ML20116A528

From kanterella
Jump to navigation Jump to search
Monte Carlo Uncertainty Analysis of Aerosol Behavior in AP600 Reactor Containment Under Conditions of Specific Design-Basis Accident,Part 3:Corcon Boundary Conditions for Aerosol Behavior
ML20116A528
Person / Time
Site: 05200003
Issue date: 01/31/1996
From: Powers D
SANDIA NATIONAL LABORATORIES
To:
NRC
Shared Package
ML20116A512 List:
References
NUDOCS 9607260136
Download: ML20116A528 (102)


Text

- - . .

I TECHNICAL EVALUATION REPORT I

MONTE CARLO UNCERTAINTY ANALYSIS OF I AEROSOL BEHAVIOR IN THE AP600 REACTOR CONTAINMENT UNDER CONDITIONS OF A I SPECIFIC DESIGN-BASIS ACCIDENT PART 3: CORCON BOUNDARY CONDITIONS FOR I AEROSOL BEHAVIOR I

I I

D. A. Powers Sandia National Laboratories l Albuquerque, NM I

January 1996 I

I na":8an assage A PDR

{-

ABSTRACT.

{

Monte Carlo uncertainty analyses of aerosol removal from the AP600 reactor containment by natural processes during the 3BE accident are reported. These analyses were done using fixed (not uncertain) accident boundary conditions calculated with the CONTAIN code.

[

Results are compared to results of previous uncertainty analyses using boundary conditions calculated with the MAAP code. In general, decontamination rates are found to be higher for

{ the time interval 6480 to 13680 seconds when the CONTAIN boundary conditions are used.

Uncertainty distributions are compared to point values calculated with the NAUAHYGROS code using MAAP boundary conditions. At late times, results of NAUAHYGROS calculations approach upper bounds of the uncertainty distributions. Results obtained with the CONTAIN code approach median values of the uncertainty distribution at tnese later times.

A lower bound, overall, effective decontamination coefficient for aerosol removal by natural processes during the 3BE accident is found to be about 0.25 hr~l. A best estimate value is 0.4 hr~l. For times longer than 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> after the start of radionuclide release to containment, lower bound and best estimate values of the effective decontamination

[ coefficients are 0.11 and 0.33 hr-l respectively. Uncertainty in the internal surface area available for aerosol deposition is found to affect the best-estimate value of the decontamination coefficient, but does not affect significantly the lower bound value of the

.( decontamination coefficient.

[

[

[

[

[

[

[

{

{

h i/ii

I I

TABLE OF CONTENTS P_aac .

Ab stract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

[

I. Introduction .......................................... 1

{ II. Description of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A. Methods of Analyses ................................ 2

[ 3 B. Boundary Conditions ................................

C. Sou rce Term s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 III. Results of the Monte Carlo Uncertainty Analysis of Aerosol Behavior . . . . . . . 16 A. Decontamination Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 B. Effective Decontamination Coefficients ..................... 24 C. Decontamination Coefficients ........................... 27 IV. Comparison to Other Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

'3

(. V. Conclusions .......................................... 34 vi.- References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7

Appendix A Tabulations of Boundary Conditions Input to the Mechanistic Model Used for the Monte Carlo Uncertainty Analysis

( of Aerosol Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 Appendix B' Tabulations of Uncertainty Distributions . . . . . . . . . . . . . . . . . . . . . B-1

{

(

[

[

[

{

(. iii i

l l

LIST OF FIGURES Figure Eage 1 Compartments of the AP600 Containment Considered in the Analyses of the 3BE Accident Using the CONTAIN Code . . . . . . . . . . . . . . . . . . . . 4 l 2 Containment Pressure as a Function of Time ...................... 6 3 Containment Atmosphere Temperature as a Function of Time . . . . . . . . . . . . 7 4 Mole Fraction Steam in the Containment Atmosphere as a ,

Function of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 I 5 Cumulative Heat Removal From the AP600 Reactor Containment i Atmosphere During the 3BE Accident Scenario as Predicted With l the CONTAIN Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Rate of Energy Removal From the Containment Atmosphere as a Function of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Predictions of the Rates of Heat Removal From the Reactor Containment Atmosphere Obtained With the CONTAIN and MAAP Codes l

for the First 5 Hours of the 3BE Scenario at an AP600 Reactor . . . . . . . . . . . I1 )

8 Cumulative Mass of Steam Condensed in the AP600 Containment Predicted With the CONTAIN Code for the 3BE Accident . . . . . . . . . . . . . . 12 9 Rate of Steam Condensation in the AP600 Reactor Containment During a 3BE Accident ................................... 13 l 10 Rate of Steam Condensation in the AP600 Reactor Containment During a 3BE Accident ........................................ 15 l 11 Cumulative Probability Distributions for the Gap Release Decontamination Factors at Selected Times After the Start of I Radionuclide Release to the AP600 Reactor Containment . . . . . . . . . . . . . . . 20 12 Cumulative Probability Distributions for the Invessel Release Decontamination Factors for Selected Times After the Start of Radionuclide Release to the AP600 Reactor Containment . . . . . . . . . . . . . . . 21 13 Decontamination Factors for Gap and Invessel Release as Functions o f Ti m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 14 Comparison of Instantaneous Decontamination Coefficients to Predictions Obtained With the CONTAIN Code .................... 29 15 Iodine Suspended in the AP600 Reactor Containment During a 3BE Accident ......................................... 37 16 Cesium Suspended in the AP600 Reactor Containment During a 3BE Accident ......................................... 38 17 Tellurium Suspended in the AP600 Reactor Containment During a 3BE Accident ......................................... 39 18 Ruthenium Suspended in the AP600 Reactor Containment During a 3BE Accident ......................................... 40 l

19 Strontium Suspended in the AP600 Reactor Containment During a

, 3BE Accident ......................................... 41 l 20 Lanthanum Suspended in the AP600 Reactor Containment During a 3BE Accident ......................................... 42 iv

[

LIST OF FIGURES (concluded) f Figure Eage 21 Cerium Suspended in the AP600 Reactor Containment During a

[

3BE Accident ........................................ 43 A-1 Cells Used in the Analyses With the CONTAIN Code of Accident

{

Process in the AP600 Containment ...........................

A-2 f

LIST OF TABLES

[ Table Eage 1 Radionuclide Source Terms to the Containment Atmosphere . . . . . . . . . . . . 17 f 2 Example Uncertainty Distribution for the Gap Release Decontamination Factor at 49680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Summary of Uncertainty Distributions for Decontamination Factors (DF) . . . . 22

( 4 Summary of Uncertainty Distributions for the Effective Decontamination Coefficients ......................................... 26 5 Summary of Uncertainty Distributions for Instantaneous Values of the f Decontamination Coefficient ............................... 28 6 Effects ofInternal Surfaces on Instantaneous Decontamination Coefficients .......................................... 31

{ 7 Comparison of Median Effective Decontamination Coefficients ........... 32 8 Comparison of Iower Bound Values of the Effective Decontamination

[ Coefficients ......................................... 33 1 9 Comparison of Effective Decontamination Coefficients Calculated With CONTAIN Boundary Conditions to Point Values of the Time-Averaged

[ Decontamination Coefficients Calculated With the NAUAHYGROS Code i Using MAAP Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 A-1 Containment Pressure ................................... A-3

{ A-2 Containment Atmosphere Temperature . . . . . . . . . . . . . . . . . . . . . . . . . A-6 A-3 Mole Fraction Steam in the Containment Atmosphere . . . . . . . . . . . . . . . . A-9 A-4 Cumulative Steam Condensed in the Containment ..................A-12

{ A-5 Cumulative Heat Removed From the Containment Atmosphere . . . . . . . . . . A- 15 A-6 Steam Condensation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-18 A-7 Heat Removal Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21

{

B-1 Uncertainty Distribution of the Gap Release Decontamination Factor at 1800 Seconds ........................................ B-2 B-2 Uncertainty Distribution of the Gap Release Decontamination Factor at 6480 Seconds ........................................ B-3 B-3 Uncertainty Distribution of the Gap Release Decontamination Factor at 13680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4 r

L v

I l

LIST OF TABLES (continued) l I

l Table Page l B-4 Uncertainty Distribution of the Gap Release Decontamination Factor at j l 4 9 680 S econ d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 l l B-5 Uncertainty Distribution of the Gap Release Decontamination l

Factor at 86400 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 B-6 Uncertainty Distribution of the Invessel Release Decontamination Factor at 6480 Seconds ................................. B-7 B-7 Uncertainty Distribution of the Invessel Release Decontamination i Factor at 13680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8  !

B-8 Uncertainty Distribution of the Invessel Release Decontamination I Factor at 49680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-9 l B-9 Uncertainty Distribution of the Invessel Release Decontamination Factor at 86400 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-10 B-10 Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 0 - 1800 Seconds . . . . . . . . . . . B-11 B-11 Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 1800 - 6480 Seconds . . . . . . . . . B-12 B-12 Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 6480 - 13680 Seconds . . . . . . . . B-13 l B-13 Uncertainty Distribution of the Effective Decontamination Coefficient l l for Gap Release During the Time Interval 13680 - 49680 Seconds ....... B-14 I B-14 Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 49680 - 86400 Seconds ....... B-15 B-15 Uncertainty Distribution of the Effective Decontamination Coefficient for Invessel Release During the Time Interval 1800 - 6480 Seconds . . . . . . . B-16 B-16 Uncertainty Distribution of the Instantaneous Decontamination Ccefficient at 500 Seconds ............................... B-17 B-17 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 1800 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-18 B-18 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 6480 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-19 B-19 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 13680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20 B-20 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 25000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-21 B-21 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 36000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-22 B-22 Uncertainty Distribution of the Instantaneous Decontamination l Coefficient at 49680 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-23 B-23 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 60000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-24 l B-24 Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 70000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25 vi

k

[

LIST OF TABLES (concluded) 4 Table Eage B-25 Uncertainty Distribution of the Instantaneous Decontamination

(- Coefficient at 86400 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-26 B-26 Uncertainty Distribution of the Time-Averaged Decontamination

[ -

Coefficient for the Period 0 - 1800 Seconds . . . . . . . . . . . . . . . . . . . . . B-27 B-27 Uncertainty Distribution of the Time-Averaged Decontamination Coefficient for the Period 1800 - 6480 Seconds ................... B-28

(

{

{

{

(

[

{

(

(

(

[

{

(

L vii 1

I. INTRODUCTION This TECHNICAL EVALUATION REPORT is the third in a series describing analyses of aerosol behavior in the containment of the AP600 advanced light water reactor during a hypothesized 3BE design-basis accident. In the first Technical Evaluation Report (Part 1, Reference 1), aerosol removal from the containment boundary conditions obtained with the MAAP code., atmosphere was predicted using Source terms for radioactive aerosols were obtained from the prescription provided in the Revised Severe Accident Source Term [2]. The source term for nonradioactive aerosol was treated as an uncertain quantity.

Results were compared to predicted aerosol removal obtained with the NAUAHYGROS l code.* In the second Technical Evaluation Report (Part 2, Reference 3), the analyses were repeated using the nonradioactive source term of aerosols in the NAUAHYGROS analyses as well as the boundary conditions for the 3BE accident predicted with the MAAP code.

Analyses reported in Part I and Part 2 included quantitative uncertainty analyses of predicted aerosol decontamination factors and effective decontamination coefficients.

An important conclusion reached from the analyses reported in Part I and Part 2 is that predicted aerosol removal by natural processes is very sensitive to the assumed boundary conditions:

temperature of the containment atmosphere, containment atmosphere pressure, mole fraction steam in the atmosphm, steam condensation rate, and heat transfer from the containment atmosphere to the containment boundary.

Predicted aerosol removal was also found to be sensitive to the magnitude of the source of nonradioactive aerosols assumed for the analysis. Indeed, it was found in Part 2 that when the same boundary conditions and the same source terms for both radioactive and nonradioactive aerosol were assumed for calculations that point values calculated with the NAUAHYGROS code fell comfortably within uncertainty ranges determined by Monte Carlo analyses except at very late times when most of the aerosol mass had been removed from the containment atmosphere.

f To further investigate the sensitivity to boundary conditions of predictions of aerosol removal by natural processes in the AP600 reactor containment, the analyses of Parts 1 and 2 have

  • Boundary conditions information obtained with the MAAP code was provided by N. J.

Liparule to T. R. Quary, dated April 7,1995, entitled "Information Requested by RAI 40.23 Regarding Input Parameters for the Calculation of Aerosol Removal Coefficients,"

NTD-NRC-95-4430, DCP/NRC 0302, Docket No. STN-52003. This letter also provided results of analyses with the NAUAHYGROS code.

[ 1

been repeated using boundary conditions predicted with the CONTAIN code [4] for the 3BE accident. Predictions of these boundary conditions were provided by D. C. Williams.

Results of Monte Carlo uncertainty analyses of aerosol removal from the AP600 reactor containment based on CONTAIN code predictions of the 3BE accident boundary conditions are reported here. In Section II of this report, the methods of analysis are briefly described.

CONTAIN predictions of the boundary conditions are compared to predictions obtained with the MAAP code and used for analyses reported in Parts 1 and 2. Results of Monte Carlo uncertainty analyses are presented in Section III. These results are compared to previous results in Section IV and conclusions are listed in Section V.

II. DESCRII'rION OF ANALYSES A. METHODS OF ANALYSES A detailed, mechanistic model of aerosol behavior under reactor accident conditions [5] was used for the analyses. This model has been configured to facilitate quantitative analyses of uncertainties in predictions of the decontamination coefficient, DF(t), and the effective decontamination factor, A,, due to natural aerosol processes (particle agglomeration, deposition and sedimentation). The uncertainty analyses are done by Monte Carlo methods. '

Uncertain aspects of aerosol behavior are characterized by a ranges of parametric values and subjective probability distributions for values within these ranges. In general, predictions of l aerosol behavior in containments are affected by uncertainties in accident boundary

{

conditions, aerosol properties and aerosol processes. For the analyses described here, uncertainties in accident boundary conditions were not considered. Rather, these boundary  ;

conditions were taken to be accurstely prescribed by analyses done with the CONTAIN code.

Uncertainties in aerosol properties and aerosol behavior considered in these analyses are discussed extensively in Reference 1. In summary, uncertainties were considered concerning:

l chemical forms of the radionuclides in containments under accident conditions, l thermal conductivity of aerosol particles,

  • aerosol material densities, '

aerosol particle shape factors, aerosol collision efficiency, temperature and momentum accommodation coefficients et elevated temperatures, e

diffusiophoretic scattering kernel, natural convection length scale, Results of the analyses of the 3BE accident obtained with the CONTAIN code were provided by D. C. Williams in a memorandum to D. A. Powers entitled " Data Required for Task Order 3." The analyses done with the CONTAIN code are described in an unpublished report by D. C. Williams, dated October 8,1995, entitled, "CONTAIN Calculations of Radionuclide Deposition by Natural Processes in the AP600 3BE Accident Scenario."

2

+ turbulent energy dissipation rate in the reactor containment atmosphere, and

  • turbu!ent mass transport adjacent to surfaces in the containment.  :

Ranges for parameter values associated with these uncertain quantities and the subjective probability distributions for parametric values with their respective ranges are discussed in References 1 and 5.

B. BOUNDARY CONDITIONS Geometrical data for the AP600 containment used for the CONTAIN analyses and in the ,

aerosol behavior analyses reported here are: i CONTAIN MAAP Containment volume (cm )

3 4.5425 x 10 10 4.7927 x 10 10 2 7 7 Upward facing surface area (cm ) 1.433 x 10 1.848 x 10 2 8 7 Vertical surface area (cm ) 1.6394 x 10 7.04 x 10 7

Downward facing surface area (cm )

2 1.451 x 107 (1.433 x 10 )

Also listed are the corresponding geometrical quantities used by the MAAP code and used in the analyses reported in Part 1 and Part 2. There are some differences. For the CONTAIN analyses, the AP600 was segmented into several compartments as shown in Figure 1. Two compartments (4 and 6) involved very different conditions than the rest of the containment.

To avoid a misleading estimate of the volume-averaged conditions in containment, these two source compartments were excluded from the average. The containment volume is then slightly (~5.5%) smaller for these analyses than for analyses described in Parts 1 and 2.

Also, somewhat less upward-facing surface area was considered in the analysis of the 3BE accident with the CONTAIN code than was considered when boundary conditions based on calculations with the MAAP code were used in the analyses. On the other hand, much more vertical surface area was considered to be available for aerosol deposition in calculations reported here. Analyses reported in Parts 1 [1] and 2 [3] considered aerosol deposition only on the cooled containment shell. Here, deposition on surfaces internal to the containment was i allowed. Because these internal surfaces are not cooled, some additional calculations were done in which the internal surfaces were assumed to become unavailable for aerosol deposition as the accident progressed.

Boundary conditions were obtained from analyses of the 3BE accident at the AP600 reactor using the CONTAIN code. Input to the CONTAIN , code was derived from analyses of the 4

3

[

[

[

{

{ .

9

[ .

[ i

. 7 i 8: .

8 s -

[ 6 5 2 4 3 g......

7 3

( u 1

u

[

[ I

{

Figure 1.

Compartments of the AP600 Containment Considered in the Analyses of the 3BE Accident Using the CONTAIN Code f

L 4

?

}

l accident done with the MELCOR code. Boundary conditions as functions of time that were provided for analyses described here are:

l containment-average atmosphere temperature,

  • containment pressure, containment volume-average steam mole fraction, cumulative steam mass condensed frcm the containment atmosphere, and cumulative energy transferred from the containment atmosphere to heat sinks.

l Tabulated values of these boundary conditions are provided in Appendix A.

l The latter two, cumulative quantities were differentiated numerically to obtain the rate of  !

steam condensation and the rate of heat transfer from the containment atmosphere, l respectively, which are the boundary conditions actually used in the Monte Carlo calculations.

The various boundary conditions used in the Monte Carlo calculations of aerosol behavior are 3

plotted against time as solid curves in Figures 2 to 9. Dashed lines in these figures are the 1 corresponding boundary conditions derived from calculations done with the MAAP code.

Note that the time crigin in these figures is 1.6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after the start of the 3BE accident when coolant has evaporated to the top of the active fuel in the reactor core. It is at this time that release of radioactivity to the containment was assumed to begin. That is, radioactive materials released during the boil off of coolant has been neglected.

There are some differences between the boundary conditions predicted with the CONTAIN code and boundary conditions predicted with the MAAP code. Pressures in the AP600

! reacter containment are predicted by the CONTAIN code to be lower than predicted with the l MAAP code (see Figure 2). The CONTAIN predictions do include some abrupt variations in l containment pressure during the first 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of the accident. But, these variations are not as l

numerous nor do they have rise times as short as the variations in pressure predicted with the l MAAP code. A large pressure excursion predicted by the MAAP code to occur at about 7 i

hours is not predicted by the CONTAIN code.

