ML20116K359
| ML20116K359 | |
| Person / Time | |
|---|---|
| Site: | Prairie Island |
| Issue date: | 12/31/1984 |
| From: | Bamford W, Lee Y, Ma W WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20116K342 | List: |
| References | |
| WCAP-10363, NUDOCS 9608150025 | |
| Download: ML20116K359 (171) | |
Text
{{#Wiki_filter:- [4' WESTINGHOUSE CLASS 3 l CUSTOMER DESIGNATED DISTRIBUTION WCAP 10363 I l HANDBOOK ON FLAW EVALUATION FOR PRAIRIE ISLAND UNITS 1 & 2 REACTOR VESSELS December,1984 W. H. Bamford W. K. Ma l Y. S. Lee \\, b kkW APPROVED: J.N.hhirigos, Manager Structural Materials Engineering Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval. WESTINGHOUSE ELECTRIC CORPORATION Nuclear Energy Systems P.O. Box 355 Pittsburgh, Pennsylvania 15230 9608150025 960009 PDR ADOCK 05000282 1 p PDR i
1 1 TABLE OF CONTENTS SECTION TITLE PAGE EXECUTIVE
SUMMARY
vii 1 INTRODUCTION i 1 -1 i 1.1 CODE ACCEPTANCE CRITERIA 1-2 1.1.1 Criteria Based on Flaw Size 1-3 1.1.2 Criteria Based on Stress Intensity Factor 1-4 1.1.3 Primary Stress Limits 1-5 1.2 GE0 METRY 1-5 1.3 SCOPE OF THIS WORK 1-5 t 2 LOAD CONDITIONS 2-1 2.1 TRANSIENTS FOR THE REACTOR VESSELS 2-1 2.2 STRESS DISTRIBUTION DATA 2-1 3 FATIGUE CRACK GROWTH 3-1 4 CRITICAL FLAW SIZE CALCULATIONS 4-1
4.1 INTRODUCTION
4-1 4.2 STRESS INTENSITY FACTOR CALCULATIONS 4-2 4.3 FRACTURE TOUGHNESS 4-2 4.4 RESULTS 4-3 5 REFERENCES 5-1 APPENDIX A FLAW EVALUATION A-1 A-1 INTRODUCTION TO EVALUATION PROCEDURE A-1 A-2 3ELTLINE (INCLUDING UPPER TO INTERMEDIATE, A-14 AND INTERMEDIATE TO LOWER SHELL WELDS) A-2.1 SURFt.CE FLAWS A-14 A-2.2 EMBEDDED FLAWS A-15 A-3 INLET N0ZZLE TO VESSEL WELD (PENETRATION) A-22 j A-3.1 SURFACE FLAWS A-22 A-3.2 EMBEDDED FLAWS A-23 A-4 INLET N0ZZLE INNER RADIUS (CORNER) A-30 A-4.1 SURFACE FLAWS A-30 A-5 INLET N0ZZLE BORE A-34 l A-5.1 SURFACE FLAWS A-34 A-5.2 EMBEDDED FLAWS A-35 iii
TABLE OF CONTENTS SECTION TITLE PAGE A-6 INLET N0ZZLE SAFE-END TO N0ZZLE WELD A-42 A-6.1 SURFACE FLAWS A-42 A-6.2 EMBEDDED FLAWS A-43 A-7 OUTLET N0ZZLE TO VESSEL WELD (0RIENTATION N0.1 A-50 l AND NO. 2) i A-7.! SURFACE FLAWS, ORIENTATION NO.1 A-50 i A-7.2 EMBEDDED FLAWS, ORIENTATION NO.1 A-51 A-7.3 SURFACE FLAWS, ORIENTATION NO. 2 A-52 A-7.4 EMBEDDED FLAWS, ORIENTATION NO. 2 A-52 A-8 OUTLET N0ZZLE INNER RADIUS (CORNER) A-61 A-8.1 SURFACE FLAWS A-61 A-9 OUTLET N0ZZLE BORE NO. 1 A-64 A-9.1 SURFACE FLAWS A-64 A-9.2 EMBEDDED FLAWS A-65 [ A-10 OUTLET N0ZZLE BORE N0. 2 A-69 A-10.1 SURFACE FLAWS A-69 A-10.2 EMBEDDED FLAWS A-70 A-11 OUTLET N0ZZLE SAFE-END TO N0ZZLE WELD A-74 A-11.1 SURFACE FLAWS A-74 A-11.2 EMBEDDED FLAWS A-74 A-12 SAFETY INJECTION N0ZZLE TO VESSEL WELD A-80 (PENETRATION) i A-12.1 SURFACE FLAWS A-80 A-12.2 EMBEDDED FLAWS A-81 A-13 SAFETY INJECTION N0ZZLE INNER RADIUS (CORNER) A-86 A-13.1 SURFACE FLAWS A-86 A-14 SAFETY INJECTION N0ZZLE BORE A-90 A-14.1 SURFACE FLAWS A-90 A-14.2 EMBEDDED FLAWS A-90 A-15 SAFETY INJECTION N0ZZLE SAFE-END TO N0ZZLE WELD A-98 A-15.1 SURFACE FLAWS A-98 l A-15.2 EMBEDDED FLAWS A-99 A-16 LOWER HEAD RING TO SHELL WELD (JUNCTION N0.1) A-104 A-16.1 SURFACE FLAWS A-104 l A-16.2 EMBEDDED FLAWS A-105 iv l l
1 1 TABLE OF CONTENTS SECTION TITLE PAGE l A-17 LOWER HEAD RING TO DOME WELD (JUNCTION NO. 2) A-111 A-17.1 SURFACE FLAWS A-111 A-17.2 EMBEDDED FLAWS A-112 A-18 TOP WELD DOME TO FLANGE WELD A-118 l A-18.1 SURFACE FLAWS A-118 A-18.2 EMBEDDED FLAWS A-119 A-19 LOWER FLANGE JUNCTION SHELL WELD A-128 l .A-19.1 SURFACE FLAWS A-128 A-19.2 EMBEDDED FLANS A-129 l 1 i l l I 4 V l
_. -. _ _.. _. - ~. \\ EXECUTIVE
SUMMARY
This handbook has been prepared to allow quick, yet accurate, assessment of indications which may be discovered during inservice inspections of the Prairie Island Units 1 and 2 reactor vessels. This assessment capability is provided in the form of charts for each region of the vessel, and these are contained in Appendix A of this document. Appendix A begins with a simple example demonstrating use of the evaluation charts, followed by a section for each region of the reactor vessel. Appendix A has been structured identically to the technical basis document [1], where details of the derivation of the charts are provided. The main body of the handbook provides brief summaries of the various calculations carried out in developing the charts. To evaluate the acceptability of an indication, the user may proceed directly to Appendix A. vii 60250: 10/112784
SECTION 1 INTRODUCTION This flaw
- evaluation handbook has been designed for the evaluation of indications which may be discovered during inservice inspection of the Prairie Irland Unit 1 and Unit 2 reactor vessels.
The tables and charts provided,in, the Appendix of this report allow the evaluation of any indication discovered in the regions. listed below without further fracture mechanics calculations. The fracture analysis work has instead been 4ne in advance, in accordance with the criteria of Section XI, and is dacumented in a companion background and technical basis report [1]. Use of the handbook will allow the acceptability of much larger indications than would be allowable by only using the standards tables of Section XI [2]. A schematic representation of the ( flaw evaluation process of Section XI Appendix A is provided in Figure 1-1. i r The handbook is applicable to low alloy steel base metal and welds in the fol-1: wing locations in the Prairie Island Units 1 and 2 reactor ves'sels. (The charts are also conservatively applicable to the staicless steel safe ends and safe end to pipe welds, as shown in the comparison technical basis document.[1]). Beltline (core region) [ Note that this region includes the two core o region welds] o Inlet nozzle: bore, nozzle to vessel weld, safe end to nozzle weld, and inner radius (corner) o Outlet nozzle: bore, nozzle to vessel weld, safe end to nozzle weld, and inner radius. (corner) l o Safety injection nozzle: bore, nozzle to vessel weld, safe end to nozzle weld, and nozzle inner radius (corner) o Lower head: ring to shell weld and ring to dome weld o Top head dome to flange weld o Vessel lower flange to shell weld. The geometry of each of these regions is shown in Figures 1-2 through 1-6, and repeated at the appropriate section of the Appendix. t
- The use of the term " flaw" in this document should be taken to be synonymous
~ with the term " indication" as used in Section XI of the ASME Code. 5692Q:10/121884 1 -1
The highlight of the handbook is the design of a series of flaw evaluation charts for both surf &ce flaws and the embedded flaws. Since the characteristics of the two types of flaws are different in nature, the evaluation charts designed for each are distinctively different in style. The evaluations are organized accor' ing to the location in the vessel, as listed j d above, and for each location charts are provided for both surf ace and embedded flaws along with worked examples as necessary. The flaw evaluation charts were designed based on the Section XI code criteria of acceptance for continued service without repair as contained in paragraph ~ IWB 3600. Through use of the charts, a flaw can be evaluated by code analytical criteria instantaneously, and no follow-up hand calculation is required. Most important of all, no fracture mechanics knowledge is needed by i the user. l The flaw evaluation charts are provided in Appendix A of this document, and i the section numbers are consistent with those of the technical basis document [1 ]. For flaw evaluation of an indication discovered in an inspection, turn-directly to the Appendix. i 1.1 CODE ACCEPTANCE CRITERIA I There are two alternate sets of flaw acceptance criteria for continued service without repair in paragraph IWB-3600 of ASME Code Section XI.
- Namely, 1.
Acceptance Criteria Based on Flaw Size (IWB-3611) 2. Acceptance Criteria Based on Stress Intensity Factor (IWB-3612) Both criteria are comparable in accuracy for thick sections, and the acceptance criteria (2) have been assessed by past experience to be less l re;trictive for thin sections, and for outside surface flaws in many cases, f.n all cases in this handbook, the most beneficial criterion has been used. Since all the f racture mechanics analyses for surf ace flaws have been presented in terms of critical flaw size, it would be more consistent to construct the surface flaw evaluation charts by using criteria (1) in this handbook. This has been done for inside surface flaws in all cases except the ^ i 60250:10/120684 1-2 r
l nozzle inner radius regions, and the safe end regions, where criteria (2) are more beneficial because of the small section thickness. Criteria (2) are also more beneficial in most cases for outside surface flaws. All the embedded flaw evaluation charts in this handbcok were constructed using acceptance criteria (2), for ease of use, as well as to obtain the maximum benefit, since these criteria will generally be less restrictive for embedded flaws. l.1.1 CRITERIA BASED ON FLAW SIZE k .$.?, The code acceptance criteria stated in IWB-3611 of Section XI. Namely,./ a 1 .1 a For Normal Conditions Q f (Upset & Test Conditions Inclusive) and a 5 .5 a For Faulted Conditions l f 4 (Emergency Condition Inclusive) where f The maximum size to which the detected flu is calculated to grow a = at the end of 40 years design life, c: tili t".e next inspection time, as applicable, The minimum critical flaw size under normal operating conditions a = (upset and test conditions inclusive) g The minimum' critical flaw size for initiation of nonarresting a = growth under postulated faulted conditions. (emergency conditions inclusive) To determine whether a surface flaw is acceptable for continued service without repair, both criteria must be met simultaneously. However, both criteria have been considered in advance before the charts herein were constructed. Only the most restrictive results were used in these charts. 6025Q:10/120684 1-3 l
l.1.2 CRITERIA BASED ON STRESS INTENSITY FACTOR The term stress intensity factor (K ) is defined as the driving force on a g c rack. It is a function of,the size of the crack and the applied stresses, as well as the overall geometry of the structure. In contrast, the fracture toughness (K,, KIc) is a measure of the resistance of the material to g propagation of a crack. It is a material property and a function of temperature. To determine whether a surface flaw is acceptable for continued service without repair, both criteria must be met simultaneously. However, both criteria have been considered in advance before the charts herein were constructed. Only the most restrictive results were used in these charts. l As mentioned in the preceeding paragraphs, the criteria used for the 'evalua-tion of embedded flaws, surface flaws of the nozzle safe-ends and inner radius, and most outside surface flaws are from IWB-3612 of Section XI. The criteria are: K a I<g For normal conditions (upset & test conditions inclusive) K KIc g < (2 For faulted Conditions (emergency Conditions inclusive) i K i where The maximum applied stress intensity factor for the flaw size K = g a to which a detected flaw will grow, during the conditions f under consideration, to the next inspection. K Fracture toughness based on crack arrest for the corresponding = h crack tip temperature. Fracture toughness based on fracture initiation for the K = g corresponding crack tip temperature. 60250:1 D/120684 1-4
1.1. 3 PRIMARY STRESS LIMITS In addition to satisfying the fracture criteria, it is required that the primary stress limits of Section III, paragraph NB 3000 be satisfied. A local area reduction of the pressure retaining membrane must be used, equal to the area of the indication, and the stresses increased to reflect the smaller cross section. All the flaw acceptance tables provided in this handbook have included this consideration, as demonstrated in the technical basis document (1]. 1.2 GEOMETRY The geometry of the reactor vessel is shown in Figures 1-2 through 1-6. The S cladding.on the inside of the vessel has been neglected in the stress analysis f and heat transfer calculations for normal and upset conditions, and has been (7 accounted for by adjusting the film coefficient for the emergency and faulted conditions. The outside surfaces have been assumed to be insulated. The notation used for both surface and embedded flaws in this work is illustrated in Figure 1-7, and repeated in each of the sections of the Appendix. 1.3 SCOPE OF THIS WORK Most of the basic data needed for the construction of the surface flaw evaluation charts is available in the existing fracture mechanics analyses performed by Westinghouse for the Northern States Power Company. (see the list of references). Since the existing analyses were solely based on a postulated aspect ratio'of 6, additional calculations have been carried out to provide assessment f or a range of flaw shapes. Part of the basic data for the surface flaw evaluation had to be established through additional calculations (normal, upset, test conditions). Moreover, no embedded flaws had been considered in the existing analyses at all, consequently basic data for the construction of embedded flaw evaluation charts had to be generated also. For the top head, vessel flange and bottom head regions, separate analyses were carried out specifically for the preparation of this haadbook, and the details of these calculations are provided in the technical basis document [1]. 6025Q:10/120684 1-5
_ _ = - The fracture and fatigue crack growth evaluations carried out to develop the handbook charts have employed the reconsended procedures and material j properties for low alloy steels, as contained in Section XI Appendix A. l Therefore, the charts apply primaril.y for those materials. For the safe end regions of all the nozzles, however, calculations have been made to show that use of the charts will be conservative for the stainless steel portions as well, and this work is discussed in Section 2.5 of reference [1]. 1-6
i l Component System Must be Transients Repaired. Expected l Replaced, or l After Flaw Dscovery Reject Retired Reject I = [ Flaw to Endot Life Y Yes Acceptable Be Evaluaied Flaw Site > 10eg - - ' q>% for Continued L 1 r (ad) (8 ) Operation Until 1 6.EFM)j Next inspection l 4i i a t l t Miath and Initiation KIc Kla Arrest Smaltest K, Curve - Smallest Curve
- g Fracture Critical Flaw Mechanics _ Cntical Flaw Fracture Size for 3,z, go, g,cy, Mechanics
- Accident (a,)
^"ltys,s Normal. Upset t Severest a sis Conditons Severest 4 FM) Test Conditions (LEFM) Normal - Accident. initiation Transient Condition Without Arrest Must Arrest Within 75% of Wall Thickness Enhanced Nondestructive Examination l i l Figure 1-1 Schematic representation of Appendix A flaw evaluation process i i 6 m.
157.24 Of A 145.2s DIA 121.50.AW i Top head dome tu.s3 to flange weld s.u2" 1 4 121.81 Of1 E 'I' its.2s eta 'I F l l 123.s4 otA sp g l Vessel lower E 3 r flange to shell weld 1 = " - 132.4 DIA. 9.02 ~ -g" (k ETAL) 66.20"R (BASE METAL) 1-2a Upper Head Region Bottom Head Bottom Head Ring to Shell Weld 4 /RingtoDomeWeld5 / 66.93"R (BASE METAL) 4.25" i NOTE: DIMENSIONS 00 NOT INCLUDE CLADDING WHICH HAS NOMINAL THICKNESS OF 0.20 IN. l l-2b Beltline and Lower Head Regions l Figure 1-2 Upper Head and Lower Head Regions l-8
l l 48/45/10930 8 l l l SIDE VIEW TOP VIEW 1 1 0.197 1321D.- CLADDING - V v l 9.016 s 4 3 f' R = 5.354' l +- 0.197 CLA,DDING 39.941 l 27.01 2 6.772 ---* 300 e i 22,01
- -- 0.236 CLADDING d
I W ^ 27 ast y SAFE END TO l 3.62 WELD NOZZLE 33.071 TO q OF PIPE WELD-l SAFE END f (SA 182 TYPE 316) 4. 50.787 y NOTES: 1
- 1. DASHED AREA IS PAD ADDED AT BOTTOM OF i
NOZZLE FOR SUPPORT, AND SUPPORTITSELF
- 2. DIMENSIONS DO NOTINCLUDE CLAD l
1 Figure 1-3. Reactor Vessel inlet Nozzle - Prairie Island Units 1 and 2 l i l l l 1-9
48/45/10930 6 l 47.244 i l 131.99 TO - INNER RADIUS l VESSEL q /, (CORNER) f ~ \\ 10 % \\ 0.394 0 \\g .. / \\ I 9.016 s\\ '\\\\ '/ s\\ N', / i (/ n TN 's a j L-NOZZLE TO s VESSEL WELD 43.327 - -- I' _ O.24" CLAD (TYP.) \\ I v 4' .,_i 24 > > s \\N 109.53 \\ 's 30* *-- 12.6" -sNs -'N TO VESSEL q N 27.16 % s O SAFE END TO u y y NOZZLE WELD TO q OF PIPE WELD-34.252 SAFE END l (SA 182 TYPE 316) 50.787 NOTES:
- 1. DASHED L.INES REPRESENT PAD ADDED AT BOTTOM OF NOZZLE FOR SUPPORT, AND SUPPORT ITSELF j
- 2. DIMENSIONS DO NOT INCLUDE CLAD j
i l Figure 1-4. Longitudinal Cross Section of Outlet Nozzle to Vessel Juncture Region (Side View Only) I 1-10 i
l I l 48/45/10930 7 l + 0.81 SAFE END j g (SA 182 TYPE 316) l J p a SAFE END TO NOZZLE WELD 3.437 5.9055 l j 3.876 NOZZLE TO VESSEL WELD i 4 8siti! 24.0157 j 9.02 9.055 u 1 I 1 i 1.1811 R l 3.5" i 1.378R l-66.201 R {u l y +2.0+ INNER RADIUS (CORNER) a 16.90 l Figure 1-5. Geometry of Safety injection Nozzle I i-11
48/45/10930 5 NOTE: THICKNESSES DO NOTINCLUDE INSIDE CLADDING, AND THERE ARE NO LONGITUDINAL SH ELL WELDS. il F 2 *- 5.1 " FLANGE TO W VESSEL WELD 1 Ni ....] { 'e'e 9 *-2. 6" a NOZZLE TO VESSEL WELOS SHOWN IN u UPPER SHELL - - - - ~ ~ ~ - 7------- FIGURES 13,14,15 NOZZLE ASSEMBLY '(k TO INTERMEDIATE SHELL WELD 2 (BELTLINE) i 7
- 7.1 "
a ->.;*-- 6. 6 9 2" !4 INTERMEDIATE TO -->5 ----- 2 i LOWER SHELL WELD.3) n VESSEL MATERIAL (BELTLINE) SHELL: SA 508, CL. 3 HEAD: SA 533, { G R. B. CL.1
- I 7* 7.1 "
\\' LOWER HEAD RING TO SHELLWELD 4! 1 *6.3" RING TO - - - ~ ~. 4.25" DOME WELD (5' y + + 4.45" Figure 1-1 Reactor Vessel Welds 1-12
9 e e A e =5 1s 5-g b $5 %= I S L ec ti> 3 1 k I I h ( h I SURFACE [ CLAD-BASEMETAL j INTERFACE FOR INDICATIONS .g NEAR INSIDE SURFACE] m cu t E i s .3 E 3. E h b l m es e E 7 MS 5 1 t% 3 ( a3
- 5 3
i w g i / 3~ / i C h U i 2 e.n SURFACE [ CLAD-BASE METAL INTERFACE FOR INDICATIONS NEAR INSIDE SURFACE] 1-13
SECTION 2 i LOAD CONDITIONS i 2.1 TRANSIENTS FOR THE REACTOR VESSELS The transients for the reactor vessel are tabulated in Table 2-1. Both the l minimum critical flaw sizes, such as a under normal operating conditions, c or a$ under faulted conditions for criteria (1) of IW8-3611, and the stress intensity factors, K, for criteria (2) of IWB-3612, are a function of the stresses at the cross-section where the flaw of interest is located. Therefore, the first step in the construction of the charts for the evaluation of a flaw indication is to determine the appropriate limiting load conditions l for the location of interest. The most limiting transient under normal (upset and test conditions inclusive) and faulted conditions (emergency condition inclusive) for the locations of the reactor vessel covered by this handbook have been identified in tables contained in the Appendix of the technical basis document [1]. i The basis for the selection of the most limiting normal / upset / test conditions is straightforward. The transient with the highest surface stresses (thermal and pressure stresses combined) in the region of the indication was chosen as the worst case. For flaws near the outside surface of the vessel separate considerations are required, since most of the thermal transients which occur affect the inside surface, not the outside surface, which is insulated. Therefore, allowable flaw indications at the inside surface are generally smaller than those on the outside surface, as may be seen in the individual charts to follow in the Appendix. The selection of the worst emergency / faulted transient (large steamline break) has been discussed in detail in the Technical Basis document (1]. 6025Q:10/120684 2-1
TABLE 2-1
SUMMARY
OF REACTOR VESSEL TRANSIENTS NUMBER OF OCCURRENCES f NUMBER TRANSIENT IDENTIFICATION SPECIFIED USED IN THE ANALYSIS Normal Conditions I i 1 Heatup and Cooldown at 100'F/hr (pressurizer cooldown 200*F/hr) 200 200 i l 2 Load Follow Cycles (Unit loading and unloading at i 5% of full power / min) 18300 18300* i 3 Step load increase and decrease of l 10% of full power 2000 2000 l 4 Large step load decrease, with steam i dump 200 200 l 6 5 Steady state fluctuations Infinite 10 Upset Conditions 6 Loss of load, without immediate turbine 80 80 or reactor trip t l 7 Loss of power (blackout with natural l circulation in the Reactor Coolant System) 40 40 8 Loss of flow (partial loss of flow, one pump only) 80 80 9 Reactor trip from full power 400 400 l Faulted Conditions t l l 10 Large Loss of Coolant Accident (LOCA) 1 1 l 11 Large Steam Line Break (LSB) (other i transients described in Section 4) 1 1 Test Conditions 12 Turbine roll test 10 10 13 Primary Side Hydrostatic test conditions 50 50 14 Cold Hydrostatic test 5 10 l
- 6000 of these transients were used in the analysis of the outlet nozzle region, based on plant records, as documented in reference [7].
