ML20114E640

From kanterella
Jump to navigation Jump to search
Seismic Re-evaluation
ML20114E640
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 07/09/1979
From:
TOLEDO EDISON CO.
To:
Shared Package
ML19224D066 List:
References
NUDOCS 7907100587
Download: ML20114E640 (150)


Text

1 l

O  ;

DAVIS-BESSE NUCLEAR POWER STATION UNIT 1 SEISMIC REEVALUATION 1

l d

~

!O ~

7 76 7 t " 3 ' 7 EIE I h

.--n---e-

P f3 u.

TABLE OF CONTENTS Section P_ age I. INTRODUCTION AND SUMARY I-1

1. Background I-1
2. Discussion I-2
3. Summary I-3 II. REVISED RESPONSE SPECTRA GENERATION FOR 0.20g SAFE SHUTDOWN EARTHQUAKE II-1
1. Discussion of Method II-1
2. Results II-2 III. SEISMIC CATEGORY I SYSTEMS CONSIDERED IN REANALYSIS III-1
1. Discussion III-1 IV. EVALUATION OF PIPING SUPPORTS IV-1
1. Piping IV-1
2. Piping Supports IV-5 V. QUALIFICATIONOFVENTILATION'DUCTWORKANDSUPPORTS V-1
1. A Description of th~e Procedure followed to Design and Seismically Qualify Seismic-Category I Ventilation Ducting and tie Ducting Supports V-1
2. Reanalysis of Duct Supports V-2 VI. EVALUATION OF MECHANICAL' EQUIPMENT, ELECTRICAL EQUIPMENT, AND INSTRUMENTATION VI-1
1. Introduction VI-1
2. Electrical Components VI-1
3. Control Panels and Instruments VI-3
4. Mechanical Components VI-4
5. Summary VI-5 VII. CONCLUSIONS VII-1 I

E (3

V LIST OF TABLES Table No. Title II-1 COMPARISON OF CRITICAL DAMPING VALUES II-2 FLOOR RESPONSE SPECTRA LISTING III-1 LIST OF SEISMIC CATEGORY I SYSTEMS REQUIRED FOR SHUTDOWN IV-1 SHEETS 1-12 PIPING ANALYSIS FOR 0.15g AND 0.20g SSE IV-2 SHEET 1 MARGIN FACTOR FOR 0.15g GROUND ACCELERATION IV-2 SHEET 2 MARGIN FACTOR FOR 0.20g GROUND ACCELERATION IV-3 SHEET 1 SEISMIC FACTOR FOR 0.15g GROUND ACCELERATION IV-3 SHEET 2 SEISMIC FACTOR FOR 0.20g GROUND ACCELERATION IV-4 SHEET 1 MARGIN FACTORS PER ANALYSIS FOR 0.15g AND 0.20g GROUND ACCELERATIONS IV-4 SHEET 2 SEISMIC FACTORS PER ANALYSIS FOR 0.15g AND 0.20g O IV-5 GROUND ACCELERATIONS PIPING SUPPORT ANALYSIS FOR 0.15g AND 0.20g SSE V-1 STRESSES DUE TO 0.2g SSE IN SEISMIC I DUCT SUPPORTS VI-1

SUMMARY

OF QUALIFICATIONS OF SELECTED COMPONENTS

r3 LIST OF FIGURES Figure No. Title Horizontal Design Spectrum For SSE 0.20g II - 1 i

+ij, II - 2 Vert'ical Design Spectrum For SSE 0.20g f II- 3 Seismic System Analysis Mathematical Model Auxiliary Building Area 7 II - 4A Aux Bldg Area 6 Elevation 585.00 NS Floor i Response Spectra II - 4B Aux Bldg Area 6 Elevation 585.00 EW. Floor Response Spectra II - 4CJ Aux Bldg Area 6 Elevation 585.00 VT Floor Response Spectra Ne i' II - 5A Aux Bldg Area 6 Elevation 603.00 NS Floor Response Spectra II - 58 i t Aux Bldg Area 6 Elevation 603.00 EW Floor

Response

II - SC Aux Bldg Area 6 Elevation 603.00 VT Floor

Response

2 II - 6A Aux Bldg Area 7 Elevation 565.00 NS Floor Response Spectra II - 68 Aux Bldg Area 7 Elevation 565.00 EW Floor I{ Response Spectra f

II - 6C Aux Bldg Area 7 Elevation 565.00 VT Floor Response Spectra II - 7A Aux Bldg Area 7 Elevation 585.00 NS Floor Response Spectra II - 78 Aux Bldg Area 7 Elevation 585.00 EW Floor 3- Response Spectra II - 7C Aux Bldg Area 7 Elevation 585.00 VT Floor Response Spectra II - 8A Aux Bldg Area 7 Elevation 603.00 NS Floor Response Spectra II - 8B Aux Bldg Area 7 Elevation 603.00 EW Floor

> Response Spectra L. j q ,

LIST OF FIGURES (CONT'0)

II - 8C Aux Bldg Area 7 Elevation 603.00 VT Floor L

Response Spectra II - 9A Aux Bldg Area 7 Elevation 623.00 NS Floor Response Spectra II - 98 Aux Bldg Area 7 Elevation 623.00 EW Floor Response Spectra II - 9C Aux Bldg Area 7 Elevation 623.00 VT Floor Response Spectra II - 10A Aux Bldg Area 7 Elevation 643.00 NS Floor Response Spectra II - 108 Aux Bldg Area 7 Elevation 643.00 EW Floor Response Spectra II - 10C Aux Bldg Area 7 Elevation 643.00 VT Floor Response Spectra II - 11A Aux Bldg Area 8 Elevation 564.00 NS Floor Response Spectra II - 11B Aux Bldg Area 8 Elevation 564.00 EW Floor Response Spectra II - 11C Aux Bldg Area 8 Elevation 564.00 VT Floor Response Spectra II - 12A Aux Bldg Area 8 Elevation 584.00 NS Floor Response Spectra II - 128 Aux Bldg Area 8 Elevation 584.00 EW Floor Response Spectra II - 12C Aux Bldg Area 8 Elevation 584.00 VT Floor Response Spectra II - 13A Aux Bldg Area 8 Elevation 602.50 NS Floor Response Spectra II - 13B Aux Bldg Area 8 Elevation 602.50 EW Floor Response Spectra II - 13C Aux Bldg Area 8 Elevation 602.50 VT Floor Response Spectra II - 14A Aux Bldg Area 8 Elevation 622.50 NS Floor Response Spectra O

p LIST OF FIGURES (CONT'D)

II - 148~ Aux Bldg Area 8 Elevation 622.50 EW Floor Response Spectra SSE .2g

-II - 14C Aux Bldg Area 8 Elevation 622.50 VT Floor Response Spectra SSE .2g II - 15A Aux Bldg Area 8 Elevation 642.25 NS Floor Response Sp'ectra SSE 0.2g II - 15B Aux Bldg Area 8 Elevation 642.25 EW Floor Response Spectra SSE .2g II - 15C Aux Bldg Area 8 Elevation 642.25 VT Floor Response Spectra SSE .2g II 16A Intake Structure Elevation 576.00 NS Floor Response Spectra II - 16B Intake Structure Elevation 576.00 EW Floor Response Spectra II - 16C Intake Structure Elevation 576.00 VT Floor Response Spectra II - 17A CTMT Internal Str Elevation 570.75 NS Floor Response Spectra II - 17B CTMT Internal Str-Elevation 570.75 EW Floor Response Spectra II - 17C CTMT Internal Str-Elevation 570.75 VT Floor Response Spectra II - 18A CTMT Internal Str-Elevation 574.00 NS Floor Response Spectra II - 18B CTMT Internal Str-Elevation 574.00 EW Floor Response Spectra II - 18C CTMT Internal Str-Elevation 574.00 VT Floor Response Spectra II - 19A CTMT Internal Str-Elevation 595.00 NS Floor Response Spectra II - 19B CTMT Internal Str-Elevation 595.00 EW Floor Response Spectra II - 19C CTMT Internal Str-Elevation 595.00 VT Floor

'{'s . Response Spectra

LIST OF FIGURES (CONT'D)

II - 20A CTMT Internal Str-Elevation 603.00 NS Floor Response Spectra II - 208 CTMT Internal Str-Elevation 603.00 EW Floor Response Spectra II - 20C CTMT Internal Str-Elevation 603.00 VT Floor Response Spectra II - 21A CTMT Internal Str-Elevation 617.75 NS Floor Response Spectra II - 21B CTMT Internal Str-Elevation 617.75 EW Floor Response Spectra II - 21C CTMT Internal Str-Elevation 617.75 VT Floor Response Spectra II - 22A CTMT Internal Str-Elevation 629.50 NS Floor Response Spectra II - 22B CTMT Internal Str-Elevation 629.50 EW Floor Response Spectra l

II - 22C CTMT Internal Str-Elevation 629.50 VT Floor Response Spectra II - 23A CTMT Internal Str-Elevation 653.00 NS Floor Response Spectra II - 23B CTMT Internal Str-Elevation 653.00 EW Floor Response Spectra II - 23C CTMT Internal Str-Elevation 653.00 VT Floor Response Spectra II.-^

24A Cont. Vessel Elevation 589.00 Horiz. Floor Response Spectra SSE .2 II :24B Cont. Vessel Elevation 589.00 Vertical Floor Response Spectra SSE II - 25A

- Cont. Vessel Elevation 595.00 Horiz. Floor Response Spectra SSE .2 II - 25B Cont. Vessel Elevation 595.00 Vertical Floor Response Spectra SSE II - 26A Cont. Vessel Elevation 609.00 Horiz. Floor Response Spectra SSE .2

a i

LIST OF FIGURES (CONT'D)

, s II - 268 Cont. Vessel Elevation 609.00 Vertical Floor

',L') Response Spectra II - 27A Aux Bldg Area 6 Elevation 585.00 NS Floor Response Spectra II - 278 Aux Bldg Area 6 Elevation 585.00 EW Floor Response Spectra II - 27C Aux Bldg Area 6 Elevation 585.00 VT Floor Response Spectra II - 28A Aux Bldg Area 6 Elevation 603.00 NS Floor Response Spectra II - 288 Aux Bldg Area 6 Elevation 603.00 EW Floor Response Spectra II - 28C Aux Bldg Area 6 Elevation 603.00 VT Floor Response Spectra II - 29A Aux Bldg Area 7 Elevation 623.00 NS Floor Response Spectra

('N II - 29B Aux Bldg Area 7 Elevation 623.00 EW Floor

(

v) II - 29C Response Spectra Aux Bldg Area 7 Elevation 623.00 VT Floor Response Spectra II - 30A Aux Bldg Area 6 Elevation 603.00 NS Floor Response Spectra II - 308 Aux Bldg Area 6 Elevation 603.00 EW Floor Response Spectra II - 30C Aux Bldg Area 6 Elevation 603.00 VT Floor Response Spectra 1

II - 31A Aux Bldg Area 7 Elevation 565.00 NS Floor Response Spectra II - 31B Aux Bldg Area 7 Elevation 565.00 EW Floor Response Spectra II - 31C Aux Bldg Area 7 Elevation 565.00 VT Floor Response Spectra II - 32A Aux Bldg Area 7 Elevation 585.00 NS Floor Response Spectra 9 Supplement 1

f LIST OF FIGURES (CONT'D)

II - 328 Aux Bldg Area 7 Elevation 585.00 EW Floor Response Spectra II - 32C Aux Bldg Area 7 Elevation 585.00 VT Floor Response Spectra II - 33A Aux Bldg Area 7 Elevation 623.00 NS Floor Response Spectra II - 338 Aux Bldg Area 7 Elevaticn 623.00 EW Floor Respose Spectra II - 33C Aux Bldg Area 7 Elevation 623.00 VT Floor 1

Response Spectra II - 34A Intake Structure Elevation 576.00 NS Floor Response Spectra II - 348 Intake Structure Elevation 576.00 EW Floor Response Spectra II - 34C Intake Structure Elevation 576.00 VT Floor Response Spectra O

l P

Supplement 1 L

. ,f^g l INTRODUCTION AND

SUMMARY

%) I.

1. Background . 7 ..

1.1 At the 201st meeting of the Advisory Committee on Reactor Safe-guards (ACRS), the Nuclear Regulatory Commission (NRC) Staff presented a discussion concerning their current thinking on the appropriate seismic criteria for a Safe Shutdown Earthquake (SSE) for a site, such as Davis-Besse, located in the Central Stat >1e It was the Staff's position, based on current litera-Region.

ture, an earthquake having a Modified Mercalli (MM) intensity of VII-VIII (7.5) should have a corresponding horizontal accelera- >

tion of 0.20g.

1. 2 The SSE for the Davis-Besse Nuclear Power Station, Unit 1 has'a -

Modified Mercalli intensity of VII-VIII and a corresponding horizontal acceleration of 0.15g. This was based on the accepted technology at the time the Davis-Besse Unit 1 seismic design was;'

finalized and is still considered by the Licensee to be conservative and appropriate. During their discussion before ACRS, the Staff stated that, even though the Davis-Besse Unit 1 design used a -

horizontal acceleration of 0.15g instead of 0.20g, they had accepted it based on the conservatisms that were factored into the seismic design criteria used at the time the Davis-Besse Unit 1 design was finalized.

1. 3 In their January 14, 1977 letter, the ACRS reported on their review of the Davis-Besse Nuclear Power Station, Unit 1 and included the following paragraph concerning seismic design basis:

"The structures and components of Davis-Besse, Unit 1, were designed for a Safe Shutdown Earthquake (SSE) acceleration of 0.15g at the foundation level. Because of changes in the regula-tory approach to selection of seismic design bases, the Committee believes that an acceleration of 0.20g would be more appropriate for the SSE acceleration at a site such as this in the Central Stable Region. The Applicant presented the results of prelimi-nary calculations concerning the safety margins of the plant for an SSE acceleration of 0.20g. The Committee recommends that the NRC Staff review this aspect of the design in detail and assure itself that significant margins exist in.all systems required to accomplish safe shutdown of the reactor and continued shutdown heat removal, in the event of an SSE at this higher level. The Committee believes that such an evaluation need not delay the start of operation of Davis-Besse, Unit 1. The Committee wishes to be kept informed."

.{

d x I-1

1. 4 On January 30, 1979, the Staff transmitted to the Licensee guide-lines for performing a seismic reanalysis and evaluation for Davi<-Besse, Unit 1 utilizing an SSE acceleration of 0.20g.
2. Discussion 2.1 The sections of this report that follow present our reevaluation of the Davis-Besse, Unit 1 seismic design, using the NRC Staff guidelines. This report addresses the margins that are available in systems required to accomplish safe shutdown of the unit and continued shutdown heat removal utilizing an SSE with accelera-tion of 0.20g.

The SSE to which the Davis-Besse Nuclear Power Station, Unit 1 wat designed had an MM intensity of VII-VIII and a horizontal acceleration of 0.15g. The accelerogram (time-history) for the SSE was developed from the east-west component of the October 31, 1935 Helena earthquake. The response spectra was developed by considering the Helena response spectra and several often-used average response spectra. Damping ratios used were based on accepted technology at the time.

In our reevaluation, we have considered an SSE with an MM inten-sity of VII-VIII and a horizontal acceleration of 0.20g. A synthetic time history for the SSE was developed by Bechtel Power Corporation, our architect engineer. The response spectra and damping ratios used were in accordance with NRC Regulatory Guides 1.60 and 1.61.

The new seismic vibratory motion was input at the foundations of the unit structure and revised response spectra were generated for the different building areas and elevations of interest.

These revised response spectra were then used to reevaluate the adequacy of piping, pipe supports, heating and ventilating duct supports, and equipment.

2.2 Section II describes in detail the method used for determining the revised response spectra. It includes the floor response spectra generated in order to assess the adequacy of the systems needed for shutdown. These floor response spectra are referenced in subsequent sections of this report.

2.3 Section III addresses the Seismic Category I systems considered in the evaluation of shutdown capability.

2. 4 Section IV discusses the evaluation of fluid piping systems and selected supports.
2. 5 Section V discusses the evaluation of ventilation ductwork and selected supports.

O I-2

2.6 Section VI discusses the evaluation of selected mechanical equip-

[^'s ment, electrical equipment, and instrumentation. All of the equipment listed in Attachment 1 to the Staff's January 30, 1979

('- letter has been addressed. 2 2.7 Section VII discusses the conclusions drawn from the reevalu-ation.

3. Summary 3.1 The results of the reevaluation, which are discussed more fully throughout this report show that, even utilizing an SSE with an acceleration of 0.20g, the systems required to accomplish safe shutdown and continued shutdown heat removal will be able to function as designed. Furthermore, th.ese results are themselves quite conservative, as discussed in the conclusions of Section 1 VII. This demonstrates that the Davis-Besse, Unit I design is acceptable in the event of a 0.20g SSE.

O

\s_ / ,

5

-~s (N

I-3 Supplement 2 AW 1 2 5 ^ 'T35 w vg--- --

Oi II. REVISED-RESPONSE SPECTRA GENERATION FOR 0.20g SAFE SHUTDOWN EARTHQUAKE

1. Discussion Of Method i

1.1 In order to evaluate the effects of a 0.20g_SSE on Davis-Besse, i Unit 1, a seismic reanalysis of the unit structures was performed <

to the extent necessary to develop revised floor response spectra.

The earthquake was defindd by employing NRC Regulatory Guide 1.60, " Design Response Spectra For Seismic Design of Nuclear Power Plants." Figures II-1 and II-2 show the horizontal and vertical design spectra respectively for various damping ratios.

Bechtel generated synthetic acceleration time-histories, which envelop the design spectra according to BC-TOP-4-A, were applied  ;

at the foundation level of the structures in order to evaluate the buildings' response to earthquake motion.

1.2 Mathematical models representing the buildings' structural characteristics were developed to predict the seismic response to a 0.20g SSE. Since the structures are founded on rock, fixed base idealized models were used. The techniques of structural analysis are based on the fact that any deformations are small and are within the elastic range.

V Application of the existing models, as given in the FSAR, was made with modifications to account for the as-built structural configuration. Figure II-3 shows a typical lumped mass model for the Auxiliary Building, Area 7. All models have been initially constructed to ensure that the vibration modes of interest could be adequately defined. Each of the models represented the mass, stiffness, and damping characteristic of the structures. The concrete stiffness was represented by its design strength, i.e.,

the design strength was less than the actual strength. Structural properties reflected the as-built wall configurations.

1. 3 The modal synthesis technique was used to determine the time-history response of structures subjected to the 0.20g SSE. A set of uncoupled modal equations, representing the idealized system under dynamic loading, was solved using the Runge-Kutta Fourth-Order Method. Acceleration time-histories at the various floor

' levels of the buildings were obtained by combining the modal responses.

1.4 Both horizontal and vertical floor response spectra were generated from the time-history motions at the various floors.

Acceleration records, digitized at equal time intervals, have been used to develop these revised floor response spectra. These spectra are plots of maximum response of a simple oscillator over a range of values of its natural frequencies for various values g of damping.

II-l

The numerical method for computing the spectra values is based on the exact analytical solution of the governing differential equation. It is assumed that the accelerogram varies linearly between the time-history poli..s.

The response spectra are then constructed by monitoring the maximum response parameter at each step of integration. The response spectra are computed at fre-quencies in accordance with BC-TOP-4-A.

1.5 For design purposes, the initially computed floor response spectra are smoothed, and peaks associated with structural frequencies are broadened to account for uncertainties in the seismic analysis techniques. This seismic reanalysis has utilized the as-built wall configuration of the buildings and the concrete design strength to represent the structural stiffness. In addition, variations in soil properties and soil-structure interaction are negligible since the Category I buildings are founded on rock.

Consequently, a 10 percent peak broadening has been used to account for other possible variations in the mathematical models.

1. 6 Currently accepted SSE damping values based upon Table 1 of NRC Regulatory Guide 1.61 were used in the analyses. Table II-1 shows the current values along with those used for the original design. The methods of analysis, computer codes, and mathe-matical models are more fully described in Section 3.7 of the FSAR.
2. Results 2.1 The revised floor response spectra for various component damping values at the elevations of interest of the unit structures are shown in the figures that follow in this section. Table II-2 provides a cataloging of these figures. Those spectra developed for the 0.15g design SSE are also shown on these same figures.

Comparisons are made considering the current allowable increase in component damping.

2.2 The revised and design spectra show good similarities. Due to the increase in current allowable damping, many of the revised spectra appear suppressed in the region of structural amplifi-cation. However, in the rigid region above 33 Hz, the revised spectra have increased in magnitude due to the higher accelera-tion.

2.3 The response spectra reported here are used in the following sections of the report.

O II-2

e _ _ ._ . . .._ _ -_. . ._. . - -__. - - - _

4 4

TABLE II-1

(

, COMPARISON OF CRITICAL DAMPING VALUES Percent Critical Damping 0.20g SSE 0.15g SSE Item, Equipment, or Structures R.G. 1.61 DB-1 Design

  • Large diameter piping systems, 3 0.5 pipe diameter greater than 12 in.
  • Small diameter piping systems, 2 0.5 diameter less than or equal to-12 in.

Welded steel structures 4 2 Bolted steel structures 7 5 Reinforced concrete structures 7 4 O Equipment 3 1

  • For the purposes of the piping analysis of Section IV, all piping was assumed to have a 2% critical damping.

4 i

O

(_ /

i

% + t-r-- +*%v-e a.w-m--S,p. y-.. -w-yh. .gmw,y-wei-.. - e-, e we - we W ei gang e+,--g+,-rm-e  %.---p-9,--y-q.p,%9yt-----w,-ge. egg-wgi-mewe's-eq- waw-v%g m m g.-o wmww -+--1w w MM W--

? p

]

1 I

Sheet 1 TABLE II-2 i FLOOR RESPONSE SPECTRA LISTING Location Spectra Percent Damping Figure No. Bldg. Area Elevation Dest.ription 0.20g SSE 0.15g SSE II-4A Aux. 6 585 Hor. NS 2 0. 5 II-48 Aux. 6 585 Hor. EW 2 0.5 II-4C Aux. 6 585 Vert. 2 0.5 II-5A Aux. 6 603 Hor. NS 2 0.5 II-58 Aux. 6 603 Hor. EW 2 0.5 II-SC Aux. 6 603 Vert. 2 0.5 II-6A Aux. 7 565 Hor. NS 2 0.5 II-6B Aux. 7 565 Hor. EW 2 0.5 II-6C Aux. 7 565 Vert. 2 0.5 II-7A Aux. 7 585 Hor. NS 2 0.5 II-78 Aux. 7 585 Hor. EW 2 0.5 II-7C Aux. 7 585 Vert. 2 0.5 II-8A Aux. 7 603 Hor. NS 2 0.5 II-8B Aux. 7 603 Hor. EW 2 0.5 II-8C Aux. 7 603 Vert. 2 0.5 II-9A Aux. 7 623 Hor. NS 2 0.5 II-98 Aux. 7 623 Hor. EW 2 0.5 II-9C Aux. 7 623 Vert. 2 0.5 II-10A Aux. 7 643 Hor. NS 2 0.5 II-108 Aux. 7 643 Hor. EW 2 0.5 II-10C Aux. 7 643 Vert. 2 0.5 II-11A Aux. 8 565 Hor. NS 2 0.5

TABLE II-2 (Continued) location Spectra Percent Damping Figure No. Bldg. Area Elevation Description 0.20g SSE 0.15g SSE II-11B Aux. 8 565 Hor. EW 2 0.5 II-11C Aux. 8 565 Vert. 2 0.5 II-12A Aux. 8 585 Hor. NS 2 0.5 II-12B Aux. 8 585 Hor. EW 2 0.5 II-12C Aux. 8 585 Vert. 2 0.5 II-13A Aux. 8 603 Hor. NS 2 0.5 II-13B Aux. 8 603 Hor. EW 2 0.5 II-13C Aux. 8 603 Vert. 2 0.5 II-14A Aux. 8 623 Hor. NS 2 0.5 II-14B Aux. 8 623 Hor. EW 2 0.5 II-14C Aux. 8 623 Vert. 2 0.5 II-15A Aux. 8 643 Hor. NS 2 0.5 II-158 Aux. 8 643 Hor. EW 2 0.5 II-15C Aux. 8 643 Vert. 2 0.5 II-16A INTS. -

576 Hor. NS 2 0.5 II-16B INTS. -

576 Hor. EW 2 0.5 II-16C INTS. -

576 Vert. 2 0.5 II-17A CIS -

571 Hor. NS 2 0.5 II-178 CIS -

571 Hor. EW 2 0.5 II-17C CIS -

571 Vert. 2 0.5 II-18A CIS -

574 Hor. NS 2 0.5 II-188 CIS -

574 Hor. EW 2 0.5 II-18C CIS -

574 Vert. 2 0.5

d

  • Sheet 3 TABLE II-2 (Continued)

Location Spectra Percent Damping Figure No. Bldg. Area Elevation Description 0.20g SSE 0.15g $$E II-19A CIS -

595 Hor. NS 2 0.5 II-19B CIS -

595 Hor. EW 2 0.5 II-19C CIS -

595 Vert. 2 0.5 II-20A CIS -

603 Hor. NS 2 0.5 II-208 CIS -

603 Hor. EW 2 0.5 II-20C CIS -

603 Vert. 2 0.5 II-21A CIS -

618 Hor. NS 2 0.5 II-21B CIS -

618 Hor. EW 2 0.5 II-21C CIS -

618 Vert. 2 0.5 II-22A CIS -

630 Hor. NS 2 0.5

[ )

II-228 CIS -

630 Hor. EW 2 0.5

'~ '

II-22C CIS -

630 Vert. 2 0.5 II-23A CIS -

653 Hor. NS 2 0.5 II-238 CIS -

653 Hor. EW 2 0.5 II-23C CIS -

653 Vert. 2 0.5 II-24A CV -

589 Hor. 2 0.5 II-24B CV -

589 Vert. 2 0.5 II-25A CV -

595 Hor. 2 0.5 II-258 CV -

595 Vert. 2 0.5 II-26A CV -

609 Hor. 2 0.5 II-26B CV -

609 Vert. 2 0.5 II-27A Aux. 6 585 Hor. NS 3 1 II-278 Aux. 6 585 Hor. EW 3 1

( ) II-27C Aux. 6 585 Vert. 3 1 v

a g Sheet 4 TABLE II-2 (Continued) location Spectra Percent Damping Figure No. Bldg. Area Elevation Description 0.20g SSE 0.15g SSE II-28A Aux. 6 603 Hor. NS 3 1 II-28B Aux. 6 603 Hor. EW 3 1 II-28C Aux. 6 603 Vert. 3 1 II-29A Aux. 7 623 Hor. NS 3 1 II-29B Aux. 7 623 Hor. EW 3 1 II-29C Aux. 7 623 Vert. 3 1 II-30A Aux. 6 603 Hor. NS 3 1 II-30B Aux. 6 603 Hor. EW 3 1 II-30C Aux. 6 603 Vert. 3 1 II-31A Aux. 7 565 Hor. NS 3 1 II-31B Aux. 7 565 Hor. EW 3 1 II-31C Aux. 7 565 Vert. 3 1 II-32A Aux. 7 585 Hor. NS 3 1 1

II-32B Aux. 7 585 Hor. EW 3 1 II-32C Aux. 7 585 Vert. 3 1 II-33A Aux. 7 623 Hor. NS 4 1 II-338 Aux. 7 623 Hor. EW 4 1 II-33C Aux. 7 623 Vert. 4 1 II-34A INTS. -

576 Hor. NS 3 5 11-34B INTS. -

576 Hor. EW 3 5 II-34C INTS. -

576 Vert. 3 -

LEGEND: Aux. - Auxiliary Building INTS. - Intake Structure CIS - Containment Internal Structures CV - Containment Vessel Supplement 1

i g)

</

FREQUENCY (cps) 00 $0 JO 20 iS O 7 5 3 2 IS I 07 05 03 02 0 15 01 10 0 ii yi u y r i i sjs i An ,q y i r s i j

'a i, L CO

[ ,q I i i.

s 1 i

r

' " -\ f(/V'Y A/\ Y Yd\ ./ \/Y/YY AA Y YN}N ./ \f(/'d Yi /\ /\ Y YNI'. N

/XsV( /\sV(3&M N/XXA AsV()OM N/KnA /\ 34]OM-C/'(V\NYdBN///XNWNN/' DON //A(NMNY'CC'N

. \ / / \ / / \

~ YXYNX26"V/'vf>'XvNrKKG iV>'XN^xX05 b3<Sh3%$ MWD D ww "

~

xm.n xm/xm n

+

533$3M[%ezhh333I suu m

,, IX>MNh/%6COf 'X>MNh 2%4?l5 3:EERDCDd ,,

K>>ShMh)C@@SM8T ' f . vW2 MMS .

4

@Sf9@@$dA@SdEd%MC@Sd$@@@k u asouzmxwmu-wsa.

- M/YsV( .-bsVk)OM -

M[MsM bsVk)OM MsTNd b N/k)Ob ~

///XNWNY30N /'S/\NMX'KW/A(NV't /'/'/'\

! RV/X X >'X X XW XiXX XX%%%'/X X 'XV x 3 2

,m 4 g, 3

/ D/ / / k

" EX>MNh/%3CS( 'X>NN4Z%3CDL' 'X>MNh/%5CDd '

DNShMM/f>X>>SNMh3<C@>SiMEM ?C4 <

' @ SIN @@ Dd@Sd$@@$d@@Sk$@$Edd

( \ /V / f N /\ A ' NN / Y \ /YA/ A /\ /s\AV4& Y VfYM/ A /N A x&YN / 9

  • -\ A( NY A /\ AY\ ./ \f(N Y /K A YiVKM%. / \ #YNY /K A i VW\f /-
  • 4MM

-N/VXX /\ . NfX XA f\ X X 'kN'i'% N/V ^ X f' / X ':OM-O'/>(NNA /J N /' '>BN//A(/i/V't /'[V'KW'M ^fNVi ^/ v^d(SM RV/X' X '/'# M WX%'/XIN W XIX 'N < /XIX XY@ I'M '

4

' i '- ^

4 R38'k 9xvp<s/DS%3s sD'6Sb'hE CE I 2VM

/xhw xxvm a'XI l' vXx<

/e m E

MMM68M'666'M /8NXM/X"' s )M p6'[~ E 2hCK'S'XXMb6XX'/XXX . ##1"d' .

, iii t i.iJr an i ud i s . i ,

01 02 03 04 06 C8 8 2 3 4 6 8 I 2 3 4 6 8 0 PERIOD (secs.)

( '} oAvis 8 ESSE NUCLEAR POWER STATION

'L/ Honi ogio EcTaum FIGURE II-1

[ )

m-FREQUENCY (cps) 00 SO 30 20 IS O 7 5 3 2 IS I 07 OS 03 02 OtS 01

...,,.....,.....p...,. . . . , . ,,,,,.,.i..... .i. .........i. .i. i.i.i........ .i. .i....i. .i> ,. y 80 cN Mf'A'/' 'A"M '/MR'M F ' r(' ' N #K'y '/' 'W 'A'P4'MN'XN F ' P<' ' N M'/F 'W'A'F M A"<S V ' 8

  • -\ WNX AA Y VSN / \/XNYt AA X VK)N / S /'<NX! A/N YYsXN 4 ,,

~ /XX^ A ^^YNM N/XX^ A MXNM N/XX*^ A MXNW ' i NNfN /'(\f'3Nbf//XN%Nh f'dN?//h(/'('VN N fDN&

d )TM)OCN$N/XM M d )CCNhN/ # I XNY d ^)C(NI sV^)'XV^\X$5M'/,'J/XV^\X$dW/Y^>fXN \X6d

,, WWd<XSh3$$MM/'XXN'$3fM*A" NhYM/S M2N)kNhY$ /h M2N)kNhY$ /b

  • ^A TDSh33$( NIN)$

,o IX)YN%Z$65COf 'X>MNh/R6 C (> C f >^'2M Z665CDd ,,

D>S5 MMC <MO<SA'isEMN'*'/' ? '.!' EliC<)$

NEd

@\.' YEN@Mds@ '8C$en 9

( />( A/A /\ A \AY%T Y \ rf E//IME VC KN / ! '( \ /XN A /\ A NAM e ~\ UN Yl ^^ Y Y14 / \ U#M A A YME/ \UNY ^^ YYA ] 's

-N/XX^ A ^^XNW Mf/f)K/s /\ ^ ^ X' tin \ N/X^^ A ^^'XN ,

///XNWNY'JNd NWX'A'KNf//>(/'NNN /'Q/ '

N E//X X XX X >OsM M XX X XYh25W/XX '> O ( X YN

%'/v^2'Xv^NX1 /h/XXV^sRMf/v^>D<vRR$

k; . W8UIXXSX39/MW>C<S'03f<MM50<5h3334 . .

4 h bXYM/\ MMddMYMb MMMNhYN ['\ MN)$

d'

" EX>MNIAZ%3t^/M'X^>Ods'M Z%3C<f MNAZ%3CDd '

D'XSiW/M#/'<MM5MKK)<D O<SN MZ<)4

, @M@$bC@)d$@@f$d@M[dk$@hMd

( N ev A/ A A X myvs / I y \ rzA/ A A A NA ne y byv A/ A rs. A \Ays / 9 fNMA .^j EAWY\ YiA A YivsY% / \ #VNY! A A VGN Y-

  • L'/V 7 X /N Mn YNN4

-N s N

X' ^^ /\ X X YM i41 NYX' N X /N XX ';/\'NN-Nc

'f//X N  %^ /T'v^t '/' LN///>(/V'Vt NV'L'xN W/Y!X Y'IX X\ 'M//XIX XX!M 'X'% \ '//X!M 'XX! A >OCJJ s

^K /Y v\ :^(V'n(@ '

RM'/ hAWXN/NLM$6SKX/^'VC(XhNXB6X'^Xd x AXX!'/'C#11 .

.R$8SX'A/XNW>6fx'S$3x /

'YM/'N MY[XYXY b!

'P(>f\ W IMd'XY

  1. /M MI>f'I/\ /..k M

E i 'I sN/15CW'XY)b6'TE MG'XJC21'x^AZs'X% &V/fDd v WJAA'Kx'A'A%WOOVvXMO'fA'snx(yf

, 1 i i [ib  ! , i n i i i i ,

CI O2 03 04 06 08 8 2 3 4 6 8 I 2 3 4 6 8 0 PERIOD (secs.)

( ) DAVIS 8 ESSE NUCLEAR POWER STATION VERTI DESIM SPECTRUM FIGURE II-2 2

< N E

Z 0

EL.660' 0" Y y 7 '

b 2 8

EL.643'-O" 6 A

EL.623'-O" 4

5

'd b "'" " """ "

EL.613'-6" 4 A MASS POINT NUMBER EL.603'O' 3 O A EL. 585'-O" 2

A

. EL . 565'-O' l

A EL .5 45'-O" 8ASE

/////////

l FIGURE 11-3 DAVIS-BESSE NUCLEAR POWER STATION SEISMIC SYSTEM ANALYSIS I

) MATHEMATICAL MODEL AUXlLIARY BUILDING AREA 7

- ,,- , ,y.y..,,-,m.,. -,,,,--,--vm--r---y,w,y --y-- - , , . ,_y

o EZH] A]N3n 3 B _d (VZ-SV)s95-ZSN-9any

  • anos an. o ur not u. as at , r r E __ ,-

Lh b N \ -

/ .\

\ / \ /

m- + \+ + \ + + + + =

\/

/ 4 900'O=9Htd W O

~

l l

n l / Not S 30 1-90 n n G- t + + 1+ / + + + + -E n Ma oM I I m I M l x x

3 I 3

-4 Ny G=

+ + +

I l tl + + + + '$H

=G

-4 z l z

i I I A

t t + t i j t + + + CA Ill " l l

" U1 i

LJ

(- t + + + + + + + -j-3- 2

" 3'd5 '9b' 3D1 "

OED' =9dWE 00'3E3 =43 13 C 1NIOd WnW133d5 NOI1WW31333W WW133d5 35NDd538 80D73 SN 9 W3H8 DE19 Xnu T IINn 35539-5IAME V#-II 38091J O O O

,= 1 , , 4l! !1 I1 0 '

ll l U ZGyy33MInnn3 E.' - =C "eu"'- =[ -

= ;;

"-r *a.e e n

-s a -

~ --

z e a W- e

+

t t + + -

a 9- s e

W 4-H = 3 9

NO_-

I l

- d

. 4- w _

r d m _

G ,I I -

I I' t t s _

4""

9 c + + + +

// + -o n

. N o -

e M

r s

e j

1 / E 9 s /

7 H = + + + + +

\

-o

-i o

Z H

A 3

li i i 1 l\

\

\

H F 7

,1l 1 1II J

I F 3 +

Ll Il HI + e

+ -e s

l -

Jig l l ,:

7 IgI

/

8 4

A E

t I

M 7

/ 3 0 I 3

H 0

9 H

1 N

I O

+ + + +

/

/

S OS'Y-/ -en N

3 9

n I

4- d NO 3 N 3)' O /

H 53 /

39 f1 8

0N ,,

3 T W 3. 8 di s

+ + + + - + -e 1- M 5. 9tM / -t b 9 H 5. 00 '

f 1 -

X 3 . _d D. -

n 3 z + + + + + '

H d -

5 O' .

T i

N ',

O (

T I

_ - V Z

N 1 _ H n W V

)

S

~

W + + + + + - e9 1

3 5 5 - Z 5

1

_ K 7 3 3 _

d 9 3 0 _

9 E

- 3 8

7 _ d V

5 3+ =g "n"

=[

o-

=- *=r I

A 1

1 1 O ZGyy33MFnnm3 W

E 0 * ' AI 0 .,j .. t .

i r r,i  ;

( , !i!;[ ti

]N 9

I 419083 II-93 EWAI5-93553 nNIL T Wnx 97ED 883W 9 A1 J7008 835 DON 53 5d331WW dOIN1 E 373A= 5e5'00 EWdD= '02D W33373BW1 ION 5d331WnW us E 703 O'ES 553 ' ' -*

w'

). L J_ - 1 .

l

+ + + + t -[

[' + + + I I

I l

I i I I u n m- + + t -[G G [- + + + + +ft I

I l

I g Z Z l "G G + t -5

+ + + + +# I t H "C' f 3 3 09-1 Q3519N j dyWdiN9 = O'OOG N #

S N/ F I /

mm t t'- + + + -G n M =c n _'a + + t - 'g n n f 3 3 s' \

- \

+ + t g

tc %Qg~

g' + + + ,

+ \

,- \

\

,, e \, __ _O* B O l =

3.

se ,e ies saw r r - se vnug-A1g-ses)vs-vZV(

d_ B 3 n3N3A 3HZE

O mm zG9433 - nnn3 **

gs eg g o7 o ;;

g

  • O m

s Z -

O + t W

+ , t aS."*

xg-W =

1 9 3 d -

3 W d E .

\

5 (g

  • 3 + , + + j+

5 D -

N O e

d 5

E' O

9 \

7'3

  • E Z

+ 4 3

=

+ # \ .'