No attempt has been made to identify definitively the causes of discrepancies between the predictions of containment pressure made with the CONTAIN code and predictions made with the MAAP code. It is assumed here that differences in the first 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> are caused by differences in the modeling of core degradation in the MAAP code and in the MELCOR code that was the source of input data for the calculations done with the CONTAIN code.

Differences at later times are ascribed here to differences in the descriptions input to the codes of events in the containment during the 3BE accident.

l l

Analyses of the 3BE accident done with the MELCOR code were provided to D. C.

Williams by the draft report, M. T. Leonard, S. G. Ashbaugh and E. B. Fleming, "MELCOR Calculations Supporting the NRC/NRR AP600 Design Certification Review,"

ITS/SNL-95-006, Rev.0, Innovative Technology, Solutions Corp., August 25,1995.

5 l

l

2. 5 , .

CONTAIN _

.i _______ MAAP _

I n '1 * -

2. 0 a

e -:

'
:l1: ;,

v 0 *.

  • p :i. . ,

W 1 ,.

T _ .U ,

3 't l '

m  ; s, m

g --

m 1. 5 - 1 1 i -

m - ~  :

1. 0 5 10 15 20 25 TIME (HOURS)

Figure 2. Containment Pressure as a Function of Time. The solid line is the pressure obtained with the CONTAIN code. The dashed line is the pressure obtained with the MAAP code.

- - , c ,, ,, r- c c <, r .. r c- r- r- c c ,, e, c,

~

r- c-500 . . . .

~

$ CONTAIN _

2

.______ MAAP _

v -

450 w

x -

J -

l_- q

< h -

W $

o_

z 400 - :::

l.

W  : -

1-- - l 1 '. ,

s w ',

. N ..' .'"'s.,,,,,__ ___________________________________________. _

g _m 7

350 Q- -

w g

300 5 10 15 20 25 TIME CHOURS)

Figure 3. Containment Atmosphere Temperature as a Function of Time. The solid line is the temperature predicted by the CONTAIN code. The dashed line is the temperature predicted by the MAAP code.

, <- - c, c, e, r-- c- r- , ,, c- c- , e- , c- _, , ,-, _c, ,, ,, _. . .. r-

0. 6 . . . . .
CONTAIN  :

' ~

MAAP O. 5 3

E _-

W -; ..

'- O. 4  ; '. ,-

CD - ',

i f,,; ',

,/ ', s

~

Z

~

',  ! 's __ --

o m

i, e  :

l N , ...... ,,,___ -- -- ---- - -

H 0. 3 - '.  :

u -

& - 's  :

u. \ '-' ;

. g O. 2 -

_J -

g -

3 -

O. 1 -

. . . . i . . . . i . . . . i . . . . i . . . .-!

5 10 15 20 25 TIME CHOURS)

Figure 4. Mole Fraction Steam in the Containment Atmosphere as a Function of Time. The solid line is the prediction of the CONTAIN code and the dashed line is the prediction of the M AAP code.

12 10 e , , , , ,,,,, , , , , , , , , , , , , , ,,,1, , , , ,,,,, , , , , , , ,

^ 11 v

10 r ,

E i_

_J  :  :

< 10  ;

> 10 r o  :  :

I  :

w 9 5 10 r ,_

l- i E w 8

~

I 10 = =

w  : :_

y -

~

  • ~

7 H 10 =

=

< E

-J  :  ;

D _

1 6  :

D 10 r g LJ 5 5 I I 1 I IIIll 1 i f fItill I I I IIIIll I I I I i 19I1 I I I I f t il i

10000 100000 10 100 1000 l

TIME (SECONDS)

Figure 5. Cumulative Heat Removal From the AP600 Reactor Containment Atmosphere During the 3BE Accident Scenario as Predicted With the CONTAIN Code

1 30 _

1

I CONTAIN n  : -

MAAP 3 _

I -

v 1

- i 20 p W i .

i-  ; i

< -i 1 1:  :

1: l ?.

.J _1 : .l n

< _l:  :: "

> _1 llj'i,j - :, A O 1..:1,.  :

,'s:, i I

W 5  : L  : i i

m 10 .

= - --- ---

\ ,________.,,_----

F- _ l ;t'l

s___________

< _ i W _

l I - i N...  !

. . . . i . . . . . . . . i . . . . i . . . .

5 10 15 20 25 TIME CHOURS)

Figure 6. Rate of Energy Removal From the Containment Atmosphere as a Function of Time. The solid line is the CONTAIN prediction and the dashed line is the MAAP prediction.

110 i , , ,

CONTAIN _

90 - =- -----. MAAP _

n 3e 1 __ _

v w 70 -- -

I-g ._ _

__I

< 50 -- -

O 1 - _

C W 30 - -

F .

(

w -

,' lt . 4 -

X [\

,'-i;\s,~~,- ,,

I\ - , ,\.\ , -.. - , , l\ i. i.

10 -

I I i i 1 2 3 4 5 TIME (HOURS)

Figure 7. Predictions of the Rates of Heat Removal From the Reactor Containment Atmosphere Obtained With the CONTAIN and MAAP Codes for the First 5 Hours of the 3BE Scenario at an AP600 Reactor

l1I' l i

E B

3 e

ht r

f o

0 0 e d

0 o g:

,i.. -

,i- ,E- - - 5i . - ,:: 1 1 0 C I

I 0 N

, I 1 I

, I A T

N

, I

, i O 0 C 0 e ht l

l I

0

, I I

0 ht 1 i I

I W

d

, l t

e

, i i c

) d 0 e r

0 S P i

l l

0 O t n

a I

1 N n e

, I I

O m C

, I n E

i

, I t a

S n o

(

C

, I 0

0 E 0 l

i t

0 M 6 P

1 I I

I T A

, I e

, I ht

, I i

n

, i d

e s

0 n

. l l

e

. i 1 d n

o

. t

. C

, I m

, I a

e t

, 1 S

f

- ri - ri- r5. . - 3i . _ r
: .

o s

s a

6 5 4 3 0 0 M 0 0 0 0 0 1 e

1 1 1 1 1 v i

t t l

ane ud n

nEr_v J OwgzWOZOU x<Qgg w>sI<J_aI3g - mic uc CA 8

e r

u g

S

,l llI1 i'

40 _ .

Q  : CONTAIN  :

N -

.______. MAAP T CD .

x v

30 w

i-  :  :

a: _

z  :

O

~

20 H

m _-

4 1

z  :

- w _

t.a O -

z -

O -

o 10 --

i s -

1 I

_s

, ip T p.

g

--'4 Ad 'il p_s

~~_____________________--#

_ .... ....i.... ....i....

5 10 15 20 25  !

TIME (HOURS)

Figure 9. Rate of Steam Condensation in the AP600 Reactor Containment During a 3BE Accident. The solid line is the prediction obtained with the CONTAIN code. The dashed line is the prediction obtained with the MAAP code.

j

[ l

[

Gas phase temperatures predicted with the CONTAIN code are also generally lower than temperatures predicted with the MAAP code (see Figure 3). At long times (> 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />),

there is nearly a 20 K difference in the two sets of temperature predictions. Again, the many abrupt temperatures spikes predicted to occur with the MAAP code in the first 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of the scenario are not predicted by the CONTAIN code.

The qualitative nature of the predicted mole fraction of steam in the containment atmosphere predicted with the CONTAIN code is quite similar to that predicted by the MAAP code (see Iigure 4). Again, predictions obtained with the CONTAIN code are generally lower than are predictions obtained with the MAAP code.

The cumulative quantity of heat removed from the AP600 reactor containment atmosphere predicted with the CONTAIN code is shown in Figure 5. Differentiation of this curve, f assuming piece-wise linearity, yields the heat removal rate as a function of time shown in Figure 6. There is a very large excursion in the rate of heat removal predicted by the CONTAIN code to occur early in the scenario. This excursion is more easily seen in f Figure 7 which shows heat removal during the first 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of the accident scenario. During this early transient, heat removal rates exceed 100 MW. Following this excursion, heat

removal rates fall rapidly and after 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> are generally lower than those predicted by the I MAAP code except for a modest excursion between 3.5 and 4.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />. Again, the many abrupt spikes in the heat removal rate predicted with the MAAP code are not predicted with the CONTAIN code. The excursion in the heat removal rate at about 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> predicted with the MAAP code is not predicted with the CONTAIN code. At times greater than 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br />, predictions by the CONTAIN and MAAP codes are in very good agreement. The rise in the heat removal rate predicted by the CONTAIN code at 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> that brings the heat removal rate into agreement with the MAAP code predictions is caused by the onset of boiling of water surrounding the AP600 reactor vessel.

The cumulative mass of steam predicted by the CONTAIN code to condense in the containment during the 3BE accident scenario is shown in Figure 8. Numerical differentiation of the curve shown in this figure yields the condensation rate as a function of time shown in comparison with MAAP predictions in Figure 9. There is a significant excursion in the condensation rate predicted with the CONTAIN code to occur early in the scenario. Peak condensation rates exceed 30 kg/s during this excursion (see Figure 10). An

{

excursion of this type early in the accident scenario was not predicted by the MAAP code.

An excursion in the condensation rate later in the scenario at about 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> was predicted by

[ the MAAP code but not by the CONTAIN code.

The high rates of heat removal and steam condensation predicted with the CONTAIN code to occur early in the 3BE accident scenario are attributed to the transient effects of heating initially cool structures within the containment. The transient effects of this initial het tup ought not greatly affect the rates of aerosol removal from the containment atmosphere after about 1800 seconds.

The transient high rates of steam condensation and heat transfer early in the accident may f heat internal structures to the point that they no longer act as efficient sinks for deposited aerosol. To examine the effects this heatup ofinternal structures might have on r

14

6 10 , , , ,,,,u , , ,,,,,u , , , , , , , , , ,,,,,u , , , , , , ,

n  :  :

a N 5 m 10 s- s i

v i g .

F 4 p 10 3 Z

s_________________________________________________,,'st,'

i AW i 's, E

o -  :

3 '

=

H 10 -

< E E

m z

g c; @ 100 3

________ MAAP s a  :

CONTAIN  :

i u  : -

E

< 10 r- s W  :

H  : -

m -

I I I IItill i I I I I I til 1 I I IItill BYEl '*I

- I IIllI I I I III11 10 100 1000 10000 100000 TIME (SECONDS)

Figure 10. Rate of Steam Condensation in the AP600 Reactor Containment During a 3BE Accident. The solid line is the prediction obtained with the CONTAIN code. The dashed line is the prediction obtained with the MAAP code.

\

[

decontamination of the containment atmosphere, some calculations were done in which the vertical surface area available for aerosol deposhion after 1800 seconds was reduced from 16.394 x 107 cm2to 7.04 x 10 7cm a:2 1000 seconds.

C. SOURCE TERMS Aerosol source terms to the AP600 reactor containment used in the Monte Carlo analyses of

( aerosol behavior were taken to be exactly those used for the CONTAIN code analyses of the accident. Release rates of radionuclides were taken from the prescriptions for pressurized water reactors and are shown in Table 1. Chemical forms of these radionuclides were, of I course, considered uncertain. Sampling of the plausible ranges of chemical forms in the course of the Monte Carlo analyses affected the value radioactive aerosol mass injected into the reactor containment atmosphere used in individual calculations.

It was assumed also that during the invessel release phase of an accident that there would be a 7 release of nonradioactive aerosol mass to the containment. It was assumed that 200 kg of L nonradioactive aerosol mass was released at a constant rate (42.735 g/s) over the period 1800 to 6480 seconds. This rate of injection of nonradioactive aerosol mass during the in-vessel p release phase of the accident is somewhat less than the rate, 56.13 g/s, used in the analyses L reported in Part 2 [3]. In the analyses reported in Part 1 [1], the source rate for nonradioactive aerosol mass was treated as an uncertainty. Sampled values were as high as 40 g/s, but not as high as 56 g/s.

{

It was assumed that rm nonradioactive aerosol was released to the containment atmosphere during the " gap release" phase of the accident (0 to 1800 seconds) or after completion of the

{ "invessel release" phase of the accident (>6480 seconds).

[ IIL RESULTS OF TIIE MONTE CARLO UNCERTAINTY ANALYSIS OF AEROSOL BEHAVIOR

[ The Monte Carlo uncertainty analysis process has been explained previously [1,3,6]. The Monte Carlo analysis yields a sample of the true uncertainty distribution for removal of aerosols from the AP600 reactor containment atmosphere by natural processes during the 3BE accident. This sample is used to construct estimates of uncertainty distributions for decontamination factors and effective decontamination coefficients. As will be explained in a later subsection, uncertainty distributions were also constructed in this work for instantaneous

[ values of the decontamination coefficient.

The sample obtained by the Monte Carlo method consists of a finite number

  • of analyses,

{ each done with a particular set of randomly selected values of uncertain parameters that affect predicted aerosol behavior. Because the sample is of a finite size, the uncertainty distribution can only be estimated to a prescribed level of confidence. The uncertainty distribution is

{

  • The number of analyses done here was selected so that there is a 99 percent confidence that 95 percent of the ranges of possible results have been sampled.

L 16

- - - , c - ,_ ,, _ ,- - , - ,--, ,, . ,- ,,

Table 1. Radionuclide Source Terms to the Containment Atmosphere i

Initial Core Percent of Initial Core Inventory Inventory Released to the Release Period Elemental Release Rate Element (kg) Containment -(s) -(g/s)

GAP RELEASE Iodine 9.85 5 0 - 1800 0.2736 Cesium 116.0 5 0 - 1800 3.2222 INVESSEL RELEASE G Iodine 9.85 35 1800 - 6480 0.7366 Cesium 116.0 25 1800 - 6480 6.1966 Tellurium 20.2 5 1800 - 6480 0.2158 Strontium 37.8 2 1800 - 6480 0.1615 Barium 48.6 2 1800 - 6480 0.2077 Ruthenium 293.0 0.25 1800 - 6480 0.1565 Cerium 498.0 0.05 1800 - 6480 0.0532 Lanthanum 428.0 0.02 1800 - 6480 0.0183

  • Chemical forms were considered uncertain. Selection of chemical forms in the course of Monte Carlo uncertainty analyses affected the actual aerosol masses introduced to the containment.

estimated as ranges of the results corresponding to selected quantiles of the cumulative i probability distribution. The widths of these ranges are dictated by the required level of  !

confidence. At a confidence level of 100 (1-a) percent, there is a 100 (1-a) percent confidence that the true value of the calculated quantity corresponding to the specified quantile falls within the specified range. There is, then, a 100n percent probability that the 1 true value is above or below the range. For this work, quantiles of the cumulative I probability distribution from 5 to 95 percent at 5 percent steps were characterized. I Characterizations were done at the 50 and 90 percent confidence level. In general, at both  !

the 50 and 90 percent confidence level, the range of calculated values corresponding to a particular quantile is quite small relative to the range of values spanned by 5 to 95 percent percentiles of the cumulative probability distribution.

An example of a tabulated uncertainty distribution for the decontamination factor for gap release material 49680 seconds after the start of gap release is shown in Table 2. The median of the distribution (50 percent quantile) is taken here to be the best estimate of the decontamination factor for gap release. The mean, which some take as the best estimate, is also listed in the tabulation though the mean has no particular statistical significance for any 1 of the uncertainty distributions developed here. The range of values (at 90 percent confidence) corresponding to the 10 and 90 percent quantiles of the distribution are considered here to be reasonable lower and upper bounds on the calculated quantity, respectively.

Tabulations of all the uncertainty distributions generated in this work are collected in Appendix B. The discussions of the various results in the next subsections concentrate on the best estimate (mean or 50 percentile), lower bound (10 percentile) and upper bound (90 percentile) values of these distributions.

A. DECONTAMINATION FACTORS Uncertainty distributions were calculated for the decontamination factors of gap release radionclides (radionuclides release to the containment from time 0 to 1800 seconds) and for the decontamination factors for invessel release radionuclides (radionuclides released to i containment from time 1800 to 6480 seconds). Decontamination factors for gap release were calculated for times of 1800, 6480,13680,49680, and 86400 seconds. Decontamination l factors for invessel release were calculated for times of 6480,13680,49680 and l 86400 seconds. Uncertainty distributions for these decontamination factors are shown in Figure 11 (gap release) and Figure 12 (invessel release). Bars in these figures define the ranges at 50 percent confidence for the various quantiles of the distributions. Dashed lines in the figures define the limits of the ranges at the 90 percent confidence level.

i The range spanned by the 5 to 95 percent quantiles of the uncertainty distributions at early l times is really quite narrow. With increasing time, the range spanned by the uncertainty distributions increases.

The mean, best-estimate, lower bound and upper bound decontamination factors are listed in Table 3. These values are also shown as functions of time in Figure 13. These decontamination factors show that, indeed, over the course of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, natural processes will 18 l

l

l l

l Table 2. Example Uncertainty Distribution for the Gap Release Decontamination Factor at  !

49680 Seconds Values of DF (Gap Release) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

1 Percentile 90 Percent 50 Percent i

5 51 to 65 53 to 62 10 64 to 92 67 to 78 15 77 to 126 91 to 108 20 104 to 146 122 to 135 25 130 to 189 140 to 166 30 145 to 230 171 to 202 35 188 to 271 208 to 248 40 224 to 387 249 to 297 45 262 to 473 312 to 413 50 357 to 610 416 to 496 55 442 to 810 502 to 642 60 556 to 1022 643 to 882 65 699 to 1278 918 to 1148 70 986 to 1820 1182 to 1409 75 1248 to 2473 1504 to 2006 80 1811 to 3608 2185 to 2730 85 2543 to 6094 3304 to 4828 90 4519 to 9384 6072 to 7513 95 8052 to 20091 10207 to 15170 Mean = 580 1

I 19

GAP RELEASE 1800 SECONDS

/ i i inn i i i i nin i i i nni i i i nun i i i n ii.

.n , m, , -

90

-l/ i i, >}i nni

- l /j', ,/Hf ' -

  • /H/  ;

ln!

's/ - 's

_ e4

, y'

[ a 6480 j,j/ 13680 7,',,e49680 d 70 - -

l*f

,H i , A--< ,/ -

Q

/

n j e-V j m,,' -

m 8-hl iM' , s m, ' -

O x w /s.i s'n--<j -

,lm ' /

0- 50 t -

lst lHt -

to lif />-i/ / i--i/

% 1+ n 1H] /mj -

E Q k # /H[ [H/ 86400 -

/-i

=j 30 L # /H,/ SECONDS 1

lg' tur/ if--s i g ll ln/ 4-n ,/ -

m /m e-</ -

10 }f }<l//u,,',/ -

y si 1,, . ' -

. . i i nu . . i iiin

. i iiiin . . inn i . . inn i . n ni l 10 100 1000 10+6 10+4 10+5 1 DECONTAMINATION FACTOR Figure 11. Cumulative Probability Distributions for the Gap Release Decontamination Factors at Selected Times After the Start of Radionuclide Release to the AP600 Reactor Containment. Bars indicate the value ranges at the 50 percent confidence level. Dashed lines indicate the value ranges at the 90 percent confidence level.