2-2
4 SECTION 3 FATIGUE CRACK GROWTH In applying code acceptance criteria as introduced in Section 1, the final flaw size a used in criteria (1) is defined as the minimum flaw size to f which the detected flaw is calculated to grow at the end of the design life, or until the next inspection time. In this handbook, inspection periods of 10, 20 and 30 years are assumed. These crack growth calculations have been carried out for all the key regions in the Prairie Island reactor vessels. This section will examine the calculations, and provide a brief description of the methodology used as well as the assumptions. A more detailed discussion is contained in the Technical Basis document [1]. The crack growth calculations reported here are more extensive than those reported in earlier analyses carried out for Prairie Island because a range of flaw shapes have been considered, to encompass the range of flaw shapes which could be encountered in service. The methods used in the crack growth analysis reported here are precisely the same as those used in previously reported fatigue crack growth analyses of the various regions of interest, so only a summary will be provided. Detailed discussions of the methods used and the sources of the stresses are contained in references [3], [4] and [7] and in the technical basis document [1] for the head regions, which were analyzed specifically for the handbook. i The analysis procedure involves postulating an initial flaw at specific regions and predicting the growth of that flaw due to an imposed series of loading transients. The input required for a fatigue crack growth analysis is basically the information necessary to calculate the parameter AK, which g depends on crack and structure geometry and the range of applied stresses in i the area where the crack exists. Once AK is calculated, the growth due g to that particular stress cycle can be calculated by equations given in Figure 3 -1. This increment of growth is then added to the original crack size, and the analysis proceeds to the next transient. The procedure is continued in l this manner until all the transients expected to occur in the period of evaluation have been analyzed. l 6025Q:10/111584 3-1
The transients considered in ';he analysis are all the design transients contained in the vessel equipment specification, as shown in Section 2. These ~ transients are spread equally over the design lifetime of the vessel, with the exception that the preoperational tests are considered first. Faulted conditions are not considered because their frequency of occurrences is too low to af fect fatigue crack growth. Crack growth calculations were carried out for a range of flaw depths and three basic types. The first type was a surface flaw with length equal to six times it depth, and whose analysis was previously reported for most regions (3,4,7). The second was a continuous surface flaw, which represents a worst case for surface flaws, and the third was an embedded flaw, with length equal to three times its width (through wall dimension). For all cases the flaw was assumed to maintain a constant shape as it grew. The expressions used for calculating stress intensity factors for the various flaw types are documented in the technical basis document.[1] The crack growth rate curves used in the analyses were taken directly f rom Appendix A of Section XI of the ASME Code. Water environment curves were used for all inside surface flaws, and the air environment curve was used for embedded flaws and outside surface flaws. The reference crack growth curves for water environments are shown in Fig. 3-1 and growth rate is a function of t;th the applied stress intensity factor range, and the R ratio (Kmin max) for the transient. The crack growth rate reference curve for air environments is a single curve, with growth rate being only a function of applied AK. This reference curve is also shown in Figure 3-1. This figure appeared in the 1980 edition of the ASME code, and review of current research results indicates it is unlikely to change for many years. The safe end regions were also analyzed for the stainless steel material, as described in detail in Section 3 of the technical basis report [1]. I 60250:10/112184 3-2
16904 1 1000 - l
- LINEA R INTERPOLATION IS 700 -
I' RECOMMENCEO To ACCOUNT FOR AATIO DEPENDENCE OF / WATER ENVIRONMENT CURVES, [ 500 -- FOR 0.25 < R < 0.65 FOR SHALLOW SLOPE: d' E y' M = 1.01 X 101 O* AK.95 1 9 ? g a 3 o, p / [4 -a 0 = 3.75 R + 0.06 N 200-2 g4 o h R=K ,V -7 e' / gig. MAX b 8/p[
- [@.7 w
w q-SUS. SURFACE FLAWS E 100 LAIR ENVIRONMENT) h ~ u 70 = (0.0267X10'3)tX,3.72S llE r / 3, (OETERMINE THE SK AT 50 WHICH THE LAW CHANGES BY CALCULATICN OF THE 5 ui INTERSECTION OF THE , TWO CURVES) SURFACE FLAWS p. ~ 3: (WATER REACTOR C ENVIRONMENTI f APPLICABLE FOR g f R < 0.25-x- 10
- 0.25 < R < 0.65 R > 0.65-c:
~ R=K u 7-MIN /KMAX 9 /% m
- LINEAR INTERPOLATION IS RECOMMENDEO TO AC::OUNTl 5-q f
I 9 2 FOR R RATIO DEPENDENCE OF I Q f WATER ENVIRONMENT CURVES. FOR 0.25 < R < 0.E5 FOR STEEP C SLOPE: k r / --- = 1.02 X 104 O 6KD g gfg O = 26.9R. 5.725 g f R-K /k MIN MAX t i_ l i I I l'I l/I t j i I 'l I l l 11] 1 2 5 7 10 20 50 70 100 STRESS INTENSITY FACTOR R ANGE LiK; (KSI / IN.) i I FIG. 3-1 RE ERENCE FATIG' E CRAC:. GRT.iTH C' RVES FOR J J CARBON AND LOW ALLOY FERRITIC STEELS 3-3
l SECTION 4 CRITICAL FLAW SIZE CALCULATIONS
4.1 INTRODUCTION
The key parameters used in the evaluation of any indications discovered during i inservice inspection are the critical flaw parameters required for the evaluation of an indication in any given location; first, that for the governing normal upset and test conditions (a ) and second, that for the f c governing emergency and faulted conditions (a ). g i Critical flaw sizes have previously been calculated for postulated inside semi-elliptical flaws having a length equal to six times their depth. To allow the evaluation of indications of various shapes, critical flaw sizes are calculated for embedded flaws as well as surface flaws of other shapes. Critical flaw sizes have been calculated in previous analyses for emergency and faulted conditions, and the results for the single most limiting transient for each region have been used directly. For normal, upset and test conditions a detailed analysis of all the transients has been previously performed in all regions except the head regions and reported in the fatigue crack growth analyses of nozzle and beltline tabulated in reference (1]. To calculate critical flaw sizes from the fatigue crack growth analyses of the regions of interest required that the analysis be redone to calculate the critical flaw size specifically, but the basic stress input was used directly. In all cases the same stresses were used as in the previously reported fatigue crack growth analyses. l The selection of the governing transient for normal, upset, and test conditions can be done easily based on the results of the previously published fatigue analyses. For emergency and faulted conditions, this choice is not I l as straight forward as a result of recent developments on the pressurized thermal shock issue. Therefore the governing transients were chosen only af ter careful study of this issue, and the details of this work are provided in [1]. In the Appendix of this technical basis document a table of the governing transients for each region is provided. 60250:10/112184 4 -1
s 4.2 STRESS INTENSITY FACTOR CALCULATIONS One of the key elements of the critical flaw size calculations is the determination of the driving force or stress intensity factor. This was done for each of the regions using expressions available f rom the literature.00Edi-all cases the stress intensity factor for the critical flaw size calculatijhkI utilized a representation of the actual stress profile rather than a linearization. This was necessary to provide the most accurate determination possible of the critical flaw size and is particularly important for consideration of emergency and faulted conditions, where the stress profile is generally nonlinear and often very steep. The details of these calculation procedures are provided in Reference [1]. 4.3 FRACTURE TOUGHNESS The other key element in the determination of critical flaw sizes is the f racture touchness of the material. The fracture toughness has been taken directly from the reference curves of Appendix A, Section XI. In the transition temperature region these curves can be represented by the following equations: K = 33.2 + 2.806 exp. [0.02 (T-RTNDT + g K, = 26.8 + 1.233 exp. [0.0145 (T-RTNDT + 60'F)] g where K and K, are in ksi/in. IC 7 The upper shelf temperature regime requires utilizatio f --1f toughness which is not specified in the ASME Code. A value 200 ksi /in ha been used here. This value is consistent with general practice in such evaluations, as shown for example in reference [6] which provides the background and technical basis of Appendix A of Section XI. The value of RT used in these toughness equations was taken f rom the limiting (worst) NDT properties of materials in both vessels, along with irradiation damage trend curves used to predict end-of-life values, and these determinations are discussed in reference [1]. 6025Q:lD/120784 4-2
4 APPENDIX A FLAW EVALUATION i A-1 INTRODUCTION TO EVALUATION PROCEDURE The evaluation procedures contained in ASME Section XI are clearly specified in paragraph IWB-3600. Use of the evaluation charts herein follows these procedures directly, but the steps are greatly simplified. Once the indication is discovered, it must be characterized as to its { location, length (1) and depth dimension (a for surface flaws, 2a for embedded flaws), including its distance from the clad-base metal interface (S) for embedded indications. This characterization is discussed in further detail in paragraph IWA 3000 of Section XI. The following parameters must be calculated from the above dimensions to use i the charts (see Figure 1-6 in the main text): Flaw shape parameter, f o Flawdepthparameter,( o surface proximity parameter (for embedded flaws only), 6 o where t wall thickness of region where indication is located (not = including clad thickness) 1 length of indication = depth of surface flaw; or half depth of embedded flaw in the width a = direction 6 distance from flaw centerline to surface (for embedded flaws only) = (6 = s + a) S smallest distance from edge of embedded flaw to surface = Once the above parameters have been determined and the determination made as to whether the indication is embedded or surface, then the two parameters may 1166E:10/121084 A-1
be plotted directly on the appropriate evaluation chart. Its location on the j chart determines its acceptability immediately. imp >rtant Observations on the Handbook Charts i Although the use of the handbook charts is conceptually straight forward, experience in their development and use has led to a number of observations l l l which will be helpful. l Surface flaws An example handbook chart for surface flaws is shown in Figure A-1.1. The i flaw indication parameters (whose calculation is described above) may be plotted directly on the chart to determine acceptability. The lower two curves shown (labelled code allowable limit) are simply the acceptance standards from IWB 3500, which are tabulated in Section XI. If the plotted l point falls below these lines,'the indication is acceptable without analytical justification having been required. If the plotted point falls between the j ccde allowable limit lines and the lines labelled " upper limits of acceptance by analysis" it is acceptable by virtue of its meeting the requirements of IW8 3600, which allow acceptance by fracture analysis. (Flaws between these lines i would, however, require future monitoring per IW8 2420 of Section XI.) The analysis used to develop these lines is documented in the companion technical basis document [1]. There are three of these lines shown in the charts, labelled 10, 20 and 30 years. The years indicate for how long the acceptance linit applies from the date that a flaw indication is discovered, based on f atigue crack growth calculations. As may be seen in Figure A-1.1, the chart gives results for surface flaw shapes up to a semi-circular flaw (a/t = 0.5). For the unlikely occurrence of flaws which the value of a/t exceeds 0.5, the limits on acceptance for a/t = 0.5 should be used. The upper limits of acceptance have been set at (a maximum of) twenty percent of the wall thickness in all cases, as discussed inSection5.5cf[1]. Embedded flaws An example chart for embedded flaws is shown in Figure A-1.2. The heavy l diagonal line in the figure can be used directly to determine whether the 6025Q:10/121884 A-2
l \\ l l l indication should be characterized as an embedded flaw or whether it is sufficiently close to the surface that it must be considered as a surface flaw (by the rules of Section XI). If the flaw parameters produce a plotted point l below the heavy diagonal line, it is acceptable by analysis if the point is below the appropriate a/L limit line. If it is above the line, it cannot be justified by analysis, and is, therefore, not acceptable. l l For cases where there are several acceptance limit lines, interpolation between adjacent lines is recommended. A worked example is provided as embedded flaw example 5. The outermost lines should be used as the limits, with no interpolation beyond them. For example, for a/L values greater than l 0.333, use the line for a/t = 0.333 in the figure, and for a/t values less l l than 0.167, use the line for a/L = 0.167. Beyond these outer limits, the analyses have shown that the sensitivity to flaw shape is small. For cases where there are no branching limit lines below the heavy diagonal line (see Figure A-2.6 for example) then all flaws classified as embedded are acceptable, fhe only limitation is, as discussed in Section 6.9 of reference [1]: l f<0.25 Note that the embedded flaw evaluation charts are applicable for flaws near l either the inner or outer vessel surface, and the parameters "S" and "6"are defined from the nearest sarface. Another important observation is the procedure to be used for an embedded flaw whose plotted point f alls above the heavy diagonal line, and must therefore be considered a surface flaw. An example of this is provided in " Embedded flaw Example 1", but it is important to note that when this must be done, the depth I of the flaw is redefined. The new depth is equal to 2a + S, as shown in the example, which becomes the ef fective crack depth a* to be used in the sref ace flaw chart in such cases. The standards for flaw acceptance without analysis cannot be shown in the em-bedded flaw charts because of their generality. Therefore, they have been plot-ted separately in Figure A-1.3. Note the change in standards with the 1980 code, when the standards became a function of the proximity to the surface, S. 60250:10/121884 A-3 1
General Observations Detailed examples of the use of the charts for both surface and embedded flaws are presented below, for a specific cross section. Some points are worthy of note for locations between the cross sections which have been analyzed. An example would be the outlet nozzle bore region. Two specific cross sections have been analyzed, Bore Number 1 and Bore Number 2, as seen in Sections A-9 and A-10 of this Appendix. A flaw indication between these two cross sections should use acceptance criteria interpolated linearly between the two appropriate charts in Sections A-9 and A-10. Similar procedures should be followed for interpolation between other regions. A worked example is provided as surface flaw example 2. In another case, the outlet nozzle to vessel weld (Section A-7), charts for two cross section orientations are provided. For this case, the plane of the indication should be determined and matched to the appropriate one. If the orientation is between the two shown as orientations 1 and 2, interpolation should be used between the appropriate charts. Surface Flaw Example 1 Suppose an indication has been discovered which is a surface flaw and has the following characterized dimensions: 0.30 in. a = 1.5 in. 1 = 6.69 in. t = The flaw parameters for the use of the charts are f = 0.045 (4.5%) t f = 0.20 6025Q:10/121884 A-4
Plotting these parameters on Figure A-1.1 it is quickly seen that the indication is acceptable by analysis. To justify operation without repair it is necessary to submit this plot along with the Technical Basis document [1] to the regulatory authorities. Surface Flaw Example 2 This example will illustrate the use of the charts for an indication which lies between two locations which have been analyzed in detail. Consider an indication which has been discovered at the inside surface of the outlet nozzle, between the cross section labelled " Bore 1" and the Safe-end to nozzle weld (see the sketch). The indication is continuous and circumferential, all the way around the inside surface, and located 3.15 inches f rom the saf e end weld. The flaw geometry parameters are as follows: 6: a = 0.293" . _.. q,.. _ ;...... i i e i i i i t = 3.66" (from trigonometry) 3 l h- "h d ~ j' i D -- * ....a 1. __. 7- {=0.08 g;
- j. l/-
i 7 ; R *. i e o c.os-f=0.0 j j. ....... j.. _ E .l. I -s os .._.]. ..I - -I. + 315M. S! S$ oC a i i I i 5 -= 43 w hh l f j N- ' -i I 1 ~ prear=. y/////,/)//~'///;'f/' '.'///// ,I J ] sarc cdp sont t-i ,/ /,,,, socarson ' .. 96 .wcL o - /~ .i f 8 raw The upper limits of acceptance by analysis are not directly available for this location, but can be determined by interpolation. The chart of Figure A-9.2 is applicable for surface flaws at the location designated Bore 1, and Figure A-11.2 applies for surf ace flaws in the safe end to nozzle weld. Plot the upper limits an acceptance for the same size and shape of flaw in these two regions, as shown in the sketch. Now interpolating between the two values gives an allowable flaw depth of a/t = 0.086. The actual value is only 0.08, so the indication is acceptable. 60250: 10/121884 A5
4 l Embedded Flaw Example 1 i l A longitudinal
- embedded flaw of 1.75" x 5.00", located within 0.575" f rom the 1
surface, was detected. Determine whether this flaw should be considered as an cmbedded flaw. 2a 1.75" = 0.575" S = 6 S + a = 0.575 + 1/2 (1.75) = 1.45" = 6.69" t = I l 1 5.0" =
- Note:
longitudinal herein means relative to the vessel or nozzle centerline, not the weld length. For the nozzle inner radius, and other regions of a nozzle, longitudinal is relative to the nozzle centerline.
- and, 1/2 x 1.75" a
= .875" = Using Figure A-1.2: a. 0.875 = 0.13 t 6.69 f=
- ' = 0.22 69 Since the plotted point (X) is above the diagonal line, the flaw must be considered a surf ace flaw, when using editions of the ASME Code prior to 1980.
If, however, the inspection were being performed to a version of the code of 1980 or later, the flew would be considered embedded. For illustration here, assume the inspection is done to the 1974 edition of the code. I 60250:10/121884 A-6
Now, since the flaw must be. considered as a surface flaw, the depth must be redefined as the distance from the surface to the deepest point of the flaw. This is equivalent to circumscribing the embedded flaw with a semi-elliptic surface flaw. Operationally, the parameters are recalculated as follows. Defining a* as the corrected crack depth for the surface flaw, a* = 2a + 5 = 2.325" i = 5.0" a f=0.347 e f=0.465 Referring to Figure A-1.1 for the surface flaw, it is quickly seen that this flaw is much too large to be acceptable and must be repaired. Now let us assume that the inspection was being performed to the 1980 edition i f of the code, and the flaw could be considered embedded. Even under these circrastances the flaw would not be acceptable, since the upper limit for j allowable flaws in this case is the line labelled a/1 = 0.333, and the point plots well above this line, in Figure A-1.2. i Embedded Flaw Example ? (Point A) Suppose an indication has been discovered which is embedded, and has the following characterized dimensions: 2a 1.0 in. = 1 1.5 in. = t 9.16 in. = S 0.75 in. = 60250:10/121884 'A -7
l Calculating the flaw parameters, we have: l l f = 0.0545 f = 0.333 f=0.136 4 S + a = 1.25 in, = Plotting these parameters on the embedded flaw evaluation chart, Figure A-1.2 it may be quickly seen that the indication is embedded, and is acceptable by analysis (point A), since it lies below the a/L = 0.333 limit case. Embedded Flaw Example 3 (Point 8) Suppose an indication has been discovered which is embedded, and has the following characterized dimensions: 2a 1.47 a = ' O.73 = 1 2.20 = 1 9.16 t = S 1.33 = Calculating the flaw parameters, we have: f = 0.08 f = 0.33 5 + a = 2.06 = f = 0.225 Plotting these parameters on Figure A-1.2 (point B) we see that the indication is acceptable, since it falls below the line which is applicable te a/t = l 0.333. (Note that if a/L = 0.167, for example, the indication would not be I i 60250: 10/121884 A-8
1 i j acceptable, since point 8 would lie above that line, as,may be seen in the figure.) Embedded Flaw Example 4 (Point C) A longitudinal embedded flaw of 1.15" x 5.38" was detected at a distance S = 1 1.075 in. underneath the surface. Evaluate the flaw for code acceptance for continued service without repair. The flaw geometry parameters are determined as follows: l l t 6.69" = S 1.075" = 4 S + a = 1.65" = i 5.38" = l 1 and l 1/2 x 1.15" a = .575" = f=( ) = 0.248 a, 0.575 1 5.38 = 0.107 = 0.086 = Evaluate the flaw by referring to Fig. A-1.2 and plotting the point (as point C). This is above the code acceptance limit line for a/t = 0.167, which should also be used for a/1 < 0.167; therefore, the flaw is not acceptable, and must be repaired. Note: The code acceptance lines 'ecome identical with the surface / embedded o I flaw demarcation line with which they link up at points near the I surface. Therefore, in Figure A-1.2 the code acceptance line for flaws near the surface, f less than 0.125,is identical with the " surface / embedded flaw demarcation line up til 1980 Code". i 60250:10/121884 A-9 1
Embedded Flaw Example 5 (Point C) Use the same characterizing dimensions as example 4, except that the length of the flaw is 1.9 inches. This example will illustrate the method of linear interpolation to be used with the embedded flaw charts. The flaw geometry parameters are: l i t I i i - - - -a--a.-. l. t = 6.69* i I i
se:
l l . j.. .... !....._ L 2 l i S = 1.075" g .. J. _.... 4.............;,... i i 6 = S + a = 1.65" - --o.io w j 'O Y ._G' I" i q 1 = 1.9" .,r, 1 l _j !. p __ __ _,d _I l ,. 1 i a = 0.575* - - - i -! - -- A - ~ ~. 4 - - -- - - + - 1 i I I i !. _ q._. _.,!.. l i i I ._a. The flaw parameters are therefore: I a.o ..;.._ o.u.... l.. of o..j._.. *.2E..i._.. '?'.._. _. 0 3 f.. ' raw user ufn 1 g = 0.248 t a 0.575 = = 0.30 1 1.9 A = 0.086 t Plotting the point as before (Point C) we see that it lies between the two limit lines in Figure A-1.2, and the aspect ratio (a/t) is also between the two limiting lines aspect ratios. Therefore, linear interpolation is done, as illustrated in the sketch on this page. Interpolation shows that the flaw is acceptable. 6025Q:10/121884 A-10
UPPER LIMITS OF ACCEPTANCE BY ANALYSIS INDICATIONS ARE NOT ACCEPTABLE AB0VE THE ANALYSIS LIllIT LINES 10 } l
- .. x..-- 91;,2 i
L /...,.,.p.. IC r s: ' - - I yea WITH THIS ZONE, INDICATIONS p' jj" -g 9 f ARE ACCEPTABLE BY ANALYSIS 20' ye ms ~" - 8 - --.. - -.l'. ,hf,30 3. ,c ca + -s PER IWB 3600 ~.c
- .:.: : /
/ /
- ..' NN
\\-. M.': c ,y. y.. ..u + .u. y =;; p. ./ _g @3-s ..m ../ -r + .a t _.L... .. :.:. g /.
- f. -
r: .E y. .; /../.i ' p . / / ~ ii CODE ALLOWABLE LIMIT Y O - /. '/pg- ~ C SINCE 1983 WINTER .O - - / -s "i ' + ADDENDUM 5 ' d C .m. .a <P sp88 [:. .... je8..
- CODE ALLOWABLE LIMIT :.
1E. A FLAWS PLOTTED BELOW THE APPLICABLE
- .- i.h Hu
@I' -..:- ? ADDENDUM -- + - 2 " CODE ALLOWABLE LIMIT" LINE ARE
- PRIOR TO 1983 WINTER ACCEPTABl.E WITHOUT ANALYSIS OR
- j- -
FUTURE MONITORING. .t ......._:.u_ a
- u.
4 0 I ... gu ..... un.;.;. l J O O.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/f) e A Figure A-1.1 Example of Surface Flaw Treatment u. j $9s - - - - - - - - - - - - - - - - - - - - - - - - ^ - - - ~ ~ - ~
48/45/10930 1 l SURFACE / EMBEDDED FLAW DEMARCATION LINE, BEGINNING WITH 1980 CODE
- iiiiii ;
- lf',,,y.-t' liii EMSED'O'EDIl35 ~i [
i " : ~ 4 SURFACE / EMBEDDED l ~ ""3.,_,.p..: cONrlGu9ATION :. ~" ~ /.' ..!b:.. / FLAW DEMARCATION '~ O.12 nw -- /= !!Ei-i i LINE, UP TIL 1980 CODE i=in- ! /% E.'!p=! ~ _ fa. . g:F f
- j
=
- 7':...: up:..
- r..
1: = !!/ i - '../:iNr- +-EMBEDDED FLAWS 1.J ' " ~ 0.11 T .II PLOTTED IN THIS 11=inr u-Eijiiii i .: -i;i f. i:Ei . ;c,f:jii. REGION (ABOVE
- i: S..
a/!f.i ~
- =
0.10 ~
- .!f iait;.
APPLICABLE a/$ LINE) ii in 4 '] }!* 7[; }ij.. _
- n. aJ.
ARE NOT ACCEPTABLE 0.09
- j u
- i ;
a/4 0.333 = ~~
== - NC CHli: i!/ .. -;MIi.;fa~i!!' 3 0.08 - a/4 0*167 = / iilb fil..g j'ijW !!r .g +,s eg a si :. "' O.07 M b uRrace E I #" Mdi x -liii l i:ili.0=!!: ' -liff iii-fi" :/S4
- iB lc 7 DES iN T'HIS ff[ii
- )
il hi !;i tif55 ~ s 0.06 REciON MuST BE 7,.!:- .:d;A .I :- O_ _ CONSIDERED = g 'iSURFACE [. !.g -[:ja j 0'05 -FLAWS -f! if ign hl $ 0.04 Mr if"! t: "I:! -* EMBEDDED FLAWS IN I iiin f..j f:..[.
- .tn THIS REGION ARE "j 7 gi;;;
t. ACCEPTABLE PER j ;' i. 0.03 CRITERIA OF IWB 3600 [ [.._i" "I' ~! ~~ !F PLOTTED POINT FALLS fi/ =F' !l: BELOWTHE APPLICABLE i I!i a// LINE fi '/
- i!!
- i.
= r l~ T. "g" ..o. ..t a 0.01 //
- iii i:i:-
i- ! :.. !!i i! f. i:- tit:i zi - i l: ala "t. g 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) l l Figure A-1.2 Example of Embedded Flaw Treatment ,s A-12 9
~~ l. \\ ()f L 1 ()L s, l i NOTE: Y={ .14
- g
- .p
- j-
!.l.. .i-i j .13 .4. q 7 .12 :l: l-m.: = i y 11 l i I
- j.
- t.
.c .09 l.
- )-
I _e
- .p i
= .08 -Y = 1. 0 l 3 .07 'l ' f 6 rl.- 4 ii f l ~, l "l:i Y / ~ag _y. 0.8 l I l-y, .</ t / \\/Y l .05 .9 .r 7 ,7 .l I I 'I 2-di i F l .04- .l. .h
- < F. - f' I #5 I
b# ~I i '03 l- .i sw L.,V I.- L#"i: -l ,e Y = 0.4 N-tsM+983Id =- i .o2 Y M"l3-i: ,1
- tion' W'83 Ad d.
) Ml. l .l r== Prior to Summer .01 79 Add. i .) 0.1 0.2 0.3 0.4 0.5 l FLAW SHAPE (a/t.) / Figure A-1.3 Acceptance Standards for Embedded Flaws, from Tables IWB 3510 and IWB 3512, Applicable for Section Thicknesses 4 inches and greater A-13
.m l l t t l
- 15
.L
- cia ::j= :.i.
,.27 Y = 1.0 i ' "-3 i..
- -.:E..::.f:..rf.i.:.i.r.i_i_ElE.i.i.!..ic+:
s . :[. .: :;.- ; 7;. p;..:...... a _..,.1 .'. g. :;..
- =:
,]4 . : j........ ;.a m. ""#.... r u 1.c;.1 =:.-. [n.a.. r.!. re 7 in... 1
- . : rx.s:. u
... -. -. M... = : _ :. dN' -
- ST'. EI N
~ I '13 l T-$_ i s 55 E iid !5.ISE!'i[j:'=i;i:.?l~_'.
- .l
.l
- 2
- ig.
e.i:,.p; -i ikb~:'Ei~h.::
- .i. =.:.ib.i!
' ~ ~G~: ~ ~~~~ ~'- ~'-- - '~4- .., ~ ~........
- 12
' ' ~ '~ OI: J-r$. lir;ik !:i.NIjii [i'.jg. .;; - -, i.: ;i:j ~. :.2::. .9 .t ...}. ~.'i.: --. - = Y = 0.8 t - ~ = =. : : ;.== : ---: :...: _... = ; _ ;, c_ r :wa.. . ::.:.;-. 4.= .) .=j..u.. =. = ~ " j.-.:_= l = j. iii l..p.jf4.jizi.r.:n_ n : / l l .3.
- u. 9
. 4.....,2 5.;,.,. .f
- .a. "'~~ "~
l
- .. = u. - :. 2
.-t.. rc;;. 7;; 7 ~i "E ' ~ ' + ~ M....... .10 n.... -. i.:J. :..u.c.. tu.ri2={ i---i. _._n ji."='.===.-'.~4 + 'm 1 4 t= : 2.: m: .s
- g:.
.c r.- ~ t .:.. u..a 7 t .m 9 if- - F i[ i,---E k n ; 'h... _. -.. ' }jf ' ~~ *. ",*.
- . 5 55-*.3b-d'..1. -
" ^ i ~-. ;/'. I t i=.i-fi'I v - - ~ - -
- 09-t i2.i.=: :#E=Di=E:90iiqMi ili-iTri ~ ::!-Ji : : - %=:isV.. -
i.E.cr 1 z Y = 0.6 g ..i= ;iir= ::..;i.. : 72; m; gig 3pp
- .:...c-GQg.g c.
~ 7.;.l i o.08 +..-
- .=..=.= 6: = a =.=...,:
.... f- -. w =- ;. s.07 ~'# E"#E M i! C l ' i. ; - ..t, : =: MmBi.ii2 f =;.:/ +eiih c q_.i i i .06 NN
- l D O N [q. ' '
~ N ~
- ca.=. i.
a- :- :p = : x- ..;y 7=;; ../. ya o,4 .L;~i=.!...i9';.:!2 ii-:.i Ki: ~ - -. :i.. - ~ ~ 24 . c: l
- 05
~~ ~"- " - ~ ~ ~ .Liu : : stag :;p..:
- g..2 y.a
.= f' 4 I a -: ~ i. e .y g-c y.p j /g: 3 .04 ..a a .} . _- ;;-t; - -. wa
- 4
-. l..... -.. ... = "3 ',ss ~ * ' " ' ^i
- 03
- Y. "._'. r.
f... =-i .L .r: i= .02 =" I:-! ei +- ._-1..E18- . a...-i.ni: .t. 1 . c i.... i . 01 - v ;r ='7..- rj: r: r.g.g---.l' g 1983 Edition W83 Add. _. 7_,a:.. ~j. i. Prior to Summer i 0 t- 'i. T - i ! 79 Add." ~ j 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a/L) Figure A-1.4 Acceptance Standards for Emoeddea Flaws, for Section Thicknesses less than 4 inches. (From Tables IWG 3510 and IWB 3512)
- NOTE:
Prior to the Summer 79 Addendum, no specific standards were available for these section thicknesses, but the standards for thicknesses of 4 inches and greater were generally used.
/ Intunal Correspondence Td l l om January 14, 1985 l From D J Brosche Location Mid Sq - 3 To Holders of New Westinghouse Flaw Evaluation Location l Handbook (see distribution list below)
- ct Editorial Insertions for Flaw Evaluation Handbook l
PI Units 1 and 2 Reactor Pressure Vessels l l l Gentlemen: The enclosed two pages are for insertion into your copies of the just - received Handbook (WCAP-10363) and Technical Basis report (WCAP-10562). Please insert these at the end of Appendix 1 in both reports, and remove the current Figure A-1.3 (or, for bound copies, indicate it to be superseded by the enclosed). l l .The existing Figure A-1.3 had been a last-minute addition, at my request, and had not been reviewed by me until after receipt of these completed reports. That figure was technically accurate, but did reference the wrong ASME code i addenda and didn't indicate the applicable wall thickness. Thereafter, W. l Bamford made the indicated editorial changes to Figure A-1.3 and addition'of Figure A-1.4, and sent them to me for distribution. l NOTE: These 2 figures, as well as all Surface Flaw charts give the ASME l SectionXIIWB-3500codeallowablelimits(i.e.,acceptancestandards) for the ferritic low alloy steel vessel. However, for the stainless steel nozzle-to-safe end welds and safe ends, the acceptance standards are given instead in IWB-3514 in ASME XI. The ferritic acceptance standards have been provided in the Handbook, at my recent request, for conveneience. Any indications exceeding the ASME XI Acceptance l Standards would have to then be evaluated per the IWB-3600 fracture mechanics analysis results, summarized in the Handbook, and then (per IWB-2420) must be monitored every 3 years by augmented ISI (if of acceptable size). (The Handbook has, at my recent request, indicated that the IWB-3600 analyses ARE also applicable for increasing the allowable indication sizes beyond that permitted in IWB-3514 for those t stainless steel areas). l I'll be at the plant this Wednesday (for our meeting on this with l Westinghouse), and would be available then for further discussions on the Handbook, if desired. Sincerely, 8950A i Donald Brosche 4 l Sr Materials & Special Process Engineer DJB011485WMH01
d Page two Holders of New Westinghouse Flaw Evaluation Handbook: Enclosures cc: E L Watzl - Prairie Island L R Eliason - Midland Square - 3 A Vukmir - Prairie Island D M Musolf - Midland Square - 4 J E Goldsmith - Prairie Island G H Neils - Midland Square - 4 M T Anderson - Prairie Island G T Krause - Midland Square - 3 R G Fraser - Prairie Island G L Miller - Prairie Island D J Mendele - Prairie Island S D Northard - Prairie Island i l / 4
l A-2 BELTLINE (INCLUDING UPPER TO INTERMEDIATE, AND INTERMEDIATE TO LOWER SHELL WELOS) A-2.1 SURFACE FLAWS The geometry and terminology used for flaws in the baltline region is depicted in Figure A-2.1. The following parameters must be determined for surface flaw evaluation with the charts. Flaw shape parameter f o Flaw depth parameter f o where a - the surface flaw depth detected, (in.) 1 - the surface flaw length detected, (in.) t - wall thickness at the beltline (t = 6.69") The surface evaluation charts for the beltline are listed below: o Figure A-2.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at Inside Surface of Beltline o Figure A-2.3 Surf ace Flaw Evaluation Chart for Circumferential Flaws at Inside Surface of Beltline o Figure A-2.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of Beltline o Figure A-2.5 Surf ace Flaw Evaluation Chart for Circumferential Fl'aws at Outside surface of Beltline 1166E:10/121084 A-14
A-2.2 EMBEDDED FLAWS The geometry and terminology used for embedded flaws at beltline is depicted in Figure A-1.1. Basic Data: 6.69 in. t = 4 Distance of the centerline of the embedded flaw to the surface = (in.) a = Flaw depth (Defined as one half of the minor diameter) (in.) Flaw length (Major diameter) (in.) 1 = a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization i criteria. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o surface proximity parameter, f o The evaluation chart for embedded flaws in the beltline is shown in Figure A-2.6. Any embedded flaw in this region will be acceptable regardless of its a size, shape and location (as long as - < 0.125) as shown in Figure A-2.6 and discussed in Section 6.9 of [1] and ii Section A-1. This determination can be easily made by plotting the indication parameters on the figure, to determine if it lies below the appropriate demarcation line (i.e. embedded not surface). I 6025Q:10/121884 A-15 f l
FIGURE A-2.1 GEOMETRY AND TERNIN0 LOGY FOR FLAWS AT THE BELTLINE , p_ _^ - - 1 l l ib ACTE: THICKNESSES DO NOT INCLUDE INSIDE CLADDING, AND THERE ARE NO LONGITUDINAL SHELL WELDS. 6 EE 2'.s t- 't + l O'Ja';;m, a l SURFACE l FLAW AT 1 e.s s-BELTLINE l UPPtR SHELL 5SMOwN FIGURES 13.14,,15 NO22LE ASSEMaty TO INTE RM EDIATE T = 6 69" saf u wEw 2
- isEtruNE, 7'.7 1 *
{ 5 I +-6492" j t f I l 1%TERMEDIATE TO -~~ - a . ~ ~ ~ ~ ~ ~ ~ ~ ~ l LCWER SMELL WELO.31 : VESSEL MATERIAL f" ELTUNE) !x SHELL SA 508. CL. 3 i a HE AD: SA.633, CR. 8, CL.1 T-i r r,- y l EMBEDDED 6 + r j FLAW AT I5*Mt"R"'" f BELTLINE t... ~ RiNo To - - -. - L _ _.. _ _ l 4.26* g DOME WELD (S* n, TTl < 4s-S~ ~ I al \\ I t i T=6.69"i I A-16 l l
10 UPPER LIMITS OF
- 7. -
.l. .a.. ...:1F 3 ..hi- ,_ ACCEPTANCE ea. ts] i _f DY ANALYSIS .=. . ::=a.. 8 .v. !9 t 7-
- g..
)ea s - / "?
- - %.R : year s M.:
p. s 6 o e v. I gj. .u..: [ /4 r~ ~. ~ ii: ~ CODE ALLOWABLE LIMIT g V . p -. - -p. ADDENDUM p SINCE 1983 WINTER L 3: 4 / u r Y u. n as . 2L
- p'.
. l.. ._;.i.3.[lh:,, !!!. lit g.:... ps! .: PRIOR TO 1983 WINTER - CODE ALLOWABLE LIMIT : 2 ps3y,ssea" A. D D EN. DUM. O .. n ..:. =. t .. =: :.... O O.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/l) T= Figure A-2.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at 3 t.n the Inside Surface of Beltline O h
10 years 20 T years 10 I M
- i.
~.F-UPPER LIMITS OF - g ACCEPTANCE BY ANALYSIS 37 8 '. u
- 1 :..'...g 1.;.
.: g .p. _w. . ;. 2.2.:.: g 6 e I ..:3 1 l. ~., L
- a..
[ L CODE ALLOWABLE LIMIT w co O
- g;
.l'.. 7
- q..s ADDENDUM
~ #T 8 SINCE 1983 WINTER S 4 4 g Y# a g-l I h ..t 4 i .. j, sad 88 ..y.:.. ;.
- CODE ALLOWABLE LIMITi 2 #~#
j
- PRIOR TO 1983 WINTER -
' A, DDENDUM, '~ * ~ s ...u. 3.:. O O O.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/2) T Figure A-2.3 Surface Flaw Evaluation Chart for Circumferential Flaws 2 O at the Inside Surface of Beltline y i.
UPPER LIMITO CF ACCEPTANCE CY ANALYSIS 20
- .l:.
. i. l. /. I .y l 18 ,()'y e...ars.'. 1, t L 2() ; years ~ o j"- .p 1 = -
- j; 3(r! yea (( q; 16 g
f- / 4 $14 # ..9 n.: - d-- q ..:..n .q.
- v..
.;:l.; .~' WITHIN THIS ZONE THE SURFACE 12 ,f ~ FLAWIS ACCEPTABLE BY CODE .q .L a 10 . p.. ANALYTICAL ^ CRITERIA (lWB 3600) m g i.
- x
- g. =. a
.j. P 5 8 j G . _l.. .. j.:......:.. . i... -4. 'i ..j. 6 - - - -f ~r-t -l " +t- ~ CODE ALLOWABLE LIMIT AFTER .g. -.g.. ..j. p. .. _ g. - 1983 WINTER ADDENDUM 4 .r-- 1.. I ~ A.,,._.. ;... ;. ;. 1... !...,.. ;.... {. :. i..:g .j. PRIOR TO 1983 WINTER ADD 2 I NO ANALYTICAL JUSTIFICATION .l_ IS O I .-..R EQUIR..ED l ...g....... O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-2.4 Outside Surface of the BeltlineSurface Flaw Evaluation Chart for Longitudina
UPPER LIMITS OF ACCEPTANCE BY ANALYSIS 20 ..i.
