ML20100Q623
ML20100Q623 | |
Person / Time | |
---|---|
Site: | San Onofre |
Issue date: | 10/12/1993 |
From: | Elakily N SOUTHERN CALIFORNIA EDISON CO. |
To: | |
Shared Package | |
ML20100Q610 | List: |
References | |
M-DSC-269, M-DSC-269-R, M-DSC-269-R00, NUDOCS 9603120063 | |
Download: ML20100Q623 (279) | |
Text
ENCLOSURE 2 UNIT 3 PPMUT UPGRADE CALCULATION M-DSC-269 9603120063 960307 PDR ADOCK 05000361 P pan
s.e c.mm Ee n com,.ny "C *- cCN Nos p-565 mGE rOrAL No. O,
- M -D5C- 2.6 9 Paeuw ceN m. 1 l PACES 2. 7'7 l
INTERIM CALCULATION CHANGE NOTICE (ICCNy SASE CALC. REY.
O UNIT 3
CCN CONVERSON :
CCN m CCN. ! CALC. REV.
E CALCuLATom SveaEcT :
4GGE- SONGS-3 f' AIM &M PL/HJT Mhka-o P 57026GE
'. C NoEx ENGhEERNG SYSTEM NUMBER /PRadARY STATp SYSTEM oESICHATOR OCLASS -
- t,2.o "!r/ E G n il 7 Esenng indes a Compsone CONTROLLED PROGRAM OR oATA8ASE PROGRAuCATABASE NAME (S) VERSIONRELEASE NO.(S)
W ACCORoANCE WITH NES4L 41-51 ALSO. USTEo BELOW
- 1. BRIEF DESCRIPTION OF ICCN / CCN: OPaOcaAu OoATAaASE 7% purpose of +his zcc u i s &C, void z cc u f- A.ge, c d rep 6 slwet3 2. Ek Tyh2.37 by cei-tc c fud sht.s 1 O"5L 2. 7S .co roc /mde. eA4 rera /Fs op 4 tut, ,:.L&,3,wj cud [rociure. mccke. nets ctac4 k jses. pe r for w c/. in mp:,0fe, bo
& res L4 lb.s of 4sc yct cliog m p h e'c e x cou iM b Uvi o[ h/a_
ban k .puhr~i h, cp c, en d .to c e p u 4 c u _ 9 ,;jf CandlYl'O ni .
Q c. Re.pe yt
~
umm.G oOCuuEur(oepw. rCN. OrueR) 23 3 l> 74-2. 0 7 5 H s 3R r- > v-9 R w 0
- 2. OTHER AFFECTED DOCUMENTS (CHECK AS APPLICABLE FOR CCN ONLY):
O vES O NO OTNEa ArrEcTEo oOCuuE~TS exist ANo AREioENTiriEo ON ATTACsEo rOau n -sos.
1 APPROVAL. oisciPUNE/ ESC: MEr Oe) / C(v /L. t'O Mbil. M 6L-/$l4.1LY [NME 517 f >-.
ORKilNATOR (Prre name/vuhal) PAX GS( ) / OTNER (Sq) we)
T U L) C FD b f T fl IRE (Prre mal) PAX MM1 ' ~
[ .
NES4L ou (Sp)
/// S $ M
'oATE
/
- 4. ASSIGNED SUPPLEMENT ALPHA DE CONVERSION TO CCN oATE
~~ ~
/L(bh ~
/
SCE COMS llMMN SCE 251221 REY. 941 0 --
f CALCULATION CROSS-INDEX .ccu no., g_sg5 PRELIM. CCN NO. PAGE b OF 2 7'f
~ ~
C;;lculation No. Sheet No. --
CCN No CN Calc. rev. INPUTS OUTPUTS 0 ** 8"
putInterface number and These intorfacing calculations and for cae>
Resofts and conclusions of the subject responsible documents provide input to the subject DOC"'"*"' Identify output interfaco calculation are used in these interfacing supervisor calculation, and it revised may require calc / document CCN. DCN.
calculations and/or documents-b2als and revision of the subject calculation. [ 7 TCN/Rev. or FIDCN cate ............................................ ............................................
Cale/ Document No. Rev.No. Calc / Document No. Rev. No. YES/NO DcP 283 67't2. O 7 SM 0 CO23 'to7 *3-9 7 o Ye c zpeat g-1 W\ M _ i2 03 -4 74 3 A O CDe:3 " OP'+M "5
\s M -12 o s - 478 - 3 A O 40' % h . % k.)
S - lLHs-56 recu c I PSL T D 'ID IS S Yes ZDcM c-6 g - 1415- O L-I recN c-I S~1416 07 Tec N C - l 902 3 2t a v. r- 4 / 2. Er s 2 o e fg 92 S Il-lIG- 3 7 ' rec N c- g 9023 'tO7 3 69 I IDchl .9- I
%\ P- Aso- t-12 rec ~ c-2 Yes a 2o2 3 4n A s 3 Yes roca s-z 807 TCcN c-1 SCE 25424 REV. 9/91 8""*d*******
j NES&L DEPARTMENT CALCULATION SHEET =:C. 5'5 ,A 3 o, 2 y Project or DCP/M4P CCN CONVERSION f SONGS 3 Calc No. M-DSC-269 CCN NO. CCN - [
subject See Title Sheet 33,,g yo, .3
! REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE i DATE q NA81L M. EL-AKILY 10/12/93 JUN GAOR f,/,
s 10/12/93 1
i i
' J TABLE OF CONTENTS l
Sheet Number CALCULATION TITLE SHEET I
. . . . . . . ......... 1 '
I CALCULATION CROSS REFERENCE . . . . . ......... 2 TABLE OF CONTENTS . .................. 3 ;
1 PURPOSE ........................ 4 j
2 RESULTS/ CONCLUSIONS .................. 7 s !
3 ASSUMPTIONS . . .................... 10 %
4 DESIGN INPUT . . . . . . . . . . . . . . . . . . . . . . 11 5 METHODOLOGY . . .................... 17 l
6 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . 27 k 4
7 NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . 29 8 CALCULATIONS . . . . . ... . . . . . . . . . . . . . . . 31 ,
9 APPENDICES l APPENDIX A - PPMS DESIGN REPORT . . . . . . . . . . . 84 i APPENDIX B - PPMS TANK STICK MODEL ......... 179 i APPENDIX C - ANSYS INPUT FILES . . ......... 194 I
APPENDIX D - REFERENCE DOCUMENTS . ......... 204 APPENDIX E - STATISTICAL ANALYSIS OF RADIOGRAPHIC EXAMINATION DATA . . . . . . . . . . . . 230 APPENDIX F - FRACTURE MECHANICS EVALUATION . . . . . 249 i
SCE 26-426 NEW 4/90
i NES&L DEPARTMENT i CALCULATION SHEET =~nCf" m E er ,,2 7y i Pr2 ject or DCP/MMP CCN CONVERSION / j
- SONGS 3 Calc No. M-DSC-269 cCN No. CCN - [ ,
subject See Title Sheet sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUN GAOR 2f, 10/12/93
- 1. PURPOSE / BACKGROUND
- The existing Component Cooling Water (CCW) system at SONGS 2 and 3 consists of two redundant trains (critical loops), and one non-critical loop which can be aligned to either one of the critical loops. The make-up water to the CCW surge tank is supplied by the seismically-qualified mobile fire tankers to ensure
- adequate water supply for a 7-day period, using the temporary connection, as required by NRC Q&R 010.49. This arrangement, however, is very labor intensive to operate, and the tankers may require several refills to perform their function ,
for the desired 7-day time period.
4 I
i To eliminate the reliance of the CCW system on the fire tankers for the make-up !
water, the primary make-up water system will be integrated into the CCW system to l provide the necessary supply of make-up water. The make-up system will be modified to supply water to the CCW critical loops following loss of normal make-up from the nuclear service water system. It will provide the necessary water inventory to compensate for the maximum allowable leak from both CCW critical l loops for a period of seven days. {
k The make-up system of each unit includes a Primary Plant Make-Up Storage (PPMS) tank, T-056 for Unit 2 and T-055 for Unit 3. These tanks were originally designed to API-620, 5th. Edition, and constructed and tested to API-650, 5th.
Edition; and were classified as Seismic Class II components. Both tanks will be upgraded to Quality Class II, Seismic Category I to establish ASME Code,Section III, Class 3 equivalency without ASME stamping. This tank upgrade is necessary in order to qualify as an integral part of the CCW system, as explained above.
Comparison between the API 650 Code, which was the basis for the original tank construction and testing, and the ASME Code was made to identify and reconcile the differences between the requirements of the two codes. These differences will be resolved, as part of the tank upgrade analysis. !
The purpose of this calculation is to document the analyses, and the Code reconciliation performed to upgrade SONGS 3 PPMS tank to seismic class I, and to qualify these tanks per ASME Code,Section III, Class 3 to meet the requirements described above. This calculation includes the analyses and ASME Code .
reconciliation performed to achieve the desired tank upgrade.
SCE 26 426 NEW 4/90
_ J
NES&L DEPARTMENT CALCULATION SHEET gr1;g-S5 ,A. 5 0, n r CCM CONVERSION Prsject or DCP/MMP SONGS 3 Calc No, M-DSC-269 CCN NO. CCN -
subject See Title Sheet Sheet No. b PEV ORIGINATCH DATE IRE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL-AXILY 10/12/93 JUN GAOR ).h , 10/12/93 Additional supporting calculations are provided in section 8. The design calculation performed by Structural Integrity Associates is provided in Appendix A. Appendix B, provides the development of the tank shell stick model. ANSYS input files are provided in Appendix C; and in Appendix 0 some reference documents are compiled. The statistical analysis for the radiographic sampling results are provided in Appendix E. Appendix F provides the results of the fracture mechanics evaluation made for a bounding size defect.
ICCN F-565 is issued to incorporate comments made by Quality Assurance (QA).
These comments have minor impact on the results, and do not impact the previous conclusions.
This analysis is for SONGS Unit-3 only.
SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET = n ds'e'. . 6 oa n CCN CONVER5!0N /
Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCh ho. CCN - /
subject See Title Sheet b sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8!L M. EL-AKILY 10/12/93 JUN GAOR [.f , 10/12/93 l
- 2. RESULTS/ CONCLUSIONS
- 1. For the existing tanks to meet the seismic loads and Generic Implementation Procedure (GIP) it is recommer.ded that each tank be reinforced by 36 vertical stringers and 34 additicnal anchor bolts. Details can be found in Appendix A and Reference 1 (a copy is attached in Appendix D).
l
- 2. Anchor bolt chairs are to be replaced by a new ring-type chairs. Details can be found in Appendix A, and Reference 1 (a copy is attached in Appendix D). I
- 3. The water inside the tank is expected to slosh against the roof. However, the roof was shown to be capable of withstanding the sloshing loads during a DBE seismic event.
- 4. A 1/4" thick reinforcing pad is to be added to the man hole of each tank.
Details are given in Appendix A, and Reference 1 (a copy is attached in Appendix D).
- 5. Reinforcing pads are to be added to some nozzles so that local stresses in the shell do not exceed their allowables. See Section 8 for a list of the nozzles requiring reinforcilig pads.
- 6. Some anchor bolts may be moved radially out a distance up to 1 5/16" to avoid interference witn the rebars in the concrete base without exceeding any of the allowable stress limits. Similarly, anchor bolt chairs may be moved up to 4" in the circumferential direction from their nominal position to avoid interference with tank attachments.
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =ndeu , m 7 o e 7 100, and do not have flexibility guidance on thrust loadings).
Based on the data available, only the translational load (radial), in-plane moment load and out-plane moment load cause significant tank shell deformations.
- 5. Stresses due to dead weight of the tank shell are not included in the local stress check at the nozzle locations. Per Appendix A, the combined weight of the tank roof and the cylindrical shell is 53,077 lb. The corresponding compressive stress at the base of the cylindrical shell is only 113 psi, which is considerably smaller than the other stress components. ,
l l
l SCE 26-426 NEW 4/90 j
NES&L DEPARTMENT CALCULATION SHEET gr,:M/N;.= , AC , , , ,, z 7,7 CCN CCNVER$10N Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. CCN -
subject See Title Sheet sheet No. I!
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR
] DATE IRE DATE NABIL M. EL-AXILY 10/12/93 JUN GAOR ff, 10/12/93
- 4. DESIGN INPUT i
4.1 Tank Description and Geometry The Primary Plant Make-Up Storage Tank (PPMS) is a 40 ft inside diameter x 34 ft high atmospheric tank with capacity of 300,000 gallons (Reference 25). The tank
, is made up of stainless steel, SA 240-304, plates; and is anchored to the foundation by 36 equally-spaced anchor bolts. The anchor bolt chair material is' A-36 (Reference 24). A more detailed description of the tank and the anchor bolt assemblies can be found in Appendix A of this calculation.
Figure 4.1 shows the main dimensions of the PPMS tank. It shows the tank diameter, height, and plate wall thickness of the bottom, wall, and roof (Reference 25).
1 l
l 1
i SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::",;nfro. .., u o, 2 m Project or DCP/MMP SONGS 3 cAic wo. M.0SC-269 c!n n'o7'ccd "- [
subject See Tit 1e Sheet Sheet No. Ib REV ORIGINATOR DATE IRE DATE REV ORIGINATOR OATE IRE DATE NASIL M. EL*AKILY 10/12/93 JUN GAOR 7 4, 10/12/93 4
i /
r A j
. //
40 f
3/
2 ,
Z)t. s g L '
Y l
s T 4 'l M b
- 1/9 h ~ '
q { ,,
' .--+. I%
I s
y s 'lI6
+ % / e.-
I $
t k
u i p f
Figure 4.1 Main'0imensions of the PPMS tank l
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET gr,:oih = ,A E , , C , 2 7 <7 Project or DCP/ HHP CCN CONVERSION /
SONGS 3 Calc No. M-OSC-269 CCN NO. CCN - l subject See Title Sheet Sheet No. I5 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR [f, 10/12/93 4.2 Material Properties Tank Shell Material: Stainless Steel, SA 240-304 (Reference 25)
The following material properties of SA 240-304, at 120* FW , were used in the analysis (Reference 2):
Young's modulus (E) = 28.0 x 108 psi, Poisson's ratio (v) = 0.3 Allowable stress intensity (5,) = 20,000 psi The anchor bolt chair material: A-36' (Reference 24)
The following material properties of A-36, at 110*F used for external members in the design report, Appendix A, were used in the analysis:
Yield stress (f y) = 35.68 ksi (Reference 2)
Allowable stress (S) = 12.6 ksi The allowable stress above is at 120*F (see Note (1) below).
l i
Note (1): The actual design temperature, per FCN F-7519M for P&ID number 40133, l is 104 F. Therefore, the use of 120*F as reference temperature for material properties is conservative.
SCE 26-426 NEW 4/90 l
NES&L DEPARTMENT CALCULATlON SHEET ::::,;M4;5"
. ,A,E fer ,,2 7<7 CON CONVER$!0N Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 ccN No. CCN -
subject See Title Sheet Sheet No. [h REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA81L M. EL-AXILY 10/12/93 JUN GAOR f, 10/12/93 I
4.3 Anchor Bolt Assemblies Figure 4.2 shows the main dimensions of a typical anchor bolt assembly. Two different bolt sizes exist in the tank after modification:
- 1. 1.5" bolts (36 existing anchor bolts),
- 2. 2" bolts (34 new anchor bolts).
Also, a ring will be welded to the outside edge of the bottom plate as shown in l Figure 4.2. Holes for anchor bolts will be drilled in the ring (15/8" for the existing bolts, and 2 1/8" for the new bolts).
4.4 Reinforcino Bars Per Reference 4, the concrete base is reinforced by #18' size reinforcing bars (rebars). These rebars are 2.257" in diameter; and are separated by 16" center-to-center distance.
4.5 Not used.
SCE 26-426 NEW 4/90
NES&L DEPARTMENT
- CALCULATION SHEET
- : r s t,;. * ,Acor o, rf 9 A
Project or DCP/M(P SONGS 3 Calc No.
CCN CONYCRSION [
M-DSC-269 CCN No. CCN -
[
subject See Title Sheet sheet No. l i REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE
! NA81L M. EL AKILY 10/12/93 JUW.GAOR g , 10/12/93 l
2
- d' " ' 7 7 5
2l,3 - 1 I I
- s biffemr- dj g Aacaon.
e ot.-r A k
+ l ho, k
-T. l 9
wa ll m
31sse b ,
t- l 4
W m_ sbit -
Nr. g
/ w l I /
\. , A U V k -
, , a' '.
s', n -
~\+
$s
) a / 4 /3 .
h (p
'?)R5 C g yfk '-
~
/ Y l# #
' guuh hobbm
rad.
2.4 8 '/tb . __
Figure 4.2 Modified Anchor Bolt Assembly SCE 26-426 NEW 4/90 1
I
NES&L DEPARTMENT CALCULATION SHEET =nnt" ,Am u e,2 n Project or DCP/MHP SONGS 3 CCN CONV(R$!CN /
Calc No. M-OSC-269 CCN No. CCN - f subject See Title Sheet Sheet No. fb REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN GAOR [,{ , 10/12/93 4.6 Nozzle and Pipino Data The nozzle loads evaluated are given in data sheets, attached in Appendix 0, which were extracted from various calculations as noted in the nozzle load data sheets.
Per References 23 and 24, the following piping is attached to the PPMS tank:
4" Sch. 40S SA-312 TP304 0 elev. 31'-0" 3" Sch. 40S SA-312 TP304 0 elev. 10'-7" 2-1/2" Sch. 40S SA-312 TP304 0 elev. 31'-0" 2" Sch. 80S SA-312 TP304 0 elev. 31'-0" (two places) 1" Sch. 80S SA-312 TP304 0 elev. 16'-0" 4.7 Out-of-Roundness Measurements Field tests were conducted on both PPMS tank, T-055 and T-056, to measure the diameter at different angles. These measurements were taken at two elevations i for each tank. Results of the survey are documented in Reference 26, and a copy is attached in Appendix 0 of this calculation.
1 l
i l
l
~~
l SCE 2646 NEW 4/90 l
l NES&L DEPARTMENT CALCULATION SHEET =~oiff" ,,e m 0, m CCM CONVER$10N /
Project or DCP/ HHP SONGS 3 Calc No. M-DSC-269 CCN ho. CCN - / j Subject See Title Sheet /7 j Sheet No.
\
REV ORIGINATOR DATE IRE f DATE REV ORIGINATOR CATE IRE DATE l NABIL M. EL-AKILY 10/12/93 10/12/93 JUN GAOR 7{
l
- 5. METHODOLOGY The tank design report was prepared by Structural Integrity Associates, Inc. !
This report is included, in its entirety, in Appendix A of this calculation. The i methodology of the analysis is based on " Generic Implementation Procedure (GIP) l for Seismic Verification of Nuclear Plant Equipment," Reference 5; and ASME Boiler and Pressure Vessel Code, Reference 2. Details of the tank design l methodology can be found in Section 5 of Appendix A.
I The methodology of developing the tank stick model is included in Appendix B of this calculation. This stick model was used in the analysis of the piping attached to the PPMS tanks.
1 i
In addition to the above analyses, this calculation comprises the following i supporting analyses:
1
- 1. Angular shear stress distribution in the anchor bolts,
- 2. Bolt location adjustment due to the rebars,
- 3. Calculation of translational and rotational nozzle stiffness, !
- 4. Local stress check,
- 5. Out-of-roundness check,
- 6. Statistical analysis of tank examination data. The methodology of this analysis can be found in Appendix E, and
- 7. Fracture mechanics evalaution. The methodology of this evaluation can be found in Appendix E.
l
~ The methodologies used in these analyses are summarized in the following subsections (Subsections 5.1 through 5.5).
1 i
l SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET = u" ,A , , s or m CCN CONV,R$1CN /
Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. CCN - /
subject See Title Sheet SheetNo.IS REV ORIGINATOR DATE IRE DATE REV CRIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN GAOR k 10/12/93 5.1 Anaular Distribution of Shear Load in the Anchor Bolts A tank model.was generated using the finite element program ANSYS. The model is made up of ANSYS element type STIF63, which is an elastic quadrilateral shell element (Reference 3). This element type has six degrees of freedom at each corner node: translations in the x, y and z directions, and rotations about the x, y and z axes. The element has stress stiffening and large deflection capabilities. It is also capable of modeling plates on elastic foundations.
This feature was utilized to model the bottom plates.
Figure 5.1 shows a compute- ,.ot of the finite element model used in the analysis. The model dimensions and material properties are based on the tank data summarized in Section 4. Figure 5.1 also shows the locations of the anchor bolts.
Two model, with different loading conditions, were used:
- 1. In the first model, the horizontal seismic load is represented by a ;
concentrated horizontal force, of 106 lb, applied near the top of the i shell in the x-direction, as shown by Figure 5.2a. l
- 2. In the second model, the horizontal seismic load is represented by a distributed horizontal load, as shown by Figure 5.2b. A force of 1000 lb, acting in the x-direction, was applied at each node of the tank shell above the bottom.
In both models, all displacement components were constrained at the anchor bolt l locations.
Results of the analysis were obtained in the form of horizontal (shear) reaction forces, and vertical (pull) reaction forces at all anchor bolt locations. These j forces were normalized and plotted versus the angle (0) measured from the '
positive x-directions, as shown by Figure 5.1.
l l
SCE 26-426 NEW 4/90 J
4 1
NES&L DEPARTMENT CALCULATION SHEET =:,:M4;." .A , f 7 ,, z 7 <7
)
Project or DCP/MMP SONGS 3 cale No. M-0SC-269 !cN cIc"cY. [ l Subject See Title Sheet !
Sheet No, REV ORIGINATOR DATE IRE '
DATE REV ORIGINATOR DATE IRE DATE NA81L M. EL AKILY 10/12/93 JUNGAOR[*[. 10/12/93 i
i AZ I
I J -
\-
s ..y N
g-
. - =
6/'" i\,\ s e /X- /, . .xs~
'l h k , / ,; $ , ,
, \\ ', x s - s \\ .
's s 'l
,l l
y, )
', \ '
K9
& = 18 0 L.')' l \
. 4 . 9=0,
-a.
+, /
. Y.*
1 Anekor B S t.oea t i,onc l
Figure 5.1 Computer Plot of the Tank Finite Element Model SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATlON SHEET =:ai ta'"
C .
,,,E zo ,,2 7 9
' CCN CONVER$10N Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CcN No. ccN -
Subject See Title Sheet Sheet No. 20 REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL AXILY 10/12/93 JUN GAOR Q , 10/12/93 l = $o 0 0,0 0 0 Ib
</in a / / / / /u / i i < < a ,i///
Figure 5.2a Concentrated Force Near the Top of the Tank
- ~
r r
- + ,. + +
+ .-o. .-
e- f = '
00 0 lb a> en- -e-
- em, & o- 5 ff / / / / A f / / // //////S ( i. I Figure 5.2'] Distributed Force Acting on the Shell of the Tank SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =~,Ma. m .A c , ,, m Project or DCP/N4P SONGS 3 Calc No.
CCN C0hvER$10N /
M-OSC-269 CCN No. CCN -
[
subject See Title Sheet sheet no. 2.)
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN CAOR k . 10/12/93 l
5.2 Effect of Relocation of Some Anchor Bolts The nominal bolt circle diameter for the new bolts is 40'-8" per Appendix A of this calculation, which corresponds to eccentricity (e) of 3.6875". However, to avoid interference with the rebars, some of the new anchor bolts may have to be moved radially outward. The effect of increasing the eccentricity of the anchor bolts is evaluated in this subsection. This evaluation is based on the !
methodology of the design report (Appendix A of this calculation). This methodology consists of several analysis steps, and only those steps impacted by the increased eccentricity are re-analyzed in this appendix, namely:
- 1. Tank Shell Stress Step 9, Section 9 of Appendix A is impacted. The allowable tensile bolt stress to compute the overturning moment (F,) is calculated based on the re-calculated tank shell stress. The new tank shell stress is obtained using the equations given in Appendix A with:
a) Modified eccentricity representing the relocated bolts, b) Modified chair height to account for the differences in geometry from the geometry used in Appendix A.
- 2. Vertical Stiffener Plate Step 10, Section 9 of Appendix A is impacted. The adequacy of the stiffener plates is evaluated using plate size (k) from the modified anchor bolt assembly.
- 3. Chair-to-Tank Weld Step 11, Section 9 of Appendix A is impacted. Modified weld stress (W, lb/in) is calculated based on the eccentricity of the relocated anchor bolts, and compared with the allowable specified by Reference 2.
- 4. Bucklina Bendina Moment Capacity Step 17, Section 9 of Appendix A is impacted. A modified value of the bending moment capacity (Mc ,,) is calculated based on the re-calculated value of F,.
SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =u:;." ,Ax u c, m Prrject or DCP/MHP CCN C0hvERSION [
SONGS 3 calc No. M-OSC-269 CCN NO. CCN - ,1 subject See Title Sheet sheet No. 22 REV ORIGINATOR DATE IRE DATE REV CRIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUNGAORf.f, 10/12/93 Mathematical formulas used in the above steps can be found in the tank design !
report (Appendix A of this calculation), or Reference 2. I 1
Finally, methodology of Reference 7 (and Reference 8) was used to evaluate the l added bottom ring. This ring, which is not included in the design report, is !
added for better constructibility of the modified anchor bolt chairs. The methodology of these two references can be summarized as follows:
- 1. Tearout Failure A tearout stress check is performed to calculate the shear stress on the area shown in Figure 5.3a. The allowable shear stress is conservatively taken equal to 13 ksi per Reference 2 (Subsection ND-3852.6).
- 2. Pure Tension Ruoture This failure mode is illustrated in Figure 5.3b. The tensile stress in l the plate should not exceed the allowable stress (S=12.6 ksi per Reference ,
2). The use of this allowable is conservative since it is being used to l evaluate Level D loading.
- 3. Failure by Crushina This failure mode is illustrated in Figure 5.3c. The stress acting on the projected area should not exceed the yield stress (f,).
ECE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::;og;.= ,,,E u ,, m CCN CONVER$10N Project or DCP/704P SONGS 3 Calc No. M-OSC-269 CCN No. CCN -
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGlWATOR DATE IRE DATE hAall M. EL ArlLY 10/12/93 JUN GAOR [ g 10/12/93 Il bflf
-175" ["* v.75" J boL
(,f
\
\ -"
b r, e 276 F4 1 bowk ' * '
iaek _.-
well we il l t r_ - -
l
- si \
+ 2 /'g + 2. /
'g e l I A .
ho hhont 1 I
_^_ U '
ri n3 j j
]
Figure 5.3a Tearout Failure Figure 5.3b Tensile Failure Sll4 '
w M-irM g
f I tho o.k m Yp r -
So Ekm We // Yu V
4 Figure 5.3c Failure by Crushing SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::,:Nt0. m ,Ax .u 0, z y <i CCN CONVER$10N Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 cCN h0. CCN -
subject See Title Sheet sheet No. N REV CRIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUN GAOR [.6 , 10/12/93 5.3 Nozzle Stiffness Evaluation The nozzle stiffness values are approximated using the methodology and formulas in WRC Bulletin 297 (Reference 14).
Due to the narrow range of parameters given in the bulletin, interpolations and estimations will be used as appropriate. The magnitude of nozzle stiffness obtained by this process give a realistic translational and rotational end reactions at the nozzle-shell connections and therefore reasonable piping design analysis.
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :: n fa m. ,A,E uo,2 7<7 Project or DCP/NMP SONGS 3 calc No.
CCN CONVER$10N /
. M-DSC-269 CCN No. CCN - f.
subject See Title Sheet sheet No. 2 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA81L M. EL AKILY 10/12/93 JUN CAoR f.(,.10/12/93 5.4 Local Stress Check The local stresses were calculated using computer program ME101LS (Reference 12).
The maximum local stress intensities calculated are combined with the pressure and seismic stresses of the tank. The combined stresses are then compared against the ASME code allowables (Reference 2). It should be noted that the ;
stresses due to the dead weight of the tank shell have been ignored in the local l stress calculation sir.ce they are much smaller than the other stress components, !
- as shown in Section 3.
DBE primary moment loads at the tank shell are used to evaluate primary stresses under Design conditions and will give conservative results.
I SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET g r n f;;. " ,A3, 2 ,c, z 7 7 CCN CONVERSION f Project or DCP/ HHP SONGS 3 Calc No. M-DSC-269 Cch ho. CCN - [
subject See Title Sheet sheet No, b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL AXILY 10/12/93 JUN GAOR , 10/12/93 i
5.5 Out-of-Roundness Reauirements Per reference 2, Subsection ND-4224, the tank must meet the out of roundness requirement outlined in that subsection. This can be summarized as follows:
- 1. Step 1 Calculate D ,,/100, where D,,, is the average diameter of the tank in inches.
- 2. Step 2 Based on field measurements, calculate the maximum diametral out-of-roundness for each tank.
The PPMS tanks meet the Code requirements if the maximum measured out-of-roundness is less than the amount calculated in step 1.
Note:
It should be noted that all calculations were carried out by hand or by verified computer programs; and the calculation capability of the word processing program was never used.
SCE 26-426 NEW 4/90
l NES&L DEPARTMENT CALCULATION SHEET =",:og;.m ,m o, m CCN CONVER$10N /
Project or DCP/MP SONGS 3 Cale No. M-DSC-269 Ccx NO. CCN - [
subject See Title Sheet sheet No. 2 REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE I NA81L M. EL-AKILY 10/12/93 JUN CAOR [ f , 10/12/93 l
l
- 6. REFERENCES l 1. IDCN S-2 to drawing No. S023-407-3-61, Rev. 2, IDCN S-2 to drawing No. S023-407-3-63, Rev. 3 and IDCN S-1 to drawing No. S023-407-3-64, Rev. 1.
- 2. ASME Boiler and Pressure Vessel Code,Section III, Division 1,1989, no addenda.
- 3. ANSYS User's Manual, Revision 4.4, Swanson Analysis Systems Inc., May 1, 1989.
- 4. Calculation number C-258-9.10, Revision 0," Primary Plant Make-Up Storage Tank Evaluation."
- 5. " Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment," Revision 8, Corrected 2/14/1992,SQUG.
- 6. ASME Boiler and Pressure Vessel Code,Section II, Division 1, 1989, Material Specifications (Ferrous).
- 7. Shigley, Joseph E.," Mechanical Engineering Design," Third Edition,1977, McGraw-Hill Book Company.
- 8. " Standard Handbook of Machine Design," Editors Shigley, J. E., and Mischke, C. R.,1986, McGraw-Hill Book Company.
- 9. Manual of Steel Construction, Eighth Edition, American Institute of Steel Construction, Inc., 1980.
- 10. " Design of Welded Structures," Omer W. Blodgett, The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio, March 1982.
- 11. Design Bases Document 5023-TR-EQ, Revision 0," Environmental Qualification Topical Report."
- 12. Computer program ME101LS Version M10.
- 13. Design of Piping Systems, MW Kellogg, Revised 2nd Edition.
- 14. Welding Research Council Bulletin 297 September 1987.
NES&L DEPARTMENT CALCULATION SHEET = N4; " . ,A , n o, 2 n CCh CONVERS!CN /
Project or DCP/ HHP SONGS 3 Calc No. M-DSC-269 cch he. ccN - /
subject See Title Sheet Sheet No.
REY CRIGINATOR DATE 1RE DATE REV ORIGINATOR OATE !RE l DATE NA81L M. EL-AKILY 10/12/93 JUN CAOR 10/12/93 , l l
- 16. Calculation number M-1203-476-3A, Revision 0.
l'7. Calculation number M-1203-478-3A, Revision 0.
- 18. Calculation number S-1415-04, Revision 0.
- 19. Calculation number 807, Revision 0.
- 20. Calculation number S-1415-07, Revision 0.
- 21. Calculation number S-1415-37, Revision 0.
- 22. Calculation number S-1415-56, Revision 0, t
- 23. Piping Material Specifications 90004 Rev. 53
- 24. Drawing number 5023-407-3-61-2, 40' dia. x 34' high Primary Plant Make-Up Storage Tank Shell Plate Layout.
- 25. Drawing number S023-407-3-62-3, 40' dia. x 34' high Primary Plant Make-Up Storage Tank Roof and Bottom Layout.
- 26. Telecopy from G. Vechinski to N. El-Akily, dated 10/15/1993. Subj ect: ' As-Built Inside Tank Radius T055. (attached in Appendix D).
Additional references are listed in the reference sections of Appendix A and Appendix 8.
I SCE 26-426 NEW 4/90 s
NES&L DEPARTMENT CALCULATION SHEET ::n/Nc m . ,m m o, m CCN CONVERSION Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN ho. CCN -
subject See Title Sheet sheet No. 29 REV ORIGlWATOR DATE IRE DATE REV ORlGlWATOR DATE IRE DATE NA81L M. EL-AKILY 10/12/93 JUN GAOR [-[. 10/12/93
- 7. NOMENCLATURE -
A = Area, in z C1 = Maximum length of nozzle in circumferential direction, inch C2 = Maximum length of nozzle in longitudinal direction, inch d = Outside diameter of nozzle, in.
Di = Inside diameter, inch.
D, = Outside diameter, inch.
DBE Design Basis Earthquake e = Bolt eccentricity, in E = Modulus of elasticity, psi.
F = Force, lb F3 = Allowable bolt stress, psi F, = Allowable bolt stress after applying a reduction factor, psi f, = Yield stress, psi h = Height, in j = Distance between stiffener plates, in l
k = Stiffener plate width, in L = Height of tank, in. !
M = Overturning moment, in-lb l MA = Resultant moment at the tank shell due to primary loads, ft-lbs MB = Resultant moment at the tank shell due to primary + secondary loads, ft-lbs l MCAP = Overturning moment capacity, in-lb l l
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =:oi4;" .
,AC,3, 0, z 7 7 )
Project or DCP/MMP SONGS 3 CCN CONVER$!CN / l Calc No. M-DSC-269 CCN NO. CCN - [
subject See Title Sheet sheet No. W REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE NA81L M. EL AKILY 10/12/93 JUN GACR , 10/12/93 MC = Circumferential, moment, in-lbs l ML = Longitudinal moment, in-lbs NT = Torsional moment, in-lbs OBE Operating Base Earthquake P = Radial load, lbs R = Radius, inch S = Allowable stress, psi l SHA Shape of nozzle (CIR = circular) t = Thickness, inch VC = Circumferential load, lbs VD = Mean diameter of tank, inch VL = Longitudinal load, lbs .
- VT = Tank wall thickness, inch
^
w = Radial deflection due to P, inch v = Poisson's ratio o = Stress, psi 0 = Angle, degrees 0 = Rotation at centerline of nozzle, radians x = Shear stress, psi See also the nomenclature section in Appendix A.
SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET nanc;." ,Ax3, 0,2 7e CCN CONVERSION f Project or DCP/ HHP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN - [
subject See Title Sheet sheet No. 3 f REV CRIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL AXILY 10/12/93 JUN GAOR
[.[ . 10/12/93
- 8. CALCULATIONS The following analyses are covered in this section:
- 1. Angular shear stress distribution in the anchor bolts,
- 2. Bolt location adjustment due to the rebars,
- 3. Calculation of translational and rotational nozzle stiffness,
- 4. Local stress check, and
- 5. Out-of-roundness check.
SCE 26-426 NEW 4/90
i I
NES&L DEPARTMENT CALCULATION SHEET =M;fu ,A ,y 0, m CCh CONVERSION / l Project or DCP/ HHP SONGS 3 calc No. M-OSC-269 cCa h0. CCN - [ l l
Subject See Title Sheet sheet No. 31 REV ORIGINATOR DATE !RE DATE REV ORIGINATOR CATE IRE DATE NA81L M. EL-AXILY 10/12/93 JUN CAOR I.4 10/12/93 l 1
8.1 Anaular Distribution of Shear Load in the Anchor Bolts Analysis was performed using the general purpose finite element analysis program ANSYS. Description of the model is given in Section 5 of this appendix; and a computer plot of the model is shown by Figure 5.1. Figures 5.2a and 5.2b show the two analyzed cases with concentrated and distributed external loading.
Results of the analysis confirm the validity of the sinusoidal shear force distribution in the angular direction used in the tank design report (Appendix A). Results were obtained for the two models described in Section 5:
- 1. Model with concentrated horizontal shear force,
- 2. Model with distributed horizontal force.
Figures 8.1 and 8.2 show the normalized shear force in the anchor bolts for both models plotted versus the angle (0) measured from the positive x-direction, as shown in Figure 5.1. These two figures also show a true sinusoidal distribution plotted for comparison purposes. Both figures show that the actual distribution matches the true sinusoidal distribution. Figures 8.3 and 8.4 show the corresponding plots for the axial (pull) force distribution plotted along with a true sinusoidal distribution. These figures show that the ac.tual distribution and the true sinusoidal distribution are identical.
Therefore, the sinusoidal load distribution of bolt loads is supported by the analysis results.
SCE 26-426 NEW 4/90
NES&L DEPARTMENT Project or DCP/MIP CALCULATION SHEET ':; , :=tc: * ,, u
, o, zn SONGS 3 c ic ne. H-DSC-269 cca conv,asion (
subject See Title Sheet sheet No. U REW ORIGINATOR DATE ;af DATE REV ORICINATOR DATE IRE 6 ATE NA8tL N. EL-AKILi ll{lO/f] f.C lih y g,g -
._,...-,...m- - - . .--..
g % ~ - - .- _ ._ - -- _ - -
0.9 / \
7 3 - - i - - - - - -
0.8 - - -
k ,
a-o7 __ _ _ _ _ _ ' SlAd mye r
p V' #
os -. ._ -.. n -. _ . - - - - --. .-- --- -- _ _ -. .
