ML20125B449

From kanterella
Jump to navigation Jump to search
Plant,Cycle II Startup Rept,May 1985
ML20125B449
Person / Time
Site: Kewaunee Dominion icon.png
Issue date: 05/31/1985
From: Schrock C, Wozniak S
WISCONSIN PUBLIC SERVICE CORP.
To:
Shared Package
ML20125B438 List:
References
NUDOCS 8506110413
Download: ML20125B449 (44)


Text

.

KEWAUNEE NUCLEAR POWER PLANT CYCLE ll STARTUPnREPORT MAY,1985 WISCONSIN PUBLIC SERVICE CORPORATION WISCONSIN POWER & LIGHT COMPANY-M A DISON GAS S ELECTRIC COMPANY

!;;j
"!?#U@Sjih;P

s - e DOCKET 5 0-305 KEWAUNEE NUCLEAR POWER PLANT STARTUP REPORT CYCLE 11 MAY 1985 WISCONSIN PUBLIC SERVICE CORPORATION GREEN BAY, WISCONSIN

I s

l l

TABLE OF CONTENTS  !

, i i

I i

i i

1. 0 Introduction, Summary and conclusion. . . . . . . . .. . .1 1.1 Int roduction . . . . . ... . . . . . . . . . . . . .1 .
1. 2 Summa ry. . . . . . . . ...............2 l 1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . .3
2. 0 RCCA Measurements . . . . . . . . . . . . . . . . . . . . .6 2.1 RCCA Drop Time Measurements. . . . . . . . . . . . . .6 2.2 RCCA Bank Measurements . . . . . . . . . . . . . . . .6
  • 2.2.1 Rod Swap Results. .. . . . . . . . . . . . . .6

.7 i 2. 3 Shutdown Margin Evaluation . . . . . . . . . . . . .

l 3.0 Boron Endpoints and . Boron Worth Measurements. . . . . . . 13 3.1 Boron Endpoints. . . . . . . . . . . . . . . . . . . 13 3.2 Dif ferential Boron Worth . . . . . . . . . . . . . . . 13 3.3 Boron Letdown. . . . . . . . . . . . . . . . . . . . 14

4. 0 Isothermal Temperature coef ficient. . . . . . . . . . . . 18 l 5.0 Powe r. 0ist ribution. . . . . . . . . . . . . . . . . . . . 20 i

! 5.1 Summa ry of Power Distribution Criteria . . . . . . . 20 5.2 Powe r Dist ribution Measurements. . . . . . . . . . . 21 6.0 Reactor Startup Calibrations. . . . . . . . . . . . . . . 29 6.1 Rod Position Calibration . . . . . . . . . . . . . . 29 6.2 Nuclear Instrumentation Calibration. . . . . . . . . 30 7.0 Re fe rence s. . . . . . . . . . . . . . . . . . . . . . . . 31 8.0 Appendix A Change to Reactor Test Program . . . . . . . 32 t

t

?

i t

LIST OF TABLES Table 1.1 Chronology of Tests . . . . . . . . . . . . . . . . 4 Table 2.1 RCCA Drop Time Measurements . . . . . . . . . . . .8 Ta ble 2.2 RCCA Bank Worth Summa ry . . . . . . . . . . . . . .9 Table 2.3 Shutdown Ma rgin Analysis. . . . . . . . . . . . . .12 Tablo 3.1 RCCA Bank Endpoint Measurements . . . . . . . . . .15 Ta blo 3. 2 Dif ferential Doron Worth. . . . . . . . . . . . . .16 Tablo 4.1 Isothermal Temperaturo Coefficient. . . . . . . . .19 Table 5.1 Flux Map Chronology and Reactor Characteristics . .22 Table 5.2 Verification of Acceptance Criteria . . . . . . . .23 Table 5.3 verification of Roview criteria . . . . . . . . . .24 l

l i

LIST OF FIGURES &

Figu re 1.1 Core Loading Ma p. . . . .. . . . . . . . . . . . .5 Figure 2.1 RCCA Bank C Integral Worth. . . . . . . . . . . . .10 Figure 2. 2 RCCA Bank C Di f fe rential Worth. . . . . . . . . . .11 Figu re 3.1 Boron Concentration vs. Bu rnu p. . . . . . . . . . .17 Figu re 5.1 Powe r Distribution f or Flux Map 1102. . . . . . . .25 Figure 5. 2 Power Distribution f or Flux Map 1103. . . . . . . .26 Figu re 5.3 Powe r Distribution f or Flux Map 1108. . . . . . . .27 r

Figure 5.4 Powe r Dist ribution f or Flux Map 1109. . . . . . . . .28 I

t i

t I

I

-111-

r f

1.0 INTRODUCTION

SUMMARY

AND. CONCLUSION f

i 1.1 Introduction i

This report presents the results of tne physics tests performed for Kewaunee Cycle 11. The core design and reload f L safety evaluation were performed by Wisconsin ' Public Service Corporation (1) using methods previously described in WPS  !

topical reports ( 2,3) . The results of the physics tests I were compared to WPS analytical results to confirm calculat-

[ ed safety margins. ' The tests performed and reported herein [

i satisf y the requirements of the Reactor' Test Program (4).

i f l During Cycle 10-11 ref ueling, 36 of the 121 fuel assemblies- j l

t i

in the core were replaced with f resh assemblies of Exxon Design (5), enriched to 3.4 w/o U235. The Cycle 11 core i consists of the following regions of fuel ,

Number  !

Initial of Previous Number of  !

ReSi on Vendor U235 Wf0 Duty Cycles Assemblies ,

1 N 2.2 1 1  !

7 ENC 3.2 3 12 I 10 ENC 3. 2 2 8 11 ENC 3. 4 2 36 12 ENC 3.2 1 28 i

13 ENC 3. 4 0 36(Feed)

The core loading pattern, assembly identification, RCCA bank l identification, instrument thimble I.D., the rmo-couple I .D. ,

and burnable poison rod configurations for Cycle 11 a re ,

presented in Figure 1.1.

On April 9, 1985 at 0735 hours0.00851 days <br />0.204 hours <br />0.00122 weeks <br />2.796675e-4 months <br />, initial criticality was achieved on the Cycle 11 core. The schedule of physics tests and measurements is outlined in Table 1.1.

1. 2 Summary RCCA measurements are shown in Section 2. All RCCA drop time measurements woro within Technical Specification limits. RCCA bank worths woro measured using the rod swap reactivity comparison technique previously described (4,6).

The reactivity comparison was made to the reference bank, Bank C, which was measured using the boration/ dilution technique. All results were within the established accep-tance criteria (4), and thereby demonstrated adequate shutdown ma rgin.

Section 3 presents the boron ondpoint and boron worth measurements. The ondpoint measurements for ARO and " Dank C In" core configurations woro within the acceptance criteria (4). The available boron lotdown data cove ring the first month of reactor operation is also shown. The agreement between measuromonts and predictiona moota the review and acceptance criteria (4).

Section 4 shows the results of the isothermal temperaturu coefficient measurementa. The dif ferences betwoon measure-monts and predictions woro within the acceptance critoria (4).

I Power distributions w,ere measured via flux maps using the INCORE code f or beginning of cycle (BOC) core conditions covering power escalation to 100% full power equilibrium menon. The results indicate compliance with Technical Specification limits (7) and are presented in Section 5.

Section 6 discusses the various calibrations performed during the startup of Cycle 11.