H W -

\

A - l I l gll l )\ 1

. W 3 tI

! I1ig

+

O 7 i + + +

O 3 -

[1ll 1

I I,

A I

7 -

J /

V 9 / 3 o S I

I 3

8 0

- S N

9 W

+

1 N

I Q

0 W

S' e

M. - + +

eO r

l Lh f G

O oD t

/

/J" .*

N 3

F 9 d

- + s s: / l 3 M aDN 1

4 W a!

/

f.

E 1

W :d D sV H _

_ 3

+ _

E 7

H 3 n g- + + + cQ + ." '

8 9 W g _ _

d 1 -

X 3 g + ' T

+ + + +

n 3 g W d 5O T

N ,- (

v L E v-I I _ s v

N 1 . )

n W +

~

+

. c o

M + + + s-3 3

.T r

s 5 7 .

a-5 3 3 . s a

3 3 E -

a 9 - y 3 7 S

- W .

=$ =g

=T a;

=' ,s' E ' a.

I =m zGH43m - nnn3 A

W C .

O

a

~

O 1 -

8 m ;_._

3 g- ZGN.43

=.,-. Q o; rnnU3 . ;r _

$ E f. .

D E

D +

p __ .

+ +

+

+ a .

W W

1

=

9 y,_

3 d '

3 W _

d E s 5 t \ \

t 3 + + + +i - .

5 C +

N O - /~

a E ~ E d O \

5 3

9

+

+ 4

\

- Z

+

8 A

= '

!}g

\

\

\

. H 8 3 tI 1lI Il1i1lIllI!II . J -

0 7 -

+ + + + .-

0 3 '

I Ilggll i i1 7

8

/

A 9 y -

9 + ' J 9 M 0 /

- 3 9 - ' N O

1 1 1 9 s #

9 N m r o /

' 3 3 I M i o 8

0 W O v

+ + + o-s o +

/

- f 3 n 9 3 d d s /, l 1

3 8 W

a ec at t

t d

w

'.j C

D 3

D 9r C W 3 + + + 0o * + _

v. 8 1

- n 5' -

9 W 1

5 - _d X

n 3

3 E D' + + + * + , r t

u d _

5 O' -

I -

I I

N O

I

~. ,

N n

1 W

M + + + * +

3 3 5 7 _

5 3 3 _

3 9

1' 3 -1 D _

5

- W -

=$ - k E' . ,'

E' "ba "= --

  • I i f

t m ZaN4 3nfn n3 "

A W

E .

O ,

O O O 3I90H3 11-93 EWAIS-93553 GNII T dnX 97ED WM3W 9 A1 J7OOM 835 DON 53 5d331WW W3331 3HW1 ION 5d331WnW dOIN1 + 31~34= 9OE'OD EWdS= '02O O'ED 553 $

Iw 7D3 '

f_ a

_w l

&g g 0 9-1 03 Stat N wew +== -

g

- + + + + + +l l

+-

I I .

l I m-  ;

I

,m

+ t + .

[' + + + + -t[

' l

" IG I l Z l l z

I "G G + + + + + l + t -;d N "C' -

3 3 g 2 a n n i r t =p i P n ";;;- + + + + f- + + + ;n

- n n / 3 3 '

' / \

\ ro hg g- + t + + + t 'tg

' \

3 wzu

/ $

$, ______f ,

,a to n en o .

, I.

r e e se ==

yaug-A2g-9oc)va-ttV(

JB3 n3N]A JHZE

O O O

. FIGURE II-6A 3RVI5-bE55E UNIT 1 RUX ELEG RRER 7 NG FLOGR RESPGNSE SPECTRR RCCELERRTION SPECTRUM PGINT 1 ELEV= E65.00 3MPGm .020 m LOC O.20 G 55E , ,, _

g

/

l QW ^{o )$

I f

+ + +f + $

E.- +

(y l ll l l +

I

'807 O \ l m m f i wQ- + + + h*Y N k1 +l

+ Em y RY l l

=8/ LJ '

b *Al HQ. + ,

+ +/

+ + + ,

+  %.b l / I E

$ / l $

U E-u'

+ + [+ + + + + +

'u-

/ [

t

/

c,.t.t.3_ ,

+ + + +

+}Lo.isi +

+ -~.

Q.

/+

J

/

=

o g j

, 'an as Em~ 'Ena an.a ' es*a ' 'saem 257-N52-565(AB-104)

FREQUENCY EHZ] ,

I

i O -

e mG gN 33Mrpn3 i

s'm g "G C  :,

r e . **

W 0 " z' W 2 i 2

i 1 0 ,

_ 3 '

+ t t + t 9 i w

3 d

  • 5 E d

3 W x 5 E N

_ Q 1i {

\

d 0 + +

}i

+ '

5 3

W 0

3' 9

o/ /,

/ i E

. W O

5

+ + +

fq y + ** Z

~

O = [ .*

7 A 3

]l H J ]

7 M 3 + + + 1

(

+ U 9

9 3

u A

- 1 T s 1

1 W

3 N

O 3 3 1 H

f W N 0 l

S W I Q

P / 7_  ?'

3

+ +

.I l

E E

d t V

t n

7 / E

]

9 X W +

! 3

+ + t / '

n W

M W ' /

.' 8 1 d 5 3  !

3 + + + + + T I d 3' '

I 5 5 N 5 /

n N f

v E E (o

3 I D t

5 s 1 E y 5

W

- )

W D S

3 '

+ + + + + T 95 9

3 1" )

- z n

S b a-I 3 3 L A 3 Q-3 a

n W W 1

- y E -

.,7 i"m g c m"E E gg 33MrAn3 1

O '

o EZHJ A]N3nS3BJ (vos-av)s9s-z2.A-tany -

.. -- -. n - .. r a

o

,; __-_ .g ta 3 ,\ /

,/

/

\ +

k m.o ; g g+ + + +

+,' =

\

\  !

f GOOC:')NidWVa

  • @n 'e- g f

+

Ns:ssa -so

+ + -e n

no F

t g I

+ +

+/ /

o m I

/

n \ ,

n 3 - 3

\ / 3 3

a \ . A sg t -h + 't

/

lt + + + ~5 H G

G \

Z L _. _ -

' Z 3

\

s'

+ A Ag in t t

{ 't t t + #g tn G- t t t t t t + + -G a e a

, . g 020- = caws 0059s =A373 T ANIOd WMW133d5 NOI1W M3 1333 W WW133d5 35 nod 53H HOO7J 1A 1 W388 DE79 Xnu T lINn 35539-5IAWK 39-II 380913

~

O O O

(

t i

[J 5 9 NOI1W83733]W sh z an ,a ns;i -n a,i aq- nir on n i -

E a -

  • i E N U l F a 0 i u -

+ + + + + ei -l

,,. y

' 'x

n. n f Cl m m di1 -

a I U E /

W R l Z . __J

- * ~~~~~~~~ a

, a + c -T h*

ga 1.-_____________

8 E s n E W g

@ ii , + + + 4 + .; N y J L.

s w

i

I

J 'J

(

' - J

+ r l

m z

w +q s. s

+ + + 2

/< .c

.s 3!

e l

1 m, r-N s  %

, ) C g

~\ l_l

= ezy , ~2'~ Z W

s5

u. a + +

36* s'N' i

s

+ '!

]

^

a li s

a U

x

=

r a + + TE+

gg + s  :: g

[ e s I t-a In W + + + + +

's s e

.F n. y ' N

\

(P Wm Z- \

m' \

J Z U

OO \

3 H a' Y i M E

F N  : A 8

E a

$EJ '-g y s '

+ ', + + + +  ;

I l A W wU l E H y g , 4

[ g J l d

h N Oh 2 00 2 09'l 02'l 05- Os- 00 5 9 NOI188373))W O_ ,

l l

1 l

O ,

ll, 5A zsH4ammrnnnm e

e' g' ..

i'N .[ - R O - - .

W a '

W W z 1 a -

+ + t + W ..

3 t .

3 \c

_A d = l 5 s o

. d 3

5 w

r

\

N IIij tgg '

e 1lii lI i1IIIi d + + .e.

5 c + '; H -

s 3 o J i l8 l,,

W s- lI(

e - C W s -

O O = t + + ,

+ .ew

.s Z

7 a

3

' ;Ir -

H 4

- !j i g , lII,l q .

3

+

1 S M 3 s - + . e.

L I

I 3

1 z

+h/ ~

/

A 3 W

/

, ]

H 3 1 A'/ -

N O

f l

0 W N f s /

1 1

W I E + +

o e

+ .es 3

s E

d M o+

19 o.

' n 1-9

' 5 3 e 0u

/

e B

1 w 3 X

M w

n '

+ + 9m+

0a

+ /

, .n B

W W /

I" 1

3 'e ' J 3 + + + + +

/

.e l d 3' I 5 5

- N 5 n N (

E s v r

3 I o t 5

5 1 z- a v

3 W o _ )

s 9

W + + + + + _

e s

3 -

- 7 g 5

3 a _ n a -

I 3 _ L a

A 3 s, _ n W W y C s'N .[

G s *a J

g'

,r

=m zow4mxmrmnnm O

o EZHJ A ~J N3 n ED 3 El_d m ,_ ,y) ,,,. .

rues es. === re e, == es , e e

'g . . .. . .

Jg

~

$//*O }

~

1

.+ + t t t [ + w z.no+ i /

/ ,

n n p 'g- t I t t t t t + + #g n r i r n 1 n

x x 3 l / 3 d'g t t t /+ + + + #g d G / G Z Z i

/

G'- + + -t ~~~~ t t + + #= G m" l F m I

l O + r + + + + + +' G

  • 500's.9NIdWVG L.3 N9/S3G l *80 E~

3'5 si S a z a ' 30, b D20' 29dWE 00'3 E 5 mA373 E 1NIOd WnW133d5 NOI1HM37333W WW133d5 35Nud538 HOO73 1A 1 W3HW SE79 XMW T lINM 35539-5IANE 34-11 380913 O O O

O ,

. m ay32 nnn3

b. -[ - ,  ? g =-

s .5 W O u

W Z 1 O

+n s + t + o 3

o+

3 d 2 t

+. o-mw 5 9 io a d s- -

3 W a 5 E .-' c% i

~

~

N l a ,\

a - ) l {

o mt

- \ \

d 5 D ' g i k

+ + + ."

aa j 3 O 8 E' l f

O /

I E W 9

~

O O = t 9 t +  % ,*

    • Z 7 A T g \ )\

\

\

\

H J 3 g I \

]

'6 4_ f \, .

i 7

S 3 'l - + + + + 7 N

V 8

- 1

'e.,;l \  ;

f

[

A E ]

I

/

O I 3

8 W

3 8

1 N

>r t

u

/

/

N 0

9 W I D

s

/

  • 3 1

l S

E d e-

+ + +

/

+  ?

r l

7 /

a' w x W

.a 2 /

  • 3

+ + + + .* b n M 7 l W W _

I 1

3

/ d 3 + + + + + T

- A I

d 3'

- N 5 5 5 .

- n N (

v O s y 3

5 I u _ .

t s

1 z- y 5

3 W W

O

+ + +

_?o c )

9 + + 9 3

7 . _ zs -

S a t

I 3 J 3 o _ L a

A W 3 ,

W -

_ fa a ,. '

E b- - *

-],- U =._ =_

. m aH A2 nnn2 O ,

>llI .  !

1 tli [  ; . 'a -1j' i f: I

,G -

t 1 A/

5 9 NOI1HB31'33W DQ'E DO'J D 5'l x O,'l 05' 0 0'-

B5"E

- 0 'l t 0 6 E N l F 0 F Dg O

- + + + + +d -'

I W

n- u h.(

, m g_ g q w r 8 l m R Z d ~l g  : go _- j m O U

+ [t'

_ _ _+ +

W  %

E M O d '

'N~

F1 E 4 Q k N s n + + + + j .g a s - - -

I

' u,  : ._ L. . - -

u

+ + +

3w

-y .

g * - - - - - - _

_ _ . p

$zw w

e s U

Z pd 5E5 i-N f

+ + + 4

!' y LA. g ]

i

=

Q xN y y$ + + + + \  !

[ z \ '

d U U + + 4 + 4 4 H W ' \

Z m, h ,

3 Z i -

W D U H 0-l ' 5-W F N l m .h

$g E g

+ + + + + 9@

W H du U g l A

[ g J l k

R gg g , gg 2 00'2 05'l 00'l Os* 0 0' 5 9 NOILWW37333W

EZHJ A 3 N 3 n E)3 8_d (v,s..yxo,.m.1,,

.noot no. == en n. == e es, r e E $

/

+(

~

t BSI'O 1 't t + + + -b 3 2 R. "V+ + + d + + + R P" h / "P 9

3 / 9 3

N'g + , t t t t t t + gN E / E

/

A'g t '-- t !t t t + + 'A g

W

[ m t #

+ '

G-me t ,t t t t + + '

-.G.

500*=9N/dWVt1 NSISM I-90 w t, i g y y y h~ '

3o, b 3'5 5 soz o '

020' C9dW[ OD'ED9 C A3 13 E 1NIOd WnW133d5 NOI1MW31333W WW133d5 35NDd538 80D7J 1A 4 W38W DE79 XnW T IINM 35539-5IAHE 38-11 380913 e O O

O O O FIGURE II-9A 3RVI5-bC55C UNIT 1 RUX BL3G RRER 7 N5 FLOOR RESPONSE SPECTRR ELEV= 623.00 3 MPG = .02D RCCELERRTION SPECTRUM POINT 5

.. o,,

"" LOC , 0.2 D G SSE ,

PEAWG-5.8 G l [-DB-l DESIGN DAMPlNG : .O05

=

,+ + + -p

=

p- + + + + 1 +

I 'I I I

> 1 +

=*

5: + + + l r + + se e-s +

I l 2 2 f -o o + + + +1 + + + .[H H k- + f i e e l .

m U

a 1 J u ou J + du up

+ + + /+ + u uS +

u / g 1 1 7

,' \ n L .=

=. + + + / + / +\ +

' L~ o.472

/

- - t 5, 4 0 ')

e,

_s

. i. ".

; .; . i. . .. i.. -.

AUM7-N52-623(AR-IRA)

FREQUENCY [HZJ

O O O FIGURE II-9B 3RVIS-bE55E UNIT 1 RuX bLEG RRER 7 EW FLOOR RESPONSE SPECTRR POINT E ELEV= 623.00 3 MPG = .020 RCEELERRTION SPECTRUM E,

g LGE O.2OG SSE , , ,

  1. d AL PEAK @ 5.8 C7 1 I rt j D.B-1 DESIGN

. l , DAMPING OOS =

=. + + + si= + + s

+ g 1

1 I I i

m. I i + +

=*

+ + -m m '". + + + g-

! I l z i

=o E.

s ;.

t

+ + ,e p

+ +

I+

+

r E E E E l U U l J do u- + + + +

/

/

+ (+\

+ + =w u u

u E E / \

/

+ /

/ 1 /,\ ,

+

". 4 +

+'/ + + +\ ""

/ L -_ -_J o.479 i

L_To.4o9 l _- .g

'g a sn

~

'na a aan een noon

, j , na AUB7-EW2-623(AB-IRA)

FREQUENCY [HZJ

EZHJ A 3 N 3 n E] 3 8_d (vss-av)CZ9-Z.l.A-Zeily o aas a n. no, ami e, == at v r e T *

  • I

~

003 0 l /

'e-M# t l+ + t t / + + a*

/

I

/ 3 3

m i n n i=- t + + + / t + + + -n n= i

/ =n r i r-n n m i 2

3 1 3

y C- t  ;

t t t + + + CN a "a Z l Z l

I Q G- t lt '

+ + + + + + RQ g o i

=m i I .

1

[- t > ,

t + + + + + * -[=

= S0019NidWW1  ;

N9/S3G l-80

~

  • m- ' ' ' ' ' ' *

. ' 2 I

g q DED' =9dWE DO'E29 =A373 5 1NIDd WOH133d5 NOI18837333W WB133d5 35 nod 538 BOD 7J 1A 1 8388 DE79 Xnd I IINn 35539-5IABE 36-II 38091.4 O O O

O O O t

4.I9liH3 II-IOV EwAI5-93553 nNIL T Wnx s7Es sw3w 1 NS J,now w35 don 53 5d331ww W3331'3wW1 ION 5d331wMW dBIN1 9 31 3 A = 9+E'DD EWds= '0 Z 0 N_703 O'EDE 553 '

' ' Nm m i 'I

, q daw,s a ze I I

=

= I

[- + + + t It + + t -[

09-1 assott ~ I MdiNO' *OOG b \

m= l { ' "m G g- + + + + l i \ + + t -gA i l

\

Z l

\ z g aG Go d g- + + + + l + 1 + + + gd 3 l, i 3 m

2 I n n g r r ,

- + + + +

/

[ + g

+ t n n

n / 3 m- ,

/

/

-- a a / + +

t + + /+ + \ -G G- /

o 509

  1. T __3O*G.C-. '

O _O, o , .

,e saw sne esu tnew ew r r v ta VAEL-tiSE-99E )VE-301(

d_d23 n3N]A ]HZE

l 5 9 NOI1BM37333W D O'S O O',5 OO'h O O',E OO'y 00,'l OO

[ D E N 0 F D lA U

+ + +- + + l1D -g U W d

$ lY u

m IR -

e c0 e

O d i I

Z

  • g 20 /

0 N' /

O -

+ + + + -l s _a i y

m e $ r si '

j "

g + + + +/ + -l gg

) '

a e w s -

I m 3- W *

+ + + I u

. a ~t _____ y

[ N U p- . w " -

s Z h[

' g +' + + +

\

g

\ S y

R \

X 3

E E

3 E

+ + + + + ) '

3 g g h b W + + + + +

b 9

F E y' H I Wm Z m.

U Z e 0 0 g W H D' a E l

${ -

+ + + + + 9 O l k$3 R gg.5 00'5 O O'h D O'E 00'2 . 00'l I

DO d

i 5 9 NOI18H37333W O

O O O 3191183 II-103 EWAI5-93553 nNIl T WDX 97E9 WW3W 1 A1 J7OOW 835 DON 53 5d331WW W33373WW1IEN 5d331WMW dEIN1 9 373AC 9h E'DD EWdEM 'DED m

ll I ggyy g gy ,'

1 QS-I G3St9N t

QVWdiN9s005'

=

g- a+ + + + + +. +, t C

- i E G- + t t t t t 1 -

H t GE Z I Z go .

(

l og H + t t t t t / t t CH 4 C- 1 4-3 l 3 2 2 m 1 m P" + t + t

/ t t l

+

"P b =' / t% =O 3 3 i

gi + + / + + + t i ossc g '

/ l o'ziiW E: -

. . . . . . .E L

T * .." " " " " " "'

,.t_ ,.,,x ,,., ,

d_dh 3 9tn 3 N ] A 3HZE

O O O FIGURE II-11A GUS jib UNI 7 1 RUX bL35 RRER 5 N5 FLSSR RESPSN5C.SPECTRR 55C D.2 5 PBINT 1 CLEV= .564.00 3MPE= .D2D RCCELERRTIEN SPECTRUM a a LBC RRER 5 CL 565.0 , , , , , , ,,

PEAK @ 3.6 G - j

! J g 8 PEAK e t.S G f

I i f DB-1 DEStGN f l l i DAMPING .oo5 ,

+ + / + i+ ,' +1 ,

+ 0

"- + I t

/'

I I -

f I ' I un

/ I un

+ + i

,1 + 't . + 5m

+ y mW / L J l

/ I Z

/ g D z "H S f -

+ + + l + F H a- + + i+ + g e- . E.

E

/ I E E f g w-u _I

_s

/

I o u Wa / + + + + g

+ r. u usc + + u u +/ I E II. /

\

/

' ~

o.tti o

/

+ + + + + 1 a.~

a.--

a + + t_ O.184 +--

/ .

- - - --/

a o , , - ,

.am sama

' a, , . . . ..

u u saa m

.i

  • u 2

AUB8-WS2-565(An-24A)

FREQUENCY EHZ1

1 O O O FIGURE II-118 3b UNIT 1 RUX ELEG RRER 5 E.W FLOGR RESPONSE SPECTRR ESE .25 GUS .

RCCELERRTION SPECTRUM PGINT 1 ELEV= E6+.00 3 MPG = .020

= LOC RRER 5 EL E6E.D , , , , , , ,,

,,,=

/FEAK f.5I3 G (Dj E f PEAK 9 I.300 G.

/ /

5 + + +

7

/

+ I+ / +1,

+

5

/

I I =

. \

+ + g&., I + ,. .

+;

s t ,

e 2 '

2 e 1 B H" + + + + + + + EH E f i E E I E U /

W J J J

d "~.

U

+ +! + + + l 1

+ I.UU E / E

/

l o.2 n ,

. . . + + + i . ,

f e o.i s4 _

i

-- --/

" -se 3  ;

. '..  ;.  ;.' a a ' '

A538-EW2-565(AO-24A)

. FREQUENCY EHZJ

O O.

O

  • dISIW3 II-II3 E4 nNIL T Wnx 47ED WW3W e A1 J700B W35dDN53 5d331WW 553 29 snO W33373WH1 ION 5d331WnW dGIN1 T 373A= 59%00 EJ scD: '02O WW3W H 31- 595 O ' ' E.

E. 7 0 3 ' '

sa sa

+ + +

t + t + + <G 5~

III sL ,

m

+

Uj + + t t + af j+t' -= G

/

  1. ----- r 7- - r \ I

/ Z Z l G g% + + + t ,/ + + +t + gj 4- 1 3 3 g 3 3 09-I d3SiDN '

g n

n driWdiNDzO OOS{, , .n ng + + + + + + +I 2S

/ 3 k I

' I

, l

/

t t t t + l +orgg g

%' + g

,e -

,s otoo r

_ _ _ _ . _ _ _ , - - - - . . . . g mc -

s ,-

e ==- ,e ses se e e mus-a.JZ-59s)VW-tiv(

JB3On3NJA JHZE w v o

FIGURE II-12A m m.... . num oom n n e.n o na etoon e, c. a r- e n n e. are.t i ns mat. u.es eue R CC EL ERRT IGN SPECTRUM P S' INT 2 ELEV 55'&.00 .DMPG= .020 3.B C MRER 5 EL 5 55.D , , , , ,, , , ,

, 4

' I PEAK e % 4 G I", - D6-t DE51Gt4

, DAMPING = .005 E  ! E

.; < + + + + j g+ + + n; I g I

Mo # 8 1

+ + + ' + + + "

mi +

f i+ 'Em

/ FT

/

Z / I Z so f  ; O .E

+ + + +/ + 4 + OfE

[5 ,

,4 ,f E # 1 E I / E y / I u

/ I #

J J / g W. + + // + +

I /

+

oW u m. + .at u u L / u g / \ g

/

/ I

- . / 1 o / .

x_ - + +/ + + + + \ + .r.

f L_ O 2_90__ .

O.2G4

- --- - _./

  • g ,h a a 'E.e 6.3 %ES 465 w as.nes2 585(AB-26A)

FRE UENEY EHZ1

O O O dI91iH3 II-128 E9 nNII T Wnx 97ES 8h3W E 3M J7008 835 dan 53 5d331WW 553 "ES DnO W33373WW1 ION 5d331WMW dOIN1 E 31"3A= SE%00 EWdD= '02O E,_ 7 0 3 Wd53W E 375E5'O~' ' ' ' ' '

_E.

y d3W O ' }' f' 'l1

/ sros o- ' mu e i etoo-

/

/ <

- l -

G- + + t

[t + --

/t t t -5

/ l \

l

= / /

  • mc g + + + + + gm

,/ ,r l

G I G ygJ + + ,,/ + + + + +

l

' + g E

n meN/ L i n

r ng- +

or/ i gg r

+ + + + + l +

n n

+/ 'n n

/

l o z6o

, \n ggg

  1. + t + + + + + i N

_ _ _ _ p

= a y . .

T ynas-ang-sehva-Z9v(

d_8 3 ]E 1F 3 N 3 A ]HZE

O , . ;i. * * . >

ZGWIhRIMnM3 l

O i

m .-

a, om l

n *r.-

u 5 g- . -

".z' I a e

.i 0

2 0 7 .no,

+ + + + h t I 3

o- Q .

l _

9 9 z O'

_ - d -

W 3 E  !}

- 5 1 g'IIII Il III l, -

5 1,t IIiI,Ig ll LI + + .wa W 0 J I I i l t + t r W 0 l ii l. .

1 +' _

3 E _ E 3 5 d

5 = t ' i i4,

+ + + .es

.t Z

3 A

3 JI I i._. H J

5 7 N 3 + +_ _

_ + t t . e.

O _

3 d ..

A O

2 5 _

1 I

- 3 8

2 _

]

I 3 W 1

N

. /

/

N H

0 O O

I O ,

/

/

+ + .es 3

9 1

- d

+ e/, F

.I l

- 1 3

/

1 /

A W

f

+' / / + .e 3

+ , +

E n M

S /

.t 8 O /

W 1 NO 3 3 O.

/

3 ,

D .e 8 3 5' . + , + I O' + '

d ES. S=

. W 3D /

5 - 0N '

9 1 3 1d i

/

[ N -

N g (

7 8Y v O E. 9 9 I 0C - 4 s

1W y

X n H W M.

3 , + + +

.a s)e s d + -

3 7

W -

g J

E" A-3 3 -

s l 3 0 3 -

a a

I 1 - v 6 -

y' v N = 6_ .G

g. g~ c ao M t Z G s ;. nImnM3 r

i m .

O 9

E

,. ;IrL:  ;{ - !i , , , '*

  • ii

t.-

/

t L/

)

(

D S E NEI1WW37333W OS*l D 2'l D8' D h' 0 0*

  • 3 Dh*2 B 0'2 - - -
5 a

O N lC D l#

+ + + + m9 6 l

W li

" El N. 0 $ dl Q D. o

]

U

.m R h.

g e

= .o. + +f"

+ + .g g Q - + 0

  • E M TI 'l r N e4 U O 00 I n

U 4 i; -"___>_.__+---y J

( l

+ + .; N S

h '

1 W W "

U W J + + I Z W - m+ +

D N Nm n O \ u vuE "

W 4 s s

N

- F N w m

O' D H Z (g N N

y

+

hUg U + s+ .

+

r' i

. NN N

f71 L- I m

Z N

s y

+ + + +\ s + ,,

g 30 3 ,

N E s g y D. ' N U U + Ks ,,

E y O D '. + + +

s E D.

4 W l h D

R U' g ,

J z 5 E 0 H

m' i E

x P E x 3 E u + + + + +  ;

.ng g E.

i  %

H uu I i r

N Oo g J l

E 2 DD'2 O S'l D 2'l D B' DE DO C h'2 U 5 9 NEILWW37333W e

.R t

ss NGILWW3'333" ng-0 av2 an 2 as:t at:1 na. an'j 0

N D

f a * 'a 4 + + + 8 0 0 11 10 Ol N. a.

0 I O.

.U R I W ' ,

  • h z a .

a + C, + + ',

s N

O f,. _ _. _ .h- - 3

+ + :I i W W m

d  :* -

+ + + + .,

o p

s B$" 's u 8 ) z O d:

g m

80 i "

0 Ns -

tti

= a a x

+ +

Ns + '"

~.J 3

k 3 k<

N

\

a

" g b m

r 3 + + + A  ! 1

~

N t

E F

D.

N'

\ g W U N r u o- + + + + \ 4 e a s W

U a

a z 3

& Ho e' i -

a l $

N . + + + +

  • t w e l a

4 H

WU I E.

F U U g m I l E H 4

{g EV2 on 2 5 s n 2'l NQ1LWM37333W 05' O e

P O

O .

I

. . . _ . _ _ . . . . _ _ _ . _ . _ _ _ _ , . - - ~ _ _ _ - , . . . . _ - .

O l zGNI3 hqnn3r O

l l m e n " "C .-

g ue -

g a s o

i ii i -

D -

-s O -

2 0 '

t , + +

g g-

-es l

i r

g 9 D 2' d W

o- -

3 E 1lg 5 l I i }. 1 8 I 5 11 is'ili iiIl e 0 + ,

. t + t e n

W 1l I 1!g ir W 5 1 2' -

3 0 5 - E 3

d 9

W t t Lg . ,'

t .-- t s

e s

Z 5 =

4 5

- 1 -

H 3 3 -

8 - ]

5 1 o Wt N 3 . - + + t .

D d

5

- A 3

E I

3 W

C

]

- 1 [ N O I I

3 H

I 1

W O

O 7

N I

D d t ,

f

/

t , t a

s 3

R v

9 1

J 3

1 /

A W ,

/

t e 3

t E n W O.

t N p, /

s M

B 1 / J 3 3 E.  % a+ o- ,

W 3 O. + , t /

d 9 /

W 5

7 A4H i f

D - e l / -

(

E 3 c V N 9ew 9 7 O _ 4 I E.

9 ,4 % S

_ V X 1W M n W 3 W b. , + + t

_ a 9 0

t _ -

W 3 w 3 4

1" _ A-I 3 3 _ 9 8

3 D 0 I

I 3 W

7 -

_e F N =C g

= 2< g g n mC t i

l . zGN33 hpnn3 g 9

1 a

s

O O O FIGURE II-14A GUB 3h UNIT 1 RUX EL]G RREbR 8 N5 FLBBR RESPONSC SPECTRR 55C D.2 5 POINT ELEV= 622.50 .71M P G = .020 RCCELERRTION SPECTRUM 5+

g t_S C RRER M EL 623.D .

, , ,,, , , ,, , E,

, PEAx e s.10-1/ I l I 1

l

- I

' =

7 + + + + +1 I+ + + i I

l i i

' =

.. l

.:. . + + +  ; i 4 + + ..

i i i

i 1 z I i

e s

HG.

E.

+ + + +

/

} t I

+ + $E

/ I D of576N 6 E

M / >= S a-fDAMPING s 0.00$ J

+ + +  ! '

+ + '

u b- + /

u j t m g E f

/ \

. / s l

/ s +

. + -+ + ,

+ +

\

/

/ L- ObN ---

. - - - ----J s-' ,

o.nz S

,2 - ,

=c .

m -se52 623(As.304)

FREQUENEY EHZJ

- w e EZH] A J N 31 1 3iSd (DCC-EYJ tts-ana-st:7 .

. een e. .. ,, . . .

. . o mi.

~ - =

r- -

l 2-

. . . . / . ,- m g;-o , /

/

3 3

n

\

\

/ t + en n

n =- t + t t

=n n= \+ F I / M M \ / m m x l 3 3 \

y C- t + \ + +  !+ t t + CN "O

G" ,

/ z z e q f l

+ + + + -20 G C-m t +

/+ -

m I /

i /

[- + + <- +  ! + + + + -["

/

G oo

  • hNsdomfn Ai ptsM i aiso

~

l Dkl3 & >7ad

- 6 / / ~

OE29 73 E W35fW 307 N N

020' =Ddw[ 05'229 =A373 + 1NIDd wnd133d5 NOI1bH37333W OnD D2" 355 W8133d5 35NDd538 hug 73 M3 E W38W DE79 xnw I lIND 91 8tI-II 3E09I3 O O O

-i- , . ',;':lil4ij ,ii 4 , 4  ; .i i : ;1 V - .

ZSw433gImn.n3

, e -

e =g g-n s." ==& *p "o- _ = ._ g .

s -

a z .

6 _

o .

+97 _ .

+ , + +

4

=

9 2- -

s s 8 z- a U_

_ a s

w e .

i',lI iI q

s a I

'1i gg3 e

H

+ . -

w o s

. + L ,i t I J1 II 88 , 31

+

e,- _'1 J

e n

w -

z 1 - C 3 z, 3 ,

- \ .se Z a + , + - v .

+ .s s .

_ a

= .

Jia,

. H -

a ]

3 s - .

s 7 .

+ , + +- + .es

_ w 3 . -

e - .

a 4 - A 3 s + . -

]

M aw I

I A

w N

w '

_ 3 e r .se 3

8 e- e +

0 S

I u w

. + , t + - n .

3 sl, B -

A A o ' 3 e

w n

w o.

+ , + + No +

D C o. -

.e

.t M -_

w i 3m '

. J .

s E.

a _

a a z + , + + #

- + .*

s w9 s 7 G-9 0 ', .

s 3 s .

r w '_ t u

7 o s e r E.

s- -

e v

x iw n n w3 w a. , + + + .*a,

+

w an 7

d g

a T a-3D .

_ s a

A 3 3

o _

ra Z 1" .

=,T w

w i~ =.~ e;

  • e ~

s -

n , e 2Gw433nInnn3 e e r

i s-

_.l: ;lIil !lli t !l1 11\I:l'iI! )1

C ~')

V ( (U FIGuitE II-15A -

.36 UNIT 1 RUX EL2G RRER 5 NS FLBOR RESPGNSE SPECTRR 55E D.2 5 GUS RCCELERRTION SPECTRUM PBINT 5 ELEV= 642.25 3 MPG = .020

3. L B C RRER 5 . E. L . 6 4 3. 0. . . . . . . ..... . . . . . . . . , ,
  • E AK # 10.9 6 D6 1 DE5tGnt i 7 m eio..w5 .

E a T E W- + + + + 3 g- + + w I l e

i I W. 8 .m e7 j + + + + j g+ *

+ + - g l 3 8

I Z l Z s= '

me H" + + + -

+ + I+ + + %H e- /

/ g F E

E E / E l

l W ,' . 'l . W

! J. e i .J U Y<

U

+ + + + f

+ b "- - \+ s

+ 2U U

L . , 1 E

/ \

/ \

o o a s

$ + + + #

j+ + + + g + -"

s

> - - - Q UL --

o. w a - o n .h 13 188 eBS 1889 Juma-ws2-u1(As-32A)

FRE UENCY CHZJ

..A P

a O O O l

) -

FIGURE II-ISB y A.s GUB j

  • Th UNIT 1 RUX &L]G RRER 5 EW F* LO OR RESPONSC SPECTRR 55E .25 i

RECELERRTION SPECTRUM POINT E ELEV= 6+ 2.2 E 3 MPG = .020 l

LDE RRER 5 EL 6+ 3 0, , ,, , ,

en 2 .

PEAK @ 10.3 DS-I DESIGN

/ DAMPING = .OOS

- 1 i

i g- + + + + / + + + 4

/ I l

1 .. / I ..

+ + + + + 1 . ._ + + ..

.- /

j l

2

/ \ z

o. .e

+

i H *"-- + + + + + + -S M r-t-

1

[ [

l E E 1

u w

/ i I> a.

u U S- + + + + + + + +

.u SU u u 1

[ E 1

i /

. - + + >

+ + + + Ot-_.s77 +

I

" M DZ7 l =. ,.

u.  :.

.; a.

j --r-uxo-nu i FREQUENCY EHZJ 4

\

. s. l NOILWW37333W s - 5 9 Pa'2 58 Ek. 00, ' g' 3 OW2 . 05.'l 02.1 g -

a s

@ l N -

9 + + + + +JN q l -e g

O E, 11 di O m W - . 3 W

m [ ____________

gg +L ___+___.__2____ + + i F N t n U + 1 W 41 h gj + + + r- d i._.

+ .

! y s

W W A l U W J

+ + + +g l

+  !

Z W I O

u E 1 h m m M l

]

i

- W d E \

(-

- F E

e E D

Z H

\ y

+ + +

i, 8

- J E

- + + w O N

]

A k E

! gO F od h \ b I + + + 4 + +  !

