ML20101L098

From kanterella
Jump to navigation Jump to search
Startup Test Rept Vermont Yankee Cycle 16
ML20101L098
Person / Time
Site: Vermont Yankee File:NorthStar Vermont Yankee icon.png
Issue date: 07/01/1992
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20101L094 List:
References
NUDOCS 9207060255
Download: ML20101L098 (13)


Text

_. _ _ _ _ _ _

STARTUP TEST REPORT VERMONT YANKEE CYCLE 16 Introduction Vermont Yankee Cycle 16 initial startup commenced on 19 April 1992.

The refueling and maintenance outage lasted 45.4 days. The core loading for Cycle 16 consists of:

40 DB324B Reinserts loaded in Cycle 14 72 DB326B Reinserts loaded in Cycle 14 60 BP8DVB311-10GZ Reinserts loaded in Cycle 15 64 BP80VB311-11GZ Reinserts loaded in Cycle 15 4 ANFII-3.048-EGZ Reinserted qualification assemblies loaded in Cycle 15 40 BP8DVB311-10GZ Non-irradiated assemblies loaded in C cle 16 j

88 BP8DVB311.lGZ Non-irradiated assemblies loaded in Cycle 16 An as-loaded Cycle 16 core map is included in Figure I.

Details of the Cycle 16 core loading are contained in the Yankee Atomic Electric Company document YAEC-1844, " Vermont Yankee Cycle 16 Core Performance Analysis Report", January 1992.

The final as-loaded core loading was verified correct by Vermont Yankee personnel on 24 March 1992.

Control rod coupling verification was satisf actorily performed for all 89 control rods during control rod f riction testing on 24, 25 and 26 Harch 1992. Control rod scram testing on all 89 rods was performed satisfactorily prior to reaching 30% core thermal pover per the Technical Specifications. The testing was performed on 10 and 14 April 1992.

An in-sequence critical was performed satisfactorily on 19 April 1992.

The cold shutdown margin was verified to be within the Technical Specifications based on data collected during the in-sequence critical.

Startup commenced on 19 April 1992 and full power steady state conditions were reached on 26 April 1992.

Core Verification The final as-loaded core was verified correct on 24 March 1992.

Three separate criteria vore checked:

1.

Proper fuel bundle seating was verified by travercing the core with the refueling grapple raised 1/2" to 3/4" above three randomly selected peripheral bundles.

2.

Proper bundle orientation, channel f astener integrity and upper tie plate cleanliness were verified.

One bundle was improperly oriented by 180 degrees.

The bundle vas reloaded in its proper orientation.

3.

Fioper core loading was verified by checking the serial number of each bundle through the use of an undervater video camera.

The verification was recorded on tape and later independently reviewed and reverified to agrae with the licensed core loading shown it. Figure I.

9207060255 920701 J

PDR ADOCK 05000271 p

PDR

2 Process Computer Data Checks Process Computer data shuffling checks vere completed on 17 April 1992.

These checks included various manual and computer checks of the new data constants.

A check for consistency of the data was also performed by Yankee Atomic Electric Co. (YAEC) and found to be satisfactory.

In-Sequence Critical The in-sequence critical test was perf ormed on 19 April 1992 as part of the reactor startup.

Control rod sequence 16-A-2(1) was used to perform the in-sequence critical test.

Criticality was achieved on the 6th rod in Group 7 (30-35) at notch position 12.

The moderator temperature was 163" T.

The actual critical rod pattern and the YAEC prediction agreed vithin 1% ak/k. Figure II shows the actual, predicted and the 1% ak/k critical rod patterns.

Cold Shutdown Margin Testing The cold shutdown margin calculation was performed using the data collected during the in-sequence critical and information provided in the YAEC " Core Management Report".

The minimum cold shutdown margin required was 0.32% ak/k.

The actual was shown to be 1.675%

sk/k.

Conteol Rod Scram Testing Single rod scram testing of all 89 control rods was performed successfully on 10 and 14 April 1992.

All insertion times vere within the limits defined in the Technical S ecifications, nesults are presented in Table I-A.

In accordance with Technical Specifications Section 4.3.C.2, scram time information for scrams occurring since the transmittal of the previous startup test report are also included.

See Table I-B.

All scram time information was evaluated to insure proper drive performance is being maintained. No degradation of drive performance is noticeable.

