ML20107F506

From kanterella
Jump to navigation Jump to search

High Groundwater Level Study,Grand Gulf Unit 1
ML20107F506
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 12/31/1983
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20107F502 List:
References
TAC-M54498, NUDOCS 8502260149
Download: ML20107F506 (28)


Text

{{#Wiki_filter:r,- Atttchment 2 to AECM-85/0035 HIGH GROUND-WATER LEVEL STUDY GRAND GULF UNIT-1 . Prepared for MISSISSIPPI POWER AND LIGHT CO. By BECHTEL POWER CORPORATION DECEMBER 1983 i-a 5 g o .,p ni dI' h ) P - p j f " 'l i '+ 0 { _}

I 4 TABLE OF CONTENTS Page

1.0 INTRODUCTION

1

2.0 BACKGROUND

2 3.0 HYDR 0 GEOLOGIC CONDITIONS 5 4.0 PROGRAM DESCRIPTION 7 5.0 PESULTS OF INVESTIGATIONS 9 6.0 LICENSING IMPLICATIONS 14

7.0 CONCLUSION

S 16

8.0 REFERENCES

18 f. l pc m % <a k. a.

(( LIST OF TABLES . TABLE 1: PRECIPITATION MEASUREMENTS - GRAND GULF AND JACKSON, MISSISSIPPI LIST OF FIGURES . FIGURE 1: LOCATION OF MONITORING AND DEWATERING WELLS FIGURE 2:,. AREA COVERED S'Y, CLAY SEAL-r: Y-FIGURE 3: SECTION A-A' THROUGH DW t )- p <)' ~ 1. FIGURE-4: EXCAVATION AREA - UNIT 1 COOLING TOWER CIRCULATING WATER LINES-j- + g

s w

,v e FIGURE 5: SELECTED WELL' HYDR 0 GRAPHS AND PRECIPITATION: VARIATION v j e f 4 7-b ? [' g w. .a v t.A. }l~ .: g4, ~,'.y'." ( T W ~,p,. .-r g f 3 g ,e( I jn .3 h.')[N,, / r s i 1, n -- t+- .# ~.~, ~~9 i: 'd[.df,- A;_ 5 - [~; b a 5 '5 i- ,.2 W y-t, r .y s

,pl

~ r }-r 1 l >. 9, 7.; ll l- [ t

  • (-l, 4,

l? S:. ~ s g) e .c > Q, ' y' i E

  1. x.

^ ~l 1 ~ s i . f l;. y g y.,'_ t

.gv ?

3-g,1%,j ? 'GW

  • h.l:

kf ~ ,+ O b l .} :: 2 %s. M 'Q: ~ Q.;Y,M g-f 7

je, -

7 ,.g Q j. ;' s i i c khhhl[ h Ash 5 l?$hl.& -W ?Ai?h >N Yb ~ 'UN& ~' r-

/ l HIGH GROUND-WATER LEVEL STUDY GRAND GULF UNIT 1

1.0 INTRODUCTION

s

This report presents the results of a study performed for Mississippi Power and Light Company (MP&L) at the Grand Gulf Nuclear Station to determine the possible causes for exceeding the design ground-water level (elevation 109 feet) in Dewatering Well 8 (DW-8) from January to July,1983. The well is a-construction dewatering well _ located between the Unit l' intake and discharge lines'of the circulating' water system in the Southeast _ corner of the power

. block (Figure 1). Water level measurements in DW-8 are.taken by MP&L on a. . monthly basis. Thefpurpose of this study was to ' determine.if the rise:in water level in_ DW-8 ~ above elevation 109 feet was due to-naturally occurring causes such as;. . increased rainfall, infiltration, and ground-sater, inflow or to leakage' from ~ -the. circulating water. pipes and the~ cooling towerib'asin. A Lsecondary purpose ~ y of thisistudy was to provide information*for use in determini.ng licensing. impact. :Thefscope of-the study included,a; review of existing hydrogeologic ~ d i Land pertinent construction data, a' site investigation to inspect;and testi y 'DW-8 and the development of fin' ings as to thelcause of the water level; rise. d 21 g x .C s j r +; ~ 1 i r s m ~ a e ~. y p3 > _ * ^ if _1 '? J i " l._ l.-~ '~ I- -- > i -

2.0 BACKGROUND

The power block area and Stand-by Service Water (SSW) basins for Grand Gulf Units 1 and 2 were constructed within an open excavation that extends from yard grade at elevation 132.5 feet to the Catahoula Fomation at about - elevation 87 feet. The excavated area for the power block structures is supported by a soldier pile or tieback wall as shown on Figure 1. Seepage of ground water into the excavation from the Terrace deposits overlying the Catahoula Formation and inflow of precipitation falling on the excavation was initially controlled by pumping from sumps. However, as construction proceeded,. pumping from sumps became impractical due to construction interference. A construction dewatering system was installed-in 1979 and 1980 in order to continue the removal of seepage from the excavation.- The construction dewatering system at ~ Grand Gulf. consists of eight 10-inch diameter wells located around the. power block of Units 1 and 2. Fbur wells -are located;in the Unit 2' power block area,. three wells in the Unit 1. power. block area and one adjacent to the SSW basin which'is common to both areas.

The. wells are -located within the previously: excavated area between' the tiebac'k wall and theistructures as shown on: Figure _1.
Thn U' nit 1_ wells?(DW-6,;

.DW-7a$d'DW-8)andSSW'b'asinwelli(DW-5)hav'enotlbeeno'perathdsincethe'.. completion and; turnover 'ofjunit 1 to M'P&L:in Np'ril,1982.1The Onit 2 wells - L ~ .are.still operating.- 'Thewellsjemovegroundwater.whichmigratesitotheL ~. Unit 2 ' excavation area from flow through the Terraceideposits 'and, permeable!

backfill.t 1They provide-a. dry excavation for the; placement-of granularj ', ' -

'b'ackfill'in the: Unit;2 : area a' d remove waterraddedito the backfill:during; n

placementMiference[1)[.' -

'i gx 7 .p ~? g ,y -- o 2. +. 4. 7

Seven monitoring wells (MW-1 through MW-7) were installed around the power block in 1976.to replace the 11 construction observation wells destroyed during the start of construction in 1975. The monitoring wells are 6-inch diameter PVC pipe installed within the backfill (Figure 1). Water levels in 'either construction observation wells, monitoring wells or construction dewatering wells in the power block area, except DW-2, have been measured at least monthly since 1973 with the exception of the periods from April 4, 1982 to September 24, 1982 and November 19, 1982 to January 28, 1983. During these periods only the Unit 2 wells were measured. DW-2 was not monitored due to its inaccessability in the open excavation for Unit 2. MW-1 and MW-2 are. located near DW-2 and provide representative values of ground-water elevation in the area. Historically, since the start of the power block excavation in 1974, the only water-level measurements which e'xceeded elevation 109 feet were recorded for MW-4 in September 1978 and January 1979. The cause'of the high _ ground-water level was: recharge.to the sand backfill from ponded surface water at the-monitoring well. As documented in the FSAR (Reference 1), upon correction _of-the drainage and repair of 'the' well,-.the water level' returned to* elevations fA bslow 109 feet.