! so a '

f'g g D' \ 1, E F " W U N' QQ l

U + + + 4

(

E W *-4

+ +

\

[ 0.

I g \

a J \

W I

l R z ) 2 J mE- ig

& g '

x F E

E w

+ + + 9 h{W- J E + +

a d Wy  ; e yUUE c l . 8 g ~

O 2'l Oli Ok 00 ~

DV2 00'2 O S'l h 5 D NOI1HB37333W R

b l

EZH] A3N3n 3BJ (L-Jc)945-Esat-sistI mt * .

" " ,,"." . . ** . " T. . .

  • T 3 o

=

7433.-

y--- ,/

\ '

+ '

2

= tme + \ + + + + +

s

/

/

3 n k /

.- nm n '=-

no t \-- t + /

+ + + gn r \ n

/ r

^g 3

\ g

/

/ B 3

dC- + +\ + ,, ! + '+ + +

Qm g EN og 2 .)

l r'f Z l

l I

+

E sc m" +l + + +' + + -R A

+lI l "m I

l .

g- ,wt . w m +l +\

+ + + + + g JYO/S?30 /= 90 l

.ru . . .. . ru g _

g, OEQ' =9dWE 00*915 cA373 E 1NIOd Wn8133d5 NOI1BW31333W WW133d5 35 nod 538 8 0 0 ~l.3 SN 38n13n815 3NU1NI I IINn 35539-SIAWC V91-II 3EP]i.4

=

e 9

I l;lt il

'f!

~

  • gm zaN33nrnnn3 g g' o,...

g.-- O . - s' t

. s .

D t .

E e .

D

+

w -

. + 9 t t ~

W .

V l = .

l*

a E O . -

3 d d W s E .

!Il I ilg l l!I l ] .

t {

3 -

s 0 y t + t + t .w a w .

s e 0 d 9' s 1 D C 3 3 L M

G P

3' Ng g

+ + t .a

.s w Z p o W

o A

SG i

,. . H o-3-

1 N

Y ag 1

. e, J

3 . a 5 t t t u f d1b A

8 .

4

%0 9

1 n I

- 3 Z .

3 I

3 1 . Y/ .

N 3 W N 8

0 9

n i

I G

/J / .es 3

I 3 a n

d t f

/

t t t

n t

h B 5

W +

/

+ .e 3

~ 3 M t . + / .s M t W - .

W 1

l a J

/+

N 3 ,.

+ + + + .e I p/

  • d s

- 5

/

I / .

1 N / .

I E -

(

I

/

N 1 m n W )

9 a-

=

3 W + + + + + .r SL 5

5 3

7 3 n

- - Z n

a 3 3 o- s 2

_ 9 o-o 3 a i

l W a, +

S I

g- j g h i'

2 A

  • m zaN33nrnnn3 W ,

E

^~

+ '

, l 'j

I i; ll i

o 1 8 Zss433mr nn3 aO g .g g *6 a,.re s

.t D

  • E

. H _

Q .

n d " _

.ru .

W t t i + + 4 e

W -

1 3 S M

mO N i

3 d C d - '.

r-s W NW ,-

5 E .

nD - .

OG N

3 ,

DO2 g 5 [' N 0 .

t t t .wa N

0 9' 0 + \. s a * '

N d

5 9

1 2@

0

- \ E 3 5 \

W 2

t t t gt

\ W n

d t .e

.t y

Z W

Q A

3 i

H O - .

- . ]

I J

1 3 t t +

- t MOint

.e*

O Vd A

N 3 1 E - nW .

9

]

1 A OO o -

- H O9 I

I 3

H 1

N

/ O0 0

N 3 n I f 3

+/ / R' 1

1 E + .su 10 9

1 3

n d

t t O 7@ t n S

l W

1 /

5 W t t + t

/

t .e 3

3 t

n W .

/ .

.t B

W 1

1 3 . / J N 3 ,.

+ t + + / .e I d 5 .

p E

l N

E I I .

N 1 n W 9 3 W .

+ + + + + .r S&

5 3 E 1 2 5 3 A-3 3 8 4 3 3

a l

- W l S -

g g.

_T I aa' b b A m ZmsI33Mrpn3 W

E .

o l!l l

EZH] A ] N 3 I !E1 3 Ef_m -

(SN9C-SI)1LS-ZSN-J.N13 naar o o, noe ,

n or == ce at v r v 0 '

E mio 3 /-- - ~E n.- r + +

o>o ro

-r + t r/ + n.

k =

Il n x n

M f-I t

{+ + + + + + + -f n { r x n x { 21

/ x d-- . k + + +

z a- g /+ + + ..- d o

j z

\

/

Ug- + + + + + + mU m \ /

su wse ,a p sesso iso i

m g /

G- t t t t t + t +

a t -C

\ a x

.e \ (.' ,l .

b .
  • . 'P. . .# . . . . . . .  ;

= . . .

25s se O 30, =

OcQ 29dWE 51 015 =A373 I NIaa wnb13 ar35 NOI16b373336 bel 73d5

~.1E N O d 5 3 6 BOO 1J GN -315 7bNb31NI 4 W A 'J - T IINn liG538B-iaIAbE i

VLI-II 3BflDI..l e -

9 9

EZH] A] N 3 n E] 3'd _d (na9C-sx)tts-gag-2NI3

===s, es. roe en e, == es ,

e t g . . . . . . .

g QS/t? I / /

gg+

+ + + -

-t + + + =

~, \ / . .

M

  • n ng + + + +

/

+ + igg r r n .\ l n 2 i

/ m G

y t k \

+ + +  !+ + + tG z N z.

\-

mg + + g + + + gm m \ m 1

as

+

+ l t +

+ /+ + + + Gss 500'*9N/dbWO 1 '

M9tS30 /-90 gg.,gyypyg

5. . .... . .. .

, g g . ,., , . . .

.,,75 ozo- =sawm scops =a3,3 x inzma unW133a5 wor 1WW31323W

'WW133d5 35NOdQ3W WOO U M3 -W15 7WNW31NI 1W13- T 1TNn 35534-5IAWE l SLI-II 38091.4 O O O

l l

8

[ZH] A]N3RO3BJ ( A9C-SI)1LS-EJ.A-J.N13 o mat see cros armt ero es et e r r g . .

-8 O cI*o \ /

\ /

'llf '16 ro t s

\

g+ + + t + /

+ t

\

\ /

3 \ 3 n \

  1. t n n ".c- t \ t + t + t 4c n n* *n r / r r n OO*0c DNIdNYO n 3 N9tS30 I-90 3 3 \ 3 db-G t + \ t t t + + td G Z / Z

\ _./

A =- t t t' + + + + + tm m m G- t t- t t t t t + G a a 35'S '9E #O ' 307 0E0' =9dW[ 51'013 =A373 T ANIOd WnW133d5 NOI1WW37333W WW133d5 35NDd53W H D D7.:1 11 -M15 ~1HNH31NI 1W13- T lINn 35S38B-5IAWE _

341 II 380913 O O O

EZH] A ] N 3 i l O 3 B _d (SN6C-SIhlS-ZSN-J.N13 u nar an, une not no er as e r r E E sero ] 7___ 5'8 w f t + +

  • t t -r- -ri t -m 6o 7.;O I
  • 3 3 n \ n n '.L- t 1 + + + + ,

+ + *.r. n M" "M r

N i r 2

I R '

] 2

n. l 3 1 sg + + + + + + + a f G

g+

/ .gs -

Z G .

\ Z 1

\ '.

\ '

Ug + t g + v t mQ t m m

/

\ /

t t t /

a

- \

t 7-

/+ t v + -

b a

p. 3 apNidtf90 W we.ma i-ea ,

L. $

=

ass ua O an, =

O20' 29dwt 00 % 3 : A3 43 C INIUd W D b13 ~.:i d 5 N C I l t:s B 3 7 7 ] ] W '

d b J. ~.f.: d 5 "d 5 N Q d 5_ib B D D l.3 EN -ba5 7dNH31N'I 1617- T IIND 35539-bIAWE V81-II 38091:1 e 9 9

O O O 6

1:191183 II-188 EWAI5-43553 nNIl T -31W1 IN13WNW7 51W- 3M J7EDW W35 DEN 53 5d331WW W3331"3WW1IEN 5d331WnW dEIN1 E 373Ac 51%00 EWdEM *O E D E 7E3

' ' O *E E' 553

' _E.

d3VX 9 1 n 7t9-1 01S19N

,/ 1tVNdiN9 s'OCS

- + + + + + + + .+

1 m j \ m

+ + + ' r + +

~

m m ".c *

\

/ \

y y ....

+/

d g' + + + + + + t gi 2 / a x / a n n r i r gh- + +

/ + .

+ + + g + gg n i n 3 3

~

ocus *

+ + + + + +

~.-

-- /+ 7 o/P --

. . o . ,

T T

' .? "

" .[

==-am-stats-co(

db3Sn3NQA 3HG

~

i EZH] A3N3nS3BJ (A6C-SI)945-MA-2X13 e == eas e. .: es e e r

^

N N opf.o g . f-~ t p

\ /

I 96 rot \ t t t t t / +- -y

\  ;

\

\

3 \

3 n \ f ,n

, n ,.c- t g t t t t t t mn na "n r r n S00'O. DNidWVO n j -

g N9ts.90 / '9U j

4. / .4 HE t t \ t t t i i + 'G H Q \

/ G Z / Z

\ /

\ 'd .

mg + + +L + + + + .

+ .g m un in t t t t t t t + G

.G- ..

r-_ --

355'dE'O' E 30~1 E DED' CSdWE D D*-h15 cA373 2 1NIOd WnW133d5 NOI1WW37333W

WW133d5 35Nad53W MOO 7.d 1A -W15 ~1WNH31NI 1W13- ~ ~t AINn 35539-SIAWE 381-11 38091.4 O O O

O

  • _

WQ Gy m2Mrgn3 g.- -

oE -

=- g' g g a, co n

. T

. .s H 0 . 9 H 2 1

/

i 0 '

O l

- . t s t t + t .o i' To n.

r .

fo L 1  : o- tL

% D s

  • d s Q i*

G W

E am ai c 3 g I 14 s

N o \

O ts 9v

\

r 0a y

O t \ .u h . t \ t n e

+\

D \

3 j\

I 6 5' l I d 1

=

B 5 E 0

0 =

+ t + + v .o

. t n

Z H

1

- A i 3 7 .

]

S 3 .

+ + + + r

. a.

N V .

6 1 - A

- 5 M

3 O

I I J. /

8 5 1 8

3 N

/ N I /

0 9

1 W

r l-O . + / + v t .n e 3 1

l

- 4 d M /

M T ' l 3

1 S

/

E

]

N I W / ]

L W

n b

1 W+ t + +

/

+ .

e

. sr B

J 3 g.

l d J- 3 .. + + t + t .y

- d .

/

5 l T . '

L N

O e ,

(

s s

4 I 6 I .

- 9 N -

1 S D b I

)

S

. b .

+ + + + t . a6 3 3 -5 5 1

- E 5 s s

3 t 38 3 g J i J l

] I I

W _ _ 3 S g- oG g

g' g-y' o, r I

A mG ZG mmMrgn]

b E

O

e EZH] A]N 3 n E]3 M _d (u69-sI)s6s-zm-sa Ia

.: was was e,. av es e s- r G

3 ISJ'O \

sszo \

'g- t i t + + t + + _ g P

3 h 3 n l n-ng- + '

+ + - + + + -

gg r r n n 3 3 3 i 3 d;-

+ + + + + + + + Cd

... o. m

, z- z l m.;;;. ,

, .W l + + + + .; m

.I m. " '" m f

C- + . + +( + + + + + -;

a S00*= 9/V/dl4WG N9/Syg /-gg (70l't@Md ' ' ' '

355 'SE'u '

'd 307 s DED' =SdWE 0 D'365 = A 3"13 5 1NIQd WnH133d5 NOI1WW37333W WW133d5 35Nad53H HOO7J M3 -H15 7HNH31NI 1W13- T IINn 35539-5IAHE 861-II 3B09I3 O O O

O mS jwAjn nn3

=G  ;' g. g h W

io

. ("

W D t W E -

1 D o 3

. t t t t i 3

W o

t d =

W r

5 S o W

d 3 W 5 E \

\

N \

E \

W + t t t 5 0 0

W t \ "

3 \

W 5' g 6 g E W 5 \

E t

\

+ t t ."

Z E "

1

- A W

, H d 3 J 7 '

1 3 t c + t t 3

6 1

A

' A I

- W 1

3 _

, ]

1 5 1 / N

/

O N 3 -

8 0 1" W

I E

/

3 9

I 3 N W

d F t t / t t n

3 1 j S I

N N

G ' 3 O

W t t t Noo t t  ?. B 1 W 90 W 1 W

/=

S f J 3w+

1 3 W j T 3 3 W t t t Gl

- d l s 5

W N

E" 9v 00 7_

N _

(

l O u I I t-N 1 s D W _ u s

W W t + + + + _

T6 s 3 3 ' -

5 r 7 _ .u 5 3 - .

3 3 _ ul _

9 3 _ o

- W

=T

=.

5 mG h h b I m" g w Ajl nn3 A _

W _

E O l '

EZH] A]N3n B h d _-1 1 (SNZS-SI) C09-ZSN-1NI3 l rroat cro. aos ooi n. an as v r r g i

.. . g I

a.u o d o5t 0

\

6 t CO r g- + \ + r t v y t t g

/

otVo%

\ /

\

3 3

. n.

n n.- +. + + +

.n

-'o n t + t M" / "M

'. /

2 / 3 3 3

-l -

+

/ H H 6- t l t t

/ t + t + 6H G O Z  ! / Z l C soo merava

/ N%30 l-sa m ;- + + I + t/ + + + + -; m m" l / "m I

i i /

g- t + l t /+ -

+ + + + .-g ,

i / j

' f og> w - l N. i--,---,. -U r, fN

$ 355 92'O JO l 6 020' 3SdWE OD EO9 =A373 9 1NIOd Wnbl.73d5 NOI166373))B b b 2. TJ rs 5 3 5 N Q a ~.a .i b B D O ~ld EN -615 ~lbN631NI IW1]- 1 lIND 3Gb3'B-bIA61 V02-II 31!n91_-1 O O O

E Z H"] A 3 N 3 n B 3 B _d (nazs-st)co9-zna-sala

^

N ,_._ _ _ _ _ _. 'd Obl'o t

/

\

se n  ; ,' '

f- t g + t t t

/

t t. -f

\ 'n /

/

\

l \ ,/

3 \ / 2 n \ n pg t L -+I \ t t f t t + gp r t r M M 2

i I / 2 2 / 3 a_ l / _a Hm i t g i t / t t t t m H G* "O I

/ Goo o= 9 HidWya 3 I

l

/ N9fS30 l-ec

/

, G E- t t It t t, t t t -G G M* l / "m "

I

/

I l

[-

=

't t lt l t t t t t -[.

I I I

d 90 9 a >tv a d 1

.n . . . . . . .b . . . . .. . .

DED* MSdWE 00'E'09 MA3"13 9 1NIGd WMW133d5 NOI1WW3*l333W WW133d5 35NQd53W WQQ1J M3 - W15 ~'lWNW3'1NI AW13- T IINn 35539-SIAWE 803-II 3B0913 O O O

EZHJ A ]N 3 n E]'3 B _d n (AES-SI)C09-ZIA-IND en -. -. es - r r "i "

Oll'O g_ _ _ _ _ _ _ _ _

/

/

I go7,fo i ) t t t t t f t ,

g

\

\ /

2 I

,n 2 pg (t / 'n t g t t t t t t gn r r n y 900'0"DNidNVG n

$ , N9/S3Gl-80 h dp + t. \ t t t t t t tda a \ /

I g / z

\ #

/

Ag t t -t t t t t jQ un tri C- t t t t t t t t

= -C 35$ 'S'Z'O ' 301 E DEC' 3SdWC OD'ED9 = 43 13 9 1NIOd WnW133d5 NOI1WW3*l333W WW133d5 35NEd53W WQQ7J 14 -W15 7WNW31NI 1W13- T LINn-35539-SIAWE 302-11 3H091_-1 O O O

O , Li zGN3x nnn

=s -

" C-uio 2

"e-a" .'

0 p

a 0 O'-

b 2 '

f 0 t t t + "

t m

l.3 3

o o-d 5

3 5

D d

W' T ' a O

k 1

O s

N_

g\

\

l g N -

O d

n t t t t\ y s

+

S S u ,I

\

3 C g 6 A t'

9 y l

_\

l j f

IiIili

?"

C Z

B. + t + .' r-D -

, t O = . i 7

s A

3 s

al /

?'

]

7 'l + t +

t t S 3 /

V I

N L A 2

Na J e- /

- - j I b E

/ N o

I l t

/

3 5 1 s H

0 N

I 3m 0

/

3 9 7 et + + ." l 1 B O ' t 1 l

3 N d M 9m 0 O 3

1 T

3 N

I W 5 3

+ + t t

/'

  • h i

n5 .

1 b ' f d W

1 3

1 ja 3 a 3 -' + + t t t / T

- dO '

/

5 1 ' " (

s e

i o

N 9 l O -

I s I i

)

N l s n b t t t T1 9 M + + o t 3 3 bs s u-5 1" J 5 3 3 o a 3 3 0 1

3 9 3 7 -

3

- d -

" C' ". = "O Da b "$ =C I m mE zON xxM Mnn3 A

W E

-) . . ' '

I.

-(o)

Ad 59 NEILWW37333W any as p try as;i sa: aq-sr--g

[ a -

8 l E N O F o d of u -

+ + + + + ml W .

hl .l Il D.

m e E

fl I

U E m

Z R . ,)

O r,-

Oi u w F.

+ + + +

L.,) j E F s E _ _ _ _ _ . _ . _ _ _ _ _ _

go + + + + .g N a

u s

u --

I+ -

I

-- -- ~+s\ u 3 w + + + + 3 w o s 7 g l

N N

N N

N b

= F e 's N ) U W

W F Z

k

, Z J H W N y

$[ + + +

{ +\ s + 3 3

u p oc

~u r.

z

. u ' se W 5i + + + +

F r S.l x s :s [r E Og F

F s' U N' QQ k U u g< + + + + + 9 m \

d

\

F H

H

\

I 'k

  • Z p l 4 3 L C

+ + + + + '

u 6

-95 m 3 I A

m u I E

$yda i a l N i a

$o s

a t'i asi eri E9 as's NOI1WW37333W an't as- no 1

[

R O

EZH] A ] N 3 f l E)) B _d Go9-sI)s19-E.1A .Dil3 a nos ro, aos eos a. es ei e r r 5- t g ._ _.

2// O f he + + +

  • + t t f + -~

cic o 1

\ '

m I i m n n ng t I t t t t / t t + -g n ,

r n

\\ r n

2

/

m m '

m Ng t x t + t t t + -g d G \ G Z g Z

\

l GOO O =DNidHY0 x ,

) N9tS30 l-90 Gg- t t \t V t t t + gG m v m G- + + t t t t t + -G

= e g . . . . . . . . . . . . . . . . .

g DED- 2DdWE. 31"1T.9 24373 E 1NIQd WMW133d5 NOI1WW37333W WW133d5 35Nad53W WOO 73 1A -W15 7WNW31NI AN13- I IING 35539-5IAWE DI2-II 3Bf191.4 O O O

J G' o 0

1:190N3 II-ZZY EWAIS-93553 nNIl T -31W1 IN13MNWl- 518- N5 d.7008 d3SdON53 5d331bb W33373M61 ION 5d331bnW dOIN1 TO 31 3 A = 92 sd'50 E W d D:- '02O 3 703 O'ED 553

,3 yyyg g9~ 09-I miM

" aVtHdivys='ocS "

j

  • - + + + + + + + -[ ,

m"

/

t tf

]

+

,M E [- t t t v t PG

/

Z

/

f Z G" 1 "Q

N G-

+ + + + / t t ) t +

3 / GN 3

F r Mm / on n G- + + + t/ + t t -G n a oe a.

/ g t t t t , + t M

/ h. O'Gt9 ~

~ C

  • t ST e r e sa ,a .n ton soa ,o n saan OINL.-MSZ-9Co)IS-9CES(

i _8 3 81F 3 N] A ]HZE

_ ~

O O O dI90H3 II-228 EWAI5-93553 nNII T -31W1 IN13WNW9 51W- 3M J7EEW W35 dan 53 5d331WW W33313WW1IEN 5d331WMW dEIN1 TD 3l"3AM 9E6"50 EWdE= 'D E D 3 1"E3 ' ' O ES' 553

' g' i i d3ftf>8IDOOD l l

I t + + + + + +1l + -

+ O I

i I I m l m E l+ I me- + + + + + + + em l I I

I z l l z

G= - mm H$* + + + t t [I t + t -[w 08-l 03919N / $

$ QVWdiNS =O'OOS '/ n R

I / 1 F ma on nG + + t t + + + + pn n

/ n 3 / 3

/

/

/ \ "

=- ' + + + + + sT + .-

OM

\

m O'GLO'

/

p ,

,_-T

* , .? "  ?* .

a1=-ane-,co>1s-,caoc 383On3NJA ]HZE

. EZH] A3N3n 3 8_d

(&C9-SI)0C9-LIA-J.N13 rosi re, was r, roi, ,

we es, e r r 8 8

/- - -

g + \

i t t t t t [. t b cu o 1

\

/

\ ,

m I m n / n n 'e- t I t t t t t t + ~en

, m* g "m f

m

\\ S00 *0 '9NidWVQ N9/S30 1-90 l J) \

x

/ m g t- j t t 't t t + g Z. \ / z

\ #

/

\ '

A& '+ + +- +

\t t t t gA m .

m G- t t -t t t t + + G a

a s

g . . . . . ... . . . .

ggg .g . .. . . . .

g DED' 2DdWE D3*6E9 = A3 13 DT ANIOd WOW 133d5 NOI1WH37333W WM133d5 35Nad53W HOO7J 1A -815 18NH31NI 1W13- T LINn 35539-SIAWE 322-II 3B09Id O O O

O O O 3190H3 II-ZEV ~

ib AIb -9 3 b a:3 ITNT1 1 -1. i W L.

" 3 N L.a. a N b 7 3 b-

~ NG i.7003 335d2N5fi Gd33Ahu bJJ 3~1 3 hselION 5d33.bnW dDINL. 12 31 3 A = 93E'DC EAdD: OEU E. 7 0 2 . . O "E.D 3. 5 3 . .

s . . .- . , ,.

3

' -f NVk@h'+G " [ g 09-/ 09S/9Y(

a GOWd/N9:'005 a ,

.- t t t t t t t' T -

1 ma i a w Q [- + + r + + + + -[. U t

z j z Qa 1 aG s4- fr- + + + + + + \+ +  ;. s 4-

\

m m m a n n r r na an n ;;;- + + + + + + + + -; n n n x' m s so

/

ge + m 7 v v t. + g 7 3 g.94 --

'T *E 9 1G ED *D TDC fO O WO D 100 S DM-NSE-95C)IS-9LES(

i.83 n3N]^ ]HZE

EZHJ A]N3n 38d (M249-SI)CS9-ZA3-ZK13 naar ea. === eat, e, er es e e r g-

_ _ _ , _ __g

---s-- , /

btG'o \

/BSo \

g- + \ + + + + + +

=

w /

\ '

2 \ / m n f

\

' n

, n E- t + t + + + En ma t \ , om r /

r n / GOO *0= 9NidWtfC

  • n j \

,I tCIS301-90 H7 + + g t /t t t + + ", N ma , j ,u a

2 ) Z l

I E" t + + I+ "E g + + + +

gE I Em i I l l '

l I C + + t I t t + + +

a ,

l j -

fa I

l

%W ">E9'GI S)f tf3d

-.a i If .e g- - - - -

355 'S'E O '

3D1 E' DED' 39dW[ DO'E59 2A373 E"E 1NIGd WnM133d5 NOI1HB37333W WW133d5 35 nod 538 EEG7J M3 -815 quNH31NI 1W13- T IIND 35539-5IAW[

SEE-II 3B09I..l e O O

m N -

5S NEILWw37333W on;i og- aq- ny or on j na:t -

a '

l t c<,> <

E N .

l F o + + + -l

+ g y + {cli

n. n.

m m I u

n.

I ~

_- ,s

,j m R z f B

+ + p' + + .

l Oi o a e y p' E N ' I E /

+ + + -l b On J h

+ [+

\

1 L w L F

J w + A+ \ + + + 3 i \ >

M i m d \ b

? E -

~

F m F - (N N I w z \ b

[^ E id a + + + 3 -

S z n.

- + -

u. r -

E W

b hI3 W

+ + + go+hs + ;5 0

F E I F m c.. [

F U n' + \

U w O ' + + + N m  ?

to

}

r4 z oE I -

e o R H 9  ?

Z r - l 0 3 g y

- + + + + + l 5 w $

5 l J E'

$W a

u '

s I US g

l 00^ g 00l Di' ok n$' QN' -

Ga'l seuww3,333w sS g

R O

O n

mG ZG d]EnrS'nn3 8 y- = C, " ;- oi e "1 gon E'

s'n_ . - - - -

,r e

3 D 5 2 m 0

5 '

t t + + t wy =

=

W  :

' o o-W D 1 d 3

3 d

H E ' \ 3 5

p

' ,o 3 0 t t y M + l a l l1 s 5 g t{I 0 /L N

D 6' E

j E d e 5

3 5

t t  % + t ,t n

o Z

=

M A

' H W

D 3

7

\

N - ' a

]

1 \ v t 7 D 3 t i I}l 7 Lg, A

V J t

Z

- Z

~ E '

[/ / ]

I I I N

1 N

D 9

E l/

/

/

N 3

8 0

D H

I D

91 F

C

/

/

/ =

3

+ 1 4C + / t =

9 I

7 d

' t a 5 V O' R

3 3 xv Ss /

O 5 3SP /

3' 0#/ /

5 3 O d ld / 3 A

W M

E a

5 t + 9P ~M 0O

+ t [, .t

=

M W E 1

N 1 S 3

, J

+ t i O 3 i + + t /

3 d 3 ' -

5 5 -

T 5 -

l N 3 - (

I O I 5 H

v-N A n 1 1 3 WN M W b + t + t t 0 T9 5 3 3 3 9 -

E 5 7 f

  • 2 5 3 3 .

0 5 3 3 D , S 3

9 3 - 1 A

3 W g' ' .,T S

8n . a[

"E C g/

I mU ZGN 33Mrnnn3 A

W E ~

o _

I- ,

!. L Ll} , fljll *l(if!i [r :fF!I  !  ;

l  !  !

O n

iU 3

5 =

= L-g Zay3Qlnnn3 ~

"z- Y u,_on a

5 g .s O o C c-W O o7 h t + + + G .oo 1 O

/

3 O*

3 D d d e 5 W s E e \

3 -

5 o A

\

N * .n O 0 t e + +

\ o.

d 0 ^ \

\

5 \

3 8

6 W

5 m

s \ C B t y

\

+ t * .o

.s o

Z 2

0 4 H 0

7 3

- ]

1 1 3 t t + t * . c.

S t 7 A Z

I 8

3 I

2 / ]

I 3 3 1 1 " )/ N O H 3 i

l S

I d

A 7

N I

O d t t

/

/ t ' . ,o 3

n 3 '

5 l 5

3 W O f * .e 3

t G t A nL$

b l t t NO O / .s M oD

~

1 1 5 s J N 3 s* /

O 3 i

~

v t t aD t /

3 d 3 aN I 5 5 s d I

5 eFN N 3 aC (

l A I O I

A t

[ .r )A N 1 1 D n WN 6 h O + y + t

  • b b

9 5

3 3 3 -

5 O E 7 O

  • 1 A

5 3" 3 3 S 9 3 3

0 ~

3 A

1 3 W a, e 5 J

=2 3

I i

n Q m

Zug3QCnnn3 A

W E

O

. ;i !I l ;liII,, r;jt,I:

l EZH] A]N3n 3 8_d , _ , , , , ,

o' na at , r r anos ao. one not E

ggy.o 3 /

r- 0 9t'o

\ /

SC7;O /

+ + + + t + t ~g

'g-

/

/

/ 2 3

S.-

go

+

j

+ -

/

t t t

'd n

/ I r

/ M n 2 m , /

  • 2 3 -

~s / 4 j;- + +! /

\+ ./ + t t t -

-E H

  • r -

\ l+ r "?

l, qSOO*0s ONidW1fG I \

\ I \ N9/S30 l-90 LJ l I  : -m Q-g + gypy + t g

8 t t t t g

)

  • l 1 1 I i

.;- + + + +g I + + r + , g

. I a l i 1 i L g-- oste t a xvu ,

' ' ' ' ~

a sis '-i3 ' Esai is62 30, $

aZir =sewe aases =Aa,a c twIoa wnsiases noIluaa,anas .

I E' 355 WW133d5 35NDdS38 80073 *ZIMOH 73553A *1NO3 T lINn 35539 SIAWE V92-II 38091.4 O O O

EZH] A ] N 3 flE] ] ibl_d (Al-A3)S65-ZJ.A-S2A3 a noi no. o on o ur a. an as . . .-

u- g- -

-m EOl'O \

f~~ bbO 'O

\ /

~-

+ - - -

D UO

\ t t , t t / t -~

\

\ /

3 3 n f n,

, n ,c-

. + + t t + + ,z. n t

M" \ "M r r n \ 9 0 0 *O s DtVid MfY O R

$ \ , N9/S301-20

}

a.

sg + + \ + +

. a G

g t t t gg

/ G z \ j z G

,g + t -f

-) t t t t -m G U 9GC9'O BMIf3d W C- t + t t t + + + -C a a O'35 5i 7'3 " Shi3M ANb3 307 020 39dWE 00'565 = 43 13 C 1NIOd WnH133d5 NOI1Hb37333W 355 88133d5 35 nod 538 BOO 7J 163Ilb34 73553A 1NO3 T IINn 35539 5IAa1 892-II 3BilDIJ .

O O O

s t

EZH] 'A3N3n 3BJ (B01-AD)609-ZZH-S2A3 Q1 V E- T 0 001 D D9 GCE GG1 D6 DE

.s . . - - - a a .

I'91 0

\ p

/~__ 09/*O r

g G I. O I /

I / .

g- t + t. + + t t g .

/

i

/

3 3 / n n + t t gp n g- y -

r

/

r n m

/ 3 3 3 3 /

-4 /N ._ a -

H 6- t t /t \ 1 j t t t t 69 G" / \ =G Z j \ l

  • l GOODsDNidbWC m ;- t i +

g 4 i l +

N91530190 t t + -; m

+i m m ] I I, I I I l I l

I I l

[ t tl l t g

t t t t -[=

" LJ l l OIT l l 9 9391i &X1f3d Q*E2b9'~1'3'553A INb3 301 's 8'

DEC' DdWE Qu'609 = A3 13 + 1NIOd Wnb133d5 NOI1BM31333W E' 355 bM133d5 35 NODS 38 BOO 7J "ZIMOH 73553A *1NO3 T LING 35539 SIAb1 l V92-II 38091:1

\

O O O

1j lIIllll(

l(1lf

~ .

%I .

J), '

.- mU zGH42x - nnnm

+s 3

5 U.- s5 a -

g -

G."

'2 g -

. , D 0

0 5 '!*I

- .1 D G -

E w

b D '

t t + t u + L- .

D D

1 o o-l 3 -

O' -

3 O m ' -

d 9 E~ r W i

0 6 \

1 3 6 \

\

\

5 O'

- N + + .r t

e D 0 ' t 9 t \

\

s

\

d 0 - N \

5 d' 2

Y \

'\ \

~ 3 8

0

.l a

/ k E b

9

- ' v t + t 0

. 0

.1 Z

O D

4

/

H 3 ]

1' 7 O

g

+ + v .*

r 1 3 ' + j+ .

8 9

1" W

/ A 2

- 3 h

]

I I

I 1 A

// N 3 6 N /

QC,

/)

8 0

3 4

I D 0 ]

9 1

1 3 d

' t t t v t 5 n

3 5 O

5 h W O / 3 t S C +

t t

r

m. hna 4' b b d t t

NO

..T N 1 1 h Dv J I

/

N 3 S= / .*

D 3 i t y t 3 9 + /

3 d 3 0N /

1 d c

~

5 5 T W -

5 9V 0O i

I N ,3 - (

O 5 m

- I I t N i A A o

. n b N b

h

)

.s 6 b b y t t t t o o 9

3 5 3- 3 1 C

E I

3 3~ 3 .

A-3 S 9 3 3 -

D 3 A

l 3 H ' tl< t - - -

g s= ,; 5 5 $- eG m

g g. *e.

I mG zGy43x - nnnm A

W

.E 3s llll iI l

^

O n

~n E Z5y4$MInnf-

.; g' a,. g I. * .* = ." *G - -

O

, 68 E

D-0 .

t t + + t G_3 .-

w W 3_*

W m 1 E O __ .

3 d .

3 W

  • q d E '\

\

5 \

\g t

3' + t + +

\

+ .-

5 Q ./

N u /

a 5' C d E 5

3 3 /[ .- Z W =

+ t t

\

\

M .

. H A \

J' W 3 )\ .

x' E 7 'L '1I l1l lni t

I IIIIillg t + + ...

E 3 t -

V 7

J 'byI Il li g g l( ,

/,

A l

2 S E 9 // J

~

- O I

I N

1 O

S'

/

N N

3 8

9 I & O / '

+ . 3 W E + + + / .

n l .

0 M +

N o 9 3 d V I O n

d W W

3 d

9 1

6*9 /

S S

3 N 0i d +'

3 E W .- 5 + + t 1 l + .

.. d' 7 M5 N 9V 9 W 1

5 0Q d.

X 3 s' + + + ..

n 3 ti + + -

W d O' s 5

T N

m.

l .

E .

y e

g I I - 3 N 1 .s n W W ' + + +

+ +'. .y .

s.

. cs 3 3 .

5 7 .

5 3 3 a

3 3 0 - v.

i 9 3 - -

5

- W 1

=g "C G b

=,g.

I "w * ." n ZGye-$MInnf A n m W

E o

s

., r i ' ;  :; [i,p; t't

EZHJ A 1 N 3 n El3 B _d a ,. o3s,s.sm ., .,

reat no. aos an a. as as e r r a i p_ ___

S73*O \

89p'O 'y 7 7 b- t \ t / t \ t / t + t -b Q) \

,/

. b /

' 3 3 l n n i - +

M 5- t t + 1 +I + + + -E n no l

=m r l r m

n ano- sntew;c 4I

-e c .,

j wwao : sar; j-4 4 + + t

.,Go H $- t + + l t -$H cG Z ' Z l

. Ll

+ + + *U U.- t + + t t m- =m

.- t + + + + + + + ,

a a

  • .2

-.L-, -

.gy.g .

OCO* =9dWE 0 0'55i25 =A373 E 1NIOd WMB133d5 NOI18837333W W8133d5 35NQd53H HOO7J M3 9 8388 DE79 XMW T IINn 35539-SIAWE 942-II 3El191.4 O O t-

m wG Zay4I3nFRnn3 e

=[1 om_ f a'm e sJ'

- - Um-

-v e

C '

6 E 9 P -

D o + - .

+ + t W

t g .

W = y, 1 9 -

3 d -

3 W d E \,

m _

5 \

\g\

3 e 5 O + + + *- \ + n e

, N C ij C 3' Llll i,s

d E .

I,8 E _

5 5

3 +

ll I,f t

iI l,II4 + +

,. Z W 0 l l I( H e

4 W 3 J C 7 '

/ +

n D 3 + - + /t .

7 f 3

'e A

3 4

2 1

A E ]

I I

9 1

N /, N

- 3 W

I D =

3 n

H t t + t =

3 d

/+

i Dl I 6 d W O

D E W l

o e

3

+ t

+

B 1

7 W + N

  • 9O + '/ -s 9 6 5 S=

t -

X 1

3 o' 3 9 0iN J

D 3 h + + + t c i

+ e W d -

1 M '

. 5 a 9Vl /

E" 0O (

E

, 3 N . 9 l O - .

E I I L T

)

N 1 _ s n W e

s W + + + + + 2r C Z

3~ 3

~

- A 5 1" -

- 5 .

9 3 3 3

3 .

8 W-9 -

3 0, J C W - - -

e 5 s'm1 "$ G o%- *k f a I ZgHA2mnInnn3 o A mA b

E m

EZHJ AJN3n 3Bd a ,. y3co,.cs . .av.,

n , , ,

..=. ,=

. =. . . . . .

im

_ __ .g uso \ r, /-

8W \ /

\

+ + + + b g- + \_+1 4g

\ /

\ e' 3

3 \ / n n / + + + -E n

, n G- t t +Il + + =n na F F I n n / 2 2 l l 3 3

d; + + + 1 +,l + 4- + +  ;;j as Go l Z

-e s.,, Z l

G1.; + + + 1/ +. + + + .gm

=m J

m=

HI II 14 + + + +

.; + + + "

" . l l OW" TNidWW Nmso I-soM g LJ z a.

