ML20106A293

From kanterella
Jump to navigation Jump to search
Nonproprietary WCAP-13497, Catawba Unit 1 Steam Generator Tube Interim Plugging Criterion Presentation Matls
ML20106A293
Person / Time
Site: Catawba Duke Energy icon.png
Issue date: 09/30/1992
From: Houtman J, Pitterle T, Prabhu P
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20012G117 List:
References
WCAP-13497, NUDOCS 9209250270
Download: ML20106A293 (75)


Text

. _ - _. _ _ _ - _ _ _ _ _ - - _ _ _ _ _

t WESTINGHOUSE CLASS 3 (NON-PROPRIETARY)

WCAP-13497 I

CATAWBA UNIT 1 S1EAM GENERATOR TUDE INTERIM PLUGGING CRI1ER10N PRESENTATION MATERIALS T. A. PIT 1ERLE P. J. PRABHU J. L. HOU1 MAN SEPTEMBER 1992 Westinghouse flectric Corporation.

Nuclear and Advanted Technology Division a

P;0. Box 355 s

Pittsburgh, Pa. 15230 I*

(c) 1992 Westinghouse Electric Corporation All Rights Reserved i

9209250270 920917-PDR ADOCK 05000413 l

P PDR L

A meeting was held on August 28,1992 between Duke Power Company, Westinghouse, and the NRC Staff to discuss the application of a s oltage based interim plugging criterion i

(IPC) for the tube support plate elevation outer diameter initiated stress corrosion crack.ing occumng on the Catawba Unit 1 steam generator tubes. The presentation materials are included within.

The following topics were discussed by Westinghouse:

1.

The development of a bobbin probe voltage based IPC for Catawba Unit I

considering:

Pulled tube database for 3/4" tubing.

NDE Uncertainties Voltage Growth Rates Bounding SLB Leak Rate / Voltage increments.

2.

Steam Generator Tube 13urst and Leak Rate Correlations.

O e

CATAWBA-1 NRC HEETING ON IPC WESTINGNOUSE PRESENTATION AGENDA PRESENTon

_ TIME _

SUMMARY

OF IPC EVALUATION PITTERLE 9:00-NDE UNCERTAINTIES PITTERLE BREAK 10:45 VOLTAGE GROWTH RATES PRABNU 11:00 BOUNDING SLB LEAK RATE /

VOLTAGE INCREMENTS PRABNU

~

LUNCN 12:00 PULLED TUBE DATABASF FLR 3/4" TUBING PITTERLE 1:00 BURST AND LEAK RATE CORRELATIONS 1.0CA + SSE CONSIDERATIONS HOUTMAN 2:00 DISCUSSION ALL 3:30 4

~

72090:067192

~

...;_~,:;,_ _, -...._,._., -

I

SUMMARY

OF IPC EVALUATION DISCUSSION TOPICS INTERIM IPC CATAWBA-1 REPAIR LIMIT FOR FULL APC IMPLEMENTATION BOC INDICATIONS AND E0C VOLTAGE PROJECTIONS MARGINS AGAINST BURST e

VOLTAGE / BURST CORRELATION e

MARGINS AGAINST 3AP AND SLB BURST SLB LEAK RATE e

BOUNDING SLB LEAK RATE INCREMENTAL WITH VOLTAGE o

PROJECTED LEAK RATES

~

CONCLUSIONS e

iU2090:082192

CATAWBA-1 INTERIM PLUGGING CRITERIA (IPC)

TUBE REPAIR BASIS BOBBIN COIL INDICATIONS HAVING FLAW VOLTAGES 9

GREATER THAN 1.0 VOLT AND CONFIRMED AS A FLAW BY RPC INSPECTION SHALL BE REPAIRED.

BOBBIN COIL INDICATIONS HAVING FLAW VOLTAGES O

GREATER THAN 2.5 VOLTS SHALL BE REPAIRED INDEPENDENT OF RPC CONFIRMATION OF A FLAW.

PROJECTED LEAKAGE FOR A POSTULATED SLB EVENT AT e

E0C CONDITIONS SHALL BE LESS THAN 1.0 GPM FOR THE MOST LIMITING S/G.

BOBBIN COIL FLAW INDICATIONS INSPECTED BY RPC AND FOUND TO HAVE NO RPC INDICATION DO NOT NEED TO BE INCLUDED IN THE LEAKAGE ANALYSES.

TUBES IDENTIFIED AS SUBJECT TO SIGNIFICANT e

DEFORMATION AT A TSP ELEVATION UNDER A POSTULATED LOCA + SSE EVENT SHALL BE EXCLUDED FROM APPLICATION OF THE IPC AT THAT TSP LOCATION.

9 IO M90:082192

CATAWBA-1 INTERIM PLUGGING CRITERIA (IPC) (CONT'D.)

i INSPECTION REOUIREMENTS e

THE INSPECTION SHALL INCLUDE 100% BOBBIN COIL INSPECTION OF ALL HOT LEG INTERSECTIONS AND COLD LEG INTERSECTIONS DOWN TO THE LOWEST TSP FOR WHICH THE IPC IS TO BE APPLIED.

e ALL BOBBIN COIL FLAW INDICATIONS ABOVE 1.0 VOLT AND BELOW 2.5 VOLTS SHALL BE INSPECTED Inr RPC TO EVALUATE FOR DETECTABLE RPC INDICATIONS AND, FOR INDICATIONS, TO SUPPORT ODSCC AS THE DEGRADATION MECHANISM.

e EDDY CURRENT-ANALYSIS GUIDELINES SHALL BE CONSISTENT WITH GUIDELINES UTILIZED IN NRC SuBMITTALS SUPPORTING APC FOR 0DSCC AT TSPS.

OPERATING LEAK RATE LIMIT e

THE NORMAL OPERATING' LEAK RATE REQUIRING PLANT SHUTDOWN SHALL BE LIMITED TO 0.1 GPM (150 GPD)

PER S/G.

I i.

IAPK%062192

EQUIVALENT CATAWBA-1 APC REPAIR LIMIT i

EQUIVALENT FULL APC LIMIT USE IN IPC e

ESTABLISHES HAXIMUM BOBBIN FLAW VOLTAGE TO BE LEFT IN SERVICE EVEN IF NOT CONFIRMED BY RPC e

UTILIZATION BASED ON PRIOR IPC PRECEDENT (FARLEY, COOK UNITS)

APC VOLTAGE REPAIR LIMIT e

VOLTAGE FOR BURST AT 3 AP (-95%) REDUCED BY ALLOWANCES FOR GROWTH AND NDE UNCERTAINTY B U R S ~,' A T 3 A P s

PRELIMINARY EVALUATION OF 4.1 VOLTS FOR 3/4" TUBING PENDING FINALIZATION OF BELGIAN VOLTAGE RENORMALIZATION e

PRELIMINARY CONSIDERED ADEQUATE FOR CONSERVATIVE REPAIR OF BOBBIN FLAW INDICATIONS WITHOUT RPC INDICATIONS 102090:382192

... _,.. _... _ ~

i E0urvALENT CATAWBA-1 APC REPAIR LIMIT ALLOWANCE FOR GROWTH e

GROWTH EVALUATED FOR LARGEST 541 INDICATIONS FOUND IN 1992

-[

e CYCLE 6.GROWTN (1991 TO 1992) e GROWTH FOR ALL INDICATIONS IS BEING EVALUATED EXPECTED TO BE SMALLER OR APPROXIMATELY EQUAL TO LARGEST INDICATIONS e

AVERAGE GROWTH OF 25% FOR CYCLE 6 INCREASED TO 45% FOR EQUIVALENT APC ALLOWANCE FOR NDE UNCERTAINTY e

EC ANALYST VARIABILITY ALLOWANCE OF 10% OF 90% CUMULATIVE PROBABILITY FROM PRIOR APC SuBMITTALS AND WCAP-13464 e

PROBE WEAR ALLOWANCE OF 13% ESTIMATED FOR CATAWBA-1 (WITHOUT WEAR STANDARD) AT 90% cum.

PROBABILITY COMPARES TO 9% IN WCAP-13464 WITH WEAR STANDARD e

RMS AVERAGE OF 16% INCREASED TO 20% FOR EQUIVALENT APC EQUIVALENT APC REPAIR LIMIT ESTABLISHED AT 2.5 VOLTS w

1 AP2090:082192

q l

Figure 1 Burs t Prossuro Ve rst! t Bobbin Voltage 9

n

.x

.o w

noe 6c.

a M

w 3

co noe.be Bobbin Voltoge. Volts s

O l

l I

i e

e L

w.

h y ',

, if 9

s i

Table 1 Voltage Growth Per Cycle for Catawba 1 (1991 to 1792, Cycle 6) l s,'

i Number of Average Voltace Growth-

% Voltaae_ Growth Indications 800 6 Volts Cycle 6 fvele7(1) Cycle's Cicle 7(1)

Entire eoitage

$4)(2) 0.71 0J8 0.19 255-275 kunge I

t VBOC< 0.73v 318 0.53 0.21 405

^

VB001 0.75v 223 0.96 O.14 155

'5 Notes:

1.

Projected Cycle 7 growth based on rattoing Cycle 6 growth for. 0.83 EFPY-expected for Cy:le 7 compared to 0.80 EFPY for Cycle 6.

2.

Represents largest indications found in 1992:and used for growth study. Smaller 1992 indications conservatively not included..

h-S g

g' 1AP20041%219e '

I 4

i'

s Samary of Catawba-1 EC Uncertainty Ac & st Variability Probe Vear RMS Averagg Distribution for Cumulative Prob. of Normal Distr.

Apply separate Monte Carlo Figure 5.

Applied mean=0.0=10%

distributions as %.

Value at 93 10%

13% (1.280) 16%

Cum. Prob.

s Value at 99%

34%

23% (2.330) 41%

Cum. Prob.

l l

1&209010&2192

I i

1 Tatle 3 f

Equivalent Tube Plugging Limits to $atisfy Structural Requirements

- i Item Volts Basis Maximum Voltage Lielt to 4.1 Burst Pressure vs. Voltage Satisfy Tube Burst Correlation at.95%

Structural Requirement confidencelevel(Fig.1)

Allowance for NDE 0.5 (23)(I)

From Reference 3.16%

Uncertainty un;ertainty at 9M cumulative-probability. Conservatively l

increased to 2M.

Allowance for Crack 1.1 (45%)'l)

Table I shows-average-Growth Between growth / cycle of 275.

Inspections Allowance increased to -

45% of Tube Plugging Limit -

l to provide conservative margin.

for variations in future cycles.

Equivalent Tube Plugging 2.5 Voltage Limit o -Acceptable liatt to Meet Structural Requirement Note:

(1) Voltage percentage allowances for NDE and growth / cycle applied to Equivalent Tube Plugging Voltage Limit of 2.5 volts.

m e

7 1G2006:08219a i.

B0C 7 INDICATIONS l

1992 INSPECTION o

INDICATIONS EVALUATED AT APC VOLTAGE I

NORMALIZATION e

ASME STANDARDS CROSS CALIBRATED TO - LAB.

REFERENCE STD.

e CROSS CALIBRATION ADJUSTNENTS-INCLUDED IN 1992 VOLTAGES, t

ALL BOBBIN INDICATIONS $1.0 VOLT LEFT IN SERVICE FOR IPC EVALUATION e

NO REDUCTION FOR LACK OF RPC CONFIRMATION

~

e S/G D MOST LIMITING FOR SLB LEAKAGE (LARGER NUMBERL OF IND.)

e S/G:C JUDGED MOST LIMITING FOR SLB suRST PROBABILITY i

- f 1

Y e-9 9

.+

,w-r-

-,-y-ee,+

,.ec y,

9.m--

.,r*-- w m - r e ar

-,-,e w e s-w w -s ww -c ' e

-+ N w -,+, e e +-

  • m-e m -m* *w- + + +
  • e-

--e-'wn

=+r--w+

+-

Tigure 4

" *YtEDETM#'

Au s 100C 100

,g-f n.

i*

tile

?'

, typ y

v 13.e h

/

Uw N

~

w i '"

+ :j

(,. n

?

.!w jf(

??

-e m

h 1

4 ys !.

k Z

i:j m

m "' t4 tis j

'S

s W

C

's i

.,d b

$ $ M

'O

1

'?

I L'

4 4 $

01

'03'

'OS'

'0 F '

'09'

'125'

'l 4'

'30' 02 04 06 09 10 15 20 38 EkAto v@

C AT AWBA 1 1992 h*:skes si T$Ps

$wam Gwerstw A 3.

s too i

'h" Y,l 10 1&

volt s pos N h f,$j Is e.,

la!

70 if n

g,;l.

m _-

g.
,'d

/

40

4) f, 3 h

-so 3 3 o.

u L8]

4 $ %

4, ll M $ $

h

& 9 n

.m m/ ;,

9 11

'N lQ

...'.M C_d I.

80 j

//

7/j

_1__ _ _t u

C

. y 02 04 64 04 1

12 14 Ikt*ws voes CATAWBA 1:19921r&atens er TSPs Steam Generator 8 2"M 2

1($

i 18C>

40 18>

h 40 r

1@

Ott

-79 M4 Due 0.88 ggg iP T

Q S

1@

S ll n

),,

04 f

-30

,Q

/'

4C>

-20

/

E f

?

p A

-w M

h :. h M,, b 11 i'6 U

2 1

?.

at'

'04'

' O.l ' ' O.7 '

'CJ'

' 1.1 '

'1J' 62 0.4 0.8 04 1

1J 1A Iktbri VcAs 1

l

Figure 5 CATAWBA.1: 1992 Indications at TSP's Steam Generator C 400

-100 356 35&

330 {

90 f

300-v.a.

g r.;

av, e.u

[;;;

2 70

250, 240 f as
  • 8.n L

ll 246 E

IS j lf h h !' 172

'50 D:

3 f 15 f

h

O z 100 86 h[

i 2: I$* !

