ML20128A802

From kanterella
Jump to navigation Jump to search
Summarizes 850425 Meeting W/Util & Bechtel in Bethesda,Md Re Method for Demonstrating Structural Adequacy of Masonry Walls.Attendance List,Agenda & Related Info Encl.Requested Info Should Be Submitted by Late Summer 1985
ML20128A802
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 05/14/1985
From: De Agazio A
Office of Nuclear Reactor Regulation
To: Crouse R
TOLEDO EDISON CO.
References
NUDOCS 8505240333
Download: ML20128A802 (29)


Text

..

M Y 1 4 19g5 h $h Docket No. 50-346 Mr. Richard P. Crouse-Vice President, Nuclear Toledo Edison Company Edison Plaza - Stop 712 300 Madison Avenue f Toledo, Ohio 43652

~

Dear Mr. Crouse:

SUBJECT:

SUMMARY

OF MEETING WITH TOLED0 EDISION COMPANY CONCERNING MASONRY WALL DESIGN On April 25, 1985, the staff met with representatives from Toledo Edison Company (TED) and TED's consultant, Bechtel Power Corporation at NRC offices in Bethesda, Maryland. The meeting attendees are identified in Enclosure 1..

The purpose of the meeting was to discuss a possible method for demonstrating the structural adequacy of certain masonry walls for which the energy balance method had been used for qualification. The staff does not accept energy balance methods.

Consultants for TED presented a discussion of the analytical technique used

-for the elastic analyses of the masonry walls. The presentation focussed upon areas in the analyses where excess conservatism was used. It was shown-that when the results of the analyses are readjusted for this that all but five of the masonry walls at issue can be shown to behave in an elastic manner. Of- these five, further analysis of conservatisms might also result in demonstrating elastic behavior; the fifth will likely require physical modification. Enclosure 2 is a summary of the presentation.

In response to the NRC infonnation request dated March 12, 1985, TED has

' stated its intent to submit a schedule for providing detailed information by May 13, 1985. The material should be submitted by late Sumer 1985.

A response to the following should be submitted with the detailed information.

. 1. Provide clarification regarding the method of analysis to qualify wall

! no. 2297.

2. Provide a discussion on the effects of cutouts on the reduction factor resulting from the consideration of plate action.
3. Provide a discussion on the applicability of the reduction factors and conclusions to 0BE load conditions.
4. The staff position requires that the maximum stress in Durowall type horizontal reinforcement be limited to 30,000 psi. In view of this, 8505240333 850514 DR ADOCK O p

~

.e : ,

Meeting ~ Summary- provide a discussion on the approach to comply with the staff requirement.

Also, provide details on the anchoring of the horizontal reinforcement and why it is adequate for moment transfer.

Sincerely, ori@4al M D Al DeAgazio, Project Manager Operating Reactors Branch #4 Division of Licensing

Enclosure:

As Stated cc w/ enclosure:

See next page L

-ORB #4:DLjfhf b ADeAgazio;cr

.5[jg/85 p
  • im1 - w--e g.-, y .-rwe--e m ,. m-p-. -p a+ 4=g< a .-.e- -go->9w,-9,-m- -e.m+ -- --m-- -. 4 --a

MEETING

SUMMARY

DISTRIBUTION Licensee: Toledo Edison Company

  • Copies also sent to those people on . service (cc) list for subject plant (s).

Docket File NRC PDR L PDR

- ORB #4 Rdg Project Manager - A. DeAgazio-JStolz BGrimes'(Emerg. Preparedness only)

OELD EJordan, IE ,

, ACRS-10 PMorriette NRC Meeting

Participants:

M. Chokshi G. Lear 6

\.

4 J

w. , - - _ , , _ . _ , . .._m, .-, . , . - , , _ - , - , ,--,.--,__._,,,,,._7- _,, _ , , -_-_._,,.. . ,, ,,__ ,c. . . . ~_, ,,, r ..-,

Enclosure 1 LIST OF ATTENDEES MASONRY WALL DESIGN BETHESDA, MARYLAND, APRIL 25, 1985 NAME ORGANIZATION N. Chokshi NRC/DE V. Con Franklin Research Center A. DeAgazio NRC/DL-M. Franzen Bechtel Power Corporation H. Harris Drexel University G. Lear' NRC/DE C. Mekbel Toledo Edison Company J. Ogle Bechtel Power Corporation D. Wuokko Toledo Edison Company E. Thomas Bechtel Power Corporation

', . . . Enclosure 2 P

AGENDA TOLEDO EDISON /NRC STAFF TECHNICAL MEETING APRIL 25, 1985 TOLEDO EDISON PRESENTATION:

1. INTRODUCTION
2. BACKGROUND
3. ANALYTICAL TECHNIQUES
4. CONSERVATISM IN ANALYSIS
a. Seismic Loads
b. Modeling Techniques
c. Material Properties
d. Conduit Support Loads
e. Other Conservatisms
5. .