- l.
..l. J.. ..g.. 18 U I I- - - t-
- 1..E0'-
ye ds ' 1 l-( .. i. . l.. 0 -l i i ..i.. 7 g. yEEri 16 S --l- --)0- ycirs -[- ... l..
- 6. 14
-i -- -} -i-q . j..
- j..
WITHIN THIS ZONE THE SURFACE "' 12 I I- : I-- FLAW IS ACCEPTABLE BY CODE f ..l. '. _.I. .j.. .l. ^ l..g. ANALYTICAL CRITERIA (IWB 3600) 9 y $ 10 l J- -i-j y--- i g .. j.. ..l.. ..). l.. .l.. a 58 -b -F-4- o ..i. m i .. l.. . p. ~.. g.. ..l. .p 6 --t -- -f --j- --j- --i- - -t- -i- -- 2-CODE ALLOWABLE LIMIT AFTER
- 1. -
l-M t 1983 WINTER ADDENDUM 4 r-- - i- -i-- j PRIOR TO 1983 WINTER ADD
- i l- : i
.1 i 4 i NO ANALYTICALJUSTIFICATION 2 l i IS REQUIRED j 'l~ 'i' 1j' lll "l l~'l ~l 0 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-2.5 Surface Flaw Evaluation Chart for Circumferential Flaws at the Outside of the Beltline
ai 48/45/10930 1 SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE 0.13 "iT ' h-j.
- !:ih EMBEDDED FLAW : [M d ';.
MUIM iiiil FLAWS WITH a .. CONFIGUR ATION :/- '. j: +.. /
- r. i -
4 93 p 0'12 " " " ' - - -- A a w iiiid :iife!!.ih:e :pjEi fil ABOVE THIS LINE ARE i NOT ALLOWABLE 0.11 ~ u- ' / ~ .. I I.. :... n b._. " IiNr b,
==
- ih 42 ~ A li/ ME" :!IIIII"- U/S di SURFACE / EMBEDDED
'h/ -i F-fi!. i s iil Fi FLAW DEMARCATION i ' I" 0.10 uE H.1-T NJ/di =i :!k !!!/ i"ij!!= :!!b:i LINE UP TIL 1980 CODE is53f -- ' i! I O ~' ~ eT O.09 -iti~ :- -- 4
== i /! i-> !!!f:t iili:/ !:im it=i:ii- -eliisi
- =
N;I*idEI 3 0.08 ~ ^
- lil:.--.g e.,s egae #
/i. illh:/g:n :=;jii"i !!}ir..:iti m!ii :/iir e i.. n=-i ('"a--"sisy ajn np" isp~i --=n p~=- m 0.07 ' SURFACE' ~~Ff"ii5i f.! .::n.1"= iisii : iil:L 5!!=i; ~ isil!:: :- usu ; ~ Z mWS IN MS M" MM U.i! '5MN '.un > O.06 - REGION MUST BE : ;jn..: : *. . :: t.. d:: ... n :. : " ". ur.: ~-:n!:. O i.iiCONSIDERED
- - 23 g
ljj SURFACE [-}{h"/Si- "iij;- pg p 0.05 9 FLAWS - /-
- .,/;. - li!
it..-i; !@. - @l.
- t:
- g...,
g
- ib~:
+- 3 I 0.04 ./i i :/:in- : i;!ifi .ib 3:. ~ iij -
- i..
ALL EMBEDDED FLAWS
- isiii B:i ~/it f:if !E-l' i 'hjii i ni:
(ON THIS SIDE OF a DEMARKATION LINE) -jn.. y/ /_!a liti. ""1 !!:-- !==:!- ..l7 ;7..........--_.p - l.: ur n. m.. l .-e- -q" ~ ARE ACCEPTABLE PER CRITERIA OF IWB 3600 !!jn . :E--"S' AS LONG AS 2,a&O.25 S i $j!. ~. )u_:.. 0.02 n. /- a
- .g==
t n.
- t >(.:g':
"j". :. ~ 0.01 i;!n .1: ..} nn E ~T IIE ' I I! 0 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE ( ) Figure A-2.6 Embedded Flaw Evaluation Chart for Beltline (both Longitudinal and Circumferential) A-21
1 l i A-3 INLET N0ZZLE TO VESSEL WELD (PENETRATION) A-3.1 SURFACE FLAWS The geometry and terminology for surface flaws at the inlet nozzle to vessel weld is depicted in Figure A-3.1. The following parameters must be determined for surface flaw evaluation with the charts Flawshapeparameterf o Flaw depth parameter
- o where a = The surface flaw depth detected (in.)
L = The surface flaw length detected (in.) t = Wall thickness at the inlet nozzle to vessel weld (t = 9.16") i The surface flaw evaluation charts for the inlet nozzle to vessel weld are listed below o Figure A-3.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at Inside Surface to Vessel Weld of Inlet Nozzle l o Figure A-3.3 Surface Flaw Evaluation Chart for Circumferential Flaws at Inside Surface to Vessel Weld of Inlet Nozzle o Figure A-3.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface to Vessel Weld of Inlet Nozzle o Figure A-3.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Inlet Nozzle to Vessel Weld l o ll66E:10/121084 A-22
A-3.2 EMBEDDED FLAWS i The geometrical description of an embedded flaw at the inlet nozzle to vessel weld is depicted in Figure A-3.6. Basic Data: 9.16 in. t = Distance of the centerline of the embedded flaw to the surface 6 = (in.) a = Flaw depth (defined as one half of the minor diameter) (in.) Flaw length (major diameter) (in.) 1 = a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f . l o surf ace proximity parameter, 6 o t i The evaluation chart for embsdded flaws: o Figure A-3.6 for longitudinal flaws (also applicable to circumferential flaws) 60250:10/121884 A-23 i e
i FlGURE A-3.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE INLET N0ZZLE TO VESSEL WELD (PENETRATION) EM EDDED FLAW AT 4 PENETRATION ~ -M-SIDE VitW TOPVtEW 013y 132ID - c-Nq ..w;- t t .0,. I [ ReS354 ,l .... N. +- 0197 CLADDING 39 941 l sw 27 01 25 772 - 22 01 \\ 30' ** i e - 0 234 CLADOING l T b \\ sAFr eso fo s, o e 70 g OF PIPE WELO] 3 62 33 071 -1 SAFEEND 60 787-($A 182 WPt 3161
==.
- i Notts
'N 2LE FOR SUPP0AT, AND WPPOR I EF
- 2. owe =sions oo nof.=ctuoi cuo SURFACE s
FLAW AT, ) N0ZZLE T0 s L.,_ VESSEL WELD (% T=9.16" A-24
10 i. / UPPER LIMITS OF .:l:.. p 1/ ACCEPTANCE - gg BY ANALYSIS . ysy s-. ...:.211Nyea '.i. N g-2.: 2.: g .: g 2 .l ):..=). ea s. i.. '. /7 ... 9,..- .y V N 6 I . g... -.. D years l U 3- - / .a...:..=. /// CODE ALLOWABLE LIMIT y 7_. '[... . p ADDENDUM p, [..I SINCE 1983 WINTER 3: 4 A s e-m 3 f7 [r .s- /g 'u..:. : .a gesIll8 t W,M. '. 2. q....3p -t.;.; 3 3 2;u.3p d:
- 1 '
gr... '!~ 2 l -: CODE ALLOWABLE LIMIT : ie . : PRIOR TO 1983 WINTER, ~ A, DD E,N DU M,
- u...y..
O l ..x. ..u. ai. .. ; aa ;... O O.10 0.20 0.30 0.4G O.50 FLAW SHAPE (a//) a s Figure A-3.2 Surface Flaw Evaluation Chart for Longitudinal Flaws 5 I at Inside Surface of Inlet Nozzle to Vessel Weld 8 (Penetration) w9 I I -- - -' " ~ ~ ^ -~
I 10 years 10 ./
- .t.
..a.
- A-
= UPPER LIMITS OF 7 i ..,. _.. [ ACCEPTANCE 2 +. BY ANALYSIS &N#- a 30 sea 's <M,. :7 .h.2 20 "eaks . 5- ;- - -.2.... - ~ ~ ~ /. -~: .. =.: .u. 6 u. .; :..= x te I . a 2 +. .a...p.u...a. r H-CODE ALLOWABLE LIMIT us g~ y o a.; a. ....p.
- u..
SINCE 1983 WINTER ADDENDUM j ro 3l: 4 h [r .a. .=..:.; '^ ,sa
- l,..
.T..;: .a. ..-;.g..3 g:;... i.. @ gs
- 2..
I -iCODE ALLOWABLE LIMIT _: 2
- PRIOR TO 1983 WINTER i
- .l.
~
- A. D D E. N..D UM.
.... a.:.. g... ...j. .. g an au 3.....- 0 1 i 0 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/fl e s 'O Figure A-3.3 Surface Flaw Evaluation Chart for Circumferential Flaws 5 at Inside Surface of Inlet Nozzle to Vessel Weld (Penetration) 8
UPPER LIMITS OF [ ACCEPTANCE 20 BY ANALYSIS ~l" il. ..}. -}.. s-e-s l .g 18 -j- -t-p-'_y p. g. -{- r- .j.. ...j. 16--c -i - + - - - -- l0 J IAI 3 20 y 'aqs -i J 3Q'y iays" 6 14 i - -I- -I-~ q ..i-WITHIN THIS ZONE THE SURFACE 3 2 t ~ i FLAW IS ACCEPTABLE BY CODE _ + _. 5 .. l.. . j.. q. l l ANALYTICAL CRITERIA (lWB 3600) $ 10 H m-- 1- ---j-- g. g. P 58 .. }.. .q. ...j.. y. .i. g
- -b i.- -i-- ' '..
- +: i i m w u. ..g.. ..j.. .j. ..j. i i -j- --t- -i-
- CODE ALLOWABLE LIMIT AFTER 6
..l. .j. . j.. ..j. - g 1983 WINTER ADDENDUM --* ~ ~*" .j.. eT -f-l. ---;I - j- -I-]p# A-~ ~~' ~ ~ - PRIOR TO 1983 WINTER ADD 4 j ~ ).. I.I-l l-i NO ANALYTICAL JUSTlFICATION 2 I i IS REQUIRED.. ;...;...;. 7 .i 0 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-3.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of Inlet floz7.le to Vessel Weld (Penetration)
t UPPER LIMITS OF ACCEPTANCE BY ANALYSIS 20 ~i ..l..
- b
- u..
i j j 10 years 18 y j- - t- - 2ygpr 1: .1. . p. i. .q. -3Q yea p-
- t -
~~ 16 .. l'.. s -i-- ..,I... -+- +- -.i.. l. 1 j.. 6 14 l j j-- ..j'.. WITHIN THIS ZONE THE SURFACE .y j- -t-- p,. q ..g..j. u 12 -l-I I FLAW IS ACCEPTABLE BY CODE h l ...l. .l.. ANALYTICAL CRITERIA (IWB 3600) l I. _j ,.. l.. n. m a 10 r-g g. -{- p g E$ 3 8 ~ --j- -h - -- T-- ~+-
- i u.
..l, ..l. .[ -l 3 - t-- i 6 ~ CODE ALLOWABLE LIMIT AFTER ..l .j. 4 .g. 1983 WINTER ADDENDUM g i ~_# PRIOR TO 1983 WINTER ADD i e-l- l... l !: l. l. 2 __ i NO ANALYTICALJUSTIFICATION I l i IS REQUIRED I I I O O 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-3.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Inlet tiozzle to Vessel Weld (Penetration)
48/45/10930 1 SURFACE / EMBEDDED FLAW DEM ARCATION LINE. BEGINNING WITH 1980 CODE 0.13 R1 pl ii EMBEDDSD FLAW [(A ':IL:""
- d."
=: 3 7..L:... M. g.,, -CONFIGURATION :/ ; ;il r. II;/ SURFACE / EMBEDDED 4 FLAW DEM ARCATION ..i /: lisi /ii LINE, UP TIL 1980 CODE =a 9 - ! A =1. g
- f
- (
- / i.
- f.
fpii: T. i.9 - "i-i.:f.: lll;i !Pf; Il. *EMBEDDk!D FLAWS 0.10 T:y::
- f
-
- i-f:
PLOTTED IN THIS s iifi =- : 1:he . /,f"f :.
- if' '"
REGION (ABOVE T - e. APPLICAC!.E a//, LINE)
- = i r
- L i/i i ii -
ARE NOT ACCEPTABLE . cT., O'09
- :\\ !
1: i/
- Wh:lik iti!
g 0.08 - bhCi:i if-
- 1.: i mili!= :i!/
~ a/4 = 0.167 ~
- id :i-a/L = 0.083 W +.s **an t
/ :. ...:!!.: fi : - fir- ..!.>< !W h =
- iWii" fn-I t
- _M 'f.:
nFf M:fp a/4 = 0.050 SURFACE' a: 0.07
- /.i g//:i
- 11 ;
- ili' l.:::t -
iil/ .r . FLAWS IN THIS -i[E - M:"!$d [Ld!!* I 5 Mn" Eon"' /:!c / xMA i: 2 l j 'i sunFAct f fygf ..}n - i j'i 0.05 " FLAWS
- !:i :t Md:
ile !!l
- r fih IF Iiin i
EMBEDDED FLAWS IN l Z 0.04 9; }(.yg u!i:
- j fffj
..l : THIS REGION ARE
- j..
'j i ACCEPTABLE PER O.03 CRITERIA OF IWB 3600 ./ 7'- .i' "i- / /[,g!
- b
- i-I:
BELOWTHE APPLICABLE n IF PLOTTED POINT FALLS i y O.02 .3 'f L ai: li a// LINE 7 y f: A ..j ; 0.01 /[. I: 0 O O.05 0.10 0.15 0.20 0.25 l DISTANCE FROM SURFACE (f) 1 Figure A-3.6 Embedded Flaw Evaluation Chart for Inlet Nozzle to Vessel Weld (Penetration) (for both Longitudintal and Circumferential) R e A-29
A-4 INLET N0ZZLE INNER RADIUS (CORNER) A-4.1 SURFACE FLAWS The geometry of surface flaws at the inlet nozzle corner is depicted in Figure A-4.1. The following parameters must be prepared for surface flaw evaluation charts. Flaw shape parameter f o Flaw depth parameter f o where a - the surface flaw' depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness at the inlet nozzle corner (t = 12.17") The surface flaw evaluation charts for the inlet nozzle corner are listed below: o Figure A.4-2 Surface Flaw Evaluation Chart for Longitudinal Flaws at j inside surface of the inner radius { o Figure A.4-3 Surface Flaw Evaluation Chart for Circumferential Flaws at inside surface of the inner radius \\ 1166E:1D/121084 A-30 l
FIGURE A-4.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE INLET N0ZZLE INNERRADIUS(CORNER) 1 880E vitW fop vitw 0197 13210 - CLADDING - i N ) . Di. ) / i r a e n* ...-_--,\\ ) ll
== e- 0197 CLADDING l 30941 l. S*M f 27 01 ) 24 772 % 308 *~ 22 01 += 0 236 CLADDING 9 ~ 27 AS N SAFE ENO to i 3 62
- ILO NOllLI i
88 07 to q of Pin wtLD-
- I isA is2 tvn 25.i i
NOTES
- 1. DASMED ARE A as PAD ADDED AT 907704l OF NOZZLE FOR SUPPORT. AND SUPPORT ITSEL7 2 DsMENSIONS DO NOT INCLUDE CLAD 1
i 5 ! FACE SURFACE '\\W AT TLAW AT j N0ZZLE CORN l(CIRCUMFERENTIAL /\\ 'ZLE CORNER .] 32 17 , IGITUDINAL) / ir i7 \\ 4 l l l i I I i A-31
10 years 20 years _ 30 years 20
- j ;_iq
- g p
UPPER LIMITS OF p ! UIIUI i-1lij ACCEPTANCE ..... J, i..! i.n,,i !H..! :i:.4 i
- n.. llt.1i.! J[J J{}llg-jJ
},. Jlg !Il; IIII I ll}} u up - }. lllj ..n J n...,..,........"" .'l 18 1~ lg'5 clHi lqI ![!)-- ll 'i l BY ANALYSIS l' ' b:t - }}"+;: .it:. !! !!4 L!! !H! !!'H ll!! !!!! !.ll llp . e.
- is 16
' ".::; - ". - 2;:.jh -!I! Hp :f.j: !! : t.i.j; H"i. 9 +i !!:.}! lij! !Fi 8 I:., :["i:! j11 y aa i ! "t I:: i 1.
- J
!!!! !Di :!8! :ih llil iii Illi iy": lin :lii jIt Iu jj,; II,j MI"t t.-Ir ~ ! i: illi jllj *:iji ,- j[ j ji - ..I H N 5 ! I' III i ih.b,,,fN.$.y iI!I - f.if!IN.!.I.I.ii..IIII i l.i i, iif.ij'l.?.((I.In]! un,,ii nr. ni ,I f.iTiti. g 34
- n l ji '...
... $!!.'.! !!N !!!r !!p.ij;; yy j iy!i
- j!! g!; pij l; glt g; jg; g;jij; ;;g g b.:.
i ..! !pl!Ilit ifjj ij7j WITHIN THIS ZONE THE SURFACE ) 12 '- E 3 !!.O li y :: ff lIy i!; ilii ;l!l HF iiii ]j! jy! N .. fI'U"E
- ]"
j j ;;.:: j :*:: .. N [' "" 2 H-1ll Z !P I
- j FLAWIS ACCEPTABLE BY CODE 2ii; E h SI; :;qN!
$; :$ II!! h Ni!.!IN 10 ' iih l'ln.] ! h $ !!!j ANALYTICAL CRITERIA (lWB 3600) !i !!I !N!IIj! liN ut i i 'i ' f ! !! O!' @ tu Uh E UI' IU 'IU IIU II'I IIII dii 90 3: Ei M I !I ll 5iIli II!i lik si --i: ! k !b .i . ITj-
- ,'r!!!!
.!i..::: . n. p 7"- ii "-.g! [ig.- iiJi 3 8 . '.J s' Ni ti i I'!' 5 5. 'N i!!' !it iii! 'fi' iii! !!ij tijitiff iiff -i;h;i'f g g [
- !!: T: ':L Ci l
u.
- ni i:l. iij. i. -
iii:. ', ' A I- -! !I
- g;
.. ! $ 1 '. l!S !i!! !!!!
- h: !!y !!!! !!!! !!:i !:r' jj ilii F ti" i'i? i!!! JJij --IJii !lij iii: i!- JJ.Jlig ;tjJ j;j +j pp;;d.:.?
CODE ALLOWABLE LIMIT .... ? t::
- li En iH;
- l;t 4
- i iti: !!!' ii i !N! ii!- !!!: :lj +!!!i si;:; t,1 :j!!
i!' 'h; r:li ;n- ;:.
- r i
~' .';p :.;; - - - - -"-' "-i M 'i-: :w :
- - ni: in!.+ :
.:. + ! !! lp; ih; p;..g. ~ 2 b -- k 15Il h!N h f!f5h h lI!I !If! !ff! !!Il i}i iii; :id :,. j!! $ $ liii.!!j NO ANALYTICALJUSTIFICATION
- H: liii IIi: 95id !!! !!1 oli iil; ;
IS REQUIRED O i UI; di' UUIII UII II'i I!F N' 0 0 0.1 0.2 0.3 0.4" 0.5 ~ FLAW SHAPE (a//) Figure A-4.2 Surface Flaw Evaluation Chart for Longitudinal Flaws At Inside Surface of the Inlet Nozzle Inner Radius (Corner)
20 !!! !ll! !lll iili iili jt ii ;@ ![:II N"th I II IIi Ill Il.U.. ilI i il iH.HiF.H..R. IHi. l l l !!H H U! H! !Il! Il I !l! !!!! !!ll ll!! !llll ~j ' {l!}.'I If i - rr 9 1 .in i.;!!.iirI :::rt ti t 1:;; ll;1 ;;;- l tt, O h"- !!4 l !! !I'! !H .@!-l id: -' f 1lj!! 'U! !I!! !H! !'l! llll lljj i:d iiij g.:i fi.lijji.i i}J.jjjjj fjjjg1"l jlj[lj i j: p Qy-bi fiii 5, S S % %;. !)i- @.iTii: rir i d g; Ill,t 1;t: i!n L ... I!} -i l 16 . ".::.p NN i-t; Ulj :lij i:. :lg ;; tjg ;[, ;jij j j; 4
- 13 r
c': Ni- . k:.!I.N.[ I. _.jh.l.i M N E N b !.l.h.j hip!' ... 3.hsi.j-f.lil ll;; Allllg ;lg n..j j gg; jij. t, l
- r.,
- :1 g
,u 9 ,. t..
- ggggg !!!! :!!!
us. g.. .I. !I. -s i ga .u; i l! li... jy. .l
- t.p-llll gji lyj l:iii h.jj flit ;(N tih".{; tit;!!i 3
ai-1.:8 ::!! I;g- :::h:d. ii .j i !.i i d.-}.}. . ij ij.. r. :. Ne ..- T
- 1...
du ..e = l g 31ll u.; !g ;j;! t.
- g ![,; !in ;l.1 !;;; jji
- ;jjj
- " g.
12 .g wi . ll.n. n; M).n.. 3)ij.j p o. n ;- 9;;.: "i' pN':liti !i!i ... oj.
- .ji
...) jjfi a
- .. iH.
u r.: . !p.. g .: gg W tu ". jNi y:! f i' NT S lii !!g g; I 19 ihi INi !: = Yi iT .e i -ti;; :!D - - Iiii iTI) lii' 'h' Ci II!: :It a III
- tti iU; lli!
fit; i!:I In-Q 10 . n;: ,:n g,..:n .; g T . un n-i: m .r. 3 o q ? '"*--- UPPER LIMITS OF o, +, ,i n. r in o s a: i:. 7 o a,: ,- i. . -.' J:. l.n en : ;. 3 8 4E
- - f-
.l ACCEPTANCE l ;..-."2.-:+eh r5:
- n u.
- 8:
o o_ ..y !,.i a!.
- ..i H! Hi!
- -!![ BY ANALYSIS " d...i..:fT:.I'. ii..-iii:.-lg-iii.- i;p g.- "i. 5-.F t- =
- p ;;;
y: --:i .. tti I.T.iT.9.":.fi.n Ut 82 u-6 3p;.;q 3:3 ,i .p. ;p; gg ;q;.g; j., g
- q
- WITHIN THIS ZONE THE SURFACE ip: g:.
+ is i!h.Nil jJ.i.it.ti.[jij 5-if. :.lji ;j~- ![,i f.;j %.:i~i, @:m !E E', iii' -iit FLAW IS ACCEPTABLE BY CODE M 9 hji hii ij'. i i' n n, ANALYTICAL CRITERIA (IWB 3600) ... :I!! iti: !!P ii!i !!!! ii!I !!!: !!il !!!i '.i!!'in Uli liii ... !!E .h - 4":n$ di: i; :: s.i m-n CODE ALLOWABLE LIMIT ..o 2 . m. u.. o,, ,.; g; 3;; 3;
- ;;jj j,j; j,9 jjj; g; jjj;,j;, l; 3,;
- !H
...- u!7
- ji lll3 llj; ij;f 4j [ NO ANALYTIC #LJUSTIFICATION
- p
'p :'7tr !!.P,ili !!!i lii: O. ?it i.i:..i-iiii iii: IS REQUIRED .,li ii:1 !!ii ii' !H: iii; !I. i,.ii!
- 'ii
- ii:
~ t 0 0.1 0.'2 0.3 0.4 O.5 ^ FLAW SHAPE (a//) Figure A-4.3 Surface Flaw Evaluation Chart for Circumferential Flaws at Inside Surface of the Inlet Nozzle Inner Radius (Corner)
f 1 l i A-5 INLET N0ZZLE BORE l \\ I A-5.1 SURFACE FLAWS i The geometry of surface flaws at the inlet nozzle bore is depicted in Figure A-5.1. The following parameters must be prepared for surface flaw evaluation with the i l charts. Flaw shape parameters f o Flaw depth parameter f o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 9.04") l The surface flaw evaluation charts for the inlet nozzle bore are listed below: o Figure A-5.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at Inside Surface of the Bore of Inlet Nozzle o Figure A-5.3 Surface Flaw Evaluation Chart for Circumferential Flaws at Inside Surface of the Bore of Inlet Nozzle o Figure A-5.4 Surf ace Flaw Evaluation Chart for Longitudinal Flaws at i l Outside Surface of the Bore of Inlet Nozzle o Figure A-5.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of the Bore of the Inlet Nozzle i 1 ) A-34 1166E:1D/121084
A-5.2 EMBEDDED FLAWS The geometry of embedded flaws at the inlet nozzle bore is depicted in Figure A-5.1. Basic Data: 9.04 in. i t = Distance of the centerline of the embedded flaw to the surface 4 = (in.) l e Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) L = a, Maximum embedded flaw size in depth direction, beyond which it = most be considered a surface flaw, per Section XI characterization i
- rules, i
The following parameters must be calculated from the above dimensions to use i the charts for evaluating the acceptability of an embedded flaw i Flawshapeparameter,f o Flaw depth parameter, A o i surface proximity parameter, 7 o The evaluation chart for embedded flaws is found in Figure A-5.6. In view of Figure A-5.6, similar to that of the beltline, an embedded flaw in i this figure will be acceptable regardless of its size, shape, and location, as long as
- 5 0.125 in Figure A-5.1.
This determination can be made by plotting l theindikationparametersinthefigure. If the plotted point falls below the diagonal line the indication is embedded, and is therefore acceptable. l i t i A-35 1 6025Q:10/121884 + 1 i
I l FIGURE A-5.1 GEOMETRY AND TERMINOLOGY FOR FLAWS AT THE SIDE Vt(W TDP VIEW 0 197 13210 - CLADDING - I e 01s k ( W = 5 354 -..__ _J .... ll -+ e-- 0.197 CLADDING 30 D41 l 6 *-*'l 27 01 28 772 --e i 308 ** 22.01 h
- - 0,234 CLADDING 9~
- 27 48 o N SAFE END TO 3 62 WELO NOZ2LE TO q OF PIPE WELD - 33 'I' "I SAFE END 60 787 16A 102 TYPE Stel
- i NOTES 1 OASMED AREA la PAD ADDED AT SCTTOW OF NDZZLI FOR SUPPORT, AND SUPPOCT ITSELF
- 2. DIMENSIDNS DO NOT INCLUDE CLAD SURFACE E!EEDDED FLAWS AT FLAWS AT BORE BORE l
A - _A l-l 9.04" 1 -(' LONGITUDINAL ORIENTATION SHOWN ~ 5 l l A-36
10 years 20 years 30 years 10 UPPER LIMITS OF r, u. 2 ACCEPTANCE BY ANALYSIS _u 8 / .= f. .:.. =..:..:.u I: ,.p. .r.. . -I! 7 g ..u 2-N 6 e s. I (.. . {,. CODE ALLOWABLE LIMIT w . p r. SINCE 1983 WINTER L, o _) .. ~' j
- .i.
ADDENDUM y f i:. ^ g. m j j I i; u. r .. [IJsW.# i.ii; i.S i.+; .== " l .I. -: CODE ALLOWABLE LIMIT : 2 . PRIOR TO 1983 WINTER .Ig.. I. . ADDENDUM ~ ....:a u3.:. au :.:.. s 0 O 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a//) ?. - Fiqure A-5.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at h Inside Surface of the Inlet Nozzle Bore 89s
10 years 10 l '/;
- I.
') { ACCEPTANCE UPPER LIMITS OF 8 (.21') 's'n' ' s ' ~~~-~ ' ' ~ BY ANALYSIS . 340:y2ar s;. g E. a .u. t. .. u 6 -T-x .g u. [ >L CODE ALLOWABLE LIMIT W co O ~ C SINCE 1983 WINTER . [, a u;. .- :. :+ + 3 4 ADDENDUM 3 .u. [:e ,~sa - l.:... j## e"
- 3..
. a: i.i;; : g... =
- _j'p
-: CODE ALLOWABLE LIMIT : 2 i fADDENDUM ' PRIOR TO 1983 WINTER t t O -. '...:. =.. .:.. =.....:... .,q O 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/f) a k Figure A-5.3 Surface Flaw Evaluation Chart for Circumferential Flaws T at Inside Surface of the Inlet Nozzle Bore 5 0 s
UPPER LIMITS OF ACCEPTANCE BY ANALYSIS 10 g . [.. f V.~ ) 10 ye irs ^ L 20' ye irs .r a - g. 7 + a a 8 ~ - y- .u. ..:..y.. ..:. = =. a.: :.:..: g =
- j 7
6. 4!! :'4 7 . g'
- .....- -.u.
.p. 2:. + u:. +; s 6 / x iii CODE ALLOWABLE LIMIT H 'a. .=. ..a...:..=.. :. ..... a. o. us ~.C ADDENDUM d SINCE 1983 WINTER L, o
- a. +
... _. +. p
- +
3 4 f.r s s-n u. .gW-
- so 88es j, sis
.;.--.i.i ia $: idi.[$.55i .=. .I. .2. r susP** -: CODE ALLOWABLE LIMIT : 2 P-
- PRIOR TO 1983 WINTER
. A, D D E. N, D U M, di ... al: ..u. .,u q 4 .u . au + :. 0 O O.10 0.20 0.30 0.40 0.50 FLAW SH APE (a//) W 2 T 8 w Figure A-5.4 Surface Flaw Evaluation Chart for Longitudinal Flaws y at Outside Surface of the Inlet Nozzle Bore
20 .f ACCEPTANCE UPPER LIMITS OF ... l... I -- }- I-~2' - NEC -- 18 .j. .. j.. BY ANALYSIS 20 yea rs .q.; . 80' yEliA q;- 16 j- :- L- --t-- .. g.. 6 14 j s ..g. ..k WITHIN THIS ZONE THE SURFACE [ 12 -r- .. FLAW IS ACCEPTABLE BY CODE ,r ...j ' 4. 9 ANALYTICAL CRITERIA (IWB 3600) p $ 10 { L- -j- - - r-- - r-g ..j...j. . l.....l.. ..p .g.. 58 - r- .i i t--- ---i- -+- u. ..l, 4 .,j.. .g, .l, i ..I, 6 --t - 3 j r-t- CODE ALLOWABLE LIMIT AFTER 1 .]. j. .j. .j.. p 1983 WINTER ADDENDUM 4 - 4- -b- -M-PRIOR TO 1983 WINTER ADD ..I l-1I-l-i- . 1 2 a i NO ANALYTICAL JUSTIFICATION t-1 i IS REQUIRED -l l-l - l-l ' l - l ' -l - 7 0 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-5.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of the Inlet Nozzle Bore
1 48/45/10930 1 l l l f i f-SURF CE/ EMBEDDED / FLAW DEMARCATION LINE BEGINNING WITH l 1980 CODE O.13 "III .:1 I i EMBEDDED FLAW [II M-lik' 3 FLAWS WITH t 0"12 ~!.::: .,.93- . coNFIGUR ATION, :- ......n " -"". "n' """"*'":i / :
- ifAn... ; =1; fi ABOVE THIS LINE ARE f"E
- A 0.11 I ^ N -~ !N I E E'5F iii fi
- !=4iY Ei
!!/:lis !!i!!!. E/;i di: N SURFACE / EMBEDDED i i 0.10 -rjii ?! illi : FLAW DEM ARCATION illEi " if:ii :.ii : =.- ! :!!/ iE u-ii[ LINE UP TIL 1980 CODE n.- I' NE E .T. O.09 -iii'-
- \\ i
/: if !J:/":!!!-- iti!