'd m 03 - - - ---- -- -- -- - - - - -- - - - - - -
g -
s.2 t' O.4
~ bo h
- - -- - - - - - - - -- -- 00 y g 0.3 (t10 f nt d$52 Z
O.2 , ,
O.I g 11 O
O 20 40- 60 80 100 120 140 I t>0 180 ANGl i (DEGRE LS) ta nol : .nlAn ioro -
sini i tota tion Figure 8.1 Norinalized Bolt Shear Force (Model with concentrated Force)
Project er DcP/mr _
CAlbN dT55 SHEET ::, a L c -"
SONGS 3 Calc No. M-DSC-269
~
,,,w, ,, . . v ccm conyttston subject See Title Sheet cca no.
Sheet No.
REV OltfGINATOR DATE tRE DATE REV ORIGINAT0ft 0 ATE MA8it M. EL-AKILY IRE ll/ld/9J [g, &/ g DATE g,g . .
_7_ - _ _ . . _
- ~ ~~ - [.ar .-
d 8.8 ;
E 0.8 _ ___
~ ~
O --- -
su E7 - -- - - - - _
Sipe, I ' INAVC.
- O6 - - - - . - _ _ '
d
= 05 _ _ .- . _ . . _ _ _ - -
a - - - - - _ __ _
n **
s
~ Nahh z o,g 2
8 "3 ' , _
Gowakzed) 0.2 U
ai
{
8
('( h 0 - _... ._ _ -
o
. ~ '~
O 20 - 40 g)
- - - - - - ~
80 100 120 140 160 180 At4GL i (f)FCRTI S)
Figure 8.2 Normalized Bolt Shear Force (Model with Distributed Force)
Project or DCP/mer CALbbL5T5OESHEET SONGS 7
':::,;a L4 - ,A ,,c 7.,
Calc No. M-DSC-269 cc, con,casio, subject See Title Sheet ccm no. I Sheet No. 35 REV ORIGIIIATOR DATE IRE ' DATE REV ORIGillATOR DATE IRE DATE' NASIL M. EL-ACILY ll/l0/f ? * [(,, , '[p ,
li I
J64 M '
O.9 -
f a
4 0.8 O /
is
', o, /
-..p .. .-
, o e, _.. . ._.. . . _ . - . . .
- /
O o5 ._ .
f -- -
N 3 0.4
$ O.3 --- -
Z -
gy - .
~.
'O.I -
O h I10 1.50 ISO I/0 AtH,11 (ill Gill L S)
O lfoi I i OAli + COSINE 4 UNC linf t Figure 8.3 Normalized Bolt Tensile Force (Model with Concentrated Force)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _a
NEP' *.. DEPARTMENT Project er ocP/Mnr CALCULATION SHEET == ;, <,,: -
5n315 cale No. _ M-DSC-269
,,,,y,,,,.,
sebject cc= comettsson j See Title Sheet CCll NO.
(
Sheet Na. 3 b '
TV CRIGill4 TOR DATE (RE DATE REV ORIGINATOR N4til N. EL-AKILY DATE ltE DATE ll/lo/43 [g, , /[/a[g l
g,g _ _ . _ . . . . . . . . . . . . _ _ _ . . . . . . _ . . .
a l
g y;;;
~
- ; l ---
! l o
0.9
/j 4 08 O
.a O.7
('
-'I y
It O6 - ---- - - - - - - - - - - - --- -
m g$ /
g . -- _ . . , _ .
na _ _ _ . - _
D'
' O.4 E
O 0.3 )
i
, O 'l ,
I -
01 O :.
90 110 130
. 150 110 AtJGi l (lti'GIM E S),
II tat titMAI l/l D I e 6t h e COSitJf I tit 4t ilOt a Figure 8.4 Normalized Bolt Tensile Force (Model with Distributed Force)
NES&L DEPARTMENT CALCULATION SHEET = & ?. " ,A,< 3 7 ,, 2 7 -
Project or DCP/MHP SONGS 3 calc No. M-DSC-269 CCN CONVER$10N CCh NO, CCN -
[
r subject See Title Sheet sheet No. 37 REV ORIGINATOR DATE AE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUN CAOR h (,. 10/12/93 8.2 Effect of Relocation of Some Anchor Bolts As explained in Section 5, the bolt eccentricity (e), for the new anchor bolts, maj be increased to 5" to avoid interference with the reinforcing bars in the tank base. To assess the effect of the increased eccentricity, some steps of the design report (Appendix A) are repeated using the modified value of e (=5") to ensure that stress limits are not exceeded. Simil ely, some anchor bolt chairs may have to be moved, in the circumferential dire:t::n, from their nominal position to avoid interference with tank attachments.
8.2.1 Tank Shell Stress Using the formula given in Appendix A of this calculation, Section 9, Step 9, the tank shell stress (a) was re-calculated based on Reference 5 using the follod r,g input:
a) Eccentricity (e) = 5", and b) Adjusted chair height (h) = 12" instead of the 12.75" used in Appendix A.
This adjustment reflects the modified geometry of the anchor bolt chair shown in Figure 8.6.
All other input is per Appendix A.
It follows that o = 74,062 psi o > f, F =Fe (f y/o) 7
= 33,941 (29,000/74062)
= 13,290 psi Figure 8.5 shows the geometry used ici the design report (Appendix A); and the definition of the height (h), and the eccentricity (e).
SCE 2fA26 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::::,:ouc w ,Ay y o, yy Project or DCP/M4P SONGS 3 "
Calc No. M-DSC-269 ccON CC ". f Subject See Title Sheet Sheet No. 3b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL ACILY 10/12/93 JUN GAOR Q , 10/12/93 Top Plate a c-y"
~
\ t U
stiffener h Tank Vall k
h '
~
Tank Base n
l k (4 tb (a) T31 cal Plan and (b)~ Side View Outside Views Figure 8.5 Anchor Bolt Chair Geomnry Used in the Design Report (Appendix A)
SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET
- Td,M:= ,Acy ,,37, Project or DCP/MMP CCN CONVERSION f SONGS-3 Calc No. M-OSC-269 CCN NO. CCN - [
subject See Titie Sheet Sheet No. 39 REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL AKILY 10/12/93 JUN GAOR f,( , 10/12/93
//
F/gf %
3 7 V+ !
, s. '2. A/4 scw-eere c'eu
' w
, a -
k / g e i
.iY Fe.a v
% ^<i no ll s .
+ qusset
~
$ e - p lo be Si shi&Seme risa
-.a
/
a V
4 n y k A .s - g . g ,- o . , e. ..a . a .s .
~
~Q y g.*'. .s.. o : .a;.
s -
.a s.'. a . . . a...;. s g 3 s.- s 1P4 I
(
_ ko};bom 1 = 2nc W II tou k~
halb a
24 0 '/If," '* b N Hinimeum disNewt, bo C C.
Figure 8.6 Details of the Added Cicumferential Ring SCE 2m NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::rn&* ,Aoooa n Pro. ject or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION /
CCN No. CCN - /
subject See Title Sheet sheet No.
REV ORIGINATOR DATE IRE DATE 1EV ORIGINATOR DATE IRE DATE NABIL M. EL AXILY 10/12/93 JUN GAOR , 10/12/93 8.2.2 Vertical Stiffener Plate The vertical stiffener plates were checked in Appendix A of this calculation, Section 9, Step 10. This check is repeated using the modified plate width (k) of 7.5" .
k/j = 7.5/0.75
= 10 < 95/(I fy/1000 ) = 15.9 Also, P,/(2kj) = 76,368/(2*7.5*0.75)
= 6,788 < 21.000 psi
}
Thus, the vertical stiffener plates meet Reference 5 requirements. (
l 8.2.3 Chair-to-Tank Weld i Per Appendix A, Section 9, Step 11, the chair-to-Tank weld is checked as follows (using e=5"):
2 W, = P, [1/(a+2h)]2 + [e/(ah+0.667h )]2 l where, ,
a (circumferential distance between bolts) = 20.94" h (chair height) = 12" (modified) e (eccentricity) = 5" 1
It follows that: !
W, = 2,024 lb/in < 30,600 t,,/f = 5,409 lb/in Thus, the chair-to-tank weld meets Reference 5 requirements.
I SCE 26-426 NEW 4.90
NES&L DEPARTMENT '
CALCULATION SHEET ="Mch. " ,A4, ,, y.,
Project or DCP/MMP SONGS 3 CCN CONVIRSION f Calc No. M-DSC-269 ccN NO. CCN - f 1
i subject See Title Sheet Sheet No. H REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AK1LY 10/12/93 JUNGAORf,{, 10/12/93 4
l 8.2.4 Bucklina Bendino Moment Capacity Per Appendix A of this calculation, Section 9, Step 17, the parameter M'c ,is calculated as follows: 1 i (oc /F,)(b c/h,) = (10,938/13,290)(12/40.75) i
= 0.23 c' = 0.1 (per Appendix A) where values above are per Appendix A, except for F, and he . From Reference 5, Figure 7-12, M' CAP is giVen by:
M' CAP = 0.2 It follows that, Me ,p = M 'c,,(2F,) (R 2 t,,) (h,/he ) a where, I I
F, = 13,290 psi , (per Section 8.2.1) l M ' e,p = 0.2 a
hc = 12" All other quantities are per Appendix A, Section 9, Step 17. ]
Therefore, 8 8 Me ,p = 4.95 x 10 in-lb > M (M=3.82x10 in-lb) [0. K.] l i
SCE 26426 NEW 4/90 1
l NES&L DEPARTMENT CALCULATION SHEET ::rri&" ,Asu n.
Project or DCP/MHP SONGS 3 Calc Ho. M-DSC-269 CCN CCNY[R$lCN CCN No. CCN -
/ .
I f.
subject See Title Sheet sheet No. N REV ORIGINATOR DATE IRE DATE REV ORIGINATOR l DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR ,
10/12/93 8.2.5 Bottom Plate Shear Evaluation As part of the anchor chair modification, a circular ring is welded to the outside of the bottom plate, as shown by Figure 8.6. Through-hcles, for the anchor bolts, will be drilled in this ring. Per Appendix A of this calculation, part of the shear load is taken by the anchor bolts; and it is assumed that the shear load is sinusoidally distributed around the circumference with a maximum value of 28,620 lb. Stress analysis of the ring, shown below, is based on calculating average stresses on different sections; and comparing these average stresses with material allowables. This methodology is detailed in References 7 and 8.
An edge distance of 2.5", shown by Figure 8.6, is in accordance with Reference 9 for plates with rolled edges (1.25 x bolt diameter). The thickness of the ring i is calculated as follows:
- Assuming a tearout failure mode at the existing anchor bolts, as shown in Figure 5.3a. The average shear stress is given by:
t = F/A, where, F = 28,620 lb, A = 2 x (2.75-2.125/2) x t (see Figure 5.3a, b and c)
= 3.375 t For x = 13,000 psi (per Reference 2, Subsection ND-3852.6),
it follows that:
t = 0.65" let t = 3/4"
- Assuming a tensile mode failure, illustrated in Figure 5.3b, the area (A) subjected to tension is given by:
A = 7.75 x 3/4 - 2.125 x 3/4
= 4.21875 in' SCE 2G426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET i:r n ta " . ,A a, m CCN CONVERSION Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN -
subject See Title Sheet- sheet No. k3 REV ORIGINATOR DATE IRE DATE REV ORIGlNATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR [(, 10/12/93 Therefore, the average tensile stress is given by a = 28,620/4.21875
= 6,784 psi < S (per Section 4, S=12.6 ksi)
Assuming a crushing type failure, illustrated in Figure 5.3c, the minimum bearing area (a) corresponding to the smaller size existing bolts is given by:
A = 1.5 (3/4)
= 1.125 in 2 Therefore, the average stress is given by a = 28,620/1.125
= 25440 psi < f, (f, = 36,000 psi) [0. K .]
SCE 24 426 NEW 4/9a
i CALCb5T5d[dHEET ' ~:itc." ,A , u ,, 2 n Project or DCP/MMP SONGS 3 CCN CONVERSION /
Calc No. M-DSC-269 CCN No. CCN - [ !
subject See Title Sheet t
1 sheet No.
1 REV ORIGINATOR DATE IRE , DATE \
REV ORIGINATOR DATE 1RE DATE I NA8IL M. EL AKILY 10/12/93 JUN GAOR k , 10/12/93 2 ;
j 8.2.6 Wall-to-Bottom Weld i l 4
q
// '
lfl6 l
240" rad ( '
I
// I V+
3, sant wa }\
1 4 A
' 1
_l s - Weld
+ J
! \
4
( bohhom {
Figure 8.7 Tank Wall-to Bottom Weld (Reference 24) l As shown in Figure 8.7, the tank shell is welded to the bottom by a double 1/4" filet weld. The weld was checked for bothe shear loid and moment load as follcws:
(a) Shear load The total weld throat area is, therefore, given by Total throat area = 2 x 480 x x (0.25)/(2) 5
= 533 in' Average base shear load = 2,048,175 (see Appendix A, Section 9, Step 5)
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATlON SHEET ::r,:oMo."o' ,m uo,2 .
CCN CONVERSION /
Project or DCP/MMP SONGS 3 Cale No. M-DSC-269 ccN h0. CCN - ,1 subject See Title Sheet sheet No. /5 Y _
REV ORIGlWATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL AXILY 10/12/93 JUN GAOR k 10/12/93 It follows that, Average shear stress in the weld (t.,,) = 2,048,175/533
= 3,842 psi A factor of 1.5 to the average shear stress to account for the non-uniform shear stress distribution, Maximum shear stress (t.,,) = 1.5 x 3,842
= 5,763 < 13,600 psi [0. K .]
Where the allowable of 13,600 is per Reference 2, Subsection ND-3852.6.
Similarly, the maximum shear stress in the base metal is given by, 5,763 x 0.707'= 4,075 < 13,000 psi [0. K .]
(b) Moment Loao Per Appendix A, Section 8, Step 6, the overturning moment load (M) at the base of the tank shell is given by:
M = 3.82 x 10 8 in-lb The section modulus (S) of the weld is given by, S = 2n (0.707 x 0.25)(480)2/4
= 6.4 x 10' in 3 It follows that, Normal stress (o) = M/S = 5,972 psi The normal stress (a) and the maximum shear stress (t ,) are combined to obtain the maximum normal stress (o ,) as follows:
Maximum normal stress (o ,) = o/2 + \ (o/2): ,2
= 9,477 psi < allowable (=13,000 psi) [0.K.]
Where the shear allowable was conservatively used.
SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::n&* ,Aou e,z n Project or DCP/MMP CCN CONV[RSION SONGS 3 Calc No. M-DSC-269 CCN NO. CCN -
subject See Title Sheet Sheet No, h REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NA81L M. EL AKILY 10/12/93 JUN GAOR ((, , 10/12/93 8.2.7 Deviation from Nominal Position in the Cicumferential Direction The design report (Appendix A) assumes that the tank is anchored to the foundation by equally-spaced anchor bolts. Few anchor bolts may have to be moved, up to 4" in the circumferential direction, to avoid interference with the tank attachments. This small adjustment in the anchor bolt location is considered acceptable based on:
1.
7 N w aiev~
F . a- i.. d
"*:f{. bo 11- l..,d f
a Q ,
i
/ dMr;hAcm i I lW% /e < /. 6,w b.~ n, : .I p < b'm j l i!,
1 I
g n I / >
I l j lI l Figure 8.8 Bolt Load Distribution Figure 8.8 shows the bolt load distribution, based on the results of the finite element analysis, Section 8.1. It can be seen that the change in bolt load is gradual since a large number of closely-spaced anchor bolts are used. Therefore, a slight deviation from the nominal location in the circumferential direction should not result in any appreciable change in bolt load, including the maximum bolt load.
i
' 2. Per Appendix A Section 9, Steps 7 and 9, a large margin exists between the bolt tensile c.apacity (33,943 psi) and the reduced bolt capacity actually used for design purposes (19,509 psi).
t l It is, therefore, concluded that slight deviations, in the circumferential direction, from nominal bolt locations have no impact.
SCE 2G426 NEW 4/90 l _ _ --
NES&L DEPARTMENT l CALCULATION SHEET gr,:M." ,Aq 7 ,27 ;f l CCN CONVERSION /
Project or DCP/MMP SONGS 3 Cale No. M-DSC-269 CCN kO. CCN - /
subject See Title Sheet sheet No. 7 REV ORIGINATOR DATE IRE DATE REV ORIG!bATOR DATE IRE DATE NABIL M. EL-AXILY 10/12/93 JUN CAOR h 10/12/93 1
8.3 Tank Nozzle Stiffness Calculations The equations and figures used in the stiffness calculations are based on WRC 297 (Reference 14).
Tank Data (Bottom of Tank Elevation is 9'-0"):
Inside diameter = 480" shell thickness, t = 5/16" (el. 9.0' to 16.97')
=
1/4" (el .16.97 ' to 22.94 ')
=
3/16" (el. 22.94' to el. 43')
Height of cylindrical shell = 14'
- 1. 4" Nozzle - Suction Line Elev. 31'-0".
d = 4.5", t = 0.237", Mean tank diameter, D = 480.1875" L1 = (31'-0") - (9'-0") = 22*12 = 264" L2 = 34*12 - 264 = 144" L = 8L1L2/( L11/2 + L2 1/2 )z 1/2
=
8*264*144/(264 /2 + 144 )z=381" A = L/(DT)i/2 = 381/(480.1875*0.1875)1'2 = 40.15 1 = (d/0)(D/T)1/2 =
(4.5/480.1875)(480.1875/0.1875)'2
= 0.47 T/t = 0.1875/0.237 = 0.79 e = 1.2 (Fig. 59)
Mt /ET 0 = 0.9 (Fig. 60) 3 Mc /ET'O = 0.49 (Fig. 60)
SCE 2f426 NEW 4/90
1 NES&L DEPARTMENT l CALCULATION SHEET ::n c ee' ,Ax u o, z zy !
Project or DCP/MMP CCN CONVERSION [
SONGS 3 Cale No. M-DSC-269 CCN No. CCN - [
subject See Title Sheet Sheet No. I b REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL ACILY 10/12/93 JUN GAOR [f, 10/12/93 l
2 P/w = a(4.95 ET /(DAi/2) 2
=
- 1. 2 (4. 95*28. 3 E6* 0.1875 ) / (480.1875*40.151/2)
Nozzle Stiffness due to Radial Loads :
P/w = 1942 lbs/in.
Nozzle Stiffness due to Loncitudinal (In-olane) Moment loads :
3 Mt /0 = E(3.14*d *t/8)/(d*k) k = (1/0.9)(3.14/8)(d/t)2(t/T)3
= (1/0.9)(3.14/8)(4.5/0.237)2(0.237/0.1875)3
= 317 3
Mt /0 = 28.3E6*(3.14*4.5 *0.237/8)/(4.5*317)
Mt /0 = 1.68E5 in-lbs/ rad Nozzle Stiffness due to Circumferential (Out-clane) Moment Loads :
Mc /0 = 1.68E6*0.49/0.9 Mc /0 = 9.15E4 in-lbs/ rad SCE 2G426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ="MJh.* .A m e, z n CCN CONVER$l0N Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. CCN -
subject See Title Sheet Sheet No. N REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA81L M. EL-As:tLY 10/12/93 JUN GAOR f,4, 10/12/93
- 2. 2-1/2" Nozzle - Line 011 0 el. 31'-0".
d = 2.875", t = 0.203", D = 480.1875" L = 381" (same as for 4" nozzle above)
A = 40.15 1 == (2.875/480.1875)(480.1875/0.1875)t/2 0.30 T/t = 0.1875/0.203 = 0.92 a = 1.1 (Fig. 59)
Mt /ET3 0 = 0.68 Mc /ET3 0 = 0.42 (Fig. 60) 2 P/w = 1.1(4.95*28.3E6*0.1875 )/(480.1875*40.151/2)
P/w = 1780 lbs/in.
I 3
M /0 = (28.3E6*3.14*2.875 *t/8)/(2.875*k) t l
1 k == (1/0.68)(3.14/8)(2.875/0.203)2(0.203/0.1875)3 {
147 Mt /0 = 1.27E5 in-lbs/ rad '
Mc /0 = 1.27E5*0.42/0.68 He /0 = 7.84E4 in-lbs/ rad i
1 04E 26-426 NEW 4/90 l
NES&L DEPARTMENT CALCULATION SHEET ;;rs 'C& " ,Am s o a m CCN CONVER$1CN Project or DCP/ HHP SONGS 3 cale No. M-DSC-269 CCN h3. CCN -
Subject See Title Sheet Sheet No. 50 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR ((,f 10/12/93
- 3. (a) 2" Nozzle - Line 023 0 el. 31'-0".
d = 2.375", t = 0.218", D = 480.1875"
- 1. = 381" A = 40.15 1 = (2.375/480.1875)(480.1875/0.1875)1/2
= 0.25 T/t = 0.1875/0.218 = 0.86 e = 1.05 (Fig. 59)
Mt /ET3 0 = 0.6 (Fig. 60)
Mc /ET'O = 0.39 (Fig. 60)
P/w = 1.05(4.95*28.3E6*0.1875 )/(480.1875*40.151/2)
P/w = 1700 lbs/in.
3 M /0 = (28.3E6*3.14*2.375 *0.218/8)/(2.375*k) t k = (1/0.6)(3.14/8)(2.375/0.218)2(0.218/0.1875)3
= 122 Mt /0 = 1.12E5 in-lbs/ rad Mc /0 = 1.12E5*0.39/0.6 Mc /0 = 7.28E4 in-lbs/ rad SCE 26426 NEW 4/90
NES&L DEPARTMENT u
CALCULATION SHEET =$4 " . ,Am o e, m CCN CONVERSION /
Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN - f subject See Title Sheet !
Sheet No.
j REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE I
NA81L M. EL AKILY 10/12/93 JUN CAOR
[.(f 10/12/93
- 4. 1" Nozzle - Miniflow 0 el .16'-0" .
d = 1.315", t = 0.179", D = 480.3125" L1 = 7*12 = 84" L2 = 34*12 - 84 = 324" 1
L = 8*84*324/( 84 + 324 /2 )2 = 295" A = 295/(480.3125*0.3125)i/2 = 24 1 = (1.315/480.3125)(480.3125/0.3125)t/2 = 0.107 T/t = 0.3125/0.179 = 1.75 e = 1.0 (Fig. 59)
Mt /ET'O = 0.4 (Fig. 60)
Mc /Et3 0 = 0.3 (Fig. 60) 2 2 P/w = 1.0(4.95*28.3E6*0.3125 )/480.3125*24 )
P/w = 5814 lbs/in 3
Mt /0 = (28.3E6*3.14*1.315 *0.179/8)/(1.315*k) k == (1/0.4)(3.14/8)(1.315/0.179)2(0.179/0.3125)3 9.95 Mt /0 = 3.45E5 in-lbs/ rad Mc /0 = 3.45E5*0.3/0.4 Mc /0 = 2.59E5 in-lbs/ rad SCE 26-426 IEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :: n tN;.* ,Ax s ; ,, r n CCN CONVERSION Preject or DCP/ HHP SONGS 3 Calc No, M-OSC-269 CCN N3. CCN -
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL-AKILY 10/12/93 JUN GAOR [4, 10/12/93 l l
- 5. 3" Nozzle - Suction Line 0 el. 10-7". l d = 3.5", t = 0.216", D = 480.3125" L1 = 19" .
L2 = 389" l L = 8*19*389/( 191/2 + 3891/2)2 = 102" 3 A = 102/(480.3125*0.3125)i/2 = 8.32 1 = (3.5/480.3125)(480.3125/0.3125)1/2 = 0.286 T/t = 0.3125/0.216 = 1.45 e = 1.17 (Fig. 59 use A = 10)
Mt /ET3 0 = 0.6 (Fig. 60) l MC /ET3 0 = 0.4 (Fig. 60)
P/w = 1.17(4.95*28.3E6*0.3125 )/(480.3125*8.321/2) j P/w = 11553 lbs/in 3
Mt /0 = (28.3E6*3.14*3.5 *0.216/8)/(3.5*k) k = (1/0.6)(3.14/8)(3.5/0.216)2(0.216/0.3125)'
= 56.72 Mt /0 = 5.18E5 in-lbs/ rad Mc /0 = 5.18E5*0.4/0.6 Mc /0 = 3.45ES in-lbs/ rad SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::r,nA eu . ,A , o c, z 79 CCN CCNVER$1CN Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN NO. CCN -
subject See Title Sheet 3 Sheet No.
REV ORIGINATOR DATE IRE CATE REV ORIGINATOR DATE !RE DATE i
NABIL M. EL AKILY 10/12/93 JUN GAOR k, 10/12/93 Summary of Tank Nozzle Stiffness Values Nozzle Radial Longitudinal Circumferen-Size, Sch. Elev. Loads, Moment, tial Moment, NPS Lbs/in in-lbs/ rad in-lbs/ rad 4" 40S 31'-0" 1942 1.68E5 9.15E4 2-1/2" 40S 31'-0" 1780 1.27E5 7.84E4 2" 80S 31'-0" 1700 1.12E5 7.28E4 1" 80S 16'-0" 5814 3.45E5 2.59E5 3" 40S 10'-7" 11553 5.18E5 3.45E5 SCE 2E426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =ntases %um Project or DCP/ HHP SONGS 3 CCN CCNVER$!ON f Calc No. M-OSC-269 CcN h0. CCN - (
Subj ect See Title Sheet Sheet No. 6 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN CAOR Q, 10/12/93 8.4 Local Stress Check I The hydrostatic pressure at the base (elevation 9'-0") and at elevation 31'-0" (22' from the base of the tank are) :
Po = (34') * (62.4 lbs/cu.ft)/144 = 14.73 psi use 15 psi.
P 22 = (34'-22') * (62.4)/144 = 5 psi.
3 The maximum moment load due to DBE seismic at the base of the tank is taken from Appendix A (design report),
M3 = 382,172,097 in-lb = 31,847,675 ft-lbs.
The maximum moment load due to DBE at elevation 31' (22' above the tank base) is obtained by linear interpolation as follows :
The seismic load is zero at the top of the tank (34' high) and maximum (M3 ) at the base of the tank. Therefore, by ratic, at elevation 31', the moment load is, Ms . = 382,172,097 * (34-22)/34
= 134,884,270 in-lb = 11,240,356 ft=1bs.
For Nozzles A, B, and J, Po = 15 psi and M 3
= 31,847,675 ft-lbs.
For Nozzles F, G and H, P 22 = 5 psi and M3 , = 11,240,356 ft-lbs.
The pressure and moment loads are included in the local stress snalys'is using ME101LS program.
Reinforcing pads 3/8" thick at nozzle F and reinforcing pads 1/2" thick at nozzles G and H are required to meet stress limits. To account for the reinforcing pad in the local stress analysis, an effective local shell wall thickness equal to the square root of the sum (SRSS) of the shell thickness and pad thickness is used. This effective local wall thickness is conservative when compared to the effective wall thickness (shell thickness + pad thickness) recommended in Reference 15 for local stress analysis.
To facilitate construction, one size (1/2" thick) reinforcing pads will be specified for nozzles F, G, and H.
T4E 26-426 IJEW 4/90 t
NES&L DEPARTMENT CALCULATION SHEET = M;*' .
,Aa r.ro, m CCN CONVERSION /
Project or DCP/MMP SONGS 3 calc No. M-OSC-269 CCN No. ccN - [ l subject See Title Sheet sheet No. b REV ORIGINATOR DATE !RE DATE REV CRIGINATOR DATE !RE DATE NABIL M. EL*AKILY 10/12/93 JUN GAOR Q , 10/12/93 I The local stress allowables, shown below, are based on the stress intensity 1 concept equivalent to the allowables for Class 1 components (ASME Code Subsection NB-3200). These allowables can be summarized as follows:
Primary membrane plus bending stress = 1.5 Sm I Primary plus secondary stress = 3.0 Sm Where, Sm = allowable design stress intensity (=20 ksi, as shown in Section 4.2).
No detailed analysis was performed for the following nozzles:
- 1. Nozzle K This is a 3" drain line connected at the bottom of the tank. The local stresses are judged acceptable for the following reasons:
(a) this nozzle is reinforced; and it is located far from the highly stressed area of the bottom, which occurs in the vicinity of the anchor bolt chairs and the shell to bottom weld.
(b) the calculated piping stress at the nozzle connection is small (about 3,600 psi for combined weight and OBE per piping stress calculation number S-1415-56, Revision 0).
(c) Since the primary stress allowable is 30,000 psi, the nozzle is judged acceptable. No further analysis is required.
- 2. Nozzle L These are two 2" instrument taps at elev. 9-6" and 42'-0". A 2" X 3/4" swage reducer and a 3/4" gate valves is welded to each nozzle and tubing attached for instrumentation. Nozzle loads are judged acceptable by inspection and comparison to the loads and stress results calculated for Nozzle B which is a 1" unreinforced nozzle and therefore more restrictive than the 2" nozzle.
- 3. The support connections at the tank are reinforced by 1/2" X 8" X 8" pad. The maximum local stresses at the tank due to the support loads are judged acceptable by comparison to the loadings obtained for the 4" nozzle H (see References 16 through 22 for nozzle and support loads).
Results of the local stress analyses using ME101LS are shown in the following pages.
SCE 26 426 NEW 4/9o
NES&L DEPARTMENT CALCULATION SHEET =",N4 " . ,oi se 0, z 7 7 CCN CONVER$10N l Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN -
Subject See Title Sheet Sheet No. 5 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE NAB!L M. EL.AXILY 10/12/93 JUNGAOR(.[,,, 10/12/93 l
- 1. Tank 055/56 - Nozzle A ME101LS version M10 start on 02/25/93 at 07:25:56 BIJLAARD STRESS MALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/25/93 PG2556 PAGE 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE A
! N P U T C A T A
........1........2........3........4........5........6........7........8 1 LOCAL STRESS ANALYS!$ FOR CCW TANK T.055/T-056, NCZZLE A 2 LOC 3 VD=480.3125.VT=0.3125,C1=3.5,C2=3.5,SHA=CIR, 4 P=927,VL=126,VC=361,Mi.=4726 MC=3972,MT=1884, 5 CAS=$0, 6 MA=31847675, 7 PD=15 8 SM*20, 9 LOC 10 P=927,VL=126,VC=361,ML=4726,MC=3972 MT=1884, 11 CAS=$E, 12 M8=31847675, 13 PO=15, 14 SM=20, 1
BIJLAAC STRESS MALYS!$ FOR CYLINDERS ME101/M10 5. C. Edison 02/25/93 PG2556 PAGE 2 LOCAL STRESS MALYS!$ FOR CCW TANK T.055/T.C56, N0ZZLE A 1 N P U T 0 A T A P ML MC MT VL VC MA M8 STRESS (LBS) (IN.LBS) (IN.LBS) (IN.L8S) (LBS) (LBS) (FT.LBS) (FT.LSS) LEVEL I 927.0 4726.0 3972.0 1884.0 126.0 361.031847676.0 .0 50 2 927.0 4726.0 3972.0 1884.0 126.0 361.0 .031847676.0 SE VESTHK YE$0!A C1 C2 SHAPE SCALE SM PRES $UR! BEND R (IN) (!N) (IN) (IN) FACTOR I (KS!) (PSI) (IN) 1 .312 480.312 3.500 3.500 CIRCULAR .000 20.0 15.0 .000 2 .312 480.312 3.500 3.500 CIRCULAR .000 20.0 15.0 .000 1
81JLAAC STRESS MALYSIS FOR CYLINDERS ME101/M10 5. C. Edfson 02/25/93 PC2556 PAGE 3 LOCAL STRESS MALYSIS FOR CCW TAM T.055/T.056, NCZZLE A CASE 1 SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =,N 4 " ,A y 7 0, m Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION /
CCN No. CCN - I Subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL.AKILY 10/12/93 JUN CAOR $ {. 10/12/93 l
VESSEL DIAMETER = 480.312 INCHES C1 = 3.500 INCHES C2 = 3.500 INCHES GA mA = 768.500 BETA 1 = .006 B"TA2 = .006 COMBINED $ TRESS I N T E k 5 i T Y, 5 (K $ !), AT ***
INWARD END OF LONG. MCM. OUTWARD END OF LONG. MOM. INWARD END OF CIRC. MCM.
MOM. OUTWARD END OF CIRC.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INS!0E OUTSIDE INSIDE OUTS!0E INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SWELL
................ OF SHELL OF SHELL 0F $ HELL MAXIMUM PRIM AY PLUS SECONCARY STRES$ ]NTENSITY
.3125 26.29 19.08 15.72 6.96 30.24 23.78 10.48 9.84 MAXIMUM FRIMARY MEMBRANE STRESS INTENSITY 6.36 6.36 4.71 4.71 3.59 3.59 2.12 2.12 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/25/93 PG2556 PAGE 5 LOCAL STRESS ANAt.YSIS FOR CCW TANK T.055/T.056, N0ZZLE A CASE 1 THIS CALCULATION IS FOR A LUG ON STRAIGHT PIPE MAX [ MUM PRIMARY PIPING STRESS INTENSITY...............................
12.5 (KSI)
MAX! MUM PRIMARY LOCAL MEMBRANE STRESS INTENSITY....................... 6.4 (KSI)
MAXIMLN COM3!NEC PRIMARY MEMBRANE STRESS INTENSITY.................... 18.9 (KSI)
A LLOWAB LE ( 1. 500 S e ) .. - ... . . . . . . . . . . . .- .. . . . .. . . - . . . . . .. . . . . .. . . . . . . 30.0 (KSI) 1 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/25/93 PG2556 PAGE 6 LOCAL STRESS AAALYSIS FOR CCV TANK T.055/T 056, N0ZZLE A CASE 2 VESSEL DIAMETER = 480.312 INCHES C1 = 3.500 INCHES C2 = 3.500 INCHES GAmA = 768.500 BETA 1 = 606 SETA2 = .006 C0MBINEO 5iRESS ! N T E N S I T Y, S (K S !). AT ***
SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =Wu , AGE s n , s CCN CONVERSION f Project or DCP/MMP SONGS 3 calc No. M-OSC-269 CCN NO. CCN - /
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE 1RE DATE NABIL M. EL.AKILY 10/12/93 JUNGAOR(( l10/12/93 l
l INWARO END OF L)NG. MOM. CUTWARO ENO CF LONG. MCM. IL ARD END OF CIRC. MOM. CUTWARD END OF CIRC.
VESSEL THICG ESS OUTS! E INSIDE CUTSIO! INSICE OUTSIDE IN$!DE OUTS!DE IN$IDE l
....!!"c"!H.... ' 5" "' '5""' '5*"' '5""' '5"'" o'5""' '5""' o' 5""'
I
............................................................................................................... 1 MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY ,
.3125 26.29 19.08 15.72 6.96 30.24 23.78 10.48 9.84 1
MAXIMLN PRIMARY MEMBRANE STRESS INTENSITY l l
6.36 6.36 4.71 .71 3.59 3.59 2.12 2.12 l l
BIJLAARD STRESS ANALYSl$ FOR CYLINOERS ME101/M10 5. C. Edison 02/25/93 PG2556 PAGE 8 !
LOCAL STRESS ANALYSIS FOR CCW TAhK T-055/T.056. NCZZLE A l l
CASE 2 THIS CALCULATION IS FOR A LUG ON STRAIGHT PIPE MAX IMLM SECON DARY PI PING STRE SS INTENS ITY.................~....~ ~~ 18.3 (KSI)
MAXIMJM PRIMARY PLUS SECONDARY LOCAL MEMBRANE STRESS INTENSITY....... 30.2 (KSI) l l
MAXIMJM COMBINED PRIMARY PLUS SECONOARY MEMBRANE STRESS INTENSITY..... 48.$ (KS!)
l 1
ALLCWA8LE ( 3.000 Sm )........-... ~. ~ ............................... 60.0 (KSI)
BIJLAARD STRE$$ ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/25/93 PG2556 PAGE 9 LOCAL STRESS ANALYSIS FOR CCV TANK T.055/T 056. N0ZZLE A l
l St> NARY TA8LE l (KSI)
PIPING LCCAL CASE PRIMARY SECONCARY PRIMARY SECCNDARY COM81NED ALLCWABLE MAX SMEAR ALLOWABLE
+ PRIMARY I 12.5 .0 6.4 .0 18.9 30.0 .0 .0 2 .0 18.3 .C 30.2 48.5 60.0 .c .0 1
BIJLAARO STRESS ANALYSIS FOR CYLINDERS ME1C1/M10 S. C. Edisor 02/25/93 PG2556 PAGE 10 SCE 26 426 NEW 4.90
NES&L DEPARTMENT CALCULATION SHEET =: % .see ,A,E yg o, 2 7 :/
Project or DCP/MMP SONGS 3 CCN CONVER$!CN f Calc No. M-DSC-269 CCN ho. CCN - f Subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AtlLY 10/12/93 JUNGAOR[f, 10/12/93 NE101LS version M10 stop on 02/25/93 at C7:25:56 NE101LS Version M10 run time .00 seconds I
1 l
l l
l SCE M26 NEW 4f90 l
NES&L DEPARTMENT CALCULATION SHEET ==C& " ,Aao o, m CCN CONVERSION /
Prtject or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN No. CCN - ,1 subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORICINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUNCAOR$6, 10/12/93
- 2. Tank T055/56 - P'-
_ eB 1
BIJLAARD STRESS ANA!.fSu GR CYLINDERS ME101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 1 l
LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE B
! N P U T 0 A T A
........ 1........ 2........ 3........ 4........ 5........ 6........ 7........ 8 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE B 2 LDC 3 V D=480. 3125, VT=0. 3125, C1 = 1. 315,C2 = 1. 315, $H A =C IR ,
4 P=66,VL=32,VC=55 ML 264,MC=1560,MT=72, 5 CAS=SO, 6 MA=31847675, 7 PD=15, 8 SM=20, 9 LDC 10 P=66,VL=32,VC=55 ML=264,MC=1560,MT=72, 11 CAS=SE.