SUMMARY

6. CONCLUSIONS i

-~ ,

a

SUMMARY

- STAFF SER POSITION o WALLS QUALIFIED BY WORKING STRESS APPROACH ARE ACCEPTABLE o WALLS QUALIFIED BY APPLICANT USING THE ENERGY BALANCE TECHNIQUE CAN BE RESOLVED BY ONE OF THE FOLLOWING SUPPLEMENT ENERGY BALANCE PROCEDURE WITH A " COMPREHENSIVE TEST PROGRAM" REANALYZE WALLS BY LINEAR ELASTIC WORKING STRESS APPROACH

-USE RIGOROUS NON-LINEAR ANALYSIS TECHNIQUES SUPPLEMENTED WITH CONFIRMATORY TESTING o PROVIDE BASIS FOR AN ALTERNATIVE POSITION IF IT IS SELECTED BY THE APPLICANT i

L I -

i

~

REVIEW 0F' WALLS EVALUATED BY ENERGY BALANCE PROCEDURE.

, ENERGY BALANCE BY VERTICAL WALL STRIP

~

WALL HEIGHT THICKNESS DUCTILITY is ELEV. -AREA NO. (ft.) (in.) RATIO Fall . COMMENTS 545 7 1087 8-0 ~

12 0.71 1.03' 2% OBE, CANTILEVERED 545- 7 1147 8-6 12 0.93 1.03 l 545' 7 1197 15-0 8-8-8 1.18 1.30 '

545 7 1227 18-6 8-8-8 2.04 1.95 4% SSE 1545 7. 1237 18-6 8-2-8 2.87 3.49 2%-0BE 545 .7 1267 18-0 8-8-8 2.07 -1.97 4% SSE 545 7 1337 . 16-7 8-8-8 0.95 1.05 545 8 1038 18-0 12-24-12 3.0 2.58 545- 8 1348 13-6 8-8-8 1.14 1.26 4% SSE 545 8 1428 13-6 8-8-8 0.83 0.91 4% SSE 565 7 2057 10-0 8-2-8 1.08 1.72 2% OBE 565- 7- 2067 10-0 8-2-8 0.71 1.02 2% OBE 565 7 2087 17-0 12 1.03 1.65 2% OBE 565 7- 2107 18-1 12-12-12 1.10 1.22 565 7 -2147 18-1 12 1.45 2.21 2% OBE 565 7 2177 18-1 8-2-8 1.08 1.19 565 7 2237 18-1 12-6-12 0.74 0.78 565 7 2247 17-1 12-6-12 0.96 1.07 565 7 2257 18-2 12 1.94 1.88 565 7 2277 18-4 12 0.93 1.48 2% OBE 565 7 2317 15-5 12 1.00 1.11 565 7 2337 ' 10-0 12 1.17 1.28 Cantilevered 565 7 2367 18-2 12 1.76 1.77 565 7 2447 10 12 1.48 1.55 565- 8 2018 17-0 12 0.99 1.60 585 7 3227 16-10 12 2.19 1.90 585 *~ 7 3257 16-11 12 1.16 1.84 2% OBE 585 7 3267 17-0 12 2.61- 2.07 585 7 3307 14-4 12 1.71 2.49 4% OBE

- 585 7 3367 17-0 12 1.80 1.69 585 7 3407 14-9 12 2.81 2.39 603 7 4917' 9-6 8 1.50 - 1.58 4

623 7 5017 11-5 8 2.17 2.03

. 623 7 5107 11-5 12 1.35 1.45 1

623 7 5127 14-0 8 2.'10 1.99

, - 623 J7 5147 13-11 12 1.49 1.56 623 7 5157 14-0 8 4.30 3.07 623 7 5187 14-0 8 2.56 2.25 623 7. 5197 14-0 8 2.48 2.21 623 7 5277 14-0 8 2.88 2.42 643 7 6087 14-2 12 1.36 1.46