1.3 Conclusion The startup testing of Kewaunee's Cycle 11 core verified i

that the reactor core has been properly loaded and the core l

characteristics satisf y the Technical Specifications (7) and  :

are consistent with the parameters used in the design and <

safety analysis (1).

t

[

t i

l l

TABLE 1.1 Kewauneo Nuclea r Powe r Plant DOL Cycle 11 Physica Tont Date Timo Plant Te st Completed Completed Conditions Control Rod Operability Toat 4/04/85 1600 Cold SD Hot Rod Dropa 4/06/85 1700 Hot SD RPI Calibrations 4/09/85 0246 Hot SD Initial Criticality 4/09/85 0735 HZP Reactivity Computer Checkout 4/09/05 1350 HZP ITC Dete rmination 4/09/85 1458 HZP ARO Endpoint ' 4/ 09/85 1543 HZP 8ank C Worth (Dilution) 4/09/05 1649 HZP Dank C In-ORO Endpoint 4/09/85 1815 HZP Rod Swap 4/09/85 2230 HZP Hot Zero Powe r Flux Ma p 1101 4/10/05 0330 HZP Power Anconcion Flux Map 1102 4/12/85 1300 45%

Incore/Excore Calibration 4/14/85 1746 73%

Flux Map 1103 Incore/Excoro Calibration 4/14/85 2026 74% ,

Flux Map 1104 Incore/Excore Calibration 4/14/85 2217 74%

Flux Ma p 1105 Incore/Excoro Calibration 4/14/85 2355 74%

Flux Map 1106 Incore/Excoro Calibration 4/15/05 0130 74%

Flux Map 1107 Powe r Anconsion Flux Ma p 1108 4/16/05 1349 89%

Powe r Anconalon Flux Ma p 1109 4/17/05 0928 100%

4

FIGURE 1.1 KEWAUNEE CYCLE 11 CORE LOADING MAP 1 2 3 4 5 6 7 8 9 10 11 12 13 Q ele n11 ott 1 Mt IJ U f 8 his n30 nfo 00s nie noe ate g "U .U 1r na U U "Lt

/

C att aos Lti att an. nos Lu == na mn m mn si in "U U dJ EF U "Lt D not n13 als nos die Lis sie nia not att sti iff 1)! H TH ET U dJ " U! 'UI =p us u E = as La air ait La us 6t, ai, nie ai nie n i mn mn iJ " ET U " Er U "U U f W1 nie att sie Lit nts Lee 404 ble del hot ate Die O T 9! P9 81

.. U u -n u -. -- n -,,

Q nie ele rr 3o are Let Lt6 Lif als LOG Lil L90 ace en not te an cc a nm n- n v "J_

=uf U = ur u = um U H Dit n18 Rio Joe Lle ate Lie Att L10 die k01 nis 000 P Bo fM #f Ill 1ff % fft IM U EF "U " df. U j ntt Lie Rip are L3e

' EI Les L33 als att df Lt3 att if M n fil H f ft 84 U dl df U "U J ets nt,Lt sfe n0t sie sie nie Li. att ne at ra n in mm m n *

" Lt U U U "U K an als ais sie au Lear s IM M

'fe are U

u. nte 19 N Lf3P 4 U U L- -

alt not nos ett nte nti not n o e ,c M ste als ett

,o n eso TT" erte ele ers:

10 f/C 3 I inin.Lt CYCLE ELEVEN 5

2. 0 RCCA MEASUREMENTS 2.1 RCCA Drop Timo Measurements RCCA drop times to dashpot and rod bottom were measured at hot shutdown coro conditions. The results of the hot shutdown measuremonta are presented in Table 2.1. The acceptance criterion (4) of 1.8 seconds to dashpot is adequately mot for all fuel.
2. 2 RCCA Dank Monsurements During Cycle 11 startup the reactivity of the reference bank (Bank C) was measured using the boration/ dilution technique and the reactivity worth of the remaining banks was inferred using rod swap reactivity comparisons to the reference bank. '

2.2.1 Rod Swap Results The measured worth of the reference bank, Bank C, difforod f rom the WPS predicted Bank C worth by 40.2 pcm or 4.4%,

which is within the 10% review critorion. Integral and dif ferential worth plots comparing measured to predicted reference bank worth are procented in Figuren 2.1 and 2.2, re s pe ct ive ly.

Rod awap resulta f or t he remaining banks are prosented in Tablo 2.2. Review critoria were adoquately mot f or all individual rod bank wortha. Since the monoured to predicted comparison f or total rod worth was 6.3%, which in within the

10% acceptance crite rion, no further rod worth measurements f

or calculations were performed.

2.3 Shutdown Ma rgin Evaluation Prior to power escalation a shutdown margin evaluation was made to' verif y the existence of core shutdown capability.

The minimum shutdown margins at beginning and end of cycle are presented in Table 2.3. A 10% ma rgin is allowed in the calculation of rod worth in these shutdown marg in analyses.

Since the measured rod worths resulted in loss than a 10%

dif ference f rom predicted values, the analysis in Table 2.3 is conservative and no additional evaluations were required.

l

-n- ,

TABLE 2.1 Kewaunee Cycle 11

- RCCA Drop Time Measurements Hot Ze ro Power All Westinghouse Exxon Fuel Fuel ~ Fuel Average Dashpot Delta T'(Sec) 1.283 1.336 1.281 Standard Deviation 0.035 0.000 0.034 Average.

Rod Bottom Delta T'(Sec) 1.790 1.768- 1.791 Standard Deviation- 0.034- 0.000 0.034

TABLE 2.2

Kewaunee Cycle 11 RCCA Bank Worth Summary

. Rod Swap Measured WPS Method Worth Predicted Difference Percent RCCA-Bank (PCM) Worth (PCM) (PCM) Di f fe ren ce D 691.4 690.0 1.4 0. 2 C

  • 9 45.2 9 05. 0 40.2 4. 4 B 866.2 777.0 89.2 11.5 A 915.6 853.0 62.6 7.3 SA 717.3 670.0 47.'3 7.1 SB 717.3 670.0 47.3 7.1

. Total -4853.1 4565.0 288.0 6.3

  • Reference bank measured by boron dilution.

CYCLE 11, OMWD/MTU, NOXE, HZP.1444 PPM e nea5unto 1000.ORD,, C M,OVING , , ,

S30-8,50,46.13,44, , , . , .

me01creo f $ $ i t i 4 f I f ( i t i 1 4 i t i _I 't i 950..! t t_ .i. .. I t L. _i i a t. _ _t. .t. . J t t. _ L - .1 ; a - _ s. . . L. - _ . _ _

) i  !

i t t t t t I i t t i I l I t i f  ! l 900..; -

' L _,'__] . ' . .. ' 8. - _'- - _ ' .

[_ .[ .._'. ,

q'.  !,. ,'_ _.'.- ' . . g'__[..._

p _.

I t 4 1  ? I t I i t i l i i i i t i i i t 6 850. .; _ _ + _ _ r . _ : _, .4- , _.r__,..-,_,__e-_t.._t-_ 4__, . - , . .-,__y-_ , _ _ , _ _ .t_ .-i_ _

1 t i I i t i i f a l I i t i i e I i  !  !

800..; _ ! _ _ L _ _'. _' J_ i I_ -1 .' . _ l - ' ' ' ' ' ' 8 I l ' ' '

. 1 I i 1  ! I i t t i t t I i i l i i 6 i t t 1 i t i t I l- 0 i t t I f I f f 1 l I I E 50.7 .-;'

7_ .,. . p. _, - . , - , -

- .. i r- r --

t- 1- r r- l- -- i-- 1 -- - r-r,--

() t f i  ! I a t 1 1 I l i t I i i t 4 i 0 i O._700. .!. ___t-._t_._ i_ _i . .4 _t t_ _

ika _ _ a _ _ ti __i. __i- a- t . t. . .l - t_ - 4 .t . _ t_ . _+

%s  ! l l t t t i  ! I I I I I t i i 1 i i  !