INVESSEL RELEASE i s i iiiiii i s i iiiiii i i i iiiiii i i i iimi i i i iiiiii i i i i iiii

-l

  • s Hs -

}# '

90 -l

-6 s'm/

iH'f

,4

>~

[

-l

' 13680 sH s'

/g/ 49680 /s

' 'H e s' _

d 70 -Y,6480 !* lH s' '

'Y' Q -l p' ln' j m ,' ,

'm!

' imi -

m -A f

@ -l jsl ,' 'H,/ -

0- 50 -4 /H[ s' H,/ -

w -l /ml s'mi ' -

D -

r lH,s lm/ 86400 -

E- -t In sw /Hi SECONOS -

Ed I 30 -l h' /Hf Hi -

a < k pl ,4,/ -

s'H s'

~

0 $

4 h l *}'

i Hi s ' H,'

af 10 [ ikl lH,s' -

t W Av I I I I t illI I I I I11111 I I I I t illI I I I I tillI I I I i1 Ell I I I I llill 10 100 1000 10+6 10+4 10+5 DECONTAMINATION FACTOR Figure 12. Cumulative Probability Distributions for the Invessel Release Decontamination Factors for Selected Times After the Start of Radionuclide Release to the AP600 Reactor Containment. Bars indicate the value ranges at the 50 percent confidence level. Dashed lines indicate the value ranges at 90 percent confidence level.

, r r, c, r, c

.r , c r, c, c c, c, sb c, c-Table 3. Summary of Uncertainty Distributions for Decontamination Factors (DF)

Decontamination Factor (DF)

Time (s) Imwer Bound

  • Best Estimate" Upper Bound"* Mean GAP RELEASE 1800 1.0067 to 1.0228 1.118 to 1.129 1.241 to 1.284 1.128 6480 1.214 to 1.300 2.072 to 2.168 3.563 to 4.316 2.179 13680 5.687 to 6.939 13.50 to 14.72 36.48 to 47.85 15.30 4 % 80 70.08 to 106.4 625.2 to 803.9 9933 to 23810 916.7 86400 207.1 to 479.8 16380 to 26640 3.34 x 106 to 20.7 x 106 33285 INVESSEL RELEASE 6480 1.118 to 1.160 1.350 to 1.384 1.618 to 1.718 1.378 13680 4.660 to 5.648 9.141 to 9.680 17.00 to 20.44 9.672 49680 63.53 to 92.43 416.5 to 495.9 4519 to 9384 579.6 86400 191.5 to 452.2 1%90 to 17390 1.49 x 106 to 8.25 x 106 21050
  • Lowerbound = 10 percentile value at 90 percent confidence.

"Best estimate = median or 50 percentile value at 50 percent confidence.

  • "Upperbound - = 90 percentile value at 90 percent confidence.

I 10+6 , , , , v i GAP RELEASE '/  !

f e 10+5 ,,. 's' ,

O i u .

ts'/ E

( I 10+4 i 90 PERCENTILE ,/1 MEDIAN ,

j g i  ?

7,/ ' -

{ Q 1000 r .,,-

Z i i z  : ,,', ~

~,,,_.. I:

[

s 100 e -

' ,I.

t 5 5 r ' , 10 PERCENTILE  !

g  : ,/ -

O 10 e / ' ,

! / ['  !

/  :

,' /

1 5 10 15 20 25

(

TIME CHOURS)

(

10+6 _ , , , ,

~

INVESSEL RELEASE

/j',,  !

m o

10+5 r f a  !  !

I 10+4 r , / MEDIAN  !

z i 90 PERCENTILE '

i o

(  :  :

Q 1000 r Z5

! T!

{

x .

/ ~~~~~.

. -1 y 100 g ,/ ' ,,p. ,

o E y- 10 PERCENTILE w - i,/

[ 10 r

/r '  !

/i

/'

[ 3 5 10 15 20 25 f TIME CHOURS)

{

Figure 13. Decontamination Factors for Gap and Invessel Release as Functions of Time r

23

substantially attenuate the amounts of radioactive materials that remain suspended in the AP600 reactor containment. Concentrations of radioactive materials released to the containment atmosphere during the gap release phase of the hypothetical accident are reduced by factors of 2 x 10+4 (best-estimate) to 315 (lower bound) after 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. Similarly, concentrations of radioactive materials released to the containment during the invessel release l phase of the accident have been attenuated by factors of 13630 (best-estimate) to 294 (lower l bound) at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the start of release. l Most of the mass removal occurs during the time interval 6480 to 13680 seconds. During this time, both diffusiophoretic deposition and gravitational settling of particles are quite efficient processes for removing aerosol particles from the containment atmosphere. At later  !

times, when aerosol concentrations are low, particle agglomeration rates are slow so particles )

do not become large enough to rapidly settle from the containment atmosphere. 1 Diffusiophoretic deposition and to a lesser extent thermophoretic deposition of particles on surfaces continue to remove particles from the atmosphere.

I For times longer than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, the model used for the Monte Carlo analyses will predict j decontamination factors greater than 106 . This model does not address some relatively low J efficiency processes that could re-entrain aerosol particles into the containment atmosphere.  ;

For example, the model does not address particle resuspension by " knock out" as a result of )

radioactive decay. It is suspected that such low level processes would be sufficient to prevent l decontamination factors from exceeding about 106 . Though decontamination factors this large and larger are listed here for higher quantiles of the uncertainty distributions, little confidence is ascribed to such large values. It is recommended that these larger values be viewed as decontamination factors equal to 106, B. EFFECTIVE DECONTAMINATION COEFFICIENTS For some purposes, the effective decontamination coefficients, A,, are of more interest than the decontamination factor. These effective decontamination coefficients are defined by the differential equation:

dDF

=A,DF l dt i where DF is the decontamination factor. The definition of the effective decontamination i coefficient subsumes the source of aerosols to the containment atmosphere as a process that contaminates the atmosphere whereas other processes considered in the determination of DF act to decontaminate the atmosphere. It is assumed here that the effective decontamination coefficients are piecewise constant. The value of el for the interval from time t i ot time t2 are calculated from:

24

{

{

[ In DF(t2)/DF(t i )

= 1*

(t2-t)i

[

where DF(t) is the decontamination factor at time t. This amounts to time averaging values of the effective decontamination coefficient over the specified time interval. The model used

[

L for the Monte Carlo analyses tracks material released to the containment during the gap release phase of the accident (0 to 1800 seconds) and material released during the invessel phase of the accident (1800 to 6480 seconds). Consequently, decontamination factors for

{ these materials as well as effective decontamination coefficients can be separately defined.

Uncertainty distributions found for the effective decontamination coefficients for gap release

( material and invessel release materials are summarized in Table 4. Again, median or best estimate values of these decontamination coefficients along with lower and upper bound values as well as mean values are shown in this table. Notice that for times of 13680 s and

[ greater that the effective decontamination coefficients for the gap release material are identical to the effective decontamination coefficients for the invessel release material. At these longer times when no sources are providing aerosol material to the containment atmosphere, the effective decontamination coefficients are equal to the time-averaged values of the decontamination coefficients discussed in the next subsection.

Effective decontamination coefficients are largest during the time interval 6480 to 13680 seconds when both gravitational settling and diffusiophoresis are dominant removal mechanisms. The effective decontamination coefficients decrease with time after this maximum as gravitational settling becomes a less significant decontamination process.

Note also that there are significant uncertainties in the values of the effective decontamination coefficients. Typically, the 10 percentile to 50 percentile values of these coefficients differ by a factor of 2 to 3. This uncertainty in the predicted values of the effective decontamination

[ coefficients arises because of uncertainties concerning aerosol behavior listed N Section II of this report.

For some purposes, it is adequate to have an overall, effective decontamination coefficient for ,

a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period after the start of radionuclide release. From results of the Monte Carlo )

uncertainty analyses. These overall,24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, effective decontamination coefficients are:

lower bound = 0.237 i 0.018 hr-I best estimate = 0.397 i 0.010 hr-I '

upper bound = 0.628 i 0.036 hr-I The decontamination coefficient does decrease with time once aerosol sources to the

( containment have ceased and aerosol growth has slowed. Overall, effective decontamination coefficients for the period from 12 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the start of radionuclide release are:

[

25

Table 4. Summary of Uncertainty Distributions for the Effective Decontamination Coefficients Effective Decontamination Coefficients l e(t) (hr-l), m Mean I.ower Bound, Best Estimate Upper Bound Time Interval (hr- )

(hr-I) (hr-3) (hr-I)

(s)

GAP RELEASE 0.431 to 0.501 0.240

' 0-1800 0.013 to 0.045 0.224 to 0.243 0.811 to 0.933 0.507 0.136 to 0.184 0.473 to 0.501 1800-6480 1.179 to 1.242 0.974 i 0.687 to 0.775 0.966 to 0.993 6480-13680 0.562 to 0.626 0.409 S 0.229 to 0.262 0.386 to 0.409 13680-49680 0.570 to 0.670 0.352 0.099 to 0.115 0.318 to 0.337 49680-86400 INVESSEL RELEASE 0.370 to 0.416 0.246 1800-6480 0.086 to 0.114 0.231 to 0.250 1.179 to 1.242 0.974 +

0.687 to 0.775 0.966 to 0.993 6480-13680 0.562 to 0.626 0.409 0.229 to 0.262 0.386 to 0.409 13680-49680 "

0.570 to 0.670 0.352 0.099 to 0.115 0.318 to 0.337 t 49680-86400  !

, Lowerbound = 10 percentile at 90 percent confidence. i

,,,Best estimate = median or 50 percentile at 50 percent confidence.

! Upperbound = 90 percentile at 90 percent confidence. 1 I

_ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ ._ _ ____.___c.___--,____a -______m- + - -, . _ _ _ _ _-_ - . -______r -e-.- __- __ _ _-_.v_ _2_-, -_-- - _ _ . _ _ . + m_ ~ -__s - _____._____ __ . _ __

lower bound = 0.103 i 0.025 hr-l best estimate = 0.248 0.013 hr-I upper bound = 0.475 i 0.051 hr-l C. DECONTAMINATION COEFFICIENTS To facilitate comparison of the uncertainty distributions developed here to point values calculated with other models of aerosol behavior, it is useful to have uncenainty distributions for the instantaneous values of the decontamination coefficient, A(t). The decontamination coefficient is defined by the differential equation:

dm(t) dt

= -1(t) m(t)$

where m(t) = mass of aerosol suspended in the reactor containment atmosphere, 1(t) = decontamination coefficient, and

$ = mass source of aerosol to the containment atmosphere.

Note that unlike the effective decontamination coefficient discussed in the previous subsection, the instantaneous decontamination coefficient is not time-averaged. It also does not reflect the natures of source terms of aerosols to the containment atmosphere.

Uncertainty distributions for the instantaneous values of the decontamination coefficient are '

summarized in Table 5. In comparing the values of the instantaneous decontamination coefficients to the effective decontamination coefficients discussed in the previous section, it should be borne in mind that the effective decontamination coefficients are averaged over a i time interval. Boundary conditions for the 3BE accident that affect aerosol behavior undergo I substantial changes over the intervals selected here. Also, for times less than 6480 seconds the effective decontamination coefficients include the effects of source terms which are not included in values of the instantaneous decontamination coefficients.

The calculated instantaneous decontamination coefficients are plotted against time in Figure 14. Bars in these figures indicate confidence intervals for values corresponding to the 50 percentile of the uncertainty distributions. Midpoints of ranges for the 10 and 90 percentiles are connected by dashed lines.

The CONTAIN code used to predict boundary conditions for the Monte Carlo analysis reported here also predicts instantaneous values of the decontamination coefficient. These predictions are shown as a function of time in Figure 14. The CONTAIN predictions fall j comfortably within the uncertainty range defined by the upper and lower bounds j (90 and 10 percentile values) calculated here. '

Calculations reported here included a large amount of internal surface area. To examine the effects of this internal surface area, calculations were repeated assuming that after 27

i i

Table 5. Summary of Uncertainty Distributions for Instantaneous Values of the Decontamination Coefficient l

A(t) (hr-I)

Time lower Bound Best Estimate Upper Bound (s) (hr-I) (hr-I) (hr-I) Mean +

500 0.031 to 0.I17 0.530 to 0.591 1.044 to 1.211 0.576 l 1800 0.026 to 0.085 0.425 to 0.462 0.839 to 0.981 0.463 6480 0.249 to 0.304 0.521 to 0.543 0.800 to 0.886 0.551 E 13680 0.536 to 0.581 0.716 to 0.744 0.963 to 1.030 0.755 25000 0.253 to 0.275 0.383 to 0.405 0.535 o 0.598 0.406 i

36000 0.178 to 0.210 0.340 to 0.356 0.512 to 0.584 0.359 ,

49680 0.134 to 0.173 0.320 to 0.339 0.521 to 0.609 0.345 r

60000 0.116 to 0.158 0.316 to 0.337 0.546 to 0.642 '0.346 i I

70000 0.105 to 0.148 0.322 to 0.341 0.585 to 0.686 0.358 "

86400 0.090 to 0.131 . 0.312 to 0.329 0.587 to 0.692 0.350 .

i l

, n, r r r, i mum - unus l

i

,.s 1. 5 . . . .

~

i -

L 90 PERCENTILE

_c -

v

+

t-- i 10 PERCENTILE z 4 w i U 1. O 2

/s MEDIAN _

u. -

N s- , ' s s -

u. s CONTAIN w .

s o ,

\

U -

s .

z s__________ ___ __________-- -

a M I ,s tg i- O. 5 -

N -

< I ,

N z

,/ \, I - l z . l \ x x x x l N'

t-- . ,/ ..'

Z  ; .

o ,

u ,,,

w g -.

. . . . . . . . . . . . . i . . . . . . . . .

5 10 15 20 25 TIME (HOURS) l Figure 14. Comparison of Instantaneous Decontamination Coefficients to Predictions Obtained With the CONTAIN Code i

I 1800 seconds, the only vertical surface area available for aerosol deposition was that provided by the containment shell which is cooled by an external water flow. That is, aerosol particles were assumed to not deposit on internal containment surfaces other than the cooled containment boundary. Instantaneous decontamination coefficients calculated based on this assumption are compared in Table 6 to instantaneous decontamination coefficients calculated based on the assumption that internal surfaces were available for aerosol deposition. As expected, elimination of the internal surfaces after 1800 seconds reduced best-estir ate (median) values of the aerosol decontamination coefficient by 0.06 to 0.13 hr-l. Somewhat

, larger reductions in the upper bound values were calculated. Interestingly, lower-bound (10 percentile) values were little affected. Indeed, at times greater than about 36000 seconds, lower-bound values when no internal surfaces were available were found to be somewhat higher than when internal surfaces were assumed available for aerosol deposition. This is because the higher aerosol concentrations when internal surfaces are not available lead to more aerosol growth and deposition by gravitational processes.

IV. COMPARISON TO OTHER CALCULATIONS Median effective decontamination coefficients calculated in this work are compared in Table 7 to median values of the effective decontamination coefficients calculated in Part 1 [1] and Part 2 [3]. The analyses in Part I and Part 2 used boundary conditions predicted with the MAAP code whereas the analyses reported here used boundary conditions predicted with the CONTAIN code. Also, the analyses reported here considered aerosol deposit.on on surfaces within the containment as well as deposition on the containment shell whereas analyses in Parts 1 and 2 considered deposition only on the containment shell. Calculations done for Part 2 used a larger nonradioactive source term of aerosols than did the calculations for Part 1 or the calculations reported here. A similar comparison of lower bound values of the effective decontamination coefficients in shown in Table 8.

Comparisons in these tables show that effective decontamination coefficients calculated with the CONTAIN boundary conditions are lower than are calculated using the predicted boundary conditions from the MAAP code for the period of gap release (0 to 1800 seconds).

The discrepancy is particularly large for the lower bound values. Median effective decontamination coefficients calculated using the CONTAIN boundary conditions are larger than those calculated using the MAAP boundary conditions for all later times especially during the interval 6480 to 49680 seconds. At times longer than 49680 seconds, median effective decontamination coefficients reported here and those from previous uncertainty analyses are similar.

Uncertainty distributions for the effective decontamination coeff:cients calculated with the l CONTAIN code boundary conditions seem broader than uncertainty distributions calculated

} with the MAAP boundary conditions. The increased breadth of the uncertainty distributions has nothing to do with the quality of the boundary conditions. Rather, boundary conditions obtained with the CONTAIN code are affecting the mix of aerosol deposition mechanisms differently than do the boundary conditions obtained with the MAAP code.

l 30

Table 6. Effects of Internal Surfaces on Instantaneous Decontamination Coefficients 1(t) (hr-I)

Iower Bound Best Estimate Upper Bound With Without With. Without With Without Time Internal Internal Internal Internal ' Internal Internal (s) Surfaces Surfaces

  • Surfaces Surfaces
  • Surfaces Surfaces
  • 6480 0.276 i 0.028 0.248 i 0.021 0.532 i 0.011 0.398 i 0.008 0.843 i 0.043 0.621 i 0.035 13680 0.558 i 0.023 0.544 i 0.013 0.730 0.014 0.639 i 0.005' O.996 0.034 0.777 i 0.021 k? 25000 0.264 0.011 0.271 i 0.007 0.394 i 0.011 0.335 i 0.003 0.556 i 0.032 0.424 0.012 36000 0.194 i 0.016 0.201 i 0.007 0.348 1.0.008 0.276 i 0.004 0.548 0.036 0.383 i 0.018 4 % 80 0.154 i 0.019 0.165 i 0.009 0.330 i 0.009 0.248 0.004 0.565 i 0.044 0.380 0.018 60000 0.137 i 0.021 0.149 i 0.010 0.326 i 0.011' O.238 0.006 0.594 0.048 0.395 i 0.024 70000 0.126 i 0.022 0.142 0.012 0.332 i 0.009 0.237 i 0.006 0.635 0.050 0.422 0.025 86400 0.110 i 0.021 0.126 i 0.010 0.320 i 0.009 0.227 i 0.006 0.640 i 0.052 0.425 i 0.024
  • Internal surfaces were assumed available for aerosol deposition up to 1800 seconds and unavailable after 1800 seconds.