3'55 'SE- 307 N I'

DED' 2SdWE DC'ED9 =A373 + 1NIEd WMW133d5 NEI1WW37333W WW133d5 35NDd538 WEQ7J EN 9 W3WW SE79 xnW T LINn 35539-SIAWE V82-II 3H0913 O '

O e

.a f

EZHJ A 3 N 3 n O 3 B _d a ,..y>co,.co....av.s unos an. aan was no an as e r r g

g ast o -" -

\ r-- s f V* '

\ /

t (tj A t + + + =

\ /

\ #

\ /

3 / 3 n / n n G- t + + + / t + + + Gn na an r i / r n I n

3 3 3 I l 3

-i -4 e , . ..

HI + + t I t, t t + + $H Go l aa z  ; z l

A[- t t t j- t t + t -[ G m= L,1 =m l

C + + + I4 + + + + .;

I; -

010' 'ON!d W'vQ N"JtsBO t-90.J I

> LJ 3'55 '9E o 3o, $

DED' 9dWE Qu'EQ9 = A 3 13 + 1NIOd WnM133d5 NOI1WH37333W WW133d5 35 nod 538 8001.3 M3 9 W3WW D[ 19 XnW I LING 35539-5IAWC 882-II 3809I3 O O O

EZH] A3N3fl 3 8_d c ,,. ,,m , . ,_ ,,,_ ,

T' ' , __ _ _ '_ _ _ _ _ !i" b _ _ _ _ _ _ _ _ _ _ ,

\

\

+ + + + + -b g owot s+ ,

\. -

g ,/,/ / 3 3 n n

np + I r + + + + +  ;;n t ti on no I I f R r 080'O DNidNVQ

' y fa -

s N9fS30 1-90

+ + +

_a sp t + i + + + t,. s l I "3 G" Z '

z I I I

/

l I l I

+ + + $

E[

14 "

t t I g i g

I t t t

" Ifl 1

y + + + t + + +

w w_ ' '

3'55 9E*U 3D7 a

DEO* =9dWE CD'E09 =A 3"13 + 1NIOd WnW133d5 NDI1WW37333W WW133d5 35NQd538 8007J 1A 9 W388 DE79 Xnd T LINn 35539-5IAWE 382-II 3B09I3 O O O

,,4 ,

W e

ne'h, as b -

g O g e n ' ,, si e U D' u + + 4 + g 4 i

w si D. Il m G I i

Ok z 2 I

6* -

@D m + 6 + + , (+ -l W U e n-

?

G k .

r "a 1 I n o $a + i N

+ . . 1.i :g I

~

- f ~~~ ~~ u g,d [ _+

  • 4 +

4

~

z

~

  • w -m -

P m

=m \ y S W F s

- E Z x Z

\

g y

+ + + \ 'a

\ ]

8 '

g5 + + + + + .;3 u

E E g 1 F

a u s k W + + + + 4 \ 4 F E W. \

Y i E m.

2 Z S El O $

W H 0- $

m \

m y N =

+

w ed z + + AE 1

e + 4 + l I

w J A \

m H

1 Wu uo l 1

I A

uJ "

kE ne'h O D'h 0 9 EE

. t

.A y2 {2lum 3_ig73g o

O

1 V .

5 9 NOI188373))W OB'h D O',h O2'E Oh 2 00'

, O S,'l O{

[ O $

e n

  • ti F 0 0gl -

+

g -

+ + + + g -l

a. u l W G G. I l w I o /l

! 4 ,)

e 5 A,

+ + +

m y

0 0

g6 0Q

+ f +/

9 E n 7 n

m hg

+

-h + + + -l a s h u w ___l____---

I o

m 3 W L + '

+ + + "!

s

m E Z N \

u g' $ [ H \ y

[ + + + + \  !

i a X E 3 3 + + + + + -3 E E I '

g b U + +.

\ .

k

+ + + \ 1 F 0. y' H mm \

Z m' \ e J Z 8 0 m '

T U H O' U N

. 5 l X

h Ed 3*

g i

{V

+ + + + + l i

g E.

E H WU l E y g g l g U g 3 , i , , I 4 R gg.h #

l O O'h O 2'E O h'2 O 9'l DB' OO ,

59 NOI188373338 j l

O

s EZH] A3N3nO3B_d (as5-sY)E39-C2A-LEAV-51 ,

ros e., r. == es -

e' e b -

r -N

'Toa o T

'g- TIMt .t t t t + + + g 3

I

[ 31 n / +

.n

=n n ier t L +7 + ' + +

n= 1 o n r

r n n f 3 3 \

3 3 NC-G*

.t ft f t t t t + + -C "G

z l Z

I t 't ' + t t + + + .g m A G-
  • a Ol0*=9M/dl4/(M 1

\ t a*

Nets 30 l-80 0 .

'~

t t + + + + + +e ,.

as =

P-' ' .. . . .

g 355 . DOE *O . 3D7 s D E D' =DdWE DO'E29 cA373 5 1NIDd WnM133d5 NOI1WH373338 W8133d5 35NDd538 8007J 1A 1 8388 DE79 XnW I IINn 35539-5IAUC 362-II 3809I3 O O O

  • i 4 i 5 9 NOILbH373338 GW2 09 1 08' CC'j QG'h QQ'h 0 2'.E .

f ~~ < .

a e  ! .: -

n

+ + + + +0 El .

1 ~.-

c cI t

t u 6; r a U 0. i w r O 1 R d m 24 -

6 Mg gg + + + + E- -i z

n 0a6 'I a

a l n

a.

m e .rI eb + + + + f a .; N

$n O g d ) _ ,_ _. _ _ _ _

' - - + . + + +

a w .._-

~~N J

8

  • x L'J

'? m N

O z e \

Z A)

(

\_/

w a Z H

+ + + +

g 3

y

]

S u-t N

[ N m

\ W

+ + + \  ;! y

$5d.

a E w.

~ + +

\

Q V

X U m' + + + ".*

3 w ry- - + +

L Q.

m u-g rs \ s F

z 1 0 )- g H H -

z r t S 3 [ + 9

+ + + + g y y z m $

h ;W U j g a uo I 4 EJast i .#

Q9'l D S' 0G on% 02 'E QW'2

$ S 9 NOI1WB37333W s

E R

Supplement i (N

s

  • ) g

EZH] A ]N 3 F1 3 8_d (s,-sy)to9-tra-9any-s

~

y a-r on == o oi o, on es , r y @

U ,#- ---

8  ?.

o.

gggg ~M ,s'

  • 5 lpS D

\ r- n /* g i \ /

g + \]

L+ -e\ t t + + 'g

\ /

l  ; /

I

/ 3 31 / n n /

n; + + + + t t + + 7, n no / on i r l / r n n 21 3 3 l l 3

-4 -4 Hy + + t I t t + + + $H Ou l au z ,

z l

U[

in '"

+ + + fll - t t + + gG

in II t + + !4 + + + + g-

= l i

ok7 N N!dHW itDtq30 l-90 5. J g

.LJ 3 355 92 0 307 3 OED' =9dWE Da cO9 =A373 + 1NIDd Wn8133d5 NOI1WM37333W 88133d5 35NDd538 80D7.3 M3 9 W388 9E79 xnu *E lINn 35539-5IAWE 80E-II 3B091.4 4 O O

  • a e i 5 S NJILbE373336 "

C:'i C5'2 C D ',2 05:1 CC;t C5' CD i '

O O' ,

M  % h a o "

+ + + + -+

I

-I I NI E fl gi F G O t

u D. i u r i 1 R tn

,J

@ a + + + + , - +'

, j z a ~

c M r-----------

0. O L
  1. n m e

+ '+ + .; N z

s n 'r +, '

I

[

a U

J

/

\

\ ,

U a u + + + + \ + .

J ,

\

' l \ >-

[ #

z$ \ U

/.m \

o o 4 r

Z $6

.a e

\ Z u \

t  ! M H Q

'V' d 6@ + + + o$

+  !

e c<

]

U

s 1

S a

+

W 0

a 5 M: + + + + :3 g e

e m-X u g- k 3 w m + + + + + t

[ 0. -

\

m a. g d \ .

  • z i 0 I 4 H H l a

Z p i

[ l k

+ + + +

y m {; + i I

9 *

$Wu a u i i

e g

a, u; i

[E QQ'E B5'2 00'2 05'l 00'l D S' 00' " .

s 5 9 NOI1WM37333W

[

R r

i h

,) Supplement i l

l

,/ -

( i

%j

/ y j s =

FIGURE II-31A TRVI5-BESSE UNIT 1 RUX.6L]G RRER 7 N5 FLOOR RESPONSE SPECTRR POINT 1 ELEV= E6E.OO IMPG= .030 RECELERRTION SPECTRUM o

o LOC O.2OG ESE '

"I Il

/~ l ll

/ \ -

=- + + + + + + lM + S l l \

/

- m

m. + + +

\

-r .; .

_m m .- 3

? I i l e i i o; I I z z i a o N \ + Qt; H + +

+

+/ u E l a a / u u j l J J /

+ + + + + + EU U E; + [ U U / [I

/

E O229

+ + + + + .E E- + +

/+ t_ 0 f"8

? /

a /

g - J

u. .;. ,,2 l ", a 7-AUB7-NS3-565(AB-108)

. a u. .. ,..

~

F REGLJENCY [HZJ

[

5 D NC E L ea M 3 '1333 M na's oc: aq- as- ny ne oc j i

g. g . g' .-

n E t'l o l r a +1

  • u

~

+ + + +

I 3

u ,

4

0. 11 m e .

Jl A

1 u r / 'l m

z R j g

a r --~ 7_ __ __+

+ '

7 ~+ -'

a gy m

n e a \

N

+ \+ + + + .;

[3  : '

I gb L- ,

J + .=.

2 u + -

1.J +

" p I'

$ Z e== u

,e g - o4+ + + + ..

oc R O

bd u.

N N y

\ .a y$ + + + + , g

[ t g a u N

g b

u + + + + + .*

~

\  !

3 z \ a W oe

  • H O' X W F N d [E d + + + + +

j ., fg a .

bdu yu o N

a e

R ea821 00l Oi' 05' Di 08' 00 5 9 N E I J.W M 3 '1 3 3 3 W Supplement 1

319083 II-eld EBAI5-93553 nNII T WnX 97[D W83W 1 A1 J7 OOH 83GdON53 5d331BB dQIN1 T 373Ac 595'00 EWdD= DED W3331 3WW1 ION 5d331MnW O'EOD 553 .U E 1'03 u

.a. + + t + + + U

~-*

+ +

ni SU

+ + + + f + + gQ Gj +

08-E 03SI9N 0vg.o ogo%- /

t Z 2 s n G

+

+

I

+ + g t + + + / T--

g a 2 g n n \ r r

gg + + + + + + g g

+ nnn n  %

2 3

\

\ oyg h

+ t t t +

t + . 1 m / 1 g l

/ t, _ _O_' to_L_ _ _ _

.o "e f

/

u g ._ _ _ _ _ ;

- .. . .ac.s,s3,..s,,(

JlE 3lE1F 3 N1_ A JHZE

m 5 9 N C II.W e 3 13 33 6 c:;

as 2 at 2 t s.~i c2i as ce

[ O g -

r F1 D i e a + + + +o I -"

u

+ I W in E ' O.

m

/ 0l, 0-u I 0 R .

Z ~~

~J D

m O + C _ _ _+ + + '

i u O L--

E .u _ _3 n O \

m

+ + + + + .g N

'. uI

@ ~1 en  ;

__ __ _ _ a

+ 1 jm m u + + 1_ _ + +

z t% >

4

a?;; ~ e -

u 2

C * ... W J e a

a

- + + +

4

+ g R

0

\ W 55 + + + + \ ,  :: E E e F

\ l' a u

+ + + +N

  • u +

F oy' g z Wm K 3 z"'

5 0 g

\

9 U H c' l X.

m p q

+ + + +  ! m E +

l I

$W J

u I x ye l 4 e ,a i

R Ek2 80'2 85'l D 2'l Oi' Gk 0D*

5 9 NOI1WW31333W

> Supplement 1

a .

(

5 E NCILbM3733Ob Gh'2 C '2 09:1 G2:1 02' th GC g

  • x a '

E M 3,  :

F a -j y + + + + +o y  ?

rr D. Il --

m a OlI a.

u I .  ! l m R j Z

~ ~ ~ ~ .g a +

{ ~~---- + -.

g M E 14

+ + +' + .: N 0n J 1

+

1

~

l 2 + F-~~ + . -

" +E- >-

eN n

s U

'. E u F Z e z U i

t bE g e a + + + + 2

u. R 3

d \ -

y i

s5 + + + + \ -

3 1

l' N m m k a C + + +

x  :

l u + +

E a. y ' s

l. H mm T E i

Z m.

j a z ea

\ 4 U \ - $e H O' I W F N @

d 0 + + + l 5 g

[y + +

o .

i j O - , O

[

R EJg g.2 00*2 09'l 02'l Oi' Ok 00*

5 9 NOI1WM37333W i

l Supplement 1 l

_ _ ,, , , , _ _ _ _ , _ _ , .__ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . . _ . . - . . ...e-. . . + -

- +,.

y .

1:19083 II-E23 EBAI5-93553 nNII T WnX 97EC W63d 1 A1 37OOM 835d2N53 5d371bu W33373MB1 ION 5d331HMW dDIN1 2 31 3 A = 5255'00 EWdU= OED E 703 '

O'2OD 553 ' ' ' ' ' ' ' ' '3 -

a g

+

+ + t + + + + G w  ;

09-l G3SlpvI e

m" G/(Vld/VX'=6lo

+ + + + + + + + "a ;lL Q-

' l Z ,

s [ j Z a

G +j g.y s g- t t + + + + +

4-4- .

I IJ 33 lI, 12 n

E

) + +

j 1

+

n P

r" n n i-n

+ + +

/l +-

+

i i

n m

ia i

/ \

etzz g =- +

/ + , + +

\

\

+ g.

" / --

{ ~/ l O'//S E

/

y = - f . -

.. . m_.m_t,: -

o ,,....

. - . ,. .. . mo -,o -,

tE-V0sL-A1t-ses)vs-sga(

1_8 3 O l i 3 N ] ^ JHZE

a .

. , o km

~

T '.. . : . ".' 7!~.:

  • g 2

C

  • i- . r j. ,

-  ; 8 J

+ + + + -

I L'

. f. tj.f

~' e C e A e L U E 'rE (

i T A j Z Of b $ 3- '

'+ o

[ S O /v+ + + .I y O T ~~

g d G N P p i

e e 1 e N

.D a + + + + j+ g a s I

e U -_ _.______- -

LJ W

J U , + + + + I

- z --

y LA N

< \

Z

( N -

? [e s

=5 i

a +

s +  !

u

ta e a + + +s

$ R N S

\ C LL.

d N X

ggF E + + + + h+g  :! g

\ 1.

w r4 U U + + + + + \ e i F a y' \

H Wg \ -

2 l

- 3 z W. \ -

3 0 0 E W H O' $

W F N C

$ g

+ '+ f T

[E + + + m i

t j l l

l 4

W W y H g ue l

l l I g J

  • R GQ E C5'2 G G'2 05'l QO't Gi GO' 5 9 NOILbb37333W l

J Supplement 1 1

d a

.,_1 .,-se.,-,-, , . , - _ , . . _ , . .._m,__,, . , - . - _ . - ._ _ _ _ , _ _ , , _ , . . . . . . . , _ , , , , , _ . ._m_ , , , , , , , _ _ _ , , , , _ _ - _ , _ _ , _ _ _ , _ . -

e. #

. . ; y . - f ' . - :,~ f "

DRVIE-hES$C UNIT 1 RUX bLIIG PRLR 7 E *W F"L E U R RI. .' n e.E e. .i s t. : i. ,

RCCELERATION SPECTRUM POINT E ELEV= 623.00 31 M r' r. -- .0:4 o

" LOC y

. D.2DG 5SE

[7i i I

I s a

I + +

7 + + + + +

l+1s l 6 DPA *bELw'on 1 s .%UtNG r .e,te, g

I ..

m. i

+

+ + + + + l + +

m)-

1 1 1

2 l -'

Om H [, 4 + + l 4 + 4 4 -

i- g I .

l' *'-

E l I

r I i.

u -

I J I -..

um +

i

+ + + -

uS + + + ) + i vi u 5 T / y

" / i s'

g

  • r I E- '+ + + /+ + 1At- \ + 1 e / e
l. /
  1. > g W" O

' r_ _ nAcn

,/ .

i o-urn - - u m .- m ) FRE LIE N E Y EHZJ

e .

s l 4 6 . . . i s

'4 ...  ;

t e r i _

.e O r-

- i s  ;,- ,

e h 4 .

a u r - _, "

3 1

~  :

1 4n u.

k+ + +' + a.v g+ . '

e--

d 5 9

= t

- i u- -

3 d

W Mp -

G E  % i I i1 N I l I l 1 1 l O g l d 0 + + + . "

G F

U 0 -

W E l f

E / E W 9 /

O + / + + + " Z O

- A

= - f# '

H 1 / .

3

//

d ' -

J 7 / M 1 3 + + + +

.4 [+

A - .

A -

3 .

X E W l

I

- .3 W

1 N

N I

W I  ! 3 D

  • 3 H - + + + + +  ! l I D d / l F E J

I d

7 f E l

9 /

e W

X W +/ / + "

3

+ + +

8 w*

e e

n n -

W W e

1

/ .

d I 3

+ + + +

e 3 + T u

I d 3' /

m.

I 5 5 /

N 5 .

_ n N /

3 O 9 I 0

~

  • 5 5

5 1 E W O'

)

3 W + + 5

+

+ + 7

' 8 a'

3

  • 1 5

I 3 3 A 3 0 '

a g

W 3 -

W 1 g L

w t

E "G

" I M f

  • E yH 331pf
  • Mn3 q

, ag =ECo "

. ( itliI t liii Iitf,.ti.

a ___.._.._-u . , , -

e 4

3I9083 II-K V libAIS-93553 nNII I IN1Wt>3 51Hn31nM3 NS J7OOM 835 DUNGS '

Ls.J's s sce t W33373MW1 ION 5d331WnW dDIN1 2 31"3A= 51900 li N Jrf.*-- sr . a azs 55 .. ,- ,--, ,,...

d. 703 '

0 + + + t + + + 4 gew ,_.1...-

j i q ow-,% o.3 I m

j + + + + + 4

+ .

/

/ ,

z / -

gg + + + + + f + \+ 4 j, a_ / I -

2 1 m /

n .

F / i Q ,* + + .t

+ / + + -s -4 , . .

n. / \ l..

m / \ '

/ t s':

f- + +

y

/ , , + 4 l ,. . 9 v .,

i

a. ,'

jsw8 i

E ,

e . ,-- ..,

' t

- .n .

. ... .p . ~.

..s,3,.p d_8 31E n 3 N J A ]HZE

8 e

W i, i l .  ;.lt:I.

. - li: e .,l!*

..i:

O w __. .

E s- %- .

D ,

w .

. + e ,

+w W

.a -

. \~ - .

2 - - __

r ~ _

- 4 _ .

4 .- g .

y% , 1 1

I II 0 .- * + + . .

1 0 ,

/

1 9 Y C

. 1 -

- 5

,- + +

/

+ + + ..

Z E 4 j H D 3 / . ]

T. T 3 + t +/ + + .

's. A M

7 2 ' l S 3 1 V N d N M- n I D + ... 3 1 +

I I 3 d

. + +

l"e+ R n E 3

8 M / 1 0

9 1

E 3

/ 3 I

3 3

W n 5. + + + /+ ..

.. 8 5.

M W .

W 1 S.  !

1 N

3 3 E. + + + + g,

  • I d O' .

5 <

T N /

I O (s I

N I

1 a

n W + ., u 3

5 W

3

. + + + +

/ s 5

7 o.

3 3 3 .-

9 3 0 i m

S

- 3 W

7 a,_ g

. =2
g,a a __ s I

A i

n G ZOw4$nrnnn3 te d

5aa ,yt W

EZHJ A]N3n 3 B _-1 9LS-E14-Slati-

... aan out e, on , a- r

, , , et, ,

a o E

es i 3u

  • + t t t

-mads

, t t t h 5 ft 3 18 t t n

i .. . .

t t t t + 'En o n I-I't r-l 81 n is 2 3

l s'!;; t t +

as t t t t gy

-' 0 Z

 ; ; + + t +

lus t t t + gG m

+ + t t

.,. t t t . + -G 355 DE*O .

C

,, 307 =

OED =9dWE '00'913 CA373 2 1NIOd WnM133d5 NOI1HH3'1333W Ud133d5 35 nod 53M HOO7J 1A 3Hn13nU15 3MW1NI T AINn 35539-SIAWK 3K-II 311091.-l 2 0 6 _

[v III. SEISMIC CATEGORY I SYSTEMS CONSIDERED IN REANALYSIS

1. Discussion 1.1 The systems (or portions of systems) considered in the seismic reevaluation are listed in Table III-1. They consist of those systems and supporting systems required to accomplish safe hot shutdown after a seismic event and continued shutdown heat removal in the long term.

1.2 The evaluation of fluid piping systems and piping supports discussed in Section IV considers the fluid systems in part A of Table III-1. In order to assess the adequacy of the piping, all stress problems involved in the original analysis of these fluid systems were evaluated. A random sampling of supports was taken from among the systems in part A for assessing the adequacy of piping supports.

1. 3 The evaluation of the adequacy of ventilation system ductwork and supports discussed in Section V considers the ventilation systems in part B of Table III-1. The discussion of the pro-cedure which was followed to design and seismically qualify Seismic Category I ventilation ducting and supports applies to all these ventilation systems. A random sampling of supports was taken from among the systems in part B for assessing the -

adequacy of duct supports.

O III-1

o l

TABLE III-1 (q t w/

LIST OF SEISMIC CATEGORY I SYSTEMS REQUIRED FOR SHUTDOWN A. Fluid Piping Systems

1. Main steam system from steam generator to main steam line 4 isolation valve, including branch lines to first closed valve
2. Main feedwater system from main stop (isolation) valve to steam generator
3. Auxiliary feedwater system, extending on pump suction side to motor operated valves upstream of service water connections. ,
4. Emergency diesel generator and fuel oil transfer system (also starting air receivers)
5. Component cooling water system essential headers and surge tank, and branch piping to seismic /non-seismic interface
6. Service water system essential headers, and branch piping to seismic /non-seismic interface l

Q Q

7. Makeup and purification system from reactor coolant system (RCS) to seismic /non-seismic interface (for RCS pressure boundary isolation)
8. Borated water storage tank (BWST) and low pressure injection l system (LPI) suction piping, through decay heat (DH) pumps to high pressure injection system (HPI), and into RCS (for bora-tion); DH piping to containment vessel emergency sump 1 isolation valves and to containment. spray system isolation valves (for i pressure boundary only)
9. Decay heat removal system from RCS, through essential piping trains, returning into RCS (for long term decay heat removal);

auxiliary pressurizer spray piping to containment isolation valves (for pressure boundary)

10. Reactor coolant system (for pressure boundary)
11. Spent fuel pool cooling system (portion intertying with decay l heat removal system)
8. Ventilation Systems
1. Auxiliary feedwater pump rooms ventilation l
2. Control room emergency ventilation

'\ J l

l I

. 3. Low voltage switchgear rooms ventilation

4. Battery rooms ventilation
5. Emergency diesel generator rooms ventilation
6. Containment air cooling ventilation Component cooling water system room ventilation

~

7.

8. ECCS and DH cooler rooms ventilation f

I I

I

! s l

.m l

l l

l l

[

l l

O

,- IV. EVALUATION OF PIPING AND PIPE SUPPORTS

( )

'd This part of'the report quantifies the margin available in the shutdown piping systems, including the supports.

1. Piping

/

1.1 All stress problems for the fluid systems discussed in Section III have been evaluated.

s The adequacy,of the piping systems is determined by the two factors, margin factor and seismic factor, which are defined below: l Margin factor indicates the extent to which the pipe is stressed to the allowables. i Seismic factor indicates the extra amount of usable stress available during a seismic event and the reserve which could be used by the imposition of a higher seismic event (SSE). The factor must always be positive so as not to exceed the allow-ables. A higher value signifies a greater reserve. A lower value'by no means represents a system failure; it merely in-dicates that a higher portion ~ of the total stress is due to seismic, while still being below the allowable.

r~N Mathematically, these two factors can be expressed as follows:

Margin Factor = -- Total Stress Allowable Stress Seismic Factor = Allowable Stress - Total Stress Seismic Stress where total stress is the primary stress induced in the pipe during a Safe Shutdown Earthquake event which includes the weight stress, the pressure stress, stresses due to other sus-tained loads, and seismic stress due to the SSE.

Allowable stress is selected baseh on the lower bound theorem of limit analysis, as provided in ASME Code Section III, Sub-paragraph NB3213.22. 4 The lower bound to the collapse load corresponds to the minimum material yield strength (Sy).

\

Seismic stress is the stress induced in the pipe due to an SSE.

, 1. 2 The margin and seismic factors are evaluated for two earth-quakes:

, 1.2.1 An SSE with a ground acceleration of 0.15g. (the design earth-

, quake),

i IO

'd'

1. 2. 2 An SSE with a ground acceleration of 0.20g. (the revised earth-quake).

f n

IV-1

1. 3 The seismic stress for the 0.15g SSE event has been conser-vatively calculated by multiplying the 0.08g Operating Basis Earthquake (0BE) stress by a factor of 1.875 (=0.15/0.08). The damping value for the response spectra used in the OBE analysis was 1/2 percent of the critical damping value (FSAR Section 3.7.1.3).

The weight, pressure, and SSE stresses along with the margin and seismic factors for the 0.15g SSE event are tabulated on the left-hand side of Table IV-1.

1.4 The pipe seismic stresses with a ground acceleration of 0.20g during an SSE event along with the margin and seismic factors are tabulated on the right-hand side of Table IV-1. The meth-odologies used to evaluate the seismic stresses are as follows:

1.4.1 If the revised response spectra (which is the seismic response spectra for a 0.20g SSE ground acceleration and a damping value of 2 percent of critical damping selected conservatively from Regulatory Guide 1.61 for all piping systems) is totally en-veloped by the 0.08 g, 1/2 percent damping OBE response spectra in all the three mutually perpendicular directions, then the new stress will be lower than the one for 0.08g. However, this was not found to be the case in any of the stress problems.

1.4.2 If the revised response spectra is not enveloped by the spectra for 0.08g acceleration, a factor termed the scale factor as defined below is developed to calculate the new stress:

Acceleration per Revised Response Spectra Scale Factor = Acceleration per 0.08g OBE Spectra at first mode frequency.

Although the first made has the major contribution to the stress level in the system, the highest scale factor from all the significant modes has been chosen. Also, the scale factor chosen will be the highest of the three directions -two hori-zontal and one vertical.

It should be noted here that the revised response spectra (for an SSE ground acceleration of 0.20g) is compared with the response spectra for an OBE event with a ground acceleration of 0.08 g.

As stated in paragraph 1.3 of this section of the report, the seismic stress for the 0.15g and 1/2 percent damping was con-servatively obtained by multiplying the 0.08g and 1/2 percent damping seismic stresses by 1.875. The comparison of the revised response spectra with the 0.15g SSE spectra would not yield realistic stresses since the 0.15g SSE stress was not calculated but scaled (by the factor of 1.875) from the 0.08g OBE stress as explained below in 1.4.3.

O IV-2

t

('v 1.4.3 The stresses in the piping system due to an earthquake of certain ground acceleration will depend on, among various other parameters, the damping values of the structure and the piping system. If all the parameters, including,the damping values, .

are held the same, the stresses in the piping system will vary linearly with the ground acceleration. For example, if the i stress is 4000 psi for a ground acceleration of 0.08g, it will increase t 4000 X 0.15 due to a 0.15g ground acceleration.

0.08 This is the maximum possible increase. However, in actuality, a higher stress will result in a higher damping value, of both the structure and piping system, which in turn results in a lower stress. This process continues until the entire system stabilizes to a steady state value. In this steady state condition, the stress will be lower than (4000 X 1.875).

The above example highlights two points:

1) The SSE stresses at 0.15g, obtained by multiplying the OBE stress at 0.08g by 1.875, are conservative.
2) The scale factor, obtained by comparing the 0.08g, 1/2 per-cent damping will be more realistic and accurate since the stress problem was analyzed for 0.08g acceleration.

fW 1.5 The method described in paragraph 1.4.2 to evaluate the stresses h during an SSE event is conservative for the following reasons:

a. The highest scale factor is based on the highest of the three mutually perpendicular directions. However, depending on the pipe routing and location of supports, most of the stress in the pipe could be due to the "Y" component (say vertical component). In the method described above, if the highest scale factor obtained from the X component is 3 and the Z and Y components are totally enveloped, the scale factor is still conservatively assumed to be 3.
b. In a piping system, the highest scale factor used could be at a higher mode (say 4th). In reality the stress could be totally governed by the first two modes. So, the scale factor obtained from the 4th mode will be very conservative.

Obviously, this scale factor method would work fine if the original seismic stresses are low to start with and the other

, components of the primary stress are not high.

In those cases where the total stress calculated for the revised response spectra per the scale factor method exceeds the allow-able stress, the stress problems have been rerun using computer analysis.

.A

)

IV-3

There were forty (40) such cases. Using this reanalysis ap-proach, the total stresses for all the problems are below the allowable stresses.

1.6 Table IV-2, 3, and 4 are visual presentations of the above results.

Table IV-2 is a bar chart showing the margin factor for all the problems for both the 0.15g and 0.20g SSE ground acceleration.

The stress problems have been grouped according to the margin factors. The factor, with a range from zero (0) to one (1), is divided into 10 groups at intervals of 0.1.

Sheet 1 of 2 indicates the number of problems in each group for the case of the 0.15g SSE. The total stress includes a seismic stress due to an SSE of 0.15g ground acceleration and 1/2 per-cent damping.

Sheet 2 of 2 indicates a similar grouping for the revised re-sponse spectra, with an SSE of 0.20g ground acceleration. Since a scale factor, always greater than 1.0, was used, the shift towards the margin factor of 1.0 can be observed. The grouping of the forty stress problems that were computer reanalyzed using the revised response spectra is also shown on this sheet. It siould be noted that all the eleven problems with the margin factor between 0.9 and 1.0, used scale factors and were not reanalyzed.

Table IV-3 is a bar chart which shows the grouping of the pro-blems by the seismic factors for both the 0.15g and 0.20g SSE ground accelerations. The seismic factor intervals are shown in the abscissa of the bar charts. As in the Table IV-2, sheet 1 of 2 is for 0.15g and sheet 2 of 2 is prepared for the revised response spectra of 0.20g. A shift towards a lower seismic factor for the 0.20g case can be observed, as expected, because of the high scale factors.

However, it should be noted that the fifteen problems with seismic factor less than or equal to 0.2, use the scale factor method.

Table IV-4 compares the margin and seismic factor for both the 0.15g and 0.20g earthquakes for the forty problems that have been reanalyzed. These forty problems represent piping systems in various areas of the different (seismic) structures. The margin and seismic factors for both the SSE's (0.15g and 0.20g with appropriate damping) for these forty problems are presented on sheets 1 and 2, respectively.

Examining the margin factors, sheet 1, for the 0.20g accelera-tion, the shift towards a lower margin factor (and hence a higher safety factor) when compared with the 0.15g acceleration IV-4

s cases, sheet 2, can be observed. Similarly, the seismic factors

(

'V

) for the revised (0.20g) spectra show a shift to higher values indicating a greater seismic safety factor, i.e., less per-centage of total due to seismic. The shift in both cases in-dicates that the stresses with 0.20g acceleration and 2 percent of critical damping are lower than the values with 0.15g and 1/2 percent damping. Based on the above observations, the factors for Nuclear Class 1 piping, Sheet 12 of 12 in Table IV-1, for the revised spectra were not calculated. The effort required to reanalyze these problems, the tight schedule and that the original analysis was done by a sub-contractor, Teledyne Engineering Services, would not be cost beneficial. The extent of the analysis performed clearly shows the margins in the unit design.

In summary, scale factors, sometimes as high as 6, were used to evaluate the stresses with 0.20g and 2 percent damping. In case the original seismic stress, 0.15g and 1/2 percent damping, was high to start with, reanalysis was done. In all the cases, the piping systems were found to be adequately designed and the stresses were within the allowable. This trend, extended to the Nuclear Class 1 lines, would result in systems that have been designed with adequate margin during an SSE event with 0.20g ground acceleration since the procedure for Class 1 system design and analysis is identical to that for the Class 2 and 3 systems in all respects except that the piping stress analysis was done by Teledyne for Class 1 and by Bechtel for Class 2 and rN 3 1.7 Small pipe, nominal diameter 2" or less, is supported in such a manner that the fundamental frequency of the system is equal to or greater than 20 Hz. The seismic stress in the pipe supported as above is conservatively estimated to be 1,800 psi at an acceleration of Ig. The shift of the revised response spectra with appropriate damping will not yield high enough acceleration at a frequency of 20 Hz to result in a total stress exceeding the allowable limits. Therefore, it can be safely stated that the analysis of the small piping will not be affected.

2.0 Piping Supports 2.1 Twelve supports in the piping systems required for a safe shut-down of the unit have been chosen. These twelve supports were selected in such a manner that a representative sample was analyzed. Some of the points considered in selecting the supports are:

i) Supports located in all structures that are seismically independent.

ii) Elevations in a given structure.

(- iii) Type of supports - snubbers, rigid, framed, etc.

's iv) Type of loadings - high seismic, high thermal, and weight IV-5

2.2 These twelve supports are analyzed for three loading conditions.

1. The total load which includes thermal, weight, dynamic and seismic loads based on the response spectra for a 0.15g ground acceleration.
2. The total load as shown above but based on the response spectra for a 0.20g ground acceleration.
3. The seismic loads alone based on the response spectra for a 0.20g ground acceleration.
2. 3 The seismic load for the revised response spectra is obtained by multiplying the seismic load in the orignal analysis by the appropriate scale factor developed for the pipe stress assess-ment.

2.4 The adequacy of the support system is determined by two factors, namely margin factor and seismic factor as defined in Secton 1.1, except as follows:

Total stress is the stress induced in the highest stressed element of the support due to supported piping load.

Allowable stress is based on the manufacturer's recommended allowables for all engineered and non-engineered support com-ponents. The allowable stresses for all structural members including welds and plates, etc., are taken from AISC Steel Construction Manual Seventh-Edition. However, minimum yield strength of the structured member is taken at the supported pipes maximum operating temperature.

Seismic stress is the stress induced in the highest stressed element due to an SSE event.

2. 5 For loading condition 2.2.1, the highest stressed element in the support (including welds, bolts and plate) is identified and margin factor is determined as tabulated in Table IV-5.

2.6 For the loading conditions 2.2.2, margin factor is evaluated for the same highest stressed element as identified in 2.6. In addition, the stress in this element due to seismic event alone is calculated, and seismic factor is evaluated as tabulated in Table IV-5.

2.7 In summary, all supports were found to be adequate for both the loading conditions of Sections 2.2.1 and 2.2.2. The seismic factors, as listed in the Table IV-5, indicates the additional capacity of the supports available during the imposition of the higher SSE.

O IV-6 l l

(s O TABLE IV-1 SHEET 1 of 12 MAIN STEAM SYSTEM WITH 0.15G 0.5 DAMPING *WITH 0.2G PROBLEM

  • HEIGHT PRESSURE S.S.E.

...........................................................ING TOTAL ALLOWABLE DAMP PER TABLE 1 OF RG 1.61'

  • NUMDER
  • STRESS STRESS
  • STRESS FARGIN SEISMIC
  • 5.5.E. TOTAL MARGIN SEISMIC
  • STFESS STRESS FACTOR FACTOR
  • STRESS STRCSS FACTOR *

(PSI)

(PSI) (PSI) '

'............,....*.....................*....IA.........................................1/A IB) (C) 8/C (C 8 *

(D) (El E/C (C E)/D *

  • @ 1() A (4r
  • 3062 18061 25900 70 2.56
  • 2657 17656 .68 3.10 *
  • @ 108 (4)
  • 14691 66 .

3246 18003 25900 .70 2.43

  • 2382 17139 *

.66 3.68 40A (23

  • 2583 5979
  • 10538 19800 25900 74 *

.65 12392 20954 .81 40

  • 408 (2)
  • 986 5979
  • 4648 11613 25900 .45 3.07 *

. . . 14376 21341 .82 .32 *

  • @ 41A (3)
  • 2637 5979
  • 3523 12139 25900 47 3.91
  • 4143 12759 .49 3.17 71 (2)
  • 459 8996
  • 2953 12408 28100 .44 5.31
  • 12836 22291

.79 45

  • 72 (2)
  • 363 8994
  • 3306 12663 28100 45 4.67
  • 17521 26878 .96 .07
  • 120A (1)
  • 138 5979
  • 5724 11841 25900 46 2.46
  • 15741 21858 .84 .26
  • 1208 (1)
  • 240 5979 +

131 6350 25900 .25 149.24

  • 852 7078 27 22.08
  • 120C II)
  • 283 5979
  • 356 6618 250/.s .26 54.16
  • 838 7100 *

.27 22.43 1200 (1)

  • 612 5979
  • 246 6837 25900 .26 77.49
  • 3865 10456 *

.40 3.99 120E ( 2)

  • 660 5979
  • 3390 10029 25900 .39 4.68 *

. . . 8932 15571 .60 1.16 *

  • @ 120F (1)
  • 1443 5979
  • 11426 18851 25900 73 .62

. . . 15310 22735 .83 .21 *

@ 120G ( 1 )

  • 78 5979
  • 8961 15018 25900 .58 1.21
  • 12563 18620

.72 .58

  • 120H (1)
  • 513 5979
  • 3437 9929 25900 .38 4.65
  • 9950

, . . 16442 .63 .95 *

  • Number in pamnthesis indicates revision nunt>er of the problem.