650*' '- ' ' ' ' ' ' ' '

+ A- i y_ ' - i- l- 1 I a 1 i a t i i e t 1 4 6 i- i I a a i t t r ' t t i I t t t t t i i i H 600..i , . ,r..,_.t_ 4 __, . . p. _ . , . . 4 . , . .e- -r-_t.. 4 - - + - _e--l_ a_ , _ _ t. _ _ r . , _ _

i  ! I 1 9 t t e ' l ' t t I i 1 + e i 1 I I t

. ,T.

> 550. :- ' ' I I i I 8 ' _1 ' ' ' -' - ! '_ - '. _8 1 - f. . ' ' c7

' *--t i i i i i t i t C 2 i 4 i t  : i t e i  : e e e w H t t l 9 *  ? l '

  • t ' t i t i l i o g 500. .g , , , , . , .- - i - t' 1 -- t - r i- 1 r r -- 7 1- f -r 9%)

I Q [

' I i f '

t I i i i I e 1 1 i l I i i l i I .

bJ 450..i _ t . - i.. . _ i ,. _ r . _ 4 _ t t__.-i__a__a- -__ _t _. . a _ t _ . t.. _ _ i _ _ _f .

  • _ _ t. _ _ t . _ _ i _ _ -

I i t I t i I i

  • i I l ' I I ' t  ! I t I g i f
t 4 . t I 1
  • 1 t i I 1 i i I 8 8 3 0 1

'! ~ ! ^ ~ l'- ~ " l' t I i i i t f i  ! 6 I i  ! i i I ~~I~~l i d 5 t  : I t i  :  ? t t t t a t ' i t t t ' t CC 350..i , e i. , _ , .r-.,.-_, . , . , _ _ . , _ - . . . . + - .. t. . _ , . - ,__t-_-,__-1 _.

Z 3 i e  : i n i t t t I I i 'I t ' l i  ! I t t t C.D300..i __1__'. ' i  ! _ i_ l 8 5 1_ L-8 1 4

' ' i 1 L _. _ L - _8_ -

QJ [ l t t i i t t t t t t t t I i t i t i i t I

~

p .

! i

  • t t i 1
  • 1 1 I t a f f I t i  !

y g. _ p ..

3-_y .

.p _,_ q- 7__y._ p.._.g _q- 7__ _ _g. _ q _ _ _g - _ y-.- _g. _ _,- _ -

t i 6 a t i I t i 6 i f t i l i I t I f f f 200..i ~

._2 _ _ L. :_ e .. _ a _ i. . _ i . _ t . _, a L-_i_ _ .i._ J_ t t J-_ J - . L _ _ t- - . _ _

. I t 4 i i f f 1 t I i  !  ! I l i I f 1 i  !

150. - 8 ' ' ' .'I 8 ' ' ' ' ' ' 8 ' ' ' ' ' '

4 I t t i 4 I I i t I t' I & I I t I i  !

! 1 I t t i I l

  • t I t t i I i i t 6 t i 100.q ._ , ,_ . , _ , , __+ __g. _ i ,. .4 _,._r__r__i__,__y _r__. 3._ _,.e.,_

t t i  ! I I f I I t I t t I  ! t i 1 1 1 I I

50. 4 - _ 1 ._ ._ L _ l , _.I , _ _1 _ 1 _ _ L ._ _ t _ J _ 1 _ _ L _ l_ _ ._i _ _ ! _ _ 1 _ _ L __ _ i _ _ _f _ _ .1 _ t t_ l .. .

I 1 I f f I t i f I i e i t I t 3 i i t t t

[ 8 i & s i t t a f I I a t i I t i l i i i 1

0. ...........i.............................................l....................................

O. 10 20. 30 40. 50. 80. 70 80. 90. 100 110 120. 130. 140 150. 180 170 180 190 200 210 220 230.

STEPS WITHDRAWN

F1GURE 2.2 O

N N

n I

a t

i t #

i l ,

4 i

i i

I t i I

i i

t 8

"d

.N gy -

_N gg i t '

r i * + 1 l t .

i

  • I E

l3 U.

+ i s i t + l l 1 '__ _'_ .",O,,

"N we

__ __w-

_f

( f i L__

_ _ _ 4 I

L__J

t

= ,

  • E' s e i e a q 9
  • l 1 "O

.O Ot --4__ _+___i4._ _ _ _ _ 4 - t_ _ _ 4 _ _ _ t _ _ A. J - _N 4 8 a i t 9 1 1 l "e "O

6 3-_g__

i

+__g i t

, g

! L

-9_+

1 g_

1 q

?

__ ._*ce.

' l t l t i I I 1 I l l

= *

.O 6 f r l l t 8 4 I i  ! I .S

- _ q __ _ , .

_7 ,

7-____ 7__q __ .

l i t 4 I I I l i I I 1 l "O I l 4 I I i t t ) { l F "D E' _ we l 4 8 l t & B t I 8 1 l .

' I I I  ! I ' I i I l .O

- _. I _ L. 1 ) _! _ L - - _ _ L. _ _ J _ _  ! _ _ i _ l _ _ L - _ .) _ "_

. e l I b ' I + 1 i ' ( l f F

[ e e i 4 i ' i i + i .O

__ _ .4 _ _ 4 _ _ _ - t ..

  • _ ____ w -% - _. _> - - +__j___+. _y- _ . m. . _4 f

{Q

  • f 1  ? ' i i t i f
  • I I I l i
  • i I [T

___7__-... . . . , _ _ _ . _ _ _ . _ _ _ , _ _ _ _ , _ _ _ _g Q_(T)_ _ i i , i . .

qm > > i i i l i f

.OQ

_. ______________i _ _ _._ _ _ _i _ _ _!_______

6

q. )

._.A "I-2 j l 8 l 4 4 J

$ l I

~g .

____A.

NW

  • () f l 5 I I t 1 "

{ t i 1 1

  • 6 4 1 5 .O g__a___i _2___i_ _4.______.-_a-_- . . -

_a___ ". U) y; i - i - i ,

g o_

- 4 i e e -

I t I

  • i i I 4  ?
  • W

. .O.

.(v)_ _ _ 4 I i  ! I i t i 5 '

I

=

F-.

k.
  • 1 (
  • 8 1 i i t ["

X -- - -

1- ,---------r-----<------------i--*-,---

O + i >

i . > > > - .

_O Z . . t I i  ! 4 1  !

_e 1 4 { f F  ! $ 4 .

  • +

t a

? i +

t ..

3 _ _ _ .; .. __f__ _ ' - L___.- - - - - : __ _t___ _ _ _'___L_ J _ _rO.

I 3 4 d I i i j- "

l-  ! 8 6 t i t t l

.= O

- _ _ __: +- _a___ s_ _ _ 4 _ __s__.___i_ _e

! I '  ! I f I r b 1 i f $ t

  • t 6 l

". m g _.,_ _.___. __'___7, _ . . _ _ _ _ . . _ ,___;__,_ .

lE Z * * + '

.Q .

Og 4 1

t 8 t

7_ _ _

i f

i i

_e.

I 4

__, __ __'_.- i l

_9 i

i i . . i  ! .

  • C 4 4 6 I I I I t "O W ~~

e i ,

I

  • 1 1 =

1  ! 1 i t t I-U .__'_.._2 _ _i_ _.____ ______a___:___2- i

.s_ ". E ttj i i i 3 gg

  • l *

._.___,___.' -_i___ .  !

  • O g -

i - > .

U O "O

.... ....iii....... .. . . i i . . .i.... .. .i.. .