$ 94 83 f

20 57

$!/

Th h f h'"f [25 W

10 g 1]13 3 0.1 '

'O.3'

'O 5

'O. 7 '

'0.9'

'125

'1.7$

'3.6 O.2 0.4 0.6 0.8 1

1.5 2

nnhsn vn=

CATAWBA.1: 1992 indications at TSP's Steam Generator D 900 too 800-TZ2

'90 700-i r

'80 000-

[N l 5*

ne 3 400-

/

368 50 f 3*

30l 241

,5.

20 3 " s2 1m 46 10

. E A "y $ '.

  • o 0.1 c

0.3 0.5 0.7 0.9 1.25 2

0.2 0.4 0.6 0.8 1

1.5 2.8 AnhNn vm 9

0 6

.h n

DISTRIBUTION OF VOLTAGSS AT EOC 7 BY MONTE CARLO ANd7SES BOC DISTRIBUTION USED IN 0.05 VOLT INTERVALS FOR EACH BOC INTERVAL, SAMPLING OF ET ANALYST VARIABILITY, PROBE WEAR AND GROWTH DISTRIBUTIONS YIELD AN EOC SAMPLE o,c TOTAL BOC DISTRIBUTION SAMPLED 100,000 TIMES RESULTS YIELD EOC DISTRIBUTION / CUMULATIVE PRO,BABILITY a,c MAXIMUM EOC YOLTAGE OF 3.28 VOLTS FOR S/G D l

l l

l

Figure 6 Olstribution of Voltage Dinerence: Beween indMdual Andysts and Mean Values PLANT L DISTRIBUTION OF ALL DIFFERENCES 1000 4

r -

100 900-cif ferences la Volts k'

-90 $

y, se Average voltages W

Std L.,

. 144 1;

.. 1 80 z

700-Std Dev 0.48 j

W E

9 )

-70 600-

/

-60 s

500

-50 415 400 k {+{.

40}

i

{300-I ((f

-xl z

200

~ h g h 171

-20 4 10 19 7 1

.M4.56 s.26 4.,b 6.06 6.i6 6.26 6.56 'i.06 0.75 0.25 0.15 0.05 0.05 0.15 0.25 0.75 1.30 VOLTAGE DIFFERENCES 8 47

_ _ _ _ _ - - - - - - ~

Figure 3 bATAWBA UNIT 1 1991 1992 VOLTAGE GR 200

-100 180-

.go f

160-

.go 140-70 0

123 6

in l

e0 100-s

-50 90-T 40 W

e-20 3

q 40-20

{

33 20 15 1o 0 2p haji 1 oo1

-1.0O At03 b.0b CL5b E0b U5b kob isb

-0.76 4 25 0.25 0.75 1.25 1.75 '2.25 2.75 VOLTAGE GROWCi DURING CYCLE f

T G

4 a

SE -

+

e,,,..w--

v

=

---r,-

m.

.,-,--y.-

e

- r e

T A

^

Figure 8 CATAWBA-1: S/G D Projected EOC-7 Bobbin Voltage Probability'-

. 100

~

90-4 80-

'V 70~

y

=

25

. 60-f L

.g o

50-

.js 40

_qaE30-3 o.

20-o t

3y G

. 11.2 1.6.

2 2.4 :

2.8. '

32

'3.6

- = 4 O

0.4 .,

O.8

- 4 42I.4 0.2 -

- 0.6

-1 1.4 1.8 22 2.6

3 3.4:

3.8 Bobbin Volts 1

54+a v

g J..

g g

p y 5

4 v

.m h

- = - -

r

^

CATAWBA-1: S/G D BOC-7 s 1.O VOLTS and PROJECTED EOC-7 BOBBIN VOLTAGE DISTRIBUTION 900

?f BOC-7 Indications left in h

service.< 1.0 volt x

s s

700-m C

Projected BOC-7 Voltage Distribution

.O (mounded to integer or no..or indications) s g 600-2 mm 500-

.oO i

?!

400-i ll:

o 3

u t

- 3 il

! l E 300-l l

j l

a i

Z i

i i

2QQ-l

! l l

E 3

,I

,- ij l l :!

l E

100-I g

s l

i i

.l l

3 l

.l l-

]

i i,i i,!

i

,E,a,n,.,9 6 5 4 3 3 2 2 2 2 2 2 l

c 0.1 0.3 0.5 ~0.7. 0.9 1.1 1.31.51.7 1.92.1 2.32.5'2.9.3.3 020.40.60.81.0 1.2 1.4 1.6 1.8.2.02.22.42.73.1 Bobbin Volts m-y.

l APPLICATIONS OF E0C-7 VOLTAGES USE OF HONTE CARLO E0C VOLTAGES e

" DETERMINISTIC" SLB LEAK RATES FROM E0C INDICATIONS VS VOLTAGE INTERVAL e

DISTRIBUTION OF SLB LEAK RATES FROM TOTAL DISTRIBUTION OF E0C VOLTAGES EVALUATED AT 90% CUMULATIVE PROBABILITY FOR LEAK RATES MAY NOT BE MOST APPROPRIATE METHOD FOR APPLIED STEP FUNCTION CHANGES IN LEAK RATE CORRELATION e

Pn0BABILITY OF BURST AT SLB FROM TOTAL DISTRIBUTION OF EOC VOLTAGES EOC VOLTAGES FOR DETERMINISTIC BURST MARGIN ASSESSMENT

~

e NDE UNCERTAINTY AND GROWTH AT +90% CUM. PROB. FOR COMPARISONS WITH 3/iP BURST CAPABILITY (-95%)

E0C VOLTAGE OF 1.78 VOLTS e

NDE UNC. AND GROWTH AT +99% FOR COMPARISONS WITH SLB BURST CAPABILITY AT -99% PREDICTION INTERVAL E00 VOLTAGE OF 2.81 VOLTS e

l

TUBE BURST MARGINS -

3aP DETERMINISTIC ANALYSIS-DOC VOLTAGE OF 1.78 VOLTS VS 4.10 VOLT 36P o

CAPABILITY MARGIN OF 2.32 VOLTS EXCEEDS PROJECTED 1.78 VOLT INDICATION EOC VOLTAGE OF 2,81 VOLTS VS 5.87 VOLT SLB o

CAPABILITY MARGIN OF 3.06 VOLTS EXCEEDS.

PROJECTED 2.81 VOLT INDICATION MONTE CARLO ANALYSIS FOR SLB BURST CAPABILITY

~

o ESTIMATED AT 3 x 105 PROBABILITY OF BURST FOR S/G D BOC DISTRIBUTION

[

NEGLIGIBLE BURST PROBABILITY COMPARED o

TO NUREG-0844 GUIDELINE OF 2.5 x 102 4

9

=p

l Table 4 Deterministic Tube Burst Margin Evaluation for IPC 3AP Burst (+90% Unc.)

St.B Burst (+99% Unc.)

3/4'(I)

E E(1) g (2)

BOC Volts 1.0 1.0 1.0 1.0 Voltage Growth 0.62(1) 0.60(2) 3,4(1) 2.0(2)

NDE Unc.

Q.li(1)

M(2) g t) g (3)

EOC Volts 1.78 1.76 2.81 3.37 Tube Burst Capability..

95% Prediction Interval 99% Prediction

~

~

Interval Notes:

1) Based on Catabwa-1 evaluation for growth and NDE uncertainty (without probe wear standard.)
2) Growth and NDE uncertainty at 90% cumulative probability for Plant A-2 (WCAP-13464)
3) NDE uncertainty of 37% at 99% cumulative probability based on 34%

for analyst variability and 15% for probe wear with implementation of probe wear standard.

4) Burst capability for preliminary 3/4' evaluation and estimated lower bound for final evaluation in parentheses.

1A72068:082*92

SLB1 LEAK RATES STEP FUNCTION CHANGES USED FOR SLB LEAKAGE-AS FUNCT OF.NOLTAGE-e-CONSISTENT EVALUATION FOR 3/4" TUBING WITN

=<

oISTRIsuTION APPLIED FOR C00K-2 IPC (WCAP-13464, 7/92 MTG.)

3 o

NO LEAKAGE e

LEAK RATE OF 1 LITER /NR BETWEEN 1

e LEAK RATE OF 10 LITER /HR

" DETERMINISTIC" SLB LEAK RAYE o - 33 INDICATIONS (S/G D) PROJECTED >1.8 VOLTST UP TO

[

3.28 VOLTS e

SLB LEAK RATE = 0.15 GPM e

LEAK RATE <1.0 ' GPM ALLOWABLE LIMIT APPLYING +90% UNCERTAINTIES YIELDS-EOC VOLTS.-0F-e 1.78 VOLTS OR NO SLB LEAKAGE MONTE CARLO SLB LEAK RATE AT 90% CUN. PR0s.

e ESTIMATED LEAK-RATE OF O'54 GPM DIFFERENCES'FROM-0.15-GPM~ JUDGED TO LARGELY-RESULT FROM STEP FUNCTION CHANGES'IN LEAK. RATE DISTRIBUTION-ESTIMATED - 71%' PROBABILITY OF ZERO : LEAKAGE e

l..

p l

IAP2090:062192 L

i

~, -

~r r

Summary of Bounding SLB Leek Rates for 3/4 inch Tubeing Voltage Range.

Bounding VoPnea Ranon Sf3 Laak Rate Umitino Indicatbnt for Leaksaa

I

.g r

S 1.0Uhr

, 0, j

10 Vhr Based on NRC recommendation for IPC Implementation (D. C. Cook) r S

If projected EOC amplitude for indications in 3/4 inch tube exceedW additional evaluation on bounding SLR leak rate wil be required "

l 1)

Maximum corrosion depth was 97%. Post pun voltage increased to 5.06 volts, it is i

judged that throughwall penetration resulting in leakage occurred as a consMuence of the tube pu I operations (as supported by the post-put bobbin volty) rather than opening during the leak test.

2)

Utilizes minimum witage increase in renormalizing Belgian data to APC ramalization.

Final renormaRzation factor is expected to significantly increase voltage.

l L

l O

4 l-i

i 4

g.

.T EXCLUSION.0F-TusES:FROM: IPC-FOR LOCA+SSE-CONSIDERATIONS-3 COMBINED LOCA+SSE LOADS CAN LEAD TO TSP AND TUBE DEFORMATION e

SIGNIFICANT TUBE DEFORMATION COMBINED WITH APPLICATION OF APC c0ULD. RESULT IN SECONDARY TO PRIMARY LEAKAGE _ NOT ACCOUNTED FOR' IN LOCA-ANALYSES 7

9 APC APPLICATION EXCLUCES TUBES SUBJECT TO SIGNIFICANT' DEFORMATION CONSERVATIVE LOADS APPLIED TO BOUND POTENTIAL DEFORMATION FOR CATAWBA-1 0

CATAWBA-1= SPECIFIC _-ANALYSES IN PROCESS 7

e ip2090:082192 Y

T y-W m

m

+e.-

CATAWBA UNIT 1 IPC ASSESSMENT CONCLUSIONS THE CATAWBA UNIT 1 IPC REPAIR LIMIT OF 1.0 VOLTS PROVIDES LARGE MARGINS AGAINST BURST AND SLB LEAK LIMIT OF 1.0 GPM BURST MARGINS OF 2.3 VOLTS @ +90% UNC.

o FOR 36P AND 3.1 VOLTS @ +99% UNC. FOR SLB EXCEED PREDICTED EOC VOLTAGES SLB LEAK RATE MARGIN A FACTOR OF 2 TO 7 o

WITH ~ 71% CHANCE OF ZERO LEAKAGE CATAWBA UNIT 1 IMPACTED FOR IMPROVING EC INSPECTION AND ANALYSIS (" INSPECTION TRANS PENDING APPROVAL OF MEANINGFUL APC DISCOURAGES FURTHER IMPROVEMENTS IN EC o

INSPECTIONS e

e Q

i

1 u

,1 o

NDE-UNCERTAINTYLFOR CATAWBA i

~..

EC-ANALYST VARIABILITY e

DISTRIBUTION OF WCAP-13464 (7/92 NRC MTG.);

e NDE UNCERTAINTY OF-10% AT 90% CUMULATIVE-PROBABILITY-e' TOTAL DISTRIBUTION (NO CUTOFF) USED IN ANALYSES INSPECTION PRACTICES USING INDEPENDENT ANALYSES AND A-PROCESS FOR RESOLUTION OF:

SIGNIFICANT DIFFERENCES RESULYS IN-A CUTOFF

-(TYPICALLY <20%)- OF VOLTAGE DIFFERENCES.

prose WEAR UNCERTAINTY-e PROBE WEAR STANDARD'NOT. IMPLEMENTED AT CATAWBA-1 e

EC-UNCERTAINTYLESTIMATED.FOR ZETEC PROBEEUSING' DATA-OF--WCAP-13464 WITN WEAR STANDARD, DATA-FOR: WEAR UP TO 5

- MILS ' USED TO DEFINE UNCERTAINTY (STD. DEV.

OF 7%)

- - WITNOUT. WEAR STANDARD,: DATA FOR' WEAR.UP T0-L 7.5 MILS USED TO DEFINE UNCERTAINTY (STD.-

DEV. OF 10%)

iAP2000:082192

-. 1

,s..

e,

~. -

PROBE WEAR EVALUATION FOR CATAWBA-1.