Table 7. Comparison of Median Effective Decontamination Coefficients Median Decontamination Coefficient,e l (hr'I) i Time Interval Part 1* Part 2* This Work * ,

(s)

GAP RELEASE 0 - 1800 0.372 0.374 0.234 0.420 0.425 0.487 1800 - 6480 0.449 0.613 0.980 M 6480 - 13680 0.260 0.290 0.398 13680 - 49680 0.293 0.300 0.328 49680 - 86400 INVESSEL RELEASE 0.178 0.I80 0.240 1800 - 6480 0.449 0.613 0.980 6480 - 13680 0.260 0.290 0.398 13680 - 49680 0.298 0.300 0.328 49680 - 86400

  • Midpoint of the 50 percent confidence interval for the 50 percentile of the uncertainty distribution.

Table 8. Comparison of lower Bound Values of the Effective Decontamination Coefficients Iower Bound

  • Effective Decontamination Coefficient Time Interval (s) Part 1" Part 2" This Work" GAP RELEASE O - 1800 0.344 0.343 0.029 1800 - 6480 0.380 0.382 0.160 6480 - 13680 0.585 0.448 0.731 13680 - 49680 0.228 0.268 0.246 49680 - 86400 0.273 0.273 0.107 INVESSEL RELEASE 1800 - 6480 0.160 0.159 0.100 6480 - 13680 0.585 0.448 0.731 13680 - 4 % 80 0.228 0.268 0.246 49680 - 86400 0.273 0.273 0.107
  • 10 percentile of the cumulative probability distribution.
    • Midpoint of the 90 percent confidence interval.

At times greater than 6480 seconds when there are no sources of aerosol to the reactor containment atmosphere, the effective decontamination coefficients are directly comparable to time-averaged values of the instantaneous decontamination coefficients. The effective decontamination coefficients for these later times are compared in Table 9 to the time averages of the decontamination coefficients calculated with the NAUAHYGROS code using boundary conditions calculated for the 3BE accident with the MAAP code.

, Special Monte Carlo calculations were run to obtain time-averaged values of the decontamination coefficients for the periods 0-1800 and 1800-6480 seconds. Results of these calculations are also shown in Table 9 along with time-averages of NAUAHYGROS predictions for the same time intervals.

Uncertainty ranges for the time-averaged decontamination coefficients are quite broad during the gap release and invessel release phases of the 3BE accident (0 to 1800 seconds and 1800 to 6480 seconds, respectively). Point values for the time-averaged decontamination coefficients for these time intervals fall comfortably within these uncertainty ranges quite near the median or best-estimate values.

Aerosol removal from the reactor containment atmosphere is quite rapid during the period 6480 to 13680 seconds. Time-averaged values of the decontamination coefficient calculated with the NAUAHYGROS code actually fall below the lower bound (10 percentile) of the uncertainty distribution found in the Monte Carlo analyses. This is undoubtably because a much higher surface area was available for aerosol deposition in the Monte Carlo analyses which considered deposition on internal surfaces as well as deposition on the containment shell.

At times greater than 13680 seconds, the point values of the time-average decontamination coefficient calculated with NAUAHYGROS remain high. Best estimate values obtained from the Monte Carlo analyses are lower. Though results obtained with the NAUAHYGROS code remain within the uncertainty band defined by the 10 and 90 percentiles of the cumulative probability distribution, they do approach .he upper limit of this range. It should, however, be recalled in considering this comparison that after 13680 seconds most of the radioactive aerosol mass has been removed from the containment atmosphere. Decontamination coefficients for these later times are applicable to a few percent or less of the aerosol released over the course of the 1ccident to the reactor containment.

V. CONCLUSIONS Results of the analyses reported here indicate that:

There are substantial uncertainties associated with the predictions of aerosol removal by natural processes from reactor containments even when accident boundary conditions and containment geometries are precisely specified. These uncertainties arise because of uncertainties concerning the details of aerosol behavior.

1 34

Table 9. Comparison of Effective Decontamination Coefficients Calculated With CONTAIN Boundary Conditions to Point Values of the Time-Averaged Decontamination Coefficists Calculated With the NAUAHYGROS Code Using MAAP Boundary Conditions Time Interval A*

e (hr-I) Aavg**

(s) Lower Bound Best Estimate Upper Bound (hr~ )

0 - 1800+' 0.062 i 0.034 0.502 i 0.222 1.030 0.080 0.564 0.007 g i800 - 6480+> 0.156 0.024 0.485 0.014 0.870 i 0.061 0.541 0.009 6480 - 13680 0.731 0.044 0.580 i 0.014 1.210 i 0.032 0.685 0.015 13680 - 49680 0.246 i 0.017 0.398 i 0.012 0.594 i 0.032 0.539 0.008 49680 - 86400 0.107 i 0.008 0.328 i 0.010 0.575 0.005 0.482 0.003

+ Specially calculated time averages of the instantaneous decontamination coefficient.

  • CONTAIN boundary conditions; uncertainty intervals define the 90 percent confidence intervals for the upper bound and lower bound values and the 50 percent confidence intervals for the best-estimate values.
    • NAUAHYGROS results using MAAP boundary conditions; uncertainty intervals are standard deviations over the time interval.

1

. . . ~ . . ... . . . . . . . . . . . . . . . . . . . . .

[ 1 l

I

  • Even in the face of these uncertainties, substantial decontamination of the containment atmosphere can be confidently expected 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the start of radioactive material release to the containment atmosphere. A lower bound, overall, effective decontamination coefficient for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period is about 0.25 hr-l. A best estimate value for this overall period is about 0.4 hr~l.
  • Effective decontamination coefficients found here using the boundary conditions predicted

, with the CONTAIN code are higher in the time period when most of the aerosol removal takes place (6480 to 13680 seconds) than was found in previous uncertainty analyses i using boundary conditions predicted with the MAAP code. They are also higher during this period from 6480 to 13680 seconds than predictions obtained with the NAUAHYGROS code using boundary conditions from the MAAP code.

  • Effective decontamination coefficients decrease after 13680 seconds. The uncertainty bands for these decontamination coefficients are broader than those found in previous uncertainty analyses using boundary conditions from the MAAP code. Decontamination coefficients predicted with the NAUAHYGROS code are near the upper bound values of the uncertainty distributions for times greater than 13680 seconds when most of the aerosol mass has been removed. Decontamination coefficients predicted with the CONTAIN code are nearer the median of the uncertainty range at late times.  !

To complete the analyses reported here, the effective decontamination coefficients predicted in this work have been used to calculate the concentrations of various radionuclides in the AP600 reactor containment as functions of time. The results of these calculations are shown in Figures 15 to 21 as plots of the percent of the initial core inventories of I, Cs, Te, Ru, Sr, La, and Ce suspended in the containment atmosphere as functions of time. Solid lines in )

these plots are based on the best-estimate values of the effective decontamination coefficients. ,

Dashed lines are based on the upper and lower bound (90 and 10 percentile) values of these effective decontamination coefficients. Source terms of the radionuclides to the containment atmosphere for these calculations were taken from the prescriptions provided in NUREG- I 1465 [2]. Note in examining the results for iodine that only the aerosol contribution to the amount suspended in the containment atmosphere has been considered here. After about 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> (36000 seconds), iodine vapors partitioned into the atmosphere from water pools ,

may make a significant additional contribution to the iodine in the containment atmosphere.  !

i 1

(

36

IODINE 100  ;. . . .

g .

s,g m

o 10 r NN s ,

H i i

~

~ 5 z -

is

~ s 90 PERCENTILE  :

w

> ',, ~

s z

W i s

~

~, ,

. N ~~-

N ~~~  :

w m .

g ,,

~~~__ 2 .

O O. I r '\ MEDIAN ,

. s,, .

j  %

w m -

g ,,

" H O'01 e 'N

.z.

i 10 PERCENTILE 'N  !

N k

N' .

o 10-3 r

'N,,  ;

x  : N  :

s, ,,

10-4 " " ' ' ' ' ' ' " " " " ' ' ' ' ' ' '

S 10 15 20 25 TIME (HOURS)

Figure 15. Iodine Suspended in the AP600 Reactor Containment During a 3BE Accident

_j

CESIUM 100

. ~.

s\

x 10 r \s o  !

H E \~~ '  :

90 PERCENTILE

$>. 'N

's

~,,

~

~'

Z 1

's, '

~,,,

E.

i N

~~~~~~____~~~

w . Ns .

m .

N MEDIAN o N r u O.1 r N

N -

< - g -

- s w \s i F O.01 e

~

.E 10 PERCENTILE Ns i Z N  :

s IL N ,

o 10-3 r Ns  :

x  : Ns .

N .

' ' ' ' ' ' ' ' ' ' ' ' 'N " ' ' '

10-4 5 10 15 20 25 TIME (HOURS)

Figure 16. Cesium Suspended in the AP600 Reactor Containment During a 3BE Accident

TELLURIUM .

100 . . . .

i . . . .

i . . . .

i . . .

3 m

a 10 - s E

i- E -

z - -

w -

is -

> ss z

1 _7 gs,, s i \s ~

~ 90 PERCENTILE E w _

's s

s ~

m . s

~

o N ~

u O.1 r 's s _

s

's, -

a  :

's s MEDIAN

'- \ s

- O. 01 r- s s _

u.

z  : 's  :

-  : 10 PERCENTILE 's s s .

's u-a 10 -3 r Ns s

N  :

x . y _

_ s s

10 -4 5 10 15 20 25 TIME (HOURS)

Figure 17. Tellurium Suspended in the AP600 Reactor Containment During a 3BE Accident

1 c-- - ,, - ,_ ,- - - - - - - - - -

RUTHENIUM 100 ;. . . . , . . . .

.g m ,

a 10 s-i- i E z

g z 1 _

- E -

w  : _

m .

o u 0.1 -

\' s s

s i

a i 's 's

~ ~

~

90 PERCENTILE -

g -

N ~,

[ O. 01 -

3

'N s ,- ~

s s

z i s s

's__ ~

~~

E s ,.

N-

_~~_ _

L2-o 10-3 _r 10 's s MEDIAN i x i PERCENTILE ,-

s E

g .

_ s 10-4 5 10 15 20 25 TIME (HOURS) 1 Fipre 18. Ruthenium Suspended in the AP600 Reactor Containment During a 3BE Accident

1 ro r n n o n i m men uns ums a m-STRONTIUM 100  ;.

i . . . . , . . . . , . . . . , . . . .

x o 10 -

s i- i E z

g y

z H

1 _

s s _

3

\\

s s.

E w -

r ~

'\ s

^ss 90 PERCENTILE u O. I s- 's ^ ~.s ,

i 's ' s. E

's s * % %

. ~. _

l 3 -

's, - ,-  !

!; O. 01 7 's, -

z

's, s MEDIAN

1

- 's -

t2- 10 PERCENTILE 's a 10 -3 s-

-s M  : 's s  :

s, -

10 -4 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

5 10 15 20 25 TIME (HOURS)

Figure 19. Strontium Suspended in the AP600 Reactor Containment During a 3BE Accident. Note a plot of suspended barium would be identical to this for stmntium.

I

LANTHANUM

1. 0 -

. 3 3

T s o 0.1 s- E v i _

z g

z o, c1 =_ s s  !

~

! 's,N s _

~

w g

s s

s s

~

o

~

\s '

's 90 PERCENTILE s u 10-3 --

N x

s s

~ s

~

_a  : s ~ _ _ -

x,. ~~__-~~._

-4 MEDIAN i n [ 10 7 N  :

z  : N  : ,

-  : N -

10 PERCENTILE N s 1

o 10 -5 s- 's s s

N s,
st

_ \is. . i . . . .

10-6 5 10 15 20 25 TIME (HOURS)

Figure 20. Lanthanum Suspended in the AP600 Reactor Containment During a 3BE Accident

1 <, ,- , c <, ,- c m ,, e c ,, ,- c ,, ,--

CERIUM

1. 0 g. . . .

m o O. I r s

?

v 5 -

z - -

w -

ss -

gs z

- O.01 r \, ~ s ~

s

\s

~

~ 90 PERCENTILE  :

w s -

- s ~

m - N s

' ~

o N 10 -3

' s u r N _'

i N __~~~__ E a -

xg _

s a MEDIAN

\

10 -4 F.

5 s  :

5

N  :

z.

.-  : N

- N -

u- N o 10 -5 !- 10 PERCENTILE 's s i:

st
N% .

s 10 -6 5 10 15 20 25 TIME (HOURS)

Figure 21. Cerium Suspended in the AP600 Reactor Containment During a 3BE Accident i

f

. . ~ _ _ _ _ _ -

VI. REFERENCES

1. D. A. Powers, Monte Carlo Uncertainty Analysis ofAerosol Behavior in the AP600 Reactor Containment Under Conditions of a Specifc Design-Basis Accident, Part 1, Sandia National Laboratories, Albuquerque, NM, June 1995.
2. L. Soffer et al., Accident Source Tennsfor Light-Water Nuclear Power Plants, NUREG-1465, U.S. Nuclear Regulatory Commission, Washington, D.C.,1995.
3. D. A. Powers, Monte Carlo Uncenainty Analysis ofAerosol Behavior in the AP600 l Reactor Containment Part 2: Fixed Boundary Conditions and a Knowr, Source of  ;

Nonradioactive Aerosol, Sandia National Laboratories, Albuquerque, NM, July 1995.

5. D. A. Powers, K. E. Washington, S. B. Burson, and J. L. Sprung, A Simphfed Model of Aerosol Removal by Natural Processes in Reactor Containments, NUREGICR-6189, SAND 94-0407, Sandia National Laboratories, Albuquerque, NM.
6. D. A. Powers, " Statistics of Order Distribution," Appendix A, in D. A. Powers and J.

L. Sprung, A Simphfed Model ofAerosol Scrubbing by a Water Pool Overlying Core i Debris Interacting with Concrete, NUREG/CR-5901, SAND 92-1422, Sandia National Laboratories, Albuquerque, NM, November 1993.

4 O

l l

1 APPENDIX A. TABULATIONS OF BOUNDARY CONDITIONS INPUT TO TIIE MECHANISTIC MODEL USED FOR THE  :

MONTE CARLO UNCERTAINTY ANALYSIS OF AEROSOL BEIIAVIOR Analyses done of the 3BE accident with the CONTAIN code considered the containment of the AP600 reactor to have multiple compartments. The compartments are shown in Figure  !

A-1. Cells 4 and 6 are locations for release of steam and aerosol from the reactor coolant system. These cells have markedly different conditions than the rest of the containment.

l Conditions in the various cells omitting cells 4 and 6 were volume averaged to derive boundary conditions for the single-volume Monte Carlo uncertainty analysis of aerosol behavior. These boundary conditions were provided as tabulations of:

  • atmosphere pressure,
  • atmosphere temperature,
  • mole fraction steam,
  • cumulative steam condensation, and a cumulative energy removal from the containment atmosphere.

These tabulations are reproduced in Table A-1 to A-5. The cumulative steam condensation and the cumulative energy removal inputs were numerically differentiatL assuming linear interpolation among adjacent input points to obtain rates of steam condensation and rates of heat removal. Results of the numerical differentiation are listed in Tables A-6 and A-7.

These tabulations were linearly interpolated in the Monte Carlo uncertainty analyses.

l l

I l A-1

9 I

. \

7 8.:.

8 6 5 2 4 3 3......[

~ - 3 l 1

w w l

l l

l I

l Figure A-1. Cells Used in the Analyses With the CONTAIN Code of Accident Processes in I the AP600 Containment l

l I

l l

A-2

[

Table A-1. Containment Pressure

( TIME PRESSURE TIME PRESSURE (SECONDS) (Pa)- (SECONDS) (Pa) 1 0 108250 41 2200 213390 2 1 109190 42 2300 213250 r 43 2400 212940 L 3 2 109980 212680 4 3 110740 44 2500 211820 5 4 111470 45 2600

(

6 5 112200 46 2700 210840 7 6 112920 47 2800 209730 113630 48 2900 208480

[ 8 7 114340 49 3000 207370 9 8 10 9 115030 50 3100 205420

[

11 10 115730 51 3200 203750 12 15 119020 52 3300 202140 13 20 122180 53 3400 200570

[ 54 3500 199320 14 30 125870 15 40 128300 55 3600 198430

[

16 50 130100 56 3700 197620 17 76 136920 57 3800 199280 18 100 145340 58 3900 202090

[ 19 150 167150 59 4000 204110 20 200 192640 60 4100 207210

{

21 250 208670 61 4200 209340 22 300 223210 62 4300 207120 '

23 400 223350 63 4400 203000

[ 24 500 212170 64 4500 200770 25 600 209640 65 4600 198080

[

26 700 212400 66 4700 197400 27 800 213660 67 4800 198510 28 900 213840 68 4900 195720

[ 29 1000 213950 69 5000 193200 30 1100 213530 70 5100 190850

[ 71 5200 190020 31 1200 213470 32 1300 213200 72 5300 188030 33 1400 212770 73 5400 185450

[ 34 1500 212580 74 5500 185360 35 1600 212900 75 5600 183270 b

36 1700 213300 76 5700 181640 37 1800 213550 77 5800 179980 E 38 1900 213650 78 5900 178330-L 39 2000 213840 A-3 79 6000 176860 40 2100 213560 80 ,

6100 175410 c

f Table A-1. Containment Pressure (continued)

TIME PRESSURE TIME PRESSURE (SEC0HDS) (Pa) (SECONDS) (Pa) f 81 6200 174090 121 15500 160370 82 6300 172720 122 16000 157290 83 6400 171620 123 16500 154210 84 6500 170790 124 17000 151890 85 6600 169900 125 17500 149560 86 6700 169040 126 18000 '

147690 87 6800 168460 127 18500 145760 88 6900 167870 128 19000 144440 89 , 7000 167280 129 19500 143010 90 7200 165960 130 20000 141840 f

7400 164130 131 21000 140590

.2 7600 162130 132 22000 139330 f 93 7800 160220 133 23000 138510 t 94 8000 158530 134 24000 137620 95 8200 156980 135 25000 136960

( 96 8400 155520 136 26000 136110 97 8600 154150 137 27000 136870

[ 98 8800 152890 138 28000 135560 t 99 9000 151740 139 29000 135550 100 9200 150580 140 30000 135890 f

101 9400 149310 141 31000 136290 102 9600 148290 142 32000 136550

[ 103 9800 151350 143 33000 137200 t 104 10000 158980 144 34000 137370 105 10200 153060 145 35000 138020 106 10400 150330 146 36000 138550 107 10600 148480 147 37000 138010

[ 108 10800 147040 148 38000 138540 1 109 11000 145840 149 39000 138900 110 11200 150480 150 40000 139460 111 11400 152650 151 41000 141050 112 11600 153980 152 42000 141630 113 11800 154890 153 43000 141810 114 12000 155570 154 44000 141990 115 12500 159860 155 45000 142360 116 13000 162020 156 46000 142800 117 13500 163640 157 47000 143180 r 118 14000 169350 158 48000 143660 l

' 119 14500- 166180 159 49000 144300 120 15000 ^ ~4 165610 160 50000 144790 r

Table A-1. Containment Pressure (concluded)

TIME. PRESSURE (SECONDS) (Pa) 161 51000 145250 162 52000 145740 163 53000- 146200 164 54000 146550 165 55000 147120 166 56000 147610 167 57000 147990 168 58000 148510 169 59000 148980 170 60000 149450 171 61000 150700 172 62000 152560 173 63000 154170 174 64000 155500 175 65000 156230 176 66000 156900 177 67000 157410 178 68000 157970 179 69000 158360 180 70000 158840 181 71000- 159190 182 72000 159440 183 73000 159740 184 74000 159990 185 75000 160190 186 76000 160500 187 77000 160700 188 78000 160940 189 79000 161170 190 80000 161300 191 81000 161460 192 82000 161540 193 83000 161660 194 84000 161760 195 85000 161780 196 86000 161780 197 86401 161770 i

A-5

( .