12 MB 31847675, 13 P0=15, 14 SM=20, 1
BlJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE B
! N P U T 0 A T A 7
P ML MC MT VL VC MA MB STRESS (LBS) (IN.LBS) (IN.LBS) (IN.LBS) (LBS) (LBS) (FT.LBS) (FT.LBS) LEVEL 1 66.0 2 64.0 1560.0 72.0 32.0 55.031847676.0 .0 SO 2 66.0 264.0 1560.0 72.0 37.0 55.0 .031847676.0 SE VESTHK VES0!A C1 C2 SHAPE SCALE SM PRESSURE BENO R
(!N) (!N) (IN) (!N) FACTOR 1 (KSI) (PSI) (!N) 1 .312 480.312 1.315 1.315 CIRCULAR .000 20.0 15.0 .000 2 .312 480.312 1.315 1.315 CIRCULAR .000 20.0 15.0 .000 1
BIJLAARO STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 3 LOCAL STRESS ANALYSIS FOR CCW TANr T.055/T.056, N0ZZLE B CASE 1 SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =nd " ,Ae m 0, m l CCN CONVERSION Project or DCP/M4P SONGS 3 Calc No. M.DSC-269 CCN No. CCN -
[
Subject See Tit 1e Sheet sheet No. G/
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR . 10/12/93 VESSEL CIAMETER
- 480.312 INCHES C1 = 1.315 INCHES C2
- 1.315 INCHES GAMMA
- 768.500 BETA 1 = .002 BETA 2 * .002 C0MB1NED 5 TRESS ! N T E N 5 I T Y, 5 (K S !), AT ***
[NWARO END OF LONG. MOK. OUTWARD END OF LONG. MGM. INWARD ENO CF CIRC. MOM. OUTWARO END OF CIRC.
MOM.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY
.3125 3.80 2.54 2.99 1.49 21.95 16.73 20.34 17.67 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY
. 93 . 93 .75 .75 -2.66 2.66 2.54 2.54 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison C1/19/93 JJ3456 PAGE 5 LOCAL STRES$ ANALYSIS FOR CCW TANK T.055/T.056 N0ZZLE B CASE I THIS CALCULATION IS FOR A LUG ON STRAIGHT PIPE MAXIMUM PRIMARY PI PING STRESS INTENS ITY..................-.........--- 12.5 (KSI)
MAXIMUM PRIMARY LOCAL MEMBRANE STRESS INTENSITY.-..-..-............... 2.7 (KSI)
MAXIMLP4 COMBINED PRIMARY MEMBRANE STRESS INTENSITY.-....-............. 15.2 (KSI) 1 ALLOWABLE ( 1.500 Sm )..........-..................................... 30.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 01/19/93 JJ3456 PAGE 6 LOCAL STRES$ ANALYSIS FOR CCW TANK T.055/T.055, N0ZZLE B CASE 2 VESSEL DIAMETER
- 480.312 INCHES C1 = 1.315 INCHES C2 = 1.315 INCHES GAmA = 766.500 BETA 1 * .002 BETA 2 * .002 C0MB!NED 5 TRESS I N T E N 5 I T Y. S (K S !), AT ***
SCE 26 426 NEW 4/90
l 1
NES&L DEPARTMENT CALCULATION SHEET =,$C,0 m . ,A, m o, m CCN CONVER$10N Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN h0. CCN -
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE NA81L M. EL.AKILY 10/12/93 JUN GAOR , 10/12/93 i
INWARO END OF LONG. MOM. OUTWARD END OF LONG. MOM. INWARD END OF CIRC. MOM.
MOM. OUTWARD END OF CIRC.
V!$5EL THICKNESS OUTSIDE INSIDE OUTSIDE INSICE OUTSIDE INSIDE 0F SHELL CUTS 10E INSIDE (INCHES) OF SHELL OF SHELL OF SHELL OF $ HELL OF SHELL
................ OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECOCARY STRESS INTENSITY
.3125 -3.80 2.54 2.99 1.49 21.95 18.73 20.34 -17.67 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY
. 93 . 93 .75 .75 2.66 2.66 2.54 2.54 BIJLAARD STRESS ANALYS!$ FOR CYLINDERS ME101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 8 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE 8 CASE 2 THIS CALCULATION !$ FOR A LUG ON STRAIGHT P!PE MAX IMUM SECON DARY P ! P I NG STRESS INTENS I TY........-..-..-.... ..........
18.3 (KSI)
MAXIMUM PRIMARY PLUS SECONDARY LO"AL MEMBRANE STRESS INTENSITY.....-- 21.9 (KSI)
MAXIMUM COMBINED PRIMARY PLUS SECONDARY MEMBRANE STRESS INTENSITY..... 40.2 (KSI) 1 ALLOWABLE ( 3.000 Sm )................-.....---.....-..---...- -------
60.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 9 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T 056, N0ZZLE B J
S'MMARY TAB.E (KSI)
PIPING LOCAL CASE PRIMARY SECONDARY PRIMARY SECONDARY COMBINED ALLOWABLE MAX SHEAR ALLOWABLE
+ PRIMARY
........... 7 .................... 3......................;......... g ..........................
2 .0 18.3 .0 21.9 40.2 60.0 .0 .0 1
l l
SCE 26-426 NEW 4/90
i NES&L DEPARTMENT CALCULATION SHEET n;",;oit,;." , AGE u 0, m Project or DCP/NMP SONGS 3 Calc No.
CCN C0hVER$10N /
M-DSC-269 CCN No. CCN - /
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/o3 JUN GAOR [d- 10/12/93 BIJLAARD STRESS ANALYS15 FOR CYLINDERS MC101/M10 S. C. Edison 01/19/93 JJ3456 PAGE 11 ME101LS version M10 stop on 01/19/93 at 10:34:56 ME101LS version M10 run time .00 seconds SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :=4 s . ,A,, g4 0,2 7 7 Project or DCP/MMP SONGS 3 Calc No.
CCN CONVERSION / l M-DSC-269 CCN No. CCN . I subject See Title Sheet Sheet No.
REV I ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE l
.NA81L M. EL*AO LY 10/12/93 JUN GAce k , 10/12/93 l l 1
- 3. Tank T055/56 - Nozzle C (This nozzle is deleted - included for info only) l 2
1 8!JLAARD STRESS ANALYSIS FOR CYLIN0ERS ME101/M10 S. C. Edisen 01/20/93 KJ1428 PAGE 1 LOCAL STRESS ANALYS!S FOR CCW TAN ( T-055/T.056, N0ZZLE C
( N P U ? O A i A
.........]........2........3........4........5-.-.....-6.-.-....7-...-...8 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.0$$/7 056, N0ZZLE 2 LOC 3 VD=480.1875,VT=0.42,C1=2.375.C2=2.375,$HA=CIR, 4
P=159,VL=491,YC=280,ML 11508,MC=7848,MT=696 5 CAS=50, 6 MA=11240356, 7 P0 5, 8 SM=20, 9 LOC 10 P=159,VL=491,YC=280,ML*11508,MC=7848.MT=696, 11 CAS=$E, 12 M8=11240356, 13 PO*5, 14 SM*20, 1
B!JLAARD STRESS ANALYSIS FOR CYLINOERS *E101/M10 5. " Edisca 01/20/93 KJ1428 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T 056, N0ZZLE
! N P U T 0 A T A P ML MC MT VL VC MA MB STRESS (LBS) (IN.LBS) (IN-LBS) (IN-LES) (LES) (LBS) (FT.L85) FT.LBS LEVE 1
........................................................................(.......).........L..
159.0 11508.0 7848.0 696.0 491.0 2 15;.0 280.011240355.0 .0 50 11508.0 7848.0 696.0 491.0 280.0 .011240356.0 SE VESTHK VESOIA C1 C2 SHAPE SCALE SM PRESSURE BENO R (1N) (IN) (!N) (lN) FACTOR 1 (KS! PSI 1
.....................................................................).......(....)......(.IN) 420 480.188 2.375 2.375 CIRCULAF .000 20.0 5.0 .000 2 .420 480.188 2.375 2.375 CIRCULAR .000 20.0 1
5.0 .000 BIJLAARD STRESS ANALYSIS FOR CYLINOERS *E101/M10 5. C. Edison 01/20/93 KJ1428 PAGE 3 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056 N0ZZLE C CASE 1 CCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =iC& " . ,Am 0, m CCN CONVERSION /
1 Project or DCP/fttP SONGS 3 Calc No. M-OSC-269 CCN No. CCN - /
r ,.--
subject See Title Sheet Sheet Nc. O REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL-AKILY 10/12/93 JUNCAOR'h- 10/12/93 VESSEL O!AMETER = 480.188 INCHES C1 = 2.375 INCHES C2 a 2.375 INCHES GAMMA = 571.652 BETA 1 = .004 BETA 2 = .004 C0MB!NEO $TRE$$ ! N T E N S ! T Y, 5 (K S I), AT ***
1 INWARD END OF LONG. MOM. OUTWARD END OF LONG. MOM. INWARD END OF CIRC. MOM. OUTWARD END OF CIRC.
MOM.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF $HELt. OF $ HELL OF $ HELL OF SHELL OF SHELL OF SHELL OF SHELL MAXI >tJM PRIMARY PLUS SECCC ARY STRESS INTENSITY 4200 -43.13 30.82 41.90 -29.35 -32.78 28.56 30.62 -27.13 MAXIMUM PRIMARY MEM8RANE STRESS INTENSITY
-9.94 -9.94 9.71 9.71 -3.13 -3.13 3.09 3.09 4
1 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/20/93 KJ1428 PAGE 5
- LOCAL STRESS ANALYSIS FOR CCW TANK T-055/T-056, N0ZZLE C CASE 1 TH15 CALCULATION I$ FOR A LUG ON STRA!GHT PIPE MAXIMUM PRIMARY P! PING STRESS INTENS!TV ------------------------------ 3.2 (KSI)
MAXIMUM PRIMARY LOCAL MEMBRANE STRESS INTENSITY----------------------- 9.9 (KSI)
MAXIMUM COM0!NED PRIMARY MEMBRANE STRESS INTENSITY-------------------- 13.1 (KSI) l ALLOWABLE ( 1.500 Sm )....-------------------------------------------- 30.0(KSI) 1 i BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 01/20/93 KJ1428 PAGE 6 LOCAL STRISS ANALYSIS FOR CCW TANK T-05S/T-056, N0ZZLE C j CASE 2 VESSEL O!AMETER = 480.188 INCHES C1 = ' 2.375 INCHES C2 = 2.375 INCHES GAPNA = 571.652 BETA 1 = .004 BETA 2 = .004 4
SCE 26-426 NEW 4/90
I NES&L DEPARTMENT l l
CALCULATION SHEET =1;%0.m ,Ax u o, m CCN CONVERSION / l Project or DCP/MMP SONGS 3 Calc No. M.DSC-269 CCN NO. CCN . /
subject See Title Sheet Sheet No.
l REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE l NA81L M. EL-AXILY 10/12/93 JUN GAOR $ [, 10/12/93 l
l COMB!NED STRESS I N T E N $ ! T Y, 5 (K $ !), AT *** l l INWARD END OF LONG. MOM. OUTWARD END OF LONG. MGM. INWARD END OF CIRC. MOM. OUTWARD END OF CIRC.
l MOM.
VESSEL THICKNESS OUTSICE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY
.4200 43.13 30.82 41.90 29.35 -32.78 28.56 30.62 27.13 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY
-9.94 9.94 9.71 9.71 3.13 3.13 3.09 3.09 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 's. C. Edison 01/20/93 KJ1428 PAGE 8 LOCAL STRESS ANALYSIS FOR CCW TANK T 055/T.056, N0ZZLE C CASE 2 THIS CALCULATION IS FOR A LUG ON STRAIGHT PIPE MAXIMUM SECONDARY P! PING STRESS INTENSITY............................. 4.6 (KS!)
MAXIMUM PRIMARY PLUS SECONDARY LOCAL MEMBRANE STRESS INTEN$1TY....... 43.1 (KS!)
MAXIMJM COMBINED PRIMARY PLUS SECONDARY MEMBRANE STRESS INTENSITY..... 47.8 (KSI) 1 ALLOWABLE ( 3.000 Sm )...--.............---......................-.... 60.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/20/93 KJ1428 PAGE 9 LOCAL STRESS ANALYS!$ FOR CCW TANK T.055/T.056, N0ZZLE C
SUMMARY
TABLE (KSI)
PIPING LOCAL CASE PRIMARY SECONDARY PRIMARY SECONCARY COMBINE 0 ALLOWABLE MAX SHEAR ALLOWABLE
+ FRIMARY
, ..3..................7..........3.......g.................................3..
2 .0 4.6 .0 43.1 47.8 60.0 .0 .0 1
GCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::: n N k " ,AsE n o,2 n CCN CONVERSION Project or DCP/MMP SONGS 3 Calc No. M-0SC-269 CCN No. CCN -
subject See Title Sheet Sheet No. 7 l REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILT 10/12/93 10/12/93 JUNGAOR'[k BIJLAARD STRESS ANALYSIS ,0R CYLINDERS ME101/M10 5. C. Edison 01/20/93 KJ1428 PAGE 11 ME101LS version M10 stop on 01/20/93 at 10:14:28 ME101LS verston M10 run time .00 seconds SCE 26 426 NEW 4/90
i l l l l NES&L DEPARTMENT CALCULATION SHEET =ncm .
CCN CONVERSION
,A m o, m
/
Project or DCP/M4P SONGS 3 Calc No. M-DSC-269 CCN NO. CCN -
/
j subject See Title Sheet Sheet No.
l REV ORl0!NATOR DATE IRE DATE REV OR10!NATOR DATE IRE 'OATE NA6IL M. EL AKILY 10/12/93 JUN CAOR Q, 10/12/93 l
l l
- 4. Tank T055/56 - Nozzle F 1
1 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 1 LOCAL $ TRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE F I N P U T 0 A T A
........ 1........ 2........ 3........ 4........ 5........ 6........-7........ 8 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE F 2 LOC 3 VD=480.1875,VT=0.42 C1 2.875,C2=2.875,SHA=CIR, 4 P=231,VL=554,VC=149,ML=14352,MC=3228,MT=852, 5 CAS=50, 6 MA=11240356, 7 PO=5, 8 SM=20, 9 LOC 10 P=231,VL=554,VC=149,ML=14352 MC=3228,MT=852, 11 CAS.SE.
12 M8=11240356, 13 PO=5, 14 SM=20, 1
BIJLAARD STRESS ANALYS!$ FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TAhK T.055/T.056, N022LE F I N P U T 0 A T A P ML MC MT VL VC MA M8 STRESS (LBS) (IN.LBS) (IN.LBS) (IN.LBS) (LBS) (LBS) (FT.LBS) (FT.LBS) LEVEL 1 hh5 b 5khhh b hhh8$b bhhb hh5$b 5$9b5[hkbbkhIb b bb 2 231.0 14352.0 3228.0 852.0 554.0 149.0 .011240356.0 SE VESTHK VESOIA C1 C2 SHAPE SCALE SM PRESSURE BEND R (IN) (IN) (IN) (IN) FACTOR 1 (KSI) (PSI) (IN) 1 .420 480.188 2.875 2.875 CIRCULAR .000 20.0 5.0 .000 2 .420 480.188 2.875 2.875 CIRCULAR .000 20.0 5.0 .000 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 3 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE F SCE 26426 NEW 4/90
NES&L DEPARTMENT I CALCULATION SHEET ="n&" ,Ax m, 2 n Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION CCN No. CCN -
/
{
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE WASIL M. EL.AKILY 10/12/93 JUN GAoR Q . 10/12/93 l
l l
CASE 1 VESSEL DIAMETER = 480.188 INCHES C1 = 2.875 INCHES C2 = 2.875 INCHES GAMA = 571.652 BETA 1 = .005 BETA 2 = .005 l
=**
C0MBINED $TRE55 I N T E N 5 I T Y, S (K S !), AT === l l
INWARD EhD OF LONG. MCM. OUTWARD END OF LONG. MOM. INWARD END OF CIRC. MOM. CUTWARD END OF CIRC.
MOM.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL l
MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY
.4200 .43.87 31.43 42.13 29.34 12.27 10.43 9.22 -8.42 MAXIMUM PRIMARY MEMBRANE STRESS IhTENSITY 10.22 10.22 9.91 9.91 1.24 1.24 1.14 1.14 1
BIJLAARD STRESS ANALYSIS FOR CYLINOERS ME101/M10 5. C. Edison 01/27/93 RQ1456 PAGE 5 LOCAL STRESS ANALY$l$ FOR CCW TANK T 055/T.056, N0ZZLE F CASE 1 THIS CALCULATION IS FOR A LUG ON STRA!GHT PIPE MAX IMUM PRIMARY P I PING STR ESS INT ENS !1 Y..........................-.... 3.2 (KSI)
MAXIMUM PRIMARY LOCAL MEMBRAN E STRESS INTENS!TY....................... 10.2 (KS!)
MAXIMUM COMBINED PRIMARY MEMBRANE STRES$ INTENSITY.--.................' 13.4 (KSI)
A L LOWA8 LE ( 1. 500 Sm ) . . . . ... . . .. -.. . .. . ... . .. . ..... . .... . .... ... . ... . 30.0 (K$!)
1 B1JLAARD STRESS ANALYSIS FOR CYLINOERS ME101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 6 LOCAL STRESS ANALYSIS FOR CCW TANK T 055/T.056, h022LE F CASE 2 VESSEL DIAMETER = 480.188 INCHES C1 = 2.875 INCHES C2 = 2.875 INCHES GAMA = 571.652 BETA 1 = .005 BETA 2 = .005 e
SCE 26-426 NEW 4/90
NES&L DEPARTMENT l
CALCULATION SHEET =","oiCNF- se' PAm,ne CCN CONVER$!0N Project or DCP/ MP SONGS 3 Calc No. M-DSC-269 CCN No. CCN -
subject See Title Sheet Sheet No. 70 REV ORIGINATOR OATE !RE DATE. REV ORIGINATOR DATE IRE 1 DATE NA81L M. EL-AKILY 10/12/93 JUNGAORp(,. 10/12/93 COMB!NEO STAESS I N T E N $ I T Y, 5 (K $ !). AT ***
INWARD END OF LONG. MOM. DUTWARD END OF LONG. MOM.
MOM. INWARD END OF CIRC. MOM. OUTWARO END OF CIRC.
VESSEL THICKNESS OUTSIDE INSIDE OUTSICE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F $ HELL OF SHELL OF SHELL OF SHELL OF SHELL
................ OF SHELL OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY 4200 43.87 31.43 42.13 29.34 12.27 10.43 9.22 8.42 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY 10.22 10.22 9.91 9.91 1.24 1.24 1.14 1.14 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 01/27/93 RQ1456 PAGE 8 LOCAL STRESS ANALYS!$ FOR CCW TANK T.055/T.056, N0ZZLE F CASE 2 THIS CALCULATION IS FOR A LUG ON STRAIGHT P!PE MAXIMUM SECONDARY PIPING STRESS INTENSITY.............................
4.6 (KSI)
MAXIMUM PRIMARY PLUS SECONDARY LOCAL MEMBRANE STRESS INTENSITY......- 43.9 (KSI)
MAXIMUM COMBINED PRIMARY PLUS SECONDARY MEMBRANE STRESS INTENSITY..... 48.5 (KS!)
AL LOWAB L E ( 3. 000 Se ) .. . .. . . . . . . . . . . - . . . . . . . . . . . . . - .. . . . . . . . . . . . . .. . . 60.0 (KSI) 1 BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 9 LOCAL STRESS ANALYS!$ FOR CCW TANK T.055/T.056, N0ZZLE F SUPHARY TABLE (KSI)
P! PING LOCAL CASE PRIMARY SECONDARY PRIMARY SECONDARY COMBINED ALLOWABLE MAX SHEAR ALLOWABLE
+ PRIMARY 1 3.2 .0 10.2 .0 13.4 30.0 .0 .0 2 .0 4.6 .0 43.9 48.5 60.0 .0 .0 1
OCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::,:M" . ,A,E n o,2 7 9 CCN CONVERSION
- , Project or DcP/MMP SONGS 3 cale No. M-DSC-269 CCN No. CCN -
subject See Title Sheet Sheet No. 7/
REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE 1RE DATE NABIL M. EL-AK!LY 10/12/93 KN GAOR h[, 10/12/93
'l
)
i i
i BIJLAARD STRISS ANALYSIS FOR CYLINDERS MC101/M10 S. C. Edison 01/27/93 RQ1456 PAGE 11 1
ME101LS version M10 stop on 01/27/93 at 17:14:57 ME101LS version M10 run time .00 seconds a
.j 1
a i
f SCE 26-426 NEW 4/90
l l
NES&L DEPARTMENT CALCULATION SHEET ="nN N0F" ,Au m, m Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN CONVERSION CCN NO. CCN -
[
f subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REVl ORIGINATOR DATE !RE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR , 10/12/93 l
l
- 5. Tank T055/56 - Nozzle G 1
BIJLAARD STRESS AAALYS!$ FOR CYLINDERS mil 01/M10 5. C. Edison 01/27/93 RQ3318 PA~a E 1 LOCAL STRESS ANALYSIS FOR CCW TANK T-055/T.056, N0ZZLE G I N P U T D A T A
........1........2........3.....-..4-...-..-5...-..--.6...-....-7........8 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE G 2 LOC 3 VD=480.1875,VT=0.53,C1=2.375,C2=2.375,$HA=CIR, 4 P=122,VL=1088,VC=167,ML=15852 MC=4788,MT=840, 5 CAS.SO, 6 MA=11240356, 7 FO 5 8 SM=20, 9 LDC 10 P=122,VL=1088,VC=167,ML=15852,MC=4788,MT=840, 11 CAS=SE.
12 M8=11240356, 13 PD=5, 14 SMa20, 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ3318 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE G I N P U T D A T A P ML MC MT VL VC MA MS STRESS (LBS) (IN.LBS) (IN.LBS) (IN.LBS) (LBS) (LBS) (FT.LBS) (FT.LBS) LEVEL I 122.0 15852.0 4788.0 840.0 1088.0 167.011240356.0 .0 50 2 122.0 15852.0 4788.0 840.0 1088.0 167.0 .011240356.0 SE VESTHK VESDIA C1 C2 SHAPE SCALE SM PRESSURE BEND R (IN) (IN) (IN) (IN) FACTOR 1 (KSI) (PSI) (IN) 1 .530 480.188 2.375 2.375 CIRCULAR .C00 20.0 5.0 .000 2 .530 480.188 2.375 2.375 CIRCULAR .000 20.0 5.0 .000 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 01/27/93 RQ3318 PAGE 3 r
LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZILE G j SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =ns." ,AG m 0, m ;
CCN CONVERSION Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN No. CCN -
4 subject See Title Sheet Sheet No. 7 3' REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL.AKILY 10/12/93 JUN GAOR Q , 10/12/93 i
CASE 1 VESSEL O!AMETER = 480.188 ]NCHES C1 = 2.375 INCHES C2 = 2.375 INCHES
, GA N = 453.007 BETA 1 = .004 BET /.2 = .004 -
1 l
- =*
C0M8INE0 $ TRESS I N T E N 5 I T Y, 5 (K $ !), AT *==
l INWARO END OF LONG. MOM. OUTWARO END OF LONG. MOM. INWARD END OF CIRC. MOM.
MOM. OUTWARD END OF CIRC.
VESSEL THICKNESS OUTSICE INSIOE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL
................ OF SHELL OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECONDARY STRESS INTENSITY
.5300 36.74 30.29 36.03 29.55 -12.62 11.13 11.65 10.51 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY 7.99 7.99 7.87 7.87 1.25 1.25 1.49 1.49 1
BIJLAARD STRESS ANALYSIS FCR CYLINCERS ME101/M10 5. C. Icison 01/27/93 RQ3318 PAGE 5 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T 056, N0ZZLE G CASE 1 THIS CALCULATION IS FOR A LUG ON STRAIGHT PIFE MAXIMUM PRIMARY PIPING STRESS INTENSITY......................... .....
2.5 (KSI) max! Mum PRIMARY LOCAL MEMBRANE STRESS INTENSIT1.........-.-...-...--.. 8.0 (KSI) max 1 mum COMs!NEO PRIMARY MEMBRANE STRESS INTENSITY................-... 10.5 (KS!)
1 ALLOWABLE ( 1.500 Sm )..-.--------.--.....----.....------ .........-..
30.0 (KSI)
BIJLAARD STRESS ANALYS!$ FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ3318 PAGE 6 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE G CASE 2 YESSEL O!AMETER = 480.188 INCHES C1 = 2.375 INCHES C2 = 2.375 INCHES GA N = 453.007 BETA 1 = .004 BETA 2 = .004 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =M.m .Ac m o, m Project or DCP/MHP CCN CONVERSION SONGS 3 Calc No. M-DSC-269 CCN No. CCN -
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV CRIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUNGAOR$(, 10/12/93 COMBINED $ TRESS I N T E N 5 I T Y, 5 (K S !). AT ***
INWARO END OF LONG. MOM. CUTWARD END OF LONG. MOM.
MOM. INWARD END OF CIRC. MOM. OUTWARD END OF CIRC.
VESSEL THICKNESS OtTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTS!0E INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL
................ OF SHELt. OF SHELL OF SHELL OF SHELL MAXIMLN PRIMARY PLUS SECONDARY STRESS INTENSITY
.5300 -36.74 30.29 36.03 29.55 -12.62 11.13 11.65 10.51 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY 7.99 7.99 7.87 7.87 1.25 1.25 1.49 1.49 1 l BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/27/93 R03318 PAGE 8 LOCAL STRESS ANALYSIS F1R CCW TANK T.C55/T.056 N0Z2LE G CASE 2 THIS CALCULhTION IS FOR A LUG ON STRAIGHT PIPE MAXIMUM SEl'ONDARY PIPING STRESS INTENSITY..........-.................. 3.7 (KSI)
MAXIMUM PRIFARY PLUS SECONDARY LOCAL MEMBRANE STRESS INTENSITY....... 36.7 (KSI) 1 MAXIMUM COMB;NED PRIMARY PLUS SECONDARY MEMBRANE STRESS INTENSITY.....
40.4 (KSI) l 1
ALLOWABLE ( 3,000 Se )...-...........--.....-.......-................. 60.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR ("YLINDERS ME101/M10 S. C. Edison 01/27/93 RQ3318 PAGE 9 l
LOCAL STRESS ANALYS!$ FOR CCW RANK T.055/T.056, N0ZZLE G l l
SUPtdRY TABLE (KSI)
PIPING LOCAL CASE PRIMARY SECONDARY PA IMARY SECONDARY COMBINED ALLOWABLE MAX SHEAR ALLOWABLE
+ PRIMARY 1 2.5 .0 8.0 .0 10.5 30.0 .0 .0
, 2 .0 3.7 .0 36.7 40.4 60.0 .0 1
.0 SCE 26-426 NEW 4/90
NES&L DEPARTMENT
- CALCULATION SHEET =
- ,:Mf,3 s . ,A, 7, ,, 3 7y Project or DCP/MMP SONGS 3 calc No.
CCN CONVERSION M-DSC-269 CCN No. ccN -
Subject See Title Sheet
) Sheet No. 7 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN CAOR [/, , 10/12/93 1
a BIJLAARD STRESS ANALYSIS ,0R CYLINDERS ME101/M10 S. C. Edison 01/27/93 RQ3318 PAGE 11 ME101LS version M10 stop on 01/27/93 at 17:33:18 4
ME101LS version M10 run time .00 seconds I
l d
r i
SCE 26426 NEW 4/90
NES&L DEPARTMENT ,
CALCULATION SHEET ==M m .
,A0Ef . g o, m Project or DCP/MHP SONGS 3 Calc No. M-OSC-269 CCN CONVER$10N /
CCN No. CCN . /
subject See Title Sheet Sheet No. '
REV ORIGINATOR CATE !RE DATE REV ORIGlWATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN CAOR k 10/12/93
- 6. Tank T055/56 - Nozzle H 1
BIJLAARO STRESS ANALYSIS FOR CYLIN0ERS ME101/M10 S. C. Edison 01/25/93 PP3443 PAGE 1 LOCAL STRESS ANALYSIS FOR CCW TAN ( T 055/T.056, N0ZZLE H I N P U T 0 A T A
........1........2........3........4........5..-..----6..---..-7.-....-.8 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T-056 N0ZZLE H 2 LOC 3 VD=480.1875,VT=0.53.C1=4.5,C2=4.5,$HA=CIR, 4 P=291,VL=1265,V =476,ML=43740,MC=15912,MT=1380, S CAS=SO, 6 MA=11240356, 7 PD=5, 8 SM=20, 9 LOC 10 P=291,VL=1255,VC=476,ML=43740,MC=15912,MT=1380, 11 CAS=SE.
12 M8=11240356, 13 P0 5, 14 SM=20, 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/25/93 PP3443 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE H I N P U T 0 A T A P ML MC MT VL VC MA M8 STRESS (LBS) (IN.LBS) (IN.LBS) (IN.LBS) (LBS) (LBS) (FT.LBS) (FT.LBS) LEVEL 1 291.0 43740.0 15912.0 1380.0 1265.0 476.011240356.0 .0 50 2 291.0 43740.0 15912.0 1380.0 1265.0 476.0 .011240356.0 St VESTHK VES0!A C1 C2 SHAPE SCALE SM PRESSURE BENO R
(!N) (IN) (!N) (IN) FACTOR 1 (KS]) (PSI) (IN) 1 .530 480.188 4.500 4.500 CIRCULAR .000 20.0 5.0 .000 2 .530 480.188 4.500 4.500 CIRCULAR .000 20.0 5.0 .000 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/25/93 PP3443 PAGE 3 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE H SCE 26-426 NEW 4/90
CALCELYT5$^ IdHEET =~ , ~ %." ,Ax y 0, 2. m Project or DCP/ HHP CCN CONVERSION /
SONGS 3 Calc No. M.DSC-269 CCN No. CCN - [
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE l
NA8IL M. EL.AKILY 10/12/93 JUN GAOR
%. 10/12/93 l
l
' CASE 1 1
VESSEL DIAMETER = 480.188 INCHES C1 = 4.500 INCHES C2 =
GAmA = 453.007 4.500 INCHES l BETA 1 = .008 BETA 2 = .008 1 COMBINED STRESS I N T E N 5 I T Y, 5 (K S !), AT *** l l
INWARD END OF LONG. MOM. OUTWARO END OF LONG. MOM. INWARD END OF CIRC. MOM. OUTWARO END OF CIRC.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE i (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL l ................ l l ..... .......................................................................................................
MAXIMUM PRIMARY PLUS SECONCARY STRESS INTENSITY
.5300 50.10 41.02 48.56 39.37 21.80 19.10 19.34 17.47 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY i 11.47 11.47 11.20 11.20 1.90 1.90 l 1.73 1.73 1
BlJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/25/93 PP3443 PAGE 5 LOCAL STRESS ANALYSIS FOR CCW TANK T-055/T.056 N022L" H CASE 1 THIS CALCULATION 15 FOR A LUG ON STRAIGHT PIPE MAX IMLN PR IMARY PI P ING STRESS IN TEN S ITY..................-...-........
2.5 (KS!)
MAXIMUM PRIMARY LOCAL MEMBRANE STRESS INTENSITY.................-.....
11.5 (KS!)
MAXIMUM COM81NED PRIMARY MEMBRANE STRESS INTENSITY....................
14.0 (KS!)
1 ALLOWABLE ( 1.500 Sm ).............................................--. 30.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS MEIC1/M10 S. C. Edison 01/25/93 PP3443 PAGE 6 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T-056, NO22LE H CASE 2 VESSEL DIAMETER = 480.188 INCHES C1 = 4.500 INCHES C2 = 4.500 INCHES GAWA = 453.007 BETA 1 = .008 BETA 2 = .008 SCE 26 426 NEW 4/90
l NES&L DEPARTMENT CALCULATION SHEET =I % w
~
,Aco g 0, y.,
CCN CONVERSION Project or DCP/MiP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN -
subject See Title Sheet Sheet No. 7b REV ORIGINATOR DATE IRE DATE REV ORIG!hATOR DATE IRE DATE l
l NA8IL M. EL-AKILY 10/12/93 K N GAOR h , 10/12/93 l
r C0MBINED STRE$5 !NTENSITY, 5 (K S !), AT ***
INWARD END OF LONG. MOM. OUTWARD END OF LONG. MCM. INWARO END OF CIRC. MOM. OUTWARD END OF CIRC.
MOM.
VESSEL THICKNESS OUTS!0E INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL
==-=...............................................................................................
MAX! MUM PRIMARY PLUS SECONOARY STRESS INTENSITY
.5300 50.10 41.02 48.56 -39.37 21.80 19.10 19.34 -17.47 MAX! MUM PRIMARY MEMBRANE STRESS INi[NS!TY 11.47 11.47 11.20 11.20 1.90 1.90 1,73 1.73 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 01/25/93 PP3443 PAGE 8 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE H CASE 2 THIS CALCULATION IS FOR A LUG ON STRAIGHT P!PE MAXIMUM SECONDARY PIPING STRESS INTENSITY............................. 3.7 (KSI)
MAXIMUM PRIMARY PLUS SECONDARY LOCAL MEMSRANE STRESS INTENSITY....--- 50.1 (KS!)
MAXIMUM COMBINED PRIMARY PLUS SECONCARY MEMSRANE STRESS INTENSITY..... 53.8 (KSI) 1 ALLOWABLE ( 3.000 Sm ).........-...................................... 60.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 01/25/93 PP3443 PAGE 9 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T-056, N0ZZLE H S'JPHARY TABLE (KS!)
P! PING LOCAL i CASE PRIMARY SECONDARY PRIMARY SECONDARY COM8INED ALLOWABLE MAX SHEAR ALLOWABLE j + Pk! MARY I 1 2.5 .0 11.5 .0 14.0 30.0 .0 .0 l 2 .0 3.7 .0 50.1 53.8 60.0 .0 .0
, 1 l
l 1
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::::MPs ,Acq, ,, m Project or DCP/MMP SONGS 3 CCN CONVERSION ,/
Ca'ac No. M-DSC-269 CCN NO. CCN -
[
Subject See Title Sheet Sheet No. 79 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUNGAOR[f, 10/12/93 BIJLAARD STRES$ ANALYSIS FOR CYLIN0ERS ME101/M10 S. C. Edisor 01/25/93 PP3443 PAGE 11 ME101LS version M10 stop on 01/25/93 at 16:34:43 ME101LS Version M10 run time .00 seconcs 1
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =134 5 .
,AsE g 0, ry CCN CONVER$10N Project or DCP/MMP SONGS 3 Calc No, M-DSC-269 CCN No. CCN -
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL.AKILY 10/12/93 JUN CAOR k , 10/12/93
- 7. Tank T055/56 - Nozzle J 1
BIJLAARD STRESS ANALYS!$ FOR CYLINDERS ME101/M10 S. C. Edison 02/17/93 H05443 PAGE 1 LOCAL STRES$ ANALYSIS FOR CCW TANK T 055/T.056, N0ZZLE J
! N P U T 0 A T A 1
........ 1........ 2........ 3........ 4........ 5........ 6........ 7........ 8 l 1 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T-056 N0ZZLE J 2 LOC 3 V0a480.3125,VT=0.3125,C1=4.5,C2=4.5,$HA=CIR, 4 P=93,VL=1183,vC=90,ML=8976,MC=1236,MT=2040, 5 CAS=50, 6 MA=31847675, 7 PO=15, 8 SM=20, 9 LOC 10 P=93,VL=1183,YC=90,ML=8976,MC 1236,MT=2040, 11 CAS=SE.
12 M8=31847675, 13 PO=15, 14 SM 20, 1
BIJLAARD STRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/17/93 N05443 PAGE 2 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE J l
l I N P U T 0 A T A 4
P ML MC MT VL VC MA MB STRESS 4
(LBS) (IN.LBS) (IN.LBS) (IN.LBS) (LBS) (LBS) (FT.LBS) (FT.LBS) LEVEL I 93.0 8976.0 1236.0 2040.0 1183.0 90.031847676.0 .0 $0 2 93.0 8976.0 1236.0 2040.0 1183.0 90.0 .031847676.0 SE VESTHE VESOIA C1 C2 SHAPE SCALE SM PRESSURE BEND R (IN) (IN) (IN) (IN) FACTOR 1 (KSI) (PSI) (IN)
, 1 .312 khb55h khbb 5$5bb b5RChlkR hbh hhh khh hhb
- 2 .312 480.312 4.500 4.500 CIRCULAR .000 20.0 15.0 .000 1
1 B1JLAARD STRESS ANALYSIS FOR CYLIN0ERS ME101/M10 S. C. Edison 02/17/93 H05443 PAGE 3 4
LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T.056, N0ZZLE J
- CASE 1 SCE 26 426 NEW 4/90
N l
NES&L DEPARTMENT CALCULATION SHEET = M0f" ,Asi g 0, , y CCN CONVERSION /
Project or DCP/MMP SONGS 3 Calc No, M-DSC-269 l CCN No. CCN - [
Subject See Title Sheet Sheet No. b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE l NABIL M. EL.ARILY 10/12/93 JUN GAOR % , 10/12/93 VESSEL O!AMETER = 480.312 INCHES C1 = 4.500 INCHES C2 = 4.500 INCHES GA mA = 768.500 BETA 1 = .008 BETA 2 = .008
- COMB!NED STRESS I N T E N S ! T Y, 5 (K $ I), AT ***
INWARO END OF LONG. MOM. OUTWAR0 END OF LONG. MCM. INWARO END OF CIRC MOM. OUTWARO END OF CIRC.
MOM.