4 DATA UTILIZED e

VARIABILITY OF 100% ASME :10LE FROM REPEAT PROBE CAL 7BRATIONS PRIOR TO PROBE REPLACEMENT METHOD e

SAME METHOD AS USED WITH WEAR STANDARD e

DATA FOR EACH CALIBRATION RUN NORMALIZED TO: 2.75 VOLTS FOR 20% ASME HOLE o

ALL DATA USED TO DEFINE DISTRIBUTION OF VOLTAGES ESTIMATED PROBE WEAR UNCERTAINTY e

STANDAAD DEVIATION OF XX%

e TAP 2090:082192 t

Figure 1 D!strtwtion of Voltage indications Used for EC Analyst VadatWfy Eysbah l

PLANT L MEAN OF ALL SIX ANALYSTS 120 110

.joo

' 101

-90 $

r

^ r *E**

.m g

1l, as

-70 80-E

-60 60-

-50 s

~

@e L as 28

S 26 20 20-16 h

-10 h)

- d2,2,o1 1

0.e6 i.s i.e i.a6 is ie6 iO6 he iso 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.80 VOLTAGES S.34

Figure 2 oi.

navo % em.,.

.....nio

.xe %.,,w.

vuu.

PLANT L DISTRIBUTION OF ALL DIFFERENCES 1000 g_2

-300 m

1

-90 8 an-4.;2 -

l'

%g. 7g..

St 0.148 f

700-j

-70 std Dev 0.48 c

1 C

600-3 60 f

500-50 l

415 400-

-40 322 m

-30 W Z

200-171-

-20 l

107 1

2 igo.

74 72 10 l

4 LO ll37 1

1.0b h5b 0.2b A1O b.0b b.1b b.2d b.55 '.0b 1

l 0.75 -0.25 0.15 0.05 0.05 0,15 0.25 0.75 1.30 Vol.TAGE DIFFERENCES l

~

8 47

F% ure 3 h Con Ampetude Dependence on Probe Woer Ech:wum Picbe Wear Standard n Vertical Ttbe Lecancrt ie

,3,.............y.............t.....

.1..

  • . " <..t..

..........t..- ~ o - ~ ~t,u a n.....

............3....1

........:....................... 4,.....:........

......4..

........ g...,

p,.

............g..............[...y..

.........{

f......................{ 3 to.

............t..******.

    • .t..
  • ='1

...**.......t......Y........

g.,,............

........... 4..............;.......

.. 4.............

...........4.....K......,

p,............

17

.............;~ ~ - o u -t.o.~ ~ o o a y n n o o a u, o a o n n o t.o o ooo.

,...................................................................l..............

p y..............t..............t..............t...............g.............g.............

9 4006

't o 006 0 of chis oat cars one emne w.v ees Ederam Prtte Wear Stardard Horuertal n Channehead 14 i3 g............... p........... 4..............(..............t.............g............ 4...............

n.,..............

g...............p aa

............+.............t............4..............

aussant e=nasian P..............,..

I

  • "*+""""""*l."**"*"*"4""**"."".

1."<

e.u Y s.u s.es e ""aj

{

e.n e.w

..a j

o.u 7

,........i

...........l.........<.................................................

..........!.............s..............<..............

p.............

.....o-......!..............

p..........................................

$ oa6 o

anos o}n obis e5ss ont tes eien wonawe Zatec Prtte Weer Standud Horttortal h Channehead 14

!,...........!. o = o n - g!. o n o n o * *1.""""""t.*""""""I"""""""

19 g

12.........b............8.............4...........4..............l.............4.............

1t........e 3,,,,,,,g,,,

....j............. y.............g.

..........j..............

. 4..............t..............4............

4.............

m.a am w.wn 1o I l *e*.*a1...;............. g 1

p,.........

. n s. o.

s.n i

.............}.....

.......q..............

9,........

. u J.

4.............,;............o g............ 4.....

e.as 1

. o. **

t t

t t

g7

...**t.*************t.**.**********t.a"""*""I"..~..~-.~~..~...

.. e. 6.,

....4...........4.............4...........4 p

.....to...........t..........***t""""*""t"""."""'

1 1

1 t

anos 4

aass em chis oJs aA sas Puesseus$we 8 41 1

I

j Fqure 4 Vonage Verlability Ove to Bobbin Probe Wear

==r D c"v 2 Y d Y n D w

~

.. =

,j 4

a p

i 4

P d

i, e

3

/

T g

?

s

,a;,

g 4

g Neo www vaange v4

  • feamen N*

X f

u.-

7.-

,e 4

M

/

i.

}e gn 9

lb/

{.

o, =,,.

L e

u

-~

M h

,e

,e suansemas sa soms gg m.

I i

m 3

4 i

ed

- iem.

3 cm

.w 8 62

_ _ _ _ _ _ _ - - - - - - ~

~~---

Figure 5 Probe Wear Voltage Variability Zetec Probe (0.0 to 0.0075" wear) g Wear Standard Honrontalin ChanrWhead 2c>

L"

_,00 187

_go g,co.

F

~"

v.a..-

, 4

=_ ::::

e 1&

112 3 3an.

F 98

.-50 g,

/

85

-=

j co.

-30 e

35

/

2, 3 L A

d5

~'

2 2

5

' 5.5 '

6

' 6.5 '

7

'7.5'

'8

'4.5 5.25 5.75 6 25 6.75 7.25 7.75 825

@rml AnyAude(Vots) 1 Probe Wear Voltage Variabaity i

Zetec Probe (0.0 to 0.0075' wear) g Wear Standard Horizontal in Chanrwe451 -

200-

.go j

,5, o

s.,

=_:::

!1I 3 100-50

$ 80-73 j

~"

/

6o.

53 g

37

Ald,

.-02 0.2 0.6 1

2

-20

...EISIs.1 L

(

0.6 48 0.4 0

0.4 0.8 1.5 2.5 L

Differerresin Vots

Table 1-Sumary of Catawba 1 EC Uncertainty.

Analyst' Variability Probe Wear RMS Averaoq, Distribution for-Cum. Prob, in %

Normal Distr.-

Apply separate-Monte Carlo Columns 2'and 3 of

- mean=0,a 10%

distributions 1 Table 2 Value at 90%-

10%

' 13% (1.28a)i

10%

Cum. Prob.

t Value at 99%

'34%

23%(2.330) 4]%

Cum. Prob.-

3 TM2004:081992 Y

pr y---v--r

=*

ww w

=w am-e e

m

-.hs--

x.

. ~

- - - ~

i

' Table 2 Cumulative Probability for EC Analyst Variability

% Uncertainty.

Percent-

-- Vol t ace Bin _,_

for Voltaae B_i.D(I)

Cumulative Probabilith

-1.0 71 0.11

-1.00 to.75

-53

-0.39

-0.75 to. 0.50

-35

-0.93

-0.50 to 0.25

-18 3.94 0.25-to -0.20 14 5.49

-0.20 to -0.15 11 8.56 0.15 to 0.10 7.1 12.6 0.10 to 0.05

-3.5 21.6 0.05 to 0.00 0.0 48.3 0.00 to 0.05-3.5-7 5. 3 -.

0.05 to 0.10-7.1 86.9 0.10 to.0.15 11 91.8 0.15 to 0.20 14-95.1 0.20 to 0.25 18 97.2 0.25 to 0.50 35 99.2 0.50 to 0.75 53 99.8 0.75 to 1.00 71-99.97 1.00 to 1.30-92 100.0 Note 1: % Uncertainty obtained as mid-voltage value for each bin divided by mean volta 9e of 1.41 volts from Figure 2.

l l *.

TAP 2004081992

~

L

(~

-1

.. ~ -

VOLTAGE COMPARISON FOR THE LIFE OF A_P9pj,@

1/C C-INLET Probe S/N /32 4-93, same probe from tape k to d.

- Probe type.rfo Mrt *' F ASME Std. S/N Mgr Calibration setup IAW RESIZE guidelines.

Voltage norralized at ?. 75 P/p on 20% FBH's on 550/130 mixM and not changtrd t'or measurements taken for the life of the probe.

Approximate number of tubes' examined with this probe

/46,

Voltage measurements taken peak-to peak on.550/130 mix.

TAPE CAL /

ASb FLAT BOT'ICM HOLES ASME 10% ASME 20%

INITIAL-01 OD ID FINAL-02 100%

40%

60%

40%

4 X 20% 4 x 100%

GROOVE-GROOVE 01-1st pull 4, ff"

  • le If" 4*If 047 01-2nd pull r.o,t -
4. F 4.,1/

01-3rd pull c.es r.9 A t.t 1 3e 4.Hl' 4, ((

4. t(

Fr.9F 045 02 f*I9 F TS-4.II 7 431 497-

4. Il 01 4.,74 F. =ff 4 f4-3.41 4 (f 4 df c46 02 s o?

F 14

4. 9/ 3 J(

l.7s

4. (#

01 02 og 4.(y S.03 432 S.ol 405 bN 04%

02-ist pull 4.f4 07o ' f.93 3.J( ' 2*I(

d ##

4 I' N'47 gg 02-2nd pull T.o4 AIf f 'f.2 02-3rd pull r.oo J To

' 4, rf circumferantially circumferentially Assymetrical Symetrical 9

e us EOLTAGE COVEAg1 SON SOR THE LIFE OF A PROBE S/C C-lNLET Probe S/N 0144619, same probe from tape 001 to 014.

Probe typ's. 510 M/ULc ASME Std. S/N 050415 Calibration setup IAW PIs1ZE quidelines.

Voltage normalized at 2.75 P/P on 20% TBH's en 550/130 mix st tape.001.ca101 and not changed for measurements taken for the life of the probe.

Approximate number of tubes examined with this probet 1456 Voltage measurements taken peak-to-peak on $50/130 mix.

TAPE CAL #

ASME FLAT BOTTCM HOLES ASME 10% ASME 20%

INITIAL-01 OD ID FINAL-02 100%

80%

60%

40%

4 X 20% 4 X 100%

GROOVE CR00VE

=

01-ist pull 4.68 2.74 4.66 001 01-2nd pull 4.60 2.75 4.69 01-3rd pull 4.57 5.13 4.29 3.02 2.7S 4.61 4.52 86.02 001 02 4.59 S.04 4.33 3.06 2.79 4.47 01 4.36 4.95 4.04 3.01 2.90 4.77 005 02 4.32 4.84 4.12 2.90 2.87 4.61 01 4.36 4.85 4.23 2.98 2.86-4.72 009 02 4.56 5.14 4.36 3.10 2.87 4.81 014 01 4.09 4.52 3.83 2.80 2.95 4.90 02-1st pull 3.92 4.50 3.80 2.77

'3.05 4.82 4.52 84.07 014 02-2nd pull 3.90 3.00 4.86 02-3rd pull 3.88 2.90 4.87 l

Circumferential1y circumferential1y Assymetrical

,symetrical

~

l l

g

b;

+.

m

..a 3

Catawba Unit 1.

- s.

1991' 92 Growth Rate Evaluation,

.g-y 1

- Distribution of 1992 TSP Indications a

Preliminary Results -

,"4 8/28/1992 p.

L 5

P. J. Prabh -

Westinghouse Electric Corporation

-a 1.

~-*

s l

l h',

~

n s

yy a

,,a.1 ra a

.e s

+-.

. +

...s...

a ~-

.as+

m < s-.+4<-

..a a

l' Catawba -Unit 1-i Voltage Growth RateLfor 1991-92 o

(400/130 kHz mix signal lused for 1992-y 400/100 kHz mix signal used for;1991-o Both 1991 and 1992 data adjusted up by e %ctor (determined o

for 400/100.kHz) to convert to 550/100 khz equivalent Resulting growth rates adjusted by a factor of 0.95 to ace.:ount-U o

for the difference in conversion factors for 400/130 and:

400/100 kHz

. Projected ' rowth rate for Cycle 7 (1992-93)'obtained based on

- o.

g 0.83 EFPY for Cycle 7 versus.0.80 EFPY for Cycle 6 (1991--.

92)-

e i

e T

i e

~. e p

L l -:.

l

=.

..~...__,;_,._.

t-

.-5

'T i t

Catawba Unit 1 Frequencies Used for Bobbin Collinspection b

19L1.

.1992 100 kHz

- 130 kHz l

s a 300

~400 400 550 4

,e.

. e,

',O'-

9 d

I'

[,

-r r

k iO

,. 4 t

_,_-____-.,---.,-a-

?----

A

i CATAWBA 1 Pulled Tubes Correlation 550/130 to 4M/100 KHz mix 6

5-Unear Regression Slope 1.094

.M Intercept 0.143 h 4-R Squared 0.999 I

Std Dev N

N 0.012)

$ 3-k

$ 2-1-

4 0--

0 1

2-3 4

5 6

i

- Volts 400/100 KHz mix T

CORRELATION OF 550/130 TO 400/130 kHz RESULTS FROM 1992 CATAWBA-1 INSPECTION 4.5 4-3.5-g 3-s 2.5-6$

2-g 18 1.5-g 6

=

1-0.5-0-

- - - -~~ ~~ - ~~~~~~~~~~~ ~~~~ ~~~~~~~ - - ~ ~~ ~-

0.5 t

0 0.5 1

1.5 2

2.5 3

3.5 4

VOLTAGE AT 40Qr130 kHz a DATA y - 1.038x 0.047 I

9 l

l l

i I

l

Voltage Normalization Trends Between Frequency Mixes (1)

Sional Amolitudes for ASME Standard Hole Sizes Frecuence Mix 2D %

AQ %

fiQ %

BQ %

100 %

Voltages 550/130 kHz 2.75 3.40 5.12 5.80 5.83 400/130 kHz 2.75 3.30 4.80 5.26 5.15 400/100 kHz 2.75 3.26 4.60 5.01 4.88 Ratio of Voltages 550/130 1.00 1.03 1.07 1.10 1.13 400/130 550/130

1. C 1.04 1.11 1.16 1.19 400/100 1)

Adjustments applied for Catawba-1 growth rates at 400/130 and 400/100 kHz to 550/130 kHz are based on voltage ratios for field

' indications. Evaluation of the ASME standard described in this table independently demonstrates larger renormalization factor for adjusting the 400/100 data of 1991 than for the 400/130 data of 1992.