Table A-2. Containment Atmosphere Temperature

~

TIME TEMPERATURE TIME TEMPERATURE (SECONDS) (K) (SECONDS) (K) ,

1 0 322.00 41 2200 372.34 2 1 322.79 42 2300 372.31 3 2 323.50 43 2400 372.24 4 3 324.19 44 2500 372.17 5 4 324.88 45 2600 371.99 6 5 325.57 46 2700 371.75 7 6 326.27 47 2800 371.47 8 7 326.96 48 2900 371.14 9 8 327.64 49 3000 370.84 10 9 328.33 50 3100 370.34 11 10 329.02 51 3200 369.88 12 15 332.27 52 3300 369.43

{ 13 20 335.36 53 3400 368.98 14 30 338.79 54 3500 369.01 -

15 40 340.87 55 3600 369.92 16 50 342.28 56 3700 371.04 r 17 76 347.48 57 3800 374.45 l 18 100 353.48 58 3900 379.98 19 150 366.51 59 4000 384.27 20 200 378.47 60 4100 389.70 21 250 384.16 61 4200 393.87 22 300 388.39 62 4300 393.03 23 400 383.79 63 4400 388.76 24 500 375.23 64 4500 386.41 25 600 371.96 65 4600 384.05 26 700 371.85 66 4700 383.54 27 800 372.23 67 4800 385.54

[ 28 900 372.33 68 4900 383.50 29 1000. 372.38 69 5000 380.95 30 1100 372.30 70 5100 378.78 31 1200. 372.29 71 5200 378.26 32 1300 372.25 72 5300 376.96

[ 33 1400 372.15 73 5400 374.68 34 1500 372.10 74 5500 374.56 35 1600 372.17 75 5600 373.62 f

36 1700 372.28 76 5700 372.62  ;"

r 37 1800 372.35 77 5800 371.62

' 38 1900 372.39 78 5900 370.58 39 2000 372.44 A-6 79 6000 369.75 c

40 2100 372.38 80 6100 368.97

1 Table A-2. Containment Atmosphere Temperature (continued) l TIME TEMPERATURE TIME TEMPERRTURE (SECONDS) (K) (SECONDS) (K) 81 6200 368.33 121 15500 357.63 82 6300 367.69 122 16000 356.07 83 6400 367.19 123 16500 354.71 84 6500 367.08 124 17000 353.75 85 6600 366.98 125 17500 352.70 86 6700 366.91 126 18000 351.88 87 6800 366.99 127 18500 350.87 88 6900 367'10

. 128 19000 -

350.23 l 89 7000 367.21 129 19500 349.43 '

90 7200 367.14- 130 20000 348.81 i l

91 ?400 366.55 131 21000 348.12  ;

92 7600 365.81 132 22000 347.15 l 93 7800 365.14 133 23000 346.17 94 8000 364.80 134 24000 345.38 -

l 95 8200 364.53 135 25000 344.51 i 96 8400 -

364.21 136 26000 343.58 l 97 8600 363.87 137 27000 343.85 l

98 8800 363.55 138 28000' 342.53 99 9000 363.27 139 29000 342.24 100 9200 362.87 140 30000 342.38 i

101 9400 362.24 141 31000 342.27 l 102 9600 361.73 142 32000 342.09 103 9800 365.94 143 33000 342.19 104 -10000 379.23 144 34000 341.95

. 105 10200 370.96 145 35000 342.17 106 10400 366.74 146 36000 342.23 107 10600 364.28 147 37000 341.10 l 108 10800 362.65 148 38000 341.59 109 11000 361.49 149 39000 341.37 l 110 11200 369.16 150 40000 341.76 l

l

' 111 11400 373.33 151 41000 342.74 112 11600 375.65 152 42000 342.75 113 11800- 377.04 153 43000 342.61 114 12000 377.93 154 44000 342.52 115 12500 376.72 155 45000 342.65 5

116 13000 373.65 156 46000 342.83 117 13500 370.93 157 47000 342.94' 118 14000 369.76 158 48000 343.02 119- 14500 363.48 159 49000 343.34 120 15000 361.38 160 50000 343.52

Table A-2. Containment Atmosphere Temperature (concluded)

TIME TEMPERATURE (SECONDS) (K) 161 51000 343.66

. 162 52000 343.79 163 53000 343.96

. 164 54000 343.97 165 55000 -

344.23 166 56000 344.42 167' 57000 344.57 168 58000 344.80' 169 59000 345.04-170 60000 345.28 /

171 61000 345.94 172 62000 346.87 173 63000 347.66 174 64000 348.32 175 65000 348.72 1

176 66000 349.06 177 67000 349.33 178 68000 349.60 179 69000 349.80 180 70000 350.06 181 71000 350.24 182 72000 350.34 183 73000 350.46 184 74000 350.58-185 75000 350.68 186 76000 350.83 187 77000 350.94 188 78000 351.04 189 79000 351.14 190 80000 351.20 191 81000 351.27 192 82000 351.31 193 83000 351.36 ,

194 84000 351.37 195 85000 351.40

~

196 86000 351.39 197 86401 351.37 A-8 I _-_-

l l

Table A-3. Mole Fraction Steam in the Containment Atmosphere l TIME MOLE FRACTION TIME MOLE FRACTION (SECONDS) STERM (SECONDS) STEAM i

1 0 0.1076 41 2200 0.4631 2 1 0.1080 42 -2300 0.4628 3 2 0.1087 43 2400 0.4621 i

. 4 3 0.1098 44 2500 0.4615  ;

5 4 0.1111 45 2600 0.4599 i

6 5 0.1128 46 2700 0,4578 7 6 0.1145 47 2800 0.4554 8 7 0.1165 48 2900 0.4526 )

9 8 0.1 .' 49 3000 0.4500 .

10 9 0.120 50 3100 0.4461 L 11 10 0.1231 51 3200 0.4422 12 15 0.1353 52 3300 0.4384 1 13 20 0.1481 53 3400 0.4344 14 30 0.1647 54 3500 0.4305 15 40 0.1763 55 3600 0.4261 ,

16 50 0.1852 56 3700 0.4213 17 76 0.2138 57 3800 0.4177 18 100 0.2462 58 3900 0.4155-19 150 0.3206 59 4000 0.4134  ;

20 200' O.3924 60 4100 0.4125 ,

21 250 0.4328 61 4200 0.4119 I 2E 300 0.4645 62 4300 0.4092 23 400 0.4737 63 4400 0.4036 ,

24 500 0.4619 64 4500 0.3983 '

25 600 0.4560 65 4600 0.3930 -

i 26 700 0.4609 66 4700 0.3877 i 27 800 0.4640 67 4800 0.3841 l 28 900 0.4647 68 4900 0.3791 29 1000 0.4649, 69 5000 0.3728 30 1100 0.4642 70 5100 0.3664 31 1200 0.4639 71 5200 0.3606 32 1300 0.4634 72 5300 0.3558 33 1400 0.4624 73 5400 0.3505 34 1500 0.4619 74 5500 0.3454 35 1600 0.4622 75 5600 0.3409 36 1700 0.4629 76 5700 0.3367 37 1800 0.4635 77 5800 0.3326 38 1900 0.4637 78 5900 0.3284 39 2000 0.4640 A-9 79 6000 0.3244 40 2100 0.4636 80 6100 0.3204

[

Table A-3. Mole Fraction Steam in the Containment Atmosphere (continued)

TIME MOLE FRRCTIOil TIME MOLE FRRCTION STEAM (SECONDS) STEAM (SECONDS) 81 6200 0.3164 121 15500 0.2671 82 6300 0.3125 122 16000 0.2551

[- -

83 6400 0.3086 123 16500 0.2432 84 6500 0.3051 124 17000 0.2334 85 6600 0.3017 125 17500 0.2239 86 6700 0.2984 126 18000 0.2159 87 6800 0.2954 127 18500 0.2075

[ 88 6900 0.2926 128 19000 0.2005 89 7000 0.2899 129 19500 0.1941 90 7200 0.2845 130 20000 0.1887 91 7400 0.2786 131 21000 0.1821 92 7600 0.2719 132 22000 0.1766

[ 93 7800 0.2647 133 23000 0.1726 94 8000 0.2576 134 24000 0.1688 95 8200 0.2508 135 25000 0.1653 96 8400 0.2444 136 26000 0.1608 97 8600 0.2384 137 27000 0.1638

[.

98 8800 0.2326 138 28000 0.1596 99 9000 0.2272 139 29000 0.1595 100 9200 0.2222 140 30000 0.1617 101 9400 0.2172 141 31000 0.1649 102 9600 0.2125 142 32000 0.1671

{ 103 9800 0.2105 143 33000 0.1703 104 10000 0.2202 144 34000 0.1715 105 10200 0.2163 145 35000 0.1746 106 10400 0.2113 146 36000 0.1775 107 10600 0.2066 147 37000 0.1754

[ 108 10800 0.2023 148 38000 0.1780 109 11000 0.1981 149 39000 0.1794 110 11200 0.2003 150 40000 0.1825 111 11400 0.2029 151 41000 0.1889 112 11600 0.2050 152 42000 0.1919

[ 113 11800 0.2066 153 43000 0.1935 114 12000 0.2081 154 44000 0.1945 115 12500 0.2291 155 45000 0.1964 116 13000 0.2452 156 46000 0.1985 117 13500 0.2570 157 47000 0.2004 0.2813 158 48000 0.2023

[ 118 14000 14500 0.2812 A-10 159 49000 0.2054 119 120 15000 0.2821 160 50000 0.2079 E

Table A-3. Mole Fraction Steam in the Containment Atmosphere (concluded)

TIME HOLE FRACTION (SECONDS) STERM 161 51000 0.2100 162 52000 0.2122 163 53000 0.2144 164 54000 0.2158 165 55000 0.2182 166 56000 0.2205 167 57000 0.2237 168 58000 0.2247 169 59000 0.2267 170 60000 0.2286 171 61000 0.2333 172 62000 0.2398 173 63000 0.2453 174 64000 0.2499 175 65000 0.2530 176 66000 0.2555 177 67000 0.2575 178 68000 0.2595 179 69000 0.2611 180 70000 0.2630 181 71000- 0.2644 182 72000 0.2651 183 73000 0.2660 184 74000 0.2668

-185 75000 0.2675 186 76000 0.2687 187 77000 0.2695 188 78000 0.2703 189- 79000 0.2710 190 80000 0.2715 191 -81000 0.2720 192 82000 0.2723 193- 83000 0.2727 194 84000 0.2725 195 85000 0.2729 196 86000' O.2728 197 86401 0.2725 A-11

Table A-4. Cumulative Steam Condensed in the Containment STEAM STEAM TIME C0t4DEt4SATION TIME C0tIDEllS AT IOli (s) (ks) (s) (k9) -l 1 0 0.00000E 00 41 2200 3.96950E 04 2 1 2.98890E-02 42 2300 4.09420E 04 l 3 2 1.34840E-01 43 2400 4.21700E 04- I

'.4 3 3.07960E-01 44 2500 4.33770E 04 5 4 5.66900E-01 45 2500 4.45590E 04 6 5 9.21220E-01 46 2700. 4.57070E 04 '

7 6 1.36690E 00 47 2800 4.68210E 04 l .8 7 1.93640E 00 48 2900 4.78960E 04 9 8 2.63600E 00 49 3000 4.89380E 04 10 9 3.47070E 00 50 3100 4.99390E 04 11 10 4.44460E 00 51 3200 5.08930E 04 12 15 1.13340E 01 52 3300 5.18100E 04 13 20 2.19860E 01 53 3400 5.26920E 04 14 30 5.39860E 01 54 3500 5.35430E 04 15 40 1.00530E 02 55 3600 5.43740E 04 16 50 1.55470E 02 56 3700 5.51820E 04 17 76 3.27470E 02 57 3800 5.59750E 04 18 100 5.46320E 02 58 3900 5.68100E 04 l 19 150 1.27670E 03 59 4000 5.76600E 04 20 200 2.46690E 03 60 4100 5.85310E 04 21 250 4.05210E 03 61 4200 5.94280E.04 22 300 5.87380E 03 62 4300 6.02990E 04

[ 23 400 9.50240E 03 63 4400 6.10500E 04 1 24 500 1.24980E 04 64 4500 6.17240E 04 25 600 1.48310E 04 65 4600 6.23570E 04 f 26 700 1.68860E 04 66 4700 6.29480E 04 27 800 1.88320E 04 67 4800 6.35500E 04 1 28 900 2.07080E 04 68 4900 6.41440E 04 I 29 1000 2.25000E 04 69 5000 6.46890E 04 30 1100 2.42040E 04 70 5100 6.51960E 04 31 1200 2.58280E 04 71 5200 6.56770E 04 32 1300 2.73880E 04 72 5300 6.61420E 04 33 1400 2.88800E 04 73 5400 6.65750E 04 34 1500 3.03180E 04 74 5500 6.70030E 04 35 1600 3.17200E 04 75 5600 6.74440E 04 36 .1700 3.31030E 04 76 5700 6.78620E 04 37 1800 3.44680E 04 77 5800 6.82650E 04 38 1900 _3.58080E 04 78 5900 6.86520E 04

(. 39 40 2000 2100 3.71290E 04 3.84250E 04 A-12 79 6000 6.90240E 04 80 6100 6.93840E 04 r

Table A-4. Cumulative Steam Condensed in the Containment (continued)

STEAM STEAM TIME CONDENSATION TIME CONDEllSRTION (s) (ks) (s) (k9) 81 6200 6.97320E 04 121 15500 9.16290E 04 82 6300 7.00690E 04 122 16000 9.29180E 04 83' 6400 7.03950E 04 123 16500 9.40480E 04 84 6500 7.07140E 04 124 17000 9.50390E 04 85' 6600 7.10260E 04 125 17500 9.59180E 04

{

86 6700 7.13290E 04 126 18000 9.67140E 04 87 6800 7.16270E 04 127 18500 9.74320E 04

[ 88 6900 7.19200E 04 128 19000 9.80840E 04 89 7000 7.22080E 04 129 19500 9.86940E 04 90 7200 7.27640E 04 130 20000 9.92750E 04 98 7400 7.32920E 04 131 21000 1.00360E 05 92 7600 7.37830E 04 132 d2000 1.01370E 05 93 7800 7.42430E 04 133 23000 1.02330E 05 94 8000 7.46830E 04 134 24000 1.03260E 05 95 8200 7.50910E 04 135 25000 1.04140E 05 96 8400 7.54700E 04 136 26000 1.04980E 05 97 8600 7.58250E 04 137 27000 1.05840E 05

[ 98 8800 7.61620E 04 138 28000 1.06690E 05 99 9000 7.64740E 04 139 29000 1.07530E 05 100 9200 7.67660E 04 140 30000 1.08420E 05 10'1 9400 7.70370E 04 141 31000 1.09390E 05 f 102 9600 7.72940E 04 142 32000 1.10420E 05 l 103 9800 7.75360E 04 143 33000 1.11530E 05 104 10000 7.78460E 04 144 34000 1.12690E 05 205 10200 7.81780E 04 145 35000 1.13900E 05 106 10400 7.84580E 04 146 36000 1.15170E 05

( 10.7 10600 7.87080E 04 147 37000 1.16440E 05 t 108 10800 7.89420E 04 148 38000 1.17710E 05 109 11000 7.91630E 04 149 39000 1.19050E 05 11,0 11200 7.93940E 04 150 40000 1.20430E 05 111 11400 7.96750E 04 151 41000 1.21970E 05 112 11600 7.99810E 04 152 42000 1.23610E 05 113 11800 8.03030E 04 153 43000 1.25250E 05 114 12000 8.06340E 04 154 44000 1.26910E 05 115 12500 8.16690E 04 155 45000 1.28590E 05 116' 13000 8.29720E 04 156 46000 1.30310E 05 r

117 13500 8.44700E 04 157 47000 1.32070E 05 i

118 14000 8.62980E 04 158 48000 1.33860E 05 119 14500 8.82270E 04 A-13 159 49000 1.35720E 05 120 15000 9.00490E 04 160 50000 ,

1.37630E 05

Table A-4. Cumulative Steam Condensed in the Containment (concluded)

STEAM TIME CONDENSATION (s) (ks) 161 51000 1.39590E 05 162 52000 1.41580E 05 163 53000 1.43620E 05 164 54000 1.45690E 05 165 55000 1.47800E 05 166 56000 1.49960E 05 167 57000 1.52160E 05 168 58000 1.54410E 05 169 59000 1.56700E 05 1 170 60000 1.59030E 05 171 61000 1.61440E 05 172 62000 1.64100E 05 173 63000 1.66920E 05 174 64000 1.69860E 05 1 175 65000 1.72860E 05 1 176 66000 1.75870E 05 177 67000 1.78910E 05 178 68000 1.81960E 05 179 69000 1.85040E 05 1 180 70000 1.88120E 05 181 71000 1.91220E 05 1 182 72000 1.94310E 05 183 73000 1.97410E 05 184 '74000 2.00520E 05 1 185 75000 2.03640E 05

=

186 76000 2.06770E 05 1

. 187 77000 2.09920E 05 188 78000 2.13080E 05 189 79000 2.16260E 05 190 80000 2.19430E 05 191 81000 2.22610E 05 192 82000 2.25780E 05 193 83000 2.28960E 05 194 84000 2.32130E 05 '

195 85000 2.35290E 05 196 86000 2.38450E 05 197 86401 2.39710E 05 A-14

. - .~. - . . . - . . - - - - . - - . - - .. - . _ . . - - -

i i

Table A-5. Cumulative Heat Removed From the Containment Atmosphere HEAT .