VESSEL THICKNESS OUTSIDE INSIDE OUT$10E INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELt. OF SHELL OF SHELL OF SHELL OF SHELL
-- __.......... OF SHELL MAXIMUM PRIMARY PLUS $!CONDARY STRESS INTENSITY
.3125 30.01 17.69 29.02 16.31 5.78 4.73 4.17 -3.67 MAXIMLN PRIMARY MEMBRANE STRESS INTENSITY 7.88 -7.88 7.68 7.68 . 95 . 95 1.52 1.52 BIJLAARD $ TRESS ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/17/93 H05443 PAGE 5 LOCAL STRESS ANALY$15 FOR CCW TANK T.055/T.056, N0ZZLE J CASE 1 THIS CALCULATION IS FOR A LUG ON STRAIGHT P!PE MAXIMUM PRIMARY PIPING STRESS INTENSITY............................... 12.5(KSI)
MAXIMUM PRIMARY LOCAL MEMBRANE STRESS INTENSITY....................... 7.9 (KSI)
MAXIMUM COMBINED PRIMARY MEMBRANE STRESS INTENSITY......-.......--.... 20.4 (KSI)
AL LOWAB L E ( 1. 500 Sm ) ...-. . . . . . . . . . - . . . . . - . . . . . . . .. .. . . . . . . . . ... - . . . . 30.0 (KSI) 1 BIJLAARD STRES$ ANALYSIS FOR CYLINDERS ME101/M10 S. C. Edison 02/17/93 H05443 PAGE 6 LOCAL STRESS ANALYSIS FOR CCW TANK T-055/T.056, N0ZZLE J CASE 2 VESSEL O!AMETER = 480.312 INCHES C1 = 4.500 INCHES C2 = 4.500 INCHES GA M A = 768.500 BETA 1 = .008 BETA 2 = .008 I ***
C0MB1NED $TRE$5 INTENS!TY, 5 (K $ 1), AT ***
3CE 26 426 NEW 4/90
NES&L DEPARTMENT 1 CALCULATION SHEET '=ru;/u ,Am 0,7,y CCN CONVERSION Project or DCP/MP SONGS 3 Calc No. M-DSC-269 CCN No. CCN -
Subject See Title Sheet Sheet No. l REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUNGAOR((,. 10/12/93 l
l l
INWARO END OF LONG. MOM. OUTWARO ENO OF LONG. MCM. INWARO END OF CIRC MOM.
MOM.
CUTWARO END OF CIRC.
VESSEL THICKNESS OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE OUTSIDE INSIDE (INCHES) 0F SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL OF SHELL MAXIMUM PRIMARY PLUS SECCNCARY STRESS INTENSITY
.3125 -30.01 17.69 29.02 16.31 5.78 4.73 4.17 -3.67 MAXIMUM PRIMARY MEMBRANE STRESS INTENSITY
-7.88 7.88 7.68 7.68 .95 . 95 1.52 1.52 BIJLAARC STRESS ANALYSIS FOR CYLINDERS ME101/M10 5. C. Edison 02/17/93 H05443 PAGE 8 LOCAL STRESS ANALYSIS FOR CCW TANK T.055/T-056, N0ZZLE J CASE 2 THIS CALCULATION IS FOR A LUG ON STRAIGHT PIPE MAXIMUM $ECONDARY PIPING STRESS INTENSITY...-.....-----..-.-..---.----
18.3 (KSI)
MAXIMUM PRIMARY PLUS SECONDARY LOCAL MEMBRANE STRESS INTENSITY....... 30.0(KSI)
MAXIMUM COM8INED PRIMARY PLUS SECONDARY MEM8RANE STRESS INTENSITY-.--. 48.3 (KSI) 1 ALLOWABLE ( 3.000 Sm )..........---.-----...---..--..--.....-......... 60.0 (KSI)
BIJLAARD STRESS ANALYSIS FOR CYLINDERS MEIO1/M10 S. C. Edison 02/17/93 H05443 PAGE 9 LOCAL STRESS ANALYS!$ FOR CCW TANK T-055/T.056, N0ZZLE J SUMMRY TABLE (KSI)
PIPING LOCAL CASE PRIMARY SECONDARY PRIMARY SECONDARY COMBINED ALLOWABLE MAX SHEAR ALLOWABLE
+ PRIMARY 1 12.5 .0 7.9 .0 20.4 30.0 .0 .0 2 .0 18.3 .0 30.0 48.3 60.0 .0 .0 SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =NJv v ,,u u 0r 2 7-:-
Project or DCP/MMP SONGS 3 Calc No.
CCN CONVERSION M-DSC-269 CCN No. CCN -
subject See Title Sheet sheet No.
REv ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN GAOR [l, 10/12/93 8.5 Allowable Maximum Out-of-Roundness Per ASME Code, Subsection ND-4224 (Reference 2), the difference in inches between the maximum and minimum diameters at any cross section shall not exceed 1% of the average diameter, or D under consideration or ,,/100,.where D.,, is the average diameter of the PPMS tank 12" whichever is less. The same Code Subsection also specifies that diameter should be measured 6 ft or one plate width from top or
- bottom junctures, respectively.
It follows that:
D,y, = 480 + 0.2278 = 480.2278" where the average wall thickness is 0.2278" per Appendix A of this calcualtion.
It follows that the tolerance is given by:
0,,,/100 = 480.227/100 = 4.8" Therefore, the maximum allowable difference in cross-sectional diameters is 4.8" (0.4').
A survey of SONGS-3 tank, T055, was performed for roundness at elevations 7' above the bottom and 6'below the top. Results of the survey (Reference 26) are attached in Appendix D. These results can be summarized as follows:
a) At elevation 7'from the bottom:
Maximum diameter = 40.07',
Minimum diameter = 39.96' b) At elevation 6' below the top:
Maximum diameter = 40.10',
Minimum diameter = 39.90' The above measurements correspond to a maximum out-of-roundness of 0.2' (2.4"),
which meets the ASME Code requirements calculated above.
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET 1;;:,; m s e ' ,Ax u o,m l
Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCH CCNVER$10N cch ho. CCN -
f
,/
subject See Title Sheet Sheet No.
REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE NASIL M. EL-AKILY 10/12/93 10/12/93 JUNGAORf{
APPENDIX - A PPMS DESIGN REPORT I
a l
, SCE 26-426 NEW 4/90 eA.
Tccu F SGS P SS o f 2.79
'th<eh B'S
~
f Report No.: SIR-92-063
) :
Oggaan M - O TC 6 og Revision No.: o Feb ry 59 l O-Class as I E
- O " _ _j_'/10[q j M1 k- -__'it/,./9(
i ,.
1 i
i Evaluation and Modification
! of i Primary Plant Make-Up Storage Tanks for
)
SONGS, Units 2 & 3 i
i t
i Prepared for: -
4 Southern California Edison Company i
Prepared by:
Structural Integrity Associates, Inc.
Y j
i
-. Ik A. i. Kuo
. .. en>
i ff' ,
Reviewed by: . M Date:
R. A. Mattson j .
i i
1 -
i DITEGRITT Assocum:sec i
GC Al /
Sheeb dc. suPM,3dgrr -
Tecw F 56T,PE6orc27j? ggg g M - Dsc- 2.4 9 ANWON Table of Contents W N.M *C1sh
- ONE_Isfy)y Section m_ N ' SEFEI//*N5 Pace 1 1.0 PURPOSE . . . . , . . . . . . . . . .
........ 1-1 2.0 RESULTS AND CONCLUSIONS . . . . . . . ........ 2-1 3.0 ASSUMPTIONS . . .
.................. 3-1 4.0 DESIGN INPUT . . .
.................. 4-1 5.0 METHODOIDGY '
.................. 5-1
6.0 REFERENCES
.................. 6-1
,7. 0 NOMENCLATURE .
.................. 7-1 8.0 SEISMIC EVALUATION OF EXISTING TANKS .
8-1 l 8.1 I 8.2 General Design Information on Existing Tanks Weight Calculation ' .. 8-1 I
. . . . . . . ........ 8-2
- 8.3 Seismic Evaluation of the Existing Tank Design . 3-2 i
) 9.0 Evaluation of Modified Tanks . . . . . ........ 9-1 9.1 Proposed. Modification to the Cylindrical Tank .
9.2 . 9-1 Seismic Evaluation of the Reinforced Tank . ... 9-1 q
10.0 Qualification to ASME Code Design Rules ....... 10-1 10.1 Tank Shell Design
. . . . . . . ........ 10-1 10.2 Botton Design
. . . . . . . . . ........ 10-2 10.3 Roof Design 10.4 . . . . . . . . . . . ....... 10-2 10.5 Reinforcement of Shell Nozzles . . ....... 10-4 Code Stress Limits of Tank Shells 10-5 10.6 10.7 Stran7th of Bolts . . . . . . ........ . ....... 10-6 Code. Stress Limits of Ring-Type Anchor Chair . . 10-7 11.0 Reconciliation with 1989 Edition ASME Code . .....
11-1 11.'1 Material .
11.2 Design . . . . . . . . . . . . . . ....... 11-1 11.3 . . . . . . . . . . . . ....... 11-1 4
11.4 Fabrication and Installation .
Examination . . . . . . . ....... 11-1 11.5 Testing . . . . . . ....... 11-2 11.6 Overpressure . . Protection
. . . . . . . . . . . ....... 11-2 11.7 Welding . . . . . . . . . . . . ....... 11-2 11.8 Stamping . . . . . . . ....... 11-2
. . . . . . . . . . . . ....... 11-3 SIR-92-063, Rev. O i 4
l sheeb 6] '-
ZccN F-56S, l'97 of 371 l
- 12.0 Figures . . . . . . . .
CCNI ;
............... 12-1 I j Figure l i
, 1 Large Vertical Tank . . . .
............. 12-2 2 (a) Design Basis Earthquake Horizontal Acceleration Response Spectra at Node 1, Elevation 9'0" of Auxiliary Building (13] . . . . . . . . . . . . ............. 12-3 2(b) Design Basis Earthquake Vertical Acceleration Response l
Spectra at Node 1, Elevation 9'0" of Auxiliary Building
{
(14] . . . . . . . . . . . . ............. 12-4
]
3(a) Operating Basis Earthquake Vertical Acceleration Response Spectra at Node 1, Elevation 9'0" of Auxiliary Building (15] . . . . . .. . . . . . ............. 12-5 3(b) Operating Basis Earthquake Vertical Acceleration Response Spectra at Node 1, Elevation 9'0" of Auxiliary Building (16] . . . . . . . . . . . . ............. 12-6 4 Typical Anchor Bolt Chair .
............. 12-7 5 Reinforcement Design of PPMST ............ 12-8 6 Reinforcement Requirement of Tank Opening . . . . . . 12-9 7 Convective Mass (a,) and its Elevation (H,) (20] . . . 12-10 8
Parameters of the Mechanical Model (20] . . . ... . 12-11 9
i Mechanical Model of a Flexible Tank (20] . . . . . . 12-12 10 Buckling-stress Coefficient C, for Unpressurized Curved Panels subjected to Axial Compression (22] . . . . . 12-13 11 Increase in Axial-compressive Buckling Stress Coefficient for curved Panels Due to Internal Pressure (22] . .. . . 12-14 12 Correlation Factors for Unstiffened Unpressurized Circular Cylinders subjected to Axial Compression (22] 12-15 13 Increase in Axial-compressive Buckling-stress coefficient for cylinders Internal Pressure (22] . . . . . . . . 12-16 14 Shear-Tension Interaction Limits of Bolts in the Modified PPMSTs (17] . . . . . . . . . - - - - - - - - -
. 12-17 suprummer -
CAWHO y- t> cc. 2 ' 9
, REVISION -
sy e re- e--t ggg II/P/9t SIR-92-063, Rev. O 11 m f. c . ,,,,y, / gj R easunNavnAL
CCN' Attachment .A -
overturning Moments and Shears at various Liquid Levels Attachment 8 -
............. A-1 l Diamond-Shape Buckling Stress Limits . . . . B-1 Attachment C - )
\
Cases of ASME Boiler and Pressure vessel Code C-1 Attachment 0 -
Examination Reconciliation with the ASME Code . . .0-1 ..
- 7. cc n f 6 0 , F ' = ' ^l--
s'n r. Se c i 2 7 'i-m- .
cugge _M - O rc-269 nagggDII---
gys "-rn^ - m ho/n, - u CHECK B. H- #
DATE //*SS l
t 6
4 1 .
i 4
i /
e
- SIR-92-043, Rev. O iii i
{bbhf List of Tables Table g
10-1 Reinforcement Requirement of Tank Penetrations. . . . . . . . 10-9 TCC N f- S$5, I'f9 CE E7-9 Sheeb gg summaser- -
CALC 100 M - OSC- 2 6 9 REVIBION EYk'P - C W- -.: m?/Jo)Ls
~
CHECKED- N DATE h J 1
l SIR-92-063, Rev. O iv DrfBGIIITY Assocum:s rc
CCNI 1.0 PURPOSE The two Primary Plant Makeup Storage Tanks (PPMST) ornia at Sou 4 Edison's (SCE) San Onofre Nuclear Generating ,Station (SONGS)
Units 2 and 3 were originally designed to American Petroleum Institute (API) Standa
, 5th Edition; and constructed and tested to API Standard 650, nce 5th 3). These tanks were originally classified as Seismic Class . SCE 11 desires to upgrade its PPMS tanks at SONGS 2 and 3entsto Se
(
in order to qualify these tanks as ASME Section III
, Class 3 tanks. Also, SCE desires to evaluate the PPMS tanks for the issues related ory to l
Commission (NRC) Unresolved Safety Issues (USI) A-46. l This report provides the i re-qualification analysis of the PPMS tanks at SONGS 2 and 3 as ,
Class 3 tanks and the resolution of the USI A-46 issues.
1 Q N l'- 5 / f, P */U C E 3 7 'l l SH r. 90 sumamur -
eggg M - o rc-2.6 9 REVWION a .u. e- o-~. ,wien CHECIWD. } 6- 04fEI[
I 4
4
. /
SIR-92-063, Retr. 0 1-1
l 1
CCNI 2.0 RESULTS AND CONCLUSIONS The existing PPMST design does not meet all requirements contained l in the Generic Implementation Procedure (GIP) i (17]. It is recommended that the existing PPMST be reinforced with thirty-six l (36) vertical stringers and thirty-four (34) additional anchor bolts around the circumference of the tank, the existing anchor
}
chairs be removed and replaced by a new, stronger, ring-type anchor i chair, and annular pad plates as illustrated in Table 10-1 be added i
to the man-hole penetration of the tanks. Details of the tank j
modification are described in Section 9.1 and Figure 5 of this j report.
It is shown in this report that the reinforced tanks meet !
j all the requirements of the GIP (17] except for the fact that water j
i inside the tanks might slosh against the roof. However, the i
existing tank roof design was shown to be adequate to withstand the additional internal pressure caused by sloshing. Finally, a ,
reconciliation study on the PPMSTs with the 1989 Edition of the ASME Code concludes that the existing PPMSTs may be classified as ASME Section III, Class 3 tanks, provided that (1) the Certified l Material Test Reports (CMTRs) and original material examination j
records can be recovered, (2) the existing fillet welds (instead of
) full penetration welds required by the ASME Code) at tank shell to bottom. plate junctions of the PPMSTs be accepted, (3) compliance with the roundness requirements per ND-4220 of the ASME Code can be i
i assured, (4) the testing procedures provided by ASME Code ND-6000 j
are followed, and (5) the procedures specified in Appendix B of
} NBIC (21] are implemented. Jc.c N F 5(r, P91 c F 2 79 j
Shech 9 )
summawr -
gg M-Dsc 2 69 REVISION y k.x, . ri.m- naugullo/U CHECIGD DEE I
SIR-92-063, Rev. 0 2-1
Sbceb i D N ~ Ub ! _
JCc})f.5/4 ?92 d37C/ ~
3.0 ASSUMPTIONS N_
y ya p v n. njp g ,
CHEclgn T C The following assumptions were made in Ma evaluation:m "/ldDll '
\
l (1) The maximum operating temperature of the PPMSTs is 120*F and l the maximum ambient' temperature is 110*F as required by (2).
l (2) The tank foundation is uncracked and has a compressive strength (ff) equal to or greater then 4,000 psi as required by (11).
1 (3)
The tanks are constructed on a " thick" concrete foundation.
Therefore, further soil-structure interaction effects (i.e.,
shear wave velocity of soil) will not have to be considered.
(4) Material properties of the additional anchor bolts will be the same or comparable to the existing anchor bolts from an evaluation standpoint, namely material ductility, ultimate strength, Young's modulus, and yield strength.
(5) The circularity tolerance requirements of ND-4220 of the ASME Code are satisfied. The tanks have to meet the circularity tolerance requirements to be qualified as'ASME Code Tanks.
(6) One horizontal and one vertical earthquake need to be considered, with response combined by the Newmark procedure (25). That is, 100% of the horizontal earthquake will be combined with 40% of the vertical earthquake (25].
(7) The existing bolts and the additional bolts share the loads according to the ratio of their sizes.
(8) Weight of the reinforcement stringers (see Section 9.1) is negligible compared with weight of the overall tank.
1 SIR-92-063, Rev. 0 3-1
. . , _. ~
l j 4.0 DESIGW INPUT t
The.following data were used as design input in the evaluati on:
Name of the Tank
- Primary Plant Makeup Storage Tank original Constr. Code :
! API-650, 5th Ed. + Supp. #1 (1) original Design Code
! : API-620, 5th Ed. + Supp. il (1) !
Applicable ASME Code : Section III, Class 3, Tank Size 1989 Ed. (19)
Roof Size 40 feet dia., 34 feet high [3 thru 9]
t :
R=48 feet, Self-Supported, Dome (4) capacity
- 300,000 Gallons (2) gHg Content Specific Gravity : 1.0 (2) $$
Design Temperature * : 180*F (2) Summaggr_ - er Al /
-i Maximum External Temp. CALCIgM-OSC-24 9
- 110*F (2) AngDIl- ' '
Maximum operating Temp. '
- 12 0'F (2 ) ' ' DM Design Pressure : Atmospheric (2) M E d.
L y~"fic(g Tank Material :
SA-240," Type 304 (3) J6c d [ Sci. ,"QWT2 7 Chair Material
- A-36 (3)
Anchor Bolt Material
- A-7 (A-307) (10)
Joint Efficiency : 0.85 (1, 19]
original Stress Report : [1]
original Tank Spec. : (2) original Design Drawings : (3 thru 12)
==5;cse Spectra curves :
(13 thru 16) and Figures 2 and 3 Tank Schenetics : Figure 1
+- Actual design Wyh Per FcM loWF. F-15M M fw 9% 10 400 3 is I2.O*F }$% wer,vs.kke censer In akI cakJaden, a desiy bemys-a+M *f y tA.Le d -
See App.,d<*w b, SWt 2 29 SIR-92-063, Rev. 0 4-1 e
\
5.O METHODOIDGY l l
The evaluation procedures contained in Chapters 4, 5, and 7 and Appendix C of the GIP.(17) were used to assess seismic design of the existing PPMSTs.
The GIP is developed by SQUG (Seismic Qualification User's Group) based on EPRI's reports (25]
for resolving the Unresolved Safety Issue A-46. There are twenty-one ;
(21) steps in the GIP procedures, including capacity checks of tank shells, anchor bolts, top plates and stiffener plates of !
anchor chairs, and sloshing height. Since the tanks have to be modified and the GIP procedures are not directly applicable to reinforced tanks, alternate but compatible methods were used to evaluate the reinforced tanks. In evaluating the lower portion of the tanks, the additional stringers were smeared into the tank j shell and an equivalent thickness was used in the evaluation.
Methods specified in ASME Code Case N-284 (18) and two books by Baker, et al (22,23) were used to check seismic design of the higher elevations of the reinforced tanks. Evaluation of the higher elevations of the tank is not required by the GIP. The analysis method developed by Haroun (20) for seismic evaluation of flexible tanks was used to confirm the overturning moment and shear at the bottom of the tank calculated per the GIP (17] method, and to calculate overturning moments and shears at higher elevations of the tank.
Haroun's paper (20] is the basis of overturing moment and shear force calculations in the GIP (17].
sheeb qy sumampr-- er Al /
CALC NO -M- Osc 2.6 c/
REVISION--
BY# - W-A-- 04E"/10/7?
CHECKED M' _ DATEhd 76c N f-HL f' % f : 7'1 SIR-92-063, Rev. 0 5-1
l l
1 6.O REFERENCES 1.
l
" Design Calculations for Primary Plant Make-Up Tank", Brown-
{ Minneapolis 3-97-0. Tank and Fabricating Co. , January 1975, SO23-407-2.
Tanks for the San Onofre Nuclear Generating Station
& 3 ", SO23-4 07-3, February 22, 1974, including Addendum No. 1
. dated AddendumMay No. 30, 31974, Addendum No. 2 dated December 16, 1974, i i
October 13, 1975, dated April 16, 1975, Addendum No. 4 dated Addendum No.
Addendum No. 6 dated March 3, 1977,5and dated March 11, 1976,
) July 16, 1981. Addendum No. 7 dated 4
i 3.
Tank Drawing, S023-407-3-61-2, Rev. 3, 1975. Neeb T[
} 4.
Tank Drawing, SO23-407-3-62-3, Rev. 2, 1975.
5.
_(y M f i
Tank Drawing, SO23-407-3-63-3, Rev. 3, 1975. CALCNON -2> sc-2. 4 4 6.
Tank Drawing, SO23-407-3-64-1,'Rev. 1, 1975.
j 7. gy u - o. m iMof.
. Tank Drawing, SO23-407-3-65-1, Rev. O, 1975. g
- 8.
Tank Drawing, S023-407-3-66-1, Rev. O, 1975.
_7g ,g l
9.
Tank Drawing, SO23-407-3-67-1, Rev. 1, 1975. ZCct) (-565, i$sdZ 7 '!
3 10.
Anchor Bolt Schedule, Drawing No. 20009, Rev. 2, 1976.
i 11.
Auxiliary Building Plan, Draw'ing No. 25000, Rev. 17, 1983.
12.
Auxiliary Building Plan, Drawing No. 25170, Rev. 10, 1978.
- 13. SONGS 2 &3 Rev. O, 1973.DBE Horizontal Response Spectra, SO23-SK-S-689, Seismic Structural Response Sepctra."Also in SCE 1, Calc. C-281-1, Rev.
" SONGS-2/3 14.
SONGS O, 1973.2 & 3Also DBE vertical Response Spectra, SO23-SK-S-690, Rev.
in SCE Calc. C-281-1, Rev. 1, " SONGS-2/3 Seismic Structural Response Sepctra."
- 15. SONGS 2
& 3 OBE Norizontal Response Spectra, SO23-SK-S-713, Rev. O, 1973. Also in SCE Calc. C-281-1, Rev. 1, " SONGS-2/3 Seismic Structural Response Sepctra."
16.
SONGS O, 1973. 2 & 3 OBE Vertical Response Spectra, SO23-SK-S-714, Rev.
Also in SCE Cnic. C-281-1, Rev. 1, " SONGS-2/3 Seismic Structural Response Sepctra."
- 17. " Generic Implementation Procedure -(GIP) for seismic
- Verification 2/14/1992, SQUG..
of Nuclear Plant Equipment", Rev. 2, Corrected SIR-92-063, Rev. 0 6-1 Ecc
i
! 1 13.
{
i Methods", Reaffirmed July 30,ASME 1989. Code case N-284, "
{
19; ASME Boi .
j Edition, ler and Pressure vessel code, Section III, 1989 20.
{
M. A. Haroun, " vibration Studies and Tests of Liquid Storag i
i e
Tanks",
11, pages Earthquake 179-206, 1983. Engineering and Structural Dynamics, Vol.
j '21.
National Board Inspec*. ion Code, ANSI-NB-23, Revision 7 , 1989.
i
- 22. E. H. Baker, L.
j Kovalevsky, and F. L. Rish,
! Analysis of shella, McGraw Hill Book Company, 1972.structural ~
{ 23.
}
i E. H. Baker, et al, shall Analysis Manual, NASA CR-912,1967 .
24.
j ANSI /AWWA D100-84, AWWA Standard for Welded Steel Tanks for t
Water Storage, American Water Works Association, 1985.
1_ 25.
1 j
Plant EquipmeEPRI NP-5228-SL, Revision 1, " Seismic Verification o ,
Exchangers", nt Anchorage, June, 1991. Vol 4: Guidelines on Tanks and Heat i -
4 26.
i i
Construction, Inc., 9th Edition, 1970." Manual of Steel Const t 27. E. H. Ga i Handbook"ylord and C. N. Gaylord,
" Structural Engineering i
t
, 2nd Edition, McGraw-Hill Book Co., 1979.
i
_ -R N i i
gp w1-bSC- 26 *l M
gp k - E/-^- m M ]'11
- - r-c- %/q
- I i
5117. %
1 J[L,p,l ,V- $h5,s $0 5 i
l l .
4 i
- SIR-92-063, Rev. 0 6-2 i
Sheen ?] & ~DN$
Z&&N ff6.5, ?-7 7 c # NT ~
- 7.0 NOMENCLATURE 7.1 From Reference 17
- CHECKED- W. mQ, 3
A, -
- Cross-sectional area of embedded anchor bolt (in.2) a -
Width of chair top plate parallel to shell (see Figure 4) biU*)
I b -
Depth of chair top plate perpendicular to shell
. (see Figure 4) bi"*)
c -
Thickness of chair top plate (see Figure 4) [in.]
! c' -
j Coefficient of tank wall thicknesses and lengths under stress (dimensionless)
, d -
J Diameter of anchor bolt (in.] l E, -
Elastic modulus of tank shell material (psi)
E, -
Elastic modulus of anchor bolt material (psi) e -
Eccentricity of anchor bolt with respect to shell outside surface (see Figure 4) (in.]
F -
Frequency [Hz]
F, -
Allowable tensile stress of bolt [ psi)
Ff -
Frequency of fluid-structure interaction mode [Hz]
F, -
Reduced allowable tensile stress of bolt [ psi)
F, -
Sloshing mode frequency (Hz]
f -
Distance
,see
(
from Figure 4) outside edge of chair top plate to edge of hole (in.]
f -
- Minimum specified yield strength of shell, chair, saddle, or base plate material (psi]
G -
Acceleration of gravity (385.4 in/sec8 ]
g -
Distance between vertical :!ates of chair (see Figure 4) Ein*3 N -
Height of fluid at the mas;assi level to which the tank will be filled (see Figure 1) (in 3 -
SIR-92-063, Rev. 0 , 7-1
__ __ _ _ . .c _ _ . . . _ _ .- __ _ ._ _
{ f)
- h 9 4 $
sw- r/ A cateeso M-DSC .2.s 9 RE M a ost I gyf * /
- 2'l-K lifle)<f),
H' -
N Height of tank shell (see rigure 1) [in.] d"4 M h -
Height of chair (see rigure 4)
! [in.]
h, -
Effective length of anchor bolt being stretched (usually from top of chair to embedded anchor plate) (see rigure 1) (in.]
h* Height of (see shell rigure compression zone at base of tank (usually height of chair) 1) [in.]
h, -
Height of freeboard above fluid surface at the maximum level to which the tank will be filled (see Figure 1) [in.]
h, -
Slosh height of fluid in tank (in.]
h,' -
Slosh height of fluid for a ZPA of Ig applied at tank base [in.]
.1 Thickness of chair vertical plate (see rigure 4) [in.] I k -
Width of chair vertical plate (see rigure 4).
Use average width for tapered plates [in.]. -
M -
Overturning moment at base of tank (in-lbf]
M' -
Base overturning moment coefficient [dimensionless]
M, -
Overturning moment capacity of tank [in-lbf)
M' , - Base overturning moment capacity coefficient [dimensionless]
N -
Number of anchor bolts [dimensionless]
P, -
' Fluid pressure at base of tank for elephant-foot buckling of tank shell [ psi)
P,' -
Pressure coefficient for elephant-foot buckling [dimensionless]
P, -
Fluid pressure at base of tank for diamond-shape buckling of tank shell [ psi]
P,' -
Pressure coefficient for diarnond-shape buckling [dimensionless]
1 SIR-92-063, Rev. 0 7-2 w
M ASSOCUMEINC
l l
P, -
Q -
Allowable tensile load of anchor bolt [lbf]
Shear load at base of tank (1bf]
Q' -
Q, -
Base shear load coefficient [dimensionless]
! Base shear load capacity of tank (lbf]
R -
i i
Nominal radius of tank (in.] (see Figure 1) r -
sectional area about a centroidal axis (in.]Le 4 .
S -
Coefficient
[dimensionless]
of tank radius to shell thickness R Sa - ,
400 tf Spectral acceleration of ground or floor (g]
Sa, -
j Spectral acceleration (4% damping) of the ground or floor on which themode interaction tank (F,)
is mounted (g) at the frequency of the fluid-stru
[ Sa, -
j Spectral acceleration (1/2% damping j of the ground or floor on which (F,) (g] the tank is mounted at the fre)quency of the slos
)
t"
{ Thickness of the tank shell averaged over the linear height
\ the tank shell (H') (in.]
j t -
3
- Thickness of bottom or base plate of tank (see risure 4) t,f - (in.)
j
. Effective thickness of tank shell based on the mean average thickness (t,) and the minimum thickness (t,,) (in.)
t,,, -
j Minima shell thickness anywhere along the height of the tant shall (H'), usually at the top of tha tank (in.]
! t' -
i Minimum shell height thickness (H') (in.] of the tank shell in the lowest los i
Cheeb fq 3
i
. sammmew -mv / ~
CAlceso?-Dsc-2.s of . --
sy?* - U Qg tyfoff, l CH5can N omE3 1
SIR-92-063, Rev. o 7_3 J u N [-56Sj $ d/377 N
t c
shech l00 M~ N cgg ggo N - D CC 2.6 *1 1C d N V 5dC fled dD7'l gy M o- W gag!!M93
- CHECK W N- DME#/'6/fY, t,
Thickness of leg of weld (in.] '
I t' -
Equivalent shell thickness having the same cross-sectional area as the anchor bolts (in.]
V, -
Average
[ft/sec) shear wave velocity of soil for tanks founded at grade W -
Weight of fluid contained in tank (1bf]
W, -
Weight of tank without fluid [1bf]
W" '
Average shear load on weld connecting anchor bolt chair to tank shell per unit length of weld (i.e., total shear load on chair
' divided by total length of chair /shell weld) [1bf/in. of weld]
Z -
Tank shell stress reduction factor [dimensionless]
ZPA -
Zero period acceleration [g]
8 -
Percentage damping [5]
7 -
Buckling coefficient [1 - 0.73 (1 - e*)] [dimensionless]
! 7, -
Weight density of fluid in tank (1bf/in3 ]
A7 -
Increase factor for internal pressure a -
Stress at a point [ psi]
a, -
Stress at'which shell buckles (psi]
a, -
Stress at which shell buckles in elephant-foot pattern [psil ag -
Stress at which shell buckles in diamond-shape pattern [ psi]
a, -
Yield strength of tank shell material [ psi]
d -
Buckling coefficient ((I/16)Ut/t,)ut] [dimensionless) i l
l j SIR-92-063, Rev. O 7-4 e__
bCh /O/
[ 7.2 From Reference 18: O Sy>'- A n-4 i Laen "h*Hf 4
i_
_mqq"/j.fgk l
. 3 L C td F-5 6 5 , P i l :.= 5 7 ?'
i t= 4, e, or +# earmpondag to m
== or stress cosoponent, cucum-
}'
ferential 0-.k or stress component, and in-plane shear stress component, re-specamly.
i t= 1 or 2 cormpondag to 4 to e ancm i
whe'e,I comsponds to the larger vahne and 2 cormponds to the smaDer vaine.
l i
J= L K G comsponding to local backhag i W "a: of sheu plate between suse-nors or boundanes), stringer baciding i W" :between rings of thesheHplate
' and ==*ew w;4 boa! segreners, and general instability (overau coDapes), re-i 8Pectively.
) ,
de= cross sectional area of stitrener (no ef.
factive sheH included), sq in.
i C,= elasoc buckling coefEcients.
' = var Et i
Co., Cu= elastic bucklmg coeScients in hoop di-recuan for cylinders under uniform ex-i t '
i
/
SIR-92-063, Rev. 0 7-5 IllTEGRITY ASSOCIATESINC
..-- - - ~.- - - - . - - _ . . . - - - . _ - - - . . - . . _ - . . - . -
j ternal pressure. c. = 0 and r. =
0.5e,, respectively.
i E= modulus of elasticity of the material at .
n= number of waves into which shei buckle inin.the circumferential dir
, Design Tempera:ure. psi. R a shell radius,
/5= Factor of safety,
} G= E R,= radius to centroidal axis of the combi i
j 2(1 y ) stifener and effective width of sh R , R.= efective stress radius for toroidal I,= moment of inertia of stirener in the i ellipsoidal shells in the 6 and & direc.
direction, about iti centroidal axis, in.' tions respectively,in. !
j Ig;= moment of inertia of stisener plus ef.
fective width ofshellI,, about centroidal t= shell thickness, in.
- 1. i., t., " A. . A, ,
! axis of combined section, in the i direc.
{ =
tion, in. E *'E tt0.5(t..- t,)
! t.,t :,= distance from centerline of shell to cen.
'A + t,,t //
i f 12 troid ofstisener(positive when stiseners
- J,= torsional constant of stirener, in.' are on outside), sn.
1 a,= capacity reduction factors to account for i I= overall length of cylinder, in. the diference between ef==e=1theory j 4,= length of cylinder between bufhe or and predicted instability stresses for fab-
- lines of support with suf5cient stifness ricated shells (a, = a,c).
to act as bulkheads, in. Lines of support Th" plasticity reduction factor.
A X= wR wR j which, feners act as bulkheads include end stif-j a cir- "T~' E cumferential line on an unstiffened head A,= the lowest multiples of the pebucklin at one. third the depth of the head from stress states ej, and e, which cause the head tangent line, a ctrcumferential linear bsfurcation buckling.
line at point of embedment in or an- p= Poisson's ratio.
! chorage to a concrete foundation. and e,= e= lent ='=t membrane stress components
! . the cylinder to head junction when the due to applied loads, psi. ,
g !
- head is designed in accordance with this e = theoretical elastic instability stresses,
! Case for stiffened heads. ~
psi. j i
i L,= one. half of the sum of the distances 4, e.,=ampli6ed stress components to be used
! on either side of an end stisener, in. for clasne buckhng stress evaluation.
t,= rHa--~ in i daracuan terween lines of psi. _
j . support, in. A line of support includes = e, . IT/a, j
- any inw u ie size stisening ring a,= amphnari stress components to be used which satisnes the requirements of this j
} for i=1=== backhng stress evaluations, '
pai.
Case in addmon to the lines of support included in the c'^W2 forI,. = r.h),
t,= one. half of the sum of the distances /, e, ew=theorencal clastic h*=@hy stressa in ,
on eitherin.siide of an intermediate size the hoop diracuan for c !
stiffener, external pressure, a. =ylinders under 0 and e. = i t ,= effective width of sheH seting with the 0.5 r., respectively, pai.
stiffener in the / direcuen, in.' e,= tabulated yield stress of material at De. ,
" 1.56 ~~JTt tales otherwire noted. sign Temperature, psi. i M*f/JRt i
M,=/,i47 ~
p .T fCL M= smaller of M. and M, m - WAl I \
m= number of half waves into which shell N E p.,ogc 2 4 will buckle in the mendianal daracuen.
ftEVISION gy N. A r L A . l thETE 'Il#I#1 i CHECISD b'- 7
__thEFE 'YV5l SIR-92-063, Rev. 0 7-6 N' #
ST WCTUBAL c l
. . - - ~ _ . . - - . . . - - - - --.--- - . - . . - _ - _ - - _ = , . . - __- . -
9heer 403' O c.,c., N f*fff, f>M3 S/07 7 8488M S W R U N I CARA800 M-osc- 264 8.0 ftEVISIGII SEISMIC EVAIDATION OF EXISTING TANKS gys,w,r5-A.' M 3 1
8.1 , General Design Information on Existing Tanks CHECKS NbDAdh
- Design rules contained in ND-3800, " Design of Atmospheric Storage
! Tanks", of Section III of the ASME Code (19) were used to requalify the PPMSTs.
The input parameters are listed in Section 4.0 of this report. A schematic of the PPMST with key dimensions is illustrated in Figure 1.
8 .,2 Weight Calculations I.
(a) Roof (W,)
8 = Sin-E 48
= 24.6243' (see Figure 1) e Af = 2x Rjsin9'd6 = 189,576 incha (R = Roof Radius =48') .
F, = p,A ft, = 0 . 2 83
- 189 , 57 6
- 0 . 2 5 = 13 , 413 Lbf l where $ is the angle measured' from the top of the roof, A, is the total area of the roof plate, p, is the weight' density of steel, and t,,
is the roof thickness.
(b) Tank (W,)
g* * ,
0.1875 *240.75 +0.25 408 *71. 625 +0.3125 *95.625 = 0.227 8 We = p ,2 s R ,R 'em = 0.283 *2n *24 0 *4 08 *0.227 8 = 39,664 Lbf
' where R, is the radius of the tank, H' is the' height of the cylindrical part of the tank, and to is the average plate thickness of the tank wall.
(c) Product (W,)
W, = yfzR*H = 0. 0361** *240 = 3 84 = 2,508,481 Lbf s
SIR-92-063, Rev. 0 8-1
i -
ll where Yf is the weight density of the content of the
! tank; and H=384 inches (2) is the maximum fluid level of the tank.
[
I .
8.3 Seismic Evaluation of the Existing Tank Design j
j Effects due to both the CBE and DBE need to be addressed . Design j procedures provided by the Generic Implementation Procedure (GIF
!; (17] for the DBE will be used to perform the earthquake evaluation of the PPMST.
l Terminology used in the following evaluation steps
! are all according to the GIP (17).
(Step 1) Input Data i From Design Input specified in Section 4.0 of this report i R = 240 inches ,
t H' = 408 inches 3
i tg = 0.1875 inches t, = 0.3125 inches '
oy
= 29,000 psi (SA-240, Type 304 at 120 'F (19])
, h, = 12.75 inches .
E, = 28.03 x 10' psi (Table I-6.0, Austenitic, 120*F (19 ] )
1 V, = average shear wave velocity 4
The maximum operating tesperature of 120'F (2) was used as the metal temperature of the tanks. The soil shear wave velocity is intended for evaluating soil structure f interaction (SSI). However, the PPMSTs are inside a
{ building on a thick concrete foundation. Therefore, V, will not be considered further (see Section 3.0).