- lii a
7 k-Mi!NE ! 0.08 5
- ****** *~
'/ !il A!!"+ "i" i1 ' F' iEmi"fiL iw- ' tg.fu~":s i nif -il. ":aa. n;:- w . ' ' itinii 0.07 SURFACE =4!if.i li.. i., iiff !!!T* :/.!
- -s:
4 z %WS IN MIS _MN; sIhb '.dII E $i H 0.06 "* REGION MUST BE :f.p# ../
- 4 9
- '3"
~ ! :~ g:: .i.i CONSID E R ED I" M J' g 'li SUR F ACE [ ijff. [dH Mi:l[ ri:j:- 0.05 -i FLAWS ma i:tn
- -m -
/*. f i/. iili: nin .l t n! /: # i 4 ALL EMBEDDED FLAWS Z O.04
- =i: "i!: f. ' f:.:4 :
. }:.
- fu l;l.::
.ill-(ON THIS SIDE OF [n . i:/ f up: cl 2.. DEMARKATION LINE) 0.03 7.! - ARE ACCEPTABLE PER . f. fi
- it-
..!r "i - .I-n; n;p
- r :
CRITERIA OF IWB 3600 7j [:"
- f
[jE "!H AS LONG AS 2a 0.02 ..!. \\ .' iii t:,0.25 Y / !!!:!:a n i.: t !ib 0.01 f[.
- li; iip. - HFj"
.i :.
- .i::
{' 'I 0 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (j) Figure A-5.6 Embedded Flaw Evaluation Chart for Inlet Nozzle Bore (for both Longitudinal and Circumferential Flaws) l A-41
A-6. INLET N0ZZLE SAFE-END TO N0ZZLE WELD A-6.1 SURFACE FLAWS The geometry of surface flaws at the inlet nozzle safe-end is depicted in Figure A-6.1. l The following parameters must be prepared for surface flaw evaluation with charts. Flawshapeparameterf o 1 I Flawdepthparameterf o where a*- the surface flaw depth detected (in)
- 9. - the surface flaw length detected (in) t - wall thickness at inlet nozzle safe-end (t = 2.655")
l The surface flaw evaluation charts for inlet nozzle safe-end are listed below: o Figure A-6.2 Surf ace Flaw Evaluation Chart for Longitudinal Flaws at i Inside Surface of Safe-end of Inlet Nozzle o Figure A-6.3 Surf ace Flaw Evaluation Chart for Circumferential Flaws at Inside Surface of Safe-end of Inlet Nozzle o Figure A-6.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of Safe-end of Inlet Nozzle o Figure A-6.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Safe-end of inlet Nozzle i l i i i ^ 1166E:10/121084
, A-6.2 EMBEDDED FLAW The geomtery of embedded flaws at the inlet nozzle safe-end is depicted in Figure A-6.1. Basic Data: 2.655" t = Distanc'e of the centerline of the embedded flaw to the surface 6 = (in.) Flaw depth' (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) L = a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. "The following parameters must be calculated from the above dimer,sions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o Surface proximity parameter, 4 o The evaluation chart is given in Figure A-6.6. In view of Figure A.6.6, similar to that of the beltline, all embedded flaws which meet the criterion < 0.125 will be acceptable regardless of their size; shape, and location 6025Q:1D/121884
I e FIGURE A-6.1 GEOMETRY AND TERMINOLOGY FOR FLAW 1 TO N0ZZLE WELD l sesview l l TOP view 0.137 133 sO. I CtAOpemo - g"7 / t j, L.... - I e.
- - 0.197 CLADOeNG l
( 38 941 27 01 0 a4'773 ~'* I 22.01 I W " l
- = 0.330 CLADOtNG i,
h27 48%I 3 62 l SAFE ENO TO 70 ( OF PIPS WELO- - 33.071 -- _f WELO NOZZLt l = SAFEENO L 80.797-(SA 182 TYPE 316) NOTES-
- 1. DasMtO AnEA 18 PAO ADDED Af SOTTOas OF WO2ZLE FOR SUPP0af. ANO suPPOaf itstLS
- 2. Om8ENSIONS DO h0T 8NCLUDE CLAD l
SURFACE FLAWS AT SAFE-END / w
- 2. 6'5 5 ',
EN EDDED FLAWS AT l SAFE-END i N i A-44 i
10 years 20 years 30 years p UPPER LIMITS OF 20 ACCEPTANCE ..h. .]. BY ANALYSIS / .8 + 18 --i- -+- -- i. - !--- - L-- l / .j. .l. 1. - i r- ---+I..-- 16 1 ..i.- 8 i j i WITHIN THIS ZONE THE SURFACE g 14 =t--- -- r -- -t- -~ FLAW IS ACCEPTABLE BY CODE s r. i -i - --j - ANALYTICAL CRITERIA (IWB 3600) r .-l--.- m 12 -.4.-.- ..F. - y -- j ---i-.-- --p-. z 4 g ..j. i ui a 10 - - :- - --i- - -F-- - + - - r l 3* g t E 3 i ^!' ~!' ~!~ SINCE 1983 WINTER ADD
== w .4 . q. ... 7.- 8 u. E .i.. 3,. I
- r t-2 6
-j-- --l-.- -- i---- ---:--- 3 -p-g .W 4 ~ PRIOR TO 1983 WINTER ADD . i. l i, :l- -l-I.. 1 NO ANALYTICALJUSTIFICATION 2 - i - l - - -- - ' IS REQUIRED . !... l. !..!. .!....!....I.. !. I o 0 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) a A a. Figure A-6.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at 3 Inside Surface of the Inlet Nozzle Safe-End to Nozzle Weld o u
10 years 20 years 30 years 20 UPPER LIMITS OF 6 .8-. ACCEPTANCE l !~ 18 --hl.... ..j.. BY ANALYSIS --r - --l -- - ---! l.. 6 t.- t t -]-- Lr-- -- l-- 16 - -;--. + i ..t. I t .t. .t.. l WITHIN THIS ZONE THE SURFACE I l i6. 14 ---j- -. --p - -i- -. -j --. -+- .,- -l~-- FLAW IS ACCEPTABLE BY CODE I i N. 1 -i- -j - ' t. - ANALYTICAL CRITERIA (lWB 3600) 12 - --e-- J--- - - - - --i-z --r----- ..t. } g i uJa 10 -i- - - + - - - + - - -i - - x t '?' 's Y 3
- - SINCE 1983 WINTER ADD 5
8 - + - - -i-- +- - - - - p u= ? .? .8
- 7..
-k. -- $- - A-- - -, - - - + - - - - + - -- A 6
- g /--
I t t i 4 ~ PRIOR TO 1983 WINTER ADD e . g p
- m. -
.j..- l...,...- l i... I e-NO ANALYTICAL JUSTIFICATION 2 we ~ IS REQUIRED y-j. I i 1 .l. o O 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) a 2 Figure A-6.3 Surface Flaw Chart for Circumferential Flaws at Inside 3 o, Surface of Inlet Nozzle Safe-End to Nozzle Weld 89 u
20 UPPER LIMITS OF 8:
- l--
I' IC. year s BY ANALYSIS ACCEPTANCE l j -./}.. 18 .l. p- ,i -j-- @C ypt s -~ . g.. , g.. ..j 3c.ygar s-l-16 i 9 -- . _1.. .g ..l. 4:.. 6 14 -- -t-q ..l.. WITHIN THIS ZONE THE SURFACE
- 12
... l... ' l? ..! l!.i FLAW IS ACCEPTABLE BY CODE l ANALYTICAL CRITERIA (lWB 3600) $ 10 -b- ---f--- 5 --- j j g ..l... .j. ~ ? 38 1, I'.
- t. --
a u .. j... ..l.. ... g.. ..l.. . l.. . j.. 6 3 .l -l- --j- --i-- -f-CODE ALLOWABLE LIMIT AFTER ..l.. ..l - ..g. .j.. 1983 WINTER ADDENDUM 4 _I I PRIOR TO 1983 WINTER ADD ,.[ . g..l , l
- g..
i NO ANALYTICALJUSTIFICATION 2 j g IS REQUIRED 5 I I O O O.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-6.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of Inlet Nozzle Safe End to Nozzle Weld
20 .. l... 'l. ACCEPTANCE UPPER LIMITS OF ? I ..j.: f BY ANALYSIS i l ld I3a ts 18 I 2d yeals t. -+- i i t .i.. .g.. ..j.. 34~'y @' ' j' - j- .l I-16 I. I'- -i-
- ~
8- ~~ . t... ..l. 6 14 ..f. .h.=- 5 4-l-- - " -- .!.. -~f..~..h q WITHIN THIS ZONE THE SURFACE 'I I 1 I l. i " 12 ^ FLAWIS ACCEPTABLE BY CODE f 4 i i l l .l. ANALYTICAL CRITERIA (IWB 3600) --h - H- .t. $ 10 ~ t-- I . 3.. ... p. g. g .,i.. l a 58 H- -i-- ---!-- - -+- r- ,+ m m i i i ..l. .l.. ..l.. ..i, +--t-- j j -t- - -i-f -i- --i~- 6 CODE ALLOWABLE LIMIT AFTER ..i. j. .i - .; ~ +M 1983 WINTER ADDENDUM 4 L PRIOR TO 1983 WINTER ADD i-i .:1. l . l l.. I 2 _. I NO ANALYTICALJUSTIFICATION i i IS REQUIRED.. I I I 0 O 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) Figure A-6.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Inlet Nozzle Safe End to Nozzle Weld m
48/45/109301 SURFACE / EMBEDDED FLAW DEMARCATION LINE, BEGINNING WITH 1980 CODE 0.13 i:iili? - ' i:
- til
- .
$dF EMBEDDED FLAW. [ h. I"""' - FLAWS WITH 8 =.. !L.3...
- %.. 3. _,.
. con Fi.c.u..a., A...r.s.o...N ;/- ..;j gi;
- i/,
ABOVE THIS LINE ARE 0.12 =:. 4 u; ;, ;;y ; - ~ -... _
- -~-
si ji: NOT ALLOWABLE .f
- h
. a;.,;:;; -.f;:.g
- . ;;; 1g7h i g;.
.ii 0.11 iiii r: is nE !!T ~ E=_.. ~ = 1~a u-n~ 'a=: : :Dr:! if f N SURFACE / EMBEDDED i=i llE i FI!
- pig f
- E i- <! "-f;j;:.:! sii i" FLAW DEMARCATION
- i
- :isi' i~Ei
~ d# uidii 2 fii!_i !@ !:!i/MEE-ilisE LINE UP TIL 1980 CODE !Ei!! ' i L -i II: 6 "i [i !E i~ /i!EIi!!55 !5:I 5- .T. U'U' ill'. Wk : /=c/ni =i: :i!!# 2ii ii=iin mih!! 1 ~ Eti
- I :iW
- d MiE}ilii
- li[:
~54.!-!5i}!5 Iif::i i 3 0.08 .j
- ,i.j;;== gg ;;g,p;;;
i4g
- 5!!!F /ii I ~ !. :2 t.ni ("d i=iiiB/~..i{:"....'... :
""::jd i Eipf ~ 0.07 SunFAcE: 2.'/ E:1:i= ; i!t:...t;nt:- T::1 ir':1 f.:
- -di!
i!!IE!
- u --
.iFLAWS IN THIS d![!i; !Ni}*i[IElf
- 52NNiiU Y Zs 0.06 InEcioN MUST BE fgi gf-.; ij4:":
n;i';; _ :In : :];! :- ' " -:idi:1 0 b
- .:: CON SIDE R E D
~ h 'iiSUnFACE [i}!jji((%i "ij{" ~ !:(. ii;i};; -#ii{Fii'- hi Ye$$I:t---. --fi ii.if il!!!.-- !!!!:- niiii: - liil' ihii finii5i
- E i
i:1
- u..l.u.. _h.iin,(f[.: i sf!:i: rpii
~~ p: niig i tiiil : t!.is ALL EMBEDDED FLAWS
- - fu ; L=.
- .4.. i -i.hibi 5iji.:_... i.i.ij:.i.
(ON THIS SIDE OF DEMARKATION LINE) 1:i ..r/ --f:== t ii: i l' t: - ARE ACCEPTABLE PER 0.03 ,. ;y, 7 7,
- ... ij;p=
, g. _ig;;;; ;, . 3:y
== CRITERIA OF IWB 3600 m!: ! fi/ -iiii
- "ii
- !
iM- <! Ei 2 AS LONG AS ,,a 0.25 'ti ff =i)!!#! :i":ii ~ !!Eiii-!?iTi: "4": t [Y ~ E 0'01 g. ~iili.
- i :-
..l;i:.
- d=
-#fi !!h!= r.
- ige ii y
.i:!p g4I g o 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (h Figure A-6.6 Embedded Flaw Evaluation Chart for Inlet Nozzle Safe-End to Nozzle Weld (Longitudinal and Cir-cumferential) A-49
A-7 OUTLET N0ZZLE TO VESSEL WELD (PENETRATION) ORIENTATIONS NO. 1 AND NO. 2 The analyses of the outiet nozzle to vessel weld showed a very complex stress state in this region. Consequently two separate sets of evaluation charts were constructed. The geometry most nearly corresponding to the angle of the indication should be used, or if there is some doubt, use both sets of charts, and take the most limiting result. A-7.1 SURFACE FLAWS, PENETRATION, ORIENTATION NO. 1 The geometry and terminology for surface flaws at the Outlet Nozzle Penetration No.1 is depicted in Figure A-7.1. The following parameters must be prepared for surface flaw evaluation with charts. Flawshapeparameterf o Flawdepthparameterf o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 11.05) ) The surface flaw ev'aluation chart for the Outlet Nozzle Penetration, Orientation No. 1 is listed below: o Figure A-7.2: Surface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws at the inside surface, Outlet Nozzle Penetration, Orientation No. 1. I l 1166E:1D/121084 A-50 j
1 o Figure A-7.7: Outside Surface ~1aw Evaluation Chart - outlet nozzle Full penetration, orientations 1 and 2- (longitudinal and circumferential) A-7.2 EMBEDDED FLAWS, PENETRATION, ORIENTATION NO. 1 The geometry of embedded flaws at the Outlet Nozzle Penetration, Orientation No. 1 is depicted in Figure A-7.1. Basic Data: 11.05 in. t = 6 =. Distance from the centerline of the embedded flaw to the surface (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) 1 = 6 Distance of the flaw to surface. (in terms of wall thickness e.g. = 6 = 1/8 t, etc.) a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o 6 surfaceproximityparameter,{ o Evaluation chart for embedded flaws: Figure A-7.3 j i 60250:10/121884 A-51
1 A-7.3 SURFACE FLAWS, PENETRATION, ORIENTATION NO. 2 i The geometry and terminology for surface flaws at the Outlet Nozzle Penetration No. 2 is depicted in Figure A-7.4. l l The following parameters must be prepared for surf ace flaw evaluation with charts. 1 Flawshapeparametersf j o Flawdepthparameterf o where a - the surface flaw. depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness at beltline (t = 10.9) The surface flaw evaluation charts for the Outlet Nozzle Penetration, Orientation No. 2 are listed below: Figure A-7.5 Surface Flaw Evaluation Chart for longitudinal and o circumferential Flaws, Outlet Nozzle Penetration, Orientation No. 2. o Figure A-7.1: Outside Surface Flaw Evaluation Chart - outlet nozzle full penetration, orientations 1 and 2 (longitudinal and circumferential) A-7.4 EMBE00E0 FLAWS, PENETRATION, ORIENTATION NO. 2 The geometry of embedded flaws at the Outlet Nozzle Penetration, Orientation No. 2 is depicted in Figure A-7.4. Il66E:10/121084 A-52
Basic Data: 10.9 in. t = 6 Distance from the centerline of the embedded flaw to the surface = (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = 1. Flaw length (Major diameter) (in.) = a, = Maximum embedded flaw size in depth direction, beyond which it must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o surface proximity parameter 6 o Evaluation chart for embedded flaws: Figure A-7.6 6025Q:10/121884 A-53
FIGURE A-7.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE O WELD (PENETRATIONNO.1) M ./ l / W - ' 4: I ~ '/ CIRCUMFERENTIAL LONGITUDINAL / l l t / / l l k11.0s / ' 11.0s i 4? 244 13199 TO - immEn R ADIUS wisstL ( IConNEA H.. / a 7 m I io. - t);<.) 1 l l n o's l.; i \\ s. b
- = NCZ2LE TO W
G ..' s. vt&>WELD Ji '- ,N' [ 43 327 0 24" CLAD (TYP ) / j / 34 311 l ~
- w,..L.
"3 "[" >a-- s
- h,,,, 1
....~o ro Y. NOZZLE WELD 0 g 07 PtPE wtLD 34 262 .S.A.r t.(,ND i $ tvP ai., to 787 NOTE S 0 OM
- ho 2LE F SUP ORT NO SUPPORT ff8 ELF 2 OIMthss0NS Do NOT INCLUDE CLAD l
~ A-s4 t l l t
I FCG 10 I .10 years . b:-.[.20 years -+- UPPER LIMITS OF - 2V 30 years ACCEPTANCE - + A..F... AP-BY ANALYSIS .. _JV... V ~ h
- g 9.
7 i!!!
- .....- =
g: .-.p. . :. w.:.: N 6 2 - - -AV pE I ...g. g...: M 2 :.. [ di! i J CODE ALLOWABLE LIMIT 1"n m N". p C SINCE 1983 WINTER ...: p 4 o .j 3 2.: .g. ADDENDUM M 3: 4 c p.' tii P .j u. p 2 WsIll ... m. P . s'8 ass .[- r, .. p . _. J..i .....j p ~ v" l -? CODE ALLOWABLE LIMIT : 2 p peuM
- PRIOR TO 1983 WINTER.
8 1 .,l.. .' ADDEND UM ~ + .i. g _3.._ .a.
- m. :..
.;._ :g g.. 0 O 0.10 0.20 0.30 0.40 0.50 FLAW SH APE (a/f) A A T O Figure A-7.2 Surface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws at the Inside Surface for the Outlet Nozzle to Vessel Weld (Penetration No.1) m
48/45/10930 1 SURFACE / EMBEDDED FLAW DEM ARCATION LINE BEGINNING WITH 1980 CODE 0.13 M-'l EMBEDOED bW ii[ t-. Mi- ~ ! coNricORAT80N ~~ ;: '~:::; 4 SURFACE / EMBEDDED f' ~~3 ~ ~ " " ~ " ' ~ ~ ' " 0.12..:i+ /*N : .m /.'E-- FLAW DEMARCATION "l - /:. !!M:i - i i H LINE, UP TIL 1980 CODE .:ii3
- f
- ( j.- '.~ p EMBEDDED FLAWS i 0,11 g;' . :1. .. :fi= i:l'"" :jf-
- N
.. f..
- q-
- 7.. -
!/.:..I. PLOTTED IN THIS / H REGION (ABO
- ip:f.:
O'10 j iT;: APPLICABLE a/ LINE) 0.0S ~"ii:ili: i[ .1 . f: fTh@ ARE NOT ACCEPTABLE . p 7 3: 0.08 I # 3 g4.,s *g a s. /:! i;h: ff. i;iii l'i - . i.. fiHiirf:i l.: .j ; fg@i nig.iji: 3;. i:l:: Hj:- g 0.07 _q. juR(age jj .f, un ..: i a/t = 0.167 ha*ou'"u'u"ssE 5 0.06 8 a/L ' = 0.100 C iicoNsloERED /:! // i I-- g jSURFACE / i.lj- [p7
- .l j ':
0.05 gtAws 7 $ 0.04 / fi: i~ - l' iil:: T* EMBEDDED FLAWS IN
- j.: f:-i f...
- H
. jg
- ]
THIS REGION ARE l: jf p : ;~;;J _ g ACCEPTABLE PER 0.03 CRITERIA OF IWB 3600 /:_.b' ~ -t
- li!
BELOWTHE APPLICABLE / 3 IF PLOTTED POINT FALLS / ' Fiii 0.02 ,j
- .j:
a// LINE 0.01 ~ 'r v- ..W j;. I[...;;t - l =1 : 1.: 11 .r - i j j- .d. i 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-7.3 Outside Surface Flaw Evaluation Chart - Outlet Nozzle to Vessel Weld (Penetrations 1 and 2) (Longitudinal and Circumferential) A-56
a I l 1 I i FIGURE A-7.4 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE OUTLET N0ZZLE TO l VESSEL WELD (PENETRATION NO. 2) \\ / i I l ~ , m,. ) 0, ( l -=, - / CIRCUMFERENTIAL LONGITUDINAL I I / /* / 5 W ' 9.02 9.02 kW I 47 244 i vUs'aYk '" *1",",^,D'u s t l "-}, W4 a in -. t b.) t 0 016 i '.' s l / \\ VE ESEL WELD -No!!LE TO I ~43 327 0 24" CLAD (fYP4 s v.n.,L, ,,1._.__\\ j ..L jW 8 h l D/k l q:r,it,:a TD ( Of PIPE wtLD.a i 9.02 34.252 $AFE END l s5A 182 TYPE 3166 to 797-
- NOTES.
- t. DASMf D LINis REPetSENT PAD ADDED Af
. O M 0 NO 2LE fon SUPPORT. ANO
- 2. DiMf NSIONS DO NOT INCLUDE CLAO 4
A-57 i
) 10 10 years
- a..
. h..I 20 years - UPPER LIMITS OF 49 30 years ACCEPTANCE gj[dQ BY ANALYSIS . g f.. .(. .p.5:. .$j6b g:...
- u..
_.: 4.:. g.g:. A ae
- 7 i!!!
7 ..u : ;. .:.ui 2.. .u. 4.. 7
- u..: ;
~ 6 [ @-Y [ '~ ,1 ... p' g 'i!! ~ ~ CODE ALLOWABLE LIMIT z (n mo -/V co MC SINCE 1983 WINTER
- 2..
j a :.:. B; 4 A Ja_ ADDENDUM u [' g ~i- ':ii
- r.
fr..:. .b. .. j,,.
- .
- .;;,% uu..i! :1
_...u. 1 . CODE ALLOWABLE LIMIT;
- PRIOR TO 1983 WINTER
.!i ~~ ~~ ! ADDENDUM .:p. 4 i .l. J.. d :.g.. ..a ,.-g 0 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/f) a A Figure A-7.5 Surface Flaw Evaluation Chart for longitudinal and Circumferential 5 Flaws in Outlet Nozzle to Vessel Weld (Penetration No. 2) 9, o
1 4s/4snosso.1 i i l ) l i i SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE O.13 ~:i
- i.
l:! EMBEDDED FLAW ...............[ ~ '- -$. '.f *. C ~ ~ M T.'... .'N SURFACE / EMBEDDED 0.12 - fII:' ~3 .p
- CONFIGURATION :-
1 'I :~ FLAW DEMARCATION /r ishir i ;/i LINE. UP TIL 1980 CODE 22ir ./% h m E !!s
- /-
i / r 1 "f .~ =- n,3 3 liisii J.' i' i#i i:/:: !?/:t fi, _ a/4 = 0.167 = i=ijjir i .y -jii / iii--i fsgM:j nGi
- 2..j f.i _-
- if4i i3 EMBEDDED FLAWS t
.~ f:n - igii: Ii!qi;. \\ PLOTTED IN THIS ii:i .)'g ; fi 0.09 ~~
- i:u :
=: , :/,i !::::;: J;J".i N REGION (ABOVp sl .[i. !) APPLICABLE a/L LINE) i h 0.0B
- M
~ ~ /- .i !Ei! !!: ii i i M ARE NOT ACCEPTABLE 3 .g ,s eeao "ii / fiai; l;jii ... 14 0.07 iuRiACE: b u. ..... _. FLAWS IN THIS.i [.. "f_# :"- - m: - lit ai n m: iii/ inp
- /
---.- a/4 = 0.050 Z i F: ..lisi i:I!: s 0.06 TREGION MUST BE
- j. -
O lCONSIDERED i:- j 'iSURFACE f.j.ji: - [iji: itin 0.05 +f.LA WS,,
- +,,
u. ,, f,,
- if l
,,,a
- t.
. s:- i i / f:? 'l. + EMBEDDED FLAWS IN Z 0.04
- i!a (.:l f
{.. + THIS REGION ARE 9:::..jj 7'. ACCEPTABLE PER ~ 0.03 CRITERIA OF IWB 3600 ~/ /. iir 8~ ^ :"" IF PLOTTED POINT FALLS // -Ii BELOW THE APPLICABLE 0.02 R]ff l:- i;j:i.. y a// LINE
- 3 j
i i. ..j.. nt;'i' 0.01 // i-li.. [
- -l -
j: 3: ~ 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (8) 1 1 Figure A-7.6 Embedded Flaw Evaluation Chart for Outlet Nozzle to Vessel Weld (Penetration No. 2) (for both i Longitudinal and Circumferential) A-59
20 ..[.. ..,h E: ..l. .q ..l. i-18 J '.f .. +... p UPPER LIMITS OF ?l! ~' {. y = . g'. ...I.. l: 16 / ...l, g -- ACCEPTANCE $ 14 .. y..
- y...p BY ANALYSIS
.[ q di: 4 p; ' ....f }. 12 WITHIN THIS ZONE THE SURFACE 4, FLAWIS ACCEPTABLE BY CODE g
- i. -
s l; ANALYTICAL CRITERIA (IWB 3600) ,; ~ ~ ~~ ~ / i '10 yea r Q 10 g !. - y V.,. 20 ylea rs{ g +: A + --t-h - 30 5 8 ypars;p- ~" o m e 2 6 .I.
- j. j--
i- ~~; CODE ALLOWABLE LIMIT AFTER .e ..l ..j.. ..l. I 3._. ..F 1983 WINTER ADDENDUM 4 . I_ __..;_...._i. g_ I t }
- .. j...l.;. j.,gl
- g:l... [..:.;......l.
} PRIOR TO 1983 WINTER ADD . j.. NO ANALYTICAL JUSTIFICATION 2 ] i ..f,... IS..R E..Q...U I R...E D.. .l
- 1..
0 l l...... ;....I t n L 'l l -l l ! l.I'l-0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-7.7 Outside Surface Flaw Evaluation Chart - Outlet Hozzle to Vessel Held (Penetration No.1 and 2) (for both Longitudinal and Circumfereattal)
l t A-8 OUTLET N0ZZLE INNER RADIUS (CORNER) A-8.1 SURFACE FLAWS j The location of surface flaws at Outlet Nozzle Corner is depicted in Figure i A-8.1. The following parameters must be prepared for surface flaw evaluation with charts. l Flawshapeparametersf 0 l l Flaw depth parameter f 0 where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 17.30") The surf ace flaw evaluation chart for the Outlet Nozzle Corner is listed below: o Figure A-8.2: Surface Flaw Evaluation Chart for longitudinal and { circumferential Flaws at the outlet nozzle inner radius. l \\ l A-61 1166E:1D/121084 l l
. ~. _ _ 1 1 '/> 3 / / / .l / I ) / 47244 / '\\ m eno TE!**' i .,,,,,,,,,v8 i econ =en, i .,2,7, ,o* ~ o 64 CIRCUMFERENTIAL FLAW r ,,t,. M... p t .N i s N.' W sg,,
- h0ZZLE TO 4s WESSEL WELD i
- 27
_---j s;. _ _ _ o u Ct.D avPi j> y 'V ,,,,,3" l 2" 2e 6 / i } l 2 7,.--. l$ l o o Sase s=D ro g .g mozzta wtLD .n. -.... l le......D l sa ssa rvPe sise sa ns 9 l \\ =ori. LONGITUDINAL FLAW
- 1. DASMED L8ht8 Af PAESENT Pa0 ADDED Af SOTTOM OF NOZ2LE FOR SUPPOAT. AND
$UPPORT OfSELF
- 2. DIMENS80NS DO NorINCLUD6 COD
=%.e 1 i M FIGURE A-8.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE OUTLET N0ZZLE INNER RADIUS (CORNER) I I t A-62
20 '.!lililliliiliiliiiiii;jj jr jj :i2 - ff fit If f {f. if f f f( [!ll r "" j !! "I! H ! 'IU !! i i I! Illi li!! llll lill i j [ l U " f I (( '...(({}.
- .[!"!; ::::3"1:::::-
liUl l l l l 1 tH":
- !p
!;:: H. p ;;:
- r i t-t i
t m. ll 18
- ili...
- li: ":- :i -
J I; .f. ..o e n ini,9 *ibu"I!- i!li lui i!! !!!! h
- 9 i * '. 'E;.
.!N ll0 QU h.' 1pff 9:
- c..i-
- l"; ;--- ;' - h. r: r:
- Pt d*- n! lif: :fji 7;r @ IJii if: f!! 'II **r M
l.! o- !! I 'i illi til: i ii 0 -*- UPPER LIMITS OF i.: 16 th: .: :ty !!!! !!i! :i!! Hil iii: Ill! ilji illi ill': :iji 9 h: :.'g! iiii i}i; itir h' ':itit Fi; jjg4: rijp i!;.; *I!I-I!!! Illi lh; lili irt .i z x :e jj jjij j!Il %:,j$"{}h" M ACCEPTANCE ty... nr iiii } ti$ BY ANALYSIS -is ~
- vt dr g 14 m
,r:: -.i..q, m. I i., h.,1 lj,, 93 :.. - rp l.lg. gg ;g; L;:: gW - y c- .. ".u..i !,il -k;
- -l "
- +p;
.i l
- s....:H.. i.
i...: ,. g,. . i.i. Alj E.,g; gi gi.,. h,.. g.,i n. 4:- -0;l Jw %-y;,p"....,n; m-n. - go m h--d!: s -r rr..A" hit : fit WITHIN THIS ZONE THE SURFACE 8 x- = a . i t.i!al gg .x. 12
- i!! ;!H.i y,g 1in +.%. i Qi!' :Jii g:i y-##
FLAWIS ACCEPTABLE BY CODE m m o..u e :il!8--':i.1!ANALYTICAL CRITERIA (IWB 3600) h>- r g ...r fi;: ' gji fr:n..