HEAT  ;

TIf1E REMOVRL TIME REMOVRL l

(s) (J). (s) (J) 1.1492E 11 1 0 0.0000E 00 41 2200 g 2 1 1.1842E 05 42 2300 1.1847E-11 3 2 5.1606E 05 43 2400 1.2195E 11 4 3 1.1661E 06 44 2500 1.2538E 11 5 4 2.1190E 06 45 2600 1.2875E~11 i

6 5 3.4017E 06 46 2700 1.3201E 11 7 6 5.0062E 06 47 2800 1.3518E 11

!- 8 7 7.0237E 06 48 2900 1.3823E 11 )

9 8 9.4713E 06 49 3000 1.4119E 11 10 9 1.2363E 07 50 3100 1.4404E 11  ;

i 11 10 1.5710E 07 51- 3200 1.4676E 11 )

. 12 15 3.9117E 07 52. 3300 1.4936E 11 13 20 7.4752E 07 53 3400 1.5187E 11 14 30 1.8028E 08 54 3500 1.5430E 11 15 40 3.2964E 08 55 3600 1.5668E 11 )

I, 16 50 5.0353E 08 56 3700 1.5902E 11

17 76 1.0435E 09 57 3800 -1.6136E 11 18 100 1.7266E 09 58 3900 . 1.6392E 11 19 150 3.9893E 09 59 4000 1.6664E 11 20 200 7.6483E 09 60 4100 1.6955E 11 21- 250 1.2479E 10 61 4200 1.7263E 11 22' 300 1.7990E 10 62 4300 1.7569E il l 23 400 2.8776E 10 63 4400 1.7831E.11 24 500 3.7510E 10 64 4500- 1.8061E 11 25 600 4.4203E 10 . 65, 4600 1.8276E 11 1

i' I 700 5.0064E 10 1.8476E 11 26 66 4700 27 800 5.5602E 10 67 4800 1.8681E 11 l 28 900 6.0939E 10 68 4900 1.8887E 11 29 1000 6.6035E 10 69 5000 1.9072E 11 30 1100 7.0880E 10 70 5100 1.9243E 11 i

31 1200 7.5496E 10 71 5200 1.9405E 11 32 1300 7.9933E 10 72 5300 1.9561E 11 1 33 1400 8.4175E 10 73 5400 1.9706E 11 t

34 1500 8.8262E 10 74 5500 1.9846E 11 ,

9.2250E 10 1.9991E 11 35 .1600 75 5600 d

36 1700 9.6180E 10 76 5700 2.0128E 11 37 1800 1.0006E 11 77 5800 2.0260E 11 38 1900 1.0387E 11 78 5900 2.0306E'11 39 2000 1.0763E 11 A-15 79 6000 2.0508E 11 40 2100 1.1131E 11 '80 6100 2.0625E 11

l Table A-5. Cumulative Heat Removed From the Containment Atmosphere (continued)

HEAT HEAT TI!1E REMOVAL TIME ret 10 VAL

[ (s) (J) (s) (J) 81 6200 2.0738E 11 121 15$00 2.9089E 11 82 '6300 2.0847E 11 122 16000 2.9486E 11 83 6400 2.0953E 11 123 16500 2.9836E 11 84 6500 2.1058E 11 124 17000 3.0147E 11

. 85 6600 2.1161E 11 125 17500 3.0426E 11

(

r 86 6700 2.1262E 11 126 18000 3.0681E 11

[ -87 6800 2.1361E 11 127 18500 3.0913E 11 88 6900 2.1460E 11 128 19000 3.1126E'11' 89 7000 2.1559E 11 129 19500 3.1327E 11 90 7200 2.1751E 11 130 20000 3.1519E 11 91 7400 2.1936E 11 131 21000 3.1882E 11 92 7600 2.2109E 11 132 22000 3.2224E 11 93 7800 2.2272E 11 133 23000 3.2552E 11 94 8000 2.2430E 11 134 24000 3.2865E 11 95 8200 2.2579E 11 135 25000 3.3166E 11

{

96 8400 2.2720E 11 136 26000 3.3448E 11 97 8600 2.2856E 11 137 27000 3.3741E 11 98 8800 2.2985E 11- 138 28000 3.4026E 11 99 9000 2.3108E 11 139 29000 3.4304E 11

'100 9200 2.3226E 11 140 30000 3.4601E 11 101 9400 2.3338E 11 141 31000 3.4919E 11 102 9600 2.3444E 11 142 32000 3.5255E 11.

[ 183 9800 2.3548E 11 143 33000 3.5612E 11 104 10000 2.3713E 11 144 34000 3.5979E 11 105 10200 2.3884E 11 .

145 35000 3.6361E 11 106 10400 2.4017E 11 . 146 36000 3.6762E 11 107 10600 2.4130E 11 147 37000 3.7151E 11

(- 108 19800 2.4234E 11 148 38000 3.7543E 11 109 11000 2.4332E 11 149 39000 3.7952E 11 110 11200 2.4447E 11 150 40000 3.8375E 11 111 -11400 2.4595E 11 151 41000 3.8848E 11 112 11600 2.4760E 11 152 42000 3.9347E 11

[-- 113 11800 2.4934E 11 153 43000 3.9844E 11 114 12000 2.5113E 11 154 44000 4.0341E 11 119 12500 2.5636E 11 155 45000 4.0847E 11 116 13000 2.6180E 11 156 46000 4.1363E 11 r 117 13500 2.6751E 11 157 47000 4.1887E 11 L 118 14000 2.7399E 11 ^~I 6 158 48000 4.2423E 11 119 14500 2.8030E 11 159 49000 4.2978E 11

- 120 15000 2.8603E 11 160 50000 4.3546E 11

4 Table A-5. Cumulative Heat Removed From the Containment Atmosphere (concluded)

HERT ,

f TIME REMOVRL I

l

<s) (J) l 161 51000 4.4125E 11

162 52000 4.4716E 11 163 53000 4.5318E 11

~

164 54000 4.5926E 11 165 55000 4.6546E 11 166 56000 4.7182E 11 167 57000 4.7826E 11 168 58000 4.8484E 11 169 59000 4.9153 11 170 60000 4.9834E 11 171 61000 5.0539E 11 172 62000 5.1315E 11 173 63000 5.2140E 11 174 64000 5.2996E 11 ,

l 175 65000 5.3872E 11 l, 176 66000 5.4750E 11 177 67000 5.5636E 11  !

l 178 68000 5.6528E 11 l 179 69000 5.7423E 11 180 70000 5.8324E 11 l 181 71000 5.9227E 11 i 182 72000 6.0131E 11 l 183 73000 6.1036E 11 l 184 74000 6.1942E 11 185 75000 6.2854E 11 l

l 186 76000 6.3770E 11 187 77000 6.4689E 11 l

l 188 78000 6.5612E 11 l 189 79000 6.6539E 11 190 80000 6.7465E 11 191 81000 6.8394E 11 192 82000 6.9320E 11

193 83000 7.0249E 11 -
194 84000 7.1174E 11

' 195 85000 i.2097E 11 I 196 86000 7.3021E 11 197 86401 7.3388E 11 A-17

1 Table A-6. Steam Condensation Rate STERM STEAM TIME CONDENSRTION TIME CONDENSATION (s) RATE (9/s) (s) RATE (9/s) 1 0 2.9889E 01 41 2200 1.2470E 04 2 1 1.0495E 02 42 2300 1.2280E 04 3 2 1.7312E 02 43 2400 1.2070E 04 4 3 2.'5894E 02 44 2500 1.1820E.04 5 4 3.5432E 02 45- 2600 1.1480E 04 6 5 4.4568E 02 46 2700 1.1140E 04 7 6 5.6950E 02 47 2800 1.0750E 04 8 7 6.9960E 02 48 2900 1.0420E 04 9 8 8.3470E 02 49 3000 1.0010E 04 10 9 9.7390E 02 50 3100 9.5400E 03 11 10 .1.3779E 03 51 3200 9.1700E 03 12 15 2.1304E 03 52 3300 8.8200E 03 13 20 3.2000E 03 53 3400 8.5100E 03 14 30 4.6544E 03 54 3500 8.3100E 03 15 40 5.4940E 03 55 3600 8.0800E 03 16 50 6.6154E 03 56 3700 '7.9300E 03 17 76 9.1188E 03 57 3800 8.3500E 03 18 100 1.4608E 04 58 3900 8.5000E 03 19 150 2.3804E 04 59 4000 8.7100E 03 20 200 3.1704E 04 60 4100 8.9700E 03 21 250 3.6434E 04 61 4200 8.7100E 03 22 300 3.6286E 04 62 4300 7.5100E 03 23 400 2.9956E 04 63 4400 6.7400E 03 24 500 2.3330E 04 64 4500 6.3300E 03 25 600 2.0550E 04 65 4600 5.9100E 03 26 700 1.9460E 04 66 4700 6.0200E 03 27 800 1.8760E 04 67 4800 5.9400E 03 28 900 1.7920E 04 68 4900 5.4500E 03

. ;29 1000 1.7040E 04 69 5000 5.0700E 03 30 1100 1.6240E 04 70 5100 4.8100E 03 31 1200 1.5600E 04 71 5200 4.6500E 03 32 1300 1.4920E 04 72 5300 4.3300E 03 33 1400 1.4380E 04 73 5400 4.2800E 03 34 1500- 1.4020E 04 74 5500 4.4100E 03 35 1600 1.3830E 04 75 5600 4.1800E 03 36 1700 1.3650E 04 76 5700 4.0300E 03 37 1800 1.3400E 04 77 5800 3.8700E 03 38 1900 1.3210E 04 78 5900 3.7200E 03 3S 2000 1.2960E 04 79 6000 3.6000E 03 40 2100 1.2700E 04 A-18 80 6100 3.4800E 03

1 Table A-6. Steam Condensation Rate (continued)

STEAM STEAM TIME CONDENSATION TI!1E CONDENSATION (s) RATE (9/s) (s) RATE (9/s) 81 6200 3.3700E 03 121 15500 2.5780E 03 82 6300 3.2600E 03 122 16000 2.2600E 03 83 6400 3.1900E 03 123 16500 1.9820E 03 84 6500 3.1200E 03 124 17000 1.7580E 03 85 '6600 3.0300E 03 125 17500 1.5920E 03 86 6700 2.9800E 03 126 18000 1.4360E 03 87 6800 2.9300E 03 127 18500 1.3040E 03 88 6900 2.8800E 03 128 19000 1.2200E 03 89 7000 2.7800E 03 129 19500 1.1620E 03 90 7200 2.6400E 03 130 20000 1.0850E 03 91 7400 2.4550E 03 131 21000 1.0100E 03 92 7600 2.3000E 03 132 22000 9.6000E 02 93 7800 2.2000E 03 133 23000 9.3000E 02 94 8000 2.0400E 03 134 24000 8.8000E 02 95 8200 1.8950E 03 135 25000 8.4000E 02 96 8400 1.7900E 03 136 26000 8.6000E 02 97 8600 1.6700E 03 137 27000 8.5000E 02 98 8800 1.5600E 03 138 28000 8.4000E 02 99 9000 1.4600E 03 139 29000 8.9000E 02 100 9200 1.3550E 03 140 30000 9.7000E 02 101 9400 1.2850E 03 141 31000 1.0300E 03 102 9600 1.2100E 03 142 32000 1.1100E 03

^

103 9800 1.5500E 03 143 33000 1.1600E 03 104 10000 1.6600E 03 144 34000 1.2100E 03 105 10200 1.4000E 03 145 35000 1.2700E 03 106 10400 1.2500E 03 146 36000 1.2700E 03 107 10600 1.1700E 03 147 37000 1.2700E 03 108 10800 1.1050E 03 148 38000 1.3400E 03 109 11000 1.1550E 03 149 39000 1.3800E 03 110 11200 1.4050E 03 150 40000 1.5400E 03 111 11400 1.5300E 03 151 41000 1.6400E 03 112 11600 1.6100E 03 152 42000 1.6400E 03 113 11800 1.6550E 03 153 43000 1.6600E 03 114 12000 2.0700E 03 154 44000 1.6800E 03 115 12500 2.6060E 03 155 45000 1.7200E 03 116 13000 2.9960E 03 156 46000 1.7600E 03 117 13500 3.6560E 03 157 47000 1.7900E 03 118 14000 3.8580E 03 158 48000 1.8600E 03 119 14500 3.6440E 03 A-19 159 49000 1.9100E 03 120 15000 3.1600E 03 160 50000 1.9600E 03

Table A-6. Steam Condensation Rate (concluded),

STERM TIME CONDENSATION (s) RATE (S/s) 161 51000 1.9900E 02 162 52000 2.0400E 03

[

  • 163 53000 2.0700E 03 164 54000 '2.1100E 03 165 55000 2.1600E 03 j.

166 56000 2.2000E 03 167 57000 2.2500E 03

[ 168 58000 2.2900E 03 169 59000 2.3300E 03 170 60000 2.4100E 03 171 61000 2.6600E 03 172 62000 2.8200E 03 173 63000 2.9400E 03 174 64000 3.0000E 03 175 65000 3.0100E 03 176 66000 3.0400E 03

{ 177 67000 3.0500E 03 t 178 68000 3.0800E 03 179 69000 3.0800E 03 180 70000 3.1000E 03 181 71000 3.0900E 03 ,

f 182 72000 3.1000E 03 1 183 73000 3.1100E 03 184 74000 3.1200E 03 185 75000 3.1300E 03 186 76000 3.1500E 03 t 187 77000 3.1600E 03 l 188 78000 3.1800E 03 189 79000 3.1700E 03 190 80000 3.1800E 03 191 81000 3.1700E 03' t 192 82000 3.1800E 03 l 193 83000 3.1700E 03 194 84000 3.1600E 03 195 85000 3.1600E 03 196 86000 3.1421E 03 p

197 86401 3.1421E 03 L

A-20

f Table A-7. Heat Removal Rate i HEAT HEAT TIME REMOVAL TIME REMOVRL

( s- ) RATE (H) (s) R ATE GD

{

1 0 1.1842E 05 41 2200 3.5500E 07 r 2 1 3.9764E 05 42 2300 3.4800E 07

{ 3 2 6>5,004E 05 43 2400 3.4300E 07 4 3 9.5290E 05 44 2500 3.3700E 07 5 4 1.2827E 06 45 2600 3.2600E 07 f

6 5 1.6045E 06 46 2700 3.1700E 07 7 6 2.0175E 06 47 2800 3.0500E 07 f 8 7 2.4476E 06 48 2900 2.9600E 07 9 8 2.8917E 06 49 3000 2.8500E 07 10 9 3.3470E 06 50 3100 2.7200E 07 f

11 10 4.6814E 06 51 3200 2.6000E 07 12 15 7.1270E 06 52 3360 2.5100E 07

( 13 20 1.0553E 07 53 3400 2.4300E 07 14 30 1.4936E 07 54 3500 2.3800E 07 15 40 1.7389E 07 55 3600 2.3400E 07

(

16 50 2.0768E 07 56 3700 2.3400E 07 17 76 2.8463E 07 57 3800 2.5600E 07

( 18 100 4.5254E 07 58 3900 2.7200E 07 19 150 7.3180E 07 59 4000 2.9100E 07 20 200 9.6614E 07 60 4100 3.0800E 07 f

21 250 1.1022E 08 61 4200 3.0600E 07 22 300 1.0786E 08 62 4300 2.6200E 07 23 400 8.7340E 07 63 4400 2.3000E 07

{ 24 500 6.6930E 07 64 4500 2.1500E 07 25 600 5.8610E 07 65 4600 2.0000E 07 26 700 5.5380E 07 66 4700 2.0500E 07 27 800 5.3370E 07 67 4800 2.0600E 07

[ 28 900 5.0960E 07 68 4900 1.8500E 07 t 29 1000 4.8450E 07 69 5000 1.7100E 07 30 1100 4.6160E 07 70 5100 1.6200E 07 31 1200 4.4370E 07 71 5200 1.5600E 07 32 1300 4.2420E 07 72 5300 1.4500E 07

[ 33 1400 4.0870E 07 73 5400 1.4000E 07 l 34 1500 3.9880E 07 74 5500 1.4500E 07 35 1600 3.9300E 07_ 75 5600 1.3700E 07 f 36 1700 3.8800E 07 76 5700 1.3200E 07 37 1800 3.8100E 07 77 5800 1.2600E 07 r 38 1900 3.7600E 07 78 5900 1.2200E 07 39 2000 3.6800E 07 A-21 79 6000 1.1700E 07 40 2100 3.6100E 07 80 6100 1.1300E 07

Table A-7. Heat Removal Rate (continued)

HEAT HEAT TIME REMOVAL TIME REMOVAL (s) RATE (H) (s) RATE (W)

S1 6200 1.0900E 07 121 15500 7.9400E 06 82 6300 1.0600E 07 122 16000 7.0000E 06 83 6400 ~1tQ500E 07 123 16500 6.2200E 06 84 6500 1.0300E 07 124 17000 5.5600E 06 85 6600 1.0100E 07 125 17500 5.1000E 06 86 6700 9.9000E 06 126 18000 4.6400E 06 87 6800 9.9000E 06 127 18500 4.2600E 06 88 6900 9.9000E 06 128 19000 4.0200E 06 89 7000 9.6000E 06 129 19500 3.8400E 06 90 7200 9.2500E 06 130 20000 3.6300E 06 91 7400 8.6500E 06 131 21000 3.4200E 06 92 7600 8.1500E 06 132 22000 3.2800E 06 93 7800 7.9000E 06 133 23000 3.1300E 06 94 8000 7.4500E 06 134 24000 3.0100E 06 95 8200 7.0500E 06 135 25000 2.8200E 06 96 8400 6.8000E 06 136 26000 2.9300E 06 97 8600 6.4500E 06 137 27000 2.8500E 06 38 8800 6.1500E 06 138 28000 2.7800E 06 99 9000 5.9000E 06 139 29000 2.9700E 06 100 9200 5.6000E 06 140 30000 3.1800E 06 101 9400 5.3000E 06 141 31000 3.3600E 06 102 9600 5.2000E 06 142 32000 3.5700E 06 103 9800 8.2500E 06 143 33000 3.6700E 06 104 10000 8.5500E 06 144 34000 3.8200E 06 105 10200 6.6500E 06 145 35000 4.0100E 06 106 10400 5.6500E 06 146 36000 3.8900E 06 107 10600 5.2000E 06 147 37000 3.9200E 06 108 10800 4.9000E 06 148 38000 4.0900E 06 109 11000 5.7500E 06 149 39000 4.2300E 06 110 11200 7.4000E 06 150 40000 4.7300E 06 111 11400 8.2500E 06 151 41000 4.9900E 06 112 11600 8.7000E 06 152 42000 4.9700E 06 113 11800 8.9500E 06 153 43000 4.9700E 06 114 12000 1.0460E 07 154 44000 5.0600E 06 115 12500 1.0880E 07 155 45000 5.1600E 06 l 116 13000 1.1420E 07 156 46000 5.2400E 06 117 13500 1.2960E 07 157 47000 5.3600E 06 118 14000 1.2620E 07 158 48000 5.5500E 06 119 14500 1.1460E 07 159 49000 5.6800E 06 a20 15000 9.7200E 06 /r22 160 50000 5.7900E 06

l i

Table A-7. Heat Removal Rate (concluded)  ;

HEAT *

, TIME REMOVAL i (s) RATE (W)  ;

l

! 161 51000 5.9100E 06 ,

l 162 52000 6.0200E 06  ;

. 163 53000 6.0800E 06  ;

164 54000 6.2000E 06 l 165 55000 6.3600E 06 i  !