{ sH *T IW
! Tf = 0.0361 Ibf/in3 SWFFWMK __ g g [
{ H = 384 inches (1,2]
gg M-OSC-2 6 9 h, = 34.15 inches (see Figure 1)
N = 36 g
j gy# #. r/ A--
- gggf' /*/13 CHECM D '-
DATEhhh
- SZR-92-063, Rev. 0
- 8-2 L&C N f-SSSi f/N of 7'I 4,
4
- i t
q d = 1.5 inches (10]
h, = 40.75 inches (10) i E !
h = 29.28 x 10' psi (Table I-6.0, Carbon Steel,110'F) j The temperature.
bolt maximum environment temperature of 110'F was used as the I
l (Step 2] Parameters H/R = 384/240 = 1.6 i t,/R = 0. 3125/24 0 = 0. 0013 t** = 0. 3125 *9 5. 6 25 +0. 2 5 *71. 6 2 5 +0.187 5 *24 0. 75 408 = 0.2278 inches i
i tg = - *" =
2 _0. 2272 8 +0.1875 = 0. 2077 inches g h ch /O f; 4
t g/R = 0.2077/240 = 0.000865 .
- 1 5a 4 - *f a =
= 1.7671 inch 2 SUPPER WIT OM 2 000 M-osc 2 di9
- navmon-2 ," 22*240*28.03 = 0.044 inches
- 8Y #* # ~ G M
- DATE-
. CHECKED 3 6 CS e OATEk
,~ " 0.044*12.75 "
C,h3 0.3125*40.75 * ~
s W = 2Ra#yf = 2 *240a*384 *0. 0361 = 2,508,481 Lbf i The applicable ranges of parameters specified in Table 7-1 of the GIP (17) are satisfied, except for the t /R ratio, g range.
which falls below the 0.001 to 0.01 applicable
- However, it is judged, based on the trend from a
0.01 to 0.001, to be conservative to use the curves for t g/R=0.001 for the present evaluation.
(Step 3) Tank Frequency ,
- From Table 7-3 of the GIP (17] for R = 240" and R/R = 1.6, F, = 7. 58 Hz s '
SIR-92-063, Rety. 0 8-3
Sheef /0 (3 5 cc t/ F. 5!s . /%/ c/ 3 '/-7 suusemany.-Cf Al /
CALCIIO M-Osc 2.6a F,(s, f) = 7 58 * (28. 03/3 0) 8 5 = 7. 3 3 Hz Period = '1/F, = 0.136 seconds E ~ '
IMEI #M CHEC W Pd- DATE/rol53 (Step 4) Spectra Acceleration From the SONGS 2 & 3 seismic leading spectra (see Figures 2 and 3), it is found that, at 4% damping for DBE and 2%
damping for OBE, S , = 1.15 g (DBE) l S,, = 0.75 g (OBE)
Thus, the DBE evaluation will be bounding, because'the DBE load is 1.53 times (1.15/0.75 per (18)) the OBE load, but the OBE buckling factor-of-safety is only 1.49 times (2/1.34 per (18)) the DBE factor-of-safety.
(Step 5) Base Shear Load From Figure 7-3 of the GIP (17), corresponding to H/R=1.6 .
and t,,/R=0.001, Q#=0.71 Q = Q' W S,, = 0.71*2,508,481*1.15 = 2,048,175 Lbf '
(Step 6) Base overturning Moment From Figure 7-4 of the GIP (17), at H/R = 1.6, M' = 0.345 M ='M' W H S,,= 0.345*2,508,481*384*1.15 = 382,172,097 in-Lbf (Step 7) Bolt Tensile Capacity L = 27.5 inches (11)
D = 1.5 inches (11]
From Table C.3-1 of the GIP (17),
P,,, = 50. 4 * (1. 5/1. 375) 2 = 59. 98 kips V = 25. 25 * (1. 5/1. 375) 2 = 3 0. 05 kips S ,,= 17.375*(1.5/1.375) = 19 inches Itain = 13.75*(1.5/1.375) = 15 inches E,,, = 12.125*(1.5/1.375) = 13.25 inches SIR-92-063, Rev. 0 8-4 INTEGRITY l ASSOCIATESINC
Shec& t o 70f= 79
.2xRe sumauer - /'r Al /
S= _2x *243 N-
- D **
36 *I"'
N-j ee o- w w ,i
.( = Radius of Bolt Circle = 243 inches y.g l .
E = 22'6"-20'3"= 27" inches > E,,, [12) _
L
- h'n 7
- per [11), f', = 4000 psi > 3500 psi 1ccaf.su,Pte7or;hn Patt = P
= 59.98 kips (No reduction factor is required for f[=4,000 psi per [11) and Assumption (2) in Section i
3.0 of this report)
V,g g = V = 3 0. 05 kips P, = P,gt = 59,980 lbf i
Fb= P/A, = 59,980/1.7671 = 33,943 psi Since, in the GIP [17), the base shear is assumed to be j taken by the friction force between.the tank bottom and the foundation [25), the bolts are under pure tension.
i Thus, ,
there is no need to check the shear-tension interaction limits. *
[ Step 8) Top Plate (see Figure 4) o= (0. 37 5 g-0. 22 d) P.
1 fca
, (0. 375 =2. 5-0. 22 *1. 5) *59,9 80 0.9375*0.875a 4
j =. 50,765 psi
'I t
- o>f y = 35,680 psi (SA-36 material at 110*F [19]
i Thus, the design of the top plate 'of the anchor chair is j not adequate, and 4
F,=F(3 ) = 23,857 psi i ,
,~
i i
i a
l SIR-92-063, Rev. 0 8-5 N
INTEGRITY ASSOCIATES HC
1 (step 9) Tank Shell stress enemmenamnet - (I Al ) .-
! = 1 cent 1- Dsc-24 9 0.177a cy e N- ~ .
gy N M .r/.LL i
f' CHGCRED- b b~
gig l
{
. 1 h*hy i 0.177 *6. 5 =0. 25 ( _ 0. 25 ya y i
= 0.979 V240*0.3125 0.3125 $jf7, f og h
~
S cc N f-srs, Plc P of 279 i
l 1
j
, , fg g 1.32:
{ c,a 1.43ab8 ._0.031)
RCs + (4 ah 8T1/3 b
, 59,980*2.6875 g 1.32*0.979 0.031
{
1 0.3125 ._
)
i
' = 64,647 psi 1.43 *6 . 5 *12.7 5: + (4 e6. 5 240*0.3125 *12.75a}
V240*0.3125 a/a j
i l,
i i
i, o>f y i
F, = F, (f/c) = 33,943*(29,000/64,647) ='15,227 psi 1
I r
[ step 10) vertical stiffener Plate i
t X = (i.5+1.25)/2 = 2 SM 6 inches i
3 . 2.1.1 0.5 22=5.75 I
i i 95 , 95
$ =15.90 Vf/1000 y 35,680 i,
i i 1,000 .
' /
j SIR-92-063, m . 0 8-6 i
4 i r - r& I i
mm H-Dsc-24 9 k 95 RE M ON Y p 1ooo gy "-"- ri-A ' m lsiv, u CHECKID Yd DATE "! !b!
t
- 0. 04 th-c) = 0.04 * (12. 75-0.875) = 0.475 inches N /O
$ > o.44 th-c) Icc N ! .555 Pic9 :n{
= 59,980 i
2kj 2*3.375*0.5 =17,772 pai < 21,000 psi i The vertical stiffener plate design is adequate.
[ Step 11) Chair-to-Tank Weld (see Figure 4) 4 i
) F"'= P 1 *
% ( a+2h ) 2+ ( ah+0.667ba):
l 1 2.6875
=59,980s$
= 2,055 IAf/. inch ( 6. 5 +2 *12. 7 5 ) 8 + ( 6.S*12.75+0.667*12.75 i
i i .
30600b = 30600* 0.25 = 54 09 > W" 4 4 j
Therefore, the design of the chair-to-tank weld is adequate.
[ Step 12) Elephant Foot Buckling Pressure From Figure 7-7 of the GIP (17], at S,, = 1.15g and H/R = 1.6, P', = 2. 83 6 P, = P', yf R = 2.836 *0.0361 240 = 24.57 psi The above P, value can also be derived by Eq. (2-20) of
- Reference 25. -
/
SIR-92-063, Rev. 0 8-7
f u a f.S/S, l'!!o ei.E7'7 _,
84Eustemr '
[ Step 13) Elephant Foot Buckling Stress g
ceno M 4 7ose-2
- R 240 (
) 81~ gyA'-/*.
4 400C' 400*0.3125 -- N cacao ~>~*- 0 2M3y 1 5 o"=R/0.6E* [1-( P,R ) 2) [1 1.12S+S,15 ) ( 1+c/36000 ,y ff7' 7 j)Q C, cC' ys I 1 +1 24.57*240 1 *
,0.6*23.03*10[gy_(29000*0.3125))gg, 240/0.3125 1.12+1.9215)g )
j = 8,66 8 psi 1.92+1 i,
[ Step 14] Diamond-Shape Buckling Pressure From Figure 7-9 of the GIP [17], corresponding to H/R=1.6 and S.,=1.15, P'd = 2. 063 P, = P', yf R = 2. 063 *0. 0361 *240 = 17. 87 psi Similarly, the Pd value can also,be obtained with Eq (2-
- 20) of (25).
[ Step 15] Diamond-Shape Buckling Stress 16 ) 0.3125
- y = 1 - 0.73 (1-e 4) = 1 - 0.7 3 (1-e-1.732) = 0.399 From Figure 7-11 of the GIP [17],
Ay = 0.15 o E' g = (0.6Y+AV ) R/4
= (0.6 *0.399 +0.15) 28.0
= 14,212 psi
/0.3125 SIR-92-063, Rev. 0 8-8 4
si 1 I : t' ; t MEE
1 T tc d T a s , P/!! <F 3-1 (Step 16) Allowable Buckling Stress
(
4
- o, = 0.72 [ Min (c ,, og) ] = 0.72*8,668 = 6,241 psi
' (Step 17] Bending Moment capacity SdI ll-)
i sunnemy. - CC.A.
The weak link is in ductile failure.
~
MWWOII y M." -z~/ 4 ~ y /u)93 U
( )( * ) = ( 65 ', 2 ) =0.12
)(4 OECIlm-- d' EMUW!Idb i
From Figure 7-12 of the GIP [17), corresponding to c'=0.0458, j M' , = 0.1 Therefore, M, en = M'e , (2Fb ) (R2 t,) (h/h,)
= 0.1*2*15,227 *2402*0.3125* (40.75/12.75) .
= 175,200,071 in-Lbf
- i
[ Step 18] Check Buckling Moment .
M>M,en 2
Therefore, the tank is an outlier per the GIP [17].
[ Step 19] Shear Imad Capacity Q, = 0.55 (1-0.21S,,) W
= 0.55*(1-0.21*1.15)*2,508,481 1 = 1,046,476 lbf
[ Step 20) Check Shear Load Q > Qcar
. Therefore, the tank is an outlier per the GIP [17].
[ Step 21] Slosh Meight i
i SIR-92-063, Rev. 0 8-9 INC
ZC& N f-Sff, PU: cf 3 \
G btCh ll i F, =
g - [.f. N !
-1. 84ptanh ( l' 8'N)
MIGO H-OSC 2 4 9 j REVW000
, 1 1.84*3_86.4 22h tanh ( 1. 84 gy e-*' l'/- A '
240*384 )
j 240 DME2fh .
! j& DME'b'#3 'i;,
- = 0.2732 Rz '
}
(
Sloshing Period = 1/0.2732 = 3.66 seconds
{ S , = 1.5 g at 0.5% damping per Figure 2 h, = 0. 8 37 R S, = 0. 8 3 7 *24 0*1. 5 = 3 01. 32 inches
- l
[ Step 22] Check Sloshing Height l
h, > h, (= 34.15 inches) 1 Therefore, the tank is an outlier per the GIP [17].
1' l
l l l
i i
i 4 .
i i
j i
4 i
/
4 e 4
SIR-92-063, Rev. 0 8-10 BfTEGBITY
. ASSOCUMEINC
Sheet" ll b
,". cc. N f-ESS. Pll3 c 7 2 79
- _ (pok l gg M -Ds c- 26 9 '
! 9.0 fEVMION Evaluation of Modified Tanks gy.d"d** M A
- 1 OM"Nn CHECKED II -
j 9.1 Proposed Modification to the cylindrical T a DATEhd The seismic evaluation presented in Section s.3 of this report
{ indicates that the PPMSTs in SONGS-2&3 l seismic requirements. do not meet the GIP (17]
{ 6.3, As shown in Steps 18, 20, and 22 of Section the existing PPMST design does not provide enough resistance
{ in bending buckling, shear failure, and water sloshing.
! As illustrated in Figure 5, it is proposed that (1) the existing PPMST f be reinforced with thirty-six equally spaced vertical stringers of
{ either the same material as the shall (SA-240, Type 304) or SA-36
{
carbon steel, (2) a circumferential ring (SA-240, Type 304 or SA-
- 36) be added to cap the tops of the vertical stringers, (3) thirty-four additional anchor bolts (A-307 or equivalent) of 1 inches j
or greater in diameter be added, and (4) the existing anchor chairs j be removed and replaced with a ring-type chair around the
{ circumference of the tank. , It is recommended that the same j
j material, SA-36, be used for the top plate and stiffener plates of the ring-type anchor chair, and the top plate thickness be
{
increased from the existing 0.875 inches to at least 1.125 inches.
{- It is also recommended that the thickness of the stiffener plates
{
of the chair be increased from the existing 1/2 inch to 3/4 inches.
The stringers should be 1.375 inches thick, 5 inches wide, and 58 l inches high. To accommodate for the size of concrete drilling
{ tools, it is recommended that the additional new bolts be placed at j
3.6875 inches radially from the tank shell outer surface, which is i
1 1 inch farther out radially than the existing bolts. The design for the velds between the tank shell and the chair top-plate, the l chair top-plate and the vertical stiffener plates, and the
{ stiffener plate to tank bottom should be the same as the existing welds.
The details of other components and associated velding are
! shown in Figure 5. In addition, it is also recommended.per Section I
i.
10.4 that a pad plate of the dimensions shown in Table 10-1 be l
j SIR-92-063, Rev. O 9-1
- i. . _ - . _. . . - . _ ._. . _ . _
i i
i added to the man-hole penetration to meet the AaME -
2.2 Co i
requirements (see section 10.4 of this report for details) .
{ 9.2 Seismic Evaluation of the Reinforced Tank Except for Steps 14 and 15, tanks with reinforcement which are.not directly applicable to j stringers, the !
i 1
provided tanks. by the GIP (17) will be used to evaluate the n orced rei feva
{ The reinforcement stringers were smeared into anentequiva shell thickness and the evaluation of Steps 14 and 15 of th was performed on the smeared-tank shell.
e GIP 4
1 (Step 1) Input Data i Thebecross-sectional area to of the stringers (6.875 inch 3 es ) has i
considered and smeared into an equivalent shell thickness.
inches (-
- The 1~ effective increase in shell. thickne 639 i
- 0.
- 0.1639) rom a tension stress point oi. '
j I view or 0.1676 I as inches from a o' ending stress point of view
(- 5 *1. 375 (242. 5 *Kla (5*+10**1) ] a 3
= 0.1676 ) .
- stringer size of 5"x1", is used in the analysis. Conserva j
I From the Design Input specified in Section 4.0 of this r, repo t f
R = 240 inches i
E' = 408 inehma snr ny 4
1 t w, = 0.1875 inaham t, = 0.3125 inahm. 6'
! CAIA110 M-O sMW t , = Adjusted Tank Shell Thickness N y */ M - El-& ~~ g ylo/t]
ey = =29,000 (0.3125+0.1439) = 0. 4764 inches poi 9
m _ 7lC. gng Yt&V f
l 4
l $cCN f-5G, PN+ n' ? 7'I SIR"92-043, Rev. 0 9-2 L1 %'1$1. '
Che$f 5
h, = 12.75 inches E, = 28.03 x 10' psi v, = average shear wave velocity of soil (will not be used) yf = 0.0361 Lbf/in3 H = 384 inches h, = 34.15 inches (see Figure 1)
N = 70 d = 1.5 inches (existing bolts) d = 1.875 inches (new bolts) h[= 40.75 inches
% = 29.28 x 10' psi (also assumed for new anchor bolts)
[ Step 2) Parameters H/R = 384/240 = 1.6 tgR = 0.4764/240 = 0.0020 g
, 0.3125 *95.6 25 +0.25 *71.6 408 25 +0.1875 4240.75 +0.1194 *72 =0.2488 of , C.,+ Cm, 0. 24 8 8 +0.187 5 -
2 2 = 0.2182 inches t f/R = 0.2182/240 = 0.00091 3 H T / / 5' d 2 4' = *4 = w*1.5 4 = 1.7671 incht g -- 6 M I gg M-Dsc-2 69 A" = x*1.8758 4 = 2. 7612 in8 (new boles) g .
u/p/g 36Al, + 34A*u CHECKED NS DATdII$ b }$
i 4 70 = 2.250 in8 -
.Tc4N f-56S, Pt/Sef & 7'l t' =
G # = 70*2.250*29.28 2xRE, 2x *24 0 *2 8. 03 = 0.109 inches c' = * = 0.109*12.75 t,b3 0.3125*40.75 = 0 .10 91 SIR-92-063, Rev. 0 9-3
1 l
l 8
W = sRalffs = s*240 *384 *0.0361 = 2,508,481 Ibf l
The applicable ranges of parameters specified in Table'7 -
1 of the GIP [17) are satisfied, ratio, which falls below the 0.001except for the tg/R range. to 0.01 applicable
[ However, it is conservative to use the curves for
} t g/R=0.001 for the present evaluation.
i [ Step 3) Tank Frequency From Table 7-3 of the GIP (17),
F, = 7. 58 Hz for R=240" and H/R = 1.6, I F,(s, f) = 7. 58* (28. 03/30) o.5 = 7. 33 Hz L
Period = 1/F, = 0.136 seconds i
t' i
The additional stringers will likely increase the tank j stiffness and thus its natural frequency. But, using the i lower frequency of the existing tank will result in a
! higher spectrum acceleration and, thus, a higher and more
' conservative overturning moment and shear load.
i
[ Step 4) Spectra Acceleration From the SONGS 2 & 3 seismic loading spectra (see Figures
. 2 and 3), it is found that, at 4% dampingr 0# aPImo llb Sg,= 1.15 g (DBE) s.
i Sg = 0.75 g (OBE) .- m _WeMl _-
i NNOM -Os c _2.6 4
[ Step 5) Base Shear Load MMSION .
From Figure 7-3 of the GIP (17), gy #- # E/4* !MTE"h*If3' Q'=0.71 CECKED U d - DATd D' Q = Q' W S g = C.71*2,508,481*1.15 = 2,048,175 Ibf
[ Step 6) overturnitr Noment and Shear at Different Imvels From Attachment A of this report:
i ,
?
~4 j SIR-92-063, Rev. 0 9-4 i
Zcc t) f-sir. ~ii 7 a &7-7 S E* QN '
ll]
ammaa -cri I l _
cuenoM-osc-269 M = W-H S., N h 0 .119 -0. 4 82 2H+0. 49 8 ( ):
gyy-A1.ct& yj,jg Q = W 6*,,
(0.7048 - 0.87 {}
where y is the vertical distance from the bottom of the tank as illustrated in Figure 1.
Thus, the bending moments and shear at levels A, A', B, and C (Figure 1) are as follows:
Level y y/H M (in) Q (in-Lbf) (Lbf)
A 0.000 0.000 382,172,097*
A'# 72.000 2,048,175*
0.1875 237,927,613 1,562,599 B 95.625 0.249 191,414,070 1,408,191 C 167.250 0.436 65,682,921 938,929 l
Set to previous value for consistency. Mrcentage l
.A' of the difference is negligible (<0.01%)
is at the end of the vertical stringers. ~
I
[ Step 7] Bolt Tensile Capacity i
L = 27.5 inches (same as the Section 8.3 value)
D = 1.5 inches (existing bolts)
D = 1.875 inches (new bolts)
From Table C.3-1 of the GIP [17],
P", = 50. 4* (1.875/1.375) 2 = 93. 72 kips (new bolts)
P', = 50. 4* (1.5/1. 375) 2 = 59. 98 kips (existing bolts)
P= 3 6 P "' + 3 4 P" "
70 ' #
V", = 25. 25* (1. 875/1. 3 75) 2 = 4 6. 95 kips (new bolts) l v', = 25. 25* (1.5/1. 375) 2 = 3 0. 05 kips (existing bolts)
V ,= Average Nominal Shear Strength of the Bolts
=
36V + 3 4 V h'
= 38. 2 59 kips SU: 92-063, Rev. 0 9-5 DITEGBITY l ASSOCUmEINC 1
1 S,,,=
17.375*[(1.875+1.5)/2]/1.375 = 21 inches 4,,="13.75*((1.875+1.5)/2]/1.375 = 17 inches E,,,
= 12.125* ( (1. 875+1.5)/2]/1.375 = 15 inches l
S= = ** 3 72 21.2 inches > Sg , (72 is used for the spacing of most bolts. !
only 70.) The total number of bolts is E = 22'6"-20'4"= 26" inches > Eg , (12]
L > 4,3 i f', = 4,000 psi > 3,500 psi Pgg = P , = 76.368 kips Vet "Y a =
38.259 kips P, = Pgg = 76,368 Lbf !
Fb = P/Ab= 76,368/2.25 = 33,941 psi For new expansion anchor bolts, capabilities must equal the values shown above.
TCC f) f-565, r' :; & ? Eb?5 '
[ Step 8) Top Plate (see Figures 4 and 5) N ll
_pg[ \
- a. (0. 37 59-0. 22 d) pu M-DSC-249 fc* t
._(0.375*2.5-0.22*1.5)*76,368 N
= 39,100 psi 0.9375*1.1252 gy #-M E/ & DAFE"//#/f/
EMED I 6.' m'[g ;
l c, > f y
= 35,680 psi (SA-36 material at 110'F)
F, = Pb (
) = 33,491* (35,6 80/39,100) = 30,562 psi l
[ Step 9] Tank Shell Stress For the ring-type chair, the equivalent dimens, ion for "a" is 20.94 inches ( 2 *z *240 ) ,
SIR-92-063, Rev. 0 9-6 INC i
3
~
i th= 0.25 inches (3]
1 i #" II0 0.177ac h g sq f Ca CALCNO M - D SC- 2 49 l'
0.177*20.94*0.25 0.25 Revmow I
v240*0.3125 g 0.3125):q g p. pf ,
= 0.936 _
44rg"/h/c/3
-N i
i g'g3 i
l ,,
Pe u 1.32z g
t ,a 1.43aha 0.031)_
i
. R C,
. {f ,) tf3 ,
i ,76368*2.6875 g_ 1.32*0.936 0.31258 . 0.031 4 1.43*20.94*12.758 )
240*0.3125 + (4 *2 0. 9 4 =12. 7 58) 1/3 V240*0.3125
, = 36,77 0 psi (at existing bolts) f
,, Pe u 1.32z g
1.43aha 0.031) i C,2 R C,
.{f ,) 3,3 g
,76368*3.6875 g 1.32*0.936 j
0.3125 . 0.031 1.43*20.94*12.75a )
240*0.3125 + (4 *2 0. 9 4 *12.7 58) t/3 y240*0.3125 l = 50,452 psi (ac new bolts) 4 Both a are calculated conservatively based on the original shell
! thickness in lieu of the smeared shell thickness.
{' a > f y=29,000 ' psi f F, = Fh (f/ c) = 33,941*(29,000/50,646) = 19,509 psi i
[ Step 10] Vertical Stiffener Plate (see Figure 4) 3 1
- k, (5.5+1.25) /2 =4.5 j 0.75 4
4 SIR-92-063, Rev. 0 9-7
}
l Ec
l .Tcct/ E 565. */?: c f 3 ,7'I c M r. I t o 95 95 yr/1000 y
_ ,13,99 gigppgggg y , & l 35,680
$ 1,000 CALCII0 M-O SC-2 4 9 REMSION. _. ,
3 sy ' C-MaarEEMfl.
95
~
CHEQQED- b - DaTE'((d*M[ '
g$ ]Z/1000 y
)
0.04(h-c) = 0. 04 * (12. 75-1.125) = 0.465 inches j j > 0.04 (h -c) 2$j " 2 *3 75*0.75" ,08 Psi < 21,000 psi e'
j Thus, the vertical stiffener plate design is adequate.
[ Step 11] Cnair-to-Tank Wald i
i 1
- W* = P i % ( a+2h) *+ ( ah+0.667ha )
- 1
=76, 36 8 *$ ( 20. 94 +2 *12.75 ) 8+ (
l' l
= 1,733 Laffin 20.94*12.75+0.667*12.75 2 (at existing bolts) -
J 1
- W* = P
% ( a+2h) 2+( ah+0.667h*)8 1
=76,368*$ '
I
= 1,807 Laf/im ( 20.94 (ae +2new*12.75 bolts) ) 8+ ( 2 0. 9 4 *12.7 5 +0. 6 i
30,600b = 30,600* 0.25 = 5,4 09 Lbf/in > W, i
. 4 4 4
! Thus, the chair-to-tank weld design is adequate.
! SIR-92-063, Rev. 0
' 9-8 DfTEGBITY ASSOCIATES DC
l
[ Step 12) Elephant Foot Buckling Pressure j
From Figure.7-7 of the GIP [17), at S f P', = 2. 8 (calculated per Eq. (2-20) gof= [25)) 1.15g and H/R = 1.6, P, = P', yf R = 2. 8 *0.0361*240 = 24. 26 psi I similarly, the elephant foot buckling pressure for higher i
elevations of the tank can be calculated by subtracting the hydrostatic head from the above pressure:
f
} Level y y/H i P, 3
(in) (nsi)
A 0.000 lcr ?) ffry - < .. g j y .
i 0.000 24.26
) A' 72.000 0.1875 21.66
!; B 95.625 0.249 C 167.250 0.436 20.81 m ~CC M i 18.22 CA14900 M-D5C-249 1
4 REVW0tt
! [ Step 13) Elephant Foot Buckling Stress gy##*O M
, IMrE7#/U g, R ,- 240 '
400c,, 400*0.4764 =1.26 t
j e,= R/ t,,e 1 S y 0 'E [1-(ctyP/se ) ) gy. 1.12 +Sf *5S z)'1g 3 +o /36,000 e
! 24.26*240 1 1.26 + 29 1 2_U . 6 *2 8. 03 *10' gg. (* 29000 0 .4764) )g1, 240/0.4764 {
36
! = 15,191 psi 1.12 +1. 261.s 1.26+1 4
i The adjusted shell thickness of 0.4764 inches is used in
! the above calculations. Similarly, the elephant-foot buckling stresses at higher elevations are as follows:
i i
4 SIR-92-063, Rev. 0 9-9 i '
- 1 $1; I .- t ' ; 4
i I
i.
j Level y
- t, S, e, rin) fin)
A (esi) 0.000 ~0.4764
{ 1.26 15,191(a) 4' 72.000 0.3125 1.92
{ B 9,944 (b) 95.625 0 2500 2.40
{ C 6,485(b)
- 167.250 0.1875 3.20
! (a) 3,543(b) i' (b) smeared thickness was used actual shall thickness were used (Step 14) Diamond-Shape Buckling Pressure
\
{ From and Figure 7-9 of the GIP (17), corresponding to H/R=1 6 5 ,=1.15, .
j '
P', = 2. 063 {
i i
P, = P , YfA = 2. 063 *0. 0361*240 = 17. 87 pai Similarly, the diamond-shape buckling pressure at higher elevations are as follows:
I 3
Level y y/H P, .
fin)
(nsi) l A 0.000 0.000 17.87 A' 72.000 0.1875 15.27 8 95.425 0.249 l 14.42 C 167.250 a,
0.436 11.83 i
(Step 15] Diamond-Shape Buckling stress
! The GIP procedure along with the equivalent thick t,was used l for the evaluation of fluid level A, while Code case N-284 was r.
i used for eva.luating higher elevations.
i g, t 1,7
- $ =M 1 Em= 1.40 a
- Cf Al I
) gg M- 0 sc- 26 #1 y = 1-0.73 (1-e4) = 0.449
_ ~~ -
From Figure 7-11 of the GIP (17), 37 #~ N A
- Ay = 0.12 DM ##M NMDM 8,g = (0.67 + Ay) = 21,680 psi (Levu2 A) 'I c c a f 5 ( 5 , F / J z e / 2 7 SIR-92-0M , Rev. 0 9-10 e
! e I
Mf,fhi g l
This number is less than the 35,110 pai solution obtained according to code case N-284 (See Attachment 8) .
{ B, a From Attachment 1
y is 13,548 psi at Level B and 12,328 at Level C.
I
[ step 16) Allowable Buckling stress l i o, = 0.72 [ Min (o ,, og)) = 0.72*15,191 = 10,938 pai 1
i Similarly, the allowable buckling stresses at higher elevations are as follows:
l 1
Level y y/H o,
i (in)
(esi)
A 0.000 0.000 I 10,938
! A' 72.000 0.1875 7,160 '
{ B 95.625 0.249 4,957 i
c 167.250 0.436 2,551 t
t i
! S tt T. iz 3
[ Step 17) Buckling Bending Moment capacity
-MN i - --
I
! cagggg N-DSc-249 The weak link is in ductile failure. m A* 10,938 12.75 j (.".s)
F, (%) . ( 19,509 ) ( 40.75=)0 .17
- E i
j gggg. 76, m'hf3 From Figure 7-12 of the GIP [17),
l M ' g,, = 0.13 .
ycq pjK l'Md c'# 379 I
Therefore,
- M, an = M'a, (2F,) (R3 t ) (h/h,)
J 4
2
= 0 13*2*19,509*240 *0. 4764 * (40.75/12.75) j = 444,856,583 in-Lbf f .
i j
j SIR-92-063, Rev. 0 9-11 w+m-
, l I
3 capacities at higher elevations are simply g = o,*z*R**c and are tabulated as follows I
l .
Level y y/H My I
i fini (in-Lbf)
A 0.000 0.000 444,856,583 A' 72.000 0.1875 404,888,461 i
B 95.625 ggy
- 0.249 224,249,397 C 167.250 0.436 86,553,391 17; - -C4NIOPZ 79!:
3 g ,
- [ Step 18) Check Buckling Moment
- p. ,g 4 ,,
cascuo R- od/3 j
bN> 1.17 t 7(cy p gg ,
,o y, , ; _ , g
' where M is the overturing moment calculated in (Step 6) ~
of this section. Therefore, the modified tank will not i
buckle in either elephant-foot mode or diamond-shape mode.
(Step 19] Shear Load Capacity It is assumed that the ancher bolts also transfer shear:
Q, = 0. 55* (1-0. 21*S ,) *W + 70 *V,g g/2
= 0. 55* (1-0.21*1.15) *2,508,4 81 + 3 5*38,259
= 2,385,541 lbf The nuaLar 35 (=70/2) is used in the above equation because the shear is distributed sinusoidally around the
- circumference of the tank and the total shear capacity of the bolts is the total number of bolts , times bolt capacity V,gg divided by two. V,g g is calculated in (Step
- 7) of this section.
i
- SIR-92-063', Rev. 0 9-12
1 (Step 20) Check Shear Load bO> 1.16 i
l where Q is the shear force calculated in (Step 6) of this section.
Therefore, the modified tank will not fail due to shear.
Since part of the shear load is now taken by the bolts, it is necessary to check the shear-tension interaction limits per Figuro C.3-2 of the GIP (17) . Both the tensile and i
shear loads distribute sinusoidally around the circumference
{ of the tank. It is required by the GIP (17] that l
Y (P#
ay ) s 1. 0
,1f Va , s 0.3 Y
( P,,, ) + 1. 4 3 ( Va , ) s 1. 4 3 ,if 1 > -
l Va , > 0.3 where P =PJimo, V = VmCose and 6 is the azimuth angle around the circumference of the tank. For the SONGS-2&3 PPMSTs, p, = .2g , 2 *3 82,172,097 = 45,497 LBf NR 70*240 V= 0-0.55*(1-0.21Su) W = 28,620 Lbf 35 where the overturing moment M and the shear force Q are calculated in (Step 6] of this section. Therefore, as illustrated in Figure 14, the bolts satisfy the GIP shear-tension interaction limits (see C.3.7 of the GIP) .
5ttT l 2 7 m -tra I
.,, -esc-2 c4 REMSION gy N A1 -[/.lb ogg U/l*/13 CHECKED
.DME #I!9 .'
.' 3.ccN { Sli, ?!:S ci bl'l SIR-92-063, Rev. 0 9-13 MM DITEGRITY ASSOCIATES DC n
i SPtT- l h //
[ Step 21) Slosh Height Z 71 j
j 1 1.8 mnn m- osc- 2 & cf
\
y, . 3*\ ^4GtW l'84#) R REVISION y x A - c i- 6 oj g l
= 0.2732 Rz
,1 ~;;" <eanne ~;,3~> _ n. au, i
Tcc!J l-fli, fill cf .2 7 5/
Sloshing Period = 1/0.2732 = 3.66 seconds i S = 1.5 g at 0.5% damping per Figure 2 h, = 0. 837 R S = 0. 837*24 0*1.5 = 301. 32 inches
.[ Step 22) Check Sloshing Height h, > h, Therefore, during a DBE event, some of the water in the modified tank might slosh up and exert an additional up-lift pressure on the roof.
However, as shown in Section -
10.0 of this report, the roof design as well as the tank-to-roof welds both meet ASME requirements to withstand the additional internal pressure. The shallower than required free board is likely to restrain the sloshing water from its first mode sloshing and reduce the- overall overturning moment. The total uplift force due to the closhing water is 560,144 Lbf, or 8,002 Lbf per bolt, according to the calculation described Section 10.3. As shown in Figure 14, bolts with the additional 8,002 Lbf tensile load will still satisfy the GIP shear-tension interaction limits calculated in Step 20.
e SIR-92-063, Rev. 0 9-14
- u a
- ifi.sheet,g s m uassm' Cp7cf a 7-7 W800 "~ _
I ;
10.0 Qualification to.AsME Code Design Rules nestgegge. CI AI / '
i gy g # C/ A 04rt M*MIh _.
cHacgge %6" _ o A rg M' /4 g I In addition to the seismic requirements diseta P __; i.,;m im, ;.e, the 'PMSTs must also meet all ASME Code requirements .
10.1 Tank Shell Design Per ND-3324.3(c), which is referred to by ND-3842, the minimu m tank shell thickness should be determined by:
SE - .6P 1
where P is the Design Pressure, R (240 inches) is the inside radius of the tank, s (18,000 psi) is the maximum allowable stress of the tank material at the Design Temperatura per Code Table I 7 2 E (0.85) is the joint efficiency. The joint efficiency is at. ,0.85 and because the original API standards, API-620 and API-650, require only spot examination of the tank welds.
Thus, according to ND-3352 of the ASME Code, the joint afficiency should be 0 85 Since P=0.0361*h ,
psi, where h is the distance in inches from fluid surface as illustrated in Figure 1 minus 12" (ND-3841(a)), the minimumby:tank calculated wall thickness at different levels of the tan 0.0361*h*240 18,000 *0. 85 - 0. 6 *0. 0361*h Thus, at level.s A, B, and C (see Figure 1),the following minimum thic W aam are required:
d Level h (inch) t,,(inch) tm (inch)
C 216.75 8 0.123 0.1875 288.375 0.1633 A 384.0 0.25 0.218 0.3125 SIR-92-063, Rev. 0 10-1
l -
i Thefore, existing ' tank shall thicknesses of the PPMST at SONGS, Units 2 5 3' satisfy the ASME Code minimum wall thickness
, requirements.
( .
i, .
e 10.2 Botton Design l
\
The existing bottom plate thickness of 0.25 inches satisfies the
{ ND-3831 requirement.
) of API-90, the existing Since the PPMSTs were built to the standards foundation satisfies all the code requirements in ND-3831. The existing tank bottom design also
{
satisfies the requirements on method of construction (ND-3832) but
{ does ngt satisfy the shell-to-bottom attachment (ND-3833) requirements, as a full penetration weld is required.
4 10.3 Roof Design t
1 i Per ASME Section III, ND-3856.2, (i) the radius of curvature of the roof must be within the Code specified range, (ii) the roof plate thickness must be within the range specified by the code, and (iii) the cross-sectional area of the top angle, in square inches must be greater than the code minimum value calculated by the code.
3ccN f.Stf , fli:F cf 2 79 '
^ R =. Radius of Curvature of Roof = 48 feet IN tn Plate Thickness = 0.25 inches q _ -- ( f j Q f D = Tank Diameter = 40 Ft 1.2D a R > 0.8D CALCNOMM.(9 REVISION -
0.5 inches > t > (R/200)=(48/200)=0.24 M #~U M _ DATE'l//83 DR , 40*48 1500 1500 = 1. 2 8 inch a "N M ND A
= cross-sectional area of the top angle,
= 2.52- (2.5-5/16) 2 = 1.46 inchest (2)
Therefore, all the, requirements specified in ND-3856, "Snif-SIR-92-063, Rev. 0 10-2 EE RITY MnulNa
i Ycc n f [65. fl19 'of 3 79 I
i
- Supported Dome and Umbrella Roofs", are satisfied. ,
~
{ In addition, the roof has to withstand the additional internal j j pressure 9.2). caused by the water sloshing (see (step 22) of section The vertical mass force exerted by the sloshing water would be
{ the sloshing i (a, in Attachment A) times the maximum vertical
{ acceleration (0.77g for DB2 per (14] and 0.5g for OBE per (16)) .
- The horizontal force due to the sloshing water would be water density times the volume under the roof and above the vertical l
shall times the maximum horizontal acceleration (1.15g for DBE and
! 0.75g for OBE) . l i
f FV, = 0.29*2,508,481*0.77 = 560,144 Ibf i FVa , = 0.29*2,508,481*0.50 = 363,730 Ihf '
From Figure 1, i
i the volume shall can be calculated as between the roof and the vertical l' 34.s 4
- Volume =
[ sR) Sin'4d>
= z *5763 * (-0.75Cos$+ _0.25 Cbs3$) l$'*** 4 g y y,
= 4,814,637 inches 3 sensus, -cN l -
- cmgen? - O sc .269 -
FHg= 0.0361*4,814,637*1.15 = 199,880 Ihf 1 REVWOII-FH g = 0.0361*4,814,637*0.75 = 130,356 Ihf __i S M ' ^ U d ' DEFE b The total force exerted on the roof is simply CHECNB 3 E ' _ DEFE'h 4= :Z: 2 t: -- }
horizontal and the vertical forces. Thus, !