Thermal Hydraulic Limit.s and Power Distribution The core maximum f raction of critical power (CHFCP), the core maximum f raction of limiting power density (CHFLPD), the maximum average planar linear heat generation rate ratio to its limit (MAPRAT) and the ratio of CHFLPD to the f raction of rated power (FRP) vere all checked daily during the startup using the process computer. All checks of core thermal limits were vithin the limits specified in the Technical Specifications.

The process computer power distribution was updated three times using the Traversing Incore Probe (TIP) system during the ascent to full power. The results of these opdates and the re ed power case are pre ented in Table II.

Thn Local Power Range Menti, rs (LPP.Hs) vere calibrated once in conjunction with two TIP sets.

The LPRH high and lov trip alarm setpoints were verified correct prior to startup on 15 April 1992.

The TIPS and LPRHs were both functionally tested and found to operate satisfactorily.

~

i 1

i 3

4 f

The process coinputer power distribution update performed on 28 April 1992 (TIP set 1444)

}

vas used as a basis for comparison with en off line calculation performed using the Yankee Atomic Electric Co. nodal computer code SIHULATE-3.

For that power distribution the SIMULATE-3 core average axial power distribution was compared to that calculated by the plant process computers comparisons are shown in Table III. A comparison was also performed between SIMULATE-3 and process computer peak radial powers comparisons are shown in Table IV.

j TIP Reproducibility and TIP Symmetry TIP system reproducibility was checked in conjunction with the power distribution update performed on 28 April 1992. All three TIP system traces were reproducible to vithin 1.6%.

The total TIP uncertainty vas calculated using TIP set 1444 Since the control rod pattern j

vas nearly symmetric, the actual p) ant TIP readings vere used in the calculation, The j

resulting total TIP uncertainty for this case was 1.86%. The results of the TIP uncertainty test as shown in Figure III are vell below the 8.7% acceptance criterion.

I t

i t

a f

i i

i e

9 e

l j

i 6

4 l

i Table I-A l

Control Rod Scram Testing Results Vermont Yankee Beginning of Cycle 16 i

Single Rod Scrams - 10 and 14 April 1992 Haximum 92.01% insertion time (seconds) = 2.850 i

Maximum 87.84% insertion time (seconds) = 2.729 ll Tech. Spec. limit for slovest 90% insertion time (seconds) = 7.000 e

4.51%

25.34%

46.18%

SJ 84%

Hean Time for % insertion Heasured time (seconds) 0.344 0.854 1.373 2.476 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 Slovest 2x2 atrav for % insertion Heasured time (seconds) 0.366 0.896 1.427 2.549 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.848 1

1-i l

l t

I i

l i

l' 7

.--i-;++v4,3,-+--wse'-e.

,,-er'ar-y,w4e.am--,,-vra-pw-

"'4"-'"-"'m-*W-t'9'TV93--

Y"-"T'l-9W-T'5W'-WM?-*-p%

b*

F ff

nv-w--4*wvVW tw wFr*'N fy fTTT'"T'9'Wf9"r"N7""'*'P-*"'T***fVW't"**'r'"--W

_ -. _. _ ____ _~_ _ _ __ _. _ ___ _._._.__.._. __.__ __ __-_._. _ _

4 s

1 5

1 l

Table I-B i

Control Rod Scram Testing Results j

Vermont Yankee Cycle 15 I

e 4

j full Scram - 4 November 1990 1

i Haximum 87.84% insertion time (seconds) = 2.923 Tech. Spec. limit for slovest 90% insertion time (seconds) = 7.000 a

i 4% 25.34% 46.18% 87.84% 2 l Hean Time for % insertion ] Heasured time (seconds) 0.320 0.839 1.372 2.506 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 3 i Elevest - 2x2 atrav for % insertion Heasured time (seconds) 0.363 0.890 1.438 2.641 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.848 1 4 i Full Scram - 13 March 1991 l l Haximum 87.84% insertion time (seconds) = 2.923 4 Tech. Spec. limit for slowest 90% insertion time (seconds) = 7.000 ~ 4 5.11 25 34% 46.18% 87.84% 2 hean Time for % insertion Heasured time (seconds) 0.311 0.819 1.341 2.447 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 i Slovest 2x2 atrav for % insertion Heasured time (seconds) 0.352 0.871 1.383 2.508 j Tech Spec, limit (seconds) 0.379 0.967 1.556 2.848 t-4 i l u --,,c