_ _ _ _ --_ ---------- - ------------ ~~

~

l CATAWBA UNIT 1 1991-92 GROWTH OVER 500 LARGEST INDICATIONS -

3 0

2.5-g

g.....................................................................................................

9>

U o

g 3,S.

d o

D O

0

..... O....... g................................................................. 0 1

O jh.

I qg Q...[..g.......................Q..........

w.

=2 0

O 0- g OO

  • * - - - ~ " - -

Q O

O OQ

.a 5-.........................

c...D........... O.....................................

D O

O O

O i

1 0

i i

0.2 a4 a6 0.8 1

1.2 1.4 1.6 1.8 2

1991 (BOC) AMPLITUDE, VOLTS Figure J. Voltage growth rates of TSP indications versus their BOC amplitude e

q CATAWBA UNIT 1 1991-1992 VOLTAGE GROWTH s

200-100 180-

-80 164 160-80 m

go 14}

120

-O P

123 6

120-b a

-60 E

100-50 g

j 80-m 40 5

y 64 g@

g 60-30 40-0 20 3

31 I

o 20-15 10 2I fd31 0

1 OO1

-,.dC.bsb de 6s6 4.e 4.s6 ie is6_

-0.75 -0.25 0.26 0.75 1.25 1.75 2.25 2.75 VOLTAGE GROWTH DURING CYCLE Figure 4.

Frequency distribution of voltage growth rates during the 1991 92 cycle at Catawba Unit 1 D

Catawba Unit 1 199192 Growth Rate Sta:lstics 0

Numbar of 199192 Growth Rato Projected 92 93 )

Ind'eations Averano

$1,Qat Growth Rate Entire Sample 541 (2) 0.18 0.56 0.19 BOC Rances:

V < 0.75 volt 318 0.21 0.31 0.21 V a 0.75 volt 223 0.14 0.41 0.15 HQ121:

1)

Projected from the 199192 growv. cste based or- 0130 EF -

the 199192 cycle versus 0.83 EFPY for the next cycie.

2)

S/G A: 90, S/G B:117, S/G C: 197, S/C.D: 137.

I 1

Table 4 Results from Cross Calibration of ASKr Standards PetasE 590 610 MULC 610 Snel 630 MULC

-Standard 1

_ P1 i

. ?1 _

_1 P1 1

_P1 TAPE 1 AS 01591 4.560 3.446 4.560 5.236 4.560 3.241 4.560 3.244 Z 9617 3.316 2.377 3.382 2.389 3.329 2.345 3.374 2.386 iAPE 2 50390 4.287 2.994 3.980 2.783 4.032 2.806 4.112 2.871 50391 3.954 2.760 3.8f_

2.939 4 2.710 3.853 2.670 3.786 2.636 50392 4.408 3.131 4.125

!4.039 2.829 4.055 2.869 50415 4.229 3.141 3.992 2.841 3.910 2.749 3.971 2.815 50416 3.985 2.839 3.852 2.736

'3.885 2.75 0 3.797 2.714 50417 4.469 3.178 4.365 3.134 4.293 3.067 4.199 3.004 50418 4.180 2.967 3.895 2.746 3.840 2.675 3.831 2.690 50419 3.823 2.661 3.607 2.546 3.619 2.507 3.617 2.562 AS 01591 4.561 3.183 4.560 3.224 4.540 3.207 4.560 3.256 11 550 Hz Pit 550/130 Hz Mix e

+

4 l

~'

l-.

L

Catawba Unit 1,1992 Inspection ASME Standards Used and Corresponding Calibration Corrections Steam Tape Numbers Calibrated Calibration Generator ASME Standard Usino the ASME Standard Correction A

50391 1 to 37 0.9855 A

50417 39 to 84 1.1396 B

50415 50 to 85 1.0331 B

50417 1 to 49 1.1396 8

50418 86 0.9985 C

50415 1 to 48 1.0331 C

50417 49 1.1396

~

C 50418 50 to 88 0.9985 D

50391 38,39,41 0.9855 D

50416 39,41 to 50,52 to 80,82,83 0.9949 D

50417 84,85 1.1396 D

50419 1 to 37,40,51,86,87 0.9258 e

CATAWBA-1: 1992 Indications at TSP's ALL STEAM GENERATORS 1600 100 t

1445 1305f 1400-i f;1238 c

-80

.6 p 1200-5 B;

sa voltao*=

31 g

h f

[

Avg-0.38

-70 5

J R g h.

~

Std Dev 0.26 k

@1000-gj g rg

(

m qu a 5

i 802 800-3!

s..

?? m

-50 3

s

$! k

.4o $

603 600-517 h/

$}

391

(*

Z-400-

-20 200 76 g$

4 114115 O

.m..A.L.$ S k.l0 4 4 1

.-r 0

0.1 0.3 0.5 0.7 0.9 1.25 1.75 3.0 0.2 0.4 0.6 -

0.8 1.0 -

1.5 2.0 3.6 Bobbin Volts l

l e

p i

CATAWBA-1: 1992 Indications at TSP's Steam Generator A 160 iy v

4 100 143 m

140-I h

-90 b

l 120 r

-80 g 120-3!

voltages J

-[

'9 105 W An o.32 a

v

'l Std Dev 0.22

-70 1

~

@100-y;$:jy y t

8 t

r-

-60

.o e

O 80-V 1 72 T,:i m,

1.m

-50 $

e

.e.

y m

w!!%

56 60-i g

R w

sr y

-40 g.

a.

p 3

V j

ff 5%

gt h

2 3

40-5 f

i *%%

E

-30 m

w w

g 4 j+;92,6 O

4 g g

M w

9. N

'.$.$.$ 1

  • g *

@ m.1 1

1 4

t 0

to 0.1 0.3 0.5 0.7 0.9 1.1 1.3 0.2 0.4 0.6 0.8 1

1.2 1.4 Bobbin Volts e

4

i o

CATAWBA 1: 1992 Indications at TSP's Steam Generator B a

200 2

100 188 I

180-

-90 s

160-

-80.6 I't 144 voltaa..

p r

g

'b 140-2 I

Ave 0.37

-70 5

?

j'?

see o.v o.21 A

b 122 120-7 1 6 116 t

-60.

iT/ l{ f O 100-F M g go ~5 y

% g gl[; -f g f f:h 80-fj l

l gi is 60-

!i 9 g

-30 43 w

38-i 40-gg

-20 20-11 g

-10

'l 0

El M d 1

_2_ 0 e

0.1 0.3 0.5 0.7 0.9 1.1 1.3 0.2 0.4 0.6 0.8 1

1.2 1.4 Bobbin Volts s-

CATAWBA-1: 1992 Indications at TSP's Steam Generator C 400-100 356 350-330 1

-90 1

80.5 (voltages g 300 g

'9

i Avg 0.46

-70 a

~

2a 250 240 std Dev 0.30 k

e

(

s.

.b,4; J

V-i 216

-60 6

J

=t 172 0 200-f

+

.6

-50 E

/ t'a w o

e 8

c.

j150-jf *gi e

c5 1[

~40 J

B y K s

2 100-86 Y/ $ w$I

$ h, @#g

. 30.g D

  1. w e

3 4

E r

e a g 3 6

3 48 3

.20

=

e a

o

?, is.}

g %+

g g-g g; 7 j c

50-gj g

1

& I_ <mil t-) ik i.

si!

E 3,.7.,_3_,_3 25

- 10 g_

s 4

I B

I I

I t

I t

1 I

I I

I 0.1 0.3 0.5 0.7 0.9 1.25 1.75 3.6 0.2 0.4 0.6 0.8 1

1.5 2

Botbin Volts 1i

  • l l

1

i t

~

t CATAWBA 1: 1992 Indications at TSP's Steam Generator D 900-100-804 800-7 772

.go

% =

4 1

-80.5 c-700-

.'g y,1t.,,,

p g

j Avg 0.34

-70 5-w 600-

't sta o.y o.23 E

ellm

$/,l s

-60'.

g 300 t

j g

M:

f

-50 o 400-

$ 5 368 3 'r

-40 a

283 g

a 7

241

-30 Z

200-

- [

$q155

-20 i

7 9 y 100-

)

g g

46 40

-10 62 1.

'~

"21B M n z.L3 - 2 4

~ '

'.3 0

O

'.5 -

'.7 0.9 1.25 2

0.1 0

0 0

0.2

  • 0.4 0.6 0.8 1

1.5 2.8 Bobbi'n Volts s

f

..sn -

,... -,r,_

o-.,

,,~,-y,,-

.-,---,,s

+. -,,

1 i

Bounding SLB Leak Rates s

for 3/4 Inch OD Tubing 8/28/1992 J

P. J. Prabhu Westinghouse Electric Corporation.

Bounding SLB Leak Rate Development t

[:

1 I

Same database as previously presented for 7/8 inch diameter tubing:

o l

93 Pulled tube intersections f

74 Model boiler specimens 131 Specimens had direct leak rate measurement results. For the o

remaining 36 samples, leak rate potential could be inferred from crack morphology (destructive examination results)

Voltage amplitudes of 7/8 inch diameter tubes were reduced by a o

factor of 1.3ts to convert to equivalent 3/4 inch results Voltage amplitudes of Belgian pulled tubes could be conservative by o

about 50% (1.5 factor was not applied)

SLB Leak rate probability determined for leak rate thresholds of 0 o

leakage as well as a small leakage (11/hr) e e

N 1

SLB LEAKAGE - VOLTAGE DISTRIBUTION 3/4 INCH TUBE VOLTAGE NORMAUZATION 9

I 8

~

@ WITH LF.AK WITHOUT LEAK l

l figure 6.

Probability of leakage at various voltage ranges for 3/4 inch tubing 1

l l

l

)

l SLB LEAKAGE PROBABluW 3/4 INCH TUBE VOLTAGE NORMALIZATION 9

8 I

a 8

l i i figure 5.

Frequency distribution of voltage for leakers l

and non-leakers (3/4 inch tubing)

SLB LEAKAGE - VOLTAGE "STRIBUTION 3/4 INCH TUBE VOLTAGE NORMAU7ATION 9

F t

i 8

s a

b h

1 y LEAK > 1 t/HR i ILEAK < 1 LAM Figure 7.

Frequency distribution of voltage for a leakage threshold of i 1/hr for 3/4 inch tubing

)

1

SLB LEAKAGE PROBABlUW 3/4 INCH TUBE VOLTAGE NORMAUZATION i

A d

I a

o t

i 1

l Figure 8.

Probability of exceeding 11/hr leakage at various voltage *anges for 3/4 inch tubing l

I

Sumrnary of Bounding SLB Leak Rates for 3/4 inch Tubeing Voltage Ranges Bounding Ve%ee Rance SLB Len Rye Lima;ng tnge 39;en, 93, t,p g,

-3

,g f

j 0.0 thr 7 9 1.0 thr j

?

{

10 thr Based on NRC recommendatbn for IPC implementation (D. C. Cook) 9

-i

{.

j If projected EOC amplitude for indicatbns in W4 inch tube exceeds additenal evaluation on bounding SLB teak rate will be required 1)

Maximum corrosbn depth was 97%. Post pull voltage increased to 5.06 volts. it is judged that throughwall penetratbn resulting in leakage occurred as a cons (q;ence of the tube pull operations (as supported by the post puu bobbin voltage) rather than opening during the leak test.

2)

Utilizes minimum voltage increase in renormatizing Belgian data to APC nortnalization.

Final renormalization factor is expected to signifcantly increase voltage.

s f

PULLED TUBE DATABASE FOR 3/4" TusING DISCUSSION TOPICS EDDY CURRENT DATA RENORMALIZATION TO APC CALIaRATION t

CATAWBA-1 DATA EVALUATION 0

VOLTAGES 9

BURST TESTS:

ADJUSTMENTS FOR INCOMPLETE BURST 9

DATA

SUMMARY

SUMMARY

OF OvERALL DATA TAP 20654:082192

,,,__..-.m.,-

-,.- -~-

m.--

EDDY CURRENT DATA RENORMALIZATION i

l APC NORMALIZATION e

2.75 VOLTS AT 550/130 kHZ FOR 20% ASME HOLE CATAWRA-1 PULLED TUsE FIELD NORMALIZATION e

5.0 VOLTS AT 400 KHz FOR TSP STANDARD I

BELGIAN NORMALIZATION e

2.0 VOLYS AT 300 kHZ FOR 4 TW 0.049" (1.25 MM)

HOLES e

LATEST PULLED TUBES OBTAINED ALSO FOR APC HORMALIZATION BASES FOR RENORMALIZATION l,

o CORRELATION OF APC TO FIELD VOLTAGES L,

o CATAWBA-1:

LAB DATA ON PULLED TURES FOR BOTN l.