Fm = $94,738 Ibf F = 386,383 Ibf 1
)
Stresses at the tank-to-roof weld is the above . forces divided by j 2*Rtw ,,,where tw =0.1326 inches (4). That is, i
(
.' I l
SIR-92-063, Rev. 0 10-3 !
}
C
7 cc N 7-5/5, P/pe er 379 E d I 2*5 240 0.1326 '
- I
' d" '
2Ex 240 O.1326 Both stressins are auch smaller than the allowable values (35,680 psi for DBE and 19,624 for OBE) per ND-3821.5 of the ASME Code.
The equivalent pressure due to the sloshing water is the total force divided by zR 8 where R is tank radius (3.29 ' psi for DBE and l 2.14 psi for OBE), and the additional membrane stress caused by the pressure is simply **
2xRC' *
- (" * " *
- Thus, the additional membrane stresses due to the sloshing water are 7,580 psi for DBE and 4,931 psi for OBE, which are much smaller than. the cod <a allowable values of 35,680 psi for DBE and 19,624 psi for OBE per ND-3821.5.
Therefore, the existing roof design including the tank-to-roof junction weld is strong enough to withstand the additional pressure caused by the sloshing vster.
10.4 Rein!!orcement of Shell Nozzles As shown in Figure 6, the reinforcement requirements for the nozzles, including the manhole, per ASME Code ND-3332.2 are d = Nozzle Inside Diameter t, = Minimum Tank Wall Thickness per Section 10.1 Pr t,, =
SK+0 4P M T- '35 i
t, = nominal nozzle wall thickness N ~OCb !
A, = d t, F CALC NO " ~D SD F = 1.O REVISION -
A = Area Available = A g +A 2 BY '
4 ,, d (t-t,)
WN '
N 1
SIR-92-'363, Rev. O 10-4 .
e _ ._
d*N 13)
Icen F.us, PSI of 3 7'I m _-UNI cm ,,n _m _ o s e - 2c 9 flEVWOff--
( A2 = d*t,* (t,-t,) EN ' 6 O M NU
{ A>A, DMY/h_
CHEQWD b i where all the quantities in the A.
}
1wul.wiwo u.
according to those provided in ND-3335.1 of the ASME Code.
{ The above reinforcement requirements for the PPMSTs were i
checked and is summarized in Table 10-1. As shown in Table 10-1, all nozzles except for the 24-inch manhole satisfy the
{
ASME Code reinforcement requirements. It is recommended that,
)
as illustrated in the last row of Table 10-1 and the figure below Table 10-1, a 1/4 inch thick annular pad plate be welded to the tank shell around the man hole. The recommended width
! of the annular pad plate is 6 inches or wider.
i
{
10.5 Code Stress Limits of Tank Shells I
- Per ' ND-3821. 5, stresses in the PPMSTs under various loading
- conditions must satisfy different stress limits. Per Eq (2.13) of j
[25), the maximum equivalent pressure at different elevations can j be calculated as follows:
i-1 Desicm condition 1
Level y ,P
- c%* cm **
(in) (esi) (esi) (nsi)
A 0.000 13.86 10,644 17,840 i
A' 72.000 11.26 8,648 17,840 i
a B 95.625 10.41 9,994 17,840
- C 167.250 7.82 10,010 17,840 a
ow= , where R=240 inches is tank radius, and 1'
t is tank shell thickness given by [3].
S=17,840 psi is the allowable general membrane stress for Design condition loading at the design temperature of 1
i '
SIR-92-063', Rev. 0 10-5 Mm
5 beeb /; S & suppigsgr -
1 ccN f f/S,, Ph 2 si2 7-7 cucgggH-DSC~Zb9 180*F per (193 m /*rAl 1 gy " # l%/A- "
04E *#/#3
/
nan m Tb 3_OW I Level y P, ow* og2 ,**
(in) (esi) (esi) (nsi)
A 0.000 20.84 16,005 19,624 A' 72.000 18.24 14,008 19,624
, B 95.625 17.39 16,694 19,624 C 167.250 14.80 18,944 19,624 o% = PJ , where R and t are radius and thickness .
of the vessel, respectively.
1.1S=19,624 psi is the allowable membrane plus bending stress for Service Level 3 loading at the maximum operating temperature of 120*F.
- DEL Level y P, "ow* og2 ,**
(in) (esi) (esii (esi) 4 A O.000 24.57 18,870 35,680 A' 72.000 21.97 16,873 35,680 B 95.625 21.12 20,361 35,680 C 167.250 18.53 23,718 35,680
- o% = PJg , where R and t are radius and thickness of the vessel, respectively.
- 25=35,680 psi is the allowable membrane plus bending stress for Service Level D loading at the maximum operating temperatur's of 120'F.
.s SIR-92-063, $tev. 0 10-6 IlffBeltITY ASSOCUMEINC
. . _. _ _ . _ _ . _ . _ _ . _ _ _ _ _ _ _ _ . - ~ _ - - -
i
- cc!) f 5 5 i'jS3 of 3 79 J
] Therefore,
! the modified tank satisfies all the ASME Code stress lia'it requirements.
i
] 10.'6 Strength of Bolts 1
l .
l 1
j The bolts have been shown to be adequate to withstand the DBE loading in Step 7 of the GIP (17) evaluation in Section 9.2. For
{ OBE loading, t
} M, = 0. 34 5 W H S,, = 0. 3 45 *2,508,481*384 *0. 75
! = 249,242,672 in-Lbf i
1 j V i
= 0. 704 8 W S,, = 0.7048 *2,508,481*0. 75 = 1,325,983 Ibf 4
The above two equations are identical to those for the overturing soment M and shear force Q at fluid level y=0 in Attachment A of this j report. Thus, j
the maximum bolt tensile stress o,, due to the a
overturning bending moment is 1
{
,**"" , M
' A 3 2RRA, Mm , 2 *249,242,672 = 13,187 pal 70*240*2.25 t
]
i In the abova equation, the maximum bolt force F is calculated i based on Eq. (16) in page 23-7 of (27) . The above bolt tensile l
j stress is less than the allowable value of 20,000 pai specified by the AISC [26).
j The shear force is assumed to be taken by the j frction force between the tank botton and the concrete as well as the bolts. The mairi= =
i shear stress in the bolts is i
),
suPREWK ~
- egge M-O sc-26 9 6/tT. /33 er g t t
yk+ - f I-fb--yM/w/9'?
q hb - _ Yl'l i SIR-92-063, Rev. 0 8
10-7 a
N
i i 3.ccN f Eff,flShsi 279 j,
, _V . - 0,55 (1-0.21S g) F
- N A3 /2 l , __1,325,983-0.55*(1-0.21*0.75)*2,508,481 '
i
= 2,07 8 psi 70*2.25/2 The second term in the numerator of the above equation is the i 1
friction force between the tank bottom and the concrete per the GIP f (17) and the factor od 1/2 in the denominator is to account for the sinusoidal shear stress distribution. The bolt shear stress is I
less than the allowable value of 10,000 psi specified by the AISC (26).
i 1
To check the tension / shear interaction limits, the following linear i
curve is checked SN -
mgg H -DCC-24 of $HTI l Ge
! 8 a22
. t T a22
,; y m fCMJ gy e, * - e /-A- sung "/ M S1 1
m T-f,.
ggg N j '
j Since o, =
o,,, sino and v = x , cose , where 8 is the azimuth angle around the circumference of the tank, the above linear shear-l tension interaction limits are satisfied.
I.
i I
i 10.7 Code Stress Limits of Ring-Type Anchor Chair j'
I As shown in Step 8 and Step 10 in Section 9.2, the maximum stress i
in the top plate and stiffener plates of the ring-type anchor chair I
are, respectively, 39,100 psi and 15,085 psi under the DBE loading, which are less than the allowable value of 42,816 psi (= 2.4S = 2. 4 f
t
- 17,840 at 120*F per (19)) for the Service Imvel D loading.
^
Similarly, under OBE, the pulling force at the anchor bolts due to j
1 the overturning moment is simply 29,671 Lbf (o ,anx c $"8 A ,anx*A c =13,187 b
j t psi *2.25 inches ) . With the same equation used in Step 8 of Section 4
I
- SIR-92-063, Rev. 0 10-8
- .s si e
I yr.t j
i
i 4 .
otT.i3{
j 9.2, N~
C41,C N0_M -D E C -2. 6 9 i
amamew Fr A/ /
l ,, (0. 37 59-0.22d) P syA'-+- ri 7 1 g_w//,jyy i
{ fcz
,(0.375*2.5-0.22*1.5)*29,671 CHECK m % C- gpe ,
3 0.~9375*1.05a
= 17,439 psi ICC N P- SGT F 135 oF27fC This stress is less than the allowable value of 29,436 psi (= 1.65S
= 1.65*17,840 at the maximum operating temperature of 120'F) per ASME Code ND-3821.5.
l l I
l 4
A l
i l
/
SIR-92-063, Rev. 0 10-9 IllTBGRITY AssocwEE CC
e Table 10-1 Reinforcement Requirement of Tank Nozzles i
i 4
.i 1 Table 1b1 h Reguiremense of Tank Penseremone i
l Nome C d at y P tr En A1 A2 A Areq Onepee) Oneheel A>Areq Snohool 5e0 Onchee) Onohoe) in't in't
, 3.A 24.000 0.4N in't in*2 27.800 12.87 0J02 0.0106 2.88 3-C 0.83 3.50 4.45 No 3.438 0.337 9.000 13.44 OJ12 0.0000 OJS 0.08 0.es 0.31 4-C 2.333 0.279 Yes SJ78 13.87 OJIS 0.0013 OJB 1
4-E 0.30 0.01 0.80 Yes 1.8m 0.218 0.000 13.05 0J14 0.0011
! 0.10 0.,34 0.43 0.42 Yes 4-F 1.9N 0218 S.750 13.N 0.214 0.0011 0.10 024 0.43
- 4-G 3.838 0.337 0.42 Yes S.478 13.88 0214 0.0000 3-A
- 0.5 0.88 0 94 0.82 Yes 24.000
! 0.438 27.800 12.87 OJ02 0.0108 t
2.85 3.33 0.Se 4.88 Yee
- see ew resemmene.d ~% nose..
i S WT. t sc, SUPPlagwr -
CALC 800 M -DSC- 26 9 -
- s. Ranenw r rAl I
-., n o. 3 a 5" gy J A* . EJA .
%)qy-- !
-m-
& Y* 4 o,qge WM '
_Y$ _
o
, / /
's ~Zc' cN F'-565 P 1% c F ~l9 W' .' :
[ i
\
N l J- \ \
s%j
$ '%_./
/
SIR-92-063, Rev. 0 10-10 DITEGRITY l AsaxarESINC
1
.N P -s 6, 6/fT.137 auPFLSWlf P n7 on r2.19 WND M- 03C~#-5 f 11.0 Reconciliation with 1989 Edition ASMEMCode
~
gy M 57-A- _ggg' .
11.1 Material i
CNBCNB 1 DME'[g 4t1 j _
! similar in the material requirements
) except that the ASME ND-2000 calls for CMTR's.
Since the PPMSTs
! were built with ASME materials (except for the anchor bolt chairs i which will be replaced with new anchor bolt ,
material) chairs of an ASME f and all the CMTR's are still recoverable, the ND-2000 I
requirements on materials can be considered satisfied.
11.2 Design i
1 This section discusses the differences between ASME ND-3000 and API-6 i
i 3. As discussed in Chapter 2 of this report, except for tank shell buckling i water sloshing height. the existing PPMS tank design seets all ND-3000 j
requirements. !
! A tank design modification is described in Chapter 2 of this j
report, and it is shown in Chapter 4 that the modified PPMS tank meets the shell !
l
{ buckling requirement.
It is also shown in Chapter 10 of this report that although water might slosh against the roof, the existing roof design is adeq I
to withstand the additional internal pressure caused by sloshing.
- 11.3 I
Fabrication and Installation
! This section 41=====
l API-650, Sections 4 and 5. the differences between ASME ND-4000 and j The two codes are quite. compatible on j
fabrication and installation. One major difference is the roundness requirements 'specified in ND-4220. According to a 1
1 roundness measurement recently performed by SCE, all PPMSTs at un
' SONGS-2&3. are in' full compliance with W-4220. -
we 7/a.2/43 l
1 SIR-92-063, Rev. 0 i 11-1 t
i
, _ . _ _ _ - - - - - - ~ ~ _,m. 1.~4A*'=#" __. _ . . -
g h e ef,,
\
/37 sm gg H-OSC-zd
~
?
j rees WSGs i P 13y o P 2 79 ' c f. w j l ,Z g,p ,,,g r/uje5
! 11.4 Exasination
! cHemne EC- \
i Ofel b< i and' API-650 Standard.This section discusses i
i \
! radiography which is consistentAPI-650 requires that the tanks y spot be in i efficiency o,f 0.85, except for some differences as expla Appendix A.
exasination hasTherefore, been the PPMS tanks should rbe exasined peni ,
i
\ ND-5000. This given in Appendix E. performed for T-056; results are docum 4
11.5 Testing i The testing requirements specified in ASME section 5.0 are very similar. , ND-4000 and API-650,
~
Therefore,
{ testing the tanks can be viewed to be satisfied fthe requirements on tank.
i or the existing
! the testing procedures provided by ASME ND .
, i i
! before the tank is certified and used again ust be followed
\
- 11.6 overpressure Protection l .
I
{ ASME Code ND-7000 discusses rules and requirements f or overpressure
{ protection, in this area.while the API-650 Code does not have any rements requi '
e Since the PPMST's are designed and operated at i atmospheric ASME Code. The pressure, existing la no overpressure protection is required per f
j (3) are adequate for maintaining the tanksc at atmosphe pressure.
\ Therefore, this area. the PPMST's are in full compliance with ASME ode in C
'11.7 Welding j According to section 7.0 of the API-650 Code, all weldi ng must be i
done according to ASMB Code section IX.
Therefore, the FPMST's are in full compliance with the ASME Code requiremente i It ~is worth noting that, n this area.
j although the welding procedure and implementation satisfy the ASME Code requiremente
{
the welds may not, as pointed out in section 10.2 , the design of i
{ s2R-92-063, Rev. 0 11-2 i
1
i i
i 11.8 Stamping i Rules' on stamping per ASME Code, ND-8000 and API-650, Section 8 are obviously not the same.
- It is reconmended that SCE requalify its I
j tanks as ASME Section III, Class 3 tanks by implementing the procedures specified in Appendix B of NBIC [21).
}
1 s
WT.436 j susuneur -76N /
i a s_osc-act N
gy A 4 D- r
d'bh]
EMrE 'IN 3 ClECKE3 I' #
J l
! ICCN P -$65 '
? 0% 09 2 ~l 9 i
l i
1 l
l i
i 1
1 i
i 1
/
- j .
a 1
SIR-92-063, Rev. 0 11-3 J
! INTEGRITY ASSOCIATES 2C
j- -
S M T. sto -_
l i .
m rPN l CALCIIO M-Osc- 269 RNB10ff gy N r D.h y* poly 3 I
CHEC33D NS- DMEh '
, ret M F- 56 5 '
l i
P I40 D P 2."7 9 !
l 12.0 Figures i
i i -
4 1
i t
t I
e l
4 d
i j
4 i
4 i
d SIR-92-063, Rev. 0 12-1
' M
< INTEGRITY ASSOCIATES DC
- . - . . _ _ . _ ~_ . . - _ __ - - . . - . _
t i
i o
{ s c.9 Ke -
s jo.2s" Yl Freeboatti, hf = .M.15
- a d ~
l I '
- i ^ - Ta*
[\ Roof s2.ar4K'
- _\\ -
U / ,w
' l Rm 4t'
- e '$
! 6
{ k 2 t,1.8 s6
' ,, ,,7f ,,
I I j g g Tat
- Shen ---e i
g Thekness,t
! l Tas* Radius '
C Level
- Re 3 2+o" "
ll t'N' 11.615" il i ' "
hlevel i* - Anchorsea '
p o.25" '#8# ~
pg d g Tatt tab - Concrete i v v s i . . Anchor Chair or Ring
- Base Plate FJundaren
! 8 'T 'f ***T.*.y ** ,
ye,',* ,,4 e v' , 8 j
g4 r *4 ,* 4 .,4 * , Lewi i
er
- f. , * ,
4*.**4e b
4 **Yj ,*<
6 = S:!& = 2 4. 6143* Q.x,n 9_ g , ,,
i 4HT. l if I On _ S,. n,, c.9 x u : z2.c243
- m -((N ) N N NO M- DSC- 26 c/ h4% 2ti." + F Z.1865 d- 4txi2 x(1-CosB,)::, 3 4.16
- i . REVISION j { gy N'*'TA N ggg //o/91 H
i 4
, CHECKED N DME 7/ .*/ ) -
3 i
a Tcc.tJ F -5 G S P I4I e P271 -
Figure 1. Songs 2&3 Primary Make-up Tank
]
j SIR-92-063, Rev. 12-2 gTMICTmuu.
DrFEGRITY
- AssocumsINC
i i
- l 1
seseusmey . .- -
{ m u -
m
' _ w s ,
i 3
- sa . w d s*
s, . coucament enwes . .e esentes mea sessmanen 6en s so,estas emme s
e ..es.eeisec.
soumen F
, . ,_.._.... . _ ,ar,r .eeen.e i
- causeamma - es. n g
.... e - .
a.
As etecast :s :3 mea s* -t***'t46asemamana seemmes 3PTCM
(
.4.e ~=u af Ms.,i.v4Li.se.fl.em rar ,
i
. ,% = .. g
'4 M' %
}
hi 1
maass i essoas sese l *
- w,i2 i i
-w
. l
$ - 3 l
8
, ,, * *J" x '~
j
}
N .',
s I
@~ ! 12 l I. : [ 3._ , '**
3 u
w _Z ~-
\
e ^J lt -
saamisso.v A : . ' ,
s ..
i v\ _
7 ;. . - - ,
g ,e - -
- - - - ~ -- --
^
N
> 4 &t~
) Z N
'1_
~
u . _t k
I
! T$ -
t d
s.
-I'k ? 4.
y II9 2 -
U Q
- ) w Q , he .,
)
i j 1 W e g A A A A A A .1 .2 J J 4 J 1 l g j mw 2 3 4 5 1 k.
O I i:
j Figure 2 (a) . Design Basis Earthquake Horizontal Acceleration-k Response Spectra at Node 1, Elevation 9'0" of i
j
) Auxiliary Building (13]
i
- SIR-92-063, Rev. 0 12-3 i
INTEGRITY ASSOCIATESINC
. _ . . , _ . . . . . - .. ._ .-. - - . . . . _, . . . - . ~ . _. .- ----- _ _ _ - __ _
j i i 4 i e
i
- peecutw* e a, .-=:
' * *"3 n S 3 2 1 4
" s,
- ie f s* 3 ,
- \
8,
- wwanesse om.se .wmas:
- eackm somea campenaries e . .e esee .34c..
- Wake N s, a aces.:a4ric= .sw.se .
= ~ ... . e, , l I t k= twees waas sensaanes stenen,'i-.
waveaea ,,
OAA88'4C 's AL'JE3 As og act%? Cs cal?iCa w _
28810m aasse sammeu4sg 9 8 *ccessaan ma assp 8:
w'8s? 8aa'*a' t was e, agavane,ose,ss. y Je.
4 os aussuaav ew6a es :7
- .e. -- . ._ e . . .
't i !
4 I me .o he, l
Sk b
""5
' sasts. .e. l .g. 9
$ i eanness l -
sususaese l 4 ',% f .
i
- _ E 1
i '
1, b '
e gb ,
]; -
i z__.
a, s .
". C 'm M g =- _.
- - T -
k L y Q'y (~ " ~
i
! '}{ ' _._ *
- V' 'te - - 04A8P9800- 4.3k yg
~ T -. .
j ' _
- 7:
M: :-
w
}
~
g 4 . ,
,,,,,,1
! S-i 1 P'
> s% =
= == : :
2
]
\0 6
. .t :== =:
an a ,
t Q Q v
,. ."- - - . oaaems . s.
i Q Q c-
- i y N i I k. i
! g i 8 _
l S d. 5 - 1 '
i
- g >z
- U *
.a a- --
~
.es a , ,
l Panw:io .
i i
i
, Figure 2(b).
Design Bas.is Earthquake Vertical Acceleration s
Response Spectra at Node 1, Elevation 9#0" of i
a Auxiliary Building (14) l SIR-92-063, Rev. 0 12-4 i
DITEGRITY
.I ASSOCUUESINC a
- - - m_.._. .-._ . . . . _ . _ _ _ _ . . . . .
l essa, sis:
- 38 """"
3
- 4. -
18 8 2 2 1 3 j
~
8, e te 7 g* J j .
i 8,
- 9*L444tet.* aste: essa sau:=gs: i 4898?lk 89mte CSAremattWe i , he ame4648 Fweeses 1 ? esta*00 84 t'
! 8,
- a444.1ea* 3g a ewi':w4 e .
etem takspeanse genaam essmane
, Ne4 maas Weesaw FAN ,
f 3AAs**%C',A. 83 neur?B 3 4 a l i
A8 *t ect' %* ca :si?;CAg* essations sans saathewase
- 4 *i:2mtab acceLama nam espones
{
t.es: Tea at goes v,. ts. aa nem sy, I omaessavam aus _ --
- ==en e. - _ e.
- s, ,
4 w '"as 4 i; 4
.es w l see's w. l .s. .
- [- 'e l antaes47:3l 2 f i
i 1
i' j
b .d b '. ,-
- (9 s , em .m _ : 1 1
In g * ._. : ; ~ -
' i g --
gQ
- _r > --
- $ f 3 ._ _ ,
- - 2: . . ;___
} 4f I
~.
s v 5' ~1-
{- E
- w
_:b
= - -
-I g .- : :=
=.
kD es w . i.a _
w j . --
, . . n. - - -
,' gI g_ ., i:L c x ;r--
i w
s -}e -
~ ~ ~
i
,. M* 3 - - iaareseg. b.... u g
0 "
a i fR , -
- g;=
I to ,
3 ---
O % s- - ::q ~-:
i a
4 g ~
I W . E:::=Z:::
-+ o 4., 3 na:
4 g - , . .-
sam .
N i
.m -
i *18 m ma a m .i 2 a ~,'-i. , ,
J 1 naico - 7 1 ,.7, i
1 4
Figure 3(a). Operating Basis Earthquake Horizontal Acceleration 4
Response Spectra at Node 1, Elevation 9'0" of Auxiliary Building [15)
SIR-92-063, Rev. 0 12-5 J
l : t' ' *.
1 ASSOCIATU. C
, , _ , _ . . , . 4 -- - ' '
. . _ . - - . . ~ . - - . .
.._. - ~-- . - . . - _ . . - . - . . . . . - . . . - _ _ - - - - . _ _ . - -
l i
i i
i l
W $0 3 nascutauc* mus.=
q l
t to s =
3 8, . te t'3s* J y
}
8,.Getysacsans== a4 Man.4 eacmess etcpfst posesa compomarm 40s ameekts emascus t ? .*te.co sec. '
. 8,eac::36esarec er e use ,s.
- = -
- a. . .u,.a.,4 , o.e a.,
[r - he Wees %44a sagesaw panc%. .
4 04as**%C . a. .t S
__- WPS263 4
[
g as at act % *
- 8 *a s ?.C.44 - 78 **"*o saass saa-movaa4
.t**C46 cassa49en asarew art:*aa a? weet *. sgavanon e r 0* awasuaa, an.46seees *
.. lFW %:3,
' .e s =o 1 see s= =e es. .
___-ana.ea l senz.'uru.
a l l 8 C%.
i uN zu ;
p\c ni --
i LL r o r ..a .o.ss -
l G. o ?, _ ,. ;. -
c.
4 l 7 ,uf
. . .a .
j i
3 , -
. e -
j L - _ _
pt- h Q,-
3,,
3 ,_
1-s_-
oaamasa . _i.os-w ;, . . =
- ;i a
m - .
a:. ._=..
t *~ ~ . .
i . - - ""
. _ :- - '. _" J" d %
2 1--
~.; * .: '
mz i .
& t w 'n'
_. 2 = . __ _ x
{
} g .._
- i g
=
z' j - - ,.
3 i { %$
' tr --
-- _ = ,;
h -
i g 4 th ! !! "" ._
i 1 y N g: O w
2
- r **"* 'ry
-- r _
[
7 mm
=
T. ;
i_ -=".::::
.r . --
3; sh wg -
L ,
o6 a >- z 3 -
m : an u f' -
1 -
.:F 1- -
2 '
i .
i
- ie m .se .s.
! .se m .: .: ., , i i
pemiec i 3 ..
i t u.,
m -n 1
1 i Figure 3(b).
d operating Basis Earthquake Verticah. Acceleration Response Spectra at Node 1, Elevation 9'0" of Aunliary Building [16) 1 l
3 g SIR-92-063, Rev. 0
- 12-6
. ;t$ II' ASSOCWES DC
l l
l 1
6 =[
~
- SUPM m m t
^
gg w_ csc-2c4-4 . _ . _ - _ . , CCAl I 1 -
gy p. ". n.4 gwyn ig9y i m T SWEb/M
~d h r soit get 7 ret N F566 d e 3
- P (+6 o r z le/
l Y l
h 1;
{ p i 4 j
' N .**
i -
l i l 4 a Top Plate - ~
Fu T ,
WA 1 -.
- k i p
- ' 1 - _
d stiffener 1
d
{ ; Taakvan k k -
~
l .
i p .
Ta k a . .
j it ,
l
,d tb i
~
i l
j (a) Typical Plan and
, Outside Views (b YI" l
1 1
4 4
i I
- 1 i i i
} Figure 4. Typical Ancher Bolt Chair 1
3 SIR-92-063, Rev. 0 12-7 '
e_._
i 1
4
$Y lY }
summawr - l
- CALC 100 M - O s c- 2_4 9
[
C. T_ CCAl I BYYA* ENh* l'/Jejq, CHECKED NC ggg!U4y
_f " rce N 1:_sa;s- l
^l U j A sret Np= *4M.1 '* E h ? 2."[] '
Lier,= tttent wetJ:.7 %
y It st.te k, s' *P c '"> gf a ;" l
^
f*V s
- l ., l 24.o' Ig
- 4. 3
-V -
~~T" 5
[ !
$*ns= - ,
.s VJ
%* ff" Strigei 7
, _ c' "
i l
. :ater-ttiend w isc., e s
% '1's t :kt, , a " spa e r,,s. !
QV N h-f' V z' or p Q
- u.l. -l'.us* ;yn I
'** ) s
- t"-: stent wouim et" stru , e s,er,,; --
/ l l s
' ~ a '
1V
'* 4 1 , l re s s, f-3* ^Ne \
~- t ' ,~ i' V ~
j j/3 .l %s*
l ~~ ,
i 8 I "
70 bolt Cha:rs
- .t~y ~
g.y ~
~
1 Figure 5. Reinforcement Design of PPMST
/
SIR-92-063, Rev. O 12-8 DETEGRITY MEX2ATESINC
< ~
t
- S Vf T. I Yf i SUPPUNENT -
i
' mm M- DSC 2-6 9 _
m frAl I gy mn - rif . l y */p/y?
i CHECKED b- DMEY^M-tn Ict N F-56 5^
, 1 d I , - ' P 14 f/ o P ?. ~/ 9
' ' -s
! ' ~% '
1 ,l -
-tnr _..,.
i
. ...4,. ".._'... ................................__
i i..
. a: . ..
n i ..
. .a l
- i ,,~
\
! :.4 ' i
'~
1 un , 2.5 t
[ND-3334.2]
- .$r)
.n e i
..-- .i ,
! l u 1
j - ---
t
- _________________ ___ . t a_ .
- e
- * .
j - i tr 3
i M -
62 I l [ND-3334.1(b)]
i =
4 s
i i
i i, .
l Figure 6. Reinforcement Requirement of Tank Opening i .
q . .
1
- SIR-92-063, Rev. 0 12-9 DITEGRITY 4
1 Assocumsec
l
. 1 6ttT. I'f 4 sueruNetr_ - ~
cat.cno_M-Dsc 2 6 9 m een e'c.Al 1
} . 8Y Y ' #: U _A 'k m 1VIc}qi CHECKED- S & p'Ju/q) l s
l CN F=-5Gg*
P I4 I oP 2,9 s
s
. -----------.-------________y,p ,
i r
i
- I l
8 R.
- t i
l
' I l l 3 .
1 s
- e. --- - -
'N -
1
,8 l
( l l is e
- l j i , ,
8 3
i 8 . I
. ,I i s ;
a . .
l I
1
__________m/m l
' r g
__e 3
, o.e o.'ao o.'so e , , , , , '
e
, am na s o t 80 t .no 2.co a.2o 2.m a'an2m sh as' s.'e i
410HT-M0!US mile (M/m) i f
I k
4 Figure 7.
Convective Mass ( m,) and its Elevation (H,) [20)
SIR-92-063, Rev. O 12-10 DfTEGRITY ASSOCIATE :C
SUPPlaggy -
1-I- CALC NO_M-Osc-2. 6 9 M .If4
!. annew_ CC Al /
y !-
..... gy # "-T/-A ~. .. . .. !!hcol$-
N ........... .
- !- <- D 4.!.f*.. ,
,~ , , 'f 9..- -g...____
.... N .c .
an.
CHECKED-l!$,,I'/ '
N il
' .2 ec. tJ F'56S
- .[ 7 .eais fN P iso 5 F '277q
!['*4, 2
1: '7 ' i
- e . i l' l i
, i : .
t .c si .
c
. 8,t
.a..,,.-...,-.. <io...eu .em - a - w i. -
s .- .-
8
.i (a)
...-..,,m..,...,-ua
- 4: ..i. a (bi
.sr i .J
, !L . . . . . . . . . . . . . . . . . . . . . . _ _ _ _ _ _
r.............. .,. . aa.
s,q . ,. . m.
i .
.')-
. s : i g- . : .m.
- . a.* ,
I! . l 5 :
. E!r 8
gglllll:r*
- .. .- .- .- .- .33 4 jyp_ - - ,, .- - u. ..
(c)
. .- a .- .- .g3s j;p,,, - - - u ..
(d)
.e I !e
! H ................._ .... _ _ -- !}.
I
.s. i -
.i .
s! - .,. . m.
g s.. .
l
, t!- ,
g*- .e s *an
.
- E *,i, I.s .
- 1
, r.,
.er v ,'
.e.t :
.( l i i
- s'. : .
.l a
- ; . .- a .- . , gio . ..< mesas
. . . r. s. . a - . ,, ,. si
.- ,. % m.
N)
...-.-.-.,..-....m
<>o. ma at:s . .- . -
m Figure 8.
Parameters of the Mechanical Model (20]
. SIR-92-063, Rev. 0 12-11
.i s; s >P:t
1 l
l 4 WT I4*l m- -
1 mgM-Dsc .z 6 ct-nonman CChi I gy N 4 -FI-/L.-
m Vh */93 l '
CHEQWD T5- 0g35/* /43 j -
6 y
'r*o= N P-565 F 'l5 l o p 2.79 1'I
/
/
- s /
/
Ws /
1 i l ' ' 'll ' *
., - mg ' ' " ' " "
1 d -
i h /
/ 4 /
/ '
/
i 1
/
/ m f /
/ wg , (aq
\ /M mq ".'.',.'.=
2 a /
/
/
/ l
/ . /
Hs / l /
/ /
- - / m ,. /
- o /
' Hf / *
/
' / /
/ /
- /
/ e
/
i YL .Hr /
/ /
a J / /
/ /
////////////
l -s isi sis /
l G(t) j i
4 4
i e
i i
i Figure 9.
4 Mechanical Model of a Flexible Tank (20) t SIR-92-063, Rev. 0 12-12 DrrBGRTIT
{ ASSOCUMERC 4
TccN N565 P
suPPum err -
l 5 1 o F 2 r #J CALCEM - DSC- 2 5 7 f#7, jf i
~
aanggeog ff Al i \
BY F' A E N D ' D EE S/'tY1 CHECKED b --
DIME ['N5 l
ny
- 0 34 4 b \ h*08
\ ~
t N
0 32 -R W
1 --
f Q30 \ f *;C Eke 028 Z=
R1 VI.a J Volid for 0 28 Z>30 tar senpiy soporled edges Z>50for clomped edges Q24 k\ -
A 022 2
Oto Ol8 0 b-1,000 2000 3000 4400 R/t Figure 10. Buckling-stress Coefficient C, for Unpressurized Curved Panels Subjected to Axial Compression (22]
SIR-92-063, Rev, 0 12-13 6
INTEGRITY ASSOCIATESINC
. . _ _ . . - . . - - . .. - . . - =.. - .. . . . . . - . . . - . . . . - - . . . . . . .._ _ _ _
p
) recN F-565 W~
s T 153 o r-191 m M -osc-24 9 setT. I.
m ON/
er w.4. n-n- agyu mn 1
CHEQWD N S- Ogg[Ild/S):
i i
i l lo 0
6 4
1 2 1
- to l 8
6 i g 4 g -
l
)
i 4 /
j 2 ' .
/
8
)
0$, ,-
4 -
2 u
Oct 2 4 68 2 4 68 2 4 68 2 oos o.o , so m- 4 68c '
i
!(hf . - . . .
l i
1 4
1 1
Figure 11. Increttse , in Axial-compressive
- Buckling-stress Coefficient for Curved Panels Due to Internal Pressure (22]
SIR-92-063, Rev. 0 12-14 DITEGRITY J
ASSOCIATEE HC
1 l
j i
I recN P-565 suPPU N ett -
i f \T4 op r79 calc 000 M-Osc 26 4 SlfT I[Y l __
- . cen j b.L. o-n am wu CHECKED DM Y
- . I 1
i i 1.0 -
1 4
- lilli i .8 % *
- l x N N j g7 r ,
! $ .6 \ '
t
.E
-~
= \ s - -
R
. .4
. 3 % .
i N z- --
j .2 -.- - - ...-. . -. ..
i .I - -
N l 0 i 1 j 2 3 4 5 6789 2 3 4 56789 10 o' R/t. es 2 3 4 56789 so 1
i 1
i 1
l l
l l
i l
Figure 12. Correlation Factors for Unstiffened Unpressurized Circular cylinders Subjected to Axial Compression (22 SIR-92-063, Rev. 0 12-15 C-x !
i
Sl~tT' I((
rec N PA6$ suMuusgr_ -
g t s s o p t r c) cat.c no N-DSC- 2 M rrr CC N I l BY #'M l @ ' m //o/f.?
I CHECKED b- DATE 'N'/T 5 l l
- l. tol I 4 2 y > 70o 10
! 8 6
g 4 . _ _
2 l 0 10 '
8 6 /- -
4 ,' --
2 ___
O.01 !
2 4 68 2 4 68 2 4 68 0.01 0 10 10 0 i@'
Figure 13. Increase in Axial-compressive Buckling-stress Coefficient for cylinders Internal Pressure (22]
SIR-92-063, Rev. 0 12-16 DrrEGBITY ASSOCLUES:NC
t , _ ._
- crtsJ F ~T65 suppundstr -
Pl5 gap 2,9 CALC 800P-DSc 28 9 SWT.154 ReWeleet Cf A/ / '
BYE'A O- A -
CHECKED O . 3 ;stpoig;
1.2 m .ja/g_.i 1.0 -- -
PPMST Bolts
',\ Failure in Bolts Failure in Concrete 0.8 - S'- s i .
w ith
\ \ s uplifting force 's s
ii "#dti"9 ' '** \ 's
O.6 -"d"*"'
N \
- c. 's,
\ 's
\ 's 0.4 - ~
N 's,
\ s s
, g s, O.2 - \ 's i N ,
\ 's O.0 ,
I
- i a i i i i
\ .
O.0 0.2 0.4 i i 0.6 0.8 1.0 1.2
- v/v ,,o a
Figure 14.
Sheai-Tension Interaction Limits of Bolts in the Modified PPMSTs (17]
.m..,_C.,,ie. '; 12-1, DfTHtiRITY ASSOC 3ATESINC
l . 'u i
Attachment A i
I i
' overturning Moments and Shears at Various Liquid Imvels 1
The overturning moment and shear calculated per the GIP (17)e ar
} the maximum values at the bottom of the tank. The analysis method j developed by Haroun (20) was used to compute overturning moments
! and shears at higher elevations of the tank, 4
i H/R = 384/240 = 1.6 s
i j \
h=t
! g = 0.2077 inches (see Step 2 of Section 8.3)
I h/R = 0.2077/240 = 0.000865 I
i i From the referenced paper, $tt'T 10 1
SN k, CN,C NO M-osc-264 ya, 1.849 tanh 1.84K GSMWII " '
- 1. 4*386.4 1.84*384 SY #' E 240 240
! = 2.94C (rad /sec) 8 08C335- DM.