O O O O O O O O O O O O O O O 10 O. O. LO. O. LO. O. LO. O. LO. O. to. O. LO. - O.

f% (D to 10 LO 9 9 01 CO N N ** .* O O (W3d) A1IAI13838 1BIIN383ddIO

TABLE 2.3 Kewaunee Cycle ~ 11 Minimum Shutdown Margin - Analysis BOC EOC RCCA' Bank Worths (PCM)

N 6043 6798 N-1 5234 6043 Less 10 Pe rcent 523 604 Sub Total 4711 5439 Total Requirements (Including Uncertainties) . 2118 3074 Shutdown Ma rgin 2593 2365 Required Shutdown . Ma rgin . 1000 2000 l

< j

3.0 -BORON ENDPOINTS AND BORON WORTH MEASUREMENTS 3.1 Boron . Endpoints During rod movements to measure control- rod worth and dif ferential boron worth, the dilution was stopped near the fully inserted position of control Bank C to obtain a boron endpoint measurement. The boron concentration was allowed to stabilize and the just critical boron concentration was determined for the configuration desired. 1 Table 3.1 lists the measured and WPS predicted boron endpoints for the RCCA bank configurations shown. The results indicate dif ferences of -46 ppm and -32 ppm for the ARO and " Bank C In" core configurations, re spe ctively. The acceptance criterion on the all rods out boron endpoint is Il00 PPM, thus, the boron endpoint comparisons are consid-ered acceptable.

3.2 Differential Boron Worth The dif ferential boron worth was calculated by dividing 'the worth of control Bank C by the dif ference in boron endpoint me asuremen t of the corresponding-bank out and bank in con figu ra tion. . Table 3.2 presents a comparison between measured. and predicted boron concentration change and dif ferential boron worth. The pe rcent dif ference of 19. 2 is

, due to the dif ferences in boron endpoint discussed in section 3.1.  ; No acceptance criteria are applied to these c ompa ri son s.

- - , .,, . - . _ . - , . , , , . - , - - ..--e . . . - - . , - - . . ~ - , - - , - . ,

3.3 Boron Letdown  ;

.The measured' boron concentration data for the first few days of powe r. operation is corrected to nominal core conditions -

and pre.sented .ve rsus cycle bu rnup in Figu re . 3.1.' The

. predicted boron letdown curve. is included . f or comparison.

t*

l i

{

i i

~

r

=- . . ~ . . . - . . . , . . _ . - . . _ . -

TABLE 3.1 Kewaunee Cycle 11 RCCA Bank Endpoint. Measurements RCCA Bank Measured- WPS Predicted Di f f e rence Con figu ra tion En dpoin t (PPM ) En dpoin t (PPM ) (PPM)

All Rods Out 1459 1505 -46 Bank C In .1357 1389 -32 TABLE 3.2 Kewaunee Cycle 11 Dif ferential Boron Worth CB CB RCCA Change Change Bank Measured Predicted Pe rcent Con figu rat ion (PPM) (PPM) Difference ARO t o C Bank In 102 116 12.1 Measured P redicted RCCA Boron Boron Bank Worth Worth Percent Con figu ra t ion (PCM/ PPM) (PCM/ PPM) Difference ,

ARO/C Bank In -9.3 -7.8 19.2 t

p

y}

0 0

0 5

5 1 8

5 1 0 0

5

- mk mL 0 4

1 o

H $? mRy,e *. := 3- c5'5 G

' U 0 O 0 R 0 H 3 1

T 5 0 8 0

- 0 0 2 1

2 4

0 0

N 0 1

1 N\ 0 0

T N

NN 0 0

1 M A I L H P 0'0 0.1 S N 0m R 9 M

. E W A 0)

E1O 0. U H1P -%

0T 8M C /

ER A D W

FLA 0 OCE 0. (M 0

Y L , 7P NC C U q U

N O R I N 0U

0. B T

E E

\ 0 8E E -L L  % C P N Y U 0C E 0 D R W

N 5 0

E N K ' 0 0

0 4

\ 0 N 0

\

0 3

0 0

_ % 0 2

% 0 0

% 0 1

0 0

0* a  ? " @%

$= 8a1 0 a- 8i S ag*a~ Wo 2o53a O

,I

4. O ' ISOTHERMAL TEMPERATURE COEFFICIENT The measurement of the isothermal temperature coef ficient was' accomplished by monitoring reactivity while cooling down and heating up the . reactor by manual control of _ the steam dump valves. The ' temperature and reactivity changes we re plotted on an X-Y recorder and the temperature coef ficient :

was obtained f rom the slope of this curve.

Core conditions at the time of the measurement were Bank D slightly inserted, all other RCCA banks full out, with a boron concentration of 1455 ppm for the cooldown and 1453 ppm f or the heatup. These conditions approximate the HZP, all rods out core condition which yields the most conserva-tive (least negative) isothermal temperature coef ficient me asu re me n t . ,

Table 4.1 presents the heatup and cooldown core conditions and compares the measured and predicted values for the.

isothermal temperature coef ficient. - The review criterion (4) of 13 PCM/ Degrees F was me t.

t TABLE 4.1 Kewaunee Cycle 11 Isothe rmal Temperature Coef ficient Cooldown Tave Start -

5 46.8 Deg rees F Tave End -

5 39.1 De g ree s F Bank D -

203 Steps Bo ron Concentration 1455 PPM Measured WPS Predicted Di f f e ren ce I TC - ITC (PCM/Deg F) (PCM/Deq F) (PCM/Deg F)

- 2. 6 -4.0- +1.4 t

~

He at U p Tave Start -

5 39.1 Degrees F Tave End -

546.0 Degrees F Bank D -

198 Steps Bo ron Concent ration 145 3 PPM Measured WPS Predicted Di f f e ren ce ITC ITC (PCM/Deq F) (PCM/Deq F) (PCM/Deq F)

- 2. 9 - 4. 0 +1.1 1

h

~19-

T5.0 POWER DISTRIBUTION

5. 'l Summa ry of Power Dist ribution Criteria Power distribution predictions are verified through data-recorded using' the incore detector system .and processed through the INCORE computer code. :The computer code calcu-la'tes FQN and FDHN which a're limited by technical specifica-tions. These parameters are defined as the acceptance criteria on a flux map (except for low powe r) (4).

The review criterion for measurement is that the percent dif ferences of the- normalized reaction rate . integrals of symme tric thimbles do not exceed 10% a t low power _ physics test ? conditions and .16% at _ equilibrium conditions (4).

~

The review criterion for the prediction is that the standard deviation of 'the percent dif ferences; between- measured and p'redicted reaction rate integrals does not exceed 5%.

The review criteria f or the INCORE calculated' quadrant ~

powe rs a re t ha t the quadrant ~ tilt is less than 4%-at low-power physics test conditions and less' than 2% at equilibri-um conditions ( 4).

- 2 0-

5.2 Powe r Distribution Measurements Table 5.1 identifies the reactor conditions for each flux map recorded at the beginning of Cycle 11. The results of the ze ro powe r flux ma p '1101 we re undecipherable, and resulted in a departure f rom our startup test program in accordance with the provisions of 10CFR5 0. 59 ( a ) . Additional details are presented in Appendix A to this report.

Table 5.2 identifies flux map peak FDHN and minimum margin FQN. This table addresses acceptance criteria by verif ying that technical specifications limits are not exceeded. The Cycle 11 flux maps met all acceptance criteria.

Table 5.3 addresses the' established review criteria for the flux ma ps. All review criteria were met for all the Cycle 11 flux maps except the hot ze ro powe r flux ma p 1101.