Since.it was installed inLJuly,11980, water levels in DW-8.have' typically bcen :

o ' higher than those recorded:in other dewatering and monitoring wellsiin the:

power blockIarsa, m

k /,

+.
.

o 3' av 2 l s +,,r y gm s _ ' T-

j Upon,t'he completion of backfilling, to minimize iiifiltration and recharge, a .two foot thick clay surface seal has been placed in the area between the . tieback wall and the structures. The clay seal extends at least 8 feet out from the' tieback wall except where interrupted by permanent roads, parking areas, and railroad tracks. The extent of installation of the clay seal is shown on Figure 2. Backfilling around Unit 2 has not been completed, therefore, the clay seal has not been placed in this area. y M .4 Y '5' f. 4 ? "Q.. 4

  • ~

s h:~L ~ ~ 4 ~ }:. (h, n. + c ,L'. ~.- g y3 hj % y";; " ~ f. ' ^ j7- ' T y a o c_ s, 3 ' ;-[ l.. ] f a ,, p = -y .y-p., _4 x - *'i l ;.1 'y '4 a ..e-l w a y 4 g ,'%~ ~ f, .g

\\]

~_ . i '.

W.

, x: ;

.p.

~ f 5' r$, 'C' y N a r 3 ~ ~ - m:: c ~ + m r ~ .l.'. ,Q ' li. w.-> 2 - v .e }. ;" ,i f j t.:.. s e.

5

~ [ .x n w= % :g'm s,Zk,f .- A' ^ ' ^ ~ .v ~ l.) t(' ,.,, k. _b] ^ ylu')

r

'- %:a A_ z v,

n..'
  • n

'"* W. ' KK '~-3 'R-W pnu^~;.= w kn "MM.".W; 'm-cY- ~w~~ xn .n ... < ~.,

  • ~

1 3.0 HYDR 0GE0 LOGIC CONDITIONS Construction dewatering well DW-8 is located in the southeast corner of the area previously excavated for the plant structures (Figure 1). The screened interval is within the granular backfill which was placed between the Radwaste Building and.the east tieback wall. Water levels in DW-8 have fluctuated . between elevation.103.75 and 110.21 feet MSL during the period from the initial reading in July,1980 to present. The lowest reading reflects the effects of pumping (prior to the spring of 1982) while the well was operational. During the period September,1982 through October,1983 the water level has fluctuated between elevation 106.51 feet to 110.21 feet MSL (Reference 2). - The following are.the permeabilities of the~various materials in the power . block area. : Permeabilities ranging from 10-7.to'10-9 cm/sec were obtained ~ from falling head. tests in the Catahoula' Formation (Reference 1 and 3). The . compacted granular backfill has a calculated range fof permeability from'10-1 to 10-3 cm/sec. The Terrace deposits have.widely' varying permeabilities ~ . depending on th'eiri silt and clay: content'.. Permeability ~ test results range from 2.'8.x 10-1 to l'.0 xL10-4 cm/sec~(

Reference:

1).- The clay seal.has a permeability of less than 10-5:cm/sec. Fihure3zistageneralizedcross-secti sh~owing'the-distribution !of x + L,a n ~ Y - undisturbed Land back' fill materials' around ~the' Radwaste Building'[foundatio'n. circulating water pipelines'and the tieback! wall. "As'shown, a' portion.of th tieback wall:was' removed and the excavation extended to!the east for thei installation'of-the; outlet; pipelines for. Unit 11._ Natural ma.te' rials (Loess', ' c 3 V-5; i y'-W', s Q n ~ n~ ~,

i p l . Terrace deposits, and Catahoula Formation) exist outside and beneath the i excavation area. The top of the Terrace deposits is at about elevation 110 feet and the lower contact with the Catahoula Formation is at about elevation

l..

97 feet. Mapping of the tieback wall face, performed by Bechtel in 1974, indicated.that the Terrace deposits in this area consist primarily of fine to medium grained sand overlain by hard, light ' gray clay and brown, silty clay. The exposure of the Catahoula Formation consists of hard, gray, weathered clay about 1-2 feet. thick overlying green, silty clay. - A granular backfill compacted to 95 percent Modified Proctor was placed on top - of the. Terrace deposits, Catahoula Formation, and the circulating water pipelines between the east wall of the Radwaste Building and the eastern . portion.of the ' excavation. Various mechanical piping and a blowdown pipeline - exist in the' backfill on the eastern edge of the excavation.' 4 't s a g ~ J i 8 u + r 3 L .w.- u .3 _^ ,.q, t A e ) , e A p ? r. Y ~ s .a t. ~ ~ t ^ .j[. 4> ~ ,=, n S ;f.y ~,

4 F

sh M n= .,e, ,. m a v s ~ i^(ff 7 -(. n x ^' V w.. _ r,

41 gn -

s m, _ t4 : - ' ';_ ::A T : f C. L, a.. ~ p }3 _ 'f $[k['L E YLD.l4,1 W '~ <$- 5' $~_- N'= ~'S "A "~ h3 ,z 5 + i3 1~ 3 ~ v-

4.0 PROGRAM DESCRIPTION The determination of the cause for the water-level rise in the vicinity of DW-8 involved several steps: 1. The reference point elevation on the existing riser casing of DW-8 was verified. The reference point is the location on the top of the riser casing from which water level measurements are made. 2. A response test was performed on DW-8 to verify that the well screen was still open and that ground water could move freely into' the well. 3. Monthly site rainfall-dat'a'from the years-1981 and 1982 and' daily rainfall measurements from November,1982_ through.0ctober,1983 were .obtained and reviewed to determine if a correlation with the . water-level rise was ' apparent. W 4. Dewatering and monitoring well'hydrographs were reviewed to ' determine-if similar changes in water level within the power: block thave occurred in the past. i 5 5.. Const ruction records _of the clay seal installat' ion were f revi.ewed-.tol 1 determine the extent of the, seal.and the timeiof..its. placement.c '

6.