- i:- :r i
- I'!lih :li! lili riii iii; (iil d.f HilWM@#' ' r: t 4 r 'Jir --n n. . - - - = ill
- 'In 'tr! L- !!"' 'iit r
au = I Q 10 . g..,.;;.q 5u h7;@..ff14!fi!.. e. 3: dr[ h 4! E! Ei IN; IM @! Nfih 3, ; un :n' i. i ! :j-! H:j [jtj ljji h.:h..p hyh$ af .h > i:. :,;.
- y M
- ".
- ;r
..6 .:.i . ! lis; .j 8
- st
- ..
N:. ,q-o ...."- "-in
- ip-f :5
% iti-Ph[Hi; i l' iiii rjitg
- t:
- /. ; f. .t.
- q. ;..q l!.,
. l:. : d,k".- t * "-: fittll7 1jri rig ;j;j y!. :Flitijn f;li@r"gH .Il. i: 1:. a ?. i: - l tp. .n-.u
- ll p. :10 I;:
6 i.i.ii.fi.li#.ii.iii....ii..ji ;i+. :iti..j;i.i.;,i,M,; 0:4!* iii'..M 3, p
- p3 ip, ;;;; ;;g 3p !,g 33,9
- t
,;g 3" CODE ALLOWABLE LIMIT + 4 Wk.. i i+ r.i..t n ,n. n;. ..y 4 . g .r. i -gd :;!! ? ..! iiii !!! ii ! !!!! e.i "..!!iii: illi sii! !n iiii iiii 4i,h iii: lili.:.'.':.l!i:i-g6 -h :r.. r-- o.. o., .....m 2
- !
- @ l;.! ; iii: iiji ;iii iiji ili; ijji jQ....jil i@ :iii !i:
h i!! uli !Hi iiii.hj NO ANALYTICALJUSTIFICAT:ON r- . jj ;;. ii !i..liibi fiE ii:! !!!: iiii h,i: ...,j i:i:. ili:
- ii; iiii iii.
r:g..l:rI !i ' !!Il !!!i ii
- i' iii:
i t IS HEQUIRED 0 0 0.1 0.'2 0.3 0.4" 0.5 FLAW SHAPE (a//) Figure A-8.2 Surface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws at the Outlet Nozzle Inner Radius (Corner)
-=. \\ A-9 OUTLET N0ZZLE BORE NO. 1 i Note that evaluation charts are provided for two locations along the bore. For an indication between these two, interpolation is allowed between the two applicable charts. These charts should be'used for any indications discovered at this axial location in the bore, whether or not the section is reinforced for support. A-9.1 SURFACE FLAWS The geometry and terminology for sur' ace flaws at the Outlet Nozzle Bore is i depicted in Figure A-9.1. The sollowing parameters must be calculated for surface flaw evaluation with c ha rts. 4 Flawshapeparametersf o Flawdepthparameter( o where j a - the surface flaw depth detected (in.) i - the surface flaw length detected (in.) t - wall thickness (t = 12.049) [ thickness t = 10.6" away from support pad] The surf ace flaw ev'aluation charts for Outlet Nozzle Bore No.1 are listed below: o Figure A-9.2: Surface Flaw Evaluation Chart for longitudinal and circumferential Flaws \\ ll66E:10/121084 A-64
A-9.2. EMBEDDED FLAWS i The geometry of embedded flaws at the Outlet Nozzle Bore is depicted in Figure A-9.1. Basic Data: l l t 12.049 in. = l l 6 Distance from the centerline of the embedded flaw to the surface = (in.) [ base metal-clad interface at inside surface]. Flaw depth (Defined as one half of the minor diameter) (in.) a = 1 Flaw length (Major diameter) (in.) = i Maximum embedded flaw size in depth direction, beyond which it a = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flaw shape parameter, f o Flaw depth parameter, f o surface proximity parameter, 6 o Evaluation chart for embedded flaws: Figure A-9.3. 60250:10/121884 A-65
1 i ) 1 1 FIGURE A-9.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE OUTLET N0ZZLE i l i 12.049" 12.049" l 0 / V 3 lI I i N 3 h a CIRCUMFERENTIAL LONGITUDINAL w 47 244 12.049" l 'il!!L i [- l~~1","^o'u' ^ o <"q, o >.. l ..i.ff i \\ h 1 \\ NOZZLt to ,,s
- N WESSEL WELO 43 327
.J 0 24-CLAD (,vP 3 ,),. ,,,. a "*. wb io.n....L s 2* 3 i. h A [ iii PPP...L..u . l,,, yN....N.o.,L. o ,,,,,N,,,,,,, NOTES 1 OASMED L,NE3 REPRf SINT P&O ADDED af .OTTOM 08 NO2ZLE FOR SUPPORT. AND SUPPORY IT5 ELF 2 DiMEN5#0NS DO NOTINCLuDE CLA0 = 't 4 A-66 l
10
- t..:
i' ': 10 years: f. ~.. U,. 8 - - - / UPPER LIMITS OF . /. '. - 16 lit ar..Eh ACCEPTANCE j /. - j-f ~ ~"' ~ BY ANALYSIS 3
- :. /.:.:, '/ :
4: / -. g .. + a.: ~ ...p. x 6 [ . / / p [ / - [' 'i!! CODE ALLOWABLE LIMIT e u8 . /_ j NC SINCE 1983 WINTER w a ADDENDUM /.y 3 4 6: g.#
- !ii
[ g - u. w~a8 ... g#l# ._.-.i.i.;.:, ini.. L :d..il e" CODE ALLOWABLE LIMIT ; 2 --8_p
- 158,
? ADDENDUM ~~ ~ . PRIOR TO 1983 WINTER ui...= .+ +- ...== 5., .:4== 5.;... o j. O O.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/2) a s T Figure A-9.2 Surface Flaw Evaluation Chart for Outlet Nozzle Bore 1 (Longitudinal and Circumferential) ?
48/45/10930 1 SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE 0.1 3 .:n.- - - =: :--..._:nj -
- 1
[lM
- MM
-:?"
- n:-
. :r ,-ib EMBEDDED FLAW ^! FLAWS WITH a 0.12 ~'2.i wa-i~ CONFIGURATION :- "I I 5 ~~ = l X. ":."j i!!jiu.:i f :t.;glpii..3 igi fj: ABOVE THIS LINE ARE f"~": i NOT ALLOWABLE i !!!i ~. f i( -n[:;; y:e : F.....pifuq O.11
- ...!!!j f.1 :: nui:1-
=:.
- lii:3"
- .jj!;)f.idg;i
- ;g; i isfg
.; - i N SURFACE / EMBEDDED pi!!/ f.Si:!i! FLAW DEM ARCATION "i 0.10 E! n =
- _![EEi 44/d _-
.. ~ :!!irf sii i.=~=!!N LINE UP TIL 1980 CODE !E: E ~ i! 5bl 555 O IE 0.09 I T 15t. iii A =i t/i!- i# -+a::: !:/ t liait=!iiir -lilin i ~i i :i\\d,,;d M,ifi" i ii!/.: 6 j -- :j " :- r 4 g 0.08 ~ .M "#* 5 9et a tu Hii j jiji :/jj:;; ijjjjii"i.((p,E i;[p.h w
- ii#ih[:'l' SURFACE-l:'j/
I 'J i f'"a-~~ii:-rf ~iiii' li' d1 ... I. 0.07 ~ IU5Ff.!d -"?.jiii ii4 i."is"ijtif ; '~illi= "t h EEliliiTF' ..t:a :::
- digj]
Z wws m ms @ MiVW W.ti 9 :i.F @#H 5Hi-y 0.06 ]CONSIDEREDREGION MUST BE fM .::. ;i7 r
- -g::~
. :.p==: n :....: n. M*" r :' nn. =: g 'i!SU R FACE [. iijf j
- ii-t :n --p-
./!- ;iif'[d!! 4~:
- {t!
~ - -""'-iidhi.iFiijin:
- jii 0'05 H flaws illiii lihi - ijj !
as - " " + - - ii:: M:itfi-lii ~ i!: nuin .!* ALL EMBEDDED FGWS Z 0.04 .n!iin iijp f:-l f:i.} -
- f;
. -ir n;p
- ij;;
};p:p up (ON THIS SIDE OF DEMARKATION LINE) 0.03
- . !...""j ' ;f' :'="4n..
..ru ann in i nI": ~ ARE ACCEPTABLE PER ' i-i . [.: .=1?ir "In i!: illn: i CRITERIA OF IWS 3600 I.I. f
- 1. 1. :. ""
AS LONG AS 2a 0.02 0.25 ..n i=-ci- - = t nr. .....: n Id Eb~ ~' !N'i! i 0.01 [ i!ii ..L!:.. :i!!! liiii iiin I i E "' ~ Ii i lb i O 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-9.3 Embedded Flaw Evaluation Chart for Outlet Nozzle Bore 1 (for both Longitudinal and Circumferential Flaws) A-68
f l l A-10 OUTLET N0ZZLE BORE NO. 2 Note that evaluation charts are provided for two locations along the bore. For an indication between these two, interpolation is allowed between the two applicable charts. A-10.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Outlet Nozzle Bore No. 2 is depicted in Figure A-10.1. l The following parameters must be prepared for surface flaw evaluation with charts. p Flaw shape parameters f o l 1 Flaw depth parameter f o where a - the surface flaw depth detected (in.) t - the surface flaw length detected (in.) t - wall thickness (t = 10.517) The surface flaw evaluation charts for Outlet Nozzle Bore No. 2 are listed below: o Figure A-10.2 Surface Flaw Evaluation Chart for longitudinal and j circumferential Flaws l l 1166E:10/121084 A-69
1 i 1 A-10. 2 EMBEDDED FLAWS The geometry of embedded flaws at the Outlet Nozzle Bore No. 2 is depicted in Figure A-10.1. i Basic Data: 10.57 in. t = l 4 Distance from the centerline of the embedded flaw to the surface = (in.) l l Flaw depth (Defined as one half of the minor diameter) (in.) a = j i Flaw length (Major diameter) (in.) = a, = Maximum embedded flaw size in depth direction, beyond which it must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o l o surface proximit'y parameter, 4 Evaluation chart for embedded flaws: Figure A-10.3 6025Q: 1D /121884 A-70 L
i I l l l FIGURE A-10.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE OUTLET N0ZZLE ? 10.57" u F A / i f\\/ I I \\ i l l ' CIRCUMFERENTIAL LONGITUDINAL I i 47 244 13199 TO l VES$tL q - INNER AADeus I (ConNgas 0 197 10*9" 108-. 94 i .0fi.f f) l 9 -G ,"NO2 ELE 10 g VE SSEL wtLD ,,,,, ----j a >>> ... CmD -P, s b TNU!sseL q 2s s7s 12 s. ,o,- f I 2716 % l
- ' i g
SAFE END TO O OF PSPE wtLD 34 282 SAFE END l ($A 182 TYPt 314) t SO 787 __i NOTE 3 1 DASMEO LINES REPRISENT PAD ADDED At BOTTOM OF NO22LE FOR $UPPORT, AND SUPPORT ff8 ELF 2 Osuf NsiONS DO NOT #NCLUDE CLAD i A-71
10 1 4. ~
- 10 : year's'-
q_ _r / .:..2.0;yaaF.5:. 8 / / ..70::}ears. ACCEPTANCE UPPER LIMITS OF [.:,- /' _ ~ BY ANALYSIS /.. , r
- g,
. / / /
- n
/
- p g
.p.
- f....
.. g g \\ 6 "^ V p' / e .- r 3 I . /~7 C 'iii ;_ a. 7 L CODE ALLOWABLE LIMIT f_pg f:~ d..-./(. . [.,---T. SINCE 1983 WINTER ggggyngy '. f. - "/ p /_. 9 3: 4 f g. n . p ).: gas 188 7 .p u. pdu . /...
- r p
- .g g1 g
- g. y
-jCODE ALLOWABLE LIMIT : f 2 PRIOR TO 1983 WINTER ADDEN,DUM 'N n. .p; := i O O O.10 0.20 0.30 0.40 0.50 FLAW SH APE (a/f) %C T Figure A-10.2 Surface Flaw Evaluation Chart for Nozzle Bore 2 5 (Longitudinal and Circumferential Flaws) a. i
48/45/10930 1 SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE i:!!i!!! E E1 : ..hii Eus'Eo'oi'6 rGW ' ~ ~ [: ::j:... ~ g = 0. m 1:i
- =""::= :
%3 , : coNFIGUR ATION i ~
- SURFACE / EMBEDDED
,""~' 0.12 FLAW DEMARCATION i=iir u! : ; p% a: 7"
- //
LINE. UP TIL 1980 CODE ?!i!! ~ / ' i (i' f" /= W4!ii a/4 = 0.167 O'11 ii-@i. ' f.i "" _ i:' 9 i.:/:.
- //. !@ g I
I 0.10 ~!isi ~ ti[ifii !!7i r I sT, 0'09
- h != :
[i!- !/ iif: i;!::j 7- !!!i ;- .fi EMBEDDED FLAWS "- 1 ~-
- _=p;
! :i VdCii "iif. PLOTTED IN THIS 3 0.08 b .,pqp i.
- j
- g..:
4; REGION (ABOV "igii:: r-j.a ..~ h-APPLICABLE a LINE) .-:= [ 0.07 -1 ' " SURFACE [, (/"=" 1 "I" ARE NOT ACCEPTABLE I. Jl!! tili.iil ITi - ?:l/ / g Z 5713WS l'N T' IS' d[ii Eik [52 ..!N H r 0.06 REGION MUST BE fa: .: p
- iCONSIDER ED F=
I g 'iSURFACE /t[i- -[ij:! O'05 -FLAWS "i 1 -f:! "/: rif - li: iiii: I O.04 / /: i EMBEDDED FLAWS IN
- lp f.l f:gi-
- 4 THIS REGION ARE F:
j:/ f: mlii q . li ACCEPTABLE PER O.03 ~' CRITERIA OF IWB 3600 . r"./. [h "I ' i! IF PLOTTED POINT FALLS i / ' : iii
- i
BELOWTHE APPLICABLE 0.02 ii!! 'f -=- y a/l LINE 9: r.j~
- 3:
..h: h 0.01 //
- ii;
!:i" l.i.. n15: I~ h 0 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (j) Figure A-10.3 Embedded Flaw Evaluation Chart for Outlet Nozzle Bore 2 (for both Longitudinal and Circumferential Flaws) i i A-73 i l l
A-l l OUTLET N0ZZLE SAFE-END TO N0ZZLE WELD A-11.1 SURFACE FLAWS t i The geometry and terminology for surface flaws at the Outlet Nozzle Safe-end is depicted in Figure A-ll.1. { The following parameters must be prepared for surface flaw evaluation with charts. 1 Flaw shape parameters f o Flaw depth parameter f o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 2.527) I The surface flaw evaluation charts for the Outlet Nozzle Safe-end are listed below: i l o Figure A-11.2: "S'urface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws o Figure A-11.3: Outside Surface Flaw Evaluation Chart - Outlet Nozzle l Safe End, (longitudinal and circumferential flaws) l l l A-11. 2 EMBEDDED FLAWS The geometry of embedded flaws at the Outlet Nozzle Safe-end is depicted in Figure A-11.1. i i 1166E:lD/121084 A-74
Basic Data: 2.527 in. t = Distance of the centerline of the embedded flaw to the surface 4 = (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) 1 = a, = Maximum embedded flaw size in depth directiori, beyond which it must be considered a surface flaw, per fection XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the' acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o o surface proximity parameter, Evaluation chart for embedded flaws: Figure A-ll.4. l l l I 60250:10/121884 A-75
1 l l FIGURE A-11.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE OUTLET TO N0ZZLE WELD 2.527" 2.527" T f f v i I l + a LONGITUDINAL CIRCUMFERENTIAL I l l l t l i 47244
- 21 7 :::::::,a~-
'2.527" '7 1 ,0._. m s.. t , Q.n g ' 's:' / c>- I ~ ,.s 4
- ) [=h022LE TO s
,K@ys's, J;s visstL wito N. 43 327 .N o 24" CLAD ITYP 1 l .m' i 1___ I tovisstLg is s-so*r--- t = 1, 1, i SAFE END 70 3 62 ,, l TO ( OF MPt wt2 34 253 SAFitND l l l (SA102fvPE316s i ~ 60 707 l 40758 1 OASMED Lmts REPatsthf PAD ADDED Af DOTTOM OF NO22LE Fon SUPPORT. AND SUPPOR f ITSELF 2 DIMth5 SONS DO NOT INCLUDE CLAD 1 l I l l l A-76
20 = UPPER LIMITS OF r [. .j-ACCEPTANCE .i. .10 18 ---. year i i ~j~' BY ANALYSIS r-' ' l-i
- -~ - - ; -- ' 'r-
-- r --- J- .2Q y2a(s. .l 16 [ - --l -. -- --.9 1 j . - - 1'- -+- r- .31 fea rs.i .j. ..i.. WITHIN THIS ZONE THE SURFACE 6 14 . 7-. -j. - -j- -..i-- 7-g-- FLAW IS ACCEPTABLE BY CODE R . ). _.i ..). ANALYTICAL CRITERIA (lWB 3600) e t t a l2 .y.. .. 9. 9-3 I p. .,e t g ..g.. ..g...
- 3..
u, o 10 . -.i-r-- - - E-- --~ -i. -i- - - - r- '! ~ P 3: I: SINCE 1983 WINTER ADD a -.p - ~. e I
- w memF y
] g M- .?- t ..p. g. --{ ~ 6
i-
--i - --+- - ;-- p r- ..p ....e_= ...p 4 p
- i
,.1 .. I ..I - i NO ANALYTICAL JUSTIFICATION 2 !---.^ -- - - ~ - - IS REQUIRED ...g. I. I I i I O O 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) s. a Figure A-ll.2 Surface Flaw Evaluation Chart for Outlet Nozzle Safe-End 2 to Nozzle Weld (Longitudinal and Circumferential Flaws) @9 u
UPPER LIMITS OF ACCEPTANCE 20 BY ANALYSIS .j. l 4 j --i,---- l* -- ... H-18 -a- ---7..-- -- ---j - ~+ i
- 10 ye. ---
.j ..p ars.. .j.. - ~ ;--- --:- t20 1 ears - 16 i
- 3D years.
..j. . r... g 14 I FLAW IS ACCEPTABLE BY CODE l WITHIN THIS ZONE THE SURFACE . r. - N i i-ANALYTICAL CRITERIA (lWB 3600) = 12 t - r -- ---i---- z g .i. l .l. .. j. us t a 10 --i- -- f- - - - -i-- - ~ - - I" S 'i' - SINCE 1983 WINTER ADD 5 $8 -+- -- + -- u. + i 2. i. / .v. p". _..
- 5..
..g.. 6 e f g 4 r-- ~ ~ PRIOR TO 1983 WINTER ADD .l. . l...,. l.- ..i..,, NO ANALYTICAL JUSTIFICATION 2 - i IS REQUIRED 7 .g 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) a Figure A-ll.3 Outside Surface Flaw Evaluation Chart - Outlet Nozzle S s Safe End to 110zzle ' eld (Longitudinal and Circumferential 3 W Flaws) $9 u
I I l 1 I 48/45/10930 1 l j l SURFACE / EMBEDDED FLAW DEMARCATION LINE, BEGINNING WITH 1980 CODE 0.13 ~ 90 iid. . ldh EM8EDDED FLAW 'I [ $.. i FLAWS WITH *a 1" d' CONFIGURATION.E4. I.I" i:j;g---.!,.e3-0*12 ~ %. ":.JIIlji - f:i nJ)ili_' ";I ~ ~ !!!'i : p Hj :fij ABOVE THIS LINE ARE !Eiif =: '"j: j NOT ALLOWABLE c b.. .. :b.
- .nt"...
=uun a ti-.M,,.= a liW "= O.11 nu==
- - r-
...:....= n3: m=:=d.:d. p =u.n:fa : f:.: : : =... 3 a. =l
- =
- : i.e
- :a SURFACE / EMBEDDED
==:- 15jiiif J-ilb Miliii M iE FLAW DEMARCATION "51} 3-In 0.10 !!# ; E!/ -Ejii":. ig LINE UP TIL 1980 CODE iii liEi+ 44/iii :n = i'
- un :i fil! /i i i 'ri ' /d??-!!!s- " ele i
-: E eT., O.09 !id. !-:h :- i /!ilif !! !:f i:iEi i!"Eiityjli6
- n.
3 0.08 ~ ~ NUi 55IN .W +segae E /j !!1!bf;}=; igjjji - -jjp.y :;;fjj e u. !!Ejii" fill ' I - "iif I sti;ifa-":EiiEFf
- i2i:
iip" i iiEjdi:Etu: ~ ~ " " 4-O.07 ' SURFACE ~~ =l.iiu ai ii... a i i-E=! :/.i aisi: iWii ; =; iiiiiil 2 WS IN MIS MF hM r~ "E Hi;EH" " H!i H 0.06 IREGION MUST BE 7".:.. . :p' 'ap n
- CONSIDER ED
'I '= 2M Mr.......::k=- : ..: g a,.;::: O
- U MS 3-
"n =: g 'il SUR F ACE [ ljlisi; [.jii : dif -. . : nil:i ;rH!!= pi O.05 H FLAWS ~ ~ ~ " ut- /- Of'.dir iill:n ui.1h - "i
- i! tn-m r
- .b u-tie
~ $ O.04
- il:-
- /.if'i: i"lii iltii
- irr til ni! N ALL EMBEDDED FLAWS
-i!Ei E!!d / -I fi:0 iinin - i:i- ! .i:!!! !!in (ON THIS SIDE OF j DEMARKATION LINE) .:"'/ . /' '. IE*'h:-i
- ="
~- n'+. : ~F:i ARE ACCEPTABLE PER 0.03
- T= E/- b.i
.iit:c
- =
i-! : nr i
- lii CRITERIA OF lWB 3600 9 :/
7;a. T.....! k. c.in!" AS LONG AS a(.0.25 .. I _. 2 0.02 ni!.
- =:
,n - t; t
- / i?
i!7 i.niii
- i!!!
- ilEi O.01
- j
i.i.. nii:...iisii f[.
- ip gid.i :P==
b: S M N i 'ii hi i@ j[ g o 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) + Figure A-ll.4 Embedded Flaw Evaluation Chart for Ou,Ltlet Nozzle Safe-End to Nozzle Weld (for both Longitudinal and Circumferential Flaws) A-79
) A-12 SAFETY INJECTION N0ZZLE TO VESSEL WELD (PENETRATION) A-12.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Safety Injection Nozzle Penetration'is depicted in Figure A-12.1. The following parameters must be prepared for surface flaw evaluation with charts. Flawshapeparametersf o Flawdepthparameterf o where a - the surface flaw depth detected (in.) k 1 - the surface flaw length detected (in.) t - wall thickness (t = 9.208) The surface flaw evaluation charts for Safety Injection Nozzle Penetration are listed below: o Figure A-12.2: Surface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws 1 o Figure A-12.3: Outside Surface Flaw Evaluation Chart - Safety Injection Nozzle Full Penetration Weld (longitudinal flaws) o Figure A-12.4: Outside Surface Flaw Evaluation Chart - Safety Injecolon Nozzle Full Penetration Weld (circumferential flaws) 1166E:10/121084 A-80
A-12. 2 EMBEDDED FLAWS The geometry of embedded flaws at the Safety Injection Nozzle Penetration is depicted in Figure A-12.1. Basic Data: 9.208 in. t = 6 Distance of the centerline of the embedded flaw to the surface = (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = 1 Flaw length (Major diameter) (in.) = a, = Maximum embedded ' flaw size in depth direction, beyond which it must be considered a surface flaw, per Section XI characterization rules. a, = 1/2 6 The following psrameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o surface proximity parameter, f o Evaluation chart for embedded flaws: Figure A-12.4 Il66E:lD/121084 A-81
l I FIGURE A-12.1 GE0 METRY AND TERMIN0 LOGY FOR FLAUS AT THE SAFETY INJE TO VESSEL WELD (PENETRATION) 1 3' i \\ 9.20" x d i f 3 CIRCUMFEtENTIAL LONGITUDINAL I O at SAFE END / (SA 182 TYPE 316) 's / SAFE END TO 'S NOZZLE WELO -3 437 - 5:9o55 ) - 3 878 "fE!I~Eth / l k 'I r--( g b i( / Ey l, ~ / [ ) 9.o2 .,oss.
- /
f i 24oi57 i l 3 T. ( u ... noir 37'a i r u, {3 3 a v f2-Q I INNER RADIUS (CORNER) - 16 90-1 A-82
10 10 years 7 p 20 years h UPPER LIMITS OF 3 + 30 years j ACCEPTANCE /(./'. t BY ANALYSIS ^ 8 W: W. ' ~ iii .; 2
- +
.u.
- a..
.:. +; n n. t idy -' lii ~ ~ ^ CODE ALLOWABLE LIMIT y - f-:' e-w p T- - - ADDENDUM r p SINCE 1983 WINTER 5 4 A e.J
- r
' il g ..:. a.- y-W.# ' k. g.:... ;4.u. h l -jCODE ALLOWABLE LIMIT :
- c. '.
2 pp W. . PRIOFI TO 1983 WINTER
- ADDENDUM i
u.. .:n u;. 3.; au g.. O g o o o.1 o o.20 0.30 0.40 0.s0 FLAW SHAPE fa//) a 2 T 3 Figure A-12.2 Surface Flaw Evaluation Chart for Longitudinal and Circumferential Flaws for Safety Injection Nozzle to Vessel Weld (Penetration)'
20 r. .j 1:: !!3 .:.l ; 18 .1 4.. .i.lg.. W UPPER LIMITS OF . t.: 4 ACCEPTANCE I-- !....I- ..l.. . U.,.. . 7 ...g 4.. i l.. BY ANALYSIS /... I. . q.. j.. q.. 16 '- -I-i10Em j t 4 _}_ 20 years 7, y - 6 14 - y 7 . y . l.. ..p.. .f 1 q .... j....l. ...!...{!. ..b.
- j 7
$ 12 I
- .g
..l.. 1;. I WITHIN THIS ZONE THE SURFACE a .l. y.- h-1 g O 10 .3 _ I: FLAW IS ACCEPTABLE BY CODE 2 y .l .l ANALYTICAL CRITERIA (lWB 3600) tu c ? j' / I g .g. : .q.;. 5 8 l { ... g... [ . b.,_ u. s i 6 =f- ---~~ CODE ALLOWABLE LIMIT AFTER .. (... ..j.. ...l. u.i.. 4 I l I i -- - ~
- 3..
1983 WINTER ADDENDUM j.. ' i ~ .4 .p. , ; :.;...;.g.l...l.,. p,.;;#l....l..}:,..;.,; {. PRIOR TO 1983 WINTER ADD 2 NO ANALYTICAL JUSTIFICATION .L_. L: I O i* ..S REQUIRED 3 _..............-.3........;................. ~ O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-12.3 Outside Surface Flaw Evaluation Chart - Safety Injection Nozzle to Vessel Meld (Penet. ration) (Longitudinal Flaw) / .s
20 -I..I... h.... l-- .W ACCEPTANCE Y - UPPER LIMITS OF ..:Il
- l~
i 18 -t: l-n-
- -. 9 BY ANALYSIS
= ...q......}...
- }..
...w d 16
- 11) yea 's
~~ g' y 2 1. pea s - 6
- 30jea 's
' 7 / ~ ' ' ~ p tl'; C 14 .1.. 2 .j. ( .g. ~~ . I .F-WITHIN THIS ZONE THE SURFACE 12 1 k FLAWIS ACCEPTABLE BY CODE g [_.. .f.[. .j.. ANALYTICAL CRITERIA (IWB 3600) ...l o 10 -\\ g y /
- i
..r: 58 3 .I u. g p. .l. .u.. + ._ p / 6 \\ { ~l- -~ CODE ALLOWABLE LIMIT AFTER ..i.- 1983 WINTER ADDENDUM 4 - -t 1 T ~ ~ +1 N ^' ~" "' f ' . l.. ,...j...;....; {.... l :. g.. ,..,. {. PRIOR TO 1983 WINTER ADD ~ ~ .y._. 2 NO ANALYTICALJUSTIFICATION 1 .O IS REQUIRED .,..........q... O O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-12.4 Outside Surface Flaw Evaluation Chart - Safety Iniegtgn Nozzle to Vessel Weld (Penetration) (Circumferentiai dws)
48/45/10930-1 SURFACE / EMBEDDED FLAW DEMARCATION i LINE BEGINNING WITH 1980 CODE 0.13 ' Si Y ' iiI
- d:iiE51 EDDED b EI [hi 4
i i: lii* 55 4 5 '~""""*""'""i -e i.CoNFicuRATION j : q~ ".ii.
- j
' FLAWS WITH *a n*~::: 0'12 ' ' ~ w @!!- 7i islii - - i fii ABOVE THIS LINE ARE .A nn r b-NOT ALLOWABLE O'11 ' E IE...b. N.. ~"' "" i riMii fi l:1 E ii/iLIM :!!!Ei. lEf!! Mi'.i N = SURFACE / EMBEDDED =i iii-i g p f: Ei_ -ff;.! E iiii FLAW DEMARCATION !!!!E;; i- -! ma 51-55' ".4fdi i:i s=}/ @EH";!:.m LINE UP TIL 1980 CODE 0 5 ~ 'I ' T 0'09 ! l.- /ii!ii/ ith iili:/- :i=ii-iittis.ilei { g,g, r f i;N4 _;; C ";"
- f.
- sti;; =iligtiin
=ii!= - 5 - * *'** * * ' '" 7' ': I'li '#i!"+i i5'ii' ~ i
- ii#*
- 6 fiiiiii:[1 I'
I ['::-"i* iiiii[ ' 'i'i k-"- ""-. ~1 !i i n':': ~ ~" 0.07 ' -"ilii).!:ii:..:t ::: n ' SURFACE' "~!i!/ h i::"I'! /.in niiiEi iihi~ i:1 . - - - !!!E5 E Z . FLAWS IN THis .IIi! hiii}?[ l55' Ol! 'i$l!.5MId5ii '55}it g 0.06 IREcivr MUST BE f.j .;7, 35p : ..npi, ,.g j g. i.j:":..~'
- .n
- = CONSWE R ED
-- ~ g ]l SURFACE [iijji:;/;jji "!illi ~ ji:i}:; i i!3i! fj j i t - -[: 35[: illi UNj" '}il ~ Nii** -!:iiIE I O.04 Mi is# iip 1.i* ALL EMBEDDED FLAWS niii. ti!-i (; j:fi!4;-. --j::.. i.iji:!: iij;: : (ON THIS SIDE OF = ..~ ~ DEMARKATION LINE) 0.03 5 n.. i3 = :.
- p.,
,ilijn ;;: i- ~ ARE ACCEPTABLE PER
- - -/ (
itt:i-CRITERIA OF lWB 3600 51 = 2 0.02 AS LONG AS,at,0.25 .,f 4i a: :_ nn :..f.