The graphic displays of powe r dist ributions measured f or representative flux maps are exhibited in Figures 5.1 through 5.4.

m

=, _ .-. . _

TABLE 5.1 Flux Map Chronology and Reactor Characteristics Pe rcent Boron D Rods Exposure Map -Date-Time Power Xenon PPM Steps MWD /MTU 1101 4/10/85-0330 0 N/A 1438 226 0 1102 4/12/85-1300 45 EQ. 1195 174 10 1103 4/14/85-1746 73 EQ. 1 037 226 60 1104 4/14/85-2026 74' EQ. 1005 2 06 63 1105 4/14/85-2217 74 EQ. 1005 201 66 1106 4/14/85-2355 74 EQ. 995- 195 68 1107. 4/15/85-0130 74 EQ. 985 187 69 1108 4/16/85-1349 89 EQ. 1008 215 1 05 1109 4/17/85-0928 100 EQ. 972 226 133

- 2 2-

~ ' ~

F l I

R TABLE 5.2 Verification of Acceptance Criteria Flux Co re Map Location FQN Limit 1102 H-12 DJ ,3 0 2.18 4.34 1103 G-04 KI,22 2.11 2.89 1104 G-10 DI,30 2.06 2.90 1105 J- 07 I D , 3 4 2.16 2.98 1106 B- 08 JK , 3 4 2.12 2.97 1107 G-10 DI,36 2.16 2.99 ,

1108 B- 08 J K , 3 0 2.03 2.39 1109 F-02 KE,33 2.12 2.21 Flux Co re Map Location FDHN Limit 1102 C-04 LK 1.51 1.72 1103 'G-04 KI 1.51 1.63 1104 G-04 KI 1.49- 1.63 1105 G-04 KF 1.49 1.63 1106 G-04 KI 1.49 1.63 1107 G-04 KI 1.49 1.63 1108 G-04 KI 1.49 1.58 1109 F-02 KE 1.50 1.55 FQN and FDHN include appropriate uncertainties and penalties.

Limit on FQN is a function of core powe r, axial location,-and fuel rod exposure.

Limit on 'FDHN is a f unction of Core Power and Assembly Burnup.

I

~23-

=-

. TABLE 5.3 Ve ri f ica tion of Review Criteria Flux (a) Maximum (b) Standard (c) Maximum-Map Pe rcen t Deviation Quadrant Di f fe rence Tilt 1102 4.7 2.9 0. 4

~

1103 2. 4 1.8 0. 4 1104 1.2 1.6 0. 4 1105 2.3 2. 0 0. 4 1106 1.2 1.7 0. 4 1107 1.2 1.9 0. 4 1108 2. 4 1.6 0.5 1109 1.3 1.4 0.8 (a) Maximum Pe rcent Dif ference between symmetric thimbles f or measured reaction rate in teg rals. Review criterion is 10%

at low power. Review criterion is 6% at equilibrium power.

(b) Standard Deviation of the percent dif ference between measured and predicted reaction rate integrals. Review criterion is 5%.

(c) Pe rcent Maximum Quadrant Tilt from normalized calculated quadrant powe rs. Review criteria are 4% at low power and 2%

at equilibrium powe r.

- 2 4-l

FIGURE 5.1 1 2 3 4 5 6 7 8 9 10 11 12 13 0.302 0.548 0.324 0 323 0.583 0.323 Q -0 38 -2 88 0 43 0.473 0.924 1 057 0.719 1 129 0.987 0.465 8 8 **' 2 8 588 ' '

B -8.40 -0.77 LOO

  • 8 0.85 -0.39 -2.43 0.00 0.03 , LO3P 4 0.500 4 178 1 177 1 104 0.969 1.147 1 198 1 149 0.492 0 504 1 158 8 200 1.113 0 987 1 113 1 200 1 150 0.504

{ 0 85 1 85 -1 95 -0.95 -1 81 0.39 -0 13 -0.78 -2 28

. 0 475 1 173 1.065 1 141 1 173 1.254 n.175 1 144 4 038 1 148 0 468 g 0 488 1 157 1.039 1 143 1 189 1 282 1 189 1 143 1 039 8 157 0.488 1 43 1 41 1.50 -0 19 0.33 -0 85 0.47 0 12 -0.25 -0.81 -2.28 8.005 1 222 1.138 1.134 1 289 1 295 1 333 1 179 8 150 4 193 0 978 E ' **' 5 8 8'" ' t'a 8 "$8 i .u! i.290 i. ISO .i42 i .i98 0.m 1 98 1 98 -0.52 -1.39 -0.89 0.99 3.14 f.50 0.73 -0.38 -1.52 0 313 1.094 1.098 1.159 1 300 4 237 4 307 1.270 1.321 1 472 1 109 1 110 0.318 0 322 1 128 1.111 1.185 1.298 1 238 1 278 1.238 1 298 8 185 1 181 1 128 0 322

{ -2 88 -2.85 -1 15 -0 53 0.29 -0 11 2.47 -0.72 2.81 1 89 0 57 -0 14 -1 21 0.537 0.718 0.973 1 183 8 302 4 297 1 079 4 314 4 318 4 275 0 991 0 731 0.565 g 0.581 0.738 0.985 1 259 1.284 1 275 1 028 1 275 1.281 1.259 0.985 0.738 0 581 0

-4 40 -2 84 -1 20 0.35 1 85 1.78 4.92 3.09 t.90 8 28 0.58 -0.87 -1 19 0 309 1 100 1 099 1 188 1.339 8 281 1 330 1 270 4 329 1 178 1 125 1 128 0 319 0 322 1 128 1 111 1 185 1 298 1 238 1 278 1 238 1.298 8 185 8 111 1 128 0.322 H -4 13 -2 33 -1 04 1 94 3.31 3 47 4.25 2 58 2 57 1 13 1 22 -0.01 -0.90 0.983 1.201 1.151 1 171 1 328 1.321 1.338 1 185 1 138 1 194 0.990 0 988 1 198 1.142 1 150 1.298 1 282 1 298 1 150 1 842 1 198 0 988

{ -0.22 0.23 0.79 8 83 2 18 3 03 3.07 1 30 -0.35 -0 30 0 47 0 482 1 143 1.037 1 147 4 189 1 184 1 173 1.132 1 017 1.135 0.471 1.039 1 282 1 189 1 143 1 039 0.488 J 0 488

-1 30 1 157

-1 22 -0.23 1 143 0.30 1 189 0 00 0.17 0.31 -0 99 -2.11 1 157

-1 91 0.47 0 498 1 145 1 187 1.065 0 975 4 102 1.188 1.127 0.482 0.504 1.158 1 200 1 113 0 987 1 113 1.200 1 850 0.504 K

,, [ -1.15 -l.14 0 484

-1 07 0.977

-4 29 1 094

-1 28 0.715

-0.98 4 102

-0.97 0.977

-2.87 0 464

-4.29 0.489 0.987 1.119 0.737 1.129 0 997 0.489

[ -1 07 -1 06 -3 08 -3.00 -2 38 -0.97 -0.98 0.317 0.652 0.318 M 0.323 0.583 0.323

-1 89 -1 88 -1.48

+-- flea 5URED FDMN

+--- PREDICTED F0HN 4-- FERCENT O!FFERENCE FLUX MRP 1102 6=2.10

r-i FIGURE 5.2

-1 2 3 4 5 6 7 8 9 10 11 12 13 0.330 0.581 0.339 8 888 ' " ' 8 888 A -0.98 0 57 1 20 0 470 0 96 t 1 117 0 771 1 130 0 979 0 470 B

' * " * "5 8 '" **"* *" ' " ' ' * "