Includes stress due to relief valve thrust force.

@ Indicates the problems that have been analyzed for the revised response spectra.

TABLE IV-1 AUXILIARY FEEDWATER SYSTEM

  • *
  • WITH 0.15G O.5 CAMPING *WI EAMS PER TABLE 1 0F RG 1.61*

. . .. ... ...... .....e........e.........e.........ee.TH 0.2G..............'ING

  • PROBLEY *
  • WEIGHT PRESSURE
  • 5.S.E. TOTAL ALLOWABLE MARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SEISMIC *
  • NUMBER
  • STPFSS STRESS
  • STRESS STRESS STRESS FACTOR FACTOR STRESS STRESS FACTOR FACTOR (PSI) (PSI) *

(PS16 (PSI) (PSI) *

(PSil IPS!!

8/C (C 8) *

(D) E/C (C-E)/0 *

......................................./.A (E)

  • * (Al (8) (C) 1A (2)
  • 273G 3582
  • 11679 17997 31 tx)0 .58 1.11
  • 22178 28496 .92 .11 18 (3)
  • 984 4342
  • 7948 13274 31900 .42 2.34
  • 18820 24146 .76 41

1262 4342

  • 2434 8038 31900 .25 9.80
  • 13788 19392 .61 .91
  • 2A (4)
  • 1179 3582
  • EOS3 12fs 14 31900 .40 2.37
  • 16275 2103G .66 .67
  • 28 (3)
  • 2369 4342
  • 4316 11027 31900 .35 4.84
  • 13211 19922 .62 .91 *
  • 2C (5)
  • 1036 4342
  • 6431 11809 31900 .37 3.12
  • 21949 27327 .86 .21 *
  • Number in parenthesis indicates the revision number of the problem.

t l

e 1 O O O

'% (D J V TABLE IV-1 SHEET 3 of 12 MAIN FEE 0 WATER SYSTEM t ....................................................................................................................................

WITH 0.1SG 0.5 DAMPING *WITH 0.2G DAMPING PER TABLE 1 RG 1.61*

e

  • PROBLEY WEIGHT PPESSURE *

....................e.................e...e................................OF S.S.~. TOTAL ALLOWABLE

.....e.....

  • NUMBER .

STRESS STRESS

  • MARGIN SEISMIC
  • s.S.E. TOTAL MARGIN SEISMIC
  • STRESS STAESS STRESS FACTOR FACTOR

(PSI)

FACTOR FACTOR *

( 'I) (PSI) *

(PSI) (PSI) *

..............................................................(C)........../.C (Al (d) 8 (C-B) (0) (E) E/C (C-E)

............/.A *.........................................../D ...

i

  • 42A (1)
  • 830 3890
  • 4760 9480 28963 .33 4.09
  • 21172 258'32 .89 .15
  • e . .

e e 4

@ 428 (5) .

258 5483

  • 15700 21441 28960 .74 .48
  • 5777 11518 .40 3.02 *
  • @ 420 (1) 1206 5488
  • 1410 8104 28960 .28 14.79
  • 2091 8785 .30 9.65 *

, s j *Nunber in parenthesis indicates revision nunber of the problem.

@ Indicates the problems that have been analyzed for the revised response spectra, i

)

'h h

1 1

i l

5 4

TABLE IV-1 SHEET 4 of 12 COMPONENT COOLING WATER SYSTEM WITH 0.15G 0.5 CAMPING *WITH 0.2G DAMP 1hG PER TABLE, 1 OF RG 1.61*

. . ...... .ee.. .......... .......e...........e.....e...........e.....................e..e....

  • PRGDLEM * . WEIGHT PRESSURE
  • 5.5.E. TOTAL ALLOWABLE MARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SE1SMIC *
  • NUMUER
  • STRESS STRESS
  • STRESS SikESS STRESS FACTCR FACTOR
  • STRESS STRESS FACTOR FACTOR *

(PSin (PSI) *

(PSI) (PSI) (PSI) (PSI) (PSI)

(C) 8/C (C.8) *

(D) E/C (C-E)/D

  • tA6

......................................./A 48)

  • * * (El

........................r. ....... . ....... ...............................................

g 4150 *

  • 2cA (3)
  • 59 647
  • 18131 18837 32675 .58 .76
  • 3444 .13 8.28
  • 208 (3)
  • 1553 970
  • 6283 8806 35tH)O .25 4.17
  • 18786 21309 .61 .73 *
  • O 20C 13)
  • 8228 852
  • 14282 23362 27500 .85 .29
  • 8926 18006 .65 1.06 20D (3)
  • 29'.13 853
  • 13542 17394 27500 .63 .75
  • 16277 20129 .73 45
  • 1019 1407
  • 5063 7489 33450 .22 5.13
  • 21720 2414G .72 .43
  • 558 (2)
  • 2567 647
  • 6605 9819 34380 .29 3.72
  • 27727 30941 .90 .12 55C (2)
  • 2275 1407
  • 4951 8633 33450 .26 5.01
  • 4351 8633 .26 5.01

. @ 550 12)

  • 1451 1407
  • 117M 14563 33450 44 1.61
  • 14736 17594 .53 1.08 61A (1)
  • 1261 1495
  • 170 2926 33000 .09 176.91
  • 677 3433 .10 43.61 *
  • 618 (1)
  • 402 1495
  • 302 2199 33000 07 101.99
  • 1143 3040 .09 26.21 *
  • O 61C (2)
  • 1696 1240
  • 20168 23094 33450 .69 .51
  • 21095 24021 .72 45
  • 61 E ( 2 )
  • 63G 970
  • 7116 8772 33140 .26 3.42
  • 18067 19723 .60 .74 O 61F (3)
  • 38uo 1574
  • 15591 21045 33450 .63 .80
  • 11054 16508 .49 1.53
  • 61H (5)
  • 2185 6J3
  • 6609 9423 33450 .28 3.64 *

~8458 21272 .64 .66

  • 611 (3)
  • 5190 1240 -

4614 11044 33450 .33 4.86

  • 16107 22537 .67 .68 61J (2)
  • 662 1240 . 283 2185 32675 .07 107.74
  • 1437 3339 .10 20.40 61K (2)
  • 651 1240
  • 210 2101 32675 06 145.59
  • 532 2423 .07 SG.76
  • 61L (2)
  • 558 1240
  • 21 1819 32675 .06 1469.33
  • 148 1946 .06 207.62
  • 61M (3)
  • 1643 501
  • 9171 11315 33140 .34 2.38
  • 15994 18138 .55 .94 6tP (2)
  • 67 647 -

5357 6671 35000 19 4.76

  • 18252 18966 .54 .88
  • 61 T ( 1 )
  • 955 407
  • 261 1623 33760 05 123.13
  • 917 2279 .07 34.30
  • 61V (1)
  • 817 407
  • 850 2074 33760 06 37.28
  • 2278 . 3502 .10 13.28

..............................................*........................e......................e.............................e.......

(CONT)

v v TABLE IV-1 SHEET 5 of 12 COMPONENT COOLING WATER SYSTEM (CONT'D)

WITH 0.15G O.5 OAMP

. ....... ..........................ING *WITH 0.2G OAMPING PER TABLE 1 OF RG 1.61*

PROBLEM

  • WEIGHT PRESSURE
  • 5.5.E. TOTAL ALLOWABLE NUMBER MARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SEISMIC *
  • STRESS STRE55
  • STRESS STRESS STRESS FACTOR FACTOR *

(PSI)

STRESS STRESS FACTOR FACTOR *

(PSI) *

(PSI) (PSI) (PSI) *

(PSI) (PSI)

  • IA) (8) (C) 8/C (C-8) (D)

........e...../A (E)

....e....................................... ........................ E/C IC-E)/D *

.................e..e.....e..............e.eeee

@ 83A (2)

  • 136 647 -

26749 27532 34380 .80 .26

  • 13615 14398 .42 1.47
  • 838 (2) .
  • 1608 647
  • 7689 9944 34380 .29 3.18
  • 19522 21777 .63 .65
  • 83C (2) .

23 647

  • 5589 6.*39 33760 .18 4.92
  • 14190 14860 .44 1.33 *

@ 830 (2)

  • 313 647 -

29186 30146 33760 .89 .12 +

16110 17070 .51 1.04

  • 83E .2)
  • 959 647
  • 476 2082 34380 .06 67.85
  • 1070 2676 .08 29.63
  • 83F (3)
  • 1812 647
  • 1937 4396 33760 .13 15.16
  • 3542 6001 .18 7.84
  • 83G (1)
  • 1064 647
  • 321 2032 34380 . (16 100.77
  • 940 2651 .08 33.72
  • 83H (2)
  • 1019 647
  • 2946 4612 33760 .14 9.89
  • 4807 6473 .19 5.68
  • 83K (1)
  • 338 647
  • 1239 2224 34380 .06 25.95
  • 3689 4674 .14
  • 8.05 e

83L (1)

  • 276 647
  • 1403 2326 33760 .07 22.40
  • 4110 5033 .15 6.99 *
  • Number in parenthesis indicates revision number of the problem.

O Indicates the problems that have been analyzed for the revised response spectra.

TABLE IV-1 SHEET 6 cf 12 SERVICE WATER SYSTEM WITH 0.15G 0.5 OAMPING *WITH 0.2G DAMPING PER TABLE 1 OF RG 1.61*

. . ...... .ee... .. .e.....

, .............e........e..ee..........e.....e....................e..

  • PROBLEY
  • mE!CHT PRESSURE
  • S.S.E. TOTAL ALLOWA8LE MARGIN SE!SMIC
  • S.S.E. TOTAL MARGIN SEISMIC *
  • NUM8E7
  • STRESS STRESS
  • STRESS STRESS STRESS FACTOR FACTOR
  • STRESS STRESS FACTOR FACTOR *

(PSIl (PSI) * (PSil (PSI) (PSI) *

(PSI) (PSI)

  • IAI IB) (C) .,................../A 8/C (C-8) *

(Oh (E) E/C (C E)/D *

  • O 23C (2.
  • 3G 777
  • 15080 15893 31720 .50 1.05
  • 13481 14294 .45 1.29
  • 37A (1)
  • 1692 1889
  • 9064 12065 33760 .38 2.32
  • 23064 26645 .79 .31
  • 378 (1)
  • 2385 945
  • 2970 6300 33600 .19 9.26
  • 13715 17045 .50 1.22
  • 37C (2)
  • 2706 10a9
  • 6402 11077 33760 .33 3.54
  • 16248 2092J .62 .79
  • g . . .

37D (2)

  • 144G 894
  • 23440 25780 33760 .76 .34
  • 11720 14060 .42 1.68
  • 37E (2) -

485 891

  • 20590 21969 33760 .65 .57
  • 31399 32778 .97 03
  • 37F (1)
  • 607 777
  • 1555 2939 33760 .09 19.82
  • 4402 5786 .17 6.35 *
  • 51 (2)
  • 987 1888
  • 14449 17324 33760 .51 1.14
  • 22656 25531 .76 .36
  • StA (1)
  • 6 1883 -

2 1897 33760 .06 )9999

  • 7 1902 .06 3 9999
  • 518 (2)
  • 7557 893
  • 2745 11195 33450 .33 a.11
  • 8062 16512 .49 2.10
  • 52A (1) 243 1150 *
0.
  • 10993 32500 .34 2.24
  • 30652 32045 .99 .01 *
  • 528 (1)
  • 4462 542
  • 1039 6043 32500 .19 25.46
  • 6407 11411 .35 3.29
  • 52C (I l -

152 1150

  • 9700 11(.02 32500 .34 2.22
  • 31117 32419 1.00 .00
  • 59 15)
  • 2942 2888
  • 559 6339 33450 .19 48.41
  • 3247 0077 .27 7.50
  • 60 12)
  • 618C 1689
  • 7624 15499 30600 .51 1.98
  • 22605 30480 1.00 01 *

@63A (4)

  • 1005 894 -

24435 26334 31900 .83 .23

  • 12486 14385 45 1.40 *
  • 0 638 (3)
  • 2893 1689 -

7142 11724 33295 .35 3.02

  • 8527 13109 *

.39 2.37

  • 0 63C (3)
  • 428 894
  • 5059 6381 31300 .20 4.93
  • 3460 4782 *

.15 7.06

  • 0 65A (3)
  • 224 894 -

24474 25592 31300

.82 .23

  • 4258 5376 .17 6.09 *
  • 0 658 (3) 894 25969 20016 1153
  • 31324 .89 .13
  • 5219 7266 .23 4.61 *
  • 0 6GA (3)
  • 233 894
  • 26824 27551 31324 .89 .13
  • 5123 6250 .20 4.89
  • k68 (3)
  • 244 894 -

22622 23760 31324 .76 .33

  • 5949 7087 .23 4.07 *

.......e................................*... .*.....*...................e........................e..................................

(CONT.)

e o q

() v TABLE IV-1 SHEET 7 of12 SERVICE WATER SYSTEM (Cont'd)

WITH 0.15G 0.5 DAMP *WITH 0.2

. PROBLEM

  • WEIGHT PRESSURE *

..e.................e........e.....JNG.....e.....ee.e.e..ee...G......e.........

DAMPING PER TABLE 1 OF RG 1.61*

....e..........e.e 5.5.E. TOTAL ALLOWABLE MARGIN SEISMIC *

  • NUMBER
  • STRESS STRESS
  • 5.5.E. TOTAL MARGIN SEISMIC
  • STRESS STEESS STRESS FACTOR FACTOR *

(PSI) STRESS STRESS FACTOR (PSI) *

(FSI) (PSI) (PSI) *

(PSI) (PSI)

FACTOR *

(Al (C) 8 (C-8) *

(D) (El E/C (C-E *

. . . 18)..................../.C............/A...........................................)./D

  • 0 67A (3)
  • 84 777
  • 17391 18252 31324 .58 .7F
  • 12643 13504

.43 1.41

  • 0 678 (3)
  • 281 777
  • 22119 23177 31324 .74 .37 *

. . . 11789 12847 .41 1.57

  • 84A (2)
  • 536 777
  • 12038 13351 33760 40 1.70 *

. . . 24208 25521 .76 .34

  • 848 (2) 239 602
  • 15565 16406 33605 49 1.10 *

. . . 30647 31488 .94 .07 *

@ 84C 12)

  • 99 498
  • 16223 16820 33605 .50
  • 1.03 9182 9779 .29 2.59 *
  • 0 84D (2)
  • 825 498
  • 17618 18041 33760 .56 .84
  • 15961 17284

. . . .51 1.03 *

  • 0 84E (2) .

289 602 13478 14299 33760 .42 1.44

  • 18680

. . . 19501 .58 .76

  • 84F (2)
  • 171 444
  • 8792 9407 33760 .28
  • 2.77 28134 28749 .85 .18
  • 110A (2)
  • 246 894
  • 2415 3555 33450 .11 12.38 *

. . . 18158 19298 .58 .78 *

  • Number in parenthesis indicates revision nunber of the problem.

O Indicates the problems that have been analyzed for the revised response spectra.

n TABLE IV-1 SHEET 8 of 12 REACTOR COOLANT SYSTEM w!TH (1.1 SG O.5 DAMPING *WI CAMPING PER TA 1 OF RG 1.61*

. . ...... ..............................................TH O.2G........................BLE .................

  • PROBLEM
  • HEIGHT PRESSURE
  • S.S.E. TOTAL ALLOWABLE WARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SEISMIC *
  • NUr.;G E R *
  • STRESS STRESS
  • STRESS STkESS STRESS FACTOR FACTOR
  • STRESS STRESS FACTOR FACTOR *

(PSI) (PSIl *

(PSI 6 (PSI) (PSI) *

(PSI) (PSI) *

(A) (B) (C) (C-8) *

(D)

.......e...../.C............/.A............................E/C B (El (C-E)/D

  • 100A (G)
  • 869 1363
  • 9144 11376 18S00 .61 .78
  • 14630 16062 .91 .11 *
  • Number in parenthesis indicates the revision number to the problem.

e e - -

9 _-

s J G D TABLE IV-1 SHEET 9 of 12 EMERGENCY CORE COOLING SYSTEM i * .

  • WITH 0.15G 0.5 DAMPING .WITH 0.2G DAMPING PER TABLE 1 OF RG 1.61*
  • PROBLEM
  • WE!GHT PRESSURE
  • S.S.L. TOTAL ALLOdA8LE MARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SEISMIC *

,

  • NUMBER
  • STEESS STRESS
  • STRESS STRESS STRESS FACTOR FACTOR
  • STRESS STRESS FACTOR FACTOR *

(PSI) (PSI) *

(FSIl (PSI) (PSI) *

(PSI) (PSI) *

(B) (C) 8/C (C-8) *

(D) (E) E/C (C-E) *

........................................................................../.A........................................../.D...

i * *

(A)

  • 163 42) -

1198 4102

  • 298 5598 23000 .24 58.40
  • 2010 7310 .32 7.81 *

. 18C ( 1,

  • 787 2330 -

4290 7407 23000 .32 3.63

  • 12891 160n8 .70 .54
  • 0 18D ( 3)
  • 4979 3232
  • 12429 20640 27500 .75 .55
  • 9955 18166 .66 .94 '
  • 18F ('s
  • 444 3500
  • 2525 6469 23000 .28 6.55
  • 9150 13094 .57 1.08
  • 19A (3)
  • 331 2788
  • 2181 5300 23750 .22 8.46
  • 7190 10309 .43 1.87 *
  • 198 (4)
  • 2642 1892
  • 7354 11888 23750 .50 1.61
  • 18870 23404 .99 .02 *

@ 190 (3)

  • 2018 2075
  • 13466 17559 27500 .64 .74
  • 8954' 13047 .47 1.61 *

@ 21A (4)

  • 56 % 1892
  • 13864 21451 27500 .78 .44
  • 10495 18082 .66 .90
  • g .
  • 25 (3)
  • 6928 625
  • 14976 22529 27500 .82 .33
  • 7173 14726 .54 t.78
  • 32A (2)
  • 1396 1740
  • 12418 15554 23500 .66 .64
  • 19868 23004 .98 .02 *
  • @ 328 (3)
  • 4997 1739
  • 7983 14719 23500 .63 1.10
  • 7352 14006 .60 1.28
  • 32D (3)
  • 3480 1739
  • 1759 6978 23500 .30 9.39
  • 6956 12175 .52 1,63
  • 32E (2)
  • 3452 1739
  • 4546 9737 23000 42 2.92
  • 14392 19583 .85 .24 *
  • 32F (2)
  • 17917 1899
  • 311 20127 23000 .88 9.24
  • 872 20688 .90 2.65 *
  • 32G ( 3)
  • 754 618 - 591 1963 23000 .09 35.60
  • 2570 3942 .17 7.41 *
  • 32H (2)
  • 1024 618
  • 1665 3307 23000 14 11.83
  • 3220 4862 .21 5.63
  • e . .
  • 53 (1)
  • 376 4620
  • 7106 12102 29180 41 2.40
  • 14752 19748 .68 .64
  • e . . . .
  • 54 (3)
  • 1209 230
  • 10481 11920 24300 49 1.18
  • 13080 14519 .60 .75
  • 56A (3)
  • 1674 19J7
  • 3756 7357 24300 .30 4.51
  • 7350 10958 .45 1.82 *
  • 5681(2)
  • 375 2953
  • 2003 5331 24300 .22 9.47
  • 6527 9855 .41 2.21 e ,

7662 *

$ 5682(2)

  • 1289 1928
  • 13594 16811 24300 69 .55
  • 4445 .32 3.74
  • 5683(3)
  • 1882 1927
  • 5588 9397 24300 .39 2.67
  • 20290 24099 .99 .01
  • e . . . .

e.......................................*.....*.....*.....*......*...........*.....*...........*....**....**...............9.......

(CONT)

TABLE IV-1 SHEET 10 of 12 EMERGENCY CORE COOLING SYSTEM (CONT'0)

WITH 0.15G 0.5 DAMPING .WITH 0.2G DAMPING PER TABLE 1 OF RG 1.61*

MARGIN SEISMIC

  • S.S.E. TOTAL MARGIN SEISMIC *
  • PROBLEM - WEIGHT FRESSURE
  • S.S.E. TOTAL ALLOWABLE
  • STRESS STRESS FACTOR FACTOR *

. STRESS STRESS STRESS FACTOR FACTOR

  • NUMBER . STRESS STRESS *

(PSI) (PS!!

(PSI) (PSI) *

(PS16 (C-B)/A *

(D) (El E/C (C-E)/D *

(A) (8) (C) B/C ee.ee...............................................................e..

..........*......e........................................e..

09 11.82

  • 6023 6416 .23 3.50
  • 56C (3)
  • I t>4 229
  • 2115 2508 27500 .

22040 2.89

  • 13774 14482 .66 .55 *
  • 96C (1) . 202 426
  • 5477 6185 .28 29000 .06 48.13
  • 2240 3382 .12 11.44 *
  • 96E (2)
  • 879 263
  • 567 1709 .

3.58 . 18055 18597 .84 .19

  • 96F (1) . 201 341
  • 4697 5239 22040 .24
  • Number in parenthesis indicates the revision number to the problems.

O Indicates the problems that have been analyzed for the revised response spectra.

  1. O e

~ c\

\

A -

TABLE IV-1 SHEET 11 of 12 SPENT FUEL POOL COOLING SYSTEM h!TH 0.15G 0.5 DAMP!NG WITH 0.2G DAMPING'PER TABLE 1 0F RG 1.61*

  • PROBLEM
  • WElGHT PRESSURE
  • S.S.E. TOTAL ALLOWABLE MARGIN SEISMIC
  • S.S.E. TOTAL MARGIN SEISMIC *
  • NUMBER
  • STRESS STRESS
  • STRESS STRESS STRESS FACTOR FACTOR ' STRESS STRESS FACTOR FACTOR *

(PSI) (PSI) *

(PSit (PSI) (PSI) *

(PSI) (PSI -*

18) 8 (C-8) *

(D) (El E/C (C-E)/D *

.............................................................-(C).........../.C............/.A (Al

  • 93 (1)
  • 2885 311
  • 2664 5660 27500 .21 8.12
  • 12979 16175 .59 .87 *
  • @ 930 (2)
  • 61 128
  • 14863 15053 27500 .55 .84
  • 6153 6342 .23 3.44 *
  • @ T.009J (2)
  • 3986 310
  • 21426 25722 27500 .94 .08
  • 15169 19465 .71 .53 *
  • @ T.009K (2)
  • 12905 465
  • 13356 26726 27500 .97 .06
  • 10551 23921 .87 .34 *
  • Number in parenthesis indicates the revision nunber to the problem.

9 Indicates the problems that have been analyzed for the revised response spectra.

TABLE IV-1 SHEET 12 of 12 NUCLEAR CLASS 1 PIPING .

,e.........e................se..,*.....e.

e.......eee...*eeee.ee..... ee..

...ee.......ee......e..............,*... ................ *WITH 0.2G DAMPING PER TABLE 1 OF RG 1.61*

.SYS. *

  • WITH 0.1SG 0.5 DAMPING "*""*""""""""*""""""* SE3SMIC
  • MARGIN
  • NO.
  • PROBLEM =*

HEIGHT PRESSURE " " ". S . E .""*"*"""""""*""*"""*"*"'""*"*"S.E.

S STRESS TOTAL ALLOWABLE STRESS STRESS MARGIN FACTOR SEISMIC

  • FACTOR
  • S.

STRESS TOTAL STRESS FACTOR FACTOR *

  • NUMBER STRESS STRESS *

(PSI) (PSil (PSI) (PSil *

(PSI) (PSI) (PSI) (D) (El E/C (C-E)/D *

(B) (C) B/C (C-D) *

(A)

............e...eeeeeeee....ee...... ...eee.

../A e.ee.............eeee.se.eeeee ..e..........ee. *

.eeee.......o................. .

l1 T 002 1549 9583 10487 21937 24900 0.88 0.28 .

  • 2 T 007 1616 14000 8083 23782 24900 0.96 0.14 l *

. 3 T 006 1199 14167 8678 24067 24900 0.97 0.10 .

4 T 002 2833 9583 2387 14354 24900 0.58 4.42 SEE SECTION 1.6 *

  • FOR EXPLANATION ,
  • 5 T 012 1039 14735 9270 24473 24720 0.99 0.03 ,
  • e o
  • o6 T 003 1726 9583 8098 22067 24900 0.89 0.35 .

o y.

l7 T 002 2016 9583 13127 24574 24900 0.99 0.02 ,

SYSTEM NO. & DESCRIPTION

1. RC Drain
2. LP Injection
3. DH Removal
4. RC Drain
5. RC System (press. Relief) t
6. HP Injection
7. Makeup & Purification (Letdown)

. O YAE LE. 3i[- 2. ,

6heef lef 2_ .

It

" 24 M ARGIN FACT 05 FORo15g GROUNE AccLN.

  • TOTAL S Tst E 6 4' I' gg MARGIN FACTOR A u .o w A rmi c SyREst.

8 / (% CRITsc4L 7)AMPING h= ige /.)

, /

46

/

/ .

Ii

" / 7 l' . 7 / /

3g / / / 7 .

J

/ / / /

b / / / /

b, l" / / / /

H / ~ ', / / / 7 n!

t // -

7

/

/

/

/

/

/

/

/

/ 7 7

U 3* / / / / / 7 / / '

il ' / / / / / / / / /

il / / / / / / / / /

\.

.; * / / / / / / / / /

/ / / / / / / / /

  • / / / / / / / / /

\' / / / / / / / / / 7

' / / / -

/ / / / / / /

, s ,, . e , e- , = 9 . w. e,~

1 .

1-

?

h 3

i x

?

.  ?. 4 s-  ?

?

"a "

j .

i g

e 2 2 i n t t d 1 1 c: ..

we -

y g e3 p \\\\\\\\\\\ oi$s<

e-5d 2

< \\\\\\\\NXXX s$s<

g g i e c 5

~

a e \\\\\\XXXX e $t <

3 S l

d $

i <

fE

\\\\\\\\\\\NXXXXX t $s <

k  ?

u- $

2 < \\\\\\\\NXXXXXX S $5 <

g s O s E NNNNNNXXXXXXXXX S$+<

\\NXXX + $s <

\\\\NXXXXXX s $2<

3""

l \\\\\\NXXXX

\\\\\\\\\\ ' **d" l

. O $ $ I d 9

  • 2 4 d

\ e 5 NTI S O 2Id .:f o m

~

.i. , .-

TABL.E. JK. .3 SHEET id7 30

  • SEISMIC FACTOR. GROLINI ACCL N. O.16g tb  : .

~

, , , A Ltoioani.m Srirass - ToTAa_ 5te'Ess

'x

16.
  • S M 'c se u ( 7* h%3 3 14 i /

f ** 9 ,

gto h  !

f18 16  :,

O $

q Fp k M h

i l lFlF l hl
1f ssl i

. s s s e s s es s s s ss =

bm

= e=*1eeT

.2 9

as.m+$$@_

^M 4' A AA X A A A A IE55I*bAM A A A A-4' AA Y A A

y I

O- SEISMIC FACTOR e

, _, , _ <.e_-__ ,ee

  • #96 M -*W%

M *-*e.

Taets R.- bheet 'lcr Z 'h I SEISMIC FACToe totTw Groun2) Ac.cLa.D-Q h

~

c u z /.1 l-4

'E Sensuic FAcrom .B4 ANALYSIS 3

22 20 iB 16 i4 .

12.

10 ,

6

^ $^ ^N'^ $^^ L' 2' ^bs,1,^$hb 4 9 ^ ^oa^ f $ $ $ ^^^^^ 55 O

~

Q 12 rArs L.E .E-4 6HECT Id1 Grouwm Accta. 015g ,

4

, .. . G = h %)

m 1 2~

  • 7 p- Y ll

'p' t x 52 ll7 gl f k i i

': 42 Gl?OUN3 ACCLN. O 2. g g ( b ' 2*/* )

la r

E4 '

E 4 ,  % & 4 4  ;

. . . . . e . .:. ,

h A k h h A A A A A A

  • A d l WI ARGIM FACTORS PER A N A L.Y SIS FOR O.iSg h 0 2.g Geooum Accoma.

O

TAB LE]E.-4 Sheef 2 cc 2 GROUKD ACCLN, D 15g.

O

2) AMPa>[G ' VALUE A-{*/,of

~

10

~

  1. ' ' ' 'C # """"'"6
a 7 l a c

8 '

l b

l 16 G ROUN.I) ACCLN. O 2 g.

y/

p (A s 2%)

. e

! U

$ 8 f ,

l r /p -

h 6 [

4 -

. a s a v 2

6 3

e 2

e 2

f4 e =

o

  • A v w a A

7 s *

  • A E A E E E A SEISMIC FACTORS PER ANALY5is FoR el54 k E g GEDOG ACCLM.

7jr TABLE IV-5 Piping Support Analysis for 0.)

- Load with 0.15g & 1/2% Damping SUPPORT NO. Highest Total Allowable Total Highest.

Stress Stress (ksi) Stress (ksi) Allowable Stress Element or or (Interaction)** -Element Load (kips) Load (kips) 41-HBD-98-H1 Anchor T=2.67 kips T=4.05 kips Anchor Bolt S=0.200 kips S=4.05 kips 0.71 Bolt 3A-EBD'19-H145 Anchor T=1.363 kips T=2.125 kips Anchor Bolt S=0.189 kips S=1.68 kips 0.75 Bolt 6C-EBD-14-H93 Anchor T=1.134 kips T=2.125 kips Anchor Bolt S=0.034 kips S=1.68 kips 0.55 Bolt '

36-HBC-10-H1 Anchor T=0.744 kips T=2.125 kips Anchor Bolt S= negligible S=1.68 kips 0.35 Bolt 3A-EBD-19-H148 Hydraulic Hydrault Shock & Sway 0.274 kips 3.0 kips 0.09 Shock &'

Supressor Supress;-

6A-HBD-22-H3 Anchor T=1.27 kips T=2.125 kips Anchor Bolt S=0.155 kips S=1.68 kips 0.69 Bolt

~'

36-HBC-3-H4 Anchor T=1.52 kips T=4.05 kips Anchor ,

Bolt S=0.284 kips S=4.05 kips 0.45 Bolt i 41-HBC-36-H31 Anchor T=0.816 kips T=2.925 kips Anchor Bolt S=0.199 kips S=2.975 kips 0.32 Bolt 36-HBC-40-H3 Sway .

Sway Strut 7.351 kips 11.63 kips 0.63 Strut 34-HCC-38-H2 Pipe Pipe Saddle 1.429 kips 1.80 kips 0.79 Saddle

-3A-EBD-19-H80 Base Base Plate 15.75 ksi 23.25 ksi 0.68 Plate' 3A-EBB-2-H1 Sway Sway Strut 4.017 kips 8.0 kips 0.50 Strut-

  • The manufacturer's recommended allowable (Ref ITT Grinnel Pipe Hanger Catalog PH-76) is based-Due to 0.2g loading this factor of safety will reduce to 4.1. Furthermore the applied loads C while manufacturer's allowable is based on the " normal" loading condition. Therefore with fal of safety wil be much higher.
    • Interaction Value = Actual Tension . Actual Stress Allowable Tension Allowable Stress A

.. h 4

r i

5 (',

Sg and 0.20g SSE Load with 0.20g & Appropriate Damping Total ' Total Total

' Total _

Allowable Seismic Allow Seismic Seismic Stress (ksi) Stress (ksi) Stress (ksi)  :(Interaction)** Allow Factor or . or or B (Interaction)** 1-B Load (kips). Load (kips) Load (kips) A A T=2.82 kips T=4.05 kips T=0.344 kips S=0.207 kips S=4.05 kips S=0.029 kips 0.75 0.092 2.72 T=1.776 kips T=2.125 kips T=0.612 kips S=0.246 kips S=1.68 kips S=0.085 kips 0.98 0.34 0.058 T=1.53 kips T=2.125 kips T=0.878 kips S=0.025 kips S=1.68 kips S=0.018 kips 0.73 0.42 0.64

'T=1.087 kips T=2.125 kips T=1.087 kips S= negligible S=1.68 kips S= Negligible 0.51 0.51 0.96 3

Sway 0.847 kips 3.0 kips .847 kips 0.28 0.28 2 57

'r T=1.855 kips T=2.125 kips T=1.24 kips -

S=0.23 kips S=1.68 kips S=0.154 kips 1.00 0.68 0.0 T=2.73 kips T=4.05 kips T=1.99 kips S=0.517 kips S=4.05 kips S=0.385 kips 0.80 0.59 0.338

'T=0.855 kips T=2.925 kips T=0.090 kips S=0.208 kips S=2.975 kips S=0.022 kips 0.36 0.038 16.8 9.138 kips 11.63 kips 2.666 kips 0.79 0.23 .913 2.188 kips 1.80 kips 1.301 kips *1.21 0.72 -0.29 [

t

-19.05 ksi 23.25 ksi 5.39 ksi 0.82 0.23 0.78 l 1

4.669 kips 8.0 kips 2.051 kips 0.58 0.26 1.62 on a factor of safety of 5. '

re basGd on the " faulted" loading cond.

Ited allowable actual factor M

.. h

-.g

' 4D E

i V. QUALIFICATION OF VENTILATION DUCTWORK AND SUPPORTS

- 1. A Description of the Procedure Followed to Design and

, Seismically Qualify Seismic Category I Ventilation Ducting and the Ducting Supports

-The Seismic Category I ductwork sections, joints supports,-and related accessories are designed in~accordance with Sheet Metal-L and Air. Conditioning Contractors National Association, Incor-porateds.(SMACCNA), "High Velocity Duct Standards." The duct-work, except stainless steel ductwork,.is constructed of hot dip copper bearing sheet steel meeting ASTM A 527-67. The stainless steel-ductwork.is A18-8 AISI, Type 304. with 28 mill finish.

Ductwork stiffening and reinforcing angles are galvanized for galvanized ductwork and stainless steel for stainless steel ductwork. The Seismic Category I ventilation ductwork is of one gauge heavier material than regular ductwork.

- 1. 2 The ductwork(is~-designed to withstand loads caused by an SSE. The ductwork is free from vibration and/or buckling during normal or seismic conditions. The ductwork is designed for ground ac-celeration in the hori 3ontal direction of 0.15g with an allowable

' stress equal to 90 percent of yield strength or 90 percent buck-ling strength. -In addition, the ductwork is also designed for vertical ground acceleration of two thirds of horizontal ground.

acceleration acting simultaneously with the horizontal accelera-tion. ,

1. 3 .To this end, design sup? orts restrain duct motion in all direc-tions. An analy' sis, consisting of comprehensive support system design which adequately; supports the ducts for deadweight, oper-ating. load, and seismic load, has been conducted for Seismic

^

Category I ductwork within each system.

The support system designs are such that the criteria for the SSE are. met'by ensuring that the interval between supports is such

-that the weight.and seismic loads do not cause buckling of the duct and that stresses in the supports do not exceed allowable stresses.

The ductwork has been analyzed in accordance with the methods normally used for analysis of piping systems. For ducts of -M circular cross section, the analytical methods did not require significant modifications. 'A rectangular duct was modeled as a -

cylindrical pipe of equivalent flexibility of linear weight density. The seismic analysis is of the response spectra type and the weight analysis is a distributed weight balance. For both types of loading the . internal. bending moments, forces, stresses, and deflections are calculated. Due to the asymmetry of-a rectangular duct, the stress values have no direct signifi-cance; however, the bending moments were used to determine the.

-nominal stress levels. The spectra for a 0.15g earthquake and 0.5 percent damping were used.

O V-1

Two analyses using different equivalent cylinders were prepared since the flexibilities about the horizontal and vertical axes of the rectangular duct are not identical. The flexibility about the horizontal axis determines support loads which result from vertical input loads (weight and vertical seismic), and the flexibility about the vertical axis determines support loads which result from horizontal input loads (horizontal seismic).

The absolute sum of the loads due to these three inputs is the total support load. The support systems are designed to guarantee that the fundamental frequency is above the resonant frequency for the particular building location.

2. Reanalysis of Duct Supports 2.1 Fourteen Seismic Category I duct supports were selected at random from all safety related HVAC systems listed in Table III-1, part B.

2.2 Where possible, supports selected also correspond to high total duct load (weight and seismic) points of the ductwork based on the existing analyses.

2.3 Supports were selected from the auxiliary building and containment.

2.4 Total loads include weight load plus seismic load based on the response spectra at the corresponding elevation for 0.20g ground acceleration during an SSE event.

2. 5 The seismic load for the revised response spectra is obtained by multiplying the seismic load in the original analysis by the {

appropriate scale factor from the revised (0.20g) response spectra.