Excavation drawingsLin the vicinity. of-the tietiackMall ?and thew ~ u /circul'ating water pipelinesTwere{ inspected to determine ;the-depth - Land areal. extent of thefexcavation$1, f[ s.

y
s.}

w ~7 + -.

7. Survey data obtained after site grading was completed in the yard. area southeast of the power block were reviewed to see if low areas exist which could retain surface water. 8. Assuming a ground water rise, an analysis of the liquefaction potential of the backfill in the power block area was performed to determine the. seismic ' margin available against liquefaction. b g .I 5 ~. y t .j .E'. m ,e s 4 s g -r h. 1 e w b, 5 ( a Cp ' y. " g u s T t f , [./,,. ' i + ^ a e 4 s'.,, ' ' T 1 'Q. e ,q b ,Y ,j f g r e ';+ : C! ) 3 ' ' '. - ~. ? *- _ [ Qy - h 2>,. l '~ '. , +

a.

l o be A ^- ;, 2 ,[ f-, -.,, w Y s ^ . - \\- l~ {. 24 ',k V I , _ _ wN s 2 ' l, '-j j_ c. > - [' - [ f , ' i ~ -[_. y} :,= ), +'

  • i i.n e

..: t e n ( }. q My '.. ~ c.. L. .,.",J.] W a s s

g, 3

y V 3,_ .c. l', Lr --.t r s i s .'k 7 ( -. t 1- b ( h j 4 s_ 4 1 -O :~ ,,u t e <g v.- t, p s s ~ 1, n.; s ~- M.1/,f, f i.- 4 35b h c -' ---g .L, M, s + ..h. .. -., p ; ! >,' : _ z ?.-- s. -;s r y r e s -, f". p;y --, -_s, c. c n J. f 7 - j.;_' 4 3 + y .ct,. S. y y_ " _,. * + '.j- 'c-V b .I e' ~ yn g. : -, g2 .g.

m-a
  • t D

{ d." , s; m- ' m ,4-:3 i ..n c A l.- w ~-, - ~ -,l Y-y $f b r0.'. ~ ~:$ .,j_ I &.. ,,..?.4 pa; ~ ~y'gg:yggy- -.v L t y,.7.. n.r y _... + - ~ qp e :+m;q w --c~. q - ywn q =m

5.0 RESULTS OF INVESTIGATIONS The DW-8 reference point elevation which is used to calculate water-level elevation was checked by MP&L and found to be accurate. The verified elevation is 134.31 feet. A-fall'ing head' response test was run in well DW-8 on October 14, 1983. About 35 gallons of water were poured into the well over a period of 3 minutes. A idecline in water level of 0.79 feet was recorded in 23 minutes. Four minutes following the addition of the water to the well the water level was only 0.95 feet above the initial static level, indicating the. injected water moved into the backfill. Thus,.the well is open to the backfill and ground water can move'; freely through the screen. The precipitation records for Grand Gulf Nuclear Station for! the period - November,J 1982 through October,- 1983 were compared 'with the long-term mean ~ precipitation at~ Jackson, Mississippi. This period includes the'seven months .-(Janu' ry through -July,1983) in which the ground water leveliexceeded! a elevation 109 feet MSL., The comparison was made to establish lthe departure ~of. the precipitation record at' the sit'e:from;thellong-term mean?(1909-1981)L at -Jackson,lMississipp1.; IThe:compar.is'onl s. shown on1Tablei. i 1 s :. 't., {. N

  1. '~

AsJindicated on the, table, the precipitation;for Nosember,J1982 5throughL, October'. 24I1983L atL the site was above average by about 27. inches or.slightlyf ~ 1 [ greater;than' 150.. percent-of the[ total [1'ong term average at1 Jackson. The ~ s q < precipitation for the seven-montihL eriod((Decembeh1982' to June 1983) wast p ge,

69.81; inches as,comparad to the longLterm mean for that. period of;34.52 -

j' T-, ~ ~l m linches,yi.e., about 36; inches s 4 .; 9

,c

~ Lt g w;, soy l _ y. - J ~,;. ~

more than.the mean. This above average precipitation increased the amount of water available for infiltration to the water table for the seven month period. . A review of the water level records for the plant site and vicinity reflect the increase.in rainfall and resulting infiltration. An increase of four to 'five feet-in water levels measured in wells on the Unit 1 side of the. power block was common from' January through June,1983 (Figure 5). With two exceptions the. rise is not reflected in Unit 2 observation wells. Levels in ~

the. Unit 2 area were controlled by operations.cf the dewatering wells in response :to Lrising water levels. The exceptions are DW-1 and MW-7 which are-located-on.the east side of the Unit 2. excavation.: Due.to operational iproblems_with the pump in DW-1 it was' pumped.only_on an intermitt' ant basis.

from February through June,1983. - The waterElevel: elevation in DW-l' averaged about 88-feet prior. to February 10,1983.. From February through the end of -June,:1983,_ recorded levels reached a's high'as"104.8-feet, an' increase.'off {k Dalmost!17l feet. Sinceiduly,jl983,Laftdrmodificationofthe'pumpingsystem,e ~ _, water [ievels(inDW-1havefaveragedb,etweenl97[and98. feet. Hydrographs for; X 3 f' several-of the' dewatering. wells and monitoring:wellslare presented:on Figure s, a ~ ~ ' ' ~ * ~5. ~~ 't , ~ ^ < ~ f Based on:the reviewiof water [ levels obtained inithejdewateringlandfmonitoring; -x .c AT ~ :wellsythe'; ground-water: gradient:acrossithe, power block is from south to northi - a s* .1 w s s ~ - s y .in:responseSto continued operation of the Unit 2:dewa't ing(system.;iThe; wells 'f [' t n:the Unit"2 power l block / form la:hydrol_ogic ' sink Yorfsubsuifaceifiowj2 J 2 i .M .. 1 f =possible1that(ground water inithe backfill; forms aimound.'due to constrictisk@ ~ ^ m .. f- ~s c:: y J;e. M g u chetween; the: structures =and the! tieback.ws111duringiperiods':of highe,rithan~ e 1 ^ 3 ,mc. ,g'g' - '

normal l recharge'such as;may.;; occur from heavy (precipitation._

.,.M ~ g r' % ' gn > a., y ,= , x?..

e$.