' rec d F-565 i
P i 5~7 o P P ,
. e, = 1.716 rad /sec, T, = = 3.66 seconds s
i
(
In addition, the following quantities can be obtained from Figures 7 and 8,1Which are extracted from Haroun's paper (20):
i of# = 0. 09 i.
i l
4 3 . -
4
- SIR-92-063, Rev. 0 5-1 1- l .. .,
4 5
( m
- -mI = 0.6 8 4
4WT. ITS
~
l SUPPu!MEfft
- bm = 0.71 W 000 ? - C-4 $
9,,,,,,,, (p g l 8vF M ri-A v
! m !W O j
m8 CHEQWD b #' _DATEI*N}
= 0.29 /
m T~ecN P-s67 V
ii
,' ' y [5 8 C V- 2 9]
_f = 0.47 H
1 1
H
- --.I = 0 . 414 i, R
+
t i
H*
H
= 0.69 i
I l
2 j Thus, i
0.09 E 1
e# =
j H $ p, i = 0.09 a 28.03*10'*386.4
- 384 1 0.283 i = 45.77 rad /sec l
4 T, =
i
- Ut
= 0.137 seconds 4
4 SIR-92-063, Rev. 0 1-2 i umsontTY 1
ASSOCUm3 N
4
)
6 /rT. / 5~T
. suppususNr -
cue no _M-Osc-26 ct From the DBE spectrum shown in Figure 2 (a): gy we.I/-A.
noenn W N I \
i ' g 8%./ pf S,, = 1.15 g CHECIED I 6' DME"I/O _ .
i TC C rd P IS i -56S S, = 0. 75 g = 0. 65 S,,
9 oP 279
- (set to achieve the GIP (17] moment) b = 1 g = 0.87 S,,
j i
From the model shown in Figure 9, it can be shown that, at a distance y from the tank bottom, the overturning 4
! moment and shear are:
i 4
M = / (m, (H,-y) Sul 3+ f(mf (H -y) Su) 2 +1(m,(H,-y) f f-m (H -y) ) G g =HmS g 0.119 - 0.482 + 0.498 ( )
The above equation is the same as the first equation in page 205 of (20] by Haroun except that the moment arms H,, H,, and are H,
ajusted to reflect higher fluid levels.
Similarly, V = / (m,S ) 2 + (m Sf g) 2 + [f(m,-m ) (] 8 - m{(
=
(0.7048-0.87{} m Su This equation is simply the last equation in page.203 of (20] less the product of the fluid mass between the bottom and the level and the acceration.
SIR-92-063, Rev. O A-3 IIrrEGRITY ASSOCIAHS 2C
l l
l s
- Attachment 8 i
Diamond-Shape Buckling Stress Limits t I
l .
\
4 1
B.1 Perform Stress Analysis (Step 1 of CC N-284) i 04 = axial stress
=
y, + y
- S W T. / G O.
i 2sRC zRag
! N -
{ CEC 85 H - o s c -2 4 9 l oo = Hoop stress =
- m C C_Al I
- e SY ^^ ' OS -lMEE"A" i
e,.e, sc. om%43i I
4 1
se , = sheer stress = g TCcts P-565 '
2xRC 1
7 ((o o F 2-71
! Where P4 f
is the pressure calculated in Step 14 of Section t
9.2.
4 f
j B.2 Determine Stress Components o g (Step 2 of CC N-284) i I
(a) Level A (see Figure 1 for definition)
,* , 39664 382,172,097 2n =240*0.3125 , z e240a*0.3125 = 6,843 pai (compression) o, = 1 .8 *240 = 13,724 pai (tension) 8 =
4e " 2s*2 0*0 3125 ,
Psi @ M where 39,664 Lbs is the weight of the tank g calculated in Section 8.1 of this report, 382,172,097 in-Lbf is the overtaring moment M calculated in (step 6) of section 9.2 of this report, 2,048,175 is the shear force Q calculated in (Step 6) of section 9.2 of this SIR-92-063, Rev. O B-1
- i i I i
! report, . and 17.47 psi is the diamond shape buckling pressure 1.
calculated in (Step 13] of Section 9.2 of this report.
(b) Level B (see Figure 1 for definition) i
} 39664 j ,+ , , 191,639,921 2x *24 0 *0. 25 ze240a*0.25 = 4,342 psi (compression)
Ce =
0.25 = 13,843 psi (tension) 1 8
M " 2x* 0* 25
=
,735 Psi (shear) j vhere definitions of the numbers in the above equations, namely
{ 39,664, 191,639,921, 1,408,191, and 14.42, are similar to those for Level A.
J 4
(c) Level C (see Figure 1 for definition) k o, = 39664 . 65,682,921
, 2 x *24 0
- 0 .187 5 x *24 02
- 0.187 5 .= 2,077 psi (compression) i Us = O. 875 15,142 psi (tension) i 'M
- 2x*2 0 0 1875 ,
Psi (shead I where definitions of the numbers in the above equations, namely 39,664, 65,682,921, 940,067, and 11.83, are similar to those for f Level A.
t, tt.~i". / I. /
i '
B.3 Factor of Safety (Step 3 of CC N-284)
- 8. p y - 26 9
- FS = 1.34 for DEE
______g FS = 2.0 for OBE
[ p ;p. gy p . m p/9 u l
i B.4 Capacity Reduction Factors (Step 4 of CC N-284) m J.1 a=1d j
(a) Level A .recol ' F- 565 t
s 14 = 72 inches f [6 I o F 277 i.
1
- 4 j SIR-92-063, Rev. O B-2 i .
' DrFEGBrFY ASSOCUMEINC
d i
\
- x . 2**240 36 = 41. 89 inches SM- IS V l
- __
~
! SUPPLEMENT 4 = 72 /V240 *0. 3125 = 8. 31 i
m g M-DSC-269 4
4 = 41. 89//240 *0.3125 = 4. 84 -- . ecgg I
- M = Min (4,M)= 4.84 gyw x- n-L. M"hof7y o 826 CHECKED I'i gygg'L4y j
j ag = g, =0.321 h c4 F-sgr l au = 0. 8 P 16 2. oF279
! l ac = 41' 89 *0.3125 = 6.54 inch 2 i
ag = 1. 323 -0. 218LoF3 .
- i
= 1. 323 -0. 218Logi' O . 3125
- l i
, Assume that the cross sectional area of the stringer is I greater than or equal to 5 inch 2, 1 i
I. b = 5
= 0.765
! lge 6.54 i
~
ag = 0.72 j ag = 0. 8 l a m = 1. 323 - 0. 218 Lo7 o2 (R/ c) = 0. 6 94 1
i (b) Level B
- 14 = 408 inches j 4 = 2s*240 = 1,508 inches i
j 4 = 408/V240*0.25 = 52.7 i
i .
4 = 1508/V240*0.25 = 195 1 M = Min (4,4)= 52.7 i
ag=ag = 0.207 -
l 4
ag = ag = 0 8 I
l l
j SIR-92-063, Rev. O B-3 i
DITEGRITY
' ASSOCIATESINC
i i
i a,,3 = 1. 323 -0. 218Logio = 1.323-0.2184ogio- 240 = 0.673 0.25 (c) Level C !
i 14 = 408 inches
- 1, = 2 x
- 2 4 0 = 1, 5 08 inches 4 WT. ] 63
! N, = 408/V240 0.187 5 = 6 0. 8 -
I
' l SUPPLEMENT CALC NO M-DSC-2 5 7
- mismay CCA l i
N, = 1508/v240 *0.1875 = 225 8Y #~#~ U- M OME"!'IU CHECKED 5- DMEI*/4'-
M = Min (N,,N,) = 60. 8
' a,g = ag = 0. 2 07 rec tJ F- 5 65' P
, a,g = s ,o = 0 . 8 16s o F 2.77 i
ag = 1.323-0.218 Log 2a R = 1. 323-0.218Logio 240
= 0.646 It is worth noting that the roundness requirements on the tank shell, ND-4220 of the ASME Code are implicit in the i
calculations of all the above reduction factors. Since the PPMST's were built originally according to API-620 I
and API-650 rules which did not have such roundness
' requirements, checks on roundness of the tanks per ASME,Section III, ND-4220 might be necessary to justify accepting evaluation results by code case N-284.
I
~
B.5 Plasticity Reduction Factors (Step 5 of CC N-284)
) .Since DBE loading is a Level D service loading, the factor of j safety FS is 1.34 per the Code case N-284.
4 l 'e FS , 6 843 *1. 34
, of 30,000 = 0. 31 < 0. 55 1
f fle " l 4
4 SIR-92-063, Rev. O B-4 M
DITEGRITY ASSOCIATEEINC
l i
i N
caggwH-Dsc -2 69 Snl4 8e F8 , 10646*1.34 i *r 30*000 = 0.4 8 < 0.67 T~ T y M . A . r t. & y />*/v n
- M _T* L n 'lh l4 %
i Me
- 1 -
j I o= t4 F-565 P [69 oP 27j B.6 Calculate Amplified Stresses (Step 6 of CC N-284)
(a) Level A o p = o, , = 6843
- 0.321 = 28,528 psi (in compression)
)
a , = o, ,## = 13724 *y,, l 3' = 22,988 psi (in tension)
- T,,, = x,, ,## = 4,346
- 1 3' = 8,393 psi (in shear) l (b) Inval B op ##
= o, , = 4342 * -0.207 = 28,108 psi (in compression)
I ##
o,, = 0 = 13 8 4 3
- 1
- 3 '
. sg 0.8 = 23,187 psi (in tension) 1 Tee, = T., = 3,7 35
- 1
- 3'
= 7,437 psi (in stiear)
, 7 4
j i
(c) Level C 4
- op = o, s g = 2077 *0.207 1 3' = 13,445 psi (in compression) i
}
j os , = o, sg = 15142
- 0.8 1' 3' = 25,363 psi (in tension)
- = 3,325
- 1
- 3 ty, = tp g = 6,897 - psi (in shear) j SIR-92-063, Rev. O B-5 i
6
- DETEGRITY ASSOCIAE
- C
I 1 g j I NTT 14 [
. SUPPLEMENT ~
B.7 Plasticity Effects (Step 7 of CC N-284) CALC NO M-OSC-24 9 o ,, = os ,/n , o ,, ,__
f_C } o,, = o,,/ q, = o,, BY # *# ' Mb tygy "A */f?
, ,, CHECKED- % gM3E'N"/4) i TccM W-5GS l P lGF B.8 Determine Evaluation Approach (Step 8 of CC N-284) o P z79 i
Article-1700, By Formula, of Code case N-284 will be used to evaluate the reinforced PPMST. It is worth noting that the stresses calculated in Step 13 of this section are the maximum axial stress at a certain liquid level of ) the tank. Stresses at a higher elevations and other
- j
- I
' azimuth angles around the circumference are lower than
! the maximum values. However, the maximum stresses
)i calculated in Step 13 are used conservatively for the { l i evaluation in lieu of the average stresses within a meridional distance of /F6 permitted by Article-1711 of
- the Code Case, i
B.9 Determine Allowable (Step 9 of CC N-284) i o ,,3 = (C, +4 C,) o,e,z = (Cp +ACg ) d i AC, , AC, are included to adjust for internal pressure. It is specifically stated in Article-1500 of the Code Case that "The influence of internal pressure on a shell structure may reduce the initial imperfections and therefore . higher values of capacity reduction factors may I be acceptable." Similarly, the latest AWWA Standard for Welded Steel Tanks for Water Storage (24) also allows the SIR-92-063, Rev. O B-6 4 l INTEGRITY ASSOCIATES LNC i
1 adjustment for internal pressure. i (a) Imvel A 4tj T )(,6 i = "" C, 3 62 +0.0253M SUPM.EMEfff g M_pfc-249 l
=
3.62 +0.0253 *2.49: 2.49: M NI l = 0.74 gyp,+ . nw g"hW7 I g, 4/,3 , , t
- ee N p_s gs-A C, = A c, = 0.35
- 0
- 74 = 1. 02 g, 55 f l66 o P 2fre/
i 1 j . c,. , . - 4# [4.a2 (1+0. 0239u2) 2/2+3.62 a (5) 2] l
= 1
!. 2. 49, [4. s2 (1+0. 0239 *2.493 )1/2+3.62 ( 21.54 ) ) ) 1
= 0.962 72 i
i j In the above equations, the coefficients C, and AC, are ! elastic buckling coefficient and buckling coefficient 1 j increment due to internal pressure defined by Baker, et al (22,23), and are calculated as follows i ! b= 2p ,41,9 , jng3,, 1, 36 1 a/b = 72/41.9 = 1.7 > 0.5 l j Z=M 41*I RC Q =240*0.3125 V1 -0 . 3 3 =2 2 . 3 4 i 2(3): 2 e . 17.87 240 " 28.03x208 ( 0.3125 ): = 0.376 1 i ~ i From Figures 10 and 11, which are extracted from Figures I i 10-2 and 10-3 of Baker, et al, (22), C,= 0.255 '
; AC, = 0.35 j . .- SIR-92-063, itev. O B-7 s
4 o i { It should by Baker, be noted that the buckling coefficient et al (22,23) is , Cengiv } corresponding to a 90 4 percentile failure of the l actual test data while the f N-284 buckling coefficient C, is corresponding to amuch higher theoretical buckling strength. The compound 1 coefficient C,sg=0.125 is corresponding to the lower } hound of test data and is certainly lower than the 90% failure i coefficient (0.255). i A c, is the buckling coefficient Baker, et a1increment (22,231 due to internal pressure defined by i o, = (0.74+1.02)*28.3*10'*0.3125/240 = 64,235 psi 0 9, = 80,860 psi i (see Appendix C for details) t 8 1 o ter = 0.962 *28. 03 *10 *0.3125/240 = 3 5.116 psi psi + Therefore, Ces < 'eet. 9 84e < 'ser c,g, < eg i The at level reinforcedA. PPMST will not buckle due to the DBE lo stet. ( 6 7 (b') Level B I
~~ '
C, = 0. 6 05 SUPMBENT CALC NO M~ # ~ 7 A q = A C,f* = 0.16 *, ,03,805 = 0 . 7 0 sy m r t' A. I
^ ^ * '""E"## /##
g A- _ narg[MI1
- C, = 0.744 = 0.103 p
i sccts F-sGT A C, = 0 f (67 oG 2.n 1 i
- 0. *0.27 = 0.361 (from Figures 10-4 and 10-6 of (22))
-i 3 SIR-92-063, Rev. O B-8 ) I
__ _ _ _ _ _ _ _ _ _ _ __ __ .__ _ _ _ - - ~ _ _ _ . _ _ . . _ _ _ -___ . - . _ l . i In the above equations, the coefficients C, and AC, are calculated per Baker, et al, [22,33), as follows 4 b = 2xR = 1,508 inches i 4 ff'T /$ 8 R/t = 240/0.25 = 960 I
~
0.23 IS'JME -- C, = = 0.139 (from Figure 12) NE ~ ~ j V3 (1-0. 33) qC Al / 4 P 14.42 gy ?h. r/-& M"/IC/k 240
}(RC
- 28.03x20' O.25 =0.m am_R DATEb .
A C, = 0.16 (from Figure 13) D [6K o F 27q j Again, the buckling coefficient C, given by Baker, et al (12,13] is corresponding to a 90 percentile failure of ' the actual test data while the N-284 buckling coefficientC ' 4 j is corresponding to a much higher theoretical buckling strength. The compound coefficient C,a,3=0.125 is corresponding to the lower bound of test data and is certainly lower than the 90% failure coefficient (0.139) . The A C, factor is used to adjust for benefits due to f internal pres'sure. 2 I c ,,3
= (0.60S+0.70) *28.14 *10'=0.25/240 = 38,620 psi op 3 = (0.103 +0.361) *28. 03 *10'*0.25/240 = 13 Ed R psi i
i Therafore,
'es < het cy, < o p .t .
The reinforced PPMST will not buckle due to the DBE loads , SIR-92-063, Rev. O B-9 i i DrrEGRITY AssccwESINC
_j 1 at level B. 6WT /49 l .
' - ~
SUPPLEMENT (c) Level C M_ Orc _ sc q l C, = 0. 6 05 ' g C.C.N f A C, = A C,3 = 0.18 0 6 05 = 0. 9 0 BY #'# MM DATE N*M2 g ef, jg 0.746 N Cp= = 0. 096 ~ N P l6Ci o P- 274 A C., = 96 *0.35 = 0.467 (from Figures 10-4 and 10-6 of (22]) l In the above equations, the coefficients C, and A C, are calculated per Baker, et al, (12,13), as follows, i b = 2xR = 1,508 inches i R/t = 240/0.1875 = 1280 C, = 0.20
= 0.121 (from Figure 12) 1 V3 (1-0. 32) .
P , 11 83 240 E( R)2 C 28.03xlO 5(0.1875)2
= 0.692 A C, = 0.18 (from Figure 13) l Again, the buckling coefficient C, given by Baker, et al l
[12,13) is corresponding to a 90 percentile failure of the actual test data while the N-284 buckling coefficientC, is corresponding to a much higher theoretical buckling
- l. strength. The compound coefficient C,sg=0.125 is corresponding to the lower bound of test data and is certainly lower than the 90% failure coefficient (0.139) .
The A C, factor is used to adjust for benefits due to internal pressure. SIR-92-063, Rev. O B-10 DfTEGRITY ASSOCIATES C
og = (0.605+0.90) *28.03 *10**0.1875/240 = 33,404 psi op.c = (0.096 +0.467) *28. 03 *10'*0.1875/240 = 12 128 psi ! Therefore,
%<Om C@s < CHet The reinforced PPMST will not buckle due to the DBE loads l.'
l at level C. Stt$ l')O
~
SUPPLEMENT ya M-OSC 2.69 m ct Al I gy p. m. [/- H y gg 'llol97, I CHECKED ' DATE 7.} recN P-565 P 170 o P 2 79 SIR-92-063, Rev. O B-11 nr
. ~
Attachment C calculation of Stringer Buckling Stress Equations . contained in, Article-1712.2.2 of ASME Code Case N-284 vere used to compute stringer buckling stress. case page is included in the next page for reference.A copy of the cod iterations, it was found that the minimum stringerc buAfter many kli ng stress 1 Ow = 80,860 psi i \ occur at n=1 and n=16. Computer outputs for the cases of (a,n)= (1,16), (1,15), (1,17), (2,15), and (2,16) are attached. 1 l 1 I sitt. i~71 - SUPMAMelf gg M-DJC . 2.6 9 gy s-u - thA.: ggg"/g/91 CHECKED W - DMEM) 1 F 17/ o P z 77 i i a 4 4 4 SIR-92-063, Rev. O c-1 DE
CASE (3cntinued) I
/*
N-284 , cAsrs or AsME BoII.ER AND PRESSL*RE YESSEI. CODE
-1712.2.2 Cylindrical Shens - Stringer Sds.
l where emed or Ring and Stringer Stisened ' The theoretical clastic buckhng stresses for both d " " #* * #= 2 stringe: buckhng and general instability are given by the equations which follow. Stringer buckhng is defined
- An = E, 2+G.,(*Lf as the buckhng between rings of the stringer and at. .
a 6 tached plate and general instability is defined as the buckhng mode in which the rings and attached plate d""#* mr " # " "me .4 a g D (od deform radially. E, 2C, f ab Z~~ I ^ #* I + j The elastic buckling stress is denoted ge where lis UQ XI "I" ht) L the stress direenan andfis the buckhng mode;f = S Oo i for stringer buckhng and] = G for general instability. '# A u = (E., + G., d The string bucklmg stress is determined by letung *U )
/
the cylinder length equal the ring spacing,j L = t., { [ 2 { and the general instability stress by lettmg
. f L = 4,. Au = A +Ch c %[ 1tions are those which mrmmm eThe values of m and amvto use in the following w where m 21 and Au = E.,g-me) + C n > 2. The followmg values are to be used for / and
}' gl O' hen / < l. or I,, < /,, set p = 0. ## Ra) Axial Compnssion E.= 1 p' (t, +b E, =
=4.
S::. t, t p. II ,z. ==< ,,. e-J'p (e) + ? -M 4)
- u. a ,n w
,.y n.I n.r.
4- .
- H N t, = 1.9tQ (1 - if /, > !.288tQ 12 (1 p t, l
6h b f
- EP g 2' #'"12(1 p%El~[n. (f.\ . nd, wlari
- Bk l{A I.
3 O
- ti,= N G fS U Q=
E E 6 (1 p ) + 6 '*t. + '.") I, a t, J, G_J 3
; :s g m >E m o # a *** 2 #s t.
e, = U*'* c, = U*** For stringer buckling: t, t,
/ = S J, = I, = /, = 0, ta = r. fI = I, (b) ExternalPnsrurr Stringer Buckling (/ = S) ~
- For general instability
=a . s- - ,.
4 J = G.Lj = La
' la = 1, See 1521(a)(1) for a.c and the equatior, below for
! r, When t,, < /,, the values for ] e.,, must be . A, = I, = /, = 0, t, = c Lj = /. determmed by iteration since the effective width is a 3 function of the buckhng stress. . General Instability (/ = G) dn+(A,&v-A,&22L +(A,Ja-A' ,)u\ , ry= d dn-d'a I" \ A Wm-d'n [" i
#'* = 1.56 fit but noc srester than t. . SIR-92-063, Rev. O
(& ._ C-2
,_ - ,,1, = t, INTEGRTFY ASSOCIATESINC
l
'll . 1 n= 1 n= Sig$ej= 80860.38 T 16 Q=
alpha $G= 0.402 29.36504 Sig-y= sq(E/Sy)=30.56686 30000 1.288tQ= 11.81942 t= 0.3125 R= E= 28030000 240 Nu= 0.3 L$= 408 IQ= G= 10780769 Le$= 408 167.6 Lj = LeQ= 17.03931 167.6 z$= 2.8125 A$= zQ= 1 6.875 AQ= I$= 10.417 IQ= 0 J$= 0 20.834 JQ= 0 t$= 0.353520 tQ= ES= 2128409. 0.3125 t$Q= EQ= 9625686. 0.333010 ESQ= 2887706. G$Q= D$= 10845225 3711504. DQ= 78334.03 DSQ= 1447543. CS= 3233808. A11= CQ= 0 i 17243.41 A22= 44084.90 A33= 172.2553 A12= 3608.590 A23= 2673.801 A13= 246.8350 SWT 17 D SUPPLEMENT - . CALC NO "-# i '. m CrN N l
$ -> h gy w.M v-& DME #N2!
g*O CHECKED N ' DATE YS3 i TCc ba F-565 P l73 oF M 4/ SIR '2-063, Rev. O C-3 DETEGIUTY ASSOCIATEE E
1 1, mm 1 Sig$ej= ! n= 15 81040.48 alpha $G= Q= 29.33239 0.402 .sq(E/Sy)=30.56686 Sig-y= 30000 . 1.288tQ= 11.80628 t= 0.3125 E= R= 240 ' 28030000 Nu= LS= 408 0.3 G= j Le$= LQ= 167.6 10780769 408 LeQ= Lj = 167.6 z$= 2.8125 17.02081 A$= IQ= 1 6.875 AQ=
; IS= 0 10.417 IQ=
J$= 20.834 0 t$= JQ= 0 0.353520 tQ= 0.3125 ES= 2127346. tSQ= 0.333010 i EQ= 9625686. ESQ= 2887706. GSQ= 3711132. i D$= 10845216 DQ= 78334.03 DSQ= 1447537. C$= 3233808. i A11= CQ= 0 15244.07
} A22= 38904.28 1 A33= 171.6335 l
A12= 3383.053 A23= 2506.689 j A13= 246.8350 E
$/tT 17 Y l l SUPPLEMENT
! CALC NO M-O L 149 n anesq m. f C. N t
- BY # *#+ I'-M DATE "!'#I##2 i CHECKED T4 DMTC'? *IS ')
i
- rce (4 i F= - s 6 s-I P r79 o F 2 7 f i
l . l 1 SIR-92-063, Rev. O C-4 DfTEGRITY ASSOCIATES 2C l
i e a= 1 n= sig$ej= 82231.83 17 alphn$G= 0.402 Q= . 29.11913 sq(E/Sy)=30.56686
- Sig-y= 30000
! 1.288tQ= 11.72045 1 t= 0.3125 E= R= 240 ' 28030000 Nu= 0.3 LS= 408 G= 10780769 Le$= LQ= 167.6 Lj= i 408 LeQ= 167.6 z$= 2.8125 16.89991 A$= zQ= 1 ^ 6.875 AQ= 0 I$= 10.417 IQ= J$= 0 i i 20.834 JQ= 0 t$= 0.353520 E$= tQ= 0.3125 2120403. EQ= t$Q= 0.333010 ESQ= 2887706. 9625686. D$= 10845160 GSQ= 3708702. i D$Q= 1447497. DQ= 78334.03 I C$= 3233808. i A11= CQ= 0 19352.92 l A22= '49598.63 i A33= 172.9752 , A12= 3834.127 A23= 2840.914 A13= 246.8350 1 4 4 s WT 177
~
SUPPLEMENT m y t4 -Dsc-Z 4 9 ee14 i BY #'" 'A' DME UN2 CHECGD YS'- DME"bl2bl> ' Icc. (J F-565-j P 17 5 o P 2- W l i fi 6 I i l SIR-92-063, Rev. O C-5 4 srBDCTURAL a DETEGRITY ASSOCIATESINC
i l l 1B= 2 Sig$Cj= n= 16 95424.60 i alpha $G= 0.402 Q= 27.03138 sig-y= sq(E/Sy)=30.56686 , 30000 - 1.288tQ= 10.88013 i i t= 0.3125 R= 240
- E= 28030000 Nu= 0.3 G=
L$= 408 IQ= 10780769 Le$= 167.6 Lj = i 408 LeQ= 15.71417 167.6 { z$= 2.8125 zQ= ! A$= 1 6.875 AQ= 0 i I$= 10.417 IQ=
- J$= 0 20.834 JQ= 0 l 1
t$= 0.353520 tQ= l E$= 2052303. 0.3125 t$Q= 0.333010 l ESQ= 2887706. EQ= 9625686. D$= 10844606 GSQ= 3684866.
- . D$Q= 1447109.
DQ= 78334.03 1 C$= 3233808. CQ= 0 } A11= 19261.57 A22= 47959.68 i A33= 199.1200 j A12= ' 7217.180 ~ A23= 2673.801 j A13= 621.4589 I 5 ftT.1 % 4
' SUPPLEMENT 3
gg M -DS C 2 6~9 ) i
-- (f n \
4 gy #w- MQ EWE O ' eggeggo .76, ogg 'fe'/F1 J l J'ec bl P-56f j (P i (76 d P717 i 1 i - I l i 4 k
- SIR-92-063, Rev. O C-6 e_._
i _ . _ . .
l 1 i n= 2 n= Sig$ej= 95930.68 15 Q= l alpha $G= 0.402 26.95999 sq(E/Sy)=30.56686 Sig-y= 30000 t 1.288tQ= 10.85139 t= 0.3125 R= I E= 240 28030000 Nu= 0.3 LS= 408 G= 10780769 - LQ= 167.6 Lj = Le$= 408 IAQ= 167.6 z$= 2.8125 15.67355 l zQ= 1 j A$= 6.875 AQ= l I$= 0 10.417 IQ= 0 1 i J$= 20.834 JQ= t$= 0 i 0.353520 tQ= 0.3125 ES= 2049970. EQ= tSQ= 0.333010 ESQ= 2887706.- 9625686. G$Q= 3684050. , D$= 10844587 D$Q= 1447096. DQ= 78334.03 C$= 3233808. CQ= i A11= 0 17271.92 i A22= 42778.04
- A33= 197.6732
{ A12= 6766.106 . A23= 2506.689 A13= 621.4589 i
- l. Stt T IJ 1 i
~~
SU/PLEMENT CALC NO M-osc-249 (LM l BY #*#'U M DE N CHECKED D6 C rec td P-sGr fP 177 oP 27c/ SIR-92-063, Rev. O C-7 BfTEGRITY ASSOCIATEEINC
i Attachment D i Examination Reconciliation with the ASME Code ) ! Examination of tank shell weldin the 1989 ASIE Code. Section III.g by spot radiography is acceptable by both Edit'sn. the Standard differences. Tableshowing 1 givesthe a comparison between the requir areas of agreement betweenand them main examination and the. acceptability criteria for . or cro 4 i Table 1 Comparison Between API-650 ASME Code \ API-650 Cracks ASME Section ND Unacceptable. Unacceptable. 4
<2/3T 0.K.
}
<2/3T o,x.
Inclusinn & 3/4" Max. j 3/4" Max. t Indications
<1/4" 0.K. <1/4' O.K.
N' Combined length of j t ggg M - orc.269 -- several inclusions Same. w CfAlI _
<T in 67 length. l
! gr N
- T4h gggf/#/f2 i IccN N5 6r l
{ M pc' < WEB f.fD.
=
Rounded indications are not ! i P DY F 2. 7 9 a factor in the acceptability l of welds not required to be ! j SfTT 178 fully radiographed. i ! Frequency of Vertical First 10 ft. First 50 ft i Spot Joint 100 ft increments 50 ft increm.ents. l Radiography (25%atintersections). ' Horizontal First 10 ft, 200 ft Joint increments. l i . 1 AL-15 E i Crowns j -
'51/16
- in the area 3/32' Max.
i where spot radiography ' 1
- is planned.
Undercut 4 No requirement. i 1/32* Max. ' I S-1
NES&L DEPARTMENT CALCULATION SHEET n;",;oM,.se' ,Ax , 7y o, 2 ,y CCN CONVERSION g Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. cCN - f subject See Title Sheet Sheet No. I7f REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE 1RE DATE NABIL M. EL-AKILY 10/12/93 JUNGAOR((, 10/12/93 i APPENDIX - B 1
- TANK STICK MODEL 4
4 4
+
l SCE 26-426 NEW 4/90 l
' NES&L DEPARTMENT
. CALCULATION SHEET ':" MF ,Au f roc, zn Project or DCP/MP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION /
CCn no. ccN - / subject See Title Sheet Sheet No. /80
- REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE S. PELLET g g 11/10/93 JUN GAOR [ [ , 11/10/93 i
l 1 i l Oc.P t 4 3 - 6 742,o7- SM l CLU $ AVG.T Y R E t AT%.O MbdGQP SY STh%
- i i
i. l A reeno,a a
- l 1
T A t>L E. OF CodW MTS 1
$LLTTDedlOt.SCdtGTT04 0146.LT d
l Pug eos e /o B 1E c T NE. 18/ j M E TWo D o Lo CW /8I 1 ' TAdk Co d f t C LA(4 T1 e rd /84 ASSvM PTT O t4S 18 ) A LGeeince 5 ggy C A t.cu t A TT o r.3 e r- mers s e s 16 5' C Ai.cv LArlord os: S e+E t4 Sn: F NE 54G 5 fgQ' CA (.c vLA rlord & T AW Me#6ea Mc&e e s /4/ TAru Stic u- Mo 0E L /93 SCE 26-426 NEW 4/90
1 NES&L DEPARTMENT CALCULATION SHEET ::n s. " , m m 0 , 2. 7 ,7 Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION / i CCN No. CCN - ( l subject See Titie Sheet Sheet No. I8/ REV ORIGINATOR DATE !RE DATE REV ORIGINATOR l DATE IRE DATE l S. PELLET gg 11/10/93 JUN GAOR ((, 11/10/93 l l _ PvMo ss. /o B JEcTNE T'a f NR #o5 C or rLi t s CAccut ArtocJ is To DEv e to # FM 3 0s/2 t E. 5 f= oft A SUC4 M30EL or WE "Pg :M A 4.Y CL 4 *4 7 A 442. Vf STDf<. $ 6 L -Adv5 T- OS S A M O T~ oSG. n.it s moott a t t. BE in E G ap iv_o w in.( wtr_ m o oes. c. PoA ru g_ A rr-A c% P G d ',3 , Tu g., ripdC, mo ogt s l O tcL T V E.N E v. N i G ii A F f(]fC A nL BE.9A Vio4 A r WE ! rANE c oelt/ Ec.r v orJ Pom n @ e27Les). _ME.Wo DD pG:si Y 7'kl E. TT+N W. t J1LL 6C Mo0EL ED '.utW A W1 E M G E-4 E. Lent EW-- C A LEsq VESTI C ALLY k'C L::A T.o A r -' N E T ANg. C E-NT1EA. L eJE, %dc CA L c 's L 4. --' o N 5 t J lLL BE. PE4Fo GMCO TD DE.TE2 M;N 6. A9 F ed O f 4 A T_ mtts 5.6 5 AdC TANK SG.C.Ti o N 'P(20 AEA M & 5. L ::. L S ++t LL $~n r4 rl6 ssE S taiLL A LS O ~6 E. C E NJE LcFi o us e n c., G EN E4 A L f t ATE. rusatY focM A 3, C f=09- 14Co M A-T7 80 * ** L.'1 ) . sc. %/o SCE 26-426 NEW 4/90
NES&L DEPARTMENT l CALCULATION SHEET 'c ~ ~o ' F ser PRELIM. CCN NO. PAGE /72,0F g /47 i Project or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN CONVER$10N / ccN No. CCN - f subject See Title Sheet SheetNo.Ib REV ORIGINATOR DATE IRE l DATE lREV ORIGINATOR DATE IRE DATE S. PELLET gg 11/10/93 JUNGAORj-(, 11/10/93 1 T- CSS Fno T0% Do r+ E N s t ord L 3 J 7e
= t Og l g c. G os AeoF YW 1
Sq,'"
/ \
E T.
. 1 e a w, 216.~i 5 o ~a -
Y ! M l gg y4* "ll G I I H d l = F/16 95.625 E L t V. T
@L C* f,/ .- //! '
_/ASIDE~ DIA. = 4 0 '~ 0 "
=
E GE WA D Df4 yIG J SCE 26426 NEW 4/90
NES&L DEPARTMENT CALOULATION SHEET grns." ,Ax m o, y .7 Project or DCP/MP SONGS 3 Calc No. CCN CONVER5!0N / M-DSC-269 CCN NO. CCN - ( l subject See Title Sheet Sheet No. Ib3 REV ORIGINATOR DATE tRE DATE REY ORIGINATOR DATE 1RE DATE S. PELLET g g 11/10/93 JUN CAOR [ f , 11/10/93 I l A S$t)M PTTO M S :
- 1. n4E TA cJK' S A S E- is F i Y,EO TD CcWCAETE %AO tbc TJ i4 TW. ArJ St. A ric4 AMO A o T-A r7 ow .
2 TME L 2 72. A 2 7z Co wN E c.r # MG nti Roof: re U D E. W A LL WILL BE M EG L E c rEO.
- 3. T u t. m As s o p. ATT A c d eJ> t.A co ul Aa o pipiW 6 WILL BE W E G LE CTE.O .
- 4. TH E. S WEL.L i s, 4,t6:io IN r t E. y E.B.rtc A L , A%i A L Aw O TAMGEurs A L REAcnod.
5 TVE R, ooF \S 8.10: t 0 W nt6. 41ottis o NT% L. D ise F C ,7 7 o c4 b . M o r V S E:. D
- 7. T'K E no r 4 K 15 cutL (~6 2 '- o) o F W AW.A , R E P {S)
SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ==;& m ,Ax , y,, z .,, ; Project or DCP/MMP SONGS 3 CCN COM ER$10N Calc No. M-OSC-269 CCN No. CCN - subject See Title Sheet Sheet No. j REV ORIGINATOR DATE IRE- DATE REV 1 ORIGINATOR '0 ATE IRE DATE l S. PELLET $ $ 11/10/93 Jtiu GAOR % , 11/10/93 l 1 1 l 2 I i I i l l, 1 l
$E. pe LEesJ c 6 5 ) . " DE. S t (m N of: wELDCO S T G.dc t V A E 5 * , S t o OGr E.TT , L t Ndo L.tV art W E t o ves c,, cooW p Art ocJ , s 9 7 2.
f 2 . ' S E.\ 5 r M C OE,.St M OF LtQVtO STD4.A6E. TAra k 5 ". 4 ARoord d HoVSr4EA , ASCE ,,) COG.s/ A 1, , A F#.l' 19 8 )
- 3. ' 5TR655 Ae40 STAAw4 DATA H-Aw eisook:,' , Hs0,se,tg todSLi s H ieJ G , 19 6(,
i
~
4 ForMut. A 3 Fort. 3T1R.E55 A-J 0 S T'12Ai eJ " , 4OAA X d To ve44 wow met , i975 3 3 5. STw oc r va 4 t. ! OR Ari " i air.s A i n ( epoar A E cowcet i AT,oa en SrR-92-e63, , 2 reimuy v twr man # o STD G M E. W ZS") SE#rE.M6E4 l99 2 4 i SCE 26 426 NEW 4/90
NES&L DEPARTMENT
- CALCULATION SHEET
- :r:M." ,,my,, u.y CCN CONVER$10N /
4 Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. CCN - i [ Subject See Titie Sheet Sheet No. Ib REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE S. PELLET J g 11/10/93 JUN GAOR N , 11/10/93 DETf.4.M # M E fA A L 1.E. 5 oF C L Ui r) k. S 4 L L TMEL T'ANK pl A-55 g. 5 UtLL G iE. CO N 5gD Ett.6 0 , .)W F o V 4. PA4.TE prs ourt AWED :4 4 E.5:. (23 THE. M An E. s Awo Locenod3 w LL 6c ocTra.miuso G Ast.D od TH C FoLL c WidG 9 PrQ4M6 TEA S W '61'- o (1 2 20' 4 /R, s. 1. G Fo Q W E. N t fos E. of: TN E c.a c c v t A T7a N'S A\ ASS E S WILL 6 E. E.x #4.E S S ED 14 U N ' T'; OG \bh*SEC 2 1W mE pe.4SirY of wAm t s Gti4 EcJ A-5 f,=(6z.4)lu o FT3 [, f% Jh { 3 gc,2 (2 2.. n o.y 6,m . c tr _ = c T- + ibt sec THE. TAA55 of A L,L. o f- n(E w ATV.4 \S G iVN BY EV1 = R Wk0
=(l.Y4)IM. Fr+
sac'T(Zo)Fr 3 2.) Fr/ lu 2. ) fy
=G500 \bf.sec-2 i s.
t." t+f C M. "TM LS VALVt A Gift i r4 5 5 -- :. - oF R E F- (N wp=(2,soa,4sD16m -. c r- 649s / ou 32.n4 n,~ ,- e <- . is4 s e c.' CCE 26-426 NEW 4/90
a aa a a& a._ 3 A-6 ---aL.- .w_.J J.-44-. -- 4M 2M.5 4 '8- 8 as---- -s4 .+- ,h
-__ma4.