2.6 The adequacy of the support system was determined by using a margin factor as shown in Table V-1.

2.7 The stresses of interest are:

a. Total stress is the stress induced in the highest stressed element of the support due to the total load (refer to paragraph 2.4).
b. Allowable stress is based on manufacturer's recommended allowables for all engineered and non-engineered compo-nents. The allowable stress for all structural members including welds, plates, etc., is taken from the AISC Steel Construction Manual, Seventh-Edition.
c. Seismic stress is the stress in the highest stressed element due to an SSE event.

2.8 For the total loads addressed in paragraph 2.4, the highest stressed element in the support (including welds, bolts, and plate) is identified and the margin factor is determined and .

tabulated in Table V-1.

O V-2

r-o

. o- ,

2.9 In evaluating the margin factor, the allowable stress or load

. (Table V-1) is based on normal loads. Where catalog items were yk})-

i .: '

s j

not rated for various load conditions, the normal loading con-dition was used.

2.10

Conclusions:

As can be seen in Table V-1, all supports evaluated had margin factors less than 1 indicating the supports are acceptable during i

an 0.20g SSE.

In' addition, seven supports had loads less than the 0.15g SSE due to the increased damping (2 percent versus 0.5 percent) of an 0.20g SSE.

A) o .

6 1

h t

,5, e.

O 4

,) i f

,).- j.

i i Yh N. 5 f - q9 y  ;

+\

V-3

TABLE V-1 t/ : STRESSES DUE TO 0.20g SSE IN SEISMIC I DUCT SUPPORTS Load With 0.2g and 2% Damping Support Highest Total Allowable Margin Factor

. No. Stress Stress Stress Or T Actual S

Actual Element Or Load Load Tallow + bAllow 51.0 413-01 Rate B = 26.50 ksi 27.00 ksi 0.98 413-01-4 Anchor Bolt T = 0.52k T = 1.125k 0.75 S = 0.323k S = 1.112k 450-01-27P Anchor Bolts- T = 0.379k T = 1.125k 0.44 S = 0.12k S = 1.112 410-11-2 Anchor Bolts T = 0.373k T = 1.4k 0.43 S = 0.135k S = 0.842k 412-06-DG10 Anchor Bolts T = 0.532k T = 1.125k 0.71 S = 0.261k 5 = 1.112k 435-01-13 Weld T = 0.41k T = 4.64 0.16 S = 0.32k S = 4.64

- 410-04-33F L3 x 2 1/2 x 3/8 M = 0.49k-in M = 12.55k-in 0.04 435-01-16 ,

412-05-07 412-04-12 -

411-01-2 > 0.2g loads are less than 0.15g loads I

410-02-33D -

451-30A 451-47A NOTE: B = Bending Stress T = Tension Load S = Shear Load y , . - , -

. ,,y. , - - y., . ,,, . , , _ . _ . , , , r.,-.,,.- , . _ . . . - - . . . . -

.-= . . . . . . - - . . - .

1 3 VI. EVALUATION OF MECHANICAL EQUIPMENT, ELECTRICAL EQUIPMENT,

, \ AND INSTRUMENTATION

1. Introduction

) 1.1 Various components have been selected for evaluation which are representative of mechanical, electrical, and control systems components required for safe shutdown and. continued heat removal.

-The components selected were those listed in Attachment 1 of the NRC Staff guidance transmittal of January 30, 1979. These com- 2 ponents have been evaluated to determine the margins available

when subjected to an SSE of 0.20g acceleration.

I 1.2 Table VI-1 lists the components selected for evaluation and summarizes the pertinent information for each component. It includes the location of the component, the figure number (figure

. to be found in Section II) giving the appropriate response spectra  !

for that location, the method of qualification for the component, and the data sheet number where more detailed seismic qualification information is provided. The data sheets are included in this I

section. They follow the format of Attachment 2 of the NRC letter. A brief discussion of the qualification of the selected ,

equipment follows.

2. Electrical Components (Table VI-1 Items 13-17 and 19-20) 2 2.1 All safety related electrical equipment has been qualified either by test or analysis on the basis of the appropriate floor response spectra generated by the 0.15g SSE. Reference to Table VI-1 indicates the method of qualification.

2.2 The revised floor response spectra have been'used to determine the margin available for the 0.20g acceleration SSE.

2.3 For the components which were qualified for the 0.15g SSE by testing, the test method was either sine beat or sine dwell, with highly conservative input levels. In some cases, equipment was

subjected to as many as 75 sine beat tests and to sine dwells as
long as 45 seconds.

2 Based on the high input levels and the conservative nature of sine beat and sine dwell testing at resonance and integer frequencies, it is concluded that the margin for each component is sufficient to qualify it to the revised seismic requirements.

2.3.1 As an example of the above, the 5 KV metal clad switchgear (Item 13 of Table VI-1) is discussed here. In this case,

damping was first determined using sine sweep and the relation

( =h j

Where & = damping (percent of critical damping)

Q = amplification VI-1 Supplement 2 4

<.s Quasi-resonance magnification curves were used to compare floor response spectra curves to maximum equipment buildup at. resonance.

The amplification was determined to be 5.5 times the peak value of the sine beat input acceleration. The required test input was de-termined to be 0.21g. However, the actual test input excitation was 0.8g, approximately four (4) times the required level.

The revised floor response spectra, based on the 0.20g zero period acceleration (ZPA) SSE using 3 percent damping, normalized to 5 percent damping (consistent with the component damping), indicates a peak floor response at the equipment mounting location of 2.16g in the peak range of 5-7 hertz. The required test input is deter-mined to be 0.39g. Since the actual test input was 0.8g, the re-quired input for the 0.20g SSE is exceeded by a factor of two (2).

2.3.2 The other components which were qualified by sine beat or sine dwell testing were evaluated for margin, and in all cases, there was sufficient margin to qualify the components for the revised (0.20g) SSE requirements.

2.4 Items 15 and 17 of Table VI-1 were qualified by analysis. Their l2 respective data sheets indicate the stresses calculated for the 0.15g SSE on the critical structural elements. The seismic factor (defined in Section IV, Paragraph 1.1) is also calculated for these components.

2.4.1 The seismic factor for the critical structural elements of the unit substation transformers are quite large, indicating a large available stress reserve. Obviously, the transformers would function under the imposition of a 0.20g SSE.

2.4.2 The seismic factor for the critical elements of the battery racks for the 0.15g SSE are not as high, but still provide margin for a higher SSE. To ensure that these critical elements would not be overstressed due to a 0.20g SSE, the stresses and the seismic factor for such an SSE have been calculated and are reported below:

(a) (b) (c) (c) - (b)

Identification Seismic Total Stress (a)

Stress Stress Allowable Unistrut P-1000 (pc. 3) 23643 27592 28800 0.05 Side and End Stringers

  • 26064 28800 0.11 (pcs. 12 & 13)

Tubing (pc. 10)

  • 22820 28800 0.26
  • 6025 7390 0.23 Brace Angle Iron Frame 14064 22980 28800 0.41 Support (pc. 1)

VI-2 Supplement 2

('N Anchor Bolts

  • 27952 38800 0.388 Tube Connection to
  • 15918 28800 0.809 Bottom Support Channel Connection to
  • 18695 22000 0.177 Bottom Support
  • assume seismic stress is total stress-2.4.3 In the cases noted above where qualification was demonstrated by analysis, it is concluded that stresses were below the allow-ables for both the 0.15g and 0.20g SSE cases. Therefore, there

.is sufficient margin to qualify the components for the revised (0.20g) SSE requirements.

3. Control Panels and Instruments (Table VI-1 Item 18) 2 3.1 The auxiliary shutdown panel was evaluated as representative of a control panel with instruments required for shutdown. The panel was qualified by analysis, while the instruments were qualified by testing, for the 0.15g SSE.

O 3.2 The revised floor response spectra have been used to determine Q the acceptability of the installation for the 0.20g SSE.

3.3 The data sheet for the panel. indicates the stresses calculated on the side of the panel and on the anchor bolts. The seismic factor (defined in Section IV, paragraph 1.1) is also calculated.

To ensure that the panel would withstand the loads due to a 0.20g SSE, the stresses and seismic factors for such an SSE have been calculated and are reported below:

(a) (b) (c) (c) - (b)

Identification Seismic Total Stress (a)

Stress Stress Allowable Panel 780 psi 780 psi 1610 psi 1.1

' Anchor Bolts 9 ksi 9 ksi 20 ksi 1.2 The maximum deflection is calculated to be 0.0049 inch. This will not adversely affect functional operability.

. The natural frequencies of vibration are greater than 33 Hz for the structural system and various panel sections including the instrument package panels. Dynamic amplification of the flat spectra response of seismic acceleration is found to be a maximum of 0.87g in the structural system in the horizontal direction and 0.47g in the vertical direction.

Os Use of these amplified dynamic loads as well as static loads with both horizontal and vertical effects show the bending, tensile and shear stresses in the various structural members and connections to be much VI-3 Supplement 2

lower than the maximum allowable stresses. Stresses in the anchor bolts are quite low and load capacity in the welds are quite high.

Displacements in the instrument package panel sections are quite small and will not cause loss of function of the equipment. Loading of the panel plate sections and panel frame has been found to be much less than that required for buckling. The analysis methods used subjected the structural elements to more critical conditions than would be encountered by the structural system in a prototype environ-ment. It is concluded that the panel is structurally adequate to function properly when subjected to loadings associated with a 0.20g SSE.

3.4 The seismic test reports for the instruments mounted on the auxiliary shutdown panel have been reviewed. The data sheets summarize the pertinent information. The qualification testing envelops the revised response spectra, ensuring that the in-struments will be operable for the 0.20g SSE.

4.0 Mechanical Components (Table VI-1 Items 1-12 and 21-24) 4.1 Mechanical components required to accomplish safe hot shutdown after a seismic event and continued shutdown heat removal were originally qualified by analysis on the basis of the appropriate floor response spectra generated by a 0.15g SSE. A review and/or reanalysis has been performed for Items 1-12 and 21-24 to determine the margins available for a 0.20g acceleration SSE. In some cases, the original seismic analysis (0.15g SSE) used acceleration values which envelope the acceleration values generated by a 0.20g SSE floor response spectra. In these cases, a reanalysis was not re-quired. In most cases, however, a new seismic analysis was per-formed on the basis of the appropriate floor response spectra generated by a 0.20g SSE. The mechanical components are listed in Table VI-1, Items 1-12 and Items 21-24.

4.2 A summary of the reanalysis for each of the mechanical components listed in Table VI-1 is described below. Items 21, 22, 23, and 24 were added to the Table by Toledo Edison after a review of the equipment required to accomplish safe hot shutdown after a seis- 1 mic event and continued shutdown heat removal.

4.2.1 Auxiliary Feedwater Pumps The original seismic analysis performed by the pump vendor (Byron

! Jackson) showed that the equipment is qualified for a 0.15g SSE.

Byron Jackson revised their original seismic analysis to incorpo-rate the required accelerations for a 0.20g SSE. This revised analysis showed the equipment had adequate margins when subjected to a 0.20g SSE. See Data Sheet 1. All stresses and deflections were within the ellowable values.

O VI-4 Supplement 2

/ 4.2.2 Component Cooling Water Heat Exchangers The original seismic analysis performed by the vendor (Structhers Wells) showed that the equipment is qualified for the 0.15g SSE.

The vendor performed a new seismic analysis incorporating the required accelerations for a 0.20g SSE. The new analysis used current state-of-the-art techniques for modeling the heat ex-changer and resulted in the determination of lower natural frequencies. These lower natural frequencies and the current state-of-the-art modeling techniques resulted in the analysis showing insufficient margin for the anchor bolts and the base of the fixed support.

The original analysis was then reviewed using the current ana-

-lytical techniques. This review indicated that for 0.15g SSE the anchor bolts and base of the fixed support did not meet their original design margin. Therefore, it was decided to modify the saddle supports during the spring 1980 refueling outage to meet their original design margins for a 0.15g SSE. These modifica-tions also provide margin when the heat exchanger is subjected to a 0.20g SSE. It should be emphasized that this modification was made due to a change in analytical methodology and not inadequate margin for a 0.20g SSE. The calculated stress values shown in Data Sheet 2 reflect the modified saddle supports.

4.2.3 Diesel Fuel Oil Day Tanks The vendor (Richmond Engineering Company) revised the original seismic analysis to incorporate the required accelerations for a 1 0.20g SSE. The new analysis showed that the expansion anchors did not have a factor of safety of at least 4.0 in accordance with the bolt manufacturer's recommendation. A review of the as-built anchoring condition for the tank revealed that the anchor bolts did not have a factor of safety of 4.0 for a 0.15g SSE. However, the installed factor of safety was greater than 2.0. Modifications to the tank saddle supports are presently being made during the Spring 1980 refueling outage so that the

, installed factor of safety will be greater than 4,.0 for a 0.15g SSE. This will also provide adequate margin for a 0.20g SSE. It should be emphasized that these modifications were necessitated

[, by as-built conditions and not an increase in SSE accelerations from 0.15g to 0.20g.

The vendor's new seismic analysis for a 0.20g SSE shows that the circumferential bending stress at~the horn of the saddle is greater than the allowable stress.

l l Based on a review of the conservatisms in the code and the ven-dors conservative analytical techniques, we believe that there is still sufficient margin in the design against failure, s

VI-5 Supplement 2 2 I

4.2.4 Service Water Pumps and Motors The original seismic analysis performed by the pump vendor (Goulds Pumps) showed that the equipment is qualified for a 0.15g SSE.

Goulds Pump revised their original seismic analysis to incorpo-rate the required accelerations for a 0.20g SSE. This revised analysis showed the equipment had adequate margins when subjected to a 0.20g SSE. See Data Sheet 4. The original seismic analysis which was done for the motors used seismic accelerations which are higher than the accelerations required by either a 0.15g SSE or a 0.20g SSE. The seismic accelerations used for the motor analysis are shown on Data Sheet 4. All stresses and deflections for the pumps and motors were within the allowable values.

4.2.5 Auxiliary Feedwater Pump Turbine The original seismic analysis which was done for the auxiliary feedwater pump turbine used seismic accelerations which are higher than the accelerations required by either a 0.15g SSE of a 0.20g SSE. The seismic accelerations used for the analysis are shown on Data Sheet 5. All stresses and deflections were within the allowable values.

4.2.6 Borated Water Storage Tank The seismic loads for a 0.20g SSE were calculated by Bechtel Power Corporation. These calculations showed that the loads for a 0.20g SSE are lower than the seismic loads used for the origi-nal tank design based on a 0.15g SSE. Stress checks indicate that all stresses calculated for a 0.20g SSE were well below allowable values. Reference Data Sheet 6.

4.2.7 Emergency Diesel and Generator The original seismic analysis performed by the vendor (Bruce GM Diesel, now Power Systems) showed that this equipment is qualified for a 0.15g SSE. The vendor performed a new seismic analysis incorporating the required accelerations for a 0.20g SSE. The new analysis shows that the diesel engine, generator, instrumen-tation and associated equipment have adequate margins when sub-jected to a 0.20g SSE. For the accessory rack, a modification is being made during the current 1980 refueling outage to enhance our degree of confidence in the accessory rack being able to withstand the 0.20g SSE. The modification involves a stiffener 2-brace to raise the natural frequency of the rack. Refer to Data Sheet 7 for additional information on the diesel generator majorcomponents.

During the vendor's performance of the new 0.20g seismic analysis, it was discovered that the calculated nozzle load on one of the diesel nozzles exceeded the manufacturer's recommended allowable load. It was determined that this condition also existed for the 0.15g SSE accelerations. Pipe support and expansion joint VI-6 Supplement 2

t modifications are being made during the current 1980 refueling

[3 outage to reduce the nozzle loads to allowable values.

be emphasized that this modification was necessitated by as-built It should conditions and not an increase in SSE accelerations from 0.15g to 0.20g.

4.2.8 fEmergency Diesel Cooling Water Heat Exchanger 2

~

The original seismic analysis performed by the equipment vendor

.(Bruce GM Diesel,-now Power Systems) showed that the equipment

- is qualified for a-0.15g SSE. The vendor performed a new seismic analysis to incorporate the required accelerations for a 0.20g ,

, SSE. The new analysis shows the equipment has adequate margins  !

when subjected to a 0.20g SSE. See Data Sheet 8. All stresses and deflections were within the allowable values.

l 4.2.9 Decay Heat Removal Cooler e The original seismic analysis performed by the equipment supplier (Atlas, a supplier to Babcock and Wilcox) showed that the coolers are qualified for a 0.15g SSE. Babcock and Wilcox evaluated the l new seismic response curves to determine the applicable loads for a 0.20g SSE. The new loads were considerably less than those used by Atlas in the design of the coolers. Therefore, the

, coolers have sufficient margin to withstand a 0.20g SSE. Refer 1 l

to Data Sheet 9.

[\ 4.2.10 Decay Heat Removal Pump and Motor The original seismic analysis performed by the vendor (B&W) showed that the equipment is qualified for a 0.15g SSE. B&W reevaluated the critical structural components based on the peak accelerations of the applicable 0.20g SSE response spectra, and l- .showed that all stresses for the pump and motor were within

, allowable values. Refer to Data Sheet 10.

4.2.11 Decay Heat Removal Suction Valves HV-DH11 and HV-DH12 and Motor Operators

! The original seismic analysis which was done for these valves and i

motor operators used seismic accelerations which are higher than the accelerations acting on the valves during either a 0.15g SSE or a 0.20g SSE. The accelerations used in the seismic analysis i are shown on Data Sheet 11. All stresses were within allowable values. i 4

4.2.12 Auxiliary Feedwater Pump Steam Inlet Valve MS-106
The original seismic analysis which was done for this valve and i
motor operator used seismic accelerations which are higher than [
the accelerations acting on the valve during either a 0.15g SSE or a 02.0g SSE. The accelerations used in the seismic analysis
are shown on Data Sheet 12. All stresses were within allowable
j. values.

4 VI-7 Supplement 2 1

+ er .. . 4 e g .-,.______,..__,-w a m4 w m. . , , ,m_._ .,._--.v.--,_.--,-m.-, me .,_,...,,....r...,,.,m_.-,a...-,

4.2.13. Component Cooling Water Pumps and Motors The original seismic analysis performed by the pump vendor (Goulds Pumps) showed that the equipment is qualified for a 0.15g SSE.

The vendor performed a new seismic analysis to incorporate the required accelerations for a 0.20g SSE. The new analysis showed the equipment had adequate margins when subjected to a 0.20g SSE.

See Data Sheet 21. The original seismic analysis which was done for the motors used seismic accelerations which are a higher than the accelerations required by either a 0.15g SSE or a 0.20g SSE.

Jhe seismic accelerations used for the motor analysis are shown on Data Sheet 21. All stresses and deflections for the pumps and motors were within the allowable values.

4.2.14 Component Cooling Water Surge Tank The original seismic analysis performed by the tank vendor (Brown-Minneapolis) showed that the equipment is qualified for a 0.15g SSE. A new seismic analysis was done by Bechtel Power Corpora-tion to incorporate the required accelerations for a 0.20g SSE.

All stresses and deflections for the tank were within the allow-able values. Refer to Data Sheet 22.

4.2.15 Diesel Fuel Oil Storage Tank The original seismic analysis performed by the tank vendor (Rich-mond Engineering Company) showed that the equipment is qualified for a 0.15g SSE. The vendor reanalyzed the equipment based on the 0.20g SSE response spectra, and the reanalysis showed no 1 appreciable difference (0.26 percent increase) in seismic accelera-tion response of the vessel from that used in the original anal-ysis. Therefore, it is concluded that the vessels have adequate margins to withstand a 0.20g SSE. See Data Sheet 23.

4.2.16 Diesel Fuel Oil Storage Tank Transfer Pumps and Motors The original seismic analysis which was done for this equipment used seismic accelerations which are higher than the accelera-tions required by either a 0.15g SSE or a 0.20g SSE. All stresses and deflections were within the allowable values. The analysis used accelerations of 1.2g horizontal and 0.8g vertical, and considered the norizontal and vertical loads to act simulta-neously. The peak acceleration values applicable for these pumps are 0.75g horizontal and 0.72g vertical as shown in Figure II-1 and II-2 (using 3 percent damping per Table II-1). A Data Sheet has not been included for these components because additional data from the equip:4ent supplier is not available.

9i l l

VI-8 Supplement 1

)

5.0 (A '

5.1 Summary The components selected and evaluated have been shown to have sufficient margin to perform their function when subjected to an 0.20g SSE. Modifications are being made to four mechanical com-ponents, component cooling water heat exchangers, diesel fuel oil day tanks, emergency diesel generator accessory racks, and emergency diesel generator air exhaust nozzle expansio*n joints and pipe supports. However, with the exception of the accessory racks, these modifications are not a result of an increase in 1 SSE acceleration from 0.15g to 0.20g, but are the result of 2 reevaluating the 0.15g analysis in light of current analytical techniques and as-built field conditions. The modification to the accessory rack is to ensure a greater factor of safety for a 0.20g SSE. When these modifications are complete these components will have sufficient margin to withstand a 0.20g SSE.

O ou VI-9 Supplement 2

_ --_ ___--___- -_-_----._ _ _____ _ --_.__ _ _ _ ___.~ _.-.-___._.-_ _ ._ -.__ _.. .

ry -

t  ;

TABLE VI-1 .

SUMARY OF QUALIFICATION OF SELECTED COMPONENTS Location Response Spectra Qualification Data Sheet Component Bldg. Area Elevation Figure No. Method No.

1. Auxiliary feedwater Aux. 7 567 II-31A, B, C Analysis 1 pump
2. Component cooling Aux. 7 585 II-32A, B, C Analysis 2 water heat exchanger
3. Diesel fuel oil day Aux. 6 595 II-30A, B, C Analysis 3 tank
4. Service water pumps INTS. -

576 II-34A, B, C Analysis 4

5. Auxiliary feedwater Aux. 7 567 II-31A, B, C Analysis 5 pump turbine q
6. Borated water Outside -

585 II-1, II-2 Analysis 6 storage tank

7. Emergency diesel Aux. 6 585 II-27A, B, C Analysis 7 and generator 2.
8. Emergency diesel Aux. 6 585 II-27A, B, C Analysis 8 cooling water heat exchanger
9. Decay heat removal Aux. 7 545 II-1, II-2 Analysis 9 cooler
10. Decay heat removal Aux. 7 545 II-1, 11-2 Analysis 10 pump and motor i :s 11. Decay heat removal CIS. 9 560 None Analysis 11 suction valves HV See Data Sheet

" DH11 and 12 and l

motor operators l

i l

C)

[ } '

{

\s' TABLE VI-1 (Continued)

Location Response Spectra Qualification Data Sheet Component Bldg. Area Elevation Figure No. Method No.

24. Diesel fuel oil Located inside 585 II-1, 11-1 Analysis Not available, see 11 storage tank the Diesel fuel Section 4.2.16 transfer pumps oil storage tank

& motors NOTES:

Aux. - auxiliary building CIS. - containment internal structures INTS. - intake structure E

E B

a n

W

Shtet 1 of 3 Data Sheet I l

\ Qualification Summary of Equipment I. Plant Name: Davis,Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name' Auxiliary Feedwater Pumps
1. Scope: [ ] NSSS [X] BOP
2. Model Number: 4x6x90-7 Stage DVMX Quantity: 2
3. Vendor: Byron Jackson Pump Division
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A
5. Physical Description a. Appearance Horizontal centrifugal turbine-driven pump

( b. Dimensions 12'-3" L x 3'-7" W x 4'-7" H

c. Weight Approx. 5,000 lbs.
6. Location: Building Auxiliary Building, Area 7 Elevation 565 Feet
7. Field Mounting Conditions [X] Bolt (No. 8 , Size Ib" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: 152 Hz. F/B: 162 Hz. V: 336 Hz

9. a. Functional

Description:

Provide emergency feedwater to the steam generators to remove heat from the primary system.

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[X] Both assuming non-seismic equipment is not available

.f 10. Pertinent Reference Design Specifications: 7749-M-36,

\4 7749-C-41 A l

Supplement 1

Shaet 2 of 3 Data Sheetl

. I III. Is Equipment Available for Inspection in the Plant: [ X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Byron Jackson Report No. TCF-1021-SEI, Rev. 2 (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Figures II-31A,B,C
2. Required Acceleration in Each Direction: (based on 0.2g)

S/S = 0.2299: F/B = 0.2129 y= 0.1989 VI. If Qualification by Test, then Complete: N/A

[ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat Il
2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:

1

5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)
[ ] No
6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable l 9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

N' Supplement 1

, . . . . . . . . . . _= . -. .- . - . - . -._ - ..- . -

-- *~ Shsst 3 of 3

% 1

, Data Sheet 1 h

4

-V VII. If Qualification by Analysis or by the Combination of Test and Analysis, then l Complete: '

1. Description of Test including Results: Analysis: All frequencies greater than 33 Hz. Therefore, the ZPA was applied to pump weights and a static analysis was perfonned.

l 2. Method of Analysis l- [X] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum 1

3. Model Type: [X] 3D [ ] 2D [ ] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [X} Computer Codes: Byron Jackson Program CRTSPD Frequency Range and No. of modes considered: N/A j

[ ] Hand Calculations i 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS 4

[ ] Other: N/A (specify)

! 6. Damping: 3% Basis for the damping used: Table II-1

7. Support Considerations in the model: Fixed at foundation i
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a) ,

  • 27,000
  • Hold down bolts Pump to 797 Baseplate
  • 6,477 75,600
  • Hold down dowels Pump to Baseplate
  • Not available from the analysis Effect Upon Functional B. Max. Deflection Location Operability

' Pump Shaft .00232" None, since running clearances are greater than deflection.

Supplement 1

Sh::et 1 of 3

/'N)

L Data Sheet 2 LJ Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Tyge:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Component Cooling Water Heat Exchangers
1. Scope: [ ] NSSS [X] BOP
2. Model Number: Type 61-31N11-5H Quantity: 3
3. Vendor: Struthers Wells Corporation
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A
5. Physical Description a. Appearance Shell & tube. TEMA R Heat Exchanger
b. Dimensions 37'-4" L x 67" 9
c. Weight 101.932 lbs. flooded
6. Location: Building Auxiliary Building Area 7 Elevation 585 Feet
7. Field Mounting Conditions [X] Bolt (No. 4 , Size 1" ) 2 bolts in fixed

[ ] Weld (Length ) support, 2 bolts

[] in sliding suppor-

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: 25.3 Hz F/B: 19.9 Hz V: 19.9 Hz

9. a. Functional

Description:

Provide heat removal capability for reactor auxiliary equipment, including the Decay Heat Coolers,

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[X] Both i 10. Pertinent Reference Design Specifications: 7749-M-23. 7749-C-41 A v

Supplement 1

Shset 2 of 3

[\)

\,

Data Sheet 2 w

III. Is Equipment Available for Inspection in the Plant: [ X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Struthers Wells Corporation (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Fiaures II-32A.8,C
2. Required Acceleration in Each Direction: (based on 0.20 g)

S/S = 0.30q F/B = 1.60a V= 0.90g VI. If Qualification by Test, then Complete: N/A

[ ] random

/ 1. [ ] Single Frequency [ ] Multi-Frequency: sine beat v

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No l

6. Input g-level Test at S/S = F/B = V=

l

7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length ){]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results)

l \d l

Supplement 1 I -

Shsst 3 of 3

/

Data Sheet 2 (T)

N.J VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[X] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 30 [ ] 2D [ ] 1D

[X] Finite Element [ ] Beam [ ] Closed Form solution

4. [X] Computer Codes: ANSYS V Frequency Range and No. of modes considered: 0 to 102 Hz. , No. Modes 9

[X] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS

[ ] Other:

(specify)

6. Damping: 3% Basis for the damping used: Table 11-1
7. Support Considerations in the model: Supports modeled as beams with correct section properties

- 8. Critical Structural Elements:

Governing Load (a) (b) (c) f or Response Seismic Total Stress (c) - (b)

Stress Stress Allowable (a)

A. Identification Location Combination Anchor bolts shear stress

  • 10,350 13,300 Base of support bearing stress
  • 10,840 27,000
  • Not available from the analysis Effect Upon Functional Location Operability Q B. Max. Deflection l

l N/A i

Supplement 1

Shest 1 of 3

[N Data Sheet 3 N.

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Tyge:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Emergency Diesel Generator Fuel Oil Day Tanks
1. Scope: [ ] NSSS [X] B0P
2. Model Number: N/A Quantity: 2
3. Vendor: Richmond Engineering Company
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A
5. Physical Description a. Appearance Horizontal cylindrical tank
b. Dimensions 15'l x 8.5' Dia
c. Weight 11.500 lbs. empty. 59.500 lbs. full
6. Location: Building Auxiliary Buildino. Area 6 Elevation 595 Feet
7. Field Mounting Conditions [X ] Bolt (No. 16 , Size 3/4" )

[ ] Weld (Length )

(]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: 423.5 Hz F/B: 28.6 Hz V: 224.7 Hz

9. a. Functional

Description:

Provides one day supply of diesel fuel oil for Emergency Diesel Generator

b. Is thE equipment required for [ ] Hot Standby [ ] Cold Shutdown i [X] Both assuming offsite power is not available (v j 10. Pertinent Reference Design Specifications: 7749-M-129, 7749-C-41A Supplement 1

[

Shtet 2 of 3-

/ Data Sheet 3 lA

! _ III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No

IV. Equipment Qualification Method
Test:

Analysis: X 4

Combination of Test and Analysis:

Test and/or Analysis by Richmond Enaineerina Company

'- (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Fiaures II-30A.8,C L
2. Required Acceleration in Each Direction: (basedon0.2g) 0.528g N-S (TK.2) 0.66g N-S (TK.1)

S/S = 0.5095a E-W (TK.1) F/B = 0.63a E-W fTK.2) V= 0.49a

(-

VI. If Qualification by Test, ther. Complete: N/A

[ ] random
1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[]

I

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: 08 E__, SSE Other (specify) 4 i 4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No i V=

6. Input g-level Test at S/S = F/8 =
7. Laboratory Mounting:

4

[] Bolt (No. , Size ) [ } Weld (Length )[]

) 1.

!' 8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable h

9. Test Results including modifications made:

l

10. Other tests performed (such as fragility test, including results):

l f

i Supplement 1 1

- ~,,ww,-m-,.

Sheat 3 of 3 c.

Data Sheet 3

.- /

t t VII. If Qualification by Analysis or by the Combination of Test and Analysis, then

'Compiete:

N/A

1. Description of Test including Results:
2. Method of Analysis

[X] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [X] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

Static Analysis used.

Frequency Range and No. of modes considered:

U

[X] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [x] SRSS

[ ] Other:

(specify)

Damping:

Basis for the damping used: Table 11-1

6. 3%
7. Support Considerations in the model: Free end cantilever using saddle properties
8. Critical Structural Elements

Governing Load (a) (b) (c) i or Response Seismic Total Stress (c) - (b)

Stress Stress Allowable (a)

A. Identification Location Combination

    • 31,639* 26,757 **

Circumferential Saddle Loads on Bending Stress Shell Portion at Horn of in Saddle Saddle ,

62,456 Foundation Bolts Shear- Seismic 6977 6977 7.95 Foundation Bolts Tension Seismic 9326 9326 58,232 5.24

  • See discussion i'n report SEction VI, Paragraph 4.2.3

~

    • No_t_avai,lable from the analysis ,,

B. Max. Deflection Location Operability

\ / ,

None t

' Supplement 1

Shut 1 of 3 Data Sheet 4

\j Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Service Water Pumps & Motors
1. Scope: [ ] NSSS [X] BOP
2. Model Number: VITX-SD-20X28BHC Quantity: 3
3. Vendor: Goulds Pumps, Vertical Pump Division
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A O 5. Physical Description a. Appearance Vertical Centrifugal Two-Stage Pump V b. Dimensions 29' Column; 66" High, Discharge Head; 72" High, Motor
c. Weight Pump 7800 lbs.; Motor 8650 lbsl
6. Location: Building Intake Structure Elevation 576 Feet
7. Field Mounting Conditions [X] Bolt (No. 12 , Size 1 3/8" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Horizontal. Vertical):

'H: Pump: 2.27,18.04, 56.7,117.5,196.3, (sym. in i Pump: //.5 Hz each direction) Motor & Head (N-5):ll.96,213.5,711.3 v: Motor: 35.0 Hz Motor & Head (E-W):12.50 224.9,733.0 ~

9. a. Functional

Description:

ProvidecoolingwatertotheComponent Cooling Water Heat Exchangers, and provide backup water supply to the Auxiliary Feedwater Pumps.

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[X] Both Pertingqt Reference Design Specifications: 7749-M-45, 7749-C-41A

{J 10. ,,

l 9 Supplement 1

Shrat 2 of 3 Data Sheet 4

/

V III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Perry H. Brown. Consultino Enaineer (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Fiqures II-34A.8,C i
2. Required Acceleration in Each Direction: (basedon0.2g)

S/S = .82. 70. 241. 251F/B = .82.1.56. 364. 364 V = .205 Motor analyzed using 4.0g Horizontal and 3.0g Vertical VI. If Qualification by Test, then Complete: N/A

, [ ] random O 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[]

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other

' (specify)

4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ } Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

s Supplement 1

Shaet 3 of 3

. ;q\- Data Sheet 4

[N t

VII. If Qualification by Analysis or by the Combination of Test and Analysis, then l Complete: ,
1. Description of Test including Results: N/A i

e

2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[Xl Dynamic Analysis: .[ ] Time-History

[ ] Response Spectrum

3. Model Type: [ X] 3D [ ] 20 [ ] 10 t

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [X] Computer Codes: Goulds' Programs equivalent to " STRESS" Frequency Range and No. of modes considered: 4 Modes Min.

s.

l [ ] Hand Calculations Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS 5.

[ ] Other:

(specify) i

! 6. Damping: 3% Basis for the damping used: Table II-1 l 7. Support Considerations in the model: Base mounted-evaluated sorina constant

8. Critical Structural Elements:

' Governing Load (a) (b) (c) or Response Seismic Total Stress (c) --(b)

A. Identification Location Combination Stress Stress Allowable (a)

  • 24,025 28,728
  • Anchor Bolts Base to
Floor
  • j Pump Base Floor Level .
  • 23,518 29,700
All other components have calculated stresses which are under the i allowables by a wider margin.
  • Not available from the analysis

! Effect Upon Functional

~ Max. Deflection Location Operability

{ \,__ B.

Shaft Packing Area None

/

t Supplement 1 '

_ . ~ _ _ . . , , . , . . . , , . . _ . . . _ , _ . . _ , . , . _ . - - . . . . _ , . , , _ _ _ . _ _ _ . . _ _ _ _ _ _ _ , - , , , - _ _ , , _ _ _ . _ _ , - - . . _ . -

Shrst 1 of 3 h)

I v

Data Sheet 5 Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Auxiliary Feedwater Pump Turbines
1. Scope: [ ] NSSS [X] BOP
2. Model Number: GS-2 Quantity: 2
3. Vendor: Terry Steam Turbine Company
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A
5. Physical Description a. Appearance Single-Stage Split casing steam turbine
b. Dimensions 5'-7"L x 5'-2"W x 3'6"H
c. Weight Turbine 2.800 lbs.. Trip & Throttle Valve 962 lbs.
6. Location: Building Auxiliary Building. Area 7 Elevation 565 Feet
7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

~

[X] Bolted to Aux, Feed. Pump baseplate, see Data Sheet 1B

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: >100 Hz F/B: >100 Hz V: > 100 Hz

9. a. Functional

Description:

Steam turbine drive for Auxiliary Feedwater Pump (see Data Sheet IB)

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown (X]Both assuming non-seismic equipment is not available.

) 10. Pertinent Reference Design Specifications: 7749-M-36, 7749-C-41 Supplement 1

Shsst 2 of 3 Data Sheet 5

/ 'k k) Is Equipment Available for Inspection in the Plant: [ ] No III. [X] Yes IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Keith, Feibusch Associates (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Figures II-31A,8,C 2.~ Required Acceleration in Each Direction: (based on 0.29) 3 0.2299 required 0.212g required 0.198g required S/S = 1.50g used F/B = 1.50g used V = 0.48g used VI. If Qualification by Test, t'en Complete: N/A

[ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[]

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other 3
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS l graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]

i

8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

Q t

Supplement 1

Sheet 3 of 3 J-- .4 Data Sheet 5 (m- )

VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[X] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 30 [ ] 20 [X] 10

[ ] Finite Element [ ] 8eam [ ] Closed Form solution

/~~N 4. [ ] Computer Codes:

)

x/- Frequency Range and No. of modes considered: Riaid

[ X] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

( ] Other: N/A - Rioid (specify)~

6. Damping: N/A Basis for the damping used: Rigid Anchor bolts in concrete, no credit
7. Support Considerations in the model: ror concrete snear resistance capability
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Thrust Bearings Turbine 0.489 1.173 1.550 0.771 Shaft Kips Kips Kips All other components have calculated stresses which have higher margins of safety.

Effect Upon Functional Location Operability B. Max. Deflection Turbine Shaft .005" No effect.