+ ~ j a - 'M s w" y .c. ~ _ - qYW' x-, - c' l6tl. f5 = O~ .j] hf, - r - - ~.

.g. -The water level rise of four feet in Unit I wells MW-6 and DW-7 during the same period as the rise in DW-8 is probably due to response to the abnormally high precipitation experienced during the seven month period. Recharge of the ' backfill in this area is from infiltration through the more permeable lenses in the Terrace deposits. .The review'of construction records indicated that the clay seal was placed .around the-Unit 1 power block area and the essential service water basins. Installation was completed.in. April,1982. The present extent of the clay . seal is-shown on_ Figure 2. The purpose of'the clay seal is to prevent.the in ' filtration of runoff into the highlyJpermeable backfill between the structures <and the tieback wall. This feature, along with the structures, extensive paved areas, and' a grading plan which directs runoff away-from the structures,~ . is expected to provide a -reduction ~in infiltration' upon completion.'of the plant. 'The clay is to.be covered with six inches of. topsoil and. sod to ' prevent dessication of the clay (Reference N The yard area south and east. of DW-8 has no: permanent structures.or clay. seal. .The. a'rea? includes 1the excavation for. the four 10 foot' diameter circulating. x water. pipelines between the' Unit 1 pump' house'~and~the_ Unit l' cooling ~ tower. ~ s cL 7 J 1The=exca'vation.for the inlet and discharge lines' extends about 70, feet'- 1 eastward of the' tieback' wall.. Backfill for the' circulating water pipeline ? consists of. a clean granul'ar, material. compacted lto 90. perce'nt Modified. ~ ^ 4

  • Proctor. : JThe clay ' seal 'only' covers the portion of. the ; excavation ~ with'in' the

~ J ltiebackwall?(Figure'3).~-Theexcava't'ionsouthio'fthe'RadwasteiBuilding(is: + tabout;500 heet long;and5155 ffeet wide (Figure' 4).; - Depth of the excavation;is "71. .m.. 1 522 fdet below present grade:or at elevation'.110'.'5. feet l(Figure 3)k -^ -,a .a, e 4 I,. ~' ,'(, i~ - g ~ ~

9

.y I^ - ~ -},. _;[ _I? ~3l g~ > ll - - y, ~ly "r I ' 'f pel'-hb. + e x

I The area east.of the Radwaste Building and DW-8 is presently a laydown area with a gravel surface. The remainder of the area south of the Radwaste Building is sodded except where crossed by roadways. These areas south and east of the main power block excavation allow for the infiltration of precipitation and are the likely source of recharge to the granular backfill. Based on site elevation surveys performed in 1982, two areas south of the Radwaste Building and east _of the Low Volume Waste Water Basin are lower than the surrounding roads, thus they are capable of surface water retention..0ne low area-is located about 100 feet eastward from the Low Volume Waste Water ~ z Basin -to the north-south road from the~. cooling tower to the power block and-the other1is east of that road about.110' feet. The crown of the roadway is - elevated.above the_ surrounding area and the Low Volume Waste Water Basin forms 'an obstruction.to natural overland flow ~of surface runoff to the southwest aw'ay from the power block.- Both areas are terminated on the' north by an east-west elevated road and on the south by grading around the Low Volume. Waste' Water Basin. t Excavation through' the clayJseal :has been required at -various times for repair ' 70'f facilities or the addition' or modification of some plant systems.:. At'least- ~ twoisuchareaswereide6tifiedby-MP&Linthevicinityof.DW-7.OEach!of~these ~ ' excavations are potential zones for infiltration.- 'In sunnary,;the high ground-water ; level: experienced in_ DW-8;can probably bel ' attributed ;to. excessive precipitation at the: site and _subsequentfirifiltration. ~

and migration'of ground water throuhhlthe granular backfill)aroundLthe? '

t ,2 ~ ,i 4-sa( w _ q

12 ;

+ .h ~ ^ ~* G '

  • i

^

r' ..w circulating water pipeline in areas not covered by the clay seal. Local ponding of' water _ due to the presence of buildings, roadways,' railroad lines and the Low Level Waste Water basin also contributes to the total infiltration. - i Y i -t 1 A. J ,..b i" w. 1 t'\\ p; a E ~ I, ' 2 +t i gL'* ~ eg e i ~ , a 4 s - -- ' j ~, 3 S y .7 [- I T %1' [(. y a , 5 s _ q L.- v ~~ M_ ru t e ~, p V b g 8-- "r T, 3 p-L.y p % 5 +. I 1 3 g ^ f ^1 b * - 3 3 y p;; t ~ ' _f' . 3 Q w-s y y.. L ? wl: E L 1 n N \\' r p l pj-p 4_1

  • j s

'F- , N c v 3 r S--1. ", 3. 3 f. r,' ' ' S 4 Q7 --- -3 a ^, j ,g]_ ;. J):,,.3_ g _, ( s g ; _. .7 :; G-.L: ep y a-e < + NL '.k;l. dD + y.

.J 1 f [(
  • r j ' ' ' :;}- '

4 y I, 7. h* , :t. s v_ 6 '. ? c r. a ( >T Q, +, ~ oc. w ^ v e s { 't :;..- [ r _., --i,- g, [ '. -. .Sw t i ,, ' '.'r ~ .[,';. 2 e. A_ A + .4 y,. i p

A,4 F

_&~,_f G yy m c + s - 2 y m vm ,.[ ( ,3 -.,- 4, t -_.t.. .. ' '2 - p- " ~, '- y..I e .4 _ w .4 ~ / ~ sq ~ s:. [. 'b.' * ..[ ' ( ge: *'n

10. - ~

t h. .~2 f?_r -. . w.. y j.% '. ~ f -g b s N.c-

d. 2 l,x

-; y + .j. +

  • r o

7y n. , '_M g g, 5 i f,_ ,.f. j A ~ \\ +4J. c 7; -. - 7, z c t.; gd- .$y_ e 4 e ..t ' e. l Q f-. ~. O.\\ ~3 eN s.\\ ~, m 1. t-s ?N

3... :-,
s. c,

k-. "7 vegs; 4 k.gj 3 I., .-1 k [', ^s [ M i. f [ a ..m.6 ,s,.= M. 4 f.+ ^E w :g.u p' e--e:, g g,z,w - w'sb-- 4 .v

yy p,,

< ~ v ' me 7" v' *--- 3p y' yp"'**;q y 7" g ve-n s . w s

se

.:m.