. 585 6 305D 13-0 12 1.36 1.46

{ 585 6 307D 13-1 12 0.79 0.85 j 585 6 313D 8-6 12 1.30 2.02 2% OBE 576 Intake 2371 13-4 8 3.64 2.79 Struct.

t 4

3

-w e w - , - - - ,,.w - aw ,-,-,a --w.r.wm,--v.-n. ave-m-- --w- ,n---,,-,--ene---w ,-,,eme,v,,--v---m~~~c- -s--. , e ,.-,.~n, w - m., ~ ~ -m.,

r:

1 l

l 1

REVIEW OF WALLS EVALUATED BY ENERGY BALANCE PROCEDURE ENERGY BALANCE BY HORIZONTAL STRIP WALL SPAN THICKNESS DUCTILITY fs ELEV. AREA NO. (ft.) (in.) RATIO Fall COMMENTS 545 7 1157 5-0 8-8-8 0.83 0.91 565 7 2077 9-0 12 1.17 1.29 565 7 2167 7-0 8-5-8 1.98 1.91 565 7 2227 7-4 8-8-8 1.05 1.17 565 7 2267 6-2 12 1.10 1.22 565 7 2427 8-5 8 0.97 1.08 585 7 3167 4-6 12 1.03 1.14 585 7 3177 11-10 12 0.98 1.08 585 7 3187 3-3 12 1.07 1.15 585 7 3347 14-5 12 0.86 0.94 585 7 3397 8-4 12 2.35 3.33 2% OBE 585

~~

7 3417 6-5 12 2.00 1.86 4% SSE 603 6 4016 5-4 12 0.77 1.28 4% OBE 603 7 4647 3-4 12 1.40 1.26 CANTILEVERED

. 623 7 5367 6-2 4 4.54 3.16 643 7 6107 8-10 12 2.41 3.39 2% OBE i

4 4 -- .. _.

I REVIEW OF WALLS EVALUATED BY ENERGY BALANCE PROCEDURE ENERGY BALANCE BY TWO WAY. ACTION HORIZONTAL VERTICAL WALL HEIGHT SPAN THICKNESS DUCTILITY fs DUCTILITY fs ELEV. AREA NO. (ft.) (ft.) (in. ) RATIO Fall RATIO Fall 585 6 3036 16-5 13-0 12 -

0.62 0.88 1.39 (1) 585 7 3277 15-8 9-0 12 0.95 1.04 -

0.53 585 7 3287 16-10 8-0 12 0.95 1.06 -

0.89 585 7 3297 14-8 9-0 12 2.64 1.61 -

0.84 585 7 3357 14-8 22-10 12 0.98 1.09 -

0.61 603 6 4036 18-5 13-5 12 -

0.52 2.72 2.34 603 6. 404g 18-5 10-0 12 -

1.01 0.76 1.16 603 6 4796 603 6 4886 e 18-5 13-0 12 1.20 1.31 2.46 2.21 603 6 4894, 603 ,7 4867 8-2 1-8 12 1.40 1.26 -

0.39 585 6 304D 12-8 12-0 12 1.64 2.62 -

0.75 (1) 585 6 311D 23-1 10-3 8-2-8 0.89 1.54 0.85 1.34 (1)

(1) Qualified for OBE, 4% Damping bi

1 MASONRY WALL CONSTRUCTION DETAILS MASONRY UNITS: ASTM C-90 GRADE N-1 (MINIMUM SPECIFIED COMPRESSIVE STRENGTH ON GROSS AREA = 1500 psi FOR GROUTED UNITS AND 1350 PSI FOR PARTIALLY GROUTED OR HOLLOW UNITS)

' MORTAR: ASTM C-476 TYPE PM (MINIMUM SPECIFIED COMPRESSIVE STRENGTH = 2500 PSI)

. GROUT: ASTM C-476 (MINIMLH SPECIFIED STRENGTH = 2500 PSI)

REINFORCING STEEL: ASTM A615 GRADE 40 (MINIMUM SPECIFIED YIELD STRENGTH =

40000 PSI)

CONSTRUCTION DETAILS:

VERTICAL REINFORCING 8" BLOCK 12" BLOCK 2# 5 @ 16" 2# 5 @ 16" HORIZONTAL REINFORCING DUROWALL EXTRA HEAVY TRUSS TYPE SPACED AT 8" ANCHORAGE DETAILS:

FLOOR: LAPPED WITH ALL-THREAD BARS IN EXPANSION SHIELDS WALLS: LAPPED WITH ALL-THREAD BARS IN EXPANSION SHIELDS CEILINGS: LAPPED WITH ALL-THREAD BARS WELDED TO FLAT PLATE.