LOOP O 1 00 -0 97 -0.97 -0.10 0.86 0.9 % 0.99 ' LOOP 4 0.501 1 129 4 484 4 137 1.079 1 443 4 194 1 130 0 495

{ 0.496 1 119 1 105 1 141 1 000 1 148 1 195 1.!!S 0.4M l.07 0.92 -0.00 -0.35 -0.88 0.17 0.79 0.M -0 22 0 412 1 137 1 027 1 124 1 175 1 279 4 180 1 129 1 028 1 120 0.464 g 0 446 1 169 1 018 1 122 1 179 1 299 1 170 1 122 1 010 3 119 0.466 18% 1 80 0.9% 0 18 -0.21 -0.74 0.18 0.81 0.77 0.00 -0.22 0.990 4 200 1.125 1 139 1.184 1 204 1.301 1 157 1.125 1 192 0.964 E ' " ' 25" ' $" **2" 82" i .tn i .tu .in 1.tn i.183 0.uS 2.15 2 15 U.37 0 00 -0.10 0.52 1 17 1 87 0 37 -0.07 -0.52 0 329 1 109 1 122 1 174 1 293 1.240 1 289 4 251 1 299 4.t71 1.134 1 113 0 328 f 0.333 1 126 1 139 1 174 1 204 1 231 1 265 1 231 1.284 1 174 1 139 1.!!S 0 333

-1 47 -1.47 -1 46 -0 01 0.72 0 78 1 00 1 06 1 14 -0.24 -0 44 -1 16 -4 26 I 0 548 0 700 1 085 1 294 1 294 1 285 1 058 6 201 n.292 1 247 1 004 0.762 0.572 0 578 0 774 1 004 1 296 1 270 8 265 1 036 1 165 1 276 1 296 8 000 0.771 0.579 0 G -2 31 -1 38 -1 91 0.81 1 43 1 85 2 21 1 26 1 23 0 09 -0 15 -1 21 -1 3I 0.328 1.113 1 120 1 475 1 295 1.234 4 275 1 230 1 193 1 161 1 148 1 122 0 328 0.333 1 128 1 839 1 174 1 284 1 231 1 206 1 231 1 204 1 174 1 130 1 128 0 333 H -2.07 -1 14 -1 84 0 10 0.85 0 20 0.00 -0.06 0.71 0 88 0.70 -0.35 -1.M 0.971 6 183 4 167 4 126 1.272 1.285 4.296 6 146 4 127 1 190 0.989 0.969 1 103 1.!!! 1 138 1.296 1.277 1.200 1.130 4 121 1 183 0.969

' { O.it -0 03 -0 38 -1 05 -1 07 0.86 0.70 0 72 0.53 0.82 2 04 0 459 1 148 L.013 1 124 1 155 1 200 1 171 1 126 1 017 1 120 0 474 J ' *** 5 52' 5 'i' i 222 5 17' i ra' $ 7' i 522 5 't' i its a ***

-1 27 -0 27 -0.45 -0.00 -1 94 -0.71 -0 52 0.30 -0.05 0 12 2.04 0.494 1 118 1 106 1.099 1 079 1 137 1 189 1 109 0 487 K t "'

'-0".3"6 -0 30 58" 5 '" ' 58"

-0."90 -0.32 i i" 5 "' O.4w g

[ 0 485 0 10 0.976

-3.86 1 007 0 745 4 102 0 30 0 972

-0.88 0.466

-1 81 0.465 0.971 1 110 0.773 1 129 0.971 0 465

{ 0.02 0 06 -3.63 -3.84 -2.33 0 11 0 11 0 321 0.560 0.327 0 333 0.500 0.333 M -3.80 -3 60 -1 77 W H ASUREO FOMN 4--- PRE 0!CTED FOMN

+-- PERCENT O!FFERENCC FLUX MAP 1103 o

~

6: 1.27 L

.m. . . _ _ . . , . - _ . . . . . - , _ -. ._

FIGURE 5.3 1 2 3 4 5 '6 7 8 9 10 11 12 13 0 338 0.500 0.340 A " " ' " " " '

-0 38 0.34 4 01' O.487 0.987 1 124 0.779 1.L36 0.990 0 471 B LOOP S

' ' " ' " ' 8"" '- ' '" ' "8 ' " '

+0.30 -0 37 -0.37 0. "45 1 00 1 01 0 91 ' L8dP A 0 490 1 420 4 185 1 139 4 000 1 445 1 194 1 123 0.499

{ 0.500 1 117 1 182 1.13e 1 079 1 130 1 182 8.!!7 0.500

-0.30 0 27 0.28 0.09 0.08 0 02 1 02 0 52 -0 22 0 475 1 131 1 023 1.128 4 478 1 292 1 104 L.437 1 027 g 0 400 1 188 4 020 1.125 8 177 1 283 1.!?? 4 125 1 020 1 121 0.447 1 45 1.34 0.30 0.10 1 110 0.480

-0.08 -0.09 0 50 1.04 0.73 0.42 -0.23 0.999 1 217 1 122 4 134 1.200 1 278 4 293 1 155 1 135 1.197 0.904

{ 0.MS idM 1423 1440 1.tH 1.DS 1.N4 1.140 1 d23 3 09 3.09 -0 00 -0 32 Idel 0.HS

-0 31 0 19 3 73 1 38 1 10 0.49 +0 13 0 334 4 114 4 125 4 184 4 205 4 238 1 283 1 243 1.294 1 170 1.133 1 114 f 0 338 4.!!3 1 138 1 173 1 203 1 233 0.335 1 287 8 233 1.283 1 173 1 138 1 123

-0.03 -0.83 +0.74 -0.75 0.14 0.42 0 336 1 30 0.79 0.04 -0 22 -0.28 -0.84 -0.51 0 578 0 700 1.000 1 274 4 282 1 282 1.005 4 279 4 291 4 293 g 0.585 0 773 1.077 1 281 1.275 4 287 1 044 I.287 1 275 1.291 1.079 0 788 0.542

-2 05 -1 80 -1.77 -0 55 0 53 1 21 2.03 0.94 1.077 0.M3 0.5 0 1 23 0 17 0.00 - 1 89 -0.53 0 330 1 107 1 117 1.106 1 291 1 245 1 288 1 244 1.298 1.177 1 141 1 110 0.334 H 0 334 1 123 1 138 1.173 1.203 1.233 1 287 8 233 8.283 1.173 1 134 4 123 0.338

-1.01 -3 42 -4 88 -0 43 0 82 3 01 1.83 0.82 1.19 0.37 0.42 -0.88 -0.98 0 985 1 178 1.119 1 433 1 283 4.298 4 296 1.148 1 124 1 105 0.975

{ 0 949 1 191 1 123 1 140 3 204 1 278 1 284 1.140 1 123 1 191 0 984

-0 00 -0.40 -0 40 -0.84 -0 00 0.91 0 93 0.88 0 30 0 32 0.57 0.465 1 109 1.013 1.!!S 1 184 1 275 4 471 1.119 1 012 1 108 0.471 J 0.488 1 118 4 020 1.125 8 177 8 283 1 177 1.125 1 020 1 118 0.489

-0 84 -0 68 -0 88 -0.88 -1 83 -0.82 -0 53 -0.54 -0 81 -0.71 0.5e 0.490 1.113 1.190 1 101 1.084 1 133 1.182 1 111 8 5"o 0 490 K 2 "' 2 2'2 5 8 5- 1.iSt

[ -0 34 -0.35 -0 19 -3.25 -1.35

-0.'.47 -0 02 i.is?