- j;i t
_=. f ap n-11"- -~ ~ 0.01 ' ' ~ g
- i;n
- i:
Ji.
- .ii:
Or in 9;:- i i i" 'i! h 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (j) Figure A-12.5 Embedded Flaw Evaluation Chart for Safety Injection Nozzle to Vessel Weld (Penetration) (for both Longi-tudinal and Circumferential Flaws) 1 A-86 1
I A-13 SAFETY INJECTION N0ZZLE, INNER RADIUS (CORNER) A-13.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Safety Injection Nozzle Corner is depicted in Figure A-13.1. The following parameters must be prepared for surface flaw evaluation with charts. Flaw shape parameters f o Flaw depth parameter f o 1 l where l a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) l t - wall thickness (t = 14.064) l The surface flaw evaluation charts for the safety injection nozzle corner are listed below: l j Figure A-13.2 Sdrface Flaw Evaluation Chart for Longitudinal Flaws o l i i 4 ll66E:lD/121084 A-87 l
1 FfGURE A-13.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE SAFETY INJECTION N0ZZLE INSIDE RADIUS (CORNER) i i 1 3 's l l l l ] o l / / l 8's 14.064" / \\ N 14.064" CIRCUMFERENTIAL ei '^ LONGITUDINAL [ [iSlIs'2 rveE sie, / SAFE END TO NOZZLE WELD 3 437 l 6.9055 I 3.876 VESS EL d \\ um j [~ ; ', l 5.f 24 0157 t 3.02 - -9055--%' 2. l / ( i l, ~ 1.1811 R 66.201 R j g 2h I -INNER RADIUS (CORNER) 16 90 A-88
I 10 years 20 years 30 years 20 un 9j. !Ill Illi lhi llo:. du;; Ipi i-p ~ an i u h oIT. - i et t u UPPER LIMITS OF u i. q
- i. ll. ll. I{ll r.tp:
!I11. Illi l Il i j j It-llj [:-
- i l -l llt; Qf ',p g:
J p.p. g!! r-i l f r g -lIll l I;l -t ACCEPTANCE tiii ;i - 4n . :i " !!!i !!81 iiii Ilir vii; p,i-I i l l lt lti; BY ANALYSIS 18 d"-..u t? -ut u m: .h.
- u -
.o ui
- n.. -
u ip::i ip i n.o.n.ijij n..l:il il-ljij-Jt - ijjj kli ti4
- li :..:
.t. l
- . -e. un an n...... gg 'e :;4.i!!h":ht y"-
r
- .r m
l-I - n-i . o .;n n; r- _; ~7 im mi q.!.iy g igi p.;.;iy. ,; c.. j il q n.. - 'l oli l. i!n 16 .c im n.-. ne un ny o an j @ g ";m N; ii 1.I}j h..g "!! !E
- im-
- "!!!-m-
-jdl-Y.. $ $ k..h4il fili $ INi M Un !Ni o i: g HH :ti: ;n; " fitj ?{ji.{. ! !} i il!! !Ill li<h l i !! Il> I !!ii hii iil: :iii iin iii: a- ~g [:ii p! :!il 111: :lli ij:: ll1 idl} :il[I(j!: ijh ijj; ;}ji ! !E !!? !!!! Hil dF FLAWIS ACCEPTABLE BY CODE C
- 41i 9) I'-ii-h:li 11. l.i. :. :lllif 14i i k'a.
!~g~jlh1 u-i; :-
- g !i;1 i
~. a.: ..g .a . } nit,l.'inti.p-WITHIN THIS ZONE THE SURFACE a r m
- r nr
- i ih :.j e.
in.n. a r-- n-l g - nb_ $; i.in-e ,c 1 i n.
- ~n,
.- ". i n.- z 12 i :. m .. h@.. m, .... q ... ! "I .l.-. ..1 @...j i
- g:':;:n;.
ii i! 'jii-jT :-.... - p: .4 ii :i : !"+e"i - tl!! 'h:! ANALYTICAL CRITERIA (lWB 3600)
- li igi 111]dii ;i i n
tiil ;li s';t:--'i.j;l ll 11 i iiH i.j; :I"l,!-l'rg.ith ;Tg ryh g: ;' i a 9f; Q 10 . !p:! 7 ..: :.... r; i!n y:.n,.- !i l lin :ll! lJi! :th i n.. ;. lg.-{,.j ji: ![.jf if.r:.: ..: m r m .p. 7-
- - m 9r
- .n
, 78 3 n;; :.. l:.-!!!! ,e i -. -ep. ijh.. -*"I::t "T- [g: .:.i un nu o a p-1 - ijj' gjI *;t:j g.i . ti: t-c. tr i iI "52'..... --. p en .t o:
- 't:
mt .r.. :: P.. lit... p e 0 O,.. e t- ,lj l t. }..:
- .11.
- -r-rr
. r.. g . pj:, .. p..- ..i. -..P r W::,iid.i. + +y:+,:=h w,..w w ;-s s'i iH-G. d..h.: rut H 'H:..;t:
- !:.i t.i f:n n. li. :.I-l g
i;-li :4ll:,a.L.: ?H. U : H i rii.,.Iri.f d.ri. : . "Ip.i: ll"l" a.t
- p r
- !. :t:,:
gp.." 6
- il: t..
a im un s
- tr yu :m
- 9
- h.l on up: :In.
CODE ALLOWABLE LIMIT !c.1al"if:-g..gm; g; ;... j.
- ..,,3, 4".,;..r
- : e.-
!!!! I.J.I;! v. GI;i.i.ii!H; in..::!.!! i.t:i d.li ri:i.ii!. lIj; ... p.: .e .il.i'.!!:
- !p
.:i.:: .:- ::.." :- E ::!: . 4 :. H!: dii ::ii -!i! ii!: !!!4 iiH ilh ii:i !!!! ijji illi sin; ein ;;;; ij;; ;N. W: iih dh 4! 2F si ei 4; E '; :s i i ^ ' Hi- :"... ,,m T r i i? t i ~ 2 . !'d Hi:.. !!_:: iii- ..w
- i.!.!.i.i.!.!_iHi.l.h..i
.l_ill.! b '.Hl.iil.s.i:l.l.i.!.!.ii I?.,.42 !II! !!!i !..!ii :!! NO ANALYTICALJUSTIFICATION .i.i'i l -L.:.a: m ..r ur :.:. a- 'N'.. y - sp. el. nn "I' d" "" ""
- p"
.r. ~ IS REQUIRED u T. 'qE ":::."I. O. 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-13.2 Surface Flaw Evaluation Chart for Longitudinal Flaws for the Safety In,iection Nozzle Inner Radius (Corner)
i f i A-14 SAFETY INJECTION N0ZZLE BORE A-14.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Safety Injection Nozzle Bore is depicted in Figure A-14.1. The follow 1g parameters must be prepared for surface flaw evaluation with charts. t Flawshapeparametersf o Flawdepthparameterf o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 1.2362) The surface flaw evaluation charts for Safety Injection Nozzle Bore are listed below: o Figure A-14.2: Surface Flaw Evaluation Chart for Longitudinal and Circumferen'tial Flaws A-14. 2 EMBEDDED FLAWS The geometry of embedded flaws at the Safety Injection Nozzle Bore is depicted l in Figur.e A-14.1. i 1166E:lD/121084 A-90 i I
Basic Data: 1.2362 in. T = Distance from the centerline of the embedded flaw to the surface 6 = (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) 1 = a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o surf ace proximity parameter, 6 o Evaluation chart for embedded flaws: Figure A-14.3. e A-91 6025Q:lD/121884
I l FIGURE A-14.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE SAFETY INJECTION N0ZZLE BORE i 1 1l ~ ~ ~ 1.2362" ) 1.2362" = = l l / I i 1 / I / m \\ \\ 1 \\ CIRCUMFERENTIAL LONGITUDINAL I O 31 SAFE END N (SA 182 TYPE 316) ( / j 'S SAFE END TO NOZZLE WELD = - 1.2362" ~ 59055 1- - 3 876 NOZZLE TO m VESSE'. WELD \\ f t / l r 9 02 . 9055--% , [p, 24 0157 .- JtE f 1P l 1.1811 R 66.201R 2 I t INNER RADfuS (CORNER) l 16 90 A-92
10 years 20 years 30 years 20 = UPPER LIMITS OF ..i.. 3 ACCEPTANCE t- - i-i BY ANALYSIS + 18 i. - r-- t .I t. t .j.. I 16 ~ ..f.. -..l. L- ---+- i t i i e ..g.. i.. . _ j.. ..g....;.. p T; 14 L- -- j- --i- --+- d. FLAWIS ACCEPTABLE BY CODE ( ..j. ANALYTICAL CRITERIA (IWB 3600) e -.1. ,1-- --r-., z 12 ..e. w.-- [ ..g.. t u, s a 10 - ---F -- - - r-- -j--- --j- -- t-- -- 1 I 9 3 'l' 7 '-l l- ~i' 'i' SINCE 1983 WINTER ADD m m . g - -- M .== p 3 8 e 3 . n. l g -[;-- -b-- --- 7 7-- 7---- 6 4
- +
g gl 4 ---i --- -p-PRIOR TO 1983 WINTER ADD y j.;..l...,..l.. i. 2 ....l....... l._..NO ANALYTICALJUSTlFICATION I l. l. i..I.....l. !...I....l...i. .l. .I. O O 0.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) e A Figure A-14.2 Surface Flaw Evaluation Chart for Longitudinal and g Circumferential Flaws for Safety Injection Nozzle Bore Qk I t I l
f 48/45/10930 1 SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE 0.13 iii! 1:ifiiii i .}.
- !:b EM BEDDED Ft.AW ?!.[ b..-
2M iii ' p' ' - FLAWS WITH *a 0*12
- ic q g--,.
4 ii g. CONFIGURATION :j. I' ":.f i. iEjii:+ O ' X. ~. "... "._ f'(. ~
- '::4",i..
f,j ABOVE THIS LINE ARE .i :ii - :r: 1
- 7.. _.
..f 3(..
- ;.;;[
gj:ij m:== 7 h: NOT ALLOWABLE .g O.11 ilif f.i = iy 7 HIE isi!! i=/.,.i! infili SURFACE / EMBEDDED giTiir. =
- a i./ iWi- -i "-
FLAW DEM ARCATION 0*10 'jEf. ![i; LINE UP TIL 1b80 CODE ..:si ..an.:.
- s ;..isi i
- = l-" gi_iff -Ei :: :;i=
eT., 0'09 0 ~. -.. ' it!d [iji'[ !!IW i :li:j hi!!l5 4:"Eiit -iilliii i i I g 0.08 = i!Ii' -.W "#* 8 M98W i '[ ! -. ::.i[i$II IN5NIEi Sii :I[I-(( 0.07 - ' [dil l : 6. iHiih;
- - :- i f';": i!!! :ijirf Hji:
'. iiEjn - :-ji g ' SURFACE' ~!i[ i 'i5i :[ :n n:15I iiNN -Sli!I
- II.,f 5!l
^* ~ '" h iEli!!.. "lii:.:j:n:t-N Z .ii FLAWS IN THIS i!![ii 55I:!i[EN!2Y !Ih50-I iif555 !!it r 0.06 - REoioN MUST sE 7:.jn .:7 ' agna.:I::.
- .;::=
ne 0 E: CONSIDERED 'M' 'M" 2" ' 2 'O g li3 SURFACE ['illjpif%i Elij" - . iini:i i iijn
- j jj "i
!.'tN /' 4.1/ dit! !!!h -!T !Eri :iiiE ./. :[:!! 'liiii 'i;
- i iii iil"
- 41.!* ALL EMBEDDED FLAWS ii
.n I 0.04 fi.l.ii,(;f fn..L.;6 DEMARKATION LINE)
- 4.:. : :i.:jii.
. i.:.l. i.ijn (ON THIS SIDE OF i ii . '[.[j:: ARE ACCEPTABLE PER 0.03
- l-i tih-ii"s" iti:--
7 -' CRITERIA OF IWB 3600 E . I: AS LONG AS 2,at. 0.25 I. 0.02 / .!.; : an n= :.+ ]::['f { :
- i:E t
"!f !{. i:Hi ni; =. 0.01 g, nj;;
- jjii
. j:i. nin : un-b Ii; ~;i !5 i '1" Ii Il ~ O 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) l l Figure A-14.3 Embedded Flaw Evaluation Chart for Safety Injection l Nozzle Bore (for both Longitudinal and Circumferential i Flaws) ] A-94 l k
I l A-15 SAFETY INJECTION N0ZZLE SAFE-END TO N0ZZLE WELD A-15.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Safety Injection Nozzle l Safe-end is depicted in Figure A-15.1. The following parameters must be prepared for surface flaw evaluation with charts. l Flawshapeparametersf o Flaw depth parameter f o l where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t =.8162") The surface flaw evaluation charts for the Safety Injection Nozzle Safe-end are listed below: i t o Figure A-15.2: 'Inside Surface Flaw Evaluation Ch' art for Longitudinal and Circumferential Inside Flaws l o Figure A-15.3: Outside Surface Flaw Evaluation Chart - Safety Injection Nozzle Safe-End, (Longitudinal and Circumferential) l 4 i 1166E:10/121084 A-95
A-15. 2 EMBEDDED FLAWS i The geometry of embedded flaws at the Safety Injection Nozzle Safe-end is depicted in Figure A-15.1. Basic Data: .8162 in. l t = l 6 Distance from the centerline of the embedded flaw to the surface = 1 (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) 1 = a, Maximum embedded flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw l Flawshapeparameter,f o Flawdepthparameter,f o surface proximity parameter, f o Evaluation chart for embedded flaws: Figure A-15.4. l l 4 60250:10/121884 A-96
FIGURE A-15.1 GEOMETRV AND TERM 1NOLOGY FOR FLAWS AT THE SAFET SAFE-END TO N0ZZLE WELD 0.8162" - ~j =-e)= 0.8162" s l i I u f / I ( CIRCUMFERENTIAL LONGITUDINAL l 0 81 7 p::::..,., ) ggtpol3 {}= e = 0.8162" 3.437 5.9066 1 3 876 VESS EL ' s ) 1s,;.. + 1 t g L...... r p1.1811R 1 PINNER R ADIUS (CORNERJ 16 90 A-97
10 years 20 years 30 years 20 UPPER LIMITS OF = 7 j. ACCEPTANCE i ? 8 i BY ANALYSIS 18 --j-- - r- - - r--- ---{ t t ? + ..l.. j . r. 16 --+- -- 7 4 t WITHIN THIS ZONE THE SURFACE -j- - -i-- +y- -l-FLAW IS ACCEPTABLE BY CODE 6 14 - - + - i i l-i i-ANALYTICAL CRITERIA (IWa 3600) N $ 12 l-- ---+-- -- ? -. +- -i --- [ .]. ..p m a 10 -+- r-- -j-- -i --- e
== SINCE 1983 WINTER ADD 3 { 't 6 8 f--- q-W E 8 4 ..I.. .8 .m. --li-- 4 6 -- -- ~ -4 /- "- - i, - I' ~ .i. L# i 4 --i- - t-PRIOR TO 1983 WINTER ADD ., i,, l -.. i.,.. l. .. l.. ;. NO ANALYTICALJUSTlFICATION 2 I S R E. Q. U I R. E D...................... .l
- j [ l l
l l l l l r 0 O O.1 0.2 0.3 0.4 0.5 FLAW SH APE (a//) e s Figure A-15.2 Surface Flaw Evaluation Chart for Safety Injection Nozzle Safe-End a to Nozzle Weld (for both Longitudinal and Circumferential Flaws) 5 $9 u
20 i - [_10 j .l. ACCEPTANCE ~ UPPER LIMITS OF 18 .7-ea rs. 2 i BY ANALYSIS - - -[ i l 20- years j- 'T 30 yearr: + 16 -- L: .?- 3 - ----j - - L-t s 6 14 1-7-- -+- p --i I H - .. --j-
4---
FLAWIS ACCEPTABLE BY CODE e 1 I I s. .a. j.. ..i. ANALYTICAL CRITERIA (lWB 3600) x 12 .. 7- ---j-- - + - - - --i-g i g a 10 ..g.. as s s -+- ---j --- 3 i ~i + SINCE 1983 WINTER ADD s 5 8 -- --+- . - i-.--4-- -+- ---i- --+-. j g ..j.. .y. ..j. 6 -j-p. --i--- 7 a-- p e Ag 4 g- : a ---i-- --H i PRIOR TO 1983 WINTER ADD . j..,.. l.,.a ..L . I. ---.I. ~.NO ANALYTICALJUSTIFICATION 2 _ ....i I i IS REQUIRED O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) a A R 88 Figure A-15.3 Outside Surface Flaw Evaluation Chart - Safety injection 9 Nozzle Safe-End to tiozzle Weld (Longitudinal and Circum-ferential)
l l l l 48/45/10930-1 1 SURFACE / EMBEDDED J FLAW DEMARCATION LINE, BEGINNING WITH J 1980 CODE 0.13 ENii 1:ii: niI.-
- l-H-EMBEDDED FLAW - I h.
' W - FLAWS WITH 8 --t' 4
- . 3;i-i-
' wa-, .:., CONFIGURATION :f ... j~ 0.12 "~'".'"!!i::!fa jjii ABOVE THIS LINE ARE U i
- n...! ""==
ii@ii-i jaN r NOT ALLOWABLE Y ",g,~ q '7' = =: . :j
- g..
w '~ '"" "f 0.11 ~i!!! "- as# Ei: ~ i/iiM iEifili! H[# T'i N 2" SURFACE / EMBEDDED -: i ti" jifis-i=isi :,g-jg:tHE iiii FLAW DEMARCATION =; ;;- =!
- iii LINE UP TIL 1980 CODE i.- :_..E =1. !.Jti.
..=... i_irf:':.-E..li.t.i.::.:.: =... 2"
- e.*:=.i.i'
._= u.. i. ~ f E E 4
- 09 iiii'.-
ni.% :: [:iif @ fjjif :i ijij ii= jig; 0 ... }jii j Sii ik .' [ ii\\Mdhbiid!!$:lI[ I:N5}!!51:kE 7-g /i=n i#H"=i.=l=:+ stT.a ill:". 3 +.s **a= E :/
- ..Elir, i
3 hMFACE 0.07 h '3Ij!i.I *d3:...t : lil[ ! 5k 1[.1 nii5! 5555555 -::iifiI N[IEi ..i... Z . IFLAWS iN THIS _II/,:i E l*/p"^l:3! Eih..ii _'li!!! ~....!-Eb....7 115-iT g 0.06 GREGioN MuST sE - ~ ~ -;jj;; g7-,. --;g.g;;- g:- 4...,. gq-~-. :. ggg i3.,. - g "-
- CONSIDERED 2:3:
-.iO ii?.in.::-nte - l;ii g
- iSURFACE
) :idi.f:lii 0.M y,F . fi j'ia _ {i i_. ];
- j.
y p. ih r/% idi: s di 1: ri ".i+ ALL EMBEDDED FLAWS Z 0'04 -9j n- .i ni: ignE (ON THIS SIDE OF f.t /;npH : :s : F Hij[ii }: 1 T 29iiii niii.
- p/ 37"
=:
- 6. u,"..:.
."t:. "' E ~ T., DEMARKATION LINE) ~.. :i ..a "a ]' :-: ARE ACCEPTABLE PER T ' '. .ihir in:*ii CRITERIA OF IWB 3600 ~" 0.03 ... - :- / ri= n ...3.. ~
- i
'i -~ AS LONG AS 2,a40.25 0.02 5. ;/ -' N..
- - :r-;-
}i; t
- ' i p.4;-
.;:n u :y:;: = .I ~ 'i 'H d" "g.. F=H 8 ~ , i.. i 0.01 iiiii
- ii
..l:i:. .!h; - =i I Ii iiNIi i Iii 'Ii Iii ~ 0 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-15.4 Embedded Flaw Evaluation Chart for Safety Injection Nozzle Safe-End to Nozzle Weld (for both Longitudinal and. Circumferential Flaws) A-100
A-16 LOWER HEAD RING TO SHELL WELD (JUNCTION NO. 1) A-16.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Lower Head Weld Junction No.1 is depicted in Figure A-16.1. The following parameters must be prepared for surface flaw evaluation with charts. Flawshapeparametersf o Flawdepthparameterf o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 6.437) The surface flaw evaluation charts for the Lower Head Weld Junction No.1 are listed below: o Figure A-16.2: Inside Surf ace Flaw Evaluation Chart for Longitudinal Flaws o Figure A-16.3: Inside Surf ace Flaw Evaluation Chart for Circumferential Flaws o Figure A-16.4: Outside Surface Flaw Evaluation Chart - Lower head Weld Junction No.1 (Longitudinal and Circumferential) 1166E:10/li1084 A-101 9
A-16.2 EMBEDDED FLAWS The geometry of embedded flaws at the Lower Head Weld Junction No.1 'is depicted in Figure A-16.1. Basic Data: 6.437 in. t = l Distance from the centerline of the embedded flaw to the surface ] 4 = (in.) Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) 1 = a, Maximum embedded' flaw size in depth direction, beyond which it = must be considered a surface flaw, per Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flawdepthparameter,f o 4 surface proximity parameter, 7 o Evaluation charts for em'oedded flaws: Figure A-16.5. l l
- 60250:10/121884 A-102
i 1 FIGURE A-16.1 GE0 METRY AND TERMIN0 LOGY FOR FLAWS AT THE LOWER WELD (s"JsCTION 1) -q-6.693" 6.693" (BASEMETAL) (BASEMETAL) M 66.20"R M 66.20"R h (BASE METAL) (BASE METAL) 1 Bottom Head { Bottom Head Bottom Head Bottom Head Ring to Shell Weld 4 Ring to Dome Weld 5 Ring to Shell Weld 4 Ring to Dome Weld 5 66 93"R 66.93"R (EASE METAL) (BASE METAL) 4.25" 4.25" NOTE Y eCahtssgs go norINCLUDE INSIDE CLAODamG s((- i, r L 1
- o,;;- p - -- - -
, - - - - -. j a g t-F -_t 4 1A i ---+- 6.693" (BASE METAL) 3 i NO!!LETOvtsstL M 66.20"R gj,;,*,"lttgi--------F------s
- !!!','"?O ',*,
b (BASE METAL) ,',,!?t J,",5"'" l Bottom Head Bottom Head Ring to Shell Weld 4 Ring to Dome Weld 5
- EISItI" " ----~~ ------
viS5't =ana'at 66.93"R I'EEi!$Ia'8' 5' 'EI G A 8 CL 1 (BASE METAL) r 4.25" tog u;o3~a- -------5------. ,h- ) ...c, o DOME wtLO 4 443" A-103
10 .,10 yearsl 20 years hh UPPER LIMITS OF /. - M_ 30yearsh ' ~ ACCEPTANCE 7_ BY ANALYSIS .u. n .u__ 7 8 6 .:...p .u. 2_ .A
- :~ 7.
.g:.:.. .p.
- .: _ a.;
a 7 N(g ..4-6 ~ I [0.a. N.: !!i! 2 a
- ...: =
~ ~ CODE ALLOWABLE LIMIT us j 3_ .: : g. ADDEFJDUM MC SINCE 1983 WINTER L o
- . a..
2 3 4 <r [r . -..1' j- .a. .=. .s gp6 .b.. . j**! 7 .2. :. p.; :.g gu.3p !bli:
- . CODE ALLOWABLE LIMIT _:
2 T- ~~- ~~ -~
- PRIOR TO 1983 WINTER
!:r;
- A. D D E. N. D U M.
~~ "~ ~ u.. u... n .:. an s. ..; aa 3.;. :. l s. O O 0.10 0.20 0.30 0.40 0.50 FLAW SH APE (a/2) R= v' Figure A-16.2 Inside Surface Flaw Evaluation Chart for Longitudinal Flaws 3 for Lower Head Ring to Shell Weld (Junction No.1) $9 w
10 .i::
- }.,
~- 8 ,a . l.Q.. rea rs ..f a. :.. u
- c.
... 2
- g.
/ I,
- <0:. m.....,rs 6
.. l g..,M,g !:!!.'. sy;; (22IS ACCEPTANCE UPPER LIMITS OF .= q ~." /,!:;, BY ANALYSIS .7 ~ ~ ~ e g -' /, [ h [. ~ ~ CODE ALLOWABLE LIMIT us /.. r.: / /.._. C SINCE 1983 WINTER o p#g g .:.:. 5.;. ADDENDUM L 3: 4 / S 3 [: g.# 'I- '?!i u. r p.IW p#l# u. .:.; ; g.g;. : la.1:. 2 CODE ALLOWABLE LIMIT : ppM PRIOR TO 1983 WINTER. ADDENDUM .~ ~ 4 L. ,.., y j. gj." 0 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/l) t' a Figure A-16.3 Inside Surface Flaw Evaluation Chart for Circumferential S Flaws for Lower Head Ring to Shell Weld (Junction No.1) y a 1
20 .. l :. l' .- ;.r ACCEPTANCE I: UPPER LIMITS OF -.i l..:.. 18 dl.. cl' ' 10 2d.yearIs'! ..1. ~ jm s'. ~ 3.; 16 Mear 6 14 .. s. .. u. . q.. q a. .d-q ...p. 4 . w. .- WITHIN THIS ZONE THE SURFACE "' 12 h
- l.}
FLAWIS ACCEPTABLE BY CODE o. w. l-ANALYTICAL CRITERIA (lWB 3600) o eO t g. p y -...u;..=. a.=:. u. .~. .iy L 38 o m u. 6 ..l.. .. i.. ..I.. - * - ~ ~ i
- CODE ALLOWABLE LIMIT AFTER i
part""T 4 .I 1983 WINTER ADDENDUM i-i - r- ~"'# -~~ ^i .. l.. . {.;. i..;{...:i.: :.[...;...;.,. p PRIOR TO 1983 WINTER ADD 2 _ NO ANALYTICAL JUSTIFICATION . r... IS REQUIRED 0 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-16.4 Outside Surface Flaw Evaluation Chart - Lower Head Ring to Shell Weld Junction No.1 (Longitudinal and Circumferential) A a
I l 48/45/10930 1 1 i l 1 i SURFACE / EMBEDDED FLAW DEM ARCATION LINE, BEGINNING WITH 1980 CODE I l 0.13 ~iii.iiiI.I .bii EMBEDDED FLAW "I[ ", P~T !!E'
- I
- FLAWS WITH S .Ei.i. ! + .4 8.. =>. f CONFIGURATION :y;, j ~ iiER - : isa n9==.if! [E n.i iiMeE ;/li ABOVE THIS LINE ARE I ../ un i NOT ALLOWABLE . b. n;== f. . r.-:;).q.h.,_ :
- =
0.11 iiiis? .!!!j-r; igi ngp-- ijg z]4;;7gg ;[gf;;; sfg igiji N = ~' SURFACE / EMBEDDED I s:u-i i" i =! . ii' jilf ;Ei < ;-/d:1!!Eiiiii FLAW DEMARCATION O.10 gf.!/- i.t; ggi .,,gu ..i..i. ....:::/:.E..s.2ii::-ir::.=.. LINE UP TIL 1980 CODE n... : EEi!!=! Vi Pi 5: :i #! fi!!ElilihE fi! n: Mii L n .T, i i-SQCEjii-iitt'. - !=. !!!ih :'7"fsif iR i-i!/ il mii=5.i"iiii!m-iE ~ =:/z ~::jis i Ei iiiirE e .r....: g 0.08 I
- .~h:ie-Uli:- ni:rst
.1:: IiF J .sp,aw .. _.fb..ri..;im.-f:l=. = ag iiE!!iffiv t-fi.ai:.ifiil#E;iEFfJJ u, Ml:4 ;sjii ! Eh5 u.
-lii: iE"[**': =ilfidEi f.i
tmi i vii=:#Ei!! iss; g ' 7 O'06 j MWS IN MS h bNN hi M N I
- CONSioEREoREGION MUST BE f;j: _
47,, ii. 1, ;.n. gj;; ; ;;pii.- : Epi,.- : :gij y-- e g ~ij SUR F ACE [gM[Ef./;jli" lll~, i i:( ;..ii!];@#ii i; [ t Yt-$N-e- -~/: I!If aili? -ni: idi tiMh: ; #if: !si!! EnSE
- C I O*04 H
.i.. if.:i-i I;ii ai. nipi . '. -- N ALL EMBEDDED FLAWS ' r' ' - ~ ...ti.:i. f.ij:;,fnl f.: n E..i.
- a.. :. 4-..
"~ +,u
- i h..: -. ii.jn..i:
.ii.pi (ON THIS SIDE OF DEMARKATION LINE) l .j ;. di/ pf. :: ;r :} can up. ~ I:i5- ".;f f'. iliib; Eijii i 5;il i!' iih i-ARE ACCEPTABLF, PER CRITERIA OF IWB 3000 l
- E!:n fif
-- Eiliji nii:
- ij"i
- b.i
.i Ei 2 AS LONG AS a40.25
- i!E '/
!i ~~ S!i ni:li; i!L.:. iih iEi iii !- .lil t I ~ i h 0.01 ff. i !!;- i Hiilli i i-4 .1:. ..in :- = ntsu i f: i.:
- iiiii b
iI-i o 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-16.5
- Embedded Flaw Evaluation Chart for Lower Head Ring to Shell Weld (Junction No.1) 1 A-107
A-17 LOWER HEAD RING TO DOME WELD (JUNCTION NO. 2) A-17.1 SURFACE FLAWS The geometry and terminology for surface flaws at the Lower Head Weld Junction No. 2 is depicted in Figure A-17.1. The following parameters must be prepared for surface flaw evaluation with charts. Flawshapeparametersf o Flaw depth parameter f o where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) t - wall thickness (t = 4.252") The surface flaw evaluation charts for the Lower Head Weld Junction No. 2 are listed below: o Figure A-17.2: 'Inside Surface Flaw Evaluation Chart for Longitudinal o Figure A-17.3: Inside Surface Flaw Evaluation Chart for Circumferential Flaws. o Figure A-17.4: Outside Surface Flaw Evaluation Chart - Lower Head Weld Junction No. 2, (longitudinal and Circumferential) ) 1 1166E:lD/121084 A-108
A-17. 2 EMBECDED FLAWS The geometry of embedded flaws at the Lower Head Weld Junction No. 2 is I depicted in Figure A-17.1. Basic Data: i t 4.252 in. = l Distance from the centerline of the embedded flaw to the surface 4 = (in.) i 1 i Flaw depth (Defined as one half of the minor diameter) (in.) a = Flaw length (Major diameter) (in.) i = l 1 a, Maximum embedded flaw size in depth direction, beyond which it = must.be considered a surface flaw, per Section XI characterization rules. l l The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f o Flaw depth parameter, f o surface proximity parameter, & 1 o Evaluation chart for embedded fisws: Figure A-17.5. l i 4 6025Q:10/121884 A-109
t FIGURE A-17.1 WELD (JUNCTION 2)GE0 METRY AND TERMIN0 l -d' 6.693n 1 t (BASEMETAL) 6.693" 1 66.20"R (BASE METAL) (BASE METAL) 1 66.20"R 1 h (BASE METAL) \\ \\ etom Head Bottom Head .ong to Shell Weld 4 Ring to Dome Weld 5 Bottom Head Bottom Head 66.93"R i Ring to Shell Weld 4 Ring to Dome Weld 5 7 (BASE METAL) / 66.93"R 4.25" (BASE METAL) 4.25" i Nott TMtCENESSES DO NOTINCLUDE INSIDE CLADDING l (hh Ib' 2-1- FLANGE TO -+ VESSEL WELO
*'3-----
y i ~v' L .2.- (k METAL) Cri"i Un."]g" -----~ ~ ~ --- --~ E[ozzte To vis 1 66.20"R "5I'" h (BASE METAL) Ice %*Ns"i '5 7'.h 1" -wa +-6892" Bottom Head Bottom Head Ring to Shell Weld 4 Ring to Dome Weld 5 ISII"Itv'" " -~~~~~'- - - - ~ - ~ s 9 vissit uatemat 66.93"R 'YSI*IEIa't> E5a IEI ' ' GR S. CL.1 (BASE METAL) 7' " - 4.25" gg g,Nc _. _______q _ _ _ _ _ _ _ 163" .252 oo.o.. to _____L_____ ,,N A-110 l l
10 10 Years P ,. i.; . 30 years j ACCEPTANCE 20 years ' ~ UPPER LIMITS OF .] BY ANALYSIS .. _ _.u. 8 .i.:
- .a.