STACKED BOND v

b

?

e ELASTIC ANALYSIS OF MASONRY WALLS-METHODOLOGY (UTILIZED COMPUTER PROGRAM BLOCKWALLS) o ANALYSIS CONSIDERS WALL AS 3 MASS BEAM WITH FIXED, PINNED OR FREE END CONDITIONS.

o STIFFNESS DEVELOPED FOR BOTH CRACKED AND UNCRACKED TRANSFORMED SECTIONS.

o NATURAL FREQUENCIES AND MODE SHAPES COMPUTED.

o~ FLOOR RESPONSE SPECTRA READ INTO PROGRAM.

USED TO ESTABLISH EXCITED LEVELS FOR EACH MODE o MOMENT AND SHEAR DISTRIBUTION DETERMINED BY SRSS.

o MAXIMUM MOMENTS, SHEAR, MASONRY COMPRESSIVE STRESS AND REINFORCING STEEL STRESS COMPUTED.

o RESULTS COMPARED WITH ALLOWABLES.

a

DAVIS BESSE -

AUXILIARY BUILDING O Z 01___IT '

l SEISMIC MODELS ,

.y_ y E L.6 6 O*-O" E L.659'-3" /e z

E L.6 53'-3.- ,

E L.6 4 i-O" EL.6 4 T-O" E L.6 42'-6" i

! EL.62 T-O' ( EL.62T-O" E L.6 2 2'-6" (

l l

( (

i E L.611- 6"

!4 i E L601-O' EL.601-O" E L.6 02'-6" T

EL585'-O"  % ____K i T, EL585'O" E L.5 84'-O" l E L.5 76'- O" ___ K2i

!e 1 EL.5671 0"  ; __ K3i E L565'-O" E L.5 6 3'- O" E L.55 8'-O" n m =,=, -

i E L.5 4 5' O" E L.5 4 5'- 0" 3 I'-Wt =Wra ,

/"A w-f"4 AREA 6 AREA 7 i AREA 8 l

~

DAVIS BESSE -

HORIZONTAL ACCELERATION DESIGN SPECTRA t

, HELENA E-W TIME HISTORY (0.15G) .

DESIGN SPECTRUM (4% DAMPING)

.6 -

g I S R. G. 1.60 DESIGN SPECTRA I

,P j'g

.5 (7% DAMPING) *  % ' .I I 0.20G ',

l i i  %

8 i

i l

(..*

! k! I 8 A i . i i  !

J g 4 0.15G ) l\ g/' i i i' i

- /

,\  % g1 Ms : -

'[ '

k kl A "i , A it O .3 - / ..

W /,- (^, \V 1 N%

h.

i/ j I N  %

.2 ey v N 4~, _ _

/ ' DESIGN SPECTRUM (0.15G) x w'N

.1 -- ,/// (4% DAMPING) --

//

/

k l I l l l 5 l l o .1 0.2 0.6 1.0 2.0 6.0 10. 20. 60. 100 FREQUENCY (HZ) .

4 g ,

y R. G. 1.60 TIME HISTORY

. 8

.6 / v 7

7 Y.

.4 *

. 2 Eb404 X 79[H 1 o .

C.1 .2 .3 4 .6 .8 1.0 2 3 4 6 8 10.0 20 30 40 60 100.0 FREQUENCY (CPS) 4

\o

J l

l l

?

SEISMIC LOADS REDUCTION FACTORS FOR USE OF REGULATORY GUIDE 1.60 (.2g) TIME HISTORY PEAK AREA DIRECTION N.F. REDUCTION FACTOR 6 N-S 6.7 0.8 E-W 6.8 0.6 7 N-S 7.0 0.8 (1)

E-W 5.2 1.0 8 N-S 9.1 0.6 (2)

E-W 11.2 0.6 (3)

(1) REACTION FACTOR OF 0.85 FOR IXXX AND 2XXX LEVEL WALLS (2) REACTION FACTOR OF 0.9 FOR IXXX AND-2XXX LEVEL WALLS (3) REACTION FACTOR OF 0.8 FOR IXXX AND 2XXX LEVEL WALLS (4) 75 DAMPING USED TOR REGULATORY GUIDE 1.60 ANALYSIS I

o -

Q 8

. W -

w m .,

- + 'e 4m + 4 4 o

. c Ea

<W G$ ,

a -e 5

$ 09

%~ /

u e o g

a g -

4 g 48 o

4 + f+ 0

" h E e a

g a 0 - + \

+ + .-

8

= a - t h

  • 4 . .s a eg -

5 gj. -

I l

~ . I i w

5, -

j g ae i m g* - !+ I4 l

+ 4 Q W I

\

x .. l l RE I 4 + + .S

- 5 -

4 (4-I I t U E

  • g - I+ I+

y 4 + + e g

N P I W 5 -

a$ '

I I E U l l N 1 l+ 4 4- + + j q

. l l l l e.