6.0 LICENSING IMPLICATIONS Prior to the start of construction, a ground-water elevation as high as 113 feet was recorded in the power block area. The design maximum ground water level was selected early in the design stage based on 'the assumption that, .following plant completion, ground-water levels in the perched water zone would not return to pre-construction levels due to the presence of structures, the clay seal, extensive paved areas and site grading. However, the design maximum ground-water level was exceeded in the power block area in DW-8 during the period January through July,1983. While water levels are not expected to return to pre-construction levels following plant completion,.at the present time both units of the plant are -not completed. Unit.1 is compl,ete and the clay seal installed. Unit 2 is s'till~under{ construction.and.theexcavationLis-openandbeingdewatered, ~ ? therefore normal ground'-water ' gradients are disrupted.~. For licensing i-= purposes, while. Unit 1 may beLeompleted,~from:a ground-water standpoint.the: > site is not. complete'.. The frequency of~ the extreme precipitation recorded for the period December.to. June (seven months) wasianalyzed for: Jackson,- Miss'issippi for;the period.1943-to 1981 to'e'st'ablish,the! frequency of'the site precipitation'~(69.81 inches). ~

Based Jon. this analysis:the. seven. months :precipi.tation. of. 1982-1983 has a
frequencyjof-aboutilsin~ 200 years.-

~ s t ^ S Control-of-the surface waterfflow: south of;the power blockland extension of.

the clay! seal?over the cirbulating~ water lines sillfreduce'the.: area'available -

L e ^ D \\ ' 114L s .,e-: L r @M ,rn. e m. _ _ -51

t 3 l for infiltration of precipitation into the backfill. This will result in lower ground-water levels. An estimate of post-construction ground-water levels and gradient around the power block may be determined by stopping the pumping of the Unit 2 wells and allowing water levels to reach equilibrium. -It is estimated that at least one _ eek would be required to establish an equilibrium condition around the. power w ,bloEk.';Toperform:5h'is test, all pe' etrations in the Unit _2 side of the power n - block below elevation 115 feet wouldlave to be ' sealed. l-lAn alternate method to.' satisfy-licensing concerns-about exceeding the' design. groundwaterelevationinvolves~checkingthestresses~ontheb611 ding (wallsLif-i. !groun'd sater rises 4to a higher elevation'than:109ifeet. 'As:an initial step in: performing this analysis,- the. seismic margin available L .against liquefaction of the backfill ~under high'er. ground-water cs.ditions was analyzed. 4Thel Category I' structural. b'ackfill wasidetermined to be st'able and: 2 i

have' an adequate factor.
of ; safety to _ atileast. elevation 117 :feeti

^ p 4 N,' v. i ,b b 'k " 3

  • ?

} ?" O - s ~.. w .'.'M S "g7 F A F ~ g 3; o. g ~ g wr c ,~. y a y I 4 t .q

  • -,j, \\s f Y_ [,

-) g.' i [ , (g , I b $.' 13' t g e 3 91 - ~# t [" t + q ' y . 15 ~ m p. ~ x.. y a.. - e, g ! - M.) }- . m [ '--, y sJ %i E - d'- h fQ.( y; + [ ^ U

7.0 CONCLUSION

S 1. A' resurvey of the casing elevation and response tests performed in DW-8 indicates that water levels recorded in the well are accurate. 2. Rainfall in the plant area for the seven month period (December, 1982 through June, 1983) was over 200 percent of normal. 3. The power block excavation for Units 1 and 2 forms a collection basin for migrating ground water.- The anticipated post-construction reduction _in ground-water inflow has not been realized due to' the open excavation around Unit 2, incomplete site grading, the use of yard areas for laydown.and temporary facilities, and the ponding of-surface flow due to obstructions. 4. - A clay seal has _been_ installed around the Unit'l power block and stand-by service water basins. 5. A source.of ground-water flow to.DW-8 is from infiltration through -

the backfill in theicirculating' water line excavation which extends-from the_ Unit 1 cooling tower to the' pump house.- Thelarea outside

'of the boundaries 'of the tieback wall is not capped with a clay ' ~_ y

seal.

w s 6.- Water level's in ' adjacent dewatering 'and ' monitoring well's'in~ the' Unit? L ~ 1 area increased four;to five feet-during' the-same' period that. the ^ 7 ' [" 1 design grcund-waterilevel:was! exceeded in DW-8. This indicates that' ~ s r e '-16 ' ,.4 ~ -y ~ e

w - l the probable cause of higher than normal ground-water levels in DW-8 - i s' increased infiltration from natural causes as opposed to seepage from buried l pipelines or water impoundment facilities. 7. - An-analysis was performed to determine the liquefaction potential ,within the backfill under a rising ground-water condition. The b'ackfill was determin'ed to have an adequate factor of safety for a . ground water _ rise to at least elevation 117-feet, s s^ 5 3 f' 2 ad-3 + o h 6 o m.: ~ 3= kg [ u y ', + ~ ^.! '; g l ] '~^ s ..x n, '.]'. 5 + 1 4 ,, Nl ; 'sf f r L r / t -s 'C-7 n y / 5 f '. ' s g. .I 1 g a '4, _ + s g i j ~ f, +: ( 4 4, ?r y s +. . Q.:.Q L e [ M pi,, j ~ j ~ s w n g t - x- 'A,r j f, .( gS ..' ~ ks u iN: - N'e c

g,.

7< a VI' .w. i T _,s f ^ ',-h - p g @l".' s ,, 3 ~,3 u _ s 1 3 ,f,M'., s" t .'( [ )

  • ( ';

,;.pj... ~. [ 3 -.: - - ] w. .._3., _~$, Q,.(yl; - };; y t s ' L' ,,..r.,r. m - t_ Q j 4 O -:]b ' .s ~ g

E.

n. x (,^:;_, - y_< [# 7p E', ff + u ( glf' 1:':f

.).;_,

Zg 1

2 i

s v ! $~1 ", :A) hU ~ ~ ' f_ };9 .3 f e r}.-y - yg;- i'[: s. p; t F + m s g_ gg-i m s-( M s m 's d " ~ z ,. ~.. $ []l~ -5 M 5 i 5.h "A 6'. :. d @$ bTY. ' $ Qd% ll A~, h?U ^- 1 $:~ \\~. vrl Y e _' ~ F' :-- h ~ .A:.. .L "S ,~ r

O.- r-p-

8.0 REFERENCES

1 '.