NORMALIZATIONS e

BELGIAN:

FIELD DATA FOR BOTH NORMALIZATIONS FURTNER ADJUSTHENT MADE BASED ON ASME STANDARD EVALUATIONS INDICATING ADDITIONAL 1.5 TO 1.7 FACTOR DUE TO DIFFERENCES IN DOMESTIC.ANDTBELGIAN PROBE RESPONSES AT I

DIFFERENT FREQUENCIES LABORELEC TO OBTAIN DATA AT APC AND BELGIAN FREQUENCIES WITH DOMESTIC PROBE IN UPCOMING TINANGE-3 INSPECTION L

i 1

fp2065A:082192

Table A4-1.

Voltage Adjustment Factors to Obtain APC Normalization for 550/130 kHz Mix factor for Ad.iustino Field Post-Pull 550/130 kHz acd 400/100 kHz DataI4I TSP Norm. to 20% ASME Norm.

400/100 kHz 550/130 kHz Tube 11E TSPVolts(I) Voltace Ad.iustment Factor (2)

Volts Volts R5C112 2

6.92 1.38 0.25 0.37 5

3 4.44 5.06 R10C6 2

6.4 1.28 1.82 2.07 3

4.77 5.34 R10C69 2

6.4(3) 1.28 NDO 3

2.92 3.31 R20C46 2

6.04 1.21 0.59 0.32 3

0.75 1.04 R7C47 2

7.8 1.56 3

3.65 4.13 Notes:

1.

Westinghouse measure of standard TSP volts when 20% ASME volts set at 2.75 volts.

2.

Voltage adjustment to convert voltages ncrualized to 5.0 volts at :tandard TSP to normalization of 2.75 volts for 20% ASME hole.

3.

Adequate TSP not available on standard. Assumed same as tube R10C6.

4.

B&W evaluations of post-pull data.

5.

The 400/100 kHz data were renormalized to 2.75 volts for the 20% ASME hole.

TAP 2065:082192

FIGURE AZ-6 CATAWBA 1 Pulled Tubes Correlation 550/130 to 400/100 KHz mix 6,

4 5-Unear Regression Slope 1.094

.25 Intercept 0.143

[ 4-RSquared 0.999 I

I

( Std Dev 0.012)

S23-6$

$2-1-

0 O

1 2

3 4

5 6

Vohs 400/100 KHz mix m

4 v.

-s-,. _ _ _

m

....m.m...

.......m

. -.~.

BELGIAN V0LTAGE RENORMALIZATION i

BELGIAN FIELD EVALUATION v

e EY#.LUATION OF 53 INDICATIONS INCLUDING 1992 PULLED TURES MEASUREMENTS AT 300 kHZ WITH BELGIAN PROBE AND e

EQUIPMENT AND BELGIAN NORMALIZATION e

MEASUREMENTS AT 550/130 KHZ WITH APC NORMALIZATION A5 WELL AS 300 KHZ WITH BELGIAN I

PROBE AND ZETEC EQUIPMENT e

VOLTAGE RENORMALIZATION FOR BELGIAN PROBE DETERMINED BY CORRELATING 550/130 kHZ WITH-

[

300 KHZ SLOPE OF 4.93 FIELD DATA INDEPENDENTLY REVIEWED BY WESTINGHOUSE e

WITH EXCELLENT AGREEMENT WITH BELGIAN VOLTAGES CALLS PRINCIPAL ISSUE OF VOLTAGE RENORMALIZATION e

RATIO OF 550/130 KHZ TO 300-xHZ 0 STAINED WITH U.S. PROBES IS FACTOR OF 1.5 TO 1.75 HIGHER THAN OBTAINED WITH. BELGIAN PROBE BASED ON ASME STANDARDS U.S. PROBE AND LABORATORY TRANSFER ' STANDARD e

PROVIDED TO LABORELAC FOR INDEPdNDENT EVALUATION i

i b

s

'AP2062:072292 k

I

-,,,---.-..,._,-,.,eL-

--..~.-,.-.,,.-i,--.-.

~..... - - - -- - - - - - - - - -

4- +,,.,.,,,

-,-,.---,..._.-,,.r.mm..

.e 4

l l

1 Ratio of U.S. 550/130 KHz to Belgian 300 Ulz set etern fregwency AM 4 Tet I

asset

& Tv 1.2suma sur Prahn Presar fame lee

  • Est.

Itercert M

is s

3G 12 8 9.CD EJE f.948 LMf ssertie zetec me.-eas.

me te-2.rs 2.42 4.13 4.54 4.tr ta.1 i

sse 3.93 3.14 4.1T 4.tT 3.58 1s.T 3eo e.se o.as e.a*

o.as e.52 2.e j-sser13e sche.

nee w ee tee

(*

2.n 2.ss 4.ts 4.st 4.45 sse l

3ee 3.06 3.01 4.1s 4.43

3. 72 c.es e.si e.ar o.a2 e.st 2.s i -

ssertse gene.

nee-wee see treneeer 2.as s.te 4.25 s.a3 s.st is.s sse 3.02 3.s2 4.33 s.22 3eo 4.ee 16.s i

a.62 em a.as o.e e.as 2.e sse/139 setsiset "Teo selgim 2.Fs 2.se 3.1F 3.43 3.e9 sse 16.32 3ee 3.57 2.91 3.31 3.49 2.90 9.se 0.%

0. 72 0.79 e.TT 0.39 2.0 g 15ar13e ttec3 to DIE! en.s-Iaro 2etec am-eas we teen 3.ee 4.c3

.s.9' 4.co e.o2 i-t 9.95 eene.

Stag.Me.

Tee teh 4.et 4.92 4.4e T.76 a.Tt 1

3 W.

  • ee-W ee Yes Trene h 4.32 s.30 4.se T.e2 e.n 9.3e 8eI94em "ves seigten 2.93 3,47 4.g3 4,73 3,24 3,g TAP 2est:ST2t92 1

i l

4 r +

w-w-

-w

--w-

i;

.6 1

3

]

9 n

4 9 oi0 70 s0000. 0 09 4

se1 1

r d

g e

e p v. r t

s

\\

R ee a P

l r ec u

a S

aprDq T

elotedS 2vE 1

nt nSiSR n

.U t

Ba a

i

d r

N g

l Gn e

0B i

/Se 1

)

g m

,a 4t oN l

8 ToV x

-8i l

2 M

s9 9

C P

1 A

f o

-6 z t

8 On H

1Z o

3l K

Di 5M 0

tau s

3 t t 1

l nn

/

a ie

-4 0 o

v E

Pm 5

aip 5

u taq D E oC 2

NE

- 0 8

0~

4-2 8

6 4-2 0

1 1

1 1

J :_g3 goN2 Oa.c JIy ooc 8no u,.

<r c

FIGURE A2-2 DOEL UNIT 4, S/G: B Evaluation of 1992 Voltage ind. at TSPs 16

=

-m

& 14-(

h c

No. Data Points 45 m

$ 12-EC equipment g

550/130-MlZ18 300

- Belgian

[jQ-(

)

=5 oz 8-

=

7 Unear Regression]

y I

=

o 6-

=

=

Slope 4.93 g

m, Intercept -0.75 g

4-Std Dev.

021 I

R Squared 0.927-

[

2-J co C

=

0-7

-2 0

0.5 1

1.5 2

2.5 3

i

~

300 KHz, Belgian Norm., Belgian Eval.

i FIGURE A2-3 DOEL UNIT 4, S/G: B Evaluation of 1992 Voltage Ind. at TSPs 16 8

@ 14-(

h c

No. Data Points 53

.$ 12-EC equiprnent 5

550/130- MlZ18 m

300

- MlZ18

@ 10- (

)

=

8-( LinearRegression D

,x m

2 O~

Slope 4.67 Intercept -0.64 8

4-Std Dev.

0.06

-y o

2-(

R Squared 0.991 x

j,

/

Q 0-p-no

-2 0

0.5 1

1.5 2

2.5 3

3.5 300 KHz, Belgian Norm., Belgian Eval.

h l

i ;

l

^

Hi" 0

0 1

e m

0

=

,9 a

O m

0 s

g P

O O

,8 S )n g

O 5

O T

o 36 T

si 4 0

09

]

e m. 29. 0. d s

t

,7 Ba sr b e pv g

nu e

eg t

oRecDp n-O d

ee Gn r

e Pr pr

.a otedS

/i S. n s InSR o

o O

0 e

t Se UU 6

g g

(

O

)%

, a 4t

(

To

]n j

OO l

O g

0H V

7 5T I

sa i9 es 9

P b e e, a m. d N2 E

9 U 9 r

og e

Pe vr D

@R,go q r

a e u 0

L1 r p 4

a o dS f

Eo e

i ngwSR On (o

(

o Di 0

t 3

3-au iM l

p a

u v

q 0

3 m

U 2

E E* e o.2 7 98 8

n3 01 1

0. d O

Z l

l aM y

e v

t E0*

e pvr a e u mD q 0

3 R

_. t e%t r

r r

1

i. W a

edS k

t 5

e5 nSInSR U

fs O

0 9

a 7

0 5

4 2

1 nix ob 0 2.2 OO< N{ @ Os o ogE 5

2

Table A4-2.

Field and Westinghouse Evaluations of Catawba-1 Pre-pull Voltages Field Evaluation Westinq %

(wd ation 400/100 kHz Mix 550/130 kHz Mix 400/100 kHz

$50/130 kHz RPC M

IR JSP Mom. 20% ASME Norm. 20% ASME Nora.

20% ASME Norm. 20% ASME Norm. Vpits(I)

RSC112 2

NDO 0.31 0.48(2) 3 1.15 1.59 1.88(2) 1.53 1.82 1.30 R1006 2

0.82 1.05 1.29 1.20 1.46 0.98 3

0.77 0.99 1.23 1.07 i.31 1.20 R10C69 2

NDD NDO L

3 0.93 1.19 1.45 1.22 1.48 0.97 R20C46 2

0.31 0.38 0.56 0.25 0.42 3

0.40 v.48 0.67 0.59 0.79 R7C47 2

0.33 0.40 0.58 0.34 0.51 3

0.80 1.25 1.51 1.30 1.57 1.40 Notes:

i 1.

RPC volts at 300 kHz normalized to 20 volts for 0.5" EDM notch.

2.

Obtained from 400/100 kHz evaluation using Equation 2-2.

TA'2065:082192

CATAWBA-1 PULLED TUBE BURST IEST EVALUATION BtqST TEST MEASUREMENT ISSUE e

BURST TESTS, IN SOME CASES, RESULTED 1N PARTIAL CRACK OPENING AND INCOMPLETE DURST ALL l.JT ONE INDICATION TESTED WITHOUT BLADDERS e

e ONLY R50112, TSP 3 TESTED WITH BLADDER INCOMPLETE BURST NOT RETESTED AT FASTER

~RESSURIZATION RATE PRESSURIZATION RATE LEADING TO 2 TO 3 MINUTES TO e

BURST APC DATABASE RATE ~500-1,000 PSI /SEC e

SIMILAR REM 9LTS TO HCGUTRE-1 BURST TESTS IN EARLY 199z EVALUATION PROCESS e

FRACTIONS OF BURST CRACK QPEcING EVALUATED e

CRACK OPENING ADJUSTMENT FACTORS ON BURST PRESSURES ESTIMATED COMPARISONS OF EDM NOTCHES & CRACKS FROM HCGUIRE DATA WESTINGHOUSE BURST TEST ON FREE SPAN PIECE OF TURING FOUND 12% HICHER THAN DURING DESTRUCTIVE EXAM e

BURST PRESSURES REQUIRING ADJUSTMENT FACT 0nS OF bl.25 CONSIDERED NOT RELIABLE FOUR BURST TEST POINTS FOUND ACCEPTABLE FROM 9 MEASUREMENTS 1

TAP 2065A:082192

I f

4 Table A4-3.

Comparisons of Burst Test Results 4

f' f.

Adjustments'to Burst Pressures Based on EDM Notch Simulations Estimated Burst Pressure' Estimated / Actual Qg Tube-Section EDM Notches Actual Burst Pressure Ratio Description of Actual Burst i

Jo h C-R, h C.

7 1

5/29-3 4200.

Minor crack opening, no I

ip bulging or tearing 2

18/5-3 9200-Fishmouth rupture, bulging, tearing e

3 18/5-5 4800 Fishmouth rupture, bulging

.[

4 18/5-10 1397 Leak test pressure with minor crack opening. Burst test resulted in a lower burst i

pressure.

I

}

5 18/10-4 2847 Same as Case 4 i

Adiustment to Burst Pressure Based on Burst Tests of Common Undearaded Tube

-i 1

i 6

Catawba Tube Westinehouse Test Destructive Exam Test Ratio RSC112 11.100_

9900 1.12 I

1

~

.{

Model Boiler Snecimen 601-2

)

7 Retest Initial Test Ratio Comments 3405L

.2935 1.16 Crack o p ned with no crack tearing.

y In initial test.

1 i

. TAP 2065:082192' b

ij 1

9

. -...,..,... ~,,, -,..

.a,-,,.

Table A4-4 Burst Pressures for Catawba-1 Tubes Flow Stress Crack Opening Mea $sxn Adjustment Adjustment Adjusted IEh1 11P.

Bobbin Volt 4 Byr.g sp t factor Factor Burst-psi Comments RSCll2 2

0.48 s,e l.02 1.10 10,880 Ductile, fishmouth rupture just outside TSP.

3 1.82 4,150 1.02

>l.25 Not Reliable Crack opened (largest -0.l*,

others <0.05"), no apparent bulging or tearing. Max.

orrosion depth 97%. Max.

single macrocrack length -0.43

(<0.2" TW by burst).

R10C6 2

1.46 6,000 1.03 1.15 7,100 Crc-k evened, minor bulging or tearing. Maxi-um corrosion d.pth -72%.

Burst crack - macro-crack length -0.33".