MY3d S IS A*1V N V 'l V N I O l WO 30 % 0 9 d

WALL MODELING TECHNIQUES BOUNDARY CONDITIONS cu MOMENT MOMENT MOMENT 100 % _ 20kg _ 80%_ _67 %_ _g - 3 3 */.

MOMENT MOMENT MOMENT EVALVATION MODEL VERTICAL STRIP HORIZONTAL STRIP

( v l

ACTUAL CONDITIONS 13

r~

EFFECTIVE WIDTH OF VERTICAL STRIP .

t i

I l

I I

I I I I Igong,r ~31 v E R T.  !

l t 1.

W g I,

l N l l N I I l

l 's l 1 l l s

I ' I l s

.- l N

' l s I l N l s I

  • l sl o l I -j i j -

1 I

I I

l l

l I

  1. e ', o **

l l

r EFFECTIVE WIDTH OF ONE WAY VERTICAL STRIP TO PROVIDE SAME ,

DEFLECTION = 15'-0" EFFECTIVE WIDTH OF ONE WAY VERTICAL STRIP TO PROVIDE SAME MOMENT a 12'-0"

COMPARISON OF PLATE TO STRIP ANALYSIS WALL NO. HEIGHT / WIDTH REDUCTION FACTOR 1068 0.76 0.60 2207 1.27 0.36 2217 1.10 0.06 306D 1.10 0.19 308D 2.44 0.07 309D 2.55 0.08 310D 2.44 0.08 3247 1.49 0.84

' 0.64 3357 0.79 338D 2.61 0.08 4046 1.85 0.09 4137 0.65 0.03 5137 2.32 0.04 6037 1.90 0.27 6097 4.54 0.27 3016 1.-29 0.41 3026 2.68 . 0.41 3036 1.27 0.41 3287 2.10 0.30 4036 1.38 0.29 2.68 0.42 39 , 1.43 0.18 489 5207 0.74

, 311D 2.26 0.06

,_ 3237 1.57 0.72 2297 0.81 0.21 4026 1.62 0.60

.h 9

4 15

I MILL TEST REPORTS FOR MASONRY WALLS No. 5 REINFORCING BARS ASTM YIELD TENSILE QUANTITY OF STEEL SPECIFICATION (KSI) (KSI) REPRESENTED (TONS)

A-615 Grade 40 70.0 ,

113.2 41.9 A-615 Grade 40 50.6 79.7 41.9 A-615 Grade 40 51.0 80.0 15.6 A-615 Grade 40 54.8 86.5 19.8

1-615 Grade 40 56.8 88.4 20.3 A-615 Grade 40 55.5 90.6 20.9 A-615 Grade 40 55.5 87.1 10.4 A-615 Grade 40 54.2 88.4 41.7 A-615 Grade 40 51.0 76.1 31.3 A-615 Grade 40 56.8 88.4 31.3 TOTAL 275.1 TONS 4

0

  • e CONDUIT SUPPORT LOADS AVERAGE FILL PERCENTAGES 6

40 -

35 -

98% RELIABILITY C

[ so -

8 8

25 - S

- =

8 '

{- L 95% RELIABILITY 20 -

, 15 -

l 10 , , , ; , i , i , i , i , i , i , e . I y 0 2 4 6 8 10 12 14 16 18 20 NUMBER OF CONDUITS

\1

I(

Cast 20 Ocast f r. fire g i S*.

StGtONS ARE IDENTIFitD FOR 5% l -l TOLERABLE ERROR g

64 REGION A.LOUPLt4G11 REQUIRE 0 FOR #00EL A g l In RE Gion 8.COUPtihG 15 REcolREO F OR W00f t B i 8 30 ,

i Ca. 't ' Cast t l I o!'!!! I 25 -

- 1 i .i

., . --g g i i l i s 3*l]' O anODEL A Q hAODEL S COUPtitG,b0f REQUIREO l l -l /

I Al g

/ p ,

tr6

/

Y f L. > > \ 4'- --

p / Y p o 1b%

.- - -e / - -

10 7 # UPLING E'd'[

. R E QUIR E 0___ Cast 3 s %%d N[ -- ,,,

.. s REGION B'

, s

\

% * *= W

,o COUPLING HOT REQUIRE 0 g in k lii..