Mississippi Power and Light, Grand Gulf Nuclear Station Units 1 and.2 Final Safety Analysis Report, Vol. 2, 2.' LWater level records for site wells, years 1982 and-1983. 3. - Bechtel' Power Corporation',1974, " Site Hydrogeologic Conditions' Report, J Grand Gulf Nuclear Station." , rJ m C I 4 1 = k 4 1 6 -4 ~ g s ~ h 4 t + 4 ( x M .m m. n , 4.s ; -- 3_ .(

7 +,

s. a 6 T A s L 'l. r s_ 4 [- ,'?# c ;.'y.'; {3,- -y; y 4

__ _ n,.;,
u.

i ~ L,'

( a

,.L: N 1.--.e, 7 } ,3*, I V g-, A' l S _- - + f q y K 4 4 '}, y ppj v 1 t l_. j 31 g, s p s s.- _t n }<f" ' *i, ; " 9 u,, . '. - 'w Th a ..~, / 3, -_ r-w- yl v 8, - ; -x s <: 1 .I. A

  • y M f,,

4 g,, ',_l ?' ,J g s - . i.l n ..f; N: y .2'- i }' .s ,,y g f -

  • _g

- ? -q I 1 4 ('> ^ . n. j __pF t. / i I S, ' y, f,., ( f: >. _, v, s e 5 i/ f s 4 v v ' ! ) -:'h f,,.. x. i r m, "~ x u g x V,.fh { ['f- ._7 }+y x y f.- 8

r ;-

3-( s y r-cg r ;-W 5-s 7y ~~ r .na s ~. 74Z. u ~- N , gy.Q,, . ~.. r l. 1 4 .r .w.. .') ;15 4;... ' .jo, - j ' - ~ {, 4 s = c _,~ / s - f m ..m - 3 .j 'j f;l < h. m a r +,c + ,-N dM -f-j hg[eef[ s.

  • A

-J = t 4 ^ ~'% xa

2. (.

p 4 [ h*', ~ - y N)h _ ~ .~:'. < ?' . ;ql1 b 1% i y_,. -.- y;wv,;ib w zA.

  • g-m,
  1. 4 u qo
  • y* cd ;er-m. mf., ( ;1' p 'c.,y.. W,?, w a +.

.j p y' ;w _, g..r g jw ; v . :;;+ -.- P s . + s a1 pg ' m "- 4 --e., 1 '7 3 4 c.f +, l q i;3. M, :Wh. "y c. + 1.g ., ~ ; ,y}x- / ,p ., gf p y.;t y. - a r ^:j.. g ; -} . 2 1.,,'" 'u y-c; ...7 5 %,. y 1, ' y 3, r~ s m, am:. - ? %.'w' ' + ,'? n}a n w;~ a;;.V,,.' ' ? " ;,-%,,,,:*

  • w

- ma x, ,7 7

  1. m

< ; i..,iq ; "a \\ -. %.9 c w L

  • " ~

a ~.r w_ g ---

>,c

- m_a + t"' s y . y + ~T f ,z g ,n,. ' ,., 4, a y .s r, - - ;.. - sc :,,, .-5v w ,.5-e

)_

'wsy, .t w g.- j., 'h '. b ,-i-a zb ~ ,..^ .,,* _7_'s,- 'S f %g'ie. : m. /. a 4 s ')r N;('g.- ^ M k- / ' i 1 .y.. { [m .e -l ;, kh{ SI H.;; ap., ',,. h' i . x a}< ;1; :-,.... ~w h;. g $ #.~ > '. u 1, -'.a*,.: s T c. 7 f +.1,); k( 1, > ~ a 4.;.'. + + s ._3 ; - 1 c, e cw w -r :4 ,,x : .,t, ~..n.~ _. # v, w.: - --.. ir .m. WU';fl6Wn U.M.:QUp W 2 ' W' O ' '"

c. -

V.Wn? s i$MFM%pikhdi Y

  • ' "~ m~ P* m M T W * *."W *F"' W W W

~

  • D-M

^ 4" -MA W'r 9 U J #~ % 5* l Ai ML

TABLE 1 PRECIPITATION MEASUREMENT GRAND GULF AND. JACKSON, MISSISSIPPI OBSERVED AT SITE LONG-TERM YEAR 1982-1983(1) MEAN(2) PERIOD INCHES INCHES' N'ovember - 2.77 3.80 December-16.21 5.47 Janua ry.- 1.51 4.97 . Februa ry. 6.58 4.69' - March 6.56 5.67. IApril -14.36-5.39 ' s-May "14.31' ~ 4.'5'9 , June-10.28 3.74 July: 2.10L .4.59 ~ August-2.17 3.59 September l -1.29 ~ 2.87.; .0ctober.

0.71*-

2.33

-
  • f

--TOTALr -78.85 51.-70; ' ~

z

~ ' *UpltoOctober 24~,11983.. x..

(1) MRainfall ' measurements from Met Tower at Grand Gulf..

s ~ = -- s [(2)j-U.S'./WeatherBureauStationJackson,iMississipp_isfor.1909-1981h c . r'? ,) - s?. s E' .v e i .s

s k+ (TIESACK WALL ~ ' A-T.Nouse EATER ciNC.wousc'AfD i puw W -1 N puw o o*8 q sf-2 8 uNa r -u <+ Tunesset - autLDING RADWASTE OFF-GAS ' l, MW-f Uest 2 TURBINE BulLDING su LDissG BLOG UNIT No.I DW-2 NO AUMILIARf tsplLDessG CONINOL AUMILIARY SUILD600G U001T 2 ButLDING UNIT-1 N "u'NIE-Y"# "u$$Y-Y"I g , as-s Moter See I.c3ure 3 Ge .p DW-3 Section A A' tbrourj h DW-8 DIE st t Di[ St L GENEMATOR GENENATOR useft 9 MONIT04'46 W#'E D DswATeR 45 WELL ns.3 w.g e Mv/-5 O ' EtE EN $ NiN"# 'as"s"e usetf 2 s usesi - 1 50 0 50 100 p-SCALE tal FEET Mw-4 e -GRAND GULF NUCLEAR STATION LOCATION OF MONITORING AND DEWATERING WELLS FIGURE 1

t / n. /,., ~ //s,..//... L WNC eAsgn .,]'/' / y. -: w' ' - -. FUm8P NOUSE .',/,, -CINC eATD, e N' PuesP NOUSE Qg t. 2 fg '/ ' n m /rox m A UNe t - s, ~//.. f 4 ll' TufttlNE - SuiLDING RADWASTL OFF GAS UINT-2 TUR31NE BU6LDING su LolNG stos tJN8Y No.1 / ' /. 'i;/ '/,9/// ;/ u p // / AuMILIARV itulLDING CONTROL AUXILIARY SUILDialG uselT -2 BulLO:asG ussiT-I /.. 1 TIES 4 Cat GNTAINasENT DNTAINIAENT gg,g N ussti-2 y;,. ;/,, uNsT-s I ' }..f aW 's Qj!hd ,V*- p. h

/:V):-

7,,,'&'7 DIE SE L S OsE5tl GLNLNATOR ' 9'/.