3 1.31 4,850 1.03 1.15 5,740 Crack opened, minor bulging or tearing. Maximum corrosion depth -85%.

Burst crack length

-0.43".

R10C69 2

NDD 9,400 1.0 1.10 10,340 tile, fishmouth rupture o

regien.

3 1.48 5,000 1.0

>l.25 Not Reliable n.nor crack opeaing, no bulging or tea Maximum corrosion depth -/5%.

Maxi.3um single macrocrack length -0.37" (not completely or <.2" opened by burst).

R20C46 2

0.42 8,600-0.98 Nct Reliable 80th R20C46 intersections burst 3

0.79

'7,200 0.98 Not P 'isble just above TSP at a hand held grinding tool mark applied for location purposes.

R7C47 3

1.57 5,800 0.99

>l.25 Not Reliable Minor crack opening, no apparent bulging or tearing. Maximum

corrosion depth -87%.

Maximum single microcrack length (not' TAP 2065:082192

RSC112 - 2nd TSP i' d "', N5B A FTT 4 B C.5'.

r-i.1'.

. P

.. t g 9 7 00.p;/, - '

,.4-

._..vu;

,, s

~ ~ ~ ~

  • pi*.

.s ~

4>

g,

(.,-

5 '. d [.,.

^'

^"

  • t r ;r e

1 T.sP g

~ '.

T. i e

a

.?

o

~"

,..y 8

2

."1

...,, jf,f6,!

r.,

s

.~

g+

2 s

^

s s

R10C69 - 2nd TSP

'<n'*

'x

~

n

< :,' 54 Asy$ -

8

4

~'

..(.-

Photograp5s of Burst Openings fer 2nd TSP RSC112 and R10C69

.e4 m-

-u.-.---.m._am......-~u-=--

e-+--,.-.~.---.--

- - -- ~. ~ --.. -_.-,.

Y I

l.

v e

/

~

c l

s 4

l

'.. * * # ' ?,

g I

C W:

" Q-

' i,, t l

^-

-l

-- j-l v' ~ *Y. - t hI.

. 2[

,),

^

s f

l

.h

),

i

?,;

.. t

.. A*

l

}$. 4 h.,'s, n,

.c

~

e. V.

a

' g, w.

jal.

s

..V,

s_

I A

g 9

e

'., -,j/ ;. s'r ', s -

.(_,,

-~ '

%,3 '

's

\\

.N F. ) __ ' t-r d

i s

- \\%

a,

. /.

0

's

'M J

w

-s t. #...

k d

h

\\

s,,

, ~ -

4*

l l

n SPECIMEN 10-6-58-2E

+375 i!

TOP t

i omio 1

i TT l'

l,, /.ics T

    1. ~

As B

.,g 3; m(

O

  1. 07 -

/

ny

=

j' e

u q'] C q y

7 z

. wi st lgf(

$TSPQ

]lhy[

1 0-Di

.J i

.)

/g.

2

- 0

! 7,' 4 3

-100 -

- g

/

  • s MPNM

(

. 2 M= 72% Tw.

- j j

cr.c= p.n.m.:.r. y 1

7 NTM

-200 -

/

  • 9
  • 13 i

. myj

-300 ' -

~

.an,

s'o TT o m 30' -

60" 90*

120" 15F 180* 210*

240' 27 7 30F 330*

360 ANGULAR POSmON

@ ss-ass

@ six-7ss E > 7ss AGA DEPTH:

< as ses-so%

FIGURE 2-60: 54N9tARY OF INCADIGITAL' GRIlO AlO POLISH RESULTS ON SPECIMEN 10-6-58-2E.

2ml 732

66*

64..

70*

71*

7 2.*

74' 76*

73*

26%

41s 44%

fit 26%

38%

26%

23%

p

.I l

4

% 'r.

y

.ylf.

50X Grind #14 j

84, 85' 88*

23% 385 20%

I e.,

  • b

(?

\\

o t,

.y g

3 k.

.t

. p..

1

- ~.

t.

i k;g, -

.. s <.

.e

\\

-.,1 7Ab.,

t

6., -

.p

.' i

^

1 50X Grind II4 i

P 1

10-6-58-2E. Mount #1.' Top Piece i

i i

f k

a

..._,.,,.n.n

,, -.,,., -,,,,,n--

-e e

... _.. _. _.. _ _ _ _.. _ _ _ _.. _ _ _ _. _.. - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _... _. _. _ _ _ _.. ~ _ _ _. _. _.. _ _. _. _.. _. _... _

1 l

IGA Pdd L

.174'

!??*

igo.

12%

24%-

)-

l musumum F92-087 50X Grind #10 175' 20%

l*

q s

ti t

i Crind ill 10-6-58-2E. Mount #2 i

E D

i A

.,.. - _ _... _........,... -.. - -. ~. _ _. -......

MD4 imW MAh,2.

,,4W-EA-* em m.meer Mapsies& ae,apaa.-.#p.,u34.N.eseJ e seampsa u.am a em #h m aamm,g.,as,mw=_

-mgmm-m=-as.

---ww--._ww_,umaw.aam..-

m _w ww%we..ma aspeci,we,m.,

d n

}*l.

EM...

3,.. :. e..,.

  • y* ;3 3,,

i s

e.

I_

h

. $

  • N',. E'.&

v r,;y i. ],l'. O i

i 9F. d i

  • D

. g e ', ',

'1 e

j ef, ',

'..P :'

a.

wg.-

m

,e A

>e...

ti l

Q.

.2 '

I v.

i

.;. 5

?

v

.N

,, 'd.,7 e

e s

]

2 W"

o g, ay C

. '(.

  • N j

g j

-,, g '.

t a

\\

d'

~

y l

e c

4-sP -

Y fr c

t.

z.

' ;4~ _,

[ $. g W

.s.

..L y-r

.1 I

p as g

\\

). ^..

j p,

h,Ngb

't t

  • g' s

Y

~

1 y_

l

,4

-*r--Fr="z---N."$--ePr-s-wr-m-

r m e T r==#muur--m-e'm--w+w-swwrew-wew.w------yv--

w-a

y,

>=*

w' wwwcc0000 y53

,)

tJ e o.t c.

d5 ta L i.g n

C e

zm. s m

3 3-gE \\

8

]g f

3 l

h.

i g

YYYYYFJYYY.iff Y fifTYYTY YU g

-g

=.,

c.

. _ - _. g e 3_,..,_,.. t.... f_ _.,, ~ mg;._ _ _......_..,

_.v

' -" l i

_ __ _ _ g

,..tN t e..,im o. y'< -

2_t...t.+ g_

,4_,

_t. t = _._

...q..

t t,..

..4..-

...__..__._.*.....i.. j...i..,i a_1._a e

.4i

..,i._. _ _

v

. __ _ __ _..L,..,<..,_.,.i__.pt. 1,y 4 g

.' e. q_: I..m. '

e

_ 7.1 g., p,,

i.

i 4 r.;... j_. T..bj..Q 3_1-__

.i

... ________. q.y.p: u,.

%.s.....

..j 4.p

..h

[n 8.,; _._- -

t a2 a

4.,.

i q

,.1.,

- J,,,

i

..,........,..., i

_..._..__. ___p_pp g1.r.. g+i.. 4 ). '..+.

p 3

.g u.a._t......

Q a

l ( 7.,I _ i.t.i..

._!.1 7 l.

I1 s

_ '- g-l 2-j-[-i-i 1-~r-i-'Y.T.j ~-~ _' '--

N r

-N 3

... 3 q

E LL!.L

_1_+i i

_ '... _ ' E 5-.

...TT..s..t i

i

'i_~'.-'.'.d.i '_. j'..i 5.

W 1 T_-

.'._,"l rI

~ ~ ~ " - - - - ~ '

i 2,

i.

L-i i

.._. 7. _T_.T.~i_.i.W.._'u,--

_.-'_~a' '

+~ ~' _ e_J'. u

..._t M

- ~ ~ - ~ - - - - ~ -

y

. kk I

g

- 1.h.h.1. d..[i..h..

I

~

i.4 i_

i ti

_l i

.E m"

~ -

p_p.e. p._;-.,L t 4

,,, in'

.t_. Q_j..... 7

~

O q_J,_q_L_p_J 3_ -g 7.

._ }_.].

!_L._

i l_._ -.

y

'a L

LL__

_L.

wu a

. _._ _ _.7.

-)

1 t.

i i

7..

7-

, _.i_

h O

.__u i q

i.

u y'. :._

_ L1.

,m

^ h l

l l

- b LfJ i

h k

k k

w (sliW) NOI.LISOd 1VlXV

329' 48.3%

44.5%

44.5% 62.7%

315'

.i d

F92-163 60X 9th Grind

)

347' 60.5%

72,9%

74,45 330+

i e

4

(

f.

k F92-164 60X 9th Grind 1

METALLOGRAP M RESULIS ON 5-112-88-28 i

a r-

w-r tt s 6-lli~

_h

~

i y

~ j(

~J:

3, fM

~.

1

\\

~.

f >p l

r

~

)

f-g.

  • ~

g z

1 4 l.

l l-l

^

8

,o l

3 j

a

g. -

l y

h 1

3 I

d. I 1

l

's.

\\

1

,kt t

l-j

=

n SPECIMEN 10-69-4B-2E

+375 TOP

+300 -

i i

+2m -

._g.

_ y

. A i

, o,,,,,,

. f 7

- o n.,i.

0

- 04n,,.

^

+100 -

-.. -.-[-

d

/

  • cond ate

/-

C

  • Onnd psy 4

y g

,L.

< m a,s oISPQ

/~.-

.- (d2_

m

- os

_ G k

OUE

~

~ 2

-2A 1-z O-

  • cano,3 3 p

~

b

. 1:

H}:

m,p 2

n 4-rrr 1

I

~ ~ < =

  • Gdnd a 6

-100 -

y

. g,3 Q

r N

o

~~~

r,rs,s <sd.is u.

. (p w

_w.,

,/

M. x. c.N 9 ;y medNE M

nomiertose MhT#

g _

creerpenome are wae' defect h l

=* r s'masmae 1,II II I

33 sorrou F

15' 30' 46*

90*

75*

90"

'105*

120"'

135*

150" 185*

190 ANGUL.AR POSITION IGA DEPTH: @ < ss -

@ ass.aan @ st%-7ss E > 7ss as-ass FIGURE 2-61:

SUMMARY

OF INCRDID(TAL GRIle AfG POLISH RESULTS ON SPEC 1Mai 10-69-48-2E.

...m_

,,,.____.._.m-

- - - - - - - - ' " ' ' - - - " " ^ - ' " -

IcA Mch -

23' 7.5%

17'

i i

r,.f.N,h'd,', '

I l

....n i

. s'

\\

~

,, - p -:

'W,

- c, r g,,

a

.. V:.

-..:.s

\\

.W,.

\\

u,RY; '.%.. %.,?,% '

,..)

\\

~'

2.~.

.a..

  • j.
m. :...

i o

r

. p sw:..,2 x,

.+....

b...,

F92 024'

' G;: _' 2 _ i4

?-

118K

3rd Grind. 20' i

l

'B A

98'/39%

93'/395 j

i

'y y

,4,

,5

% k ".

o 4

O f.

2". -

p A,

y

.' E ;

1

,.. T. '

,.0 1

F92-036 601-4th Grind 95*

4 Specimen 10-69-48-2E t

2 e

d v

-e-.

t t

h R-A R

C 9

e s

s s

s s

s s

3

e. Y YY YYY"Y Y Y"Y Y U YV UY YY YY Y Y"Y YY Y YYY 8

I

.. a 4 -

iii4 u u a._u_c iZ) h

.~

..)&.

a.jdu.A_.,.)..\\.).i i

.J g

..j_.q._.,.. u K

.t p.Lt

_. _...... g.

.._.. ;..#j

..Ji.

J.-...l.J_'..l _J.

W e

_. -. 4...;..,._,.

1.2.1.. !.

_b a

..:i.1..

i E

3

_. 4..T__;.._L L.

g

. -...;.!J...L

i. 4.

1 I.j

4. !d

=

y

..i.2 L

- u....

' i 5i

..3_i..i.!

.,! _.i.i +i

,.4' +1.

O =,,,

2 i

2$

g,

! i. M..

L. J.!J.i.uJ i

g._g{..n..._l_.J.!J._.

LD

. 4 4.J..j..

!..._.._j

.*gp"r g

y

.._g_g.q j.g g-s.9.

_.._.7.7,7 3.,.. 7 p.

._n..... 1 1 O

E

...;..q...

q.

g g

1

+._,. q

-. L I

L I

-h5 $

as

... ~..

-N z

.H4

,e

.._n M ?m

=

l...n._i w

._3

+

u, q

2 u

/ Ia O

W4.

i q_i gM/b*7-[

.t__

~

N2 %...

2*

w6 i

i w_j v

~

O

['~f~

i~

i /

v Ti (g

o5

.. a g

F E; p-1

...t_n._.1.;/_

a

+r

.1_L L ![.J.J'

_b O

L!J..LU I

[

/

4.

.14J

}Jwg.g J

i !

a 4

jld o

~

g h....d.

g f".*[~i d I

A t

w e n

l g

g

[

1 "

" \\

k c

v i

g

, \\\\\\\\..

1 i

i l

d R

0 8

8

.e o

n

+

+

+

+

v 9

W a.

h (S111N) NOI.I.lSOct ~lVlXV h

1 i

1

-1 p

zGAp.M K

(

L r

8 1

67%

69.8%

i M

l 60.9% 20.4%

a

\\

60.5% 0**

58 1%

w

\\

\\

k L

g920218-08 01 I

\\

50X 16th crind l'

r 37.8%

I i

J B

60.9%

58.1%

20.4%

315'

\\

\\

i I

i

\\

1 l

\\

i t18 09 i

50X

!i 16th Grind 1

\\

SPECIHEN

\\

7 47 48-2E i

i

\\

\\

\\

i l-

CATAWBA-1 PULLED TUBE CRACK MORPHOLOGY s

i MULTIPLE AXIAL ODSCC 9

LIGAMENTS PRESENT BEWEEN MICR0 CRACKS MINOR IGA:

NEGLIGIBLE VOLUMETRIC INVOLVEMENT DEGRADATION LENGTHS <0,5 INCH APPROXIMATELY CENTERED IN TSP SIGNIFICANT PARALLEL AXIAL CRACKS OVER ~900 To 1500 s

TAP 2065A:082192

.a

- m-s-

.4

=>

WESTINGHOUSE PROPRIETARY CLASS 11 Table A.4-5.. Summary of Catawba-1 Pulled Tube Results West. Field Data Eval.

Lab Destructive Exam Bobbin' RPC-Post-Pull Max.

. Burst

- Leak Rate"1/hr-M Tube IR Yolts Death Volts B.C. Volts Depth Length p51

' Norm 00.

51 8

'R5Cll2 2

0.48- ~0%

'0.37 Superficial 10,880 0.0(3) 0.0(3)

I

+

3 1.82 86%

1.30 5.06

~97%I4)

O.50' N.P.II) 0.078 0.56=

R10C6

'2-1.46 83%

0.98 2.07 72%

0.40

7,100 0.0(3) 0.0I3)'

3 1.31 76%

1.20 5.34

85%

0.43*

5,740-0.0(3) 0.0(3)'

R10C69 2-N00 NDO'

'None 10,340 0.0(3) 0.0I3) q 3

1.48 72%

0.97%

3.31 75%

0.45' N.R.

0.0(3)-

0.0(3) i R20C46 2

0.42 30%-

0.82 12%

0.05*

N.R.

0.0(3) 0.0(3)..

3.

0.79 28%

. ' I. 04 -

-05 N.R.

-0.0I3) 0.0I3)

R7C47 3

' I.57 -

785 1.40 4.13~

85%

0.42" M.R.

0.0(3) 0.0(3[

_i 1 -

Notes:

i

.1.

N.R.

.Not. Reliable, See Table'A4-4.

2.

N.D."- Not determined.-

3.

No leak. identified during room temperature pressurization; tests.-

4.

Crack opening for.. leakage may have resulted during_ tube pull.-

^"

'l

TAP 2081A:082192 o

,.. ~

n

..r-.-.

as 9

.a---

..e'g a',

w 4

-4

,,-,m-s-s.

~

~_

-s. -

3/4" PULLED TUBE DATA Bass

SUMMARY

i-INTERSECTIONS NO.

BURST LEAK DESTRUCTIVE-

_f_LJNT ILLBJ S,

IESTED-IESTEn EXAM CATAWBA-1 5

4(5) (1) 1(8) (2) 9 E-4 9

7 9

13 B-1 1

1 0(1) (2) 5 B-2 3

0

-0 11 C-2 2

0 0

42 NOTES:

1)

NUMBER IN PARENTHESES REPRESENTS NUMBER OF ADDITIONAL PRESSURIZATION TESTS PERFORMED WITHOUT COMPLETE BURST.

DATA NOT INCLUDED IN DATA BASE.

2)

NUMBER IN PARENTHESES REPRESENTS ROOM TEMPERATUR PRESSURE: TESTS PERFORMED WITH NO IDENTIFIED LEAKAGE AT-PRESSURE DIFFERENTIALS EXCEEDING SLS CONDITIONS.

I -

TAP 2065A:082192 f

.o -

Table A.7-1.

rulled Tube Leak Rate and Burst Test Measurements 3/4 Inch Diameter Tubing Bobbin Coil RPC Destructive Eram Leak Rate 1/hr Burst P1 ant

-Row / Col 151 VoltsII)

Depth -19111 Max. Death. ].ength(2)

Norm.00er.

31H Pressure Catawba-1 R5Cll2 2

0.48.

-0%

Superficial 10,880-3 1.82 86%

1.30 100%

0.50 0.078 0.56 R1006 2

1.46 83%

0.98 72%

0.40 0.0(3) 0.0(3) 7,100

?

1.31 76%

1.20 85%

0.43 0.0 0.0 5,740 1

Notes:

1.

Voltage normalization for 550/130KHz.to 2.75 volts on 20% ASME holes.

2. Tested at room temperature.-Maximum burst crack corrosion length in inches with throughwall. length in 3.

4.

Not measured at 550/130 KHz. Voltage renomalized from 300 KHz data.

5.

i.eak rates messured at room temperature. conditions and analytically ' adjusted to operating 'c TAP 2081A:082192 ns.

~

... - ~

?

't

g.

3 t

3M" Pulled Tube Data: Bobbin Call Voltage Vs. Maximum Depth from Destructive Exam q%

2 o>

Maximum - De;'i% ' rom Destructive Eram l

8 Plant 81 0 Plant B 2

  • Plant C 2 0 Catawba 1 A Belgian Pulled

-Tubes

.1 Chart 3/4'. PT Volts vs. Depth 8/27/92

-1 s-

. 't.

7/8" Pulled Tube Dals: Bobbin Coll Voltage and Depth from Destructive Exam

_ 9.

s

e 3

Ta>

i

~

Maximum Depth From Destructive Exam O Plant A a Plant D 0 Plant L

  • Plant M A Plant N
  • Plant P 8 French Pulled-Tubes s

5 l-7/8* PT Volts vs. Depth 8,27/92 i

l1 f

l

1

! g ~'

3/4" and 7/8" Pulled Tube Osts: Bobbin Call Voltage Vs. Maximum.

Depth from ~ Destructive Exam

^

.,4=

-3 i

w

' Maximum Depth from Destructive Exam s 3/4* Pulted' Tubes 7 0 7/8* Pulled Tubes Note: 7/8* voltages decreased by factor of 1.36 tu correspond to 3/4* tubing.

l' :

L Chast 3/4' & 7/8'PT Volts vs. 0 8/27/92 l

l

(,'

l;

a 4

7 h

t-t 3/4" and 7/8" Pul ed Tube Data: Bobbin Coll Voltage Vs. Maximum Depth from Oestrucilve Exam

.'f.

~

4 a

O>

f

~

Maximum Depth from Destructive Exam 8 3/4" Pulled Tubes' O 7/8" Pulled Tubes Note: 3/4' voltages increased by factor of 1.36 to correspond to 7/8* tubing.

t Chart 2 3/4' & 7/8'PT Volts vs. 8/27/92

PRELIMINARY UMBRELLA-LOCA +'SSE ACCIDENT ANALYSIS FOR CATAWBA UNIT 1 TO DETERMINE EXCLUDED Tunes AT WEDGE GROUP LOCATIONS PREPAPTD BY:

R. E. SMITH l-l-

i l

8/27/92 i

s OI K 119 0CP26-8/27/95 p

COMBINED LOCA + SSE ACCIDENT CONDITION ANALYSIS s

ISSUES RELATIVE TO INTERIM PLUGGING CRITERION s

. POTENTIAL ExIsis FOR PERMANENT DEFORMATION OF TusE-SUPPORT PLATES (TSP) ADJACENT TO WEDGE GROUPS UNDER COMBINED LOCA + SSE LOAos

. DEFORMATION OF TSP RESULTI IN CORRESPONDING TusE OVALIZATION IN TSP DEFORMATION ZONE TURE DEFORMATION CAN POTENTIALLY LEAD TO OPENING 0F EXISTING THROUGH-WALL CRACKS AND IN-LEAKAGE UNDER. Post-LOCA SECONDARY TO PRIMARY PRESSURE DROP IN-LEAKAGE IS UNACCEPTABLE, AS IT MAY CAUsE INCREASE IN PEAx CLAD TEMPERATURE s

i DISK 119 DCP26 8/27/95

4 CoMsINED 1.0CA +- SSE ACCIDENT CONDITION ANALYSIS 5

ANALYSTS OsarCTzves E

. CALCULATE COMsINED LOCA-+ SSE TSP LoAos

. DETERMINE NuMarn or DeronMao Tusts AT Wroot Gnoup LOCATIONS-

. PREPARE

SUMMARY

TAsLas / Tust MAPS TO IDENTIFY Tuses 70 sa ExcLuoro rn0M IPC

. PRELIMINARY EVALUATION UrILIzas SpectrIc SSE ANALYSES 0F Two 0THan M0ost D3 PLANTS THAT ENVELOPE CATAWSA 1 l

2.

r -

Ol3E 119-DCP26-8/27/95 I

l~

1 i

COMBINav LOCA + SSE ACCIDENT CONDITION ANALYSIS-V

.s ANALYSIS METHOD-

. SSE ANALYSIS 4' 0 '

. LOCA ANALYSIS

,a,L v.

9 b

.-LResULTINGTSPLoin

. o,c i

l i

l--*

Tust DEroRMATION Si'

[-s

~

DIst 119 DCP26 8/27/95 9

r.

.: a, c s

I-s MoDEL D SEISMIC FINITE ELEMENT MoDEL GEOMETRY Otsit 119 DcP24 8/27/95

. ~

dc i

4 a

4 FINITE ELEMENT MODEL FOR 2

LOCA TIME HzstoRY ANALYSIS 0tSK 119.DCF24 8/27/95

i e

t

)

Numera or DaroRMao Tuoss As A FuNcirew or LoAo-Noost 0 $t:AM GENERATOR-l e

s I

ig -

l F

f 1

i e

1 r

i 4

a 0

. g a

O e

.Y

?

Di m 119 D 726 4/2T/95

$qi.wqw 4-a.p p. q w+

9 -g -Mm-m 9 -

g>w p s r-344 +M rg-9,+

.c rt t e d 4 fT) rrpN i=

ew, W

p

-@ig ec-E gem

'e$ r w'rc e

-Mic 7?**st+ e'Pw t

"e zP' w*r+'

-M"F' 4

-"**fr we-ce-w ee a"e m m e u

-P't

f CoHBINED LOCA + SSE ACCIDENT CONDITION ANALYSIS ANALYSIS RESULTS

. $$E ANALYS!$

.4c

')

. LOCA ANALYS!$

- di'

~

r

. NUMarn or DeronMro Tusts

- 4, c l

l l

l F

StLECTION or Tusts to se Exci.uoto rn0N IPC d'

i lt Olst 119 DCP26 8/2T/95

SUMMARY

or WEcot LoAos CoMs!NED LOCA + SSE LOADINGS d, b

~

4 4

9 9

6 8

Ditt 119 DCP26 8/27/95

t NuMsta or DeronMro Tunes 9

r t

9 0

to

%d a

DISK 119 DCP26 8/27/95

_m

_a.a,,_

._s uA.

a A-d a

e 4

e-m-h--

4-- 3+ha

-_A+b

_n_

i_.maAmmha_

J

_A-b e

aa4.

A E--..

--4 r

e l

d P

lE I

l 1

i i-n' 3 9

a.

u

\\

'N' - N

'L' q

'W'- N 4.

'K' -

s-

' u GJ. e nut

.m

$h

~.-,

.y.

=

T-

^

y

m s

.n. -

", wm as' - g 3

7>

i u

Nott PmHr.Atu WowmN MT N t

Tust BuxoLE GEOMETRY DISK 119 PCPM 8/27/95

4 o

t

,o i