S ect 0 01 gg te AAfte

' COUPLING M AY SE REQUIRED FIG.1 SYSTEM FREQUENCY ERRORS DUE TO DECOUPLING OF SUS $YSTEMS N

m I

c.se , e.se t is .. . I o__

o.,eesca=si l',i j ,g yi.,, j k i

, y ,6 .

ii

[

o.......,,,..........i i* i I, i

\ e i .

.il .

r- e.

i . i

. . .,..... i ,,

t  ! I ,i

. I g % case .

t i  :

. -. is. ..

.. .. t si  !. i, Ii 88 . ,

,,.s 5. .i i  ; iI.\ g  % 8 ti' e' N  % .I u ----n ----------_ ________;.

i ss s l. g

' , . __-sy

!" .i ii

.ss :- sp i , . , ,

hs sN.

I i -m

! . : M

. \h.,.'".

  1. _ _ . _ _ _ _ _ _ _ _ _ 3 rw **g ',

_ _ , , . ..s .

,a

.  !. I ,. x. _ _ _. _ _ _ _ , . t .

o

____________i ..i_..._ _ _ _ _i _ _ !_ _i_ _i_ l _. p i___ ,__i____

___-'- N ____

i ___

l l1 l l il. ..,

l i

..g / i i ll

  • / 4 t 'r r1 mass antig g.

PlG.2 SJPPORTassG Systtu RESP 0ssSE ERRORS OUt 70 0tcouPLipeG 0F 3Utsv57 EMS

~

SUMMARY

VERTICAL STRIP ANALYSIS SEISMIC REDUCTION FACTORS REDUCED ADD'L

, WALL is SEISMIC TIME BOUND MAT is REDUCTION i No. Fall ORIENT. HISTORY COND. PROP. DAMP. SSE PRODUCT Fall NEEDED 223f 0.78 E -

.8 .8 - - .64 0.50 -

'307D 0.85 N .8 .8 .8 - -

.51 0.43 -

1428 0.91 N -

.9 .8 .75 -

.54 0.49 -

2067- 1.02 N .85 .8 .8 .7 .7 .29 0.30 -

1087 1.03 -N .85 Cant. .8 .7 .7 .31 0.32 -

1147 1.03 N -

.8 .8 - -

.64 0.66 -

1337 1.05 E -

.8 .8 - -

.64 0.67 -

2247 1.07 E -

.8 .8 - -

.64 0.68 -

2317 1.11 N -

.8 .8 - -

.64 0.71 -

2177 1.19 E -

.8 .8 - -

.64 0.76 -

2107 1.22 N .35 .8 .8 - -

.54 0.66 -

1348 1.26 E -

.6 .8 .75 - .48 0.60 -

-2337 1.28 N .85 Cant. .8 - -

.68 0.87 -

~1197 1.30 E - .8 .8 - -

.64' O.83 -

I313D , 2.02 N ,

.8 .8 .8 .7 .7 .25 0.51 -

4 .