  • GENENA10R

,~ tsulLDesIG 7, '7. '. SUIL DING S 1 U0081 2 /. ' UNIT l i ) ., /,</,r.,$, - p ...?,,,,,,, // / ,/

  • * * " " j " 'd. - _

'f' f,' /j' f}/; f- ,,,,y s is,ys,,,,y, ,777,,,,3,,,,,, ' ^ .c c, f - ST Also WV SENveCE STAfsp-isY stNvsCE $/ ' r WATI N B#5tN ) usesT 2 34ff N IfASits / UNs7 - 1 L 4 50 0 50 100 7 AREA w/ CLAY SEAL yyg /. W-1 /, ; SCALE lasFEET g'#R&dWe i GRAND GULF NUCLEAR STATION e AREA COVERED BY CLAY SEAL FIGURE 2 L

t-.

i.,. s. s

.. t : n N .C. k b '5" wo 3 I d I i w ( g-E E 3 i E b 5 n l y t ~~ -g l s In N hk 2L l l un J g i m ,[ L W i g g 5.e 13 l E d II 9. I I jE I .,.E &c I 3 g > [$ f,, g 8* 0x I g Jj -5 si 3 9Y i I ~\\ l $' 'n i I

  • i I

v* '~ ') ( I l d I 'E

' i
  • 31 1 I
  • ( *a

,a V '? i

i. o,i] lg ig ki

+ 1 M 55 1 3 4 ,a v 'h %. A 0;3 e E' vi c. ga r l ? 1 i v ar [:: :.=; ::::.p:.:: l 'J } 2 i jWi fJ J' 1l i 4e <g i i 'y I + e.. c... 3 8 o .A a w r 2 4 j d s p p u g. g g .;..s )s 4: e 1 a t t ~ .ej e . lL } e wr... .a O '~E ~ o+ l t. ,c,.... V d l I . ::. a.. o.;.:. :... :... :. :.. .....@l 1 T y. -l., g[ n 4

t

g, 3 e h O O 5 N u v v. j g p [Et, ilQ $dd n EL./OG.Sd _ _ _ _ _ ___ _ _ _ _ _ _...._ f_T_.l E_ B AC W WA_LL (cuto_rr_4_au_m_eo_) O ow e, it g - EL//0.50 l-PUMP HOUSE / s e ___N 1 1 1 1 1 1 r ea *e _@ ti ^ +__ ._1 i / k. b TURBINE BLDG. b' RADWASTE / tow tevu wsream ~ ~ -{ m No a NO.1 BLDG. i - a E e + 8 v I 2. 4 o U .l d.

t

,i

i

,i a 3 I v .i i i i O Dd'7 AUX.' BLDG. ________s NO.-1 l [/ TIE BAck. WALL f l l l / / TO O So 100 GRAND GULF NUCLEAR STATION e I / V &*gn~g* - l _~ 3 EXCAVAr!ON AREA UNIT 1 CIRC. wArta LINES FIME 4 / ) M* ' t

i9ez. i9M

  • O UOE'ER GEMBE8 CECEMBE,R a

JANUAAv fEERvARv M.ARCM A

a i

v t ia -e ~ p _ _=_.... =_._=m = _. =i : = =l:1 h, -. :==e = - (__,

  1. . __ g 8 e._l g i=.._ _

7 : ,m_ ___====y_._____ __. _ J =._ . _. : = = -..z ..s_

. _. _-___ ;. -.;_.; t..
=._;_.___

=_ y & D_> f:_ _ _ - - . g =q - ra -- = _ _ _ _ __.__;==---. =- .a g7 7_ _ =_-- : .[ E__ .a p ;_ _ c= _.w._, = = - ._...=__=_=_...__1_._.__._____.-=-------- '--,._-a____..2----u.=r__=w____;._.__--_ _ _ _... 7=----- _=. C :'-.. _. _ I.- r- -


=:.---:-.._.-

..___'-._=__...."-;=:--_==nn_=_m_==_- =- J _ _= : --*-- Z J i.. __a- - - = - - - -r T r:: _ -- - ' * = _ ____:=._- =*__ _ ._y___.___.__. _. _ _ _ - - _..._.----------r__:._--_.___..__--_._._____..___ = ' " _ - 9C**.'~:-^='--*-~:...___._J = F: =3E== =ss&z-r -J==EEf-- - - M= W E= = = = = = 5 =" = - -

E==== ~ ~ ~ x

, _ _ _ _ _ _ _ _ _ _ _ _ _ e; - _: -:-. ~.. _ -, _ _ =.. -- _ ___- :--- : m :. : --.__. __ : -- : z =-- -:-==-_ ,j--',---- ___ =. -_ -. -= = -. _ _. =. =. _ =... ~.. = _ =.. _... = _ _. = =.... = _. _. _ _ ~ ~ -.... _. Z =2 _..__- 1c TEWAT@ i .__.w 1 =__ 9 =-**r*1y ,t .2+ " - ^ A _~_ _ _ _ _ s =_

== .e e M_2 ~ g gne ga. - e;- ? -: u -,, r. _._...__-t_t--- ~w-m f FL A '%s.-_ - .,r = ~n _e _x .g p- / h-_ ; g --~_-._ y~.__ nW. g___ p y _- x_ yIb l-- f\\ m__ 2 m 'F- ~ s, ME g; ,=. .3 m -tJw m - =: 1 =, . 2. - ut+...d_ 3

