4

e.

D O e

0 l

1 t

l l

l Page 19 L