,j .: g
- .t g
- f.ga s. !!!! !!i: 7 ....p. . :a. :g.:.; N 6 e rz y ~ ~ H a a llh ~' CODE ALLOWABLE LIMIT L us pC SINCE 1983 WINTER 3 o i +: .--" H-. i-. 2 i+ " p [ ADDENDUM 3: 4 f: p.# i ';i; g
- .h p
r WM H;;: .: :... p%edu .:.i.r. - i Si H e ...42 .I. l- - CODE ALLOWABLE LIMIT : 2 g l PRIOR TO 1983 WINTER. .. ' ADDENDUM .u..;.:p. ..:..a.. :2...... a.u :.... O O 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a//) 3 A R 5 .a Figure A-17.2 Inside Surface Flaw Evaluation Chart for Longitudinal Flaws in 8 the Lower Head Ring to Dome Weld (Junction No. 2) a
10 .9: l. ~~ ~ ~ ....1l-O r - l.'. mirs V ,-5y n0 ?* y ...c... - UPPER LIMITS OF 8 s +-
- 0. /ei r5..
ACCEPTANCE /.../. .:. :,: - BY ANALYSIS ... /... - 7,p 7 / '; ; ' /' p :.. # iH! ..l. 7 g g 6 / Y ~ N ~ N Y f~~ r!- r ~j T!! CODE ALLOWABLE LIMIT m L O C d' SINCE 1983 WINTER t .... - a.. ..p A 5 4 ADDENDUM 3 .=. ~
- /
p c-88W8 8,s j. m 8 p .u. is 3 3 = u e" - CODE ALLOWABLE LIMITl-2 p ~? A, DD E. N, D UM, ~~ * " . PRIOR TO 1983 WINTER * =...:.....:.. u.a :... O O O.10 0.20 0.30 0.40 0.50 FLAW SH APE (a//) e At" Figure A-17.3 Inside Surface Flaw Evaluation. Chart for Circumferential Flaws for the Lower Head Ring to Dome Weld (Junction No. 2) 9,,
20 ^ UPPER LIMITS OF .. f.:.: f a:: ..;! !!!! i!! ACCEPTANCE 18 / 'i l'! ~ BY ANALYSIS 7' 10 y ar';: 1.: .. -Q g,.e 16 30 ytar . p.. . :.i. 6 14 q .g.;g... $ 12 .H: WITHIN THIS ZONE THE SURFACE FLAW 13 ACCEPTABLE BY CODE F m ANALYTICAL CRITERIA (lWB 3600) n. ~:.- ,: :~ ~...: a 10 3: i-! +: +-
- - : % Yi s
- H.
58 .a. g 6 7
- ' CODE ALLOWABLE LIMIT AFTER Y
1983 WINTER ADDENDUM p-- "g 4 l -l. T-- ~h# ~~ ~~ ~" '~~ ' ~ ~ PRIOR TO 1983 WINTER ADD ..l.. .. j... .. m. -..; rj...j.:. ..:l::.q..i:i.
- -.!:i...
2 NO ANALYTICALJUSTIFICATION IS R...EQU._IR..P;......... -.......... o O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-17.4 Outside Surface Flaw Evaluation Chart - Lower Head Weld Ring to Dome Weld (,1 unction No. 2)(Longitudinal and Circumferential) 9 s
I 48/45/10930 1 1 l SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE N5!!! ' UN riil ! .. ldh EMBEDDED FLAW 'I [l i
- I ! 55 a
- FLAWS WITH n..L: ;_..--.;,
- 9.. 3.. p
.+ CO.,N. FIG.U..R A..T.IO..N ;p/... 133 .j.. 7 t. ihilii - 'if i !!Et!!E Eli iE fii ABOVE THIS LINE ARE =
- /*%
- n. n 1
NOT ALLOWABLE it.; u.: =/ - \\.. ..; i!,/lau : =l=:-. : =. . -aW.u..%.,. q r
- u.
0.11 tii}
- 1= Fir 7 ;== -iEif
. :::..T!!ignit... ... f =..=..f.. ..'liiii y T
- =
. SURFACE / EMBEDDED l Ell!!Ei i! -: :-n r= li;jilf E!E .i!!dif "" "i FLAW DEMARCATION ._gg; .,gf..!.f..i.. -n.. a. n.iiif e. s.ji.i.g O.10 ~=. =..:_::.:.LINE UP TIL 1980 CODE a; I E5E !!E! -i L
- un '
- i:Tii![il5i
- [ii : "I!!5I 55}!!' i l eT, O.09 ii-lM.i!:. i ih ..! : '8iif !$:1. ~ I:/ SE OliiE :il!5 i:i ihd,.d,!M. :in ~ ~?[ ; = =. "i 5Il:!5iiiN'5 I -ii!: _.j ,s **ae /ij : illbfijjin Milii.- .i +it.i:if.it m iisitiW, s4sdeis tiEV oit!! iHn isi=imiin9 !:d!!:5Ci :: :: ~: Ei/ iii$5i:/;ir. niisi liS '- -III:I! 23 iFLAWS IN THIS
- I![i : M[ iE ii!
"ii!!N-Z 5 l 17 5!!! 5 5i5 5 s 0.06 IREGION MUST BE 73:;--.;7 - ii".."$- 3.:..;; ; qi}: 3-' jg. -"-u !;;;; Q = CON SID ER ED "V " h iiSURFACE [lijf:if:jji : !5] :- p[ i3.;: :: ar*" ljj D . :P: : -- -[ -Il[_silii MN-tin lii ! 5Nb ?%!!' ~5!!5 -P lf:i.if:ip:-Hini Titi !!)ii iii"fi-i sijiFr di!N ALL EMBEDDED FLAWS 42 O*04 li! i =
- iin -njii (:t f=H ua.:
. = -: (ON THIS SIDE OF DEMARKATION LINE) 0.03
- I_.."gif ny".'
gn
- q.._.
i " ^i l :i Ei- - 5'E.. ~ ARE ACCEPTABLE PER nr:- -[ fj..i
- d!r- : fin:
CRITERIA OF IWB 3600 AS LONG AS U(.0.25 0.02 .L
- =: ::::
]::1.,/ P
- n
- . a ;;g'
- .. [.
.[; t =!//T F! - ili u.= ~
- _n er:
HIE! O.01 j .g,
- jp jiji j..
l.:. .. iu.. un:: f ji: ii:i:i,. : p: '!i
- $i j
- -
0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-17.5 Embedded Flaw Evaluation Chart for Lower Head Ring to Dome Weld (Junction No. 2) (both Longitudinal and i l Circumferential Flaws) d A-ll4 l l
A-18 TOP HEAD DOME TO FLANGE WELD i i The stress distribution at the top flange junction is unique since high boltup stresses are applied in this region in addition,to the regular pressure and thermal stresses. Moreover, the governing transient which creates the worst i stresses at the inside surface is different from that for the outside surface. The orientations of the maximum stresses at both the inside and the outside surfaces are also different, not to mention in different environments. As a consequence, fracture mechanics investigation on both surfaces becomes necessary. (See Figure A-18.1) { i The governing normal and upset transient at the inside surface was found to be loss of flow, whereas that at the outside surface to be heat-up, respectively. l As far as the emergency and faulted transients are concerned, two specific l 1 l cases for the LSB transient were developed for this handbook. Case I was. generated based on the assumption that a maximum temperature dif ferential exists between the top and the lower flanges. And Case II was developed assuming both flanges were subjected to a maximum cooling effect during the LSB transient. Stress analysis results indicated that Case II is the most governing transient at the top flange region. Details of these analysis are contained in the Technical Basis document (1). l A-18.1 SURFACE FLAWS The following parameters must be determined for the surface flaw evaluation at both inside and outside ' surfaces with charts. Flaw Shape parameter f o Flaw depth parameter
- o l
l J j 1166E:10/121084 A-ll5
where a - the surface flaw depth detected (in.) 1 - the surface flaw length detected (in.) ~ t - wall thickness at the top flange junction (t = 5.662 in.) j The surface flaw evaluation charts for the inside surface of the top flange junction are listed below o Figure A-18.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at Inside Surface of the Top Flange Junction o Figure A-18.3 Surface Flaw Evaluation Chart for Circumferential Flaws at Inside Surface of Top Flange Junction Similarly, the saeface flaw evaluation charts for the outside surface of the top flange junction are listed below: o Figure A-18.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of Top Flange Junction o Figure A-18.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Top Flange Junction A-18. 2 EM8EDDED FLAWS ~ j As the surface flaw evaluation charts described in paragraph A-18.1, the evaluation charts for embedded flaws near the inside and outside surfaces have been constructed separately. The locations of the embedded flaws near either the inside or outside surfaces of the top flange junction are depicted as shown in Figure A-18.1 also. 1166E:lD/121084 A-ll6
The basic data used for the evaluation of the embedded flaws for either side of the top flange junction are summarized as follows: t 5.662 in. = 4 Distances of the centerline of the embedded flaw to the surface = concerned (in.) 1 Flaw distance (defined as one half of the minor diameter) (in.) a L Flaw length (major diameter) (in.) = d j a, = Maximum embedded flaw size in depth direction, beyond which it must be considered a surface flaw, pdr Section XI characterization rules. The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw Flawshapeparameter,f { o \\ Flawdepthparameter,f o surfaceproximityparameter,f o The evaluation chart for the embedded flaws near the inside surface of the top fiange junction is Figure A-18.6. The evaluation chart for the embedded flaws near the outside surf ace of the top flange junction is Figure A-18.7. 6025Q:10/121884 A-117
FIGURE A-18.1 SURFACE & EMBEDDED FLAW INDICATIONS AT THE TOP CLOSURE HEAD (TOP FLANGE WELD JUNCTION) ~ (2) Outside Surface of
- j Top Weld Junction
~ l* SURFACE FLAW SURFACE FLAW INDICATION INDICATION _. 5.66L W. 66 2 -+- l t i '[3 (1) Inside + + Surface of Top [} j () Weld Junction / EMBEDDED FLAW N. INDICATION EMBEDDED FLAW g INDICATION \\ .i 4 r L ( mxs '%s ~ A-118
1 10 i 4
- .s.i
- t.
.=.: ;.. l..._
- s. -
1 0 ._q... .-vears +.. 8 (- .J .a. .=.u: . m. ~ u..u: )2-AC 7 ...p,.. u.; g . :20 v.o..a r;. i!!! UPPER LIMITS OF
- .g. 4.;
a ACCEPTANCE . L....:. s 6 / . 30 v( ar1. / BY ANALYSIS E I r Z ..L L .... p h .. I.. [ 1MM ..: g' * ' ' CODE ALLOWABLE LIMIT us ..r - C .g . g.. g o . u.._. : SINCE 1983 WINTER .. /
- . g. -
a [. ADDENDUM 3: 4 / h /_/ i: p [r .H. k.. .a d' o'n / .k. ...L .. _q::;; s s..;p i di: p## . s. e" .j 2..l p (CODE ALLOWABLE LIMIT ; um.y ! A,DDEN, DUM, . ~~ " . PRIOR TO 1983 WINTER T a.
- a.. a.:..
_5.u.. : _ g.= .m== ;.;. : g. 0 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a//) T Figure A-18.2 Surface Flaw Evaluation Chart for Longitudinal Flaws 3 at the Inside Surface of the Top Flange Junction y a
10 years 20 years i.30 years 10 UPPER LIMITS OF H. . l: ACCEPTANCE BY ANALYSIS i
- 2..
- a....
.=. y 8 .a...:.:
- a.
3.- a.: g 9 g
- .u;.:..
.-.a. :.:.
- y s
6 = 1 [ ~ '?!! CODE ALLOWABLE LIMIT m N<g T SINCE 1983 WINTER o p a.:. :.;. ADDENDUM 5 4 ~ A e g.r m o pp5@ ... :... p
- p:..;:
{.3.g;.ii 9:... e" - CODE ALLOWABLE LIMIT : 2
- PRIOR TO 1983 WINTER -
..j.. . e :. [ A, D DENDUM, N... ~ ..n g;+ u;..:. u.: ;..._ 0 0.10 0.20 0.30 0.40 0.50 FLAW SH APE (a//) T Figure A-18.3 Surface Flaw Evaluation Chart for Circumferential s Flaws at the Inside Surface of the Top Flange Junction y a, t
l 20 UPPER LIMITS OF . l.i .j:- - V ACCEPTANCE e ij,IT ~ BY ANALYSIS %M ~ .i 1 0 :' et rs: 18 --t~ ~; TO ~~et Ml~~ ~ H l l- - i-+ ;-l- : O pei rsi: ~~" 16 1 . '. _...u.. .. [.. 2.j;: = 6, 14 q .::h. L-- I.,
- .'il
- .}.;
y.' WITHIN THIS ZONE THE SURFACE [ 12.._. [.i. FLAWIS ACCEPTABLE BY CODE o 10 ANALYTICAL CRITERIA (IWB 3600) m { g g.
- u..
u. 's 5 8 S r 6 ( I j -}- .g.. ..l.. .L CODE ALLOWABLE LIMIT AFTER 4 .F
- l. ~'I 1
8 + 1983 WINTER ADDENDUM .l.. ,. j... j.;.. j.,.; j.... l. :. j.. g,,,,,. {. . PRIOR TO 1983 WINTER ADD ~ ~ 2 NO ANALYTICALJUSTIFICATION ~
- ^
j i IS R E..Q.. U...I R..E D,........ ;.......,.. _, ..I l l .g.l l.[..g l l.j. l., l-j [ 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-18.4 Surface Flaw Evaluation Chart for longitudinal Flaws at Outside Surface of Top Flange Junction
20 'i! tii! !iii iiii !!li ;i;i s;. ;g;i
- ... !!' :!j! i'!! :!!! !!!!!!!!!!ll!!!!!!!!lilliij
"'s I!I!I!!!I O!iIIIIIIIIiiii @ h}@l @ F ": iis 18 ' ' 'i ile',;':: ip": ;".:: j.:" " IIlY !U UPPER LIMITS OF ' '!-! II! ' ' '.- 2 '. '.' p. '[ ACCEPTANCE +>. 4:..%. . m. 3. %. j!,.j11 i!ll: ::lh: s:pl: /i:. y;. M . g;."
- 5.
~?w SY ANALYSIS .,.. :u..u. w.....a...p.
- n: :;,:;,;.
.., n"r"".u- , '4 .h-t h.j'F.- :';; r' '~,.;,;pg :'::.! ip: ;: .".,. J; !4... gg . - m io g . y,, l ' ~ - ..h_i ,;::! ' I.l.!! !;9! i'i 'i!! illi iili iji: :iii :jjj
- t
h. . 9:9 ..:ijj pet.'.i[ii..:l...f...;a..$:,,.,'.._ ':I:. i,- ~ ..li.l!.li.li ": i4 :!h ii. ir. it.h i 2 g.ijjj ;;j,i ::..;,: g
- y n
..t N ii:i: ll j;j': -
- j; d;jj 4i!-!hgl 4
- i 94 ht; liii in-ji
- WITHIN THIS ZONE THE SURFACE i:! !!!! iFr ;111 ich
- ,a
- :
H i! ! l!l ily u!"n.;f ~iiit u W s - :- ;A ... U!! !8ii !<.] ipi.t i4 iii ia- : i i i-e ,i.;;i b y i.; r .g. 12 . y..i . g. '. ".FLAW IS ACCEPTABLE BY CODE r-a 10 ":t' :- : .,:g .:1. !iti!.lli iiii p,g:i :i:i ii;: PI 1-g, ~r ... :!g . igi- -~ e FS...: :'. ;o : :- q!: ,o !!!! t[i siiI/ i ca ,o. J :j
- ~ =
t-
- --.. - c.
a ANALYTICAL CRITERIA (lWB 3600) tu
- 18. 8!II llir i:
"2 ~: 9tr , "... '.iF -J ea r5 ~ n; pt: r ' u . ' '."a' d I.' ".. 4. e
- i
.: n.. : s. :. 4l:.-:.,- h.1,
- n.,,:
. 3..? e.a m..
- n-ti.
p 3: -it;-ph:.! -"h : ". 2 ' ". -.ifi i !* iH! ili 9:,! 9 i: i-;- "i-i 8 ~.. "rp- .tj- ~o: '~ n: m '.a: ~' '! iig: i
- K
@d N g .;u 9:i i:: Hi' :d:
- i i
i:: ..:,,a g y,.
- i.,Ly; g
- 9..:1d. j: : r.j.F. :t. h t.h-
.ii :: rid [i.. :. i. t.' . : -i iuj :4 -- i !- .8:; 6 ..g g g, . i::, .e m :*
- i :
^ "" :h W ~:H E hp. gl; ;;; r: CODE ALLOWABLE LIMIT AFTER
- m. ;ij:
-- -- - p,, se= " . gg g'"..e,n ***, -^ 1983 WINTER ADDENDUM 4 ~ ~ rr . W8 'N'
- -=
~I~ T =::n=in .- PRIOR TO 1983 WINTER ADD
=
..,==W"dM . rr. r i NO ANALYTICALJUSTIFICATION A M" n 2:..;ii :ii! '@:h: -@ !E IS REQUIRED .-.. -.:-...na
- h. hn :r m. :.. n..r.... : :r 0..-
- in ;to o
.. -... r e :::..:... 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-18.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of Top Flange Junction i
48/45/10930 1 l l l SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH l l 1980 CODE 0.13 !!ii nif.!.... :tshEMBEDDED FLAW ~;[ 'UF i."iiii ' 'f9M a $N. I:I ;l D . h.YO..,h i.,'-=15: !!/ Y 0.12 I.EN b NOT ALLOWABLE ., 7gi ....:: ',.;; gn. :fii ABOVE THIS LINE ARE ~" "il: ~ 0.11 E",n}.i = i;E# - = !!/i!!si iisF!#f# !!Til l N SURFACE / EMBEDDED =;-;;: i=ii e . ;p pjf icii
- /dha!Mi !Ei FLAW DEMARCATION
.i. it.==.. .i.=.> . i.isi.i.i...:E is.!. 'i.i.:.i.::.i.._=...._a p ' =.. =. i.i.=.. fi. ::._.. LiNE UP TlL 1980 C0DE .f.. f 'b'E EI i' 1- = 0 09 eh 'II ~ "f k 2955=f[th.i.I)"lI!!il :p[ j=i ih=5iiI!i-ili:3 ~ :- N5 g 0.08 3 . g
- ** a i-ifi1sittii.f:jg:.; sit;;
. ;;lisi g.!.t:g Bi ii:/ii1 > 0 ' i istitifit!!EiiEFfSjjii-ii{f. igj;;.;;;;iE: t u. 0.07 SURFACE h $:ii!!*- 'iE. :.f ::.i**!!l[ f~~i:55 If.i -di!5i "NF 5 5hI! 5IIf:5) 5 Z . !iFLAWS IN THIS Nf[iii Eff5fbEf5!Nii35iihIl S:5f!5 !!!!!f55! 15 iI[ s 0.06 O - Reciou uusi sE.:tja. =/
- ngn.... :=
- m.._ qn:
3 CONSIDERED I "" "E
- " M "'p':ifi:..ib' 2
4 ~ ~ ' ' : SU-E i:". g lliSURFACE [. ji[, -i .. /. -["l.' ~::l - -
- : p'..ii
- :=
a. "; O.05 -i FLAWS E ^E~
- L
- iita e
- - /:. =1 .i ....jp .:...i!!!!!pp= =i I O'04
- w M.!
- M# -jili: .!* ALL EMBEDDED FLAWS 4
- iiii::
-fi:j f;;45 }' 'i" p 7'. :=j:i' ?"jn.i i:n " un
- iji:.... iiji: :
(ON THIS SIDE OF ntii:~: wig DEMARKATION LINE) 0.02 ".9. [...l:. ' 0.03 5f
- . ne
~f E. ARE ACCEPTABLE PER ";!-= T/. .i it!!in '.., 'i. t.. dim. ; !:a
- 9....
CRITERIA OF IWB 3600 . =.
- 1
.f i;.'y!..5,E.. 5.U.. 35 ..$...~.E 2 AS LONG AS at. 0.25 = t. .:p'- ,.j::
- gi-===i t
- T "q".. 0.01 ff. pip .jijiiT ':j: E iiiii f:: l': .:r iiN:i ur: ii o 0 0.05 0.10 0.15 0.20 0.25 i DISTANCE FROM SURFACE (j) Figure A-18.6 Embedded Flaw Evaluation Chart for Top Flange i { Junction - Inside Longitudinal Flaws (Also Applicable to Circumferential Flaws) l A-123 l i
48/45/10930 1 1, 1 SURFACE / EMBEDDED FLAW DEMARCATION LINE. BEGINNING WITH 1980 CODE O.13 tiil ' 'iid.-
- .liih EMBEDOED FLAW 'I [!
I'@ ?' a iT
- RZ
- FLAWS WITH * "~ 4" CONFIGURATION :j..,.g 3 . y"! 0*12 - q +3-.p
- =
- j.
ABOVE THIS LINE ARE !!EIliii ! /NM:=!!; .: if:i !!Ei:g E ig NOT ALLOWABLE "!E!E!! . "" "I;".. nI"nu:=I: :... D t.b,, - = gn: ~ i-O.11 i a u-C- !=I =siiU E '~ !!/.i:M i!Elii!E/M !Tiii N SURFACE / EMBEDDED f si :2-
- i i
FLAW DEMARCATION 0.10 4 LINE UP TIL 1980 CODE "2
- =
1" ':."'. a f':.E.. 23.1:-s.i.:.:.2.. i.i.E.i.i. :n... i=.:t.
- i.. _.
- -m:/.2.... ~ E** O'09 T.- titt-- iA ii /si itTish riti# iWiittiir:ilil!!ii =" 0.08 ~ 'N! i55I ^ .ii!: : :W.e.,s eg a as i: y l":; ii ;;I.:/3j:!; jjjjf._:.. : :@igt.ji E!EiEYlr i ! .;;= 3g(3;gjisjy :gj;; ijjgi g5giju sii):= u. O.07 SURFACE Ei!!
- 'i:. ;t unin lii!/ ills @i /.i-l ::.!En ti"jiii4Elliv:iMi$
I .ii FLAWS IN THIS
- 35[ibi NSIE[ii'l@5 Filii .iiIiE
- iiEi' : ' t'iiE r 0.06 T REGION MUST BE :f'":: ^:
.n y #
- n_p"-
- n; n * =::..: tn..n Y-CT
' h rt' 3 :- - "I= i.iiCONSIDERED ['-}jjjh.;/_:.jji ' iiiij"2:i p,.. Jf::{iI.- . l;j g iiSURFACE g. n.. t-~r - ~[i !i.i[ -.iii - i*i}.i hj;:. ~ };ri!E;.:;;;j:fh D u t-1 -i iii
- iii "jil i.} 1.i* ALL EMBEDDED FLAWS id
- if.; i Ff:iE:iti
= i Z O.04 ii _ (ON THIS SIDE OF ..: En :ailii f: j"fgpi: "l: ~. ;si: nJ-T:.. _ . :ip i
- j=J DEMARKATION LINE)
- _t{ -
- - - = ~ = "n Hi "y:;i" "]"/ 7 =- j:'i' ~ ' ;d;.." . "2 " ARE ACCEPTABLE PER
- ii:
n - - f"t: rir ! ;;iii .! j"....:.. ~ M 0.03 nir:- _./ C:
- EE!
~: CRITERIA OF IWB 3600 ti $ '/' _I.'jn n*. -
- 7': ;.... g "..
AS LONG AS.2.a&O.25 . 7 . :::n 0.02 i Z[: )' f I =s -~ mn 2 3.m n:dar:-- l..i; t g ..tn -
- : L..
qg: o,g,
- /[..
= hE- ..l. :. nih = g (. 4- .ij:pi. iq== : !i t; =- i O 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-18.7. Embedded Flaw Evaluation Chart for Top Flange
- Junction - Outside Circumferential Flaws (Also Applicable to Longitudinal Flaws) b i
A-124
A-19 LOWER FLANGE JUNCTION TO SHELL WELD Similar to the uniqueness in stress distribution at the top flange junction, the stress analysis and fracture evaluation at both the outside and the inside surf aces of the lower flange junction have been performed. (See Figure A.19.1) The governing normal and upset transient at the inside surface was found to be cooldown, whereas that at the outside surface to be heat-up, respectively. As far as the emergency and faulted transients are concerned, two specific cases for the LSB transient were developed for this handbook as described in paragraph A-18. Stress analysis results indicated that Case I is the most governing transient at the lower flange region. Details of the stress analyses are contained in the Technical Basis document [1]. A-19.1 SURFACE FLAWS i The following parameters must be prepared for the surface flaws evaluation at both inside and outside surfaces with charts. l l Flaw Shape parameter f o l Flaw depth parameter f o where t a - the surface flaw depth detected (in.) l 6 - the surface flaw length detected (in.) t - wall thickfness at the lower flange junction (t = 9.02 in.) ll66E:10/121084 A-125
The surface flaw evaluation charts for the inside surface of the lower flange I junction are listed below: ~ o Figure A-19.2 Surface Flaw Evaluation Chart for I Longitudinal Flaws at Inside Surface o Figure A-19.3 Surface Flaw Evaluation Chart for Circumferential Flaws at Inside Surface -f Similarly, the surface flaw evaluation charts for the outside surf ace of the lower flange junction are listed below: t t i o Figure A-19.4 Surface Flaw Evaluation Chart for l Longitudinal Flaws at Outside Surface J e o Figure A-19.5 Surface Flaw Evaluation Chart for 5 Circumferential Flaws at Outside Surface A-19. 2 EMBEDDED FLAWS l As the surface flaw evaluation charts described in paragraph A-19.1, the evaluation charts for the emb 'ded flaws near either the inside or outside surfaces have been constructed separately. The locations of the embedded flaws for both inside and outside surfaces of the lower flange junction are depicted as shown in Figure A-19.1 also. i The basic data used for the~ evaluation of the embedded flaws for either side of the lower flange junction are summarized as follows: 9.02 in. t = 6 Distances of the centerline of the embedded flaw to the surface = concerned (in.) a =' Flaw depth (defined as one half of the minor diameter) (in.) 1 Flaw length (major diameter) (in.) = 1166E:10/121084 A-126
a, = Maximum embedded flaw size in depth direction, beyond which it f must be considered a surface flaw, per Section XI characterization rules. i The _ following parameters must be calculated from the above dimensions to use { the charts for evaluating the acceptability of an embedded flaw e Flaw shape parameter, f o Flaw depth parameter, f o surfaceproximityparameter,f o i L The evaluation chart for the embedded flaws near the inside surface of the lower flange junction is found in Figure A-19.6. i The evaluation chart for the embedded flaws at the outside surface of the lower flange junction is found in Figure A-19.7. i l l i a / 1166E:10/121084-A-127 i m,
_ _. _ _ _ _ _ _ ~... FIGURE A-19.1 l SURFACE & EMBEDDED FLAW INDICATIONS AT THE TOP CLOSURE HEAD (LOWER FLANGE WELD JUNCTIO'N) i. s f i 1 I. Q-- p i Inside Surface of l Lower Weld Junction V - [ g 1 { { I k i 4 SURFACE FLAW INDICATION EMBEDDED FLA INDICATION h [ w WELD NO.1- ) e ~ 9. 02 ", - - 9.02" + SURFACE FLAW INDICATION EMBEDDED FLAW INDICATION w M Outside Surface of Lower Weld Junction () b V A-128
i 10 e.4 1 ? UPPER LIMITS OF g'N:.EAIN hn.-
- i
/.- .. ~ - ACCEPTANCE ' p + _j ja- - BY ANALYSIS
- a..
..q .;q u :.n.. un.:.; 8 - - - + c- - an --- . a:- = u-. L.+.... 1: jjp: y-i+ . g;-.
- 2- '.Q g: g-jg ni Lj i;l; 73i
, g ... a;
- y.. -
g.- r.- r ......;......$1;:;:
- !. I! !.ll.a 9:
... 3. 3 c l! 1::l1! ^yeaUs. ) 6 . #9 4 3-
- i..E
.iL, ifu. ~ aa 2ii se ':- 2.:
- .-.1 1
.- E..
- 1.
- i.g:yy :,I;.
up . n: - su .u. .u. ii- =.: .I !.l! l CODE ALLOWABLE LIMIT w ~... a .. !. g_.. g. . #;. ;ij: :.;. 7 ,s.j j 7,. ADDENDUM SINCE 1983 WINTER g O p t a:;.p; a. +.. .2. .q + ;,;gg S 4 li in. ilu ~ .; 2.: di lilj li
- [
. au 3 ..!!j,: n... 4.... di: 1:1: " i 2: ~ lili ;in 7 s ..: m: m M.@ .i.1.'. '..It: .:n .... gas .. ".: :.u p.:. l. . 4:.. . p. un.:.:.. jass 2 nad# ,' CODE ALLOWABLE LIMIT ! - ..p!*-
- . f.:..a..:.g i.;, i;:: gli
- g'.
..4 psy,,,,i. :'.- . PRIOR TO 1983 WINTER -
- r!:
~~ _": '! ADDENDUM.- au. : .g
- q..iii.
a .u. g.: :.a.. # =.iih . ',.d ..r.a. a.i jiji.pl !!!:;.;. at ,.j.3..;; 0 i;n
- - y a..