166 56000 6.4400E 06  !

i 167 57000 6.5800E 06  !

168 58000- 6.6900E 06  !

l 169 59000 6.8100E 06  !

170 60000 7.0500E 06  :

1 171 61000 7.7600E 06 l 172 62000 8.2500E 06  !

173 63000 8.5600E 06 174 64000 8.7600E 06 175 65000 8.7800E 06  !

176 66000 8.8600E 06  :

177 67000 8.9200E 06 178 68000 8.9500E 06 179 69000 9.0100E 06  !

180 70000 9.0300E 06 1

181 71000 9.0400E 06- t 182 72000 9.0500E 06 183 73000 9.0600E 06 i 9.1200E 06 i 184 74000 l l 185 75000 9.1600E 06 ,

186 76000 9.1900E 06 187 77000 9.2300E 06  !

I 188 78000 9.2700E 06 189 79000 9.2600E 06 190 80000 9.2900E 06 191 81000 9.2600E 06 192 82000 9.2900E 06

193 83000 9.2500E 06 194 84000 9.2300E 06 195 85000 9.2400E 06 196 86000 9.1521E 06 197 86401 9.1521E 06 A-23

f APPENDIX B. TABULATIONS OF UNCERTAINTY DISTRIBUTIONS Tabulations of the uncertainty distributions prepared in this work are collected here in Tables B-1 to B-27. The uncertainty distributions are presented as cumulative probability

[ distributions. Quantiles of these distributions from 5 to 95 percent at 5 percent intervals are characterized by ranges of values of the uncertain quantities. Ranges are listed for confidence levels of 50 and 90 percent. Uncertainty distributions for the base ten logarithms of the

( decontamination factors for gap release and invessel release are listed in Tables B-1 to B-5 and Tables B-6 to B-9, respectively. Uncertainty distributions for the gap release effective decontamination coefficients for time intervals of 0-1800,1800-6480, 6480-13680,13680-f 49680, and 49680-86400 seconds are listed in Tables B-10 to B-14. The last three of these distributions are identical to the effective decontamination coefficients for invessel release

[ during these time intervals. The uncertainty distribution of the effective decontamination t coefficient for invessel release for the tim: interval 1800-6480 seconds is listed in Table B-15. Uncertainty distributions for the instantaneous decontamination coefficients are listed in Tables B-16 to B-25. Uncertainty distributions for time-average decontamination coefficients for 0-1800 and 1800-6480 seconds are listed in Tables B-26 and B-27, respectively.

(

{

{

[

[

{

(

Table B-1. Uncertainty Distribution of the Gap Release Decontamination Factor at 1800 Seconds Values of log 10 DF (gap,1800) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.0006 to 0.0037 0.0010 to 0.0028 10 0.0029 to 0.0098 0.0056 to 0.0068 15 0.0065 to 0.0167 0.0095 to 0.0132 20 0.0130 to 0.0219 0.0151 to 0.0179 25 0.0168 to 0.0305 0.0190 to 0.0256 30 0.0215 to 0.0375 0.0261 to 0.0326 35 0.0296 to 0.0408 0.0338 to 0.0384 40 0.0355 to 0.0472 0.0387 to 0.0429 45 0.0397 to 0.0519 0.0434 to 0.0484 50 0.0458 to 0.0570 0.0485 to 0.0527 55 0.0511 to 0.0628 0.0528 to 0.0577 60 0.0546 to 0.0655 0.0578 to 0.0633 65 0.0587 to 0.0700 0.0636 to 0.0662 70 0.0647 to 0.0769 0.0670 to 0.0720 75 0.0695 to 0.0829 0.0734 to 0.0800 80 0.0764 to 0.0890 0.0808 to 0.0856 85 0.0839 to 0.0982 0.0883 to 0.0946 90 0.0937 to 0.1087 0.0973 to 0.1033 95 0.1065 to 0.1219 0.1093 to 0.I144 Mean = 0.0522 B-2

Table B-2. Uncertainty Distribution of the Gap Release Decontamination Factor at 6480 Seconds l

Values of log 10 DF (gap, 6480) Characteristic of the Indicated Quantile of the Cumulative Probability i Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.0637 to 0.0907 0.0735 to 0.0823 10 0.0844 to 0.114 0.0949 to 0.102 15 0.1005 to 0.165 0.113 to 0.154 20 0.137 to 0.180 0.160 to 0.175 25 0.168 to 0.223 0.176 to 0.192 30 0.179 to 0.251 0.201 to 0.234 1 35 0.222 to 0.274 0.237 to 0.262 40 0.244 to 0.304 0.264 to 0.282 45 0.267 to 0.331 0.282 to 0.316 50 0.286 to 0.354 0.316 to 0.336 55 0.325 to 0.374 0.336 to 0.362 60 0.344 to 0.407 0.364 to 0.385 65 0.369 to 0.426 0.387 to 0.411 70 0.392 to 0.472 0.412 to 0.443 75 0.425 to 0.509 0.458 to 0.484 86 0.470 to 0.532 0.490 to 0.512 l

85 0.510 to 0.595 0.516 to 0.557 90 0.552 to 0.635 0.591 to 0.607

[ 95 0.621 to 0.710 0.637 to 0.682

[ Mean = 0.338

[

[

B-3

Table B-3. Uncertainty Distribution of the Gap Release Decontamination Factor at 13680 Seconds Values of log 10 DF (gap,13680) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.664 to 0.761 0.677 to 0.748 10 0.755 to 0.841 0.767 to 0.816 15 0.801 to 0.899 0.837 to 0.874 20 0.864 to 0.965 0.886 to 0.949 25 0.921 to 1.005 0.961 to 0.982 30 0.965 to 1.038 0.986 to 1.017 35 0.997 to 1.064 1.021 to 1.047 40 1.025 to 1.104 1.048 to 1.088 45 1.052 to 1.157 1.088 to 1.129 50 1.096 to 1.183 1.130 to 1.168 55 1.142 to 1.232 1.168 to 1.194 60 1.177 to 1.305 1.195 to 1.250 65 1.224 to 1.135 1.253 to 1.311 70 1.275 to 1.421 1.322 to 1.387 75 1.340 to 1.474 1.398 to 1.425 80 1.420 to 1.539 1.429 to 1.496 85 1.475 to 1.614 1.520 to 1.570 90 1.562 to 1.680 1.590 to 1.659 95 1.665 to 1.849 1.691 to 1.758 Mean = 1.184 B-4 L _ _ _ _ _ _ _ _ _ _

Table B-4. Uncertainty Distribution of the Gap Release Decontamination Factor at 49680 Seconds Value, of log 10 DF (gap,49680) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 1.728 to 1.862 1.758 to 1.830 10 1.846 to 2.027 1.875 to 1.963 15 1.919 to 2.183 2.012 to 2.110 20 2.068 to 2.276 2.168 to 2.219 25 2.192 to 2.405 2.236 to 2.313 30 2.269 to 2.511 2.317 to 2.436 35 2.387 to 2.597 2.440 to 2.534 40 2.484 to 2.776 2.535 to 2.641 45 2.569 to 2.858 2.652 to 2.789 50 2.722 to 2.995 2.796 to 2.905 55 2.824 to 3.138 2.920 to 3.014 60 2.953 to 3.239 3.016 to 3.187 65 3.052 to 3.361 3.193 to 3.306 70 3.220 to 3.546 3.309 to 3.413 75 3.354 to 3.707 3.430 to 3.618 80 3.542 to 3.888 3.644 to 3.752 85 3.710 to 4.162 3.855 to 4.012 g, 90 3.997 to 4.377 4.155 to 4.253 95 4.295 to 4.754 4.396 to 4.610 Mean = 2.962 B-5

/

Table B-5. Uncertainty Distribution of the Gap Release Decontamination Factor at 4

86400 Seconds Values of log 10 DF (gap, 86400) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 2.218 to 2.352 2.265 to 2.306 10 2.316 to 2.681 2.411 to 2.483 15 2.469 to 2.949 2.658 to 2.840 20 2.810 to 3.193 2.872 to 2.999 25 2.962 to 3.419 3.014 to 3.271 30 3.189 to 3.652 3.298 to 3.516 .

35 3.370 to 3.905 3.547 to 3.708 40 3.599 to 4.103 3.740 to 3.946 45 3.760 to 4.305 3.951 to 4.209 50 4.018 to 4.643 4.214 to 4.426 55 4.248 to 4.799 4.428 to 4.678 60 4.589 to 5.032 4.681 to 4.876 65 4.728 to 5.318 4.876 to 5.083 70 4.953 to 5.667 5.091 to 5.361 75 5.260 to 5.982 5.416 to 5.774 80 5.658 to 6.241 5.888 to 6.055 85 6.010 to 6.887 6.141 to 6.556 90 6.523 to 7.316 6.819 to 7.060 95 7.134 to 8.088 7.404 to 7.843 Mean = 4.522 B-6

Table B-6. Uncertainty Distribution of the Invessel Release Decontamination Factor at 6480 Seconds Values of logjo DF (invessel, 6480) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.0408 to 0.0526 0.0445 to 0.0475 10 0.0483 to 0.0646 0.0554 to 0.0593 15 0.0586 to 0.0806 0.0635 to 0.0741 20 0.0722 to 0.0937 0.0794 to 0.0881 25 0.0812 to 0.101 0.0897 to 0.0958 30 0.0937 to 0.112 0.0970 to 0.105 35 0.0991 to 0.117 0.108 to 0.114 40 0.109 to 0.128 0.115 to 0.119 45 0.115 to 0.139 0.119 to 0.130 50 0.121 to 0.145 0.130 to 0.141 55 0.136 to 0.153 0.141 to 0.148 60 0.143 to 0.163 0.148 to 0.155 65 0.151 to 0.175 0.156 to 0.166 70 0.158 to 0.186 0.166 to 0.178 75 0.173 to 0.195 0.180 to 0.188 80 0.186 to 0.207 0.190 to 0.200 85 0.197 to 0.224 0.205 to 0.210 90 0.209 to 0.235 0.223 to 0.230 95 0.232 to 0.260 0.236 to 0.250 Mean = 0.139 B-7

l Table B-7. Uncertainty Distribution of the Invessel Release Decontamination Factor at 13680 Seconds Values of log 10 DF (invessel,13680) Characteristic of the g Indicated Quantile of the Cumulative Probability l Distribution at a Confidence Level of:

. Percentile 90 Percent 50 Percent 5 0.623 to 0.683 0.643 +9 0.665 10 0.668 to 0.752 0.694 to 0.744 15 0.734 to 0.798 0.750 to 0.779 20 0.773 to 0.845 0.789 to 0.829 25 0.811 to 0.882 0.833 to 0.854 30 0.845 to 0.912 0.858 to 0.887 1 35 0.875 to 0.930 0.889 to 0.918 40 0.900 to 0.953 0.919 to 0.934 45 0.925 to 0.974 0.934 to 0.959 50 0.948 to 1.002 0.961 to 0.986 i 55 0.970 to 1.023 0.988 to 1.014 60 0.994 to 1.053 1.014 to 1.030 65 1.021 to 1.095 1.033 to 1.071 70 1.052 to 1.121 1.078 to 1.107 l

75 1.091 to 1.167 1.110 to 1.136 80 1.120 to 1.223 1.145 to 1.183 l

85 1.172 to 1.242 1.202 to 1.231 90 l 1.230 to 1.311 1.236 to 1.293 95 1.298 to 1.401 1.314 to 1.321 1

Mean = 0.986 I

I I

B-8

Table B-8. Uncertainty Distribution of the Invessel Release Decontamination Factor at 49680 Seconds Values of log 10 DF (invessel,49680) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 1.706 to 1.810 1.724 to 1.792 10 1.803 to 1.966 1.828 to 1.893 15 1.887 to 2.100 1.960 to 2.035 20 2.017 to 2.165 2.087 to 2.130 1 25 2.113 to 2.277 2.146 to 2.221 30 2.162 to 2.363 2.234 to 2.306 35 2.274 to 2.433 2.318 to 2.394 40 2.350 to 2.588 2.396 to 2.472 t 45 2.418 to 2.675 2.495 to 2.616 1

50 2.553 to 2.786 2.620 to 2.695 55 2.645 to 2.909 2.701 to 2.807 60 2.745 to 3.009 2.808 to 2.946 65 2.844 to 3.107 2 963 to 3.060 70 2.994 to 3.260 3.073 to 3.149 l

75 3.096 to 3.393 3.177 to 3.302 80 3.258 to 3.557 3.339 to 3.436 l

85 3.405 to 3.785 3.519 to 3.684 90 3.655 to 3.972 3.783 to 3.876 l

95 3.906 to 4.303 4.009 to 4.181 Mean = 2.763 B-9 J:

[

Table B-9. Uncertainty Distribution of the Invessel Release Decontamination Factor at

( 86400 Seconds Values of log 10 DF (invessel, 86400) Characteristic of the

[

Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

[ . Percentile 90 Percent 90 Percent 5 2.191 to 2.311 2.236 to 2.278 10 2.282 to 2.655 2.360 to 2.436 15 2.415 to 2.861 2.601 to 2.762 20 2.743 to 3.119 2.810 to 2.905 25 2.876 to 3.315 2.930 to 3.173 30 3.106 to 3.498 3.179 to 3.394 35 3.268 to 3.746 3.415 to 3.566

[ 40 3.451 to 3.918 3.592 to 3.785 45 3.601 to 4.112 3.786 to 4.017 50 3.871 to 4.428 4.029 to 4.240 55 4.070 to 4.589 4.245 to 4.460

{

60 4.376 to 4.798 4.467 to 4.545 65 4.501 to 5.072 4.650 to 4.833

{

70 4.712 to 5.376 4.836 to 5.094 75 5.006 to 5.679 5.146 to 5.485

{

80 5.368 to 5.919 5.581 to 5.738 85 5.693 to 6.516

{ 5.817 to 6.204 90 6.172 to 6.917 6.449 to 6.676

[ 95 6.743 to 7.635 6.994 to 7.405

( Mean = 4.323

[

[

B-10

Table B-10. Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 0 - 1800 Seconds Values of A, (gap, 0-1800) (hr-I) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.0026 to 0.017 0.0047 to 0.013 10 0.013 to 0.045 0.026 to 0.031 15 0.030 to 0.077 0.044 to 0.061 20 0.060 to 0.101 0.070 to 0.082 25 0.077 to 0.141 0.088 to 0.118 30 0.099 to 0.173 0.120 to 0.150 35 0.136 to 0.188 0.156 to 0.177 40 0.164 to 0.217 0.178 to 0.198 45 0.183 to 0.239 0.200 to 0.223 50 0.211 to 0.263 0.224 to 0.243 55 0.235 to 0.289 0.243 to 0.266 60 0.251 to 0.302 0.266 to 0.292 65 0.270 to 0.322 0.293 to 0.305 70 0.298 to 0.354 0.308 to 0.331 75 0.320 to 0.382 0.338 to 0.368 80 0.352 to 0.410 0.372 to 0.394 85 0.386 to 0.452 0.406 to 0.436 90 0.431 to 0.501 0.448 to 0.476 95 0.490 to 0.561 0.504 to 0.527 Mean = 0.240 hr-l B-11 l

[

Table B-11. Uncertainty Distribution of the Effective Decontamination Coefficient for Gap

[ Release During the Time Interval 1800 - 6480 Seconds Values of A, (gap, 6480) (hr'I) Characteristic of the

[

Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

f- Percentile 90 Percent 50 Percent 5 0.108 to 0.150 0.125 to 0.134 10 0.136 to 0.184 0.163 to 0.175 15 O.169 to 0.266 0.181'to 0.237 20 0.228 to 0.287 0.249 to 0.276 25 0.272 to 0.340 0.277 to 0.306 30 0.285 to 0.381 0.317 to 0.355 35 0.337 to 0.406 0.364 to 0.396 40 0.370 to 0.449 0.397 to 0.419 45 0.402 to 0.494 0.421 to 0.472

[

50 0.428 to 0.526 0.473 to 0.501 55 0.486 to 0.556 0.503 to 0.539

[

60 0.516 to 0.600 0.544 to 0.568 65 0.550 to 0.636 0.570 to 0.613

[

70 0.582 to 0.702 0.618 to 0.657

( 75 0.631 to 0.749 0.677 to 0.716 80 0.701 to 0.787 0.725 to 0.757

[ 85 0.751 to 0.875 0.771 to 0.816 90 0.811 to 0.933 0.872 to 0.900

[ 95 0.911 to 1.045 0.936 to 0.998

[ Mean = 0.507 hr'I

{

{

B-12

Table B-12. Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 6480 - 13680 Seconds Values of Ae (gap,13680) (hr-I) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.655 to 0.694 0.672 to 0.686 10 0.687 to 0.775 0.704 to 0.741 15 0.734 to 0.822 0.770 to 0.805 20 0.793 to 0.854 0.815 to 0.839 25 0.826 to 0.892 0.843 to 0.871 30 0.853 to 0.907 0.885 to 0.898 35 0.888 to 0.928 0.899 to 0.920 40 0.904 to 0.962 0.920 to 0.943 45 0.925 to 0.988 0.943 to 0.965 50 0.956 to 1.006 0.966 to 0.993 55 0.983 to 1.021 0.993 to 1.008 60 0.999 to 1.041 1.009 to 1.028 65 1.014 to 1.054 1.028 to 1.046 70 1.034 to 1.085 1.048 to 1.070

~

75 1.051 to 1.130 1.072 to 1.094 80 1.083 to 1.158 1.109 to 1.142 85 1.134 to 1 !04 1.147 to 1.181 90 1.179 to 1.242 1.189 to 1.225 95 1.231 to 1.311 1.244 to 1.275 Mea 4 = 0.974 hr-I B-13