6 Tallo I-i (cont'd) Contrul Rod Scram Testing Results Vermont Yankee Cycle 15 t Full Scram - 23 April 1991 R Haximum 87.84% insertion time (seconds) - 2.874 Tech. Spec. limit for slowest 90% insertion time (seccads) 7.000 4.51% 25.34% 4.6.18% 87.84% e g P. Hean Time for % insert 12D

4 NSf Measured time (secondri 0.302 J.802 1.317 2.412 f.?"

Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.586 SjQ 91ovest 2x2 arrav for % insertion

  • fjf Measured time (seconds) 0.352 0.838 i.382 2.524 A

Tech. Lpec, limit (seconds) 0.379 0.967 1.556 2.E48 Full Scram - 15 June 1991 Maximum 87.94% insertion time (seconds) = 2.633 Tech. Spec. limit for slowest 90% insertion time (seconds) - 7.000 4.51% 25.34% 46.10% 87.84% ljenD T.mp_fer % insertion casoced time (seconds) 0.291 0.790 1.310 2.435 v Tech. Spec, limit (soco' s' O.3SA 0.912 1.468 2.686 Slovest 2x2 atrav for % inserti_nD Heasured time (seconds) 0.318 0.811 1.352 2.509 Tech. Spec, limit (seconds) 0.379 0.967 1.556 2.848 i

-.-. _ ~ + 7 Table I-B (cont'd) Control Rod Scram Testing Results Vermont Yankee' Cycle 15 i 1 i Single Rod Scrams - 23 November 1991 i 2.696 l Maximum 87.84% insertion time, onds) = Tech. Spec. limit for slovest 90. ~nsertion time (seconds) - 7.000 i 4.51% . 25 34% 46,18% 87.84%- Hean Time for % insertion j Measured time (seconds) 0.324 0.826-1.347 2.459 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 Slovest 2x2 atrav for % insertion i Measured time (seconds) 0.376 0.879 1.399 2.509 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.848 i f Full Scram - 6 March 1992 p Maximum 87.84% insertion time (seconds) = 2.761 i Tech. Spec, limit for slovest 90% insertion tine (seconds) - 7.000 4.51% 2 5. 3[, 46.18% 87.84% Hean Time for % insert (gn haasured time (seconds) 0.328 0.851 1.389 2.510 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 i Slovest 2x2 arrav for % insertion K Heasured time (seconds) 0.353 0.896 1.466 2.609 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.648 l-i i v--


c.,

,r_ --r,ee,,.-g.. ,.,y,r-r.,wm,.,.mp.v.-,- r y %,.m % ,.rm-,y_-,a

.. -.. ~. ---.. i s h 8 Table II l Power Distribution Measurements Vermont Yankee Beginning of Cycle 16 i A l i Date Time % CTP % Flow CHFLPD CEECE MAPRAT 1 l 23 Apr. 92 0755 59.6 50.3 0.566 0.719 0.554 } 23 Apr. 92 1223 58.1 50.2 0.555 0.705 0.542 l 24 Apr. 92 1829 90.5 64.0 0.790 0.798 0.760 j 28 Apr. 92 0931 99.8 97.8 0.937 0.810 0.913-l The Tech. Spec, limit for the three the,

1. limits above 1: less than or equal to 1< 0.

i 1 1 1 4 h 4 i e t 6 i. h i d 4 i I. l i

1 l 9 Table III Comparison of Process Computer and SIMULATE-3 Core Average Axial Fover Distributions Vermont Yankee Beginning of Cycle 16 Process Unde SIMULATE _3 ComputgI 25 0.128 0.146 24 0.267 0.284 23 0.541 0.579 22 0.676 0.714 21 0.761 0.792 20 0.355 0.882 19 0.924 0.945-18 0.969 0.984 17 1.027 1.048 16 1.093 1.113 15 1.135 1.146 14 1.159 1.153 13 1.222 1.222 12 1.254 1.246 11 1.260 1.223 10 1.243 1.225 9 1.264 1.259 8 1.290 1.278 7 1.326 1.293 6 1.373 1.372 5 1.403 1.401 4 1.376 1.324 3 1.244 1.195-2 0.949 0.825 1 0.262 0.352.