Supplement 1

Sheet 1 of 3 b Data Sheet 6 Qualification. Summary of Equipment I. Plant Name: Davis-Besse1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR a

II. Component Name Borated Water Storage Tank

(

1. Scope: [ ] NSSS [ X] B0P lq
2. Model Number: - Quantity: 1
3. Vendor: Chicago Bridge & Iron Co.
4. If the component is a cabinet or panel, name and model No. of the {

devices included: N/A Field-fabricated, vertical

[m

\

\

5. Physical Description a. Appearance right cylindrical tank
b. Dimensions 47' Dia. x 44' Straight height
c. Weight 550.000 Gal. capacity storace tank
6. Location: Building Yard. west of Aux Bldg.

Elevation 585 Feet

) 7. Field Mounting Conditions [ X] Bolt (No. 48 , Size 24" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side,. Front /Back, Vertical):

ALL: 6.58 Hz. F/B: 6.58 Hz V: 13.06 Hz.

9. a. Functional 0 scription: Provides source of borated water for makeup to primary system, refueling water storage. safety injection, containment spray and spent. fuel pool cooling.
b. Is the equipment required for [ ] Hot Standby [X] Cold Shutdown, assumin non-seismic equipment

[ ] Both is not available.

7749-C-34, 7749-C-41

~

. , 10. Pertinent Reference' Design Specifications:

Supplement i f

I Sheet 2 of 3 ,

l

/ Data Sheet 6 V

III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Chicago Bridge & Iron Co. and Test and/or Analysis by Bechtel Power Corporation (name of Company or Laboratory & Report No.)

V. Vibration Input: .

1. " Revised" Required Response Spectra (attach the graphs): Figures II-l & II-2
2. Required Acceleration in Each Direction: (basedon0.2g)

S/S = 0.21g F/B = 0.21g V= 0.22g VI. If Qualification by Test, then Complete: N/A

[ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat V []
2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

I v' -

Supplement 1 L

Sheet 3 of 3 Data Sheet 6 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Analysis including Results: Desian loads due to 0.200 SSE calculated and compared to oriainal desian and code allowables substantiating adequacy of tank desian.
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[X] Lynamic Analysis: [X] Time-History

[X] Response Spectrum

3. Model Type: [ ] 3D [X] 20 [ ] 1D

[ ] Finite Element [X] Beam [ ] Closed Form solution Bechtel Standard Programs: Model Analysis (CE-917), spectral 77 4. [X] Computer Codes: Analysis (CE-918), Time-History Analysis (CE-920). and Response Spectra Analysis (CE-921).

(d)

Frequency Range and No. of modes considered: to 33 Hz., (6 Decrees of Freedom)

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS

[ ] Other:

(specify)

6. Damping: 5% Basis for the damping used: Bolted steel structure
7. Support Considerations in the model: Soil structure interaction l

l 8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Axial (Longitudinal) Ring #1 3523 3637 18,500 4.22 Stress Circumferential Ring #3 3076 12,972 18,500 1.80 (Lateral) Stress l

,q Effect Upon Functional

) Operability (Q B. Max. Deflection 0.139" Lateral Location Top of Tank None Supplement 1

o

- 1 9 Sheet 1 of 4 i

/

\

  • Data Sheet 7  ;

G I Qualification Summary of Equipment Davis-Besse 1 Tyype:

I. Plant Name:

PWR ,/

1. Utility: Toledo Edison
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name' Emergency Diesel Generator System
1. Scope: [ ] NSSS [d 80P Engine Model 645E4
2. Model Number: Generator Model A20 Quantity: 2
3. Vendor: Power Systems (formerly Bruce GM Diesel, Inc.)
4. If the component is a cabinet or panel, name and'model No. of the devices included: NA Diesel Engine with direct-connected C) Physical Description a. Appearance AC generator, exciter and auxiliary C/ 5.

equipment

b. Dimensions 34'L x 6' W x 10' H (Approx.)

Engine-Generator Foundation 100,000 lbs., Engine 45,000 lbs.,

c. Weight Generator 30,000 lbs., Auxiliary Equipment 17,600 lbs.
6. Location: Building Diesel Generator Bldg. (Aux. Bldg. Area 6)

Elevation 585 Feet

7. FieldMountingConditions[k] Bolt-(No. 16 _ , Size lh )

(Engine-Generator) [ ] Weld (Length )

[]

l f. Natural Frequencies in~Each Direction (Side / Side, Front /Back, Vertical):

l 8.

l See Sheet 4 of 4 V:

l ALL: F/B:

a. Functional

Description:

Serves as a standby emergency source l 9.

of AC power, to be used when normal power is not available L

i

b. Is the equipment tequired for [ ] Hot Standby [ ] Cold Shutdown

/G ,k]Both assuming offsite power is not available

' Pertinent Reference Design Specifications: 7749-M-180, 10.

7749-C-41A l

Supplement 2

~

. 9 Q Sheet 2 of 4 A

I Data Sheet 7 s

Is Equipment Available for Inspection in the Plant: [M]Yes [ ] No III.

Equipment Qualification Method: Test:

IV.

Analysis: MEnaine-oenerator.AccessorvRack,etc.

_fontrols and Combination of Test and Analysis:VInstrumentation Flight Dynamics, Inc. Report No. A-9-80. Rev. 1 Test and/or Analysis by (name of Company or Laboratory & Report No.)

Power Systems Report No. 6032 Vibration Input:

Wyle Laboratories Report No. 45193-1 V.

Figures II-27A,B,C 1.

" Revised" Required Response Spectra (attach the graphs):

(based on 0.20g)

2. Required Acceleration in Each Direction:

See Sheet 4 of 4 V=

S/S = F/8 = _

If Qualification by Test, then Complete: N/A VI.

[ ] random O [ ] Multi-Frequency: [ ] sine beat h 1. [ ] Single Frequency [1

2. [ ] Single Axis [ ] Multi-Axis SSE Other OBE (specify)
3. No. of Qualification Tests:
4. Frequency Range:

5.

TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs) [ } No F/B = V=

6. Input g-level Test at S/S =
7. Laboratory Mounting:

, Size ) [ ] Weld (Length )[]

1. [ ] Bolt (No.

[ ] No [ ] Not Applicable

8. Functional operability verified: [ ] Yes
9. Test Results including modifications made:

\

,\

10.

Otner tests performed (such as fragility test, including results):

Supplement 2 L Rev. 1

e o

9 .

Sheet 3 of 4 Data Sheet 7 (V)

VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: Three relays were sub.iected to a seismic simulation test consisting of biaxial random multifrequency testing in each of two test orientations. The specimens were electrically powered and monitored for electrical function during the test. They demonstrated sufficient integrity to withstand the seismic environment without enmornmite nf structurne nr olactrical functions.
2. Method of Analysis See Sheet 4 of 4

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 1D See Sheet 4 of 4 [_] Finite Element [ ] Beam [ ] Closed Form solution s 4. [k]ComputerCodes: See Sheet 4 of 4 Frequency Range and No. of modes considered: See Sheet 4 of 4

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum ,[ ] SRSS See Sheet 4 of 4 [ ] Other:

(specify)

6. Damping: 3% Basis for the damping used: Table TT-1
7. Support Considerations in the model: See Sheet 4 of 4
8. Critical Structural Elements:

Governing Load' (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Accessory Rack on Seismic 18,908 21,009 24,444 0.182 Engine-Generator Base Spectrum psi psi psi Effect Upon Functional f)4

( B. Max. Deflection Diesel Engine Location Air Exhaust Nozzle Operability No effect, loads are within Vendor recommended allowable values Supplement 2

1 rm 3 Sheet 4 of 4 l V

Data Sheet 7 Accessory Control Internal Panels !

c 1 Engine Rack Cubicles and Equipment

( )

II.8 Natural Frequencies in each Direction Not S/S 41.9 Hz 14.68 Hz >33 Hz

>41.9 Hz >33 Hz Determined F/B V >41.9 Hz >33 Hz V.2 Required Acceleration Used in Each Direction 5.0g S/S 0.4379 Response Spectra 0.437g 0.448g per Figures 0.448g 5.0g F/B 5.0g V 0.469g II-27A,B&C 0.4699 VII.2 Method of Analysis Static Dynamic Test & Analysis Test & Analysis VII.3 Model Type Finite Element Finite Element ID 1D SAP IV SAP IV None None VII.4 Computer Codes Frequency Range and N/A 5 Modes, 4th N/A N/A No. of modes considere i Mode = 34.8 Hz Method of Combining N/A SRSS N/A N/A 6,5 Dynamic Responses SAPIV Boundary Field-mounted Field-mounted VII.7 Support Considerations Rigid Elements Full Supports Supports in the model Stiffness at base, rack stiffness at pipe conn's.

l l

l

\

Y Supplement 2

Sheet 1 of'3 Data Sheet 8 Qualification Summary of Equipment I. . Plant Name: LDavis-Besse 1 Type:

1. Utilityi -Toledo Edison PWR. (
2. NSSS: B&W 3. -~A/E: Bechtel BWR II. Component Name - Emergency Diesel Cooling Water Heat Exchanger
1. Scope: [ ] NSSS [k]' BOP 2.' Model Number: 2208-Type SU-2 Pass Quantity: 2
3. Vendor: Power Systems from Thermxchanger, Inc.
4. If the component is a cabinet or panel, name and model No. of the.

, -dev' ices included: N/A Horizontal, U-Tube, Shell & Tube

. 5. Physical Description a.- Appearance Heat Exchanger.

b. Dimensions 11'-4" Lona. 22" OD Shell
c. Weight- 5420 lb. empty. 6820' lb. operatina

- 6. Location: Building Diesel Generator Blda. (Aux. Blda.: Area 6)

Elevation 585 Feet

7. FieldM'ountingConditions[k] Bolt (No. 4' , Size 3/4" ) 1

[ ] Weld (Length )

[]

8. . Natural Frequencies in Each Direction'(Side / Side, Front /Back, Vertical):

Shell:' Greater than 33 Hz all directions Tuba Bundle: -S/S: 15.2 Hz F/B: >33 Hz V: 15.2 Hz 1

9. a. Functional

Description:

Cool the engine jacket water of the -

Emergency Diesel Generator-(See Data Sheet 7)

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[M]Both assuming offsite power is not available

10.- Pertinent Reference Design Specifications: 7749-M-180

(

7749-C-41A Supplement 2 R@% 1

.y  %

. '- Sheet 2 of 3 Data Sheet 8 v

III. Is' Equipment Available for Inspection in the Plant: [Y]Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: k Combination of Test and Analysis:

Test and/or Analysis by URS/ John A Blume & Assoc. Report No. 8039-1 (name of Company or Laboratory & Report No.)

Flight Dynamics, Inc. Report No. A-9-80, Rev.1 V. Vibration Input: Flight Dynamics, Inc. Report No. A-10-80 1

1. " Revised" Required Response Spectra (attach the graphs): Fiaures II-27A.B,C
2. Required Acceleration in Each Direction: (based on 0.209)

Shell: 0.4489 0.4379 0.4699 Tube Bundle: S/S =0.75g F/B = 0.50g (used) V = 1.50g 1 VI. If Qualification by Test, then Complete:- N/A

[ ] random p) 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

~ (d []

2. [ ] Single Axis [ ] Multi-Axis
3. No: of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:

' 10. Other tests performed (such as fragility test, including results):

Supplement 2 Rev. 1

.c;-

9 o Sheet 3 of 3

[h

_( Data Sheet 8 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[ ] Static Analysis [k]EquivalentStaticAnalysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [M]3D [ ] 2D [ ] 1D

[k]FiniteElement [k] Beam [ ] Closed Form solution (Tube bundle) 1 (Tube bundle)

\ 4. [h]. Computer Codes: SAP IV. Weldina Research Council (WERCO) Release 5.0.2 ANSYS Frequency Range and No. of modes considered: N/A ll'

[k]HandCalculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [MSRSS

[ ] Other:

(specify)

6. Damping: 3% Basis for the damping used: Table II-1
7. Suppert Considerations in the model: Heat exchanger bolted to Diesel-Generator skid
8. Critical Structural Elements:

G'overning Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Bending stress in the

  • 27.56 32.4
  • base plate of the support ksi ksi legs
  • Anchor bolts (max. stress
  • 32.8 35.0 1 intensity) ksi ksi Fixed support junction with , 59.1 60.0 shell (max. stress intensity) Effe Upon unctional a

B. Max. deYe[hio'n # loc 8tigalysis Operability 0.091" Tube bundle None. Stresses and forces are within allowable values.

Supplement 2 Rev. 1

Sheet 1 of 3

(' kI Data Sheet 9 i

G

. Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Decay Heat Removal Cooler
1. Scope: [X] NSSS [ ] B0P
2. Model Number: TEMA Type B-E-U Quantity: 2
3. Vendor: Atlas Industrial Mfg. Co.
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A n
5. Physical Description a. Appearance U-Tube, Shell & Tube HX
b. Dimensions Overall 64" x 19'-0"
c. Weight Empty 17,500 lbs., Full of Water 28,800 lbs.

6 .- Location: Building Auxiliary Building, Area 7 Elevation 545 Feet

7. Field Mounting Conditions [X] Bolt (No. 8 , Size 1"O )

[ ] Weld (Length )

{]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: >33 Hz F/B: >33 Hz V: >33 Hz

9. a. Functional

Description:

Remove Decay Heat from Reactor Coolant System

b. Is the equipment required for [ ] Hot Standby [X ] Cold Shutdown f- s [ ] Both

/ \

10. Pertinent Reference Design Specifications: Seismic-1107/NSS-14/0470,

_ \ ,,/

Mfg. Specs. - 1024/0769,CS-3-106,1152/1069,CS-5-95 Supplement 1

Sh::et 2 of 3 Data Sheet 9 III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No .

IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Atlas and B&W (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Fiaures II-l & II-2 l

l 2. Required Acceleration in Each Direction: (based on 0.2g) 0.20g required 0.20g required 0.20g required S/S = 0.255a used F/B = 0.264a used V = 0.2229 used VI. If Qualification by Test, then Complete: N/A r~s [ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[V] []

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

Supplement 1

[

- l Sheet 3 of 3 i F

l i

Data Sheet 9 j VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[X] Response Spectrum

3. Model Type: [ X] 3D [ ] 2D [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

[ -

4. [ X] Computer. Codes: STALUM Frequency Range and No. of modes considered: 1 to 100.100 Modes

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS

~

[ ] Other:

(specify)

6. Damping: 3% Basis for the damping used: Table II-l
7. Support Considerations in the model: Yes
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

Stress Stress Allowable (a) l A. Identification Location Combination l B&W evaluated the new response curves to determine applicable loads.

The new loads were considerably less than those used by Atlas, and the Atlas original calculations were not altered.

l Effect Upon Functional

' Location Operability B. Max. Deflection N/A N/A Supplement 1

Sheet 1 of 3 Data Sheet 10 Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR ,/
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Decay Heat Removal Pump & Motor
1. Scope: [X] NSSS [ ] B0P
2. Model Number: 10 x 12 x 21 "KSM" Quantity: 2
3. Vendor: B&W Canada Ltd./ Westinghouse
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A 7
5. Physical Description a. Appearance Horizontal Centrifugal

( ')

V' 48" x 116" x 55" High

b. Dimensions
c. Weight 8270 lbs.
6. Location: Building Auxiliary Building, Area 7 Elevation 545 Feet
7. Field Mounting Conditions [X] Bolt (No. 8 , Size 3/4" 0)

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

(Not calculated, see Para. VII.1 on Sheet 3)

ALL: F/B: V:

9. a. Functional

Description:

Removes Decay Heat during cooldown and accident conditions

b. Is the equipment required for [ ] Hot Standby [X ] Cold Shutdown n [ ] Both l \

Pertinent Reference Design Specifications: Seismic - 1107/0469,

(,/ 10.

Mfg. Specs. - 1130/0369, CS-3-106, 1152/10f9, CS-5-95 Supplement 1

, q Shset 2 of 3 N

Data Sheet 10 III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test:

' Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Babcock & Wilcox Co.

(name of Company or Laboratory & Report No.)

V. Vibration Input:

1.' " Revised" Required desponse Spectra (attach the graphs): Figures II-l & II-2

2. Required Acceleration in Each Direction: See Para. VII.1 Used l.6g Horizontal and 0.8g-Vertical S/S = F/B = V=

VI. If Qualification by Test, then Complete: N/A

[ ] random 1.- [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

\ []

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency' Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No 6 .- Input g-level Test at S/S = F/B = V=

7. . Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [-] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

Supplement 1

Sheet 3 of 3

,q

()

Data Sheet 10 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A The attachment bolts for the pump & motor assembly were analyzed usino the peak or Ine response spectra curves as statically applied loads at the C.G. of each component (pump, motor and base). 1.6G Horizontal & 0.8G Vertical used.
2. Method of Analysis

~[ ] Static Analysis [X] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History *

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 10

[ ] Finite Element [X] Beam [ ] Closed Form solution

/'~' 4. [ ] Computer Codes:

~

Frequency Range and No. of modes considered:

[X] Hand Calculations

5. Method of Combining Dynamic Responses: [X] Absolute Sum [ ] SRSS

[ ] Other:

(specify) 4 6. Damping: 3% Basis for the damping used: Table II-l

7. Support Considerations in the model: Simple Support
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Bolt Stress Pump to Nozzle Loads 3600 6300 25,000 5.19 Base Plus SSE Bolt Stress Base to Nozzle Loads 13,200 21,100 36,000 1.13 Foundation Plus SSE Bolt Stress Motor to SSE 9,400 9,400 25,000 1.66 Frame Effect Upon Functional (sg} B. Max. Deflection Location Operability N/A Supplement 1

~

Sheet 1'of 3

/n J Data Sheet 11 Qualification Summary of Equipment ,

I I. Plant Name: Davis-Besse 1 Typ_e:

1. Utility: Toledo Edison PWR J ,
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Decay Heat Removal Suction valves HV-DHil and HV-DH12
1. Scope: [X] NSSS [ ] BOP

{ 2. Model Number: Velan No. P-35216 Quantity: 2

3. Vendor: Velan (Valve Co.) Engineering Co.
4. If the component is a cabinet or panel, name and model No. of the

' devices included: N/A

5. Physical Description a. Appearance Motor-operated Gate Valve
b. Dimensions 12" diameter valve

, c. Weight 4555 lbs. (Approx.)

6. Location: Building Containment, Area 9 Elevation 560 Feet
7. Field Mounting Conditions [,] Bolt (No. _, Size )

{ $ Weld (Length 4U in. )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

(Not calculated, conservative accelerations used, see Para. VII.A)

ALL: F/B: V:

9. a. Functional

Description:

Two valves in series, from Reactor Coolant i

System to Decay Heat Removal System

b. Is the equipment required for [ ] Hot Standby (X j Cold Shutdown 4

{ ] Both

10. Pertinent Reference Design Specifications:

i Supplement 1 t

. . , - . _ . , - , . . , ~ . . - . , . - , . . _ , , _ . , _ , , , . . _ _ _ _ _ , . _ _ , _ , , . _ , . _ _ _ . . . , _ . . , _ , . _ _ _ _ . . , _ , . _ . , . - - . . _ - . . . _ . - _ _ _ .

Sheet 2 of 3

. ,m .

/ \

Data Sheet 11 III. Is Equipment Available for Inspection in the Plant: [ ] Yes [ ] No Inside Containment

- IV. Equipment Qualification Method: Test:

Analysis: X Combination of-Test and Analysis:

Test and/or Analysis by Velan Engineering Co.

(name of Company or Laboratory & Report No.)

V. Vibration Input:

-1. " Revised" Required Response Spectra (attach the graphs): Used 3.0c Horiz. & Vert.

2. Required Acceleration in Each Direction: See Para. VII.8A S/S = F/B = V=

VI. If Qualification by Test, then Complete: N/A g [ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[]

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[] l
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

Supplement 1

Sheet 3 of 3 Data Sheet 11 o VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

' 1. Description of Test including Results: N/A

2. Method of Analysis

[ X] Static Analysis [ ] Equivalent Static Analysis  !

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 1D

[ ] Finite Element [ ] Beam ( ] Closed Form solution

4. [~] Computer Codes:

Frequency Range and No. of modes considered:

[X] Hand Calculations

5. Method of Combining Dynamic Responses:

(( )) Other:

Absolute SumN/A[ ] SRSS (specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load. (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)-

Valve and operator were analyzed to withstand 3.0g horizontally and vertically acting simultaneously, in addition to normal operating load.

Analysis shows that stresses are all within allowables.

4 Effect Upon Functional Max. Deflection Location Operability B.

i

! Supplement 1

, - . . . . . ~ . . - _ _ _ - - , - - _ _ _ ,_ _ _ __ _ __. -

Sheet 1 of 3 f(

L

.( Data Sheet 12 Qualification Summary-of Equipment I. Plant Name: Davis-Besse 1 TY2e:

1. Utility: Toledo' Edison PWR J l' 2. NSSS: 8&W 3. A/E: Bechtel BWR II. Component Name Auxiliary Feedwater Pump Steam Inlet Valve HV-MS106
1. Scope
[ ] NSSS [X ] B9P
2. Model Number: Velan No. B14-254B-2TS Quantity: 1 Velan (Valve Co.) Engineering Co.
3. Vendor:
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A
5. Physical Description a. Appearance Motor-orerated Gate Valve
b. Dimensions 6" diameter valve
c. Weight 1200 lbs. (Approx.)
6. Location: Building Auxiliary Buildina. Area 7 4

Elevation ~ 624.5 Feet

7. Field Mounting Conditions [ ] Bolt (No. , Size _ _ _ _ )

[X] Weld (Length 21" )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

. 32.7 Hz. for the valve & operator

l. ALL: F/B: V:
9. a. Functional

Description:

Valve is in the line which supplies steam to the Auxiliary Feedwater Pump Turbine

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[ X] Both

\/ 10. . Pertinent Reference Design Specifications: 7749-M-212 i

Supplement 1

Sheet 2 of 3 l

y%

Data Sheet 12

( )

(./

III. .Is Eauipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis:

X Combination of Test and Analysis:

Test and/or Analysis by Velan Engineerino Co.

(name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Used 3.0g Horiz. & Vert.
2. Required Acceleration in Each Direction: See Para. VII.8.A S/S = F/B = V=

VI. If Qualification by Test, then Complete: N/A

[ ] random

[q } 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat C/ []

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

4 Supplement 1

o q 1

Sheet 3 of 3 -

~

/]T t.

Data Sheet 12 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses:

(( )) Other:

Absolute Sum N/A[ ] SRSS (specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Valve and operator were analyzed to withstand 3.0g in any direction, in addition to nomal operating load. Analysis shows that stresses are all within allowables. The maximum acceleration which the valve and operator will be subjected to in the installed piping system is less than 1.0g in any direction.

i Effect Upon Functional

\ Operability B. Max. Deflection Location Supplement 1 1

- _ . ~ _ ,. _ _ .. _. ..._.__ _ _ . _ _ .- _ __ _ _ . _ _ _ _ - . . _ . _ . _ _ _ _ _ . _ _ _ . _ _

a 4 A--

A Sheet 1 of 3

~~,

r. +

Data Sheet 13

'w)

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Tyye:

1. Utility: Toledo Edison PWR ,/
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name SKV metal clad switchgear
1. Scope: [ ] NSSS [X ] B0P
2. Model Number: 50 DHP 250 Quantity:
3. Vendor: Westinahouse Electric Coro.
4. If the component is a cabinet or panel, name and model No. of the devices included:

,q 5. Physical Description a. Appearance

b. Dimensions
c. Weight _
6. Location: Building Aux Blda. Area 6 Elevation 585'
7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: 7 Hz F/B: 9.5.13 & 16 Hz V: None

9. _a. Functional

Description:

Lower medium voltaae switchina and orotection

b. Is the equipment required for [ ] Hot Standby [ l Cold Shutdown IX ] Both

[\ 10. Pertinent Reference Design Specifications: 7749-C-41

Shset 2 of 3

(p Data Sheet 13 a

III. Is Equipment Available for Inspection in the Plant: [Xl Yes [ ] No IV. -Equipment Qualification Method: Test: sine beat Analysis: N/A Combination of Test and Analysis: N/A Test and/or Analysis by Westinohouse Astronuclear I aht (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): y
2. Required Acceleration in Each Direction:

S/S = 0.437g F/B = 0.4480- V= 0.469c VI. If Qualification by Test, then Complete:

[ ] random (7 1. [X] Single Frequency [ ] Multi-Frequency: [X ] sine beat C ll

2. [X ] Single Axis [ ] Multi-Axis over 75
3. No. of Qualification Tests: OBE SSE Other sine beats (specify)
4. Frequency Range: 5-25 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

()d No

6. Input g-level Test at S/S = 0.8a F/B = 0.8a V=
7. Laboratory Mounting:

Not

1. [ ] Bolt (No. , Size ) IX l Weld (Length,Specified
8. Functional operability verified: [Xl Yes [ ] No [ ] Not Applicable
9. Test Results including modifications m a: Operability demonstrated during l

! vibration - no structural damage.

10. Other tests performed (such as fragility test, including results):

None

Shret 3 of 3

.! ,]..

Data Sheet 13

.' VII . If Qualification by Analysis or by the Combination of Test and Analysis, then Complete: N/A

1. Description of Test including Results:
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] ID

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

4)

{U Frequency Range and No. of modes considered:

~[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ]-Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. ' Support Considerations in the model:
8. Critical Structural Elements

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

! Effect Upon Functional i

4 8. Max. Deflection Location Operability

1 I

Sheet 1 of 3

/ \ Data Sheet 14-()

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Motor Control Center
1. Scope: [ ] NSSS k ] B0P
2. Model Number: Type "W" Quantity:
3. -Vendor: Westinghouse Electric Corp.
4. If the component is a cabinet or panel, name and model No. of the devices included:

5, Physical Description a. Appearance

(N

b. Dimensions
c. Weight
6. Location: Building Auxiliary Bldo Elevation
7. Field Mounting Conditions [ ] Bolt (No. , Size ')

[ ] Weld (Length )

[]

8. Natural Frequencies in all Directions ALL: 3,6,8,ll,17,20 Hz F/B: V:
9. a. Functional

Description:

Motor starting, stopping and reversing

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[X] Both

.r

( 10. Pertinent Reference Design Specifications:

Sheet 2 of 3

,x-

--(v ) Data Sheet 14 III. Is Equipment Available for Inspection in the Plant: [X]'res [ ] No IV. Equipment Qualification Method: Test: Resonance Search. Sine Beat. Sine Dwell Analysis: N/A Combination of Test and Analysis: N/A Test and/or Analysis by Wyle Laboratories (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): X
2. Required Acceleration.in Each Direction:

S/S = 0.5289 F/B = 0.509a V= 0.490a VI. If Qualification by Test, then Complete:

[ ] random p 1. [X] Single Frequency

~

[ ] Multi-Frequency:

~

[X] sine beat.

V l1

2. [X] Single Axis [ ] Multi-Axis >
3. No. of Qualification Tests: OBE SSE Other 72 dwell tests :

(specify)

- 4. Frequency Range: 1/2 Hz to 35 Hr N

5. .TRS enveloping RRS using Multi-Frequency Test-[ ] Yes (Attach TRS & RRS* -

graphs)

IX] No

6. Input g-level Test at S/S = 0.433g .589 9 5%

0 2%

7. Laboratory Mounting:

See MCC floor plan.

1. [X] Bolt (No. , Size ) [ ] Weld (Length );[ ]
8. Functional operability verified: [X] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made: Satisfactory operation demonstrated No modifications.
10. Other tests performed (such as fragility test, including results):

" -e- , . , _ _

Sheet 3 of 3

/m .

,- :.ls_,/ (.yt Data Sheet 14 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete: N/A

1. Description of Test including Results:

's.

2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

-[ ] Dynamic Analysis: [ ] Time-History

,s [ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

,f'-\

-^-- Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum ~

[ ] SRSS

[ ] Other:

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Effect Upon Functional s B. Max. Deflection Location Operability

i.'

[ Shut 1 of 3

^ '1 Data Sheet 15

/,

i Qualificatior Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3.. A/E: Bechtel BWR II. Component Name Battery Rack and Batteries
1. Scope: { ] NSSS [X ] B0P
2. Model Number: Quantity:
3. Vendor: Gould Inc.
4. If the component is a cabinet or panel, name and model No. of the

, devices included:

(

N/A j Physical Description

~

,'~ 5. a. Appearance

'l b. Dimensions 12'6" x 44" x 46 1/4" l

.j c. Weight 10,100 lb.

6.

Location: Building Aux Blda Area 6 a -

Elevation 603'

7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

Not determined for rack.

f S/S: F/B: V:

9. a. Functional

Description:

Support Class IE Batteries

, s

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[ X] Both l 1

10. Pertinent Reference Design Specifications:

l 4"

Sh st 2 of 3 Data Sheet 15 f('

K.s}

III. Is Equipment Available for Inspection in the Plant: [X ] Yes [ ] No IV. Equipment Qualification Method: Test: Sine dwell (batteries oniv)

Analysis: X frack)

Combination of Test and Analysis:

Test and/or Analysis by Analysis by Gould (name of Company or Laboratory & Report No. )

-Test by Til Testing Labs V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs):
2. Required Acceleration in Each Direction:

S/S = 0.528g F/B = 0.509g V= 0.490a Batteries only -

VI. If Qualification by Test, then Complete:

[ ] random p

(j

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat IXl sine dwall
2. [ ] Single Axis [X] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other 30 sec. sine (specify) dwell at res-
4. Frequency Range: 4 - 35 Hz onance frequencies
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[X ] No

6. Input g-level Test at S/S = .38 F/B = V=
7. Laboratory Mounting:
1. [X] Bolt (No. , Size, ) [ ] Weld (Length )[ ]
8. Functional operability verified: [X ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made: Satisfactory functional test.
10. Other tests performed (such as fragility test, including results):

Sheet 3 of 3 O

(j Data Sheet 15 Battery Rack only VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A

/

2. Method of Analysis

[X] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

_4. [ ] Computer Codes: N/A b Frequency Range and No. of modes considered: N/A

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [X] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: 2% Basis for the damping used: Specified
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Unistrat P-1000(pc. 3) 16366 20315 28800 0.52 Side & end stringers (pcs. 12 & 13)

  • 19252 28800 0.50 Tubing (pc. 10)
  • 16857 28800 0.71 Brace
  • 4273 7390 0.72 Angle iron frame support (pc. 1) 10388 19306 28800 0.91 Anchor bolts
  • 19824 38800 0.45 Tube Connection to bottom support
  • 11289 28800 1.55 3

Char.nel connection to bottom support

  • 13259 22000 0.66 assume seismic stress is total stress Effect Upon Functional B. Max. Deflection Location Operability i

Shert 1 of 3 LI ) Data Sheet 16

'R J Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Battery Charger, Ac Dist. Pnl. , Essential Power Supply
1. Scope: [ ] NSSS [ X] B0P
2. Model Number: Quantity: 1 ea
3. Vendor: Cyberex Inc.
4. If the component is a cabinet or panel, name and model No. of the devices included:

O Nj l

5. Physical Description a. Appearance

'b. Dimensions

c. Weight
6. Location: Building: Aux Bldg Area 6 Elevation: 603'
7. Field Mounting Conditions [ X) Bolt (No. , Size )

[ ] Weld (Length )

[]

8. Natural Frequencies in all Directions:

S/S: 8,18,22,28 Hz

9. a. Functional

Description:

Battery charger

b. Is the equipment required for [ ] Hot Standby [ l Cold Shutdown

[X ] Both O 1o. e <<4 t < < o s4e 8 c4<4= t4 "s: 7749-c-4,

Sh:et 2 of 3

-s

/ Data Sheet 16 Nh' III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test: Sine Beat Analysis: N/A Combination of Test and Analysis: N/A Test and/or Analysis by Westinohouse Ena. Service Division (name o~f Company'or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): y
2. Required Acceleration in Each Direction:

S/S = 0.528a F/B = 0.sogg V= n.donn VI. If Qualification by Test, then Complete:

[ ] random

1. [)d Single Frequency [ ] Multi-Frequency: ] sine beat

(]

(/ I

2. [ ] Single Axis [x ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other40 sine beat (specify) tests
4. Frequency Range: 1 - 35 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[X] No

6. Input g-level Test at S/S = 0.332 F/B = -

V = 0.22g

7. Laboratory Mounting: Not stated.
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [X] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made: Satisfactory.

Loose pins resoldered, potentiometer sealed with lock.

10. Other tests performed (such as fragility test, including results):

s Shtet 3 of 3 <

p)

Data Sheet 16-VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete: N/A

1. Description of Test including Results:
2. Method of Analysis 1

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

-p A-- Frequency Range and No. of modes considered:

[ ]-Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. . Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (bl p A. Identification Location Combination Stress Stress Allowable (a)

/N Effect Upon Functional x_,) B. Max.' Deflection Location Operability

--m y y--, -r p-m.+,-,wwve,----.- y9 ., o,c,-.,,~, - . -

3 -y,3wy- ,m, - . - , - --- , - , , w- * - m

l l

Shret 1 of'3 l

1

{ Data Sheet 17 n' )_

l l

Qualification Summary of Equipment l I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel- Bh2 II. Component Name Unit Substation Transfomers
1. Scope: [ ] NSSS [X ] B0 P
2. Model Number: 0A-T-60-1000/ll20-4160-480Y/277 Quantity:
3. Vendor: General Electric Co.
4. If the component is a cabinet or panel, name and model No. of the devices included:

N/A

5. Physical Description a. Appearance
b. Dimensions
c. Weight
6. Location: Building: Aux Blda Area 6 Elevation: 603'
7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: 77 Hz(L.V Ban) F/B: 100 Hz (Panels) V: 46.5 Hz (Core / coil)

9. a. Functional

Description:

Step down transfomer

b. Is the equipment required for [ ] Hot Standby [ l Cold Shutdown

[X] Both

- fn- 10. Pertinent Reference Design Specifications: 7749-C-41 (Rev. 4) 7749-E-70-2-2

Shrat 2 of 3

,3

( ) Data Sheet 17

\J III. Is Equipment Available for Inspection in the Plant: [X ] Yes [ ] No IV. Equipment-Qualification Method: Test:

Analysis: Method A - Spec C-41 Combination of Test and Analysis:

Test and/or Analysis by General Electric Transformer Dept.

(name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): X
2. Required Acceleration in Each Direction: (original Design)

S/S = 0.332a F/B = 0.332a V = 0.2220 VI. If Qualification by Test, then Complete: N/A

[ ] random O. 1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat L/ [l

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:

f iy 10. Other tests performed (such as fragility test, including results):

m

Shrst 3 of 3 Q Data Sheet 17 VII. If Qualification by Analysis or by the Combination of Test and Analysis, thea 1 Complete:

1. Description of Test including Results: N/A )

l l

i- 2. Method of Analysis -

[ ] Static Analysis [X] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum
3. Model Type: [ ] 3D [ ] 20 [X] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

, 4. [ ] Computer Codes: N/A E

d ' Frequency Range and No. of modes considered: Above 35 Hz

-[X] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[X] Other: Sinale 00F Method (specify)

< l

6. Damping: N/A Basis for the damping used:frea. above 35 Hz
7. Support Considerations in the model: simole
8. Critical Structural Elements:

psi M.S.

Governing Load (a) p(si b) p(si c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Tank plate ends 871 9720 30,000 23.80 Tank plate fronts 534 15,700 29,000 24.91 Tank Bre es 1 ,31 5 13,990 30,000 12.17 C1 amps 1 ,0 39 1 ,0 39 30.000 27.87 Base plate 2,188 18,800 29,000 4.66 L.V. bars 71 0

  • 71 0 15,000 20.13 O

(./ B. Max. Deflection Location Effect Upon Functional Operability N/A

  • Assume total stress is seismic

Shret 1 of 3 V[ Data Sheet 18A Qualificaticn Summary of Equipment I. Plant Name: Davis-Besse 1 g:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name - Auxiliary Shutdown Panel C3630
1. Scope: [ ] NSSS [X ] B0 P
2. Model Number: None Quantity: 1
3. Vendor: The Wolfe and Mann Manufacturing Co.
4. If.the component is a cabinet or panel, name and model No. of the devices included: Indicators - General Electric 180; Hand Switches -

GE SBM, Honeywell CMC, Cutler Hansner E30; Indicating Lights - GE ET16

5. Physical Description a. Appearance Vertical panel - rear access V]

/

b. Dimensions 4' wide: 2'-6" deep: 7'-6" hiah
c. Weight 940 #

'6. Location: Building Auxiliary Buildino - Area 6 Elevation 585'

7. Field Mounting Conditions [X] Bolt (No. 4 , Size 3/8" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: >33 Hz F/B: >33 Hz V: >33 Hz 9.' a. Functional

Description:

Control Danel from which the unit can be maintained in a hot shutdown condition should the main control room become unavailable,

b. Is the equipment required for [X ] Hot Standby [ ] Cold Shutdown

[ ] Both

10. Pertinent Reference Design Specifications: 7749-M-321

She:t 2 of 3 n

Data Sheet 18A III. Is Equipment Available for Inspection in the Plant: ' [ X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X _

Combination of Test and Analysis:

Test and/or Analysis by Kondner Engr and Technical Services (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Attachment 7
2. Required Acceleration in Each Direction:

S/S = 0.437 F/B = 0.448 V= 0.469 j VI. If Qualification by Test, then Complete:

1 l

[ ] random D [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat i

'(d 1.