Table B-13. Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 13680 - 49680 Seconds Values of Ae (gap,49680) (hr-I) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.218 to 0.233 0.223 to 0.227 10 0.229 to 0.262 0.234 to 0.254 15 0.253 to 0.284 0.261 to 0.270 20 0.268 to 0.310 0.278 to 0.295 25 0.284 to 0.332 0.300 to 0.323 30 0.308 to 0.340 0.324 to 0.335 35 0.329 to 0.359 0.335 to 0.344 40 0.338 to 0.373 0.347 to 0.363 45 0.353 to 0.400 0.365 to 0.385 50 0.370 to 0.421 0.386 to 0.409 55 0.397 to 0.435 0.410 to 0.425 60 0.413 to 0.450 0.425 to 0.436 65 0.429 to 0.475 0.437 to 0.453 70 0.447 to 0.498 0.458 to 0.482 75 0.468 to 0.521 0.486 to 0.504 80 0.498 to 0.549 0.510 to 0.530 85 0.526 to 0.585 0.538 to 0.563 90 0.562 to 0.626 0.578 to 0.614 95 0.617 to 0.690 0.633 to 0.654 Mean = 0.409 hr'l I

B-14

Table B-14. Uncertainty Distribution of the Effective Decontamination Coefficient for Gap Release During the Time Interval 49680 - 86400 Seconds Values of A, (gap, 86400) (hr~I) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.099 to 0.115 0.103 to 0.106 10 0.108 to 0.149 0.125 to 0.139 15 0.138 to 0.171 0.147 to 0.158 20 0.154 to 0.201 0.166 to 0.181 25 0.175 to 0.236 0.185 to 0.213 30 0.200 to 0.259 0.221 to 0.244 35 0.232 to 0.277 0.248 to 0.264 40 0.250 to 0.312 0.266 to 0.290 45 0.271 to 0.331 0.294 to 0.317 50 0.308 to 0.363 0.318 to 0.337 55 0.322 to 0.386 0.338 to 0.371 60 0.354 to 0.403 0.371 to 0.390 65 0.379 to 0.429 0.390 to 0.410 70 0.396 to 0.474 0.418 to 0.444 75 0.429 to 0.506 0.448 to 0.492 80 0.473 to 0.541 0.498 to 0.524 85 0.508 to 0.602 0.538 to 0.578 90 0.570 to 0.670 0.596 to 0.637 95 0.653 to 0.758 0.670 to 0.710 Mean = 0.352 hr-l B-15

Table B-15. Uncertainty Distribution of the Effective Decontamination Coefficient for Invessel Release During the Time Interval 1800 - 6480 Seconds Values of 1, (invessel, 6480) (hr-I) Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.072 to 0.093 0.079 to 0.084 10 0.086 to 0.114 0.098 to 0.105 15 0.104 to 0.143 0.112 to 0.131 20 0.128 to 0.166 0.141 to 0.156 25 0.144 to 0.178 0.159 to 0.170 30 0.166 to 0.199 0.172 to 0.185 35 0.176 to 0.208 0.191 to 0.203 40 0.194 to 0.227 0.204 to 0.210 45 0.204 to 0.246 0.212 to 0.231 50 0.215 to 0.257 0.231 to 0.250 55 0.241 to 0.271 0.250 to 0.262 60 0.253 to 0.289 0.262 to 0.275 65 0.268 to 0.310 0.276 to 0.293 70 0.280 to 0.330 0.294 to 0.315 75 0.307 to 0.346 0.319 to 0.333 80 0.330 to 0.366 0.337 to 0.355 85 0.348 to 0.396 0.363 to 0.372 90 0.370 to 0.416 0.395 to 0.407 I 95 0.412 to 0.461 0.417 to 0.442 l Mean = 0.246 hr-I B-16

Table B-16. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 500 Seconds Values of A(t) (hr-l) at 500 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.0031 to 0.040 0.016 to 0.031 10 0.031 to 0.117 0.063 to 0.073 15 0.071 to 0.176 0.108 to 0.152 20 0.143 to 0.240 0.163 to 0.197 25 0.180 to 0.341 0.210 to 0.277 30 0.237 to 0.405 0.287 to 0.361 35 0.334 to 0.453 0.372 to 0.426 40 0.398 to 0.520 0.426 to 0.467 45 0.440 to 0.571 0.483 to 0.522 50 0.516 to 0.613 0.530 to 0.591 55 0.555 to 0.682 0.593 to 0.623 60 0.600 to 0.712 0.623 to 0.696 65 0.642 to 0.770 0.697 to 0.725 70 0.704 to 0.849 0.727 to 0.796 75 0.764 to 0.910 0.802 to 0.879 80 0.847 to 0.996 0.897 to 0.935 85 0.914 to 1.104 0.962 to 1.051 90 1.044 to 1.211 1.076 to 1.131 95 1.181 to 1.352 1.218 to 1.289 Mean = 0.576 hr-I B-17

Table B-17. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 1800 Seconds Values of A(t) (hr~I) at 1800 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence 12 vel of-

. Percentile 90 Percent 50 Percent 5 0.0067 to 0.032 0.0083 to 0.024 10 0.026 to 0.085 0.048 to 0.058 15 0.056 to 0.144 0.082 to 0.114 20 0.112 to 0.190 0.130 to 0.155 25 0.145 to 0.265 0.164 to 0.222 30 0.186 to 0.326 0.226 to 0.284 35 0.257 to 0.356 0.294 to 0.336 40 0.309 to 0.413 0.337 to 0.375 45 0.346 to 0.456 0.380 to 0.424 50 0.401 to 0.502 0.425 to 0.462 55 0.448 to 0.554 0.462 to 0.508 60 0.480 to 0.578 0.509 to 0.558 65 0.516 to 0.619 0.561 to 0.585 70 0.572 to'0.682 0.591 to 0.638 75 0.615 to 0.739 0.650 to 0.712 80 0.679 to 0.796 0.719 to 0.764 85 0.748 to 0.881 0.788 to 0.848 90 0.839 to 0.981 0.872 to 0.930 95 0.960 to 1.106 0.989 to 1.033 Mean = 0.463 hr"I B-18

Table B-18. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 6480 Seconds Values of A(t) (hr-1) at 6480 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.214 to 0.256 0.232 to 0.248 10 0.249 to 0.304 0.261 to 0.283 15 0.272 to 0.356 0.300 to 0.320 20 0.315 to 0.396 0.340 to 0.379 .

25 0.357 to 0.422 0.389 to 0.408 30 0.396 to 0.450 0.412 to 0.438 35 0.417 to 0.471 0.440 to 0.455 40 0.445 to 0.496 0.455 to 0.480 45 0.466 to 0.534 0.483 to 0.521 ,

50 0.491 to 0.559 0.521 to 0.543 55 0.528 to 0.597 0.544 to 0.576 60 0.547 to 0.638 0.577 to 0.603 65 0.584 to 0.667 0.605 to 0.644 70 0.619 to 0.702 0.645 to 0.680 75 0.664 to 0.751 0.689 to 0.709 80 0.699 to 0.785 0.722 to 0.768 85 0.758 to 0.851 0.775 to 0.804 90 0.800 to 0.886 0.845 to 0.867 95 0.881 to 0.993 0.887 to 0.930 Mean = 0.551 hr-I B-19

Table B-19. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 13680 Seconds Values of A(t) (hr'I) at 13680 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

. Percentile 90 Percent 50 Percent 5 0.515 to 0.538 0.529 to 0.534 10 0.536 to 0.581 0.539 to 0.549 15 0.546 to 0.591 0.579 to 0.588 20 0.584 to 0.620 0.590 to 0.608 25 0.591 to 0.644 0.609 to 0.630 30 0.620 to 0.667 0.633 to 0.654 35 0.642 to 0.687 0.656 to 0.673 40 0.662 to 0.709 0.673 to 0.697 45 0.679 to 0.733 0.698 to 0.715 50 0.703 to 0.759 0.716 to 0.744 55 0.724 to 0.785 0.745 to 0.771 60 0.751 to 0.816 0.772 to 0.794 j 65 0.778 to 0.840 0.795 to 0.822 70 0.809 to 0.870 0.823 to 0.847

(- 75 0.836 to 0.903 0.852 to 0.882 80 0.870 to 0.948 0.886 to 0.909

[ 85 0.906 to 0.984 0.921 to 0.964 90 0.963 to 1.030 0.982 to 1.005

[ 95 1.020 to 1.095 1.034 to 1.074

( Mean = 0.755 hr-I I

L B-20 e

Table B-20. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 25000 Seconds Values of A(t) (hr-I) at 25000 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence level of:

. Percentile 90 Percent 50 Percent 5 0.242 to 0.254 0.244 to 0.251 10 0.253 to 0.275 0.259 to 0.271 15 0.270 to 0.294 0.273 to 0.287 20 0.281 to 0.318 0.293 to 0.308 25 0.296 to 0.341 0.309 to 0.334 i

30 0.318 to 0.348 0.336 to 0.342 35 0.340 to 0.362 0.343 to 0.354 40 0.346 to 0.380 0.354 to 0.366 45 0.360 to 0.403 0.367 to 0.383 50 0.371 to 0.412 0.383 to 0.405 55 0.391 to 0.430 0.405 to 0.416 60 0.408 to 0.437 0.416 to 0.432 65 0.424 to 0.466 0.434 to 0.446 70 0.436 to 0.484 0.451 to 0.471 75 0.462 to 0.504 0.474 to 0.491 80 0.482 to 0.527 0.492 to 0.514 85 0.507 to 0.552 0.523 to 0.537 90 0.535 to 0.598 0.548 to 0.581 95 0.587 to 0.646 0.600 to 0.629 Mean = 0.406 hr-I B-21

l Table B-21. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at l

36000 Seconds Values of A(t) (hr-I) at 36000 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.165 to 0.180 0.169 to 0.177 10 0.178 to 0.210 0.182 to 0.202 15 0.200 to 0.228 0.209 to 0.219 20 0.214 to 0.254 0.225 to 0.242 25 0.229 to 0.281 0.248 to 0.274 30 0.254 to 0.290 0.277 to 0.282 35 0.280 to 0.308 0.282 to 0.294 40 0.286 to 0.326 0.296 to 0.313 45 0.299 to 0.350 0.313 to 0.339 50 0.321 to 0.373 0.340 to 0.356 55 0.345 to 0.387 0.357 to 0.378

6) 0.361 to 0.399 0.378 to 0.388 65 0.383 to 0.422 0.389 to 0.407 70 0.397 to 0.449 0.409 to 0.431 75 0.418 to 0.473 0.435 to 0.452 80 0.448 to 0.504 0.462 to 0.483 85 0.476 to 0.535 0.488 to 0.513 90 0.512 to 0.584 0.528 to 0.563 95 0.572 to 0.651 0.587 to 0.601 Mean = 0.359 hr-l B-22

l I

l 1

Table B-22. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 49680 Secoads I

, l Values of 1(t) (hr'I) at 49680 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence level of:

Percentile 90 Percent 50 Percent 5 0.126 to 0.142 0.128 to 0.133 10 0.134 to 0.173 0.148 to 0.163 i 15 0.162 to 0.193 0.172 to 0.183 l

l 20 0.177 to 0.224 0.186 to 0.206 25 0.194 to 0.249 0.208 to 0.239 -

l 30 0.222 to 0.264 0.240 to 0.254 35 0.242 to 0.285 0.255 to 0.268 -

l 40 0.258 to 0.310 0.270 to 0.297 J

45 0.275 to 0.332 0.298 to 0.320 50 0.303 to 0.357 0.320 to 0.339 55 0.325 to 0.373 0.339 to 0.366 60 0.347 to 0.391 0.367 to 0.376 65 0.372 to 0.414 0.377 to 0.397 70 0.388 to 0.444 0.399 to 0.429 75 0.411 to 0.480 0.432 to 0.459 80 0.443 to 0.502 0.467 to 0.491 85 0.484 to 0.558 0.494 to 0.534 90 0.521 to 0.609 0.549 to 0.580 95 0.594 to 0.692 0.612 to 0.647 l ..

f Mean = 0.345 hr-l i

i i B-23 4

4

l Table B-23. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 60000 Seconds i

Values of A(t) (hr-1) at 60000 s Characteristic of the !

Indicated Quantile of the Cumulative Probability  !

Distribution at a Confidence Level of:  !

. Percentile 90 Percent 50 Percent 5 0.107 to 0.123 0.111 to 0.114 10 0.116 to 0.158 0.132 to 0.146 l 15 0.146 to 0.176 0.155 to 0.165

{

20 0.163 to 0.209 0.171 to 0.188 25 0.180 to 0.237 0.196 to 0.221  ;

30 0.208 to 0.258 0.222 to 0.247 ]

35 0.235 to 0.278 0.249 to 0.262 l l

40 0.252 to 0.309 0.266 to 0.291  :

1 45 0.269 to 0.326 0.293 to 0.316  ;

50 0.302 to 0.361 0.316 to 0.337 55 0.322 to 0.375 0.338 to 0.366 60 0.344 to 0.395 0.366 to 0.381 l 65 0.372 to 0.422 0.382 to 0.404 70 0.386 to 0.454 0.408 to 0.428 75 0.418 to 0.487 0.439 to 0.478 80 0.453 to 0.516 0.483 to 0.506 l 85 0.490 to 0.578 0.516 to 0.555 l 90 0.546 to 0.642 0.576 to 0.613 l 95 0.629 to 0.727 0.644 to 0.683 l

i Mean = 0.346 hr-I l l

B-24 i

[

Table B-24. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at

[ 70000 Seconds Percentile Values of A(t) (hr-I) at 70000 s Characteristic of the

{ Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.096 to 0.112 0.100 to 0.103 10 0.105 to 0.148 0.123 to 0.136 15 0.136 to 0.170 0.147 to 0.158 20 0.152 to 0.200 0.167 to 0.I80 25 0.172 to 0.239 0.I85 to 0.214

[ 30 0.199 to 0.262 0.222 to 0.245 35 0.233 to 0.280 0.249 to 0.266 40 0.253 to 0.31.5 0.268 to 0.294 45 0.275 to 0.335 0.299 to 0.322 50 0.313 to 0.366 0.322 to 0.341 55 0.326 to 0.391 0.343 to 0.376 ,

{

60 0.360 to 0.409 0.376 to 0.395 65 0.386 to 0.437 0.397 to 0.418

[

70 0.405 to 0.487 0.424 to 0.454

[ 75 0.436 to 0.517 0.459 to 0.499 80 0.486 to 0.555 0.506 to 0.536

[ 85 0.522 to 0.619 0.554 to 0.595 90 0.585 to 0.686 0.614 to 0.655

[ 95 0.672 to 0.780 0.689 to 0.731

( Mean = 0.358 hr'I

[

[

r L

B-25 E

t _ - _ _ _ _ _ _ _ _

l Table B-25. Uncertainty Distribution of the Instantaneous Decontamination Coefficient at 86400 Seconds i Values of A(t) (hr'I) at 86400 s Characteristic of the Indicated Quantile of the Cumulative Probability Distribution at a Confidence Level of:

Percentile 90 Percent 50 Percent 5 0.081 to 0.098 0.086 to 0.088 10 0.090 to 0.131 0.110 to 0.122 15 0.120 to 0.156 0.129 to 0.144 20 0.137 to 0.185 0.149 to 0.164 l 25 0.157 to 0.224 0.171 to 0.199 30 0.181 to 0.253 0.208 to 0.231 35 0.217 to 0.270 0.232 to 0.254 40 0.241 to 0.307 0.254 to 0.286 45 0.262 to 0.323 0.288 to 0.312 50 0.297 to 0.354 0.312 to 0.329 55 0.316 to 0.389 0.330 to 0.362 60 0.349 to 0.408 0.363 to 0.393 l l

65 0.374 to 0.436 0.395 to 0.414 l 70 0.403 to 0.482 0.418 to 0.447 75 0.433 to 0.520 0.459 to 0.500 80 0.480 to 0.558 0.508 to 0.538 85 0.524 to 0.624 0.556 to 0.596 1

90 0.587 to 0.692 0.617 to 0.659 l 95 0.676 to 0.782 0.693 to 0.733 Mean = 0.350 hr-I i i B-26

[

Table B-26. Uncertainty Distribution of the Time-Averaged Decontamination Coefficient for the Period 0 - 1800 Seconds Values of Aavt(0-1800) Characteristic of the Indicated Percentile of Cumulative Probability Distribution at a Confidence Level of:

. Percentile 90 Percent 50 Percent 5 0.0034 to 0.035 0.010 to 0.026 10 0.027 to 0.096 0.054 to 0.066 15 0.063 to 0.163 0.094 to 0.130

[ 20 0.127 to 0.215 0.147 to 0.174 25 0.164 to 0.301 0.186 to 0.251 30 0.211 to 0.371 0.256 to 0.321 35 0.292 to 0.403 0.333 to 0.380 40 0.350 to 0.467 0.382 to 0.422 45 0.392 to 0.517 0.429 to 0.480

{

50 0.454 to 0.567 0.481 to 0.524 55 0.507 to 0.627 0.525 to 0.575

[

60 0.542 to 0.654- 0.576 to 0.632 65 0.584 to 0.701 0.634 to 0.662

[

70 0.647 to 0.774 0.671 to 0.722 75 0.696 to 0.837 0.737 to 0.808

[

80 0.769 to 0.900 0.814 to 0.865

( 85 0.847 to 0.998 0.892 to 0.961 90 0.950 to 1.110 0.987 to 1.052

[ 95 1.087 to 1.252 1.117 to 1.172

( Mean = 0.325 hr-I B-27

f Table B-27. Uncertainty Distribution of the Tirne-Averaged Decontamination Coefficient for the Period 1800 - 6480 Seconds Values of A a 1800-6480) (hr'I) Characteristic of the Indicated du(antile of the Cumulative Probability Distribution at a Confidence level of:

Percentile 90 Percent 50 Percent 5 0.100 to 0.142 0.113 to 0.128 10 0.132 to 0.179 0.151 to 0.163 15 0.161 to 0.264 0.176 to 0.234 20 0.216 to 0.280 0.244 to 0.269 25 0.265 to 0.338 0.272 to 0.301 30 0.280 to 0.378 0.312 to 0.351 35 0.334 to 0.404 0.357 to 0.393 40 0.367 to 0.447 0.395 to 0.418 45 0.399 to 0.491 0.419 to 0.470 50 0.426 to 0.523 0.471 to 0.499 55 0.483 to 0.554 0.501 to 0.538 60 0.513 to 0.599 0.543 to 0.566 65 0.547 to 0.633 0.568 to 0.610 70 0.579 to 0.700 0.616 to 0.654 75 0.628 to 0.748 0.675 to 0.715 80 0.700 to 0.784 0.723 to 0.755 85 0.750 to 0.874 0.766 to 0.815 90 0.808 to 0.932 0.870 to 0.898 95 0.910 to 1.044 0.935 to 0.999 Mean = 0.424 hr~l B-28