.. ~ a 10 Table IV Comparison of Ten Highest Relative Radial Powers Vermont Yankee Beginning of Cycle 16_ l Process 4 Location Comnuter SIMULATE l 29-16 1.285 1.306 29-12 1.283 1.281 j 33-16 1.256 1.278-J 31-12 1.248 1.221 i, l 31-10 1.247 1.212 l 27-10 1.240 1.240 29-10 1.239 1.206 i 29-14 1.239 1.243 i 1 27-12 1.236 1.228 I 33-12 1.235 1.223 i a d' 4 r 1 l s. 4 ) i i 2 r

11 Figure I l Cycle 16 Core Map VEDtofff TANEI.! u LYN l LYN LTN t LU LYN ILYN 810I 837 865 1866 538 1778 I 42 LT5 8LTVi LTV LTV ILTV LTV iLTV iLYN 801 602l 614 590 159 15 1603 1802, j 40 LT81 LYN LYNtLTV LTV 1 TJ LTV iLTV TJ lLTV LTV 8 LYN LU 8 LU 80I d'1 85y gg, 6,,23 4,0,,9 Di l j,7] 10f,41,23 95,Q51 8j 2,1,8,06, LYN LTW LTV LTVI TJ TJi LTV YJ l TJ LTVI TJ TJ l LTV LTV lLTN1 LTN 3g 857 13 674 67011047 10511 642 107911080 64111052 10481 6 75i 8141 85,8 36 LTN!LTN TV I TJ LTYi TJ LTV l1083 LTN l LU TJiLTV YJl LD !J l LTV LTN! LYN TJ j)jl88{, ~t>6(1105 5j[211059 5861 877l87g10841587 10604 643 10561663 8821834 34 LYNgLTV TJ 1E TJ tLYV TJl LTV YJ YJ LTV TJ I6 If [6 IJ~ "lTYt [IN~ 4 7811646 10631 690 10871638 10111 666 256d 1096 667 1092 639l1088 691)1068 6478782 l 32 LYNILTV Yv i YJ LYN] TJ LYNi YJ LYNlLT TJ lLYN YJ LT EETY LTV1 LYN 32316J8, g4,12,5y 86312,575 8,45,,12_57,98,29,,l 8,,30, 2,58,01886, 257,,87,0 2571 6,95, 67!I822 LTVITJ ,,TJ LTV ILYN J,UlLTVITJ 30 LYN TJ LYY TJ fLTV TJ e LTV TJ l TJ LTV TJ LTV I TJ 647110721064l6511774 65011067 1071. 666 258)! 126 25871 57811191259gtj58,8 627 tt384 g LYNI TJ f LYN 1 LYW'TJ l L7:8 q'1283 82611241611 1076 599 24 LTN 'LTV LYVI TJ LTV l TJ LTW 8TJ YJI LTN TJt LTV TJ tLTV LTV I LYN 645 I594 598l1075 610 11123 82511127 78511131 765 1 766 1132178o 1 5951 846 [YN LTV NILTV Y[e5d T[e LTV TJil.d T[1 ~ ~3 LTV I T[ Ld TJ LTV 1 T[ LT'V]M LTV LYb 23 T 769 60, 6181658 1351 654 1139 582 1143 57u 114711148 71 11144 34J 1140 35 1134 639,619 6071 770 1 817l6JO LT3 LTV ANa'l TJ LYN l TJ LYN I TJ LTNI TJ LTN l LT8 TJ lLYN TJ' LTm TJl LYN TJi ANT LTV1 LTN 24 QrA,,11 g4,3 8,y,ly g 8,89,,lg$f y,} ll,,16J 797l798 11641794 11603 89u11561 898 1.521QFA2 6311 818 LYN lLTV 22 LYNI TJ ITN1 TJ LTN TJI LIN YJl LYN TJiANF LTVl LTN AMFI LYNI TJ LYN TJ 79511165 799l LTN 819 632 0FA31 3 899 11157 891 lia 800 1166 796 1142 ("2 1581900 1154 tQFA4 6331 820 8 20 LTN ' LTV LTV(LTV YJ l LTV YJ t vy IJ l LTV TJ l TJ LTV I TJ LTVI TJ TV l TJ LTVILTV LTV i LTb L JJ(,1 608 - -l660 113% 63e 1141;384 11453 572 114911150 573 11146 620 - -.1142 637 11138 6611621 5851.. -.91 772 60 la LTM i LYY LTVI TJ LTV l TJ L" l TJ LYNITJ LYN l LYN TJ lLYN TJ g LTN TJt LTV TJ lLTV LTV4 LYN 847Ig6 6001107 61211125 817 11129 787(1133 7671 768 134 788 11308 823 128 ti131071tl60 5971 848 16 ! LYNI LTVI TJ TJi LTV YJlLTV TJ l LTV TJ O TJ TV I TJ LTVI TJ TVI TJ TJ g LT5 M I.61211,0,6,9 pp,6,83 y8,5112,8,, E 8,,(,,58,,0 yyy2] 5,,jit,1 y?,0,,6,2,,9,12,586 6491 3 *g 107M53 776 I, LTN LTV LTVI TJ LYNITJ LTN TJ LYN l LYN YJ I LTW TJi LD TJ l LTV LTVILYN 16 f,2,31 g g 612573 871 82577 98712581 M12 2582 888 25781 87 74 691 8 641 824 12 LYNI LTV. YJl LYY TJl LTV YJ t LTV TJ l TJ LTV I TJ LTVI TJ TV4 TJ LT*A LYN I .IU ftM. l.Q4jl,,j9J 10,8,21,1Q j,913 668256912J7_0 669,110,,94 0 641 1090 69381066, _6.j784, 10 LYNILTN LTVI TJ LTV I TJ LTVI TJ LYN 1 LTW TJl LTV TJ lLTV TJ e LTV LYNg LYN 835188 % 664l1057 684 (1061C 58811085 8791 88 0861 589 10628685 058i 665 884 836 08 LYN LYN LTV LTV1 TJ TJ 4 LYN TJl YJ TV1TJ YJ l L LTVi LYN LYN i E ,1Q,,)Z3 gJ1,,1049 10533 644 1081 1082 645 11054 10508673 6773 8161860 06 LTNI LYN LYNI LTV LTV1TJ LTVI LTV TJ eLTV LTYl 'TN LYN 1 LYN 8071 841 8SSI 656 62411045 576157710461625 ,65,71856 8444 80A 04 LYN, LT'4 LTN LTVI LTV LTV1 LTVi LT5 803i 6044 6te 5921 593 6171605 804 02 LYN LIN: LYN 1 LYN LINI iTN 779t 839 ' 8671 808 841780 01 03 05 07 09 11 13 15 17 19 21 23 25 21 29 31 32 35 37 39 41 43 g