O 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a//) m N ..b. 0 Figure A-19.2 Surface Flaw Evaluation Chart for Longitudinal Flaws at to a the Inside Surface of the Lower Flange Junction A
I 10 years 10 9 UPPER LIMITS OF 2%..:_=a. .{.. y ~:... -.. J ACCEPTANCE a;u.... :._ :.:. an :g. aa. n.: _;- 6M BY ANALYSIS b0 y.ei rs ..Q l3 ea s. s 8 I.. m-
- F jia !'
iiF -H j:., :iu 1 i;j; Hi jijj y-3-H- ! -j-i . E..
- 4 uj; Jgj
' Ti: ] !.a.- .i .. :: +! ;- l " 4" H-i; i+ - !F-a- 6 - an aa 9 @ idi a :.i aa :a-a-- ilii ua 's 22 O E i T- '. :T .!n:.
- 1.
.u..n. .:q.u. :.:. . ;u: it: I aa 3.:. l,t, .:g; up ;,l.. -:..n. au
- -; c:
[ . 3 !l! In '~ CODE ALLOWABLE LIMIT i f-us O 42 ---! i+ a-3:! , pm,. SINCE 1983 WINTER ji; g 3 4 "y:
- l;
+- :2-p m :-i- :j-dl: b.-,i" ADDENDUM u_ Eli - [ E!' 'l i o y g a.: 2n 5 ... ili.! . :. :it. :::t -l :-:: .- /,. s.. w p ..:n till 1:nl: . l n.. cP. 58.gp - d..:. .,..::r. - a._
- i m.
. i n... ..ws#. -pas .-4 .. :+ a!! p;; i;!! !!.. !, .p. :p.. ump ~ -; t!!.- -i. CODE ALLOWABLE LIMIT ;' ~~ 3,l.! . p .. : pu i+ .I. 2 .ma sa* PRIOR TO 1983 WINTER.-.:_.. ., AD DEN DUM,- a.i .:l. 3' 1 ; :
- ;.n
..: a:. ;",
- l. "h 8::
- j.
4-
- f f-l al18
. e. n...:n.,. .:.:..n. :..; an a.:
- a..n.,
..a.n. a.:
- c..:.{!,j: :;c.
.u..:..:. :n. g ;;.. g lt!; t;;a ,t,' 0 0.10 0.20 0.30 0.40 0.50 FLAW SHAPE (a/2) o, N. a tn N Figure A-19.3 Surface Flaw Evaluation Chart for Circumferential Flaws 5 at Inside Surface of the Lower Flange Junction 89 e
20 .g.
- 3 7-1.. '. IL
-C ";, sppp ~ UPPER LIMITS OF
- -.tq-10 ye a'r.s-ACCEPTANCE 18 r-
-4 20lytar:.. BY ANALYSIS 16 [ -F ~30lytety~ 'r- ~ ~r ~~
- 6. 14
.*\\::
- .j, q
..g p 9 .p gg;: WITHIN THIS ZONE THE SURFACE 12 k FLAWIS ACCEPTABLE BY CODE .n. ..l. -l..
- .l..
ANALYTICAL CRITERIA (lWB 3600) o 10 g. g
- g.
6 ...I.. j j " --- ~ CODE ALLOWABLE LIMIT AFTER q .. j.. 1983 WINTER ADDENDUM 4 d-I- I 4 . [.. PRIOR TO 1983 WINTER ADD .;. q...,..,..; j....y...i. ....n,g.. i ~ ,. i.;., 2 NO ANALYTICALJUSTlFICATION q IS R E..Q...U...IR...ED ..g. .. 9 O 9 q-.. < i.; l............p.......g...l........_.... 3.l l l l r..ll.b 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) I Figure A-19.4 Surface Flaw Evaluation Chart for Longitudinal Flaws at Outside Surface of the Lower Flange Junction i
r 0 years '1 20 years 30 years 20 qg $p; M:o M h,'L]% ". NE h- - 9"
- 7.~,
, '... ;q.m,g, 64 hbI HH H[I :d!b N!!Iih ih ACCEPTANCE i ~ m ~ UPPER LIMITS OF -e i '!! i!4 m:" iir4
- "ih ii:: il!i ij;jIjj"j ;jh %j 'ii
!! !N"i !I!! !!H liii ilii ii : :" BY ANALYSIS i-- 'i IO I i 'M 'tt 'il: ih 'H: itti Ili lQi.. ?. .? [ig {y.j :qi.jI"ll -. r..:....-:.. c.. - };!! il:: .." *..... !Mi
- m
- ....
16 7 tre rm :ir. n. h :g{ i h '..... a-u r-10:.o. ri u n-a'q- .- :a: :::. m 'p.- 'in i:; iii-m.I ..- # Y 14 Il! Iil tih NH 'Ii
- !I: !ii !ii li{j 'I'i 'I n;:
- m ifr':-
rf '. i. r- -~
- ir t: tr mi..
i.j.r !.. g'! II.4b.li -.c:
- l.h p. i.o.l ';;;+! ij;; cli hi.:,:. i --
-1 gg /h 4" 16! !!!! lii i}i: hh isb dji C 24 i iij: ":i;: n[! iiji - : :. - '" :_ u e . -. i.t.h.i.i.i.p +. :th :;i. : itii 4-
- fi-if
,n - ;q: m- - :r:- :-
- ri1 h o' ii.:1 iin' m- -!E:!h;! -ih !:- it i tti:
- i. :
-F - : nr a-- <n r m
- "- ~" i WITHIN THIS ZONE THE SURFACE z 12 i.
FLAWIS ACCEPTABLE BY CODE .- n,:. ' n-tu ~' .j"ifi!! !!!, iHi. iii ja. His iiii dii ii:: iiii H::-m-r-- s ...: :i-
- E m.
- ,n oi.,1;
- .
n. -t m, 8 .2 c: :.' i: .. ! lli: !lli tih... IIip rii; sii: lU! !!M : f.. - ~m. -
4
- r.
ANALYTICAL CRITERIA (lWB 3600) .r :-..n.- : :- :r --r r Q 10
- f. k..
d rm tm pg r .p p;. p;. .g. ,9 p g r,rg; j . N h h h.h ! fh NN-lii* :b 5,3 i5:; thj rt*; y j }- 6 ..y He m. a OJ b ru @:t : ..:::m: mi la.
- . :{;-
-U-4U 8 .t li,
- i;
.:1 !4I h.- ,p itp;- th: "J .c m-
- g. -.:pt
.. n... un.."U. '.!!! 'F!.h.. .7: 4 6 4 ;.- .r . m.g ..a g;, em. 3 pg g g., ,.y. + ". "i; '!!i iii.i fii' irir i'h' eli t@e.6: i;j:. Tii- - +- " W CODE ALLOWABLE LIMIT AFTER 4 p M, -" H ii ij;i 1983 WINTER ADDENDUM i 1 14 ; ~ w:i e-+ w: e w .... : n ; +l :r. : H+:cS. i;iJidiit :ihte:h.n PRIOR TO 1983 WINTER ADD 2 _. a * "I NO ANALYTICALJUSTIFICATION ... :ii :;;; :@ in ;ij: gn !!;i IS R E. QU.IR. ED..-. --,
- .i.
..:.,,...:d ..s' 'i II";.Y. l'.i";c. l' l'. l. l.T l @...@ - @~. i; ..r ~ ^ ....... - ~. t-0 O O.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) Figure A-19.5 Surface Flaw Evaluation Chart for Circumferential Flaws at Outside Surface of the Lower Flange Junction
48/45/10930 1 SURFACE / EMBEDDED FLAW DEM ARCATION LINE. BEGINNING WITH 1980 CODE 15hi ; :iii iiil i.. ... 6EE8'E3 bib"Fddili [M
- = I a
i.rIs
- q 3
- ::M CO.N..FIGU..R.A.T.i.C..N 4/-..f.
. /. ' FLAWS WITH 0.12 -: 7% nrnw (:...i.y,a=
- 7c:.
ABOVE THIS LINE A:d ...a-., a
- n.
_ ;!!L: 7,: NOT ALLOWABLE
- Ei_ :.
/ i(in= ;i!!d!E if,,:,, O.11...!.._... 7". an -?==,- . _.:=- liig.. _.... ifiriagii liTc: g i, iW.:i n: E=:r-
- n-w SURFACE / EMBEDDED hT: i:!! :
- iE ig,(iiif iE i! eil!".f:!ii.i.;@liih FLAW DEM ARCATlON .!P i 0.10 , ;=g r, =i @i; 3,1 ; ;_;iiif :s;j it-iii LINE UP TIL 1980 CODE 2 isni=3 ti-1 e i= s 33 efilisi- = fi;_
- E; E; g[,,
- !If[i.
- ---5k !!E !! bij - !!Y?. !['* :5 5 5 :' -Nf5 ~ NI!!', ,,- '[ '.: 1\\dd['5i i'[; :!!:. i ::f-$! 0.08 j
- }
,,m,, j,;i g;;i;= jig = g;;;i.3;g;;;= ig4g u. ![$55[!iI I iiiii!! diIki5i!M '5' !!I.5i 55$5 i i!!II h 5:!i!!E:ii : ' 55!I[ I!Ikfi N!= EN!!!'INkb5:; ibI!l b
- _.~"
Z .!! FLAWS IN THIS N![i!i 5!$5[$5 i:' '55f!N-I!!N9 iiF p 0.06 InEcioN MUST BE f"13: " ~ - -~ ""~
- CONSIDERED
-'1 3:7"... Eij.g. i.i. n:: C) h liSURFACE [i'E [dii-
- i M ~
.:lifijij T
- l"!:
Z" O'05 HFLAws ..1~
- h. ~ ::l '
- ii.-t e
- :M /n. rf.iihre-t- : !#:1 ! ft: 4 -i .i;! .-f;i:f:i: iii)Ej g)); ar;;; i si .!* ALL EMBEDDED FLAWS I 0.04 ..j. g; g... . ::f.":::g:n.. j;'J q.. 2::j~:., gi"" (ON THIS SIDE OF ~JJ.. :.... i DEMARKATION LINE) 0.03 ARE ACCEPTABLE PER
- !F" ~:-/ ['j!:
mim-elr ' ':rii ' "I' CRITERIA OF IWB 3600
- =.
i;i;'iai /:/ iillii iijf i ili alii;.. AS LONG AS k0.25 j F)[/ - E*ii.E :?i$i iif!!
- -
- in:i;df" t
-gg-.:p' g -r ..jij .,_ n y:ji; 0.01 T ~ ~ ' ' iili- !!!9 .. l:1_-. iihi :- =ii
- Eu Ni Ii' iihi ~
i'i I!! i o 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-19.6 Embedded Flaw Evaluation Chart for Lower Flange Junction .Inside Longitudinal Flaws (Also Appli-cable to Circumferential Flaws) { i l I I l A-133 ~ l
i 48/45/10930 1 4 ^ SURFACE / EMBEDDED FLAW DEMARCATION LINE, BEGINNING WITH 1980 CODE 0.13 i _.[. ! d.
- diih EMBEDDED FLAW ii iii lE ~ iii'
..E ". 3., . CON. FIG.U..R A...T.IO...N.pf '#~ - FLAWS WITH a .,igi. .;/, ^
- +
a3 =..n..L.in. ABOVE THIS LINE ARE 0.12 .... :~ Ei is yii =u;;. :. ws iri := itii
- /::ih:-. NOT ALLOWABLE 4
.di
- /!. RE f.nE3:1 :-- Ei 0.11...i
=E.. _. H. : '/ -t. 1:
- n-
._.isgE ml.. ; g 11= Fit: ac n :."f. H "Ei-Y. ..1tliip:i Er istiiii =i' + SURFACE / EMBEDDED n-a EElNEi Ei! ii: . :piilf: iEi sil!:=f!"; FLAW DEM ARCATION
- =;. =., _,, = f..t.f.
0.10 . iiiM. a...i.s...E.i.t:i;: LINE UP TIL 1980 CODE ,;;; =..;..3;;_ n..p,=- ;. ,,,,=.g . f .-~. M!!!'i
- - [ N II.i :i 75I [fk!5 i" 2'
!!:"SNb N5!!' 0.09 4
- 4....
=;
- ,,3;;;;jjg17 gig;_;i ;;;,gij.;gg)g 3.;-,;,, ;,) 3_3
. 'l I'I \\di.N,fhb5)i5I55[: d!:fi: 39 ~- M -C 3 0.08 iihi'.- :d "#".8 P'G 8 Os .f...:1,- tii[il;-[j):ii J n. :.- .....- d[_r:~ .nY..n u. 0 07 RA E-h 5Ci$iii:~I'i:.nt::,. -!(( !Nh5!Nin :iIif5! kk!! I-5kkN' bNIib Z ." FLAWS IN THIS :np n: :ntdn.r": :I::n. . n:r. :.
- u. t d:n
- n.:n nut n
- =::n
+-
- t:n.
- nn:n
- t:n.
--r1 n-r 0.06 IREoiON MUST BE.f"jij - 7,.iig!!" ij:i!nr - g 33;.:ijii." - " -.:.1.j135: 3ii - 9
- . CONSIDERED
~" g 'iiSURFACE [: ji{ji j/:.lji - Qii[lF'if pril :iin}iiiii":7- ' tilj i 0.05 1F, LAWS ,,,f,.;m ,,,_, g,g gg,,g; }.. .g.ggg u; 4 dij:. in
- if
- iifii;-
in;Ei ': jh iiti.. ;isjij
- ijli:
slN ALL EMBEDDED FLAWS 0.M (ON THIS SIDE OF 4f;;.pg ; . n..n. 33 .:5 3:.....iij.a.
- i.g.. 3 33..,
H/:-
- nl - -i lii
"""} ]li: ARE ACCEPTABLE PER ......i DEMARKATION LINE) j/ -lii di dhi .rn:
- f. /.
-i!!n--
- !at din ! nit fi'!E CRITERIA OF IWB 3600
!!= :. ifi/ ilii u.!Nu i Ei 2s.0.25 AS LONG AS t ijti-lf di:jiin citiEn.-ji.g t i;!iE i:arn H2i
- e r /Hji:
i l "' i:lii in.} ; 4 "'T" "{Ei O.01 m= .~::::.:~::p" ~ .y m= t....
- == ;
(.. iij:. i=jn i:jii - l-i 0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (f) Figure A-19.7 Embedded Flaw Evaluation Chart for Lower Flange Junction. Outside Circumferential Flaws (Also Applicable for Longitudinal Flaws) A-134
STRUCTURAL AND FRACTURE ANALYSIS - TECHNICAL BASIS FOR VESSEL SUPPORT BRACKET HANDBOOK CHARTS The attachment welds of the two vessel support brackets were analyzed to develop flaw evaluation charts for the handbook. The support bracket geometry is shown in Figure 1, and it is not a highly loaded member. During normal operation, the bracket is subjected only to the static dead weight loads of the vessel, which are equally distributed between the four nozzles and two support brackets. The total weight of the structure results from a number of sources, as listed below: 1. core and core support structure 400 kips 2. dynamic load of tripped control rods 117 3. water in reretor vessel and head 138.5 4. reactor vessel, closure head, studs, nuts 485.4 5. external thermal insulation 8.5 6. closure head lifting rig and ventillation shroud 25 1 1 7. control rod drive mechanism 98 i 8. partial weight of reactor coolant piping 37 1309.4 kips The support brackets are not subject to any significant thermal stresses due to the reactor system transients because they are sufficiently isolated from the vessel. Pressure stresses are non-existent as well. Therefore, the stresses for normal, upset and test conditions result only from the weight of the struc-ture. Emergency and faulted conditions loadings result only from earthquake loadings, because the thennal shock from safety injection actuation does not affect the brackets. During an earthquake loading the supports must resist the seismic forces which act through the center of gravity of the vessel. Since the center of gravity of the vessel is below the level of the supports, the seismic loads also produce an overturning moment due to their horizontal component.
l i These loadings, even when combined conservatively to calculate stresses, pro-duce rather low stresses. These stresses were calculated without finite ele-i ment analysis, using simple beam equations. The resulting stresses are listed ^ below: Nonnal Upset and Test Conditions: membrane stress = 0.641 ksi bending stress = 4.4 ksi Emergency and Faulted Conditions: membrane stress = 0.641 ksi (including dead weight and bending stress = 28.4 ksi seismic) These stresses were conservatively assumed to act on each of the members of the support bracket (see Figure 1) and the fracture analysis was carried out in the same manner as described in Section 2 of the technical basis document [1]. 1 Since the cyclic loadings on the support bracket are small to non-existent, fatigue crack growth analysis is not necessary for this component, and the allowable flaw sizes may be taken directly from the fracture analysis. The criteria from paragraph IWB 3612 were used, based on safety margin between the applied stress intensity factor and the fracture toughness, as discussed in Section 1 of reference 1. The allowable flaw sizes determined for surface flaws are listed below for' each of the attachment welds, for a continuously long flaw, (a/4 = 0). Attachment Weld A (bottom) allowable a = 6.22" a/t = 0.26 Attachment Weld A (side) allowable a = 1. 91 " a/t = 0.60 Attachment Weld B allowable a = 2.37" a/t = 0.55 Attachment Weld C allowable a = 0.86" a/t = 0.55 The allowable flaws for semi-elliptic surface flaws would be much larger than those calculated above, but the values are already larger than the maximum allowable flaw in the surface flaw charts of twenty percent of the wall thickness, as dis-cussed in Section A-1 of both the technical basis document [1] and the handbook itself[2]. The surface flaw evaluation chart is found in Figure 2.
The allowable flaw size for embedded flaws in much larger than that for surface flaws, because the same stresses result in a lower stress intensity factor for l same size flaw. Therefore, the embedded flaw evaluation charts have been set at the pre-determined upper limit of twenty-five percent of the wall thickness in total flaw size (corresponds to a/t = 0.125, since a is defined as the half width of an embedded flaw). The embedded flaw evaluation chart is found in Figure 3. REFERENCES 1. Bamford, W. H., et.al. " Background and Technical Basis for the Handbook in Flaw Evaluation for 2rairie Island Units 1 and 2 Reactor Vessels" Westinghouse Electric Report WCAP-10562, December 1984. 2. Bamford, W. H., et.al. " Handbook on Flaw Evaluation for Prairie Island 4lnits 1 and 2 Reactor Vessels" Westinghouse Electric Report WCAP-10363, December 1984. f 4
A-20 VESSEL SUPPORT BRACKET A-20.1 SURFACE FLAWS The geometry and terminology used for flaws in the vessel support bracket is depicted in Figure A-20.1. Flaws were studied in two different parts of the i bracket, as shown in the figure. The following parameters must be determined for surface flaw evaluation with the charts. o Flaw shape parameter { o Flaw depth parameter { where - the surface flaw depth detected, (in.) a 4 - the surface flaw length detected (in.) - thickness of the bracket at the appropriate location (see fig. A-20.1) t The surface evaluation charts for the bracket are listed below: o Figure A-20.2 Surface Flaw Evaluation Chart for Flaws in the vessel support bracket A-20.2 EMBEDDED FLAWS The geometry and terminology used for embedded flaws in the vessel support bracket are depicted in Figure A-20.1. Basic Data: t thickness of the bracket at the appropriate location (see fig. A-20.1) = Distance from the centerline of the embedded flaw to the surface (in.) 6 = a = Flaw depth (Defined as one half of the minor diameter) (in.) 4 Flaw length (Major diameter) (in.) = [ Maximum embedded flaw size in depth direction, beyond which it must a = n be considered a surface flaw, per Section XI characterization criteria.
The following parameters must be calculated from the above dimensions to use the charts for evaluating the acceptability of an embedded flaw : o Flaw shape parameter, f a o Flaw depth parameter, surface proximity parameter, f o The evaluation chart for embedded flaws in the bracket is shown in Figure A-20.3. Any embedded flaw in this region will be acceptable regardless of its size, shape and location (as long as ( s 0.125) as shown in Figure A-20.3 and discussed in Section6.9of[1]andinSectionA-1. This determination can be easily made by plotting the indication parameters on the figure, to determine if it lies below the appropriate demarcation line (i.e. embedded not surface). A-20.3 General Observations on Evaluation of Indications in Vessel Support-Bracket The charts contained in this section were developed based on fracture analysis of the support bracket attachment welds, where the bracket is welded to the reactor vessel. The charts are directly applicable for indications which would be in the plane of the attachment welds, as shown in Figure A-20.1 Indications oriented at an angle to the plane of the attachment welds should be evaluated using these charts by calculating their projected size on that plane. Indications oriented perpendicular to the attachment weld, such that they would be oriented in the thickness direction of the reactor vessel, should be evaluated using the charts of Section A-2. Specifically, Figures A-2.4 and A-2.5 should be used for sur-face flaws, and Figure A-2.6 should be used for embedded flaws oriented in this direction. The charts in this section are applicable for any types of indications which might be found in the examination region identified in Figure IWB 2500-13 of Section XI. The attachment weld is made entirely from the outside of the support bracket, so there is no problem with a lack of penetration at the center of the weld. The weld preparation angle was 30 degrees. The standards tables for acceptance of indications without analysis are found in paragraph IWB 3516 of Section XI. These standards are plotted for surface indi-cations in Figure A-20.2, and for embedded flaws in Figure A-20.4.
i l i Figure A-20.1 Geometry and Terminology for Flaws in the Vessel Support Bracket Attachment Weld "A" Attachment Weld C 30'~ 1.57" (Typical for both 4 Attachment Weld C vertical members) r 1 ( \\ o , 44 3~
- 24..
3 1 30' ' ' kk 24 4.25". l i! ~ Attachment Weld B 3.1 " -- 24.0= = = l a~ l -j "-a (for embedded flaws) 4 e L s 3 Attachment Weld A a + a (for embedded flaws) l m ,. 4 al g w l tt t 7 ys6 i Attachment Weld B I
- e o
~10 years 20 years 20
- '30 years tiil ;. [;1.j ll;i,;ij !!i.
- l"ij h...' !...lIl..:;',!!!!
f 'F FF .':l! ill li ' lill lij; l l} hjj l l l:c N il .q I;.p:s - .:1
- t
.; I li.: l lj j h"g iq: l"N"I -.j g! .j..p
- i l-.."' A!I
- {ir' "' yin -- ip'i ' t - b..dEd Ef 4:. il t ti tv .r - o g';;g g' 'g,' life liil-- IE' 5"N'I 4 @.. : 18 1 l-' .i - .a - :c .8 ... l: 4 i: u. h.: :.j.,pg 9. ..g". n. t i. 3 m. .,j - ,.. g. ,I. :. j ,g - 111: t.i r.
- n. y. ;g ig,, p, r.
.n ..,. g..-.. ~ j,, Q. g.r: .i. l j,; r .g-r . D.:.. .. -..e
- n.. !p.
..; ;l:...;q,j, ., c. .lll .-.c. c p;.. - .1 n.... g, ipl a. ,j! ..I g in:.ijj; ijg gI id:.m:<} };:p:p.!. ,il .n. ....,h. ,,l: 1. I HI lip :-~: l .,l, .t.
- p' '.;".
".;c" - hF 'h iF: Pi "iij. ::: b;; 14
- l-Y.. :"11:
4
- -+!
e:q !: i:{! ;j[- :.'; p _ ' - u li j+p. C
- 5. :Fil) 1:!! jj' '
et ..., i.!:.: . jg g..jgg :d:i( -yh ;;:;I !"!!"!liU"8!!! 'Of. {Hi lih. ;:'3! 11 ! WITHIN THIS ZONE THE SURFACE it li
- .. :c
- r- :u -+Is:Ili !! ; liii !'h if :'
- c ec 0
- H !"!
n- =
- li ti:!.51 ii:i x 32
. _..i ..' y. i i FLAWIS ACCEPTABLE BY CODE c ;. ii':, !! ! %.Il: gj ii ? ijj:i 9h i[i:.i i ii;. ':i : '. i;j ;;[I.[j4.jI.n::::n.5,
- p::..:. 'T 4R ANALYTICAL CRITERIA (lWB 3600) i
". ;. i... ,"g f a. .- I l', : i: i i,.. J. l. ~: h-i!' IUIN.cIUliNii I!! M- !U h I# r. '. :,,. r. ,1 ' in i e.' a 10 ng ~ .~ ~ i u'p'"P" n: g
- I' "., '
- ll.-
.c r- .~ . f~: jg .:..; _ :q;,., :.;!;. .j;j iii! 'LI fin !t!. ih: .i i ;. !!! hi: u
- l! le: ilh; 5s
~ ih ni: . "-+'
- i,::
T.. .~id" ..i "., : !Hi 1 u. n 8 n u:, ,.,.,,g..
- p, q;,
h, p:.. ;ql;
- j,
- i:
1,q ; .,,, p-,,O ;.;il u, r;y! Eh;y;,,hn;;. ,,, g9,p
- p
..g c g 6 s*" g .jr p: g,,g; gp j:,. :y11q :y CODE ALLOWABLE LIMIT i.,. .c lb. llh l i:n w
- . :p.
li: iii! d.,: MP.r !F: e..:
- . :n. :
H: 1 1 :i:j dp [;"; 9.:-; 4 "i
- nt
": d.'!': it..
- 1 m
H' "E +' -1:- ~ 'l"1 h . ':- :?- I - 1 ii:i :lii ;ia" ir
- ?p;ap-p'.
.!"UHh e.i iii. i!!i !!i! ili: 'lii Fi! ! i: li:: . Ss :1 2 h!: ;1ii !i :ip li
- i jit:
.... ;ih Ji! ri: ~ ii' . [Hj :i;li p'.. SH F: t! IL NO ANALYTICALJUSTIFICATION i g .!i r ';;I 'i. .i: . # 3!' !bi IS REQUIRED 0 0 0.1 0.2 0.3 0.4 0.5 FLAW SHAPE (a//) i Figure A-20.2 Surface Flaw Evaluation Chart for Flaws in the Vessel Support Bracket (Applicable to all attachment welds, as shopn in Figure A-20.1)
c 48/d5/109301 SURFACE / EMBEDDED FLAW DEM ARCATION LINE. BEGINNING WITH 1980 CODE 0.13 .ii; - tiili . hi-EMaEDDED FLAW fi/.@- ul=.. iiiil!! - _ FLAWS WITH a ....g 3, _ a g CO N. FIG..U..R AT.IO.N.. :i.H.f.:gi.,g31..;,..,' "-. r.Lgy .3 0.12 y -.. A,'. m.:p:3.n . :=:n
- ni:n c.
ABOVE THIS LINE ARE .e ..: n ..:= : a =. n n.:.:. 2- .u ~ "~ ~ " ~ " ' '-~~~~:n it: =... .__n .. = r:z. NOT ALL WABLE 0*11
- = :.:~.un "
.:...:n un
- n=...-
'""~ i:M~i" ni:9 M inii? T: - ~ ". :/;!!!_:i :!Eiii i "f:l' #ii \\ = SURFACE / EMBEDDED 5:1j!!E i
- ii MIi r a
-iiif fid:li' :--iii i:h.li!5ii Tii;/tM. ru. FLAW DEM ARCATlON = 0.10
- c.,;;l.
.; : :: lig;;3-# "n'--- LINE UP TIL 1980 CODE .c n r:e - = :u. -- / n ":
- m E:EljE:t
.i G 5 E :i[fI![!iE5N Mii : inE:. I. -3 55- ~ eT, !!!d5ani
- :i- !k :E55iYlii[ " * " " ' i *i[i$N!5 55-il!5 n
~ ~ ii=jii-- 3= -] i N,2,,,5f.fi::i!"- ;f.; +i. i-i E}}L=-;nji-1: Mi}! M e,8 gn e a en :E' 1/r Milid:if;iiii)l{i5liiif: i' 5E! is)E i
- iE!!!i/f 8
.!!ir:!!$!iEE:1=/.?iil:1.!:: :ii Mf:!1isiliE 1 0 07 u. E:: .:,.s uR F ACE :.
- --7..,,.if5i" g!iiii.
- y.E "- "~~"jii::iiii.Hiijii
.tiisE iEL:nfiin '" - O ..". u" ::
- "tr"".
rn::: :l:i:ii-! n,5".2il'~nn:n" 2" ..:REoios uusi at f: ".:.=: n~- '- FLAWS IN THIS ::
- nn
- ". rn
-... i p O.06 "7# ren. =::... r:cn 0
- E" I J,. n :=
iii CONSID E RED ' ~ ""~; g 5 SURFACE )Isiliis[,iffii! iWi-'iini; y !!nijjjipli3F3i! ili 0.05 1NS-t nt -.-/:.il][.-ihE-.E!si fi5ii -i#iiii.ihii'!Il i:-"@ i 4 OM f.: i6/i.i 'i:iillir .!E idt - : ;f"E) iill "ti:.!
- ALL EMBEDDED FLAWS 3.. sing." vin
.:fa;
- 3 3.,g,.;
- f..;t:ng;::;4..,.,.m:j;u;
.3533.:..
- llj:
(ON THIS SIDE OF DEMARKATION LINE) 2. 3; _. .u ,. _...=4u c. - n. m" O.03 ARE ACCEPTABLE PER .=;;;;, x7 7; _ _,,;;;_,gjg33; =33p, 7 33; Iig;;;.guu ;
- ai 2 CRITERIA OF IWB 3600
- it..i f:f i:::ii:
y-
- "-;f ii
- isii E-ji--DiEE 2
0.02 rj AS LONG AS ,,a( 0.25 g;;;jg =;ggg; 333r,,
- _1 igg 3;gg 3
- ia g n
..i t 7"i /.i - Li '.. ii"i;j:;i;; -
- iiEi! ;is = i 1:. iiEj:::
"195 0.01 [ff fii:lii}i;; ;" :- - [;....ii'i: "!;f" i. _....: ].... 1: a ::... 9
- r -
0 0.05 0.10 0.15 0.20 0.25 DISTANCE FROM SURFACE (8) i 1 l 1 Figure A-20.3 Embedded Flaw Evaluation Chart for Fiaws in the Vessel Support Bracket (Applicable to all attachment welds, as shown in Figure A-20.1)
~N. l l 1 [ t t t i 1 NOTE: Y= s_ j 8-a l I l .16 I I f I i i .15 2 Y = 1.0 I I i l j j i ,j4 i .~~~~7 ~~ .13 2 i .12 j Y = 0.8 i i 7 ~_ = - - i i l i l !/- ,jj I f f l I ift f l .10 l I > / f i i /- i f ---"--~~-- -. 09 Y = 0.6 e j. y 3 I i/ 'f ~ ~ .08 l 5 I I / / f-- ~ g* 7; 7 i i / / 7 3 / / '/ w.06 /
- f Y = 0.4 If I
i / ~~ .05 / \\ f. ,f...._..~..~ s l /, /
- 03 I
l l .02 I l .01 i l i i 0 i i 0 0.1 0.2 0.3 0.4 0.5 l FLAWSHAPE(a/4) i Figure A-20.4 Acceptance Standards for Embedded Flaws, for Reactor Vessel Attachment welds, from Table IWB 3516, 1980 Code.(This table was inadvertently omitted from the 1983 Code, but remains unchanged.) ,}}