== L ' ' W I D' jj ; - 0 -j 55 2 WE :~ -t , e +. _ N++ a- = r- -. ____ g -u _, __ I. ~. y_ r-pl _ - - .-_..n--- c n K: -T'~-~ Y __s_ s -; p_ , w r v- . v - - ::=- - -. v _a ,=. t= 6 10 46 20 26-6 10 h 20 2S 6 10 lb 20 26 9 10 16 20 25 6 40 16 20 26 b 10 16 20' ;6 6 10 !! ocrosan nomissa ne m mau m nanu m inanoe am 3 4q j 19M 1993 .\\

~ n sm..v ww -_ 4.~:q -7 m _i 7- =7,- - - - i r -- L _. b --- + r - g - -- = r = +==s-- ,i sz ;t 3

=- -

-=- = f. 1-8~

g==. :.r===--_==

r f _- : :. _ - .1 =_ ~

=

_. ~- W Y@-Ei:E_;ilE= : r- -=

==

=-

= 5 :$E'-~~i55' ~ ~ E -- r= n= - '~~ - ~ ' " ' ~ ~ " ~

_;7 __====5-5

= =--~ T =_ => i =_ - -= .=.=

====

E = ===- _ _ = r:. i= - - = - - =- = : _ = = -r =_ _-=cr.=;...._.. ~~~~ ~ - -- - - .=: ~ = ~ _.7 2 --.. -- ~- ^ (. ^ - = - = _. _-. =. .. _.:._==_=__==_=-.- _ = _ _. =: 6 =. =: -==- =_ b- -^^ C. - - .=_-'.'_C -.=';_!=.~_'~~' ~ ( - M G =X2 M EEE = - ; _ "h L = = = h=. i=i = NiIbRiN6-si=.L isEww M-i iq w' =

==E E E:1 i=-4E =- = = kCiv/@ 4..Dw@ DW-@D vh-7E D W -$_ ~ - = m = = _====_ _=._E-~E ~- + w -. =_= ~

_E-

= E ib d=: E- ~ ~ T = ~= ~ w_._-_ p-MrvEE5UATNt OC rime 2 TCoct M._3 - ' _ ~~= . ; ;__ _ _ - _ = = = = = - g s,. r.v . - - - ~ - - _ _ -=== .=; -- :.;.=- - _... = - - W m M 555I-~-w.e Mif5GEMMEE"Mk:i

= i =4==-i"EE==

l ZZ i =- Z~~=22 --~~-~ s-.----. _ ;- ____..= = = = =_.__.. _ _ = _ =.- - -.=___ -.. =. g

==========-==_==:---_==_-- _ _ = - - - = = . _ = t---~--- __._= =. _:c=_=. r~.-~-"=-T--i~._=i~~-~c-r_-_--. _--..__-+_=__r.i_ ___==_=_:.---__-- +- ~. _ _ _ _ _ _. r==n. _ _ r --- - _15:== - = =m r

2. = = =- 4-- = =_._ _

__f=-_ =.__z= ~- =.- h- =_.t- ___ _ _ _- -. _ _ -.. _ I- -== -~ .. -. 35. =__E. ~ ~~~==E =_ i- - = -_.=C==__-

e. _i==E:F=

= ~ w __..:_ -.

= =,

..=:_

- - _ = = = _ = = = = = = _ = = = =

=

a= = - = = = -

.=

=====2====. E~^ :i EE_E E E_r.- - _ __~_. --- - _. - _ _ = = = - t E. : 8. 1 - ~ E =- ~. - = -- i. _-5.__ f=:-. =..r :: :~i--- - EE _1.. ; E1=l.:. :- 92-.= -: -=,:_m_=_ c_o. m_. m _: _ w s=_ =._ tv. m. _r_w e_ E__c=_- = = - =-- . m._ _ =.. _ :. s = =__ _ =. _=_=. _ _ _ i=.. =_== : :..____ n. _ - w { m m.. .- _~~~ =_=_=_-W = : n +_ =. _=.. _=uE =. _ - - ~ - - .____.=._=_.__._=_==_=_.__..e_- _ =... _. - _ _ .a_-_._.___,=---.__-- . =.. =. ._ =. _ ~ -~ _=_ t =. z- ~~ : C. . 4-7' . _ _ -.. _.q- _t, .. _-

  • __"*"".] ;; f ;-. _ y ___

{~'-~ ~J'~ ~ ~ ~ - ' * - ~ IDI _, ': =__.__~~~~~'7+~ = = =s 1.Ek-iC~ ~~

z i ~:- =i

=-i E = ..r,_b. __.__=.=_-__.___=7_=__=.-__ M- .... _. = = _ _ = _.. p -.#384g,-___-----__---g - - - = -. = = = - - - -.

  • _-.-+----.;g~-.;_

-_----;,.--+.-;- = -; A. y_ ] s;.'%- -) - ~ ~ "^^ ~ m" .__5 =i.=

E =~ i _

.=_ - ; _ ~~ w-t e s._ .? -=

naa a_ _.. _.

n _ _.. _.. =.. _. _ _ _. _ _ _- - -- _ ___ - - c -:c. e.s.t t---- - w - r---A

y ----- _

8:i~.=~EM .-_g y.,_. _----,-.--.m..c 7m._------..- z. ...n _ ;.. c-. Dw. ibn ="= i=-+ i - ~~%:t5;r_=,g= g...ms w,.:.- 7 y = =... -,_ _2._ s.=/M.y-y-s+ t = = m=_ _-; x==1 m ~- ... -.. =. 'T :c= = - -- - m-- ~ - . ___s =: =c -

===: ~%=_..u====... ~~ GRAND GULF NLICLEAR STATION = r- ~7.. SELECTED WELL HYDR 0 GRAPHS =t=- RS:rr : :~~ AND PRECIPITATION VARIATION C~~ - t T.r-S$ "MITM-#- __.;;_ -_ 7;;. _.-_._.c_ _ _... FIGURE 5 r.--b:r--. - - n. - - _ + - ..-~ .=;.=~-- ..--t==. _ ~_..

=T.I- =*.2 *

==L__--._.*-C

T-.....___--.....~_.. ._..___=t_=*4_

.-_4.-_ i 26 6 10 15 20 2$

$ 10 lb 20 2S 6 10 lb /C 25 b 19 lb 20 2h h to 11 20 25 S 10 4. 20 25 6 10 RAAY Jusst JULY AUGU$7 $UTDesEA OCTORR MQt groino n9-os -.-r------ i ..}}