[] i

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

{ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:

(

V 10. Other tests performed (such as fragility test, including results):

Sheet 3 of 3 f3

-: \j Data Sheet 18A VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: Computed Natural Frecuencies.

Dynamic Amplication. Stresses of elements under static and dynamic loadina.

bucklina of plate sections. All calculated results are satisfactorv.

2. Method of Analysis ,

[ ] Static Analysis [ X] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ X] 2D [ ] 10 4

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

p)

\

' Frequency Range and No. of modes considered:

[X] Hand-Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[X] Other: Sinale Directinn (spEcify)

6. Damping: 4% Basis for the damping used: R_G_ 1_61 Walded steel structure
7. Support Considerations in the model: Fixed Rasp  ;
8. Critical Structural Elements

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Panels side 370 psi 370 psi 1610 psi 3.35 Anchor bolts base 5 ksi 5 ksi 20 ksi 3.0 s

Effect Upon Functional O

(/ B. Max. Deflection Location Operability i

0.0023" Front panel instrument None l

Package plate l

l-

. - , , . , . . - ~ - _ _ - , . _ - . _ . - _ . _ . , . _ . _ . , _ - _ , _ . _ - . . . . , . . _ . . . . . _ . _ . - _ . _ , _ . _ . - . . - _ _ ~ . - . . - - . . .

Shnt 1 of 3

( Data Sheet 18B Qualification Summary of Equipment l' . Plant Name: Davis-Besse 1 Tm:

1. Utility: Toledo Edison PWR ,/
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Vertical Indicator
1. Scope: [X] NSSS [X] B0P
2. Model Number: 180 Quantity: 10 I
3. Vendor: General Electric Co.
4. If the component is a cabinet or panel, name and model No. of the devices included:

( 5. Physical Description a. Appearance Vertical indicator - 41/2" scale v

b. Dimensions 6" x 2.3" x 6" (deep)
c. Weight 18 oz.
6. Location: Building Auxiliary Blda - Area 6 (Auxiliary Shutdown Panel)

Elevation 585'

7. Field Mounting Conditions [X] Bolt (No. 2 , Size * )

[ ] Weld (Length )

  • Standard Panel

[] Mounting Bracket

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: 11.12.17-24. 27-31 HzF/B: >33 Hz V: 23, 30 Hz

9. a. Functional

Description:

Provide IE indication on the Auxiliary Shutdown Panel for pressurizer level, RC hot leg temp, RC pressure, SG level.

SG pressure,

b. Is the equipment required for IX ] Hot Standby [ l Cold Shutdown

[ ] Both

!, ,) 10. Pertinent Reference Design Specifications: NSSS Specification and 7749-M-324 u_

Shu t 2 of 3

[~)-

~\ j Data Sheet 188 III. Is Equipment Available for Inspection in the Plant: k ] Yes [ ] No IV. Equipment Qualification Method: Test: X Analysis:

Combination of Test and Analysis:

Test and/or Analysis by GE - E103A

- (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the. graphs): Attachment 7
2. Required Acceleration in Each Direction:

S/S = 0.437 F/B =, p.542 V= 0.469 VI. If Qualification by Test, then Complete:

[ ] random

1. k ] Single Frequency [ ] Multi-Frequency: [ ] sine beat' hq []
2. k ] Single Axis [ ] Multi-Axis exploratory sweep
3. No. of Qualification Tests: OBE SSE (specify) and endurance
4. Frequency Range: 1 - 33 Hz test from 1-33 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ X] No

6. Input g-level endurance Test at S/S = 3g F/B = 3g V = 1.5g
7. Laboratory Mounting:
  • Standard panel mounting bracket
1. [ X] Bolt (No. 2 , Size * ) [ ] Weld (Length )[]
8. Functional operability verified: k ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made: No failures

( 10. Other tests performed (such as fragility test, including results): No . ..

v t failures occurred when the acceleration was increased to 129 in each axis.

1 Shut 3 of 3

}

(): Data Sheet 188 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results:
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer _ Codes:

d Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

O d B. Max. Deflection Location Effect Upon Functional Operability

Sheet 1 of 3

,-s'j

( Data Sheet 18C v

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR /
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Hand Switch
1. Scope: [ ] NSSS [X] BOP
2. Model Number: E30 Quantity: 9
3. Vendor: Cutler-Hammer
4. If the component is a cabinet or panel, name and model No. of the devices included:

('~' 5. Physical Description a. Appearance Square pushbutton with dual indicating i

lights

b. Dimensions 1 3/4" x 1 7/8" x 3 3/8" (deeo)
c. Weight Unknown
6. Location: Building Auxiliary Bldg-Area 6 (Auxiliary Shutdown Panel)

Elevation 585'

7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

k l Locking nut

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: >33 Hz F/B: >33 Hz V: >13 u,

9. a. Functional

Description:

Control switch for mntnr nnarated value +n provide service water to auxiliary feed pump suction

b. Is the equipment required for l X] Hot Standby [ l Cold Shutdown

[ ] Both

( / 10. Pertinent Reference Design Specifications: 774g_M_apn v

Shut 2 of 3 m

) Data Sheet 18C

,3 1.

III. Is Equipment Available for Inspection in the Plant: [x] Yes [ ] No IV. Equipment Qualification Method: Test: X Analysis:

Combination of Test and Analysis:

Test and/or Analysis by Cutler-Hamar DR34 RM4 (name of Company or Laboratory & Report No.)

V. Vibration Input:

-1. " Revised" Required Response Spectra (attach the graphs): Attachment 7

2. Required Acceleration in Each Direction:

S/S = 0.437 F/B = 0.469 V= 0.469 VI. If Qualification by Test, then Complete:

[ ] random

/O 1. [X] Single Frequency [ ] Multi-Frequency: [ ] sine beat V. []

2. [X] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other resonant freq (specify) sweet and endurance
4. Frequency Range: 5 to 65 to 5 Hz test
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs) 5-10 Hz - lg 10-15.5 Hz - 4.ldX ] No 15.5-65 Hz - 10g
6. Input g-level Test at S/S = F/B = Same as S/S V = Same as S/S
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length ) [X] Lockino nut
8. Functionaloperabilityver!fied: [X ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made: No failures of lamos and contacts did not chance state.

p y) 10. Other tests performed (such as fragility test, including results): None I

Sh::et 3 of 3 p) Data Sheet 18C VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

^1. Description of Test including Results:

2. Method of Analysis

-[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model_ Type: [ ] 3D [ ] 2D [ ] ID

[ ] Finite Element [ ] Beam [ ] Closed Form solution n 4. [ ] Computer Codes:

(s)

Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a) i O'

'v B. Max. Deflection Location Effect Upon Functional Operability

r Shut 1 of' 3

[j/~}- Data Sheet 18D

\J Qualification Summary of Equipment I. Plant Name
Davis-Besse 1 Type:
1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Hand Switch
1. Scope: [ ] NSSS [X] B0P
2. Mode 1 Number: SBN Quantity: '
3. Vendor: General Electric Co.
4. If the component is a cabinet or_ panel, name and model No. of the devices included:
5. Physical Description a. Appearance Pistol grio hand switch ___

D' b. Dimensions 2 5/8" x 2 9/16" x 6 7/16" (Daan)

c. Weight Unknown
6. Location: Building Auxiliary Bldg - Area 6 (Auxiliary Rhuttinwn Panali Elevation 585'
7. Field Mounting Conditions [X] Bolt (No._4 , Size *

)

  • unknown

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: Not Available F/B: Not Availablo V: Nnt Availahla l

l

9. a. Functional

Description:

Transfer switchas fnr nraecurizar haatare; ,

AFPT control and AFP service water inlet valve; AFPT speed control

b. Is the equipment required for [x l Hot Standby [ l Cold Shutdown

[ ] Both

~h 10. Pertinent Reference Design Specifications: 7749-M-320 (V

Shret 2 of 3 V( Data Sheet 18D III. Is Equipment Available for Inspection in the Plant: [X].Yes [ ] No IV. Equipment Qualification Method: Test: X Analysis:

Combination of Test and Analysis:

Test and/or nalysis by General Electric (name of Company or Laboratory & Report No.)

V .~ Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Attachment 7 .,
2. . Required Acceleration in Each Direction:

S/S^= 0.437- F/B = 0.479 V= 0.469 VI. If Qualification by Test, then Complete:

[ l random 1.** [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat f]

V []

2.** [ ] Single Axis [ ] Multi-Axis

3. No. of Qualification Tests: OBE SSE Other endurance test-(specify) ,

g

4. -Frequency Range: 5-33 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[X ] No

6. Input g-level Test at S/S = 8a F/B = 8a V= 8a l 7.** Laboratory Mounting:

l l 1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]

8. Functional operability verified: [ ] Yes [ ] No [ l Not Applicable l 9. Test Results including modifications made: Satisfactory i'

l o V b 10. Other tests performed (such as fragility test, including results): None 1

(

l l- ** unknown I _.

. . - - - . .-. . . ..~. . .

Shret 3 of 3

,m j ,) Data' Sheet 180

. VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. . Description of Test including Results:
2. Method of Analysis

[ ] Static. Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum 3 .- Model Type: [ ] 3D [ ] 2D [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ]' Computer Codes: ,

Frequency Range and No. of modes considered:

[ ] Hand Calculations +

5. Method of. Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

l Governing Load (a) (b) (c) -l or-Response Seismic Total Stress (c) ' (b)

A. Identification Location Combination Stress Stress Allowable (a) l i.

t Effect Upon Functional (Q_) 8. Max.' Deflection Location Operability t

I-w ,- -t. -- --,,,.~ .r, n- . , . , , , , - , , - , ,,~,,n.-,-,n.,,,- e- ,, , ,-,,aw,,-,,,,,.,,,-,-,-_.....--,.---,n. . - , . - - , . , - , - - -

Shest 1 of 3

,[ ' Data Sheet 18E G ]-

Qualification Summary of Equipment

'I. . Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. : Component Name Hand Switch
1. Scope: [-] NSSS [X ] B0P
2. Model Number: CMC Quantity: 2
3. Vendor: Honeywell

. 4. If the component is a cabinet or panel, name and model No. of the devices included:

O 5. Physical Description a. Appearance Rotary Hand Switch with indicating

(")g lights

b. Dimensions 2.33" x 2.33" x 7.16" indicatina lichts (deep)
c. Weight #1
6. Location: Building: Auxiliary Buildina-Area 6 ( Auxiliary Shutdown Pa'nel)

Elevation: 585'

7. Field Mounting Conditions [X ] Bolt (No. 4 , Size * )
  • unknown

[ } Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: Not Available F/B: Not Available V: Not Available

9. a. Functional

Description:

Pressurizer Heater Control

b. Is the equipment required for [X ] Hot Standby [ j Cold Shutdown

[ ] Both O 1o. e <<' < a < re < o '>" 8" c'<'< t'  : 7749- -32o I

j

Sh:et 2 of 3 f]

s_./

Data Sheet 18E III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test: X Analysis:

Combination of Test and Analysis:

Test and/or Analysis by Micro Switch LTR #19929-1 (name of Company or Laboratory & Report No.)

American Environments Company, Inc. 1231-76-2 V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Attachment 7
2. Required Acceleration in Each Direction:

S/S = 0.437 F/B = 0.479 V= 0.469 VI. If Qualification by Test, then Complete:

[ ] random

1. [X] Single Frequency [ ] Multi-Frequency: [ ] sine beat (V~} l1
2. [ ] Single Axis [x] Multi-Axis resonant freq test endurance
3. No. of Qualification Tests: OBE SSE Othertest (specify)
4. Frequency Range: 1-35 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[X ] No

6. Input g-level Test at S/S = 0.749 F/B = 0.74g V= 0.210
7. Laboratory Mounting:
    • unknown
1. [X] Bolt (No. 4 , Size ** )[ ] Weld (Length )[]
8. Functional operability verified: [X ] Yes [ ] No [ ] Not Applicable l- 9. Test Results including modifications made: No failures and no circuit interruptions 2.0 milliseconds or greater.
10. Other tests performed (such as fragility test, including results)

Switch subjected to a 70g shock test in each major axis. No damage and no contact interruption in excess of 15 milliseconds.

4

- ~ ~ ~- -a,-..- - ,-e

_~ . . -

Shtet 3 of 3 j

()\ .

Data Sheet 18E VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including _Results:
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 1D

[ ] Finite Element- [ ] Beam [ ] Closed Form sclution

_ 4. [ ] Computer Codes:

Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

! (specify) l_ 6. Damping: Basis for the damping used:

7. Support Considerations in the model: .
8. Critical Structural Elements:

' Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a) r

(

(. B. Max. Deflection Location Effect Upon Functional Operability i

, , _ , . _-. . _ _ _ _ ..__,.._ _._, . . . , _ , . . _ _ _ . . . _ _ _ , _ _ _ _ _ _ _ . _ , _ _ _ . . _ , _ . . _ _ _ _ . , ~ , _ _ _ , _ , , ,

Shut 1 of 3

, - -.s

./ I Data Sheet 18F G

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Indicatino Light
1. Scope: [_] NSSS [X ] B0P
2. Model Number: ET16 Quantity: 18
3. Ve::dar: General Electric Co.
4. If the component is a cabinet or panel, name and model No. of the devices included:
5. Physical Description a. Appearance Red. areen or amber indicatino licht
b. Dimensions 1/2" (diam) x 1 15/16"
c. Weight Unknown
6. Location: Building Auxiliarv Buildina-Area 6 (Auxiliary Shutdown Panel Elevation 585'
7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

IXl Lockina nut

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: Not Available F/B: Not Available V: Not Available

9. a. Functional

Description:

AFPT governor position indication; transfer switch position indication

b. Is the equipment required for [x ] Hot Standby [ l Cold Shutdown

[ ] Both (M 10. Pertinent Reference Design Specifications: 7749-M-320 t )

Shret 2 of 3

.[ Data Sheet 18F v'

III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test: X Analysis:

Combination of_ Test and Analysis:

Test and/or Analysis by American Environments Co. Inc. 1231-76-2 (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Attachment 7
2. Required Acceleration in Each Direction:

S/S = 0.437 F/B = 0.479 V= 0.469 VI. If Qualification by Test, then Complete:

[ ] random

/7 1. [X] Single Frequency [ ] Multi-Frequency: [ ] sine beat V []

2. [ ] Single Axis [X ] Multi-Axis resonant freq test, endurance
3. No. of Qualification Tests: OBE SSE Othertoet (specify)
4. Frequency Range: 1-35 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[X ] No

6. Input g-level Test at S/S = 0.74a F/B = 0.74a V = 0.21g
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length ) [X l Locking nut
8. Functional operability verified: [X ] Yes [ l No [ ] Not Applicable
9. Test Results including modifications made: No failures.
10. Other tests performed (such as fragility test, including results): None .

Sheat 3'of 3

[

. x.s )'

Data Sheet 18F VII. If Qualificat' ion by Analysis or'by the Combination of Test and Analysis, then Complete: ,

1. Description of Test including Results:

i l

2. Method of Analysis I

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. M. del Type: [ ] 3D [ ] 20 [ ] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

() Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

}

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) ' (b)

A. Identification Location Combination Stress Stress Allowable (a)

Effect Upon Functional ,

d B. Max. Deflection Location Operability

+

k

_,t-., -- ,.-,----,,,--,,--.,,,n .._,,.,,,,,-,---,,.-w.

e. ..

Sh:st 1 of 3

/'s - Data Sheet 19

)

Qualification Summary of Equipment-I. Plant Name: Davis-Besse 1 M:

1. Utility: Toledo Edison PWR J
2. NSSS: 8&W 3. A/E: Bechtel BWR II. Component Name- Safety Features Actuation Cabinet
1. Scope: [ ] NSSS [X ] B0P
2. Model Number: 9N16-1. -2. -3. -4 Quantity: 4
3. Vendor: Consolidated Controls Corp.
4. If the component is a cabinet or panel, name and model No. of the devices included:

,o 5. Physical Description a. Appearance

\ )

b. Dimensions 84" x 48" x 24"
c. Weight 1210 lb.
6. Location: Building Aux Blda Area 7 Elevation 623'
7. Field Mounting Conditions [X] Bolt (No. 8 , Size 1/2" )

[ ] Weld (Length )

[]

8. ' Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: 6.16 Hz F/B: 6.16 Hz V: 6,16 Hz

9. a. Functional Descriptior: Safety features actuation
b. Is the equipment required for [ ] Hot Standby [ l Cold Shutdown

[X] Both N(] 10. Pertinent Reference Design Specifications:

t

t 7

Shut 2 of 3

/

,a

( ) Data Sheet 19 N. /

III. Is Equipment Available for Inspection in the Plant: [ M Yes [ ] No 1

IV. Equipment Qualification Method: Test: sine beat 4  ; Analysis:

- Combination of Test and Analysis:

U .

6 t Test and/or Analysis by Dayton T. Brown. Inc. DTB 03R73-0489

< (name of Company or Laboratory & Report No.)

3, V. Vibration Input:  :>

. 1. " Revised" Required Response Spectra (attach the graphs): y l

N.. Required Acceleration in Each Direction:

.) .;

S/S = 0.472a F/B = 0.4799 V= 0.312 VI. If Qualification by Test, then Complete:

,)

[ ] random l

l j \,

('1 '

1. [X ] Single Frequency [ ] Multi-Frequency: [X ] sine beat

[]

2. [X ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other 6 sine heats

, (specify)

4. Frequency Range: 1-30 Hz

/ 5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs) k ] No

6. Input g-level Test at S/S = 2.69 F/B = 2.83g V = 1.1g
7. Laboratory Mounting: Not specified. 4 l
1. [ ] Bolt (No. , Size ) [ ] Weld (Length ) [ ],
8. ufunctional operability verified: [ x] Yes [ } No [ ] Not Applicable

[ 9 .' Test Results including modifications made: Satisfactory -

3 No modifications.

(O v; 10. Other tests performed (such as fragility test, including results):

N/A

=

Shrst 3 of 3 r

Data Sheet 19 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results:

l l-

2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 1D

[ ] Finite Element [ ] Beam [ ] Closed Form solution

4. [ ] Computer Codes:

Frequency Range and No. of modes considered:

[ ] Hand Calculations l S. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

O

( B. Max. Deflection Location Effect Upon Functional Operability

r Sh:et 1 of 3

(~' ) Data Sheet 20 U/

Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Steam and Feedwater Rupture Control System C5762A and C5792
1. Scope: [ ] NSSS [X] B0P
2. Model Number: 9N27-1. -2 Quantity: 2
3. Vendor: Consolidated Controls Coro.
4. If the component is a cabinet or panel, name and model No. of the devices included:
5. Physical Description a. Appearance
b. Dimensions 84" x 24" x 24"
c. Weight 980 lb.
6. Location: Building Aux Bldg Area 7 Elevation 6W
7. Field Mounting Conditions [x) Bolt (No. 4 , Size l/2" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

S/S: 6,7,11,18.5,23.5,30,33 V:

9. a. Functional

Description:

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[ X] Both

10. Pertinent Reference Design Specifications:

w-

Sheet 2 of 3

[l U/

Data Sheet 20 III. Is Equipment Available for Inspection in the Plant: IX] Yes [ ] No IV. Equipment Qualification Method: Test: Sine Dwell Analysis:

Combination of Test and Analysis:

Test and/or Analysis by American Environments Co. ETL 1079-75-2 (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): X
2. Required Acceleration in Each Direction:

S/S = 0.472a F/B = 0.479a V= 0.3120 VI. If Qualification by Test, then Complete:

[ ] random

'T 1. [X] Single Frequency [ ] Multi-Frequency: [ ] sine beat 4

(V [X l sine dwell

2. [X] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other 7 ' sine dwell (specify) 45 sec each
4. Frequency Range: 1-33 Hz
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = .Sa F/B = ____ V= .33a
7. Laboratory Mounting:
1. [X] Bolt (No. 4 , Size 1/2-13)[ ] Weld (Length )[]
8. Functional operability verified: [X] Yes [ ] No [ ] Not Applicable 4
9. Test Results including modifications made: Satisfactory _

No modifications rx I 10. Other tests performed (such as fragility test, including results):

N/A e

Sheet 3 of 3 73

. ( ,) Data Sheet 20 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete: N/A

1. Description of Test including Results:
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 2D [ ] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

,-s 4. [ ] Computer Codes:

-Frequency Range and No. of modes considered:

[ ] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [ ] SRSS

[ ] Other:

(specify)

6. Damping: _ Basis for the damping used:
7. Support Considerations in the model:
8. Critical Structural Elements:

Governing Load (a) (b) _(c) or Response _ Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Effect Upon Functional

-(N 4,,) B. Max. Deflection Location Operability i

l-

, .- _- . . . . _ . . - ~ . , . _ . . _ . ..-. _ _. _ , .--_,, -.,.._ __ _ _ ._ ...,.. . - _ . - - _ . , . _ . . . . , - - - . _ ,

Sheet 1 of 3 s

i Data Sheet 21

'N ,l l Qualification Summary of Equipment l

I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Component Cooling Water Pumps & Motors l
1. Scope: [ ] NSSS [X] BOP
2. Model Number: 3415M, Size 14x16-22 Quantity: 3 ,
3. Vendor: Goulds Pumps, Inc.
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A 7.s (NJ ) 5. Physical Description a. Appearance Horizontal centrifugal pump
b. Dimensions ill"L x 33"W x 63"H l c. Weight 11,404 lbs.
6. Location: Building Auxiliary Building. Area 7 Elevation 585 Feet t
7. Field Mounting Conditions [X] Bolt (No. 8 , Size 1" )

[ ] Weld (Length )

r []

)

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

ALL: 39.1 Hz. F/B: 24.4 Hz. V: higher than 39.1 Hz.

9. a. Functiona'

Description:

Provide cooling water for reactor auxiliary equipment, including the Decay Heat Coolers,

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown

[X] Both 9 10. Pertinent Reference Design Specifications: 7749-M-46, 7749-C-41A Supplement 1

Sheet 2 of 3

/ j Data Sheet 21 b)

III. Is Equipment Available for Inspection in the Plant: [ X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

l Test and/or Analysis by Mcdonald Engineering Analysis Compa Report No. ME-727 l (name of Company or Laboratory & Report No.) l V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Figures II-32A,B,C
2. Required Acceleration in Each Direction: (based on 0.2g) 0.264g required 0.70g required 0.359 required S/S = 1.0g used F/B = 1.0g used V= 1.0g used Motor analyzed using 4.0g Horizontal and 3.0g Vertical VI. If Qualification by Test, then Complete: N/A

[ ] random (n')

'Ad

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat

[]

2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:
10. Other tests performed (such as fragility test, including results):

Supplement 1

Sheet 3 of 3

[ T

( n..- ) Data Sheet 21 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

[ ] Static Analysis [ ] Equivalent Static Analysis

[ X] Dynamic Analysis: [ ] Time-History to obtain frequencies [ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [ ] 10 (X) Multi-degree of freedom beam b ] Finite Element [ X] Beam [ ] Closed Form solution
~s connected model
4. [X] Computer Codes: ICES-STRUDL l ( j Frequency Range and No. of modes considered: 24 Hz. lowest, 39 Hz. second only 1 mode active in N-S dir., only 1

[ ] Hand Calculations mode active in E-W dir.

5. Method of Combining Dynamic Responses: [X] Absolute Sum [ ] SRSS

[ ] Other:

(specify) l 6. Damping: 3% Basis for the damping used: Table II-l

7. Support Considerations in the model: Pump bedplate assumed to be bolted to foundation with pre-tightened bolts.
8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

Pump hold-down End of Seismic plus 12,130 28,432 32,000 0.294 tensile

bolts,1-1/8" pump plus nozzle 2,683 2,747 16,000 4.940 shear diam. casing / plus normal pedestal junction

! 9 B. Max. Deflection 0.009" Location Impslier at centerline Effect Upon Functional Operability No effect, since 0.011" clearance exceeds impeller deflection shaft & impeller intersection Supplement 1

Sneet 1 of 3 e

[x Data Sheet 22

'b Qualification Summary of Equipment I. Plant Name: Davis-Besse 1 Tyge:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR II. Component Name Component Cooling Water Surge Tank
1. Scope: [ ] NSSS [X] B0P
2. Model Number: N/A Quantity: 1
3. Vendor: Brown Minneapolis
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A

! '5. Physical Description a. Appearance Horizontal Cylindrical Tank

b. Dimensions 5 '-6"0.D. x 15'-0" Long.
c. Weight 30.430 lbs. (approx.) full of water i

' 6. Location: Building Auxiliary Building. Area 7 Elevation 623 Feet

7. Field Mounting Conditions [X ] Bolt (No. 8 , Size 1" )

[ ] Weld (Length )

[]

8. Natural Frequencies in Each Direction (tide / Side, Front /Back, Vertical):

ALL: 155 Hz. F/B: 21 Hz. V: 155 Hz.

9. a. Functional

Description:

Provides water reservoir, surge capability and static pressure for the Component Cooling Water System,

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown l 7 -~ [X] Both r

,j/

10. Pertinent Reference Design Specifications: 7749-M-103, 7749-C-41A l
Supplement 1

- . _ _ . . _ , _ - _ _ . _ _ _ _ _ _ _ _ _ _ _ - . - - . - ~ _ _ _ . _ _ . _ . - . - _ _ _ , _ . . . _ _ _ . _ . . _

Sheet 2 of 3

[ Data Sheet 22 3G III. Is Equipment Available for Inspection in the Plant: [X] Yes [ ] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Bechtel Power Corporation (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Figures II-33A,B,C
2. Required Acceleration in Each Direction: (based on 0.3g)

S/S = 0.46g F/B = 0.609 V= 0.330 VI. If Qualification by Test, then Complete: N/A 1 [ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ sine beat
2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:

l S. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No I

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length )[]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:

1

( ,f

10. Other tests performed (such as fragility test, including results):

Supplement 1

- _. --- .. - -. _- =. .._. . . - . . . ~ . -. - -

. e Sheet 3 of 3 q

\

Data Sheet 22

_{Q '

VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis l- [ ] Static Analysis [X] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [X] 10

[ ] Finite Element [ ] Beam [ ] Closed Form solution

. 4. ['] Computer Codes: N/A Frequency Range and No. of modes considered: Up to 155 Hz.

[X] Hand Calculations

5. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS

[ ] Other:

i (specify)

6. Damping: 4% Basis for the damping used: Table II-1 (Welded Steel Structure)
4 7. Support Considerations in the model
As-built
8. Critical Structural Elements:

" Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

  • 15,000
  • Compression Saddle 697
  • 13,794 23,100
  • Tension Shell *
  • 14,227
Compression Shell 592
  • 6,445 12,100 Cross-bracing between Saddles
  • 6,972 22,000
  • Tension Foundation Bolts *
  • 4,750 10,800 i- Shear Foundation Bolts I Effect Upon Functional Location Operability

' B. Max. Deflection

! Longitudinal None e *Not available from the analysis Supplement 1

e e Sheet 1 of 3

_ ;3 Data Sheet 23 Qualification Summary of Equipment i

I. Plant Name: Davis-Besse 1 Type:

1. Utility: Toledo Edison PWR J
2. NSSS: B&W 3. A/E: Bechtel BWR 4

II. Component Name Emergency Diesel Generator Fuel Oil Storage Tanks

1. Scope: [ ] NSSS [X] B0P
2. Model Number: N/A Quantity: 2
3. Vendor: Richmond Engineering Company
4. If the component is a cabinet or panel, name and model No. of the devices included: N/A p Horizontal cylindrical tank (Buried)

I 5. Physical Description a. Appearance

b. Dimensions 50'L x 12' Dia.
c. Weight 62.750 lbs. empty
6. Location: Building Yard Elevation Grade: 585 Feet
7. Field Mounting Conditions [ ] Bolt (No. , Size )

[ ] Weld (Length )

[X] Buried underground

8. Natural Frequencies in Each Direction (Side / Side, Front /Back, Vertical):

Not applicable since equivalent static analysis was used with peak values of acceleration (1.2g Horiz., 0.8g Vert. used).

~-

9. a. Functional

Description:

' ' Store diesel fuel oil for the Emergency Diesel Generators

b. Is the equipment required for [ ] Hot Standby [ ] Cold Shutdown p [X] Both assuming offsite power is not .

available.

(' 10. Pertinent Reference Design Specifications: 7749-M-129A. 7749-C-41 Supplement 1

o *e Sh:et 2 of 3 l l

l s 3

[\ Data Sheet 23 c) i III. Is Equipment Available for Inspection in the Plant: [ ] Yes [X] No IV. Equipment Qualification Method: Test:

Analysis: X Combination of Test and Analysis:

Test and/or Analysis by Richmond Engirieering Company (name of Company or Laboratory & Report No.)

V. Vibration Input:

1. " Revised" Required Response Spectra (attach the graphs): Ficures II-l & II-2
2. Required Acceleration in Each Direction: (based on 0.20g)

(used 1.29 Horizontal and 0.8g Vertical)

S/S = 0.73o F/B = 0.730 V= 0.70a VI. If Qualification by Test, then Complete: N/A

[ ] random

1. [ ] Single Frequency [ ] Multi-Frequency: [ ] sine beat (Vn') []
2. [ ] Single Axis [ ] Multi-Axis
3. No. of Qualification Tests: OBE SSE Other (specify)
4. Frequency Range:
5. TRS enveloping RRS using Multi-Frequency Test [ ] Yes (Attach TRS & RRS graphs)

[ ] No

6. Input g-level Test at S/S = F/B = V=
7. Laboratory Mounting:
1. [ ] Bolt (No. , Size ) [ ] Weld (Length ){]
8. Functional operability verified: [ ] Yes [ ] No [ ] Not Applicable
9. Test Results including modifications made:

()) 10. Other tests performed (such as fragility test, including results):

Supplement 1

4 . . - _ . . . _ . . . - _ _ _ .

Sheet 3 of 3 O

Data Sheet 23 VII. If Qualification by Analysis or by the Combination of Test and Analysis, then Complete:

1. Description of Test including Results: N/A
2. Method of Analysis

{

4- [ ] Static Analysis [ X] Equivalent Static Analysis

[ ] Dynamic Analysis: [ ] Time-History

[ ] Response Spectrum

3. Model Type: [ ] 3D [ ] 20 [ X] 1D f, [ ] Finite Element [ ] Beam [ ] Closed Form solution
4. [ ] Computer Codes:

Frequency Range and No. of modes considered: N/A 4 [ ] Hand Calculations . '

- 5. Method of Combining Dynamic Responses: [ ] Absolute Sum [X] SRSS

[ ] Other: ,

- (specify)

6. Damping: -3% Basis for the damping used: Table II-1
7. Support Considerations in the model: N/A  ;

. 8. Critical Structural Elements:

Governing Load (a) (b) (c) or Response Seismic Total Stress (c) - (b)

A. Identification Location Combination Stress Stress Allowable (a)

I Heads Knuckle SSE plus 6,828 10,767 12,056 0.189 Region Pressure l h.

Effect Upon Functional Location Operability

\ 8. Max. Deflection N/A 4

i Supplement 1 4

y ,-+ e-e-,.w, - ,-,,w-. -,ry--w-y-.., .--v,,,.-v,,r---,..-s,.-.-,. , - --,w. ., ,,-,,--o ,e,-. ..m.r.,-mw,.-----m--.w-.%- ,,,,--#.,,,.-w,,

i O

^ VII. CONCLUSIONS i

n ,/ 1. The previous sections of this report present the results of an intensive evaluation of the adequacy of systems required to

- accomplish safe shutdown of the reactor and continued shutdown heat removal in the event of an SSE with an acceleration of 0.20g.

2. This evaluation included an assessment of components, selected by the NRC Staff, representative of those necessary to achieve shutdown. It also included all stress problems for those piping systems required for shutdown. Further, it included randomly selected piping supports and ventilation ductwork supports.
3. In all cases,: adequate margin was demonstrated such that the accomplishment ~of safe shutdown and continued shutdown heat I removal is assured.
4. The factors of safety presented in this evaluation have addi-tional~ inherent margins built-in as a result of either con-servative analytical approaches or the use of allowable stresses (code or allowable) which have within themselves additional factors 1of safety. Examples of these inherent margins are dis-cursed below for piping s tems and piping and ventilation duct-work' supports, n

4.1 Piping Systems. Section IV, Paragraph 1.5 discusses how using a (v) i scale factor results in conservative seismic and total stress  ;

values. To show the conservatism of this approach three sets of J stress cases were rerun using the complete computer reanalysis.

These are:

a. Stress cases where the margin factor was not computed since by using the scale factor method it was obvious that an

'overstressed condition would result (i.e. margin factor

>1.0) (31 of 50 cases).

b. Stress cases where the margin factor was computed using the 1

-scale factor method but exceeded the allowable stress for the revised response spectra (9 of 50 cases).

c. Stress cases where the margin factor computed by the scale factor method was between 0.9 and 1.0 (10 of 50 cases).

Table VII-1 shows the results of the comparisons for all fifty stress cases reviewed. For this evaluation, the average margin factors showed approximately a 50 percent reduction after computer reanalysis. On an average basis this indicates that the scale factor method of analysis has an inherent factor of safety of two.

9 4.2 Piping and Ventilation Supports. These are discussed in Sec-tion IV,' Paragraph 2.0, and Section V, Paragraph 2.0, respectively.

The margin factor or interaction values for the most stressed VII-1 Supplement 1

I members '(the latter being reported for anchor b61ts) aret con-servative.. for str.uctural steel the allowable str.ess.~es We're based on th AISC code which has built-in safety factors since

'. they vary between 45 percent to 75 percent of the steel'.,'Fy'ield s

. stress, depending upon various parameters defining the con-

  • figuration of structure and types of loads applied... I JU

!7 -e

- i. .

For standard catalog (non-engineered) items, i.e. , pipe !iaddles, .

clamps, clevis, etc. , the manufacturer's allowable capacity is

_- , based on a minimum factor of safety of five compared to ,the ultimate. strength. .. For engineered co_mpone.nts 1 e_. , Tsway s'truts, .

!~ snubbers,.etc., the applied loads are based upon a faulted loading

- condition while the manufacturer's allowable is based upon the normal loading codition. This also provides an additionalcfactor 1 of safety. In the case of anchor bolts, the manufacfureE'i all'okables ' ate'ohe-fourth or one'fifth of the- uftima{e sitrength.

~

.~ .

~

The twelve pipe supports identified in Table IV-5 were reanalyzed considering the above additional conservatisms'to determine a s' rev-i sed - margi n. or . i nteracti on .value. Titis reanalysis'has'shown i that considering these conservatisms results in a reduction of '.;

3 .the margin factor or intera'ction value by 22 per ent to:80 perce6t.

- .;~ -Of theitwelve problems reanalyzed the reduction for.eight of themf '

fellin the 75 percent to 80 percent range. -- i . .

. .-. -- . - . - - . . . . . . .. ._ . s . .;

c - 2

.. ~ .

  • t.

_ '. ."~

N.. ::-., ..-

. .. . = . . . . . . . _ - _

q= .

I ~2 5;-i

?

7=, z r..--..- . . .. . , g

? ~. . .o E. . _ .- "

g ,;

v -

- .  : ,p

~

s

'~

l

.~. ' ,_ fVII.2. Supplii, ment 1 e

l'

. L V ./

j . ,

TABLE VII-1 i

I PIPING SYSTEMS SAFETY MARGIN:CdMPARISON 'F . ,

. -i - i a *

, . , , y *! g N Average Ratio of  !" h w+:

'I Sc9'aie Ratioof M$rgin factors * '

Factok Method /Cohsiuter Analyste C5tegory of Number Margin Factor Ava. M.F.

Stress Problem of Using Using Scale c- 1 - , >d 'c. , y , , .. - 1 : . m 'j

' Rinde aKd!Numhei. of' Problems in" Range

Problems Scale Computer Factor .' -

Factor Analysis Method '.ti- ~ .- .. ,- , ,

Method Computer r 'e V"" ,;, , 1, Analysis 1.0-1.5 1 5-2.0- 2,.Q-3.0 ' 3'.'0-4 i 0 4,0-5.0 '5.0-7.69 .

j '

e, -

! Problems for <t i ^ Li

- ~

! which a margin b .,

~ '

i factor was 4

l i . ,,,

1 calculated -

using the scale  :'. . ,, -

factor method o ,,

i (Paragraphs 4.1.b 19 .866 .382 2.27 '3-, -' J34 7 6. .-

j and 4.1.c) (Cosest' (Highest ..

< 1.02) -,

4.0) -

5 ,, ,

)  :- .. , ,,

-2

~ ' -

Problems which did -

not have a margin s .

] factor calculated 7

g ..

1 ' '

- I5~, 7" l using the scale

  • i factor method, but * -

" i j in all cases it exceeds y, .,: .5 i 1.0 (Paragraph 4.1.a) 31 >1.0 .508 1.97 8 7 9, 1 4 :2 (Lowest .,

, ,- (Highest l ' -

7 69) 1.'14) '.

TOTAL 50 >.949 .465 2.04' 11. " 10 e l'6 7 '4 -

2 l

J

p.
  • NOTE: For the 31 problems that did nof. have a margin factor calculated using the l

4 g

scale factor methods a conservative value of 1.0 was used in the calculation.

w

- .-_ -