305D 1.46 E -

.8 .8 - -

.64 0.93 -

'6087 1.46 E -

.8 .8 - - .64 0.93 -

2277 1.48 N .85 .8 .8 .7 .7 .27 0.40 -

2447 1.55 E -

.8 .8 - -

.64 0.99 -

5147 1.56 E -

.8 .8 - -

.64 1.00 -

4917 1.58 E -

.8 .8 - -

.64 1.01 0.99 4

2018 1.60 N .9 .8 .8 - -

.58 0.93 -

2087 1.65 N .85 .8 .8 .7 .7 .29 0.44 -

3367 1.69- N .8 .8 .8 - -

.51 0.86 -

2057 1.72' E -

.8 .8 .7 .7 .29 0.54 -

2367 1.77 E -

.8 .8 - - .64 1.13 0.88

.3257 1.84 E -

.8 .8 .7 .7 .31 0.57 -

2257 1.88 N .85 .8 .8 - - .54 1.02 0.98

- 3227 1.90 E -

.8 .8 - - .64 1.22 0.82 1.95 .8 .8 1227 E -

.75 -

.48 0.94 -

1267 1.97 E -

.8 .8 .75 -

.48 0.95 -

L.)127 1.97 N .8 .8 .8 - -

.51 1.01 0.99 5017 2.03 E -

.8 .8 - - .64 1.30 0.77

-3267 2.07 N .8 .8 .8 - - .51 1.06 0.95 2147 2.21 N .85 .8 .8 .7 .7 .29 0.59 -

5197 2.21 E -

.8 .8 - - .64 1.41 0.71

-5187 2.25 N .8 .8 .8 - -

.51 1.15 0.87 3407 2.39 E -

.8 .8 - - .64 1.53 0.65 5277 2.42 N .8 .8 .8 - -

.51 1.23 0.81 -

3307 2.49 E - .8 .8 -

.7 .45 1.12 0.89

'1038 2.58 E -

.8 .8 - - .64 1.65 0.61 g37I 2.79 N .8 .8 .8 - -

.51 1.42 0.70 1237 3.49 N .85 .8 .8 .7 .7 .27 0.93 -

-5157 3.07 N .8 .8 .8 - -

.51 1.57 0.64

- sun iM E ~ S S 1 1 31 ,4r -

20

SUMMARY

HORIZONTAL STRIP ANALYSIS SEISMIC REDUCTION FACTORS REDUCED ADD'L WALL is SEISMIC TIME BOUND MAT is REDUCTION N2. Fall. ORIENT. HISTORY COND. PROP. DAMP. SSE PRODUCT Fall NEEDED 4016 0.77 E .6 .7 - -

.7 .29 0.23 -

3347 0.86 N -

.7 - - -

.7 0.60 -

1157 0.91 E -

.7 - - -

.7 0.64 -

0.97 .7 .7 0.68 2427 E - - - - -

3177 0.98 E - .7 - - -

.7 0.69 -

3167 1.03 N -

.7 - - -

.7 0.72 -

2227 1.17 N .85 .7 - - - .6 0.70 -

3187 1.07 N -

.7 - - -

.7 0.75 -

2267 1.10 N -

.7 - - -

.7 0.77- -

2077 1.29 E -

.7 - - -

.7 0.90 -

4647 1.40 E -

.7 - - -

.7 0.98 -

2167 1.91 N .85 .7 - - -

.6 1.14 0.88 3417 2.00 N -

.7 -

.75 -

.53 1.06 0.94 3397 2.35 E -

.7 -

.7 .7 .34 0.80 -

6107 3.39 E -

.7 -

.7 .7 .34 1.16 0.86

. -5367 3.16 'E -

.7 - - -

.7 2.37 0.42

4 4

SUMMARY

Tk'O WAY ANALYSIS

, SEISMIC REDUCTION FACTORS REDUCED ADD'L WALL CRITICAL fs- SEISMIC TIME BOUND MAT fs REDUCTION No. DIRECTION Fall ORIENT. HISTORY COND. PROP. DAMP. SSE PRODUCT Fall NEEDED

.3357 H 1.09 N -

.8 - - -

.8 0.87 -

3277 H 1.04 E -

.8 - - -

.8 0.83 -

3287 H 1.06 E -

.8 - - -

.8 0.85 -

4046 V 1.16 E .6 .8 - - -

.48 0.56 -

4867 H 1.26 N -

.8 - - -

.8 1.01 0.99 3036 V 1.39 N .8 .8 .8 - -

.51 0.71 -

-311D H -

1.54 N .8 .8 -

.7 .7 .45 0.69 -

3297 H 1.61 E -

.8 - - -

.8 1.29 0.78 4796 -

4886 + .V 2.21 N .8 .8 .8 - -

.51 1.13 0.88 4894 .

4036 V 2.34 N .8 .8 .8 - -

.51 1.19 0.84 304D. H 2.62 E .6 .8 - -

.7 .34 0.88 -

O s

21

FURTHER REDUCTION CONSIDERATIONS REDUCED LOCAL CORRECTED is REDUCTION FROM SEISMIC WIDER _ fs WALL ANALYSIS Fall PLATE ANALYSIS CORRECTION STRIP Fall 1 4917 V 1.01 .84 - -

0.85

'2 5127 V 1.01 .84 - -

0.85 3 4867 2W 1.01 .84 - -

0.85

-4 2257 V 1.02 .84 - -

0.86 5 3267 V 1.06 .84 - -

0.89 6- 3417 H 1.06 .84 - -

0.89

-7 3307 V 1.12 .84 - -

0.94 8 2367 V 1.13 .84 - -

0.95 9 .5187 V 1.15 .84 - -

0.97 10 5157 V 1.57 .84 - -

1.32 (1) 11 2167 H 1.14 .84 - -

0.97 12 3227 V 1.22 .84 .97 -

0.99 13 5277' V 1.23 .84 .985 -

1.01 14 3297 2W 1.29 .84 .75 (13.2 H* ) - 0.79 15 5017 V 1.30 .84 .93 -

1.02 16 5197 V 1.41 .84 .93 -

1.10'(1) 17 2371 V 1.42 .84 - .