oundrant a i

Quedant 1 Hot leg i

.. & q

  • sig i

180 L l

column i m $$4

' 9 ovatant 3 cosa t, ou,,,n 4 e

I 270 t

REFEnENCE CONFIGURATION FOR LOCATING IUsES LOOKINa DoWN ON STEAM GENERATOR CATAwsA SITE $PECIFIC CONVENTION.

O!K 119 DCPM 4/27/95

- - -.,.,. - =. -

-. - +..

\\

c 2 W W lx acon casm u m gooooooooooooooooooooooog'!:.

s

"~k!!k88888eo 8

ca,m ao w 0888 8

8g 8

88 8

88 l

8g soit.a 8g 8

8 8

8 8

0 88 g

~8l 8

""--illi 8

88

--fli!

8 Sooooooooooooooooooooooooooooooooooo ca nua I

, m.n m

Tuars Exct.uoto rRoM IPC Pt. ATE C - QUADRANT 1 S

Ditt 11P DCF26 8/2T/95

- - - - -- - - ~ ~ ~ ~ ~~

b i

r

SUMMARY

OF Tusts ExcLu0to Fnow IPC plans C/D I

Het Lao l

ll Wgtog Lccap_

A{gg y,

-l O

8 113 114

'! K-~

6 114114 I I

112*113 7

112113 8

112 113 8

112 113 9

112 113 9

112 113 10 112 113 10 112 113 11 112'113 11 112 113 12 112 113 12 112 113 45 8647 43 90 91 44 8548 44 88 02 47 6447 48 87 00 44 8348 4g ggag 49 8344 47 86 87 48 28-29 44 88 43 24 2 44 2600 44 23 28 47 26 31 44 26 28 44 2942 44 26-28 40 31 32 47 gg 48 29 8

12 8

13 7

24 7

23 4

24 8

24 8

24 9

24 10 24 10 24 Il 24 11 24 18--.

_24 12 2.g s

S DIN 119 DCP26 8/27/95

O c:a. W.dee %

goooooooooooooooooooggooogg 8

)jj!!!

go.::j..:

8

. oo 088gtIIIt!!!

8 8

8

" - 888088888888 888 8

cm a

j g

8 g

em g8 g

g 8

8.

8 8

8g h

8 o

Hot Log 8o k

(Same rows and cobmns on Cold Leg. Quadrant 4) og 8

o8 8

8g 8g l

8g 8

l f

8o 88 Cean110

-3 000000o 0000o000o00o o00000 o00o00oooo ooooooooooooYobo

~%

Name 2

TUsts EXCLUDED FRoM IPC PLATE T - QUADRANT 1 DIN 119 DCP24 8/27/95

l

)

t SUw4ARY or Tuses ExcLuoto rnom IPC i

PLATE T' i

Hof UE0 r

COLD LSO

__ WE00E[oCAq Row CowuN We g W noN Row

_C p _

7

~

1 110 114 4

1 110 114 2

111 114 2

111 114 41 8348 41 334e 42 8240 42 82 49 43 8140 43 414e 44 8040 44 8Sep 45 8040 44 8040 46 7940 de 7Sep 47 7947 47 7S47 48 79 48 7943 49 8044 40 8044

+

40 30 32 40 304R 41 2944 41 2944 42 2846 42 2848 1 43 27 36 43 27 36 44 2746 44 2748 46 27 36 48 2748 44 27 36.

44 2748 47 2644 47 2A34 48 2644 48 2k34 40 31 33 40 31 33 1

14 1

14

~

~

2 14 2

14

~

i 3

24 3

24 5

g l

Clu 119 DCP24 4/27/M

,-c

,.----u

3 i

CATAWBA 1 TUBE ODSCC AT TSP'S PRELIMINARY BURST AND LEAK RATE CONSIDERATIONS 3/4 x 0.043 INCH TUBING BuRsr STRENGTH-VS BosBIN VOLTAGE o

SINGLE CRACK LEAK BEFORE BREAK o

4 SLB LEAK RATE Vs BossIN VOLTAGE o

h a

3/4" TUBING BURST. PRESSURE-BOBBIN VOLTAGE REORESSION ANALYSIS

'O i

SECOND ORDER REGRESSION 4

s BURST PRESSURE VERSUS LOG (VOLTS) o 57 DATA POINTS FROM PULLED TUBES' AND o

MODEL BOILER SAMPLES - ROOM TEMPERATURE TESTS THE MEAN CORRELATION:

o g.

i THE -95% PROBABILITY PREDICTION INTERVAL o

,g.

WHERE

,3

-J THE -95% PROBABILITY CURVE WITH LOWER o

TOLERANCE LIMIT (LTL) STRENGTH PROPERTIES AT OPERATING TEMPERATURE IS.

OBTAINED BY SCALING 0.848 8

,'-v

.. ~ -.. -, -......

....-..-...---.----.--.--...-.~.--..~...r

a Burst Proscuro Yorous Bobbin Vollago 4

1 s

.x d

in E

tU L-

.3 m

a nrae.L Bobbin Voltoge. Volts e

8

Durst Prossuro Voraus Bobbin Volla00

'E

.x

.e L3moe 4.

n.

se m

L.

3 CD

~

Bobbin Voltoge. Vol ts

~

mrx.oe l

i

f i

7/8" AND 3/4" (SCALED) TUBING BURST PRESSURE-BOBBIN VOLTAGE REGRESSION ANALYSIS SECOND ORDER REGRESSION BURST PRESSURE VERSUS LOG (VOLTS) o o

119 DATA POINTS FROM PULLED TUBES AND MODEL BOILER SAMPLES - ROOM TEMPERATURE TESTS (3/4" DATA SCALED) o THE MEAN CORRELATION:

-4 a

- THE -95% PROBABILITY PREDICTION I.NTERVAL:-

o y

WH5RE

~

1 i

o THE -95% PROBABILITY CURVE WITH LOWER

-TOLERANCE LIMIT.(LTL) STRENGTH PROPERTIES AT OPERATING TEMPERATURE IS OBTAINED BY SCALING BY-0.857.

3

..__.__.,._.__,,__....;.,,_._,.-..-._a...._.,____..

_.._...__,..._,..,-.L.....,__,-_,_,-_:,.-.-

Durst Prosauro Yorsuo Bobbin Voitogo

.'x5 M

8u ct E

tB

~

Bobbin Voltoge. Volts nim.,

9 8

i

[

LEAKAGE RATE CALCULATION AXIAL CRACK FLOW MODEL (CRACKFLO)

ASSUMPTIONS 4

O e

s t

0 w

0 4

m E

T e

Y

=

h

_. 9 8

.. -...,;,.,-,.,-..... + - :-....-...

LEAKAGE RATE CALCULATION AXIAL CRACK FLOW MoDEL (CRACKFLO)

FLUID AND PRESSURE DROP CHARACTERISTICS 7

. 0,C W

0 9

9 1

I

--,.---,__,,,-e---,-

G l

r e

LEAKAGE RATE CALCULATION O

t AXIAL CRACK FLOW MODEL (CRAcKFLO) f AXIAL CRACK OPENING AREA MODEL 4,c

' k 1

f 4

4 4

7 8'

y y

7 9 gewi,pe

-weiy

+,w

-y'w----s--ww vMpww'uy-twwey-t-w e w E'awM mer

-g.4 1

e-.-is a+g-.-gp--we+m,3

-wdeq =w m w+

__ yew -c y-.,+,w.y,-----gp qy gey Je g++w-www-ye.

w-i a 6-sc,4r-esewoure-'-m-s d

t O

)

LEAKAGE RATE CALCULATION t

AXIAL CRACK Flow Moort (CRACKFLO)

SOLUTION Pnocsount 4.6 P

I l'

1, O

8 I

4 e

en i

b e

S b

-..,,,-.-._,.E.,.

7 e

k+,,

-v*,

..m.-,

co-,mw_..%..

-,w-

.ca.,-m.,,. -.,., ',,,E,,,,

c%_..mes..

-[...,.ey.

..,m_ E-. sc,,,

.,p.-...-

y,_,,

a b..mmu

-p.-

.4 m

a-

-AA

_wd SL--_--s+=--*-.++AAi4

-bR-&-+O1~~h2

.--+-.**'4-+4A 4

s44@-.i i--

,*.a.--A-Me M 4 4-N,+,--

m.4-w E 4 h ae4--M---A---4

.-&4&hMl-LN-43u++----3 4--.-.-.-

I 5

LEAKAGE RATE CALCULATION e

COMPARISON WITH EXPERIMENTAL RESULTS t

i NORMAL PLANT OPERATION 4

IN GENERAL, MODEL YIELDS A GOOD PREDICTION FOR THE TREND OF LEAK RATE idTH CRACK s

LENGTH.

EXCELLENT AGREEMENT BEWEEN PREDICTED AND e

MEASURED LEAK RATES IS SHOWN FOR FATIGUE CRACKS.

FOR STREs5 CORROSION CRACKS, GREATER DATA e

SCATTER IS SHOWN.

SCC CRACKS ARE CHARACTERISTICALLY SMALL ~ 0.1" LONG DIFFICULT TO DEFINE.GE0 METRICALLY SuSCEPTIBLP TO PLUGGING 4

l-

-_.-. _-.._ -. -2,--...

.. _ _ ~. _, - -, -. _. _,. _.,,

1-.

z


,---------.-w-.---

O' COI w

H; 4

t K

4 W

J a

LL)

TD U")

4 11J Z

i N

O LU

>O HQ Lu C

CL Lu 3:

w CD Zo HT4Q.

KOOt t

(NdS)- 31W >lV37 0313IO38d 4

(

r :.

I-

NORMRL OPERRTING CONDITIONS LERK RATE VS RXIRL CRACK LENGTH 3/4' TUBING RT 600F RND 1250 PSI x

S E

~

l b

m..i RXIFL CRACK LENGTH, INCH I

i l

l-

i l

BURST PRESSURE VERSUS CRACK LENGTH

.. 9 mm M

ww E

+m g

~

u non.-,

RXIR. CRACK LENGTH INCH 4

t N+r.tes a-v.

A gy, a-.

m 9r f_..y,9,,.

m y,,.w_y-

-,,w-.,y,y v.--,p-,

y,-.y, y,

p94y,,

g y.-

myg-.p,y g,,4 w,,,,,

aw-w_,

uw.

_w-,

a t

OPERATING LEAKAGE RATE LIMIT LEAK BEFORE BREAK ASSUMING 0.1 GPM LEAK RATE LIMIT AND BELGIAN BURST ~

CAPABILITY NORMAL LEAKAGE VS CRACK LENGTH o

3AP BURST CAPABILITY IS SATISFIED; TBuRSTVsLEAK

~

-95% LEAKAGE VS CRACK LENGTH SLB BURST CAPy ILITY IS SATISFIED; o

a, BURST-Vs LEAK I

9 i

b

.~m.. m

..... ~, _,.. _..,,, _.....,.. ~,...... -..

-. = -.

i

)

3/4" TUBING SLB LEAK RATE - BOBBIN VOLTAGE REGRESSION ANALYSIS FIRST ORDER REGRESSION o

LOG (Q) VERSUS LOG (V) o THIRTY-TWo DATA POINTS FROM MODEL BOILER SAMPLES - SLB CONDITIONS S-s o

ZERO LEAKERS INCLUDED AT (90% THRU' k!ALL PENETRATIdN)

~

o THE MEAN CORRELATION:

3 o

PREDICTION INTERVALS ESTABLISHED-USING:

,g J

WHERE Td = STUDENTS T VALUE 5

l 4

x e

o r

is.

e 9

<m, y

,,a.

s,.,

.y-..=--,s.

-.,,%w.

-m

= --= *- -~

.--u s

SLB Look Roto Versus Bobbin Voitage 1

$a h

e J

CD Y

' ha Bobbin Volt 098. Volis f

SLB Leak Rote Vs Bobbin Vdtage-3/4" 2

FitStd5r=0.83623173 Fstat=6.66462267 r =0.210475354 1

-1 i~

$so CE

.x E

~

Log (Bobbin Vdtage)

ALTERNATIVE LEAK RATE CORRELATIONS UNDER CONSIDERATION' USE A "RosuST" REGRESSION ESTIMATOR 0

IDENTIFY AND PROPERLY WEIGHT " OUT THE REGRESSION ANALYSIS- (LEAKERS: ON

- LEAST MEDIANS 0F SQUARES (LMS) APPR ESTABLISH LEAK RATE VERSUS VOLTAGE O

COiftATION FROM:

i i

- a, c e

s s

I l

l-

. ~

Crack Length Vs Bobbin Vdlage-3/4" 2

r =0.774782077_RStdErr=0.066331946 Fstat=41.2817274

, o,c

~

a.C w

l 1

E s;

$a, b

a e

o O

Bobbin Voltage

O SLB Leak Rate Vs Crack Length

44 E

e 3

e 15 B

'in

-3 GNfK.96 LogC Longth, inch)

W

LEAKAGE RATE CALCULATION COMPARISON WITH EXPERIMENTAL RESULTS STEAM-LINE BREAK CONDITIONS IN GENERAL, THE MODEL OVER PREDICTS LEAK 9

RATES FOR SLB.

IN ORDER-TO IMPROVE PREDICTION CAPABILlLY, 9

EMPIRICALLY BASED ADJUSTMENTS ARE MADE TO THE MODEL.

,d

I l-t

r.-n.

L s.+ :s nk +-

.,.nm, 6

w

,n M

.:1+

a 4

mm,.-

2

- (f)S '

q.

Wi H

i K

g.

W.

Q W

G

~3-Ch<W Z

Q QW-W C.J HOW C

CL Z

W.

W 3:

g W

CD Zg.

(A HT<

CL E

- O Ca 1-(Nds) 31Yu W37 0313Ia38d N

4 1

a

_ MEASURED VS PREDICTED LEAK RATES a,6,c fe vi W

E s

8rr B

5 I

L JE%h PREDICTED LEfK RATES, PM 9

MEASURED VS PREDICTED LEAK RATES d

s ai, c Ee d

E E

E Et!

hr jh=g,x, PREDICTED LEFK RATES, GPM e

s ICalculation Of SLB Q vsVoltage a, c

=i

+

Crack

- SLB SLR Voltage Length Laak Rate. Leak Rate.

(V)

(in)

(gpm)

- (lph)

, a, c-0.1 0.25 0.5 -

- 0.7 2

1 2

3 3.5 5

7 s-10 15 O

p S

e E

t 4

l

SLB Leak Rote Vs Bobbin Voltage 3/4X0.043' Tubing o c :.

r q

)

E 7

b 3

m I

t L

1

. 9.80CR.C.EN3 Bobbin voitage i

4 i

.1

Y SLB Leak Rate Vs Bobbin Voltoge-3/4X0.043"-Tubing o,6, c -

J:

11 2

2e t

W 9.

CP.EN3 Bobbin Voltage i

i.

e-

\\

SLB Leak Rote Vs Bobbin Voltage 3/4X0.043" Tubing

.,,3, c x

E 7

b 9

.5 S

m L

9.BGCLCl.EN3 Bobbin Voltage e

i

9 SLB Leak Rote Vs Bobbin Voltage p

3/4X0.043' Tubing-

- o, b, c i

l3 1

+

3I m

u 9.BGCLC4.ENG Bobbin ~VoItage S

W i

SLB Leak Rote Vs Bobbin Voltoge r

3/4X0.043" Tubing

,,, 3, c E

Y%

$el l

f w

l l

L l-9_BGCLC2.EN3 Bobbin Voltage l

L 7.

l w

L

(*

SLB Leak Rote Vs Bobbin Vol tage 3/4XO.043' Tubing

- _. o, 3, c.

r t

SLBGCLC3.EN3 Bobbin voitage t7 '.

3

-