-0 53 0.500

-1 98 g 0 488 0.989 1 000

( 0.489

=0 15 0 971

-0.18 1.125 0 749 0 774 1 105 1.125 0.900 0.971 0.473 0.489

-3 2e -3 29 -1 00 0.99 0.00 0 328 0.588 0.333 M 0 337 0.588 0.337

-3 29 -3.31 -1.22 4---MER5Utt0 F0HN W PRt0! Cit 0 F0ml W 9tRCENT OffVtRENCt FLUX MRP 1108 6_ M 27 -

p .._~

C- _ . . _ _ _ _ _ _ _ _ _ _ - - _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - __ _ ._- ---

FIGURE 5.4 1 2 3 4 5' -6 7 8 91 10 11 12 13 0 342 0.598 0.344 A * * "

O.41 0 82 0.98 0.489 0 975 1 131 3.787 1.134 0.977 0 472 g 0.471 0.971 1 128 0.792 1 128 d.971 0.474 L*0P S -0 30 0.39 0.40 0.55 0.89 0.68 0.32 ' LOOP 4 0.499 1 114 1 106 1 144 8.093 1.'45 1 187 1.118 0 500

{- 0.501 1 113 1 100 1 141 1 091 1 141 n.150 1 183 0 501

-0 40 0.00 0.49 0.23 0 17 0.32 0.01 0.30 -0.18

. 0 478 1 125 1 020 1.!!8 1 479 1 294 6 100 1 126 1 0t0 1 111 0.489 g 0.470 1 113 1 019 1 122 1 178 1.284 1 178 1 122 1 019 3 113 0 470 1 17 1.0e 0.10 0.49 0 23 0.14 0.30 0.31 0.11 -0.22 -0 19 8 0.998 1 210 4 130 1 144 1 203 1 279 1.247 1 144 1.110 1 170 0.987 E ' * 8 5 ' 8 ' 8 8 221 i.27. i.137 i.iti i.179 0 970 2 82 2.82 0.77 0 84 0.'41 0.54 0.70 0.85 -0 28 -0 28 -0 28 0.349 1 184 1 151 1 178 1 291 1 240 1 204 1.243 1 298 4 167 1 125 1 104 0 338

  • f 0.340 1 124 1 139 1 173 1 277 8 228 1 205 1 229 1 277 1 173 1 139 1 124 0.340 2 82 2 82 1 07 0.25 1 07 8 80 1 01 1 24 0 73 -0.55 -1 28 -1.74 -1.te 0.593 0.700 1 004 1 201 1 287 1 290 1 000 4 277 1 290 4 265 1.004 0.787 0.683 Q 0 891 0.781 1 009 1 261 1 270 1.201 1 043 8 281 1 270 1 291 1.099 0.791 0 591 0 0 38 -0.03 -0 43 0.00 1 31 2.30 2 17 1 28 1 53 0.34 -0 09 -l.74 -1 29 0.341 1 124 4 134 1 167 1 208 1 243 1.204 1 241 1 297 1 178 1 141 1 113 0.338 H ' 8 ' ' 88' 8 "' ' 2' 8 8 8 828 ' * 8 ' 8 8 88* ' ***

0 30 -0.02 -0.43 -0.55 0 70 ' .'17 1 1 04 1 02 5.55 0.44 0.20 -1.03 -1 28 0.D88 1 174 1.115 1 120 1 178 4 245 1 292 1 145 4.125 1.684 0 973

{ 0.970 1 179 1 121 1.137 1 278 1 271 1 278 1 137 1 121 1 179 0 970

-0 10 -0.45 -0.58 -0.77 0.00 1 08 1 10 0 72 0 38- 0.38 0.39 0.466 1 106 1 012 1 113 1 163 1 287 1.180 1 404 1.012 1 108 0 472 j 0 470 1 113 1 019 1.122 1 178 8 294 1 178 1 122 1 019 1 113 0 470

-0 49 -0.42 -0.te -0.79 -1 15 -1 34 -1.33 -1 88 -0.73 -0.83 0.40-0.499 1 109 1 178 1.102 3.054 6 102 1 160 1 096 0.493 K

[

0.501

-0 40

.uS

-0.40 i.i.0

-0 34 i.i4:

-3.42 1 0n

-3 42 i.14:

-3.42

i. ISO

-1 88 1.n 3

-1 88 0.50:

-1 80 g ,g 0 469 0.960 4 092 0 .75 8 1.092 0.945 0.463

{ 0 471 0.371 1.128 0.702 1.120 0 971 0 471

-0.30 -0.33 -3.04 -3.04 -3.04 -2.87 -1 88 0 332 0.578 0.332

[ 0.341 0.592 0.341

' M

~2 84 -2 07 2.84 l

+--- ntasunto r0tes W FREO! Cit 0 FDNel

+---. PERCENT O!FFERENCE L

FLUX MRP 1109 6=1.30 6.0 REACTOR STARTUP CALIBRATIONS 6.1 Rod Position Calibration

~

The rod position indicators are calibrated each refueling fin accordance with an approved surveillance procedure. The calibration includes the following:

a) The position signal output is checked at 20, 200 and 228 steps for all rods.

b) The rod bottom lamps are checked to assure that they light at the proper rod height.

L c) The control room rod position indicators are calib-

. rated to read correctly at 20 and 200 steps.

d) The pulee-to-analog convertor alignment is checked.

e) The rod- bottom bypass bi-stable trip setpoint is checked.

The calibration was performed satisfactorily during the Cycle 11 startup; : no problems or abnormalities we re encoun-tered and site' procedure acceptance criteria we re met. At full power an adjustment was made to selected RPI channels to compensate for the temperature increase associated with powe r ascension.

b

6.2 Nuclear Instrumentation Calibration The nuclear instrumentation (NI) calibration was performed in accordance with the Kewaunee Reactor Test Program during

' the Cycle 11 startup ( 4) . Seve ral flux ma ps we re pe rf ormed over a range Hof axial of f sets at approximately 75% powe r.

The incore axial offset to excore axial offset ratio was gene ra ted for each detector f rom the data collected du ring the mappings. These ratios agreed well with previous results. The NI's were then calibrated with a conservative incore axial of f set-to-excore axial of fset ratio of 1.7.

- 3 0-

7.0 REFERENCES

(1) "Relcad Sa fety Evaluation for Kewaunee Cycle XI," Wisconsin Public Service Corporation, December, 1984.

-(2) " Qualification of Reactor Physics Methods for Application to Kewaunee, " Wisconsin Public Service Corporation, October, 1978.

(3) " Reload Sa fety Evaluation Methods for Application to Kewau-nee," Wisconsin Public Service Corporation, February, 1979.

(4) " Reactor Test Program, Kewaunee Nuclear Power Plant," Wiscon-sin Public Service Corporation, May, 1979. (Revised April 14, 1980)

(5)." Generic Mechanical and Thermal Hydraulic Design for Exxon Nuclear 14 x 14 Reload Assemblies with Zircaloy Guide Tubes for Westinghouse 2-Loop Pressurized Water Reactors," Exxon Nuclear Corporation, No ve mb er , 1978.

(6) " Rod Exchange Technique for Rod Worth Measurement" and " Rod Worth Verification Tests Utilizing RCC ' Bank Interchange,"

Westinghouse Corporation, May 12, 1978.

(7) "Kewaunee Nuclear Power Plant Technical Specifications,"

Wisconsin Public Service Corporation, Docket 50-305.

7 j

4

8.0 APPENDIX-A

C HANG E TO REACTOR TEST PROGRAM De sc ri pt ion of Change Substitution of a Low / Intermediate Power Flux Map for a Hot Zero Power Flux Map.

Safety Evaluation The special low level equipment (Ze ro Powe r Flux Map System),

including picoamme te rs to read the low signal levels and low noise battery power supplies to eliminate rectifier noise, was employed for the HZP flux map #1101. In addition, a lengthy 18 pass procedure was performed to provide accurate signal normali-zation f rom pass to pass during the' map. Notwithstanding these extraordinary ef f orts, the signal to noise ratio was not large enough to yield meaningful re sul t s.

This depa rture f rom the startup test program was promptly presented to the Plant Operations Review Committee (PORC) on A pril 10, 1985, meeting #85-054, Item 185-270. The committee approved proceeding with power escalation and required a flux map be taken prior to exceeding 25% powe r.