1. Fin LOCATION (CobrcM LOCATION ret ALL m N4cs:Nu) 43 O LF8"zrNicuzNu locanos (tute morcATu T

3, l G Inx tocAn05 33 31 A sxx tocATIDs 27 j 23 19 11 12 1 3 l 2 6 10 14 18 22 26 30 34 38 42

12 l Figure II Vermont Yankee Beginning of Cycle 16 Critical Rod Configuration Comparison 10 43 48 48 48 48 48 l48 48 48 39 /A /2 3s 48 48 48 48 48 48 48 48 31 lo la 10 2, 48 48 48 4E 47 48 48 48 48 48 48 98 23 la /0 la 19 48 48 48 48 48 48 48 1s 10 10 u .b b kb b b b b 07 f 03 -1% AK/K Predicted Critical Pattern 02 06 10 14 19 22 26 30 34 38 42 07 06 10 14 18 22 26 30 34 38 42 10 l2 43 48 48 48 48 W 48 48 48 as 48 18 la /2 as 48 48 48 48 4% 48 48 48 31 10 ll /0 12 48 Il 27 48 48 48 48 48 48 48 48 48 48 48 48 23 48 la 48 /A /0 /2 1, 48 48 48 48 48 48 48 48 1s Il 22 lo 10 n b b b k b 07 hb !k 03 +1% AK/X Actual Critical Pattern Note: A blank box denotes rod position 00. i

13 Figure III Vermont ankee-Total TIP Uncertainty J i 6 .;3 ----------------------- 39 ------------- i 35 -------- i 31 -------- 16 27 --- I 14 10 14 23 --- 19 --- t l 16 15 -------- 11 -------- l l l 07 ------------- 03 02 06 10 14 18 22 26 30 34 38 42 l l -TIP: 1444 Date: 28 April, 1992 CTP: 99.8% Core Flow: 97.8% Uncertainty: 1.86% .,}}