1.19 (1) 18 6107 H 1.16 .84 - -

0.97 19 3407. V 1.53 .84 .68 -

0.87 20 1038 V 1.65 .84 - -

1.39 (2) 21 5367 H 2.37 .84 - -

1.99 22 47969 23 4886b V 1.13 .8? - -

0.95 24 4896[

25 .4036 V 1.19 .84 - -

1.00 (1) Perform ,Dstailed BSAP Analysis (2); Perform Horizontal Frame Analysis (wall has the shape of a "U")

4

O 9 6 3

I t

2 hu-M tviARN' i

1 I

i.

3 mbt 3 N m._ _ibbh.._LM

. M. b Yd) .

i 1

e.

i t

3 9

I t t l 3

e e I I L g

1 8 f f

! . t i ! i , f I I C) i i i t . , ! r I

W 6 1 i

f I t 3

..h N

f y __- t I ' I  !

l l ,

I I t I t A AJ% Ass AIWh I

t A .A

. I _ " l 3

j i i j 4

[

t i

I I t i 1 A

I } T l

t CAn.t MTALO'TR11' I t

" 3 i l l ,

A I a% A -'^ AA Jk I 3 Jk ' A w r - ---- w- F w i I A A mes -

r f A I, i  ! r I 1 t I L 3 i A '

[---

)4 i i i e 6 1

14  ;

i

' t l

I I e 14k h We))

h _

A t

,,  ! . . , i e i ' i 5 . i i - >

1 4 i i i i a e . i i i i p ] g p.

h

, i l

I l

I E !

i ,  ; .

ya ,

, , . . i , ,

. . . i W,,

i , ,

I i f Z# e . ' t i e i i i b( i i i

e i 3 3

I O

i

>g aus

-w es -

mm A meses ' -

n ah a

- oms - %

= mm i I

    • em i b a I A

t 3 t 1 i W t f I e  : 3 i

3 I I l l I f I 3 Jh

! 1 0

! I 5 3

=M .! , -

, , . i A

-'- 1 t 5 > ! I t t 6 i j 1 1 1 AAA A AA A AsA\+ =;= _!A 8 A 3

-A 6 i _ , 1 I 4 , 3 i .  ! 3 3 A A e 8

i  ! 4 , f t t i s i " -

t i I e i ! l s i i i . i i i 3 i t '

i i  !  ! I i 1 ! i i i t i i i i i I i i i i I 3 I t i i i I 6 t t I t  ! t 6 wz-en , m.s-ex w w e-- .

1 i-a w a i a -

a M'MS m TESL 1 kiSX FI E 'ERN 1 ,

, i a i i 1 i i i i

( i .

a i l j r i j r i i

t e i i a 6 i i i r

i 6 i  ; i s i . , , i i i 6 4 '

i i  ! t i 1 1 8

iI i i  ! I i t 3 1 i i 3 i  ;

r I i i i i i i i e  ! i r f f #

i i  ; i i i i i ! t 3 i I 1 ' 6 I 4 I '

1 I i 3 e

~ -- '

h

CONCLUSIONS e The following conservatisms have been found in the elastic analysis of masonry walls qual.ified by energy balance:

Time history used in seismic analysis (v)

Boundary conditions imposed on analytical model (v)

Effective width used for " strip" analysis Use of beam vs. plate analysis (si Use of minimum specified vs. actual material properties (/) .

Use of 100% design conduit fill Use of " lumped" plus " cascading" model techniques Use of lower bound natural frequency with modified response spectra Absolute summation of external moments and inertial load seismic moments e Using conservative reductio.' factors only for the items indicated with a (/), all but seven walls are ;50wn to be within elastic criteria for SSE.

Use of all the conservatisms (evaluated on a case-by-case basis) should demonstrate-that, with one possible exception, all walls will pass the elastic acceptance criteria FOR SSE loading.

r i

_ .__ . _ , . _ _ . , . . . _ _ . . _ _ . _ ,. - _