The flux ma p equipment was extensively overhauled during the refueling outage and was experiencing " shake-down" difficulties, which prevented the attempt to flux map at 25% powe r. Specifi-cally, the detector drive units would not insert detectors due to

T drive clutch malfunctions. 'A review of the requirements, histor-ical precedence and a safety evaluation was presented to PORC on April 11, meeting 85-055, item 485-277. Since power escalation was not precluded by - the maintenance activities on the flux map systemi~ the committee approved powe r escalation, but not to exceed 5 0%, without a flux ma p. ,

Excerpts f rom the PORC meeting minutes and the written safety evaluation are attached.

l l

l g

k.

.PORC Meeting 85-05 4 4-10-8 5 ~

Item 85-270 Low Powe r Physics Test Mr. - Kwitek requested Committee concurrence to delete the Hot Zero Power Map f rom the pe rf ormance of RT-2, the Low Powe r Physi c Te st, due to -the high statistical uncertainties with the low neutron flux in the Reactor. Escalating the plant powe r level up to but not exceeding 25%, and at that time running a flux map, was recommended. The powe r level would not be released to go beyond 25% until the results have been analyzed.

The Committee recommended approval of this deletion and of not exceeding 25% pending the evaluation of the flux map.

This item is closed.

POCR Meeting 85-055 4-11-85 Item 85-272 Incore Flux Ma p M r. Kwitek revised RT-6 to temporarily delete the Incore Flux Map at 25% of rated power. This map was recommended in PORC meeting 85-54, Item #270, due to the deletion of the Hot Ze ro Powe r Ma p f rom RT-2. Howeve r, due to equipment I malf unctions on the Flux Mapping System, it was considered unnecesary to cause a delay in power escalation for flux mu pping. The Safety Evaluation f or pe rf orming an Inte rmedi-b.

x_-

a v

a te Powe r Flux Ma p 'instead of a Ze ro Powe r. Flux Ma p is

- attached.

This decision is consistent with the 1979 submittal to the NRC on Kewaunee's Startup Physics Test Program. It is al'so consistent with TS 3.11.a and step 2.3 of Reactor Test P rocedu re RT- 2.

Correspondence f rom ERMathews to SAVarga of the NRC dated Juno 4, 1981, presented our position that such a change in our Startup Physics Te sting is allowed by 10 CFR 50.59(a).

The Committee recommended a Flux Map be performed prior to exceeding 5 0% of rated powe r,

, L_

L -

CAS4.1 L

April 15, 1985

. Green Bay Safety Evaluation for Performing an Intermediate Power Flux Map instea'd of a Zero Power Flux Map The KNPP Reactor Test Program includes a Zero Power Flux Distribution Measurement (Flux-Map) as part of the program.

The purpose is to~ verify that the. flux profile agrees with predictions, to assure that the core is symmetric I

- and' that no loading errors _ have occurred . This test is' admittedly dif ficult,

and consequently no acceptance criteria have been specified.

Due to mechanical problems associated with the flux mapping system, a zero power map was not successfully performed during startup physics testing following the I.

1985 refueling / maintenance outage. These problems persisted, and while a flux map was desired at 25% power, one could not be taken. On April 11, 1985, the Plant Operations Review Committee reviewed these circumstances, and approved a change in' Reactor Test Procedure RT-6 to perform a flux map at 40% power (instead of 25% power) in lieu of a Zero Power Flux Map.

-This change is justified for the following reasons:

1. The intent of the zero power flux map will be met by performance of a flux map at 40% power.
2. 'The intent of the reactor test program is met in that, based on the results of the remainder of the low power physic tests, it can be

-concluded that the Cycle.11 reload core meets design requirements.

Therefore the assumptions of the FSAR remain valid.

IKNPP_. Reactor Test Program Revision 2, July 22, 1982, page 6, section 2.6

1 l

CAS4.2 1 1

l It is worthwhile to note that our intent _ to perform a flux map at 25% power. when a Hot Zero Flux Map-is not successfully performed dates back to 1981, when a 1

-similar' circumstance occurred. During discussions with the NRC, we verbally informed them that a map would be taken at about 25% power if a zero power map would not be taken. 25% power was chosen as a convenient point where other activities associated with power escalation require a hold and stabilization of

- power. The intent of performing an " intermediate" power level map is met by performing the map at any intermediate level. This power level determination should continue to be made on a case by case basis considering the circumstances of'each case.

_In conclusion, this change to RT-6 is acceptable since:

la. it does not increase the probability of occurrence or the consequences

'of an accident previously evaluated in the safety evaluation report, and

-b. it does not create the possibility of an accident of a different type than any evaluated previously in the safety evaluation report, and

c. it does not reduce the margin of safety as defined in the basis of the

. technical specifications.

2. thi mmainder of the low power physics tests have provided adequate l

assurance that the reload core meets design criteria.

i This safety evaluation is provided in accordance with the request of the PORC during meeting 85-55, and satisfies the requirements of sections 4.0 and 5.0 of the Reactor Test Program as they relate to the Hot Zero Power Flux Map.

G.

Charles A. Schrock Nuclear Licensing and Systems Superintendent Second L el Review by:

Bgoz'ak %

.F

Nuclear Fuel Analysis Supervisor i

C' ]

CAS4.1 April 15, 1985

. Green Bay Safety Evaluation for Performing an Iritermediate Power Flux Map instead of a Zero Power Flux Map The KNPP Reactor Test Program includes a Zero Power Flux Distribution Measurement l(Flux Map) as part of the program. The purpose is to verify that the flux profile agrees with predictions, to assure that the core is symmetric.

and that no loading errors have occurred . This test is admittedly difficult, and consequently no acceptance criteria have been specified.

Due to mechanical problems associated with the flux mapping system, a zero power map was not successfully performed during startup physics testing following the 1985' refueling / maintenance outage. These problems persisted, and while a flux r map was desired at 25% power, one could not be taken. On April 11, 1985, the Plant Operations Review Committee reviewed these circumstances, and approved a change in Reactor Test Procedure RT-6 to perform a flux map at 40% power (instead of 25% power) in lieu of a Zero Power Flux Map.

This change is justified for the following reasons:

1. The intent of the zero power flux map will be met by performance of a flux map at 40% power.
2. The intent of the reactor test program is met in that, based on the results of the remainder of the low power physic tests, it can tBe concluded that the Cycle 11 reload. core meets design requirements. 2

-Therefore the assumptions of the FSAR remain valid.

KNPP Reactor Test Progran Revision 2, July 22, 1982, page 6, section 2.6 l

i CAS4.2 j It is worthwhile to note that our' intent to perform a flux map at 25% power when a Hot Zero Flux Map is not successfully performed dates back to 1981, when a similar circumstance occurred. During discussions with the NRC, we verbally informed them that a map would be taken at about 25% power if a zero p;wer map would not be taken. 25% power was chosen as a convenient point where other activities associated with power escalation require a hold and stabilization of power. The intent of performing an " intermediate" power level map is met by performing the map at any intermediate level. This power-level determination should continue to be made on a case by case basis considering the circumstances of'each case.

In conclusion, this change to RT-6 is acceptable since:

la. it does not increase the probability of occurrence or the consequences of en accident previously evaluated in the safety evaluation report, and

b. it does not create the possibility of-an accident of a different type than any evaluated previously in the safety evaluation report, and
c. it does not reduce the margin of safety as defined in the basis of t'he technical' specifications.
2. the remainder of the low power physics tests have provided adequate assurance that the reload core meets design criteria.

This safety evaluation is provided in accordance with the request of the PORC during meeting 85-55, and satisfies the requirements of sections 4.0 and 5.0 of

-the Reactor Test Program as they relate to the Hot Zero Power Flux Map.

0.

Charles A. Schrock Nuclear Licensing and Systems Superintendent Second L el Review by:

a, 'n

.F oz 'ak Nuclear Fuel Analysis Supervisor

. . - . . -. - - - . , , _ - - , , _ . - _ _ , _ . . . . . . _ .-- . . _ . . _ , .