NES&L DEPARTMENT CALCULATION SHEET =;we ,,,y y ,, .zz y Project or DCP/M4P SONGS 3 Cale No. CCN CONVERSION I M-DSC-269 CCN No. CCN - ! subject See Title Sheet Sheet No. ISb REV ORIGINATOR DATE IRE ' DATE REV ORIGINATOR DATE IRE DATE
- 3. PELLET gg 11/10/93 JUN GAOR 11/10/93 l
l l
$ Fo(2 -n4E. SL o 3 H Ie4 (, MA55 , E Q 'N IO, R E F[2.3 l 3 h , L M 3= 0.4s5 W g R 1. 2 4 4+
(2 2 l
= o. 4SF fF (l. 94)S E . Sec a-(2e) 3 *T 3 /,r_) a- 4a.4[l.84 [32 =
FT ( l2/ ira . ( 2o _ l 8 38 )) 4 sec' m c.u e c m a s nit s Ac,A SN ST" ElSj4 d M -] !d f* G @ /gY1 : O.28 GiMG Mss O. 2.8 (C,55o) lb f s ec t_ [ 3 2,o 14 se c t ,,, ok
~ < va J O sc. Mg= 18'30 lb 4 se.c 2 is 'on Mg i S3 o 5 64 sec.2 (1'2 h (32. 2) ! b m. r r \~ . -5o7, coa l6m Fr M s0 4-M g = [J 1 29 (3"A 64 c.9 2.[ 2 '2. O 32+r= 2 2. 2 2- F t-2o j N t. 6 % c.
or e i. e. N . e Z 2. 2 4 't. o = L'S I , 2 2- F r I SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =M.a# ,Acw7 , .2 n Project or DCP/MMP SONGS 3 Calc No. CCN CONVERSION M-DSC-269 CCN NO. CCN - subject See Title Sheet 33. t u,, \ g7 j REV ORIGINATOR DATE IRE DATE REV ORIGINATOR l OATE IRE DATE S. PELLET $g M/10/93 JUN GAOR [ [ , 11/10/93 l l [ 5'o A W L mat 5 of WE DE::oe A6s E Lt Q Os o Ci L L E.O $ 4.r.LL f=a. w i s i c. .1 h :- V4"; h/R - o.c o 1 ; 4 r is. a , 4 e n [y.] , */a. =. I. G ! d Ar-e s Yi sto s Mg/m : C. G S 4.p. /y .=. o , 4G F l T4 4 = 0.6 8 (6 Soo) lb 4 - S E= c 4 4 2 o 14 4 Se c '- I e4 I ed on. Mg- ), ~)O8, 0 0 0 \bM Awo
}.{ 4 = 0. 46 9 (31) =- 14. 9 F T hve- eMc.
54 4- J 4. 3 + 7 i 2 3.9 , E L EV
$ Fo(L TME. M A55. A SS OC ATTO W ' T4 6'GtO G,, reouc4o t4cT1oca FRom. PtG 9 4 9"1 Gt tO 3 4 E F ("2 ]
6a4 aus m e to Mr /m = o. n ; }-\ 7 /M = o. 4 t 1 M > = o. 7 ) ((, Sroo) =. 4GI5 \ LA s e c'z g IV\( =. jI"1@3,000 lbm Mo M y, =.
- 6. 417 (~3'2.)
- _
- 13. 3 /-l e r AGoVr 6 As r-.
on M. 7 2- _i E LE V. l 13.3 + 9 = 7 2 2. . > SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =" Wu ,Aoyg o, 2 7., Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION CCN No. CCN -
/
subject _ l See Title Sheet REV sh .t No. J_ SPE ORIGINATOR DATE IRE DATE REV ORIGINATOR CATE 1RE DATE S. PELLET 3g) M/10/93 alN GAOR p , M/10/93
% 1:04 THE. ro A55 of TME bef..
(:-48 h =1/4 [s ~ kg ke.,cu 3=2trRk = 2 tt (4sXi c(s2 <Q = i s t ooo , a 2-l M g,, = 500_lk m (18 9 000)'M * (0 2. & n d , I 3, 7 % Ik F 73 ~ ( 17_% FIA wwscH A Gt ass.S CLosecv u n ru AlEp [S) THE. H-E t /m MT OF W E. CeA T E/2 oc. m h5S to A Y G L. E. 5r< M AGE.O 6/ 1HtT'Y O n T116 s n-4 E Tb f os A r' 40" AGoVC. TH E Nor S etE L.L . TW E. O s i4 Ed ito rJ tS l T'd cA tric4 L. Si dc E TW 5 rn ass i s 9 M At.L (.ef9A4 EC oTMEA 5 ( A ' C V t. A 'rY.c PQ.E V(ou 5 L Y. l l [ i SCE 26 426 NEW 4/90
1 NES&L DEPARTMENT CALCULATION SHEET ::nii?" ,A E m o, m
- Project or DCP/MMP _ SONGS 3 CCN CCNVERSION /
Cale No. M-DSC-269 CCN No. CCN - l
- subject See Title Sheet Sheet No. IN 1 REV ORIGINATOR DATE IRE DATE REV CRIGINATOR f DATE IRE DATE S. PELLET $ $ ~ 11/10/93 JUN GAOR h , 11/10/93 4
DE TE/4tAird E T% cd A< SM L L ANO AcoG L. ATE R A L Sn FFc)E S SE S. W E. F LE % URAL /D Gil OiW E.Q U ATto rd Fo4 GEMG.AAL 9t A rE. W E.o R Y 15 G N ErJ By D= E. E rec [33 Mw e_ s c,o i
/ 2. ( l J) ) AEF {_4] PAGE 520 i ., 29xto' I , 2, (tfi~i s v 6s nTun r46 rus. (A A t ous l /2 (/- (03y)
W e. 5 t+c. t.L. ANo Xco4 -ry ic y ,J6 5,5 LJ E. o S M tr/ ; tg.o D hk5/id 1 3/sc 17,Soo
- '/4 41,500
- 5/16 Blp 50 I
TME $ W Lt. MAY BE c easi C E.C 6 0 e Gio a v Tuc. PLAWu rm W Ggdr Tv rug c u a m Tv RE. . i 12o tAnoa A L st:FN ESS (5 D E rE4 W r4 E/7 OY R E F [4-) r'dG4 l 351 erd o CASE S c. r Acie. 3 s2 Assv%c o=i bak bla:-O.lbG i n nEn fot A rtesc, 0 . l - O. *b __ -. O. i - 'llo
- c. : o 7 3 --(- o.1626) - c. t o13 -(l< g"s.'
Kg s - o.12.6 puoq G wc ,. 7 EovATtoW ro o D D + (,h Me (, *
~ ., mc j e ke a -o.12G(O --
3/14 /38,900
'/4 '329,400 $7u,. 543,300 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ="!; % . m .A.,u ,,z zy i Project or ocP/MMP SONGS 3 CCN CONVERSION cale No. M-OSC-269 CCN No. CCN - subject See Title Sheet REV sheet No.. NO ] ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE S. PELLET @ 11/10/93 JUN GAOR f f , 11/10/93 1 I A Q vack CUfGk MAY 3+4vd t (f, d4 L s O iT Y o s- , T}4E S 6 4 o TY; 77oa 4 L- S t F F ed E'.5 5 . Tc w q. " A c; s ca f v v 3 vP Polnco 3 't" &" W ID 1ii AJc Q E(% v1 h}/9 OtEP
~$ ' t L. o MQ 5"
O I h a }Mo b*-kb o QEF (t ) no 3 E.E m gez = 2 (nx. a',) ,z SY i 9 L 3
=
9 5, Goo w re s a u ,cu is ou ruz swa 4 6- N m A G wi nd ot. /t's 138,920 Fo uw o 54rg 4 3/t G " cieco tu 9 ' p. TE. , f, Ok j lg y l4 > 'hy few gEO 9 oniIEN OS i
- f
/ / ( %lLu , #wvEn Ar-Moq No G" OM E.001 8E L
0 % f t b' ACTUAL CHECK 60 44 .' V A L n D 17Y
*JB %1.35 C.A L C U L A TT./J M ~ ~ ~
664ci AC= Pt4oo t' { STVF W E ! CM CV'ATT? ra wo.ae, u.a L.f. E.T E O C- C SCE 26-428 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ';;:r g r. * ~ ,Ao n, o, z u j Project or DCP/mtP SONGS 3 Calc No. M-DSC-269 C C - Subject See Title Sheet REV sheet No. W ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE [RE DATE S. PELLET [g 11/10/93 JUN GAOR [4 , 11/10/93 i tac 4x S H E.L L SE. c.T i ord pro 9ERDE5 '
- FoR. t. = S //6" Iy. = t Tr R 3 Ae.c M l I, - (5/ 9) fe [20% 2.') =
' S , 5 7 2.,o c o i eJ '
sgi I<_ it s rz coo - 5 (.,, S s o id 3 g, Cz.o'2 O O i A = TP(RI- R 2.) = ft (24o. 3: 2s)-(z4o)
=
4*71. 5 saZ 4 i
- ma .E . 1/4.'
.3 L s (' +)1Y((2o'h D. / 10, 8 57, oo o iJ' i S g :- ,I_x = Jo 857 coo -
- 45. 2 3 8 ..a 3 R (2 cXi ?.)
- m A = ft [24o + '/4[- (240)* .. , % 7 1 ia 2.
4 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =":! M r. " ,Au m 0, m Project or DCP/MIP - Subject SONGS 3 See Title Sheet c ie u.._M.DSC-269 $ n'o7'S[- c [ Sheet No. I E REV ORIGINA TOR l DATE IRE DATE REV ORIGINATOR DATE IRE DATE
- s. P iLEi g 11/10/93 JUNGACR[(,, 11/10/93 I
waa t siss Is = (3AQ rr (zo)D 2.)) = 6,14 3,o 0 0 i44 3x: 9 143 coo - 33,430 #N 3 (zo) 07) h - TY (240 + Ab4 f- (244f = 283td l 1 l I i i 1 7 i SCE 26-426 NEW 4/90 )
' NES&L DEPARTMENT \ CALCULATION SHEET i i
' =i4."' .A.E,yz e, 2 77 t
Project or DCP/ MP SONGS 3 CCN CONVER$10N cale No. M-OSC-269 CCn No. CCN - [ j Subject See Title Sheet Sheet No. ID REV ORIGINATOR DATE IRE ' DATE REV ORIGINATOR DATE !RE DATE i S. PELLET g g 11/10/93 JUN GAOR Q 11/10/93 { I - 4 j voos M Ass 4 4,33' 13, ~ loo kvf ll E W. l g g,, p yog,p yygggy ro e o s: sme _, 4g,w' Tx ' 8, l 43, 000 I.J 4 ft. =%
, A= 2. e s i #
Ms 31 2'2. 7o7, ooo Ibe gg n unio f VE APc4LLY N$ 23 0 l 708,000l% ll i M 22.3, I ~l h 3 000 \b 22.94 i 1
- 4. p/[ L = l0,85 7,00 o Ied A= 377:w'
\ to.R 'l i A. l s7% Tx. = l'6,5 72 3o00 ice r3 A sE es: TW/k - - / A- 471.'si#
e i E v. 91c" e mso av s Ase_ 9. o'
/ // //
TANK F. c C E L- b ELE PAEdn Ar CE~ EOt 0 0
- NE
. I 1 <[ ] T w ! .J W SCE 26426 NEW 4/90
. .. = _ , - - - . .- ._.
NES&L DEPARTMENT CALCULATION SHEET =" gNF ,m ,yp, 7., CCN CONVERSION j Preject or DCP/MMP SONGS 3 Calc No. H-DSC-269 CcN ho. CCN - [ f subject See Title Sheet Sheet No. _ REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUN GAOR Q 10/12/93 b i i i i 1 l j APPENDIX - C ANSYS AND ME101LS INPUT FILES i o l } i .t I I SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::" 2F ,Axiu e,m CCN CONVERS10N / Prrject or DCP/MMP SONGS 3 Calc No. M-OSC-269 CCN ho. CCN - / , 1 Subject See Title Sheet Sheet No. /73 ! d REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE NABIL M. EL AKILY 10/12/93 JUN GAoR [(,, 10/12/93 l l . 1 , List of ANSYS Input Files File Name Description Sheet ; I' PPMS1 Tank model with concentrated force of 196 i 1,000,000 lb applied near the top of the l shell. l Tank model with forces applied at each shell d PPMS4 201 node. Each force is 1,000 lb in magnitude. { l
) i j
l l l i SCE 26 426 NEW 4/90 I
I NES&L DEPARTMENT ! CALCULATION SHEET =,M " .
, A , , ,,,, y CCN CONVERSION / I Project or DCP/MMP SONGS 3 Cale No. M-DSC-269 CCN No. CCN - /
subject See Title Sheet Sheet No. N REV ORIGINATOR DATE !RE DATE REV OR!GINATOR DATE IRE DATE NASIL M. EL AKILY 10/12/93 JUN CAOR h, 10/12/93
/ PREP 7 / TITLE, PRIMARY PLANT MAKE-UP TANK C*** FILE NAME: PPMSI.
C*** C*** FORCE APPLIED NEAR THE TOP l C*** ' \ KAN,0 C*** C*** ELEMENT TYPE: ELASTIC SHELL ET,1,63 ET,2,8 i C*** ' C*** MATERIAL PROPERTIES EX,1,28.3E6 ** TANK SHELL (TYPE 304 SS) NUXY,1,0.3 EX,2,30.0E9 NUXY,2,0.3 C*** C*** REAL CONSTANTS R,1,0.25
- BOTTOM R,2,0.3125
- FIRST TIER R,3,0.25
- SECOND TIER R,4,0.1875
- THIRD TIER R,5,0.25
- ROOF R,6,1.0
- SP0KES C***
C*** GE0 METRY RT=240.0
- TANK RADIUS H1=95.625
- HEIGHT TO TOP 0F FIRST TIER H2=167.25 HEIGHT TO TOP 0F SECOND TIER HT=408.0
- TANK HEIGHT RBL=243.0
- BOLT CIRCLE RADIUS RBT=246.0
- OUTSIDE RADIUS OF THE BOTTOM RR=576.0
- ROOF RADIUS Al=SQRT(RR*RR-RT*RT)
A2=HT-Al
- CENTER OF COORDINATE SYSTEM 11 A3=A2+576.0 C***
C*** NODE DEFINITION N,1,1.0
- CENTER OF THE TANK N,7,RT
- TANK RADIUS FILL,1,7
- N,9,RT,H1 FILL,7,9-SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::::IM;fu ,Ax m o, y y CCN CONVERSION Project or DCP/M(P SONGS 3 Calc No. M-DSC-269 cCN No. CCN - subject See Title Sheet sheet No. \97 REV ORIGINATOR DATE IRE DATE ' REV ORIGINATOR DATE IRE DATE NA81L M. EL-AKILY 10/12/93 JUN GAOR 10/12/93 N,11,RT,H2 FILL,9,11 N,17,RT,HT FILL,11,17 C*** N,23,1.0,A3 N,9000,0.,A2 NGEN,2,1,9000,,,1.0 NGEN,2,1,9001,,,,1.0 CS,11,1,9000,9001,9002 CSYS,11 FILL,17,23 C*** CSYS,0 N,24,RBL N,25,RBT C*** N,9003,0.,0.,0. N,9004,1.0,,-1.0 CS,12,1,9003,7,9004 CSYS,12 NGEN,72,25,1,25,,,5.0 NDEL,9000,9004 C*** CSYS,0 N,1801,,367.875 C*** C*** ELEMENT DEFINITION MAT,1 TYPE,1 REAL,1
- BOTTOM E,1,2,27,26 EGEN,6,1,1 E,7,24,49,32 E,24,25,50,49 4
EGEN,71,25,1,8 E,1776,1777,2,1 EGEN,6,1,569 E,1782,1799,24,7 E,1799,1800,25,24 C*** REAL,2
- FIRST TIER E,7,8,33,32 EGEN,71,25,577 SCE 26-426 NEW 4/90
i NES&L DEPARTMENT CALCULATION SHEET ': : n L ;. M ,Ax ,y y 0, z w CCN CONV(R510N / Project or DCP/MMP SONGS 3 cale No, M-DSC-269 CCN NO. CCN - [
- subject See Titie Sheet Sheet No. [N REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 JUN CACR Q , 10/12/93 l
l E,1782,7,8,1783 EGEN,2,1,577,648 C*** , REAL,3
- SECOND TIER E,9,34,35,10 EGEN,71,25,721 E,1784,9,10,1785 EGEN,2,1,721,792 C***
REAL,4
- THIRD TIER E,11,36,37,12 EGEN,71,25,865 E,1786,11,12,1787 EGEN,6,1,865,936 C***
REAL,5
- ROOF E,17,42,43,18 EGEN,71,25,1297 E,1792,17,18,1793 EGEN,6,1,1297,1368 C***
HAT,2 TYPE,2 REAL,6
- SP0KES E,1801,16 E,1801,41 E,1801,66 E,1801,91 E,1801,116 E,1801,141 E,1801,166 E,1801,191 E,1801,216 E,1801,241 E,1801,266 E,1801,291 E,1801,316 E,1801,341 E,1801,366 E,1801,391 E,1801,416 E,1801,441 E,1801,466 E,1801,491 SCE 26-426 NEW 4/90
CALCb5AYldbdHEET =~;m " .
,Act m0, a -
Project or DCP/MMP SONGS 3 CCN CONVER$10N / Calc No. M-0SC-269 cCN No. CCN - [ subject See Title Sheet Sheet No. IN REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AXILY 10/12/93 JUN GAOR Q, 10/12/93 E,1801,516 E,1801,541 E,1801,566 E,1801,591 E,1801,616 E,1801,641 E,1801,666 E,1801,691 E,1801,716 E,1801,741 E,1801,766 E,1801,791 E,1801,816 E,1801,841 E,1801,866 E,1801,891 E,1801,916 E,1801,941 E,1801,966 E,1801,991 E,1801,1016 E,1801,1041 E,1801,1066 E,1801,1091 E,1801,1116 E,1801,1141 E,1801,1166 E,1801,1191 E,1801,1216 E,1801,1241 E,1801,1266 E,1801,1291 E,1801,1316 E,1801,1341 E,1801,1366 E,1801,1391 E,1801,1416 E,1801,1441 E,1801,1466 E,1801,1491 E,1801,1516 E,1801,1541 E,1801,1566 E,1801,1591 SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::rloua. 3 : >~ ,A , ,, y.y CCN CONVERSION / Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN No. ccN - / subject See Title Sheet Sheet No. 2 0 0 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN CAOR [ [,. 10/12/93 E,1801,1616 E,1801,1641 E,1801,1666 E,1801,1691 E,1801,1716 E,1801,1741 E,1801,1766 E,1801,1791 C*** C*** LOADING AND BOUNDARY CONDITIONS W50RT,ALL NSEL,,24,1799,25
- FIXED N0 DES ALONG THE BOLT CIRCLE D,ALL,ALL
- NALL
- C***
ITER,-10000,10000,1 F,1801,FX,1000000.0
- FORCE APPLIED AT THE CENTER C***
AFWRITE FINISH
/ INPUT,27 FINISH SCE 26-426 NEW 4/90
CALCblYT5d[dHEET : Wee"r .
,A % , , m Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 !! Yo ccY- ,!
Subject See Title Sheet Sheet No. 10) REY ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE 1RE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR h , 10/12/93
/FREP7 / TITLE, PRIMARY PLANT MAKE-UP TANK C*** FILE NAME: PPFS4 C***
C*** UNIFORMLY DISTRIBUTED FORCE ABOVE BOTTOM C*** KAN,0 C*** C*** ELEMENT TYPE: ELASTIC SHELL ET,1,63 ET,2,8 C*** C*** MATERIAL PROPERTIES EX,1,28.3E6
** TANK SHELL (TYPE 304 SS)
NUXY,1,0.3 C*** C*** REAL CONSTANTS R,1,0.25,0.25,0.25,0.25,30000.0
- BOTTOM R,2,0.3125
- FIRST TIER R,3,0.25
- SECOND TIER R,4,0.1875
- THIRD TIER R,5,0.25
- ROOF C***
C*** GE0 METRY RT=240.0
- TANK RADIUS H1=95.625
- HEIGHT TO TOP 0F FIRST TIER H2=167.25
- HEIGHT TO TOP 0F SECOND TIER HT=408.0
- TANK HEIGHT RBL=243.0
- BOLT CIRCLE RADIUS RBT=246.0
- OUTSIDE RADIUS OF THE BOTTOM RR=576.0
- ROOF RADIUS Al=SQRT(RR*RR-RT*RT)
A2=HT-Al
- CENTER OF COORDINATE SYSTEM 11 A3=A2+576.0 C***
C*** N0DE DEFINITION N,1,1.0
- CENTER OF THE TANK N,7,RT
- TANK RADIUS FILL,1,7
- N,9,RT,H1 FILL,7,9 N,11,RT,H2 FILL,9,11 N,17,RT,HT SCE 26-426 NEW 4/90
i l NES&L DEPARTMENT l CALCULATION SHEET =",:%" ,Aomo, , ., CCN CONVERSION / l Project or DCP/MHP SONGS 3 Calc No. M-DSC-269 CCN No. CCN - l Subject See Title Sheet Sheet No. 2 02-REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE !RE DATE NABIL M. EL AKILY 10/12/93 JUN GAOR 10/12/93 l 1 f l > FILL,11,17 1 cas, l N,23,1.0,A3 N,9000,0.,A2 NGEN,2,1,9000,,,1.0
- NGEN,2,1,9001,,,,1.0 CS,11,1,9000,9001,9002 CSYS,11 FILL,17,23 C***
CSYS,0 l N,24,RBL ' N,25,RBT C*** N,9003,0.,0.,0. l N,9004,1.0,,-1.0 l CS,12,1,9003,7,9004 CSYS,12 l NGEN,72,25,1,25,,,5.0 l l NDEL,9000,9004 l C*** CSYS,0 C*** C*** ELEMENT DEFINITION MAT,1 TYPE,1 . l REAL,1
- BOTTOM E,1,2,27,26 EGEN,6,1,1 E,7,24,49,32 E,24,25,50,49 EGEN,71,25,1,8 E,1776,1777,2,1 EGEN,6,1,569 E,1782,1799,24,7 l E,1799,1800,25,24 l C***
REAL,2
- FIRST TIER E,7,8,33,32 EGEN,71,25,577 E,1782,7,8,1783 EGEN,2,1,577,648 C***
REAL,3
- SECOND TIER SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET : rl:%"3-
,m,a or m Project or DCP/MMP SONGS 3 Calc No.
CCN CONVER$10N / M-DSC-269 ccN No. CCN - [ subject See Title Sheet Sheet No. 103 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NABIL M. EL-AKILY 10/12/93 JUN GAOR h 10/12/93 E,9,34,35,10 EGEN,71,25,721 E,1784,9,10,1785 EGEN,2,1,721,792 C*** REAL,4
- THIRD TIER E,11,36,37,12 EGEN,71,25,865 E,1786,11,12,1787 EGEN,6,1,865,936
, C*** 4 REAL,5
- ROOF E,17,42,43,18
- EGEN,71,25,1297 E,1792,17,18,1793 EGEN,6,1,1297,1368 C***
C*** LOADING AND B0UNDARY CONDITIONS WSORT,ALL NSEL,,24,1799,25
- FIXE 0 N0 DES ALONG THE BOLT CIRCLE D,ALL,ALL
- NALL
- C***
ITER,-10000,10000,1 NSEL,Y,2.0,500.0 F,ALL,FX,1000.0
- FORCE APPLIED NALL C***
AFWRITE FINISH
/ INPUT,27 FINISH SCE 26426 NEW 4/90
1 l NES&L DEPARTMENT l CALCULATION SHEET ;;;"1 e m m -
,Axyso,2 75 CCN CONVERSION [
ProjectorDCP/MMP SONGS 3 Cale No. M-DSC-269 CCN No. CCN - [ subject See Title Sheet sheet No. 2 04 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR CATE IRE DATE NABIL M. EL AKILY 10/12/93 JUN CAOR %, 10/12/93 l APPENDIX - D REFERENCE DOCUMENTS SCE 26-426 NEW 4/90
i Pntnary Plant Makeup Storage Tank (PPMST) Nonles NOZZLE SIZE QUANTITY ELEVATION DESCRIPTIONSIREMARKS A 3' 1 10'-7" CCW Safety Related Makeup Pumps Suction ' B 1* 1 16'-0"
- CCW Safety Related Makeup Pumps Minitiow Back to the PPMST 6 M MM
-. F 2\" 1 31'-0" Existing Fill Line for the PPMST (Relocated)
G 2* 1 31'-0* Existing PPMGT Pumps Recirc to the PPMST(Relocated) H 4" 1 31'-O" ar _ ,g, . Existing Suction Line for the PPMST Pumps (Relocated) e", < ' J 4" 1 9'-9 tyrs" m Existing PPMST Overflow Line ! K 3" R ; 1 8 '-5" Existing PPMSTDrain Line L 2* 2 9 '-6" .h.y: ~~ Existing Level Transmitter Taps l 42'-0" ' M. 2' 1 9 '-8" Existing PPMST Pumps Recirc to the PPMST(to be capped) N 2\* 1 9*-7 euns' Existing FIII Line for the PPMST Pumps (to be capped) P . 4" 1 9'-6 sxte" Existing Suction Une for the PPMST Pumps (to be capped) i f(,,( f - 5 &'$ f? 6 4ttT 'los" surP=aw NOTE: AI! elevations are pipe centerline elevations. , M - Osc-269 e r en d ,) BY E CHECkiD
~
O
i ji ,: l;l ; ! ,; .
- x. _
A m4 g e w E - A m u h_ a o , n w w A_ J 4 A. s_ a n
/
m_ L E. A. E C \ e r . t - A. -
}
44 D. J 4 4 A-4 0 . . 3 , A A a m
, 0 7
2 4 2 T u . I N U E s 4 m - N m
~
4 + a 4 m 4 4' 4 e '
- v. e S ~$u
? i L
4 H T >hrV f vs\' 3 R
?
O N 6 4 a
',o h
4 a
/\ 1 =
M . L h i.
, l.
JI i h M 4 4b s m. 4 m 4 h, 4
,m.
4 h d .
^- :
R g
t m ! COPY FOR YOUR < 7 . INf0RNkil0M
- o.
i
- e. A x
1
.% *q -e u / S j - m . J
! D i o m n . 4 O fY o o
- h i '
n o y . u e g f' T O j 1 r 2 , t ) (n lle.1 F ?u< f14 0 O
.O GI1 eek , wa 7;/J77) k ct "i -
CAggg M O sc - 26 4 ! i h e (/Al ? i N E i V m
- " turE "
i . I 1 a
- 6 e?..'
8 9*,
=. = ;=. x - - - - - - - -
i CALCULATION SHEET =:'t . ,,a ,, Project w SCP/sep 2 & 3 - 6742.07 SM cm _im ! cais me. _M-1203-476-2A cce no. eca - 1 j sehjeet
.SfP TITLE SHEET j arv sheet me.
mistmica urt in ute arv p. mistuta urs o oc nur tu u ra 82 25 93 d 1/ugs l
)
3 s.5
- agurFManT mozzLa Loans avaLUArrows (cour<n) 1 j EQUIPMENT I.D./ FORCE (LBS)
DATA POINT AIJ4WABLE (*) REMARK MOMENT (PT-LBS) (LBS & FT-LBS) Tank - T05G Fx = 0/ l Nozzle' A Fy = + 58 /
/ 2/ Fz = 0/ I
- WT01 00PY TOR YOUl!
Mx = - 67 / My = INf0RMAT10N { 0/ i e Mz = -130 / THRM01 Fx = -755 / - Fy = + 12 / Fz = -287 / Mx = + 10 / My = -237 / i ' Mz = - 38 / SEIS01 Fx = 86 / - Seismic Fy = 28 / Fz = 37 / loads are ' Mx = 45 / +/- i My = 47 /* Mz = ! TOTAL LOADS: 115 / /Coj F- $W f'M i Fx = +172 / - See note. i -927 / -
- WT01+THRM01+(2x5EIO1) Fy = +126 / @ # NQ) I j
a AY 0/ j p, d, Fz = + 74 / SN
-361 /
i I /\ )(, MX = + 33 / gg LA - OM-269 ggi { -157 / 6 j My = + 94 / gy 1 sung - I E Mz = +100 N ~ E
-398 /
i Notes : (1) Tank Rev. 0nozzle loads are evaluated in calcul~ation M-DSC-269 i j seeis.4as new 4m m"#. i
NES&L DEPARTMENT CALCULATION SHEET i:ru:%.ur Project or DCP/MMP _2 & 3 y,, .,y 6742.07 SM I Calc No. _ M-1203-478-2A $ nEc"c[- 4 subject SEE TITLE" SHEET REV ORIGINATOR DATE _ Sheet No. 36 Itt DATE REV CRIGINATOR 0 TA0 VAN NGUYEN DATE !RE 12 09 92
*h hfu g DA ff 8.6 EQUIPMENT NOZZLE LOADS EVALUATIONS (Cont'd.)
EQUIPMENT I.D./ FORCE (LBS) DATA POINT / ALLOWABLE REMARK LDCASE MOMENT (FT-LBS) (LBS & FT-LBS
,$ 1 (u/ f- 4I Tank -T056 FX = +
Nozzle B 3/ gN
/ 2A / FY = - 15 / g%
I FZ = + 2 $MT % $
! "I * ((
MZ = - [/ / suPM.B MT 2 / O~ ~ THRM1 CALA'M FX = + 3/ ' FY = - N> 3 / gy g:: 3l thgg
~
MY = + 5/ ca.c.,- w - 1 MZ = + 12 / l SEIS1 FX = l FY = 30 / - Seismic. FZ = 7/ loads are MX = 25 / +/- MY = 2/ MZ = 60 / 2 6 TOTAL LOADS:' WT1+THRM1+2SEIS1 FX = + 66 / SAM Loads
- 66 ~
are N AY FY = + 32 /
= - 32 negligible FZ = + 55 / See note ' = - 55 , E=+ 6/ (1) =-6 MY = +130 / * = -130 $ Y MZ = + 22 / = - 22 i
Notes : (1) Tank M-DSC-269nozzle loads are evaluated in calculation Rev.0 s a"
NES&L DEPARTMENT SUPPLEMENT *A* CALCULATION SHEET =n:-:,.e- = ,,,,,,,,, Project or DCP/MMP 2 & 3 - 6742.07 SM Calc No. _ S.1415-22 c$ n'o7cS[. Subject SEE TITLE SHEET sev Sheet No. A - 2f oarctu4ron o4rt int cars arv oarat=4rea care ine cats o s.orsuas 12 23 92 py fz.y,.f2-l 8.6 EQUIPMENT NOZZLE LOADS EVALUATIONS ( l EQUIPMENT I.D./ FORCE (LBS) ALLOWABLE DATA POINT / REMARK LDCASE MOMENT (FT-LBS) (LBS & FT-LBS) ', 7 f c I Tank -T056 FA = + 3 i I f' >f g' c.< Nozzle 7F FB = - 67 i WT1
/5/ f["c 3.M,- FC = - 1 $pg7 2IOo Il 7'/
MA = + 1 l M = 60 E THRM1 FA = - 62 gu,g;;, u_ 1A - # M 2-6_9
- l FB = + 43 MIII g FC = - 9 MA = + gy 6 ,__ ' MB = +
MC = - 12 79 NB%M E_- __ SEIS1 FA = 36 FB = 152 Seismic FC = 44 loads are ' MA = 32 +/- I MB = 46 MC = 189 l l TOTAL LOADS: FA = + 131 / WT1+THRM1+2SEIS1 _ j 131 Yb See note
" # FB = + 371 / (1)
I l
= - 371 I FC = + 98 / l =- 98 0 gh MA = + 71 / * =- 71 MB = + 105 /
Z = - 105 o-MC = + 517 /
= - 517 Notes :'
(1) Tank nozzle loads are evaluated in cal _cylation M-DSC-269 Rev.o
- 4 l,* '
ki:
NES&L DEPARTMENT SUPPLEMENT
- A *
{ CALCULATION SHEET ]= =. } ,,,, a ,, , , 4 Project or DCP/mP 2 & 3 - 6742.07 SM calc No. _844 Col CONVER$10N ! Ccn no. CCM - i subject SEE TITLE SHEET ! Sheet No. A-% ! aEv celstuAton DATE taf DATE REV Ot!CluAfon DATE tRE DATE 1 o s.stswAs 01 O' M "[f/'j /-4-f3 i i i 8.6 EQUIPMENT N0ZZLE LOADS EVALUATIONS i i EQUIPMENT I.D./ FORCE (LBS) ALLOWABLE DATA POINT / REMARK i LDCASE MOMENT (FT-LBS) (LBS & FT-LBS)
,76
! Tank -T056 FA = + 6 - i Nozzle G FB = - 84 1gg -
/5/ FC = + 2 h y q}Q M FO <'
i WTI MA = - 2 g g.3 2,l { ,f3- u7 l M3 - - 4-j I i MC = - 85 MN ' i THRM1 FA = - 28 -
~
j FB'= FC =
+
11 1 WNft N , MA = + 1 W- B R' ~ i MB = + 2 CHECKED Da TE ~
~
MC = - 62
/ SEIS1 FA = 50 i
FB = 502 Seismic ) FC = 62 loads are l MA = 34 +/- 1 MB = 85 i I MC = 587 1 TOTAL LOADS: FA = + 106 / } WT1+THRM1+2SEIS1- - 122 Y,b See nota l j FB = + 931 / (1) L = -1088 FC = + 126 / 4 I
* = - 123 l gg g- Mk = + 67 /
c =- 70 4 l MB = + 168 /
= - 174 f *2. - A S MC = +1089 / = -1321 i ; Notes :
(1) Tank nozzle loads are evaluated in calculation M-DSC-269 Rev.0 1 SM254aB MEW 4/30 '
- f .:
w
CALCUi.Xfi6s'5HEET I: b $ , Y - [ ,, a n ,, y Project or DCP/MMP 2 & 3 - 6742.07 SM Calc No. Ccm conyt:3!0N ~
$-1415-06 ccm me. CCN -
subject-SEE TITLE SHEET nav omicrutos oAre
$heet No. _A b tee oars nav o onsciuroa ) cars tao van usuvan las 12-17 92 gh Q2 22,.c/ t
{ oars v-
- l i 8.6 EQUIPMENT NOZ2LE LOADS EVALUATIONS i
EQUIPMENT I.D./ FORCE (LBS) DATA POINT / - ALLOWABLE REMARK LDCASE MOMENT (FT-LBS) (LBS & FT-LBS) -
>f--
Tank -T056 FA = 13 f. Nozzle H FB = - 137
.1 ( g.( f D ' / 3C1 / 'FC =
WT1 'MA = - 19 17 h-\N #, - Q 7-MB = - 46 MC = - 180 SWP B M T-THRM1 rw e r. M - OSc.- i 2.6 9 FA = - 68 ; FB = 8 MM CL M. FC = + 14 MA.= - 14 - T - MB = - 33 CHECWD- ~ _04TE C ,_ . MC = - 208 i SEIS1 FA = 116 - FB = 258 Seismic FC = 119 loads are i MA = 42 +/- l MB = 181 I MC = 512 ( TOTAL LOADS: WT1+THRM1+2SEIS1 FA = + 245 / !
- 287 -
d FB = + 387 / See note ! N = - 653 (1)
.FC = + 271 / = - 219 {
h MA = + 67 / - '
- I X
MB +3 g #** q = - 441
/
h MC = + 844 / ,
= -1412 , ',=
i Notes : , (1) Tank M-DSC-269 nozzle loads are evaluated in calc _u_Lation Rev.0 *
,e sl f a
i l j NES&L DEPARTMENT s g ; m ..;'A' l l CALCULATION SHEET m ,..c-1 m r ,,, m ,, , 7y l
- ccm convttston !
J Project er ocPheer 2&3 - 6742.07 SM cale k. S-1415-37 ccx no. i subject See Title Sheet sheet k. A-REV ce!GINATcR DATE IRE . DATE REV CRIGINATOR DATE IRE DATE } /o\ u reno TAmc 2 17 93 fg/ s/fy/y3 /\ ! /\ /\ i l l 8.6 Equipament Nozzle Loads Evaluation : - ggp110R ION l mtBR M 0" g, .J f c. T l Equipment Force (Lbs) - l f I.D. Moment (Ft-lbs) Remark
/ Data Point irtT. M 3 / Loadcase j
l Tank T-056 Fa = - 6 Ma = - 1 SN j and T-055 Fb = - 564 Mb = + 0 CALC NO M- U % -MN j Nozzle J Fc=+0 Mc = - 356 f(fQ f .t / D.P. Al i / Dead Weight SY DATE ! Fa =,- 1 Ma = + 0 CAEQWD DATE Thermal Fb = + 0 Mb = - 1 - Fc = + 0 Mc = + 4 Fa = 1 Ma = 35 SAM loads SAM (DBE) Fb = 103 Mb = 4 are +/-
- Fc = 5 Mc = 71
! Fa = 87 Ma = 166 Seismic (DBE) Fb = 610 Mb = 102 Seismic loads Fc = 90 Mc = 385 are +/- i Total Design Fa = + 81 J Load - 93 Fb = + 54 TEb "
- 1183
- Fc = + 90
- 90 See Note (1)
Ma = + 169 Fc 7 we y Mb = + 102 170 ! l - 103 ' k Mc = + 39
- - 748 Note
- 1) Nozzle loads are qualified by calc. M-DSC-269 Rev. 0 M
je
NES&L DEPARTMENT ' ! supploman A. CALCULATION SHEET i= ~ m 'im.ccm me,c-1 f_gfr past 2, g o, ..- j Prej ut er scr/mp 213 - 6742.07 SM cale u . 5-1415-56 " 7'" cen subject See Title Sheet shut No. - A-nav carsturm urs ins - care arv miniurat cris ans ute
/o\ Li rsus vans 2 19 '3 M 2 D /\
! /\ 1 /\ -
=- r u CALCt; M ~ DI0- M O j 8.6 Equipment Nozzle Loads Evaluation : g M, _. I_
i j BY . . DATE 3 - Equipment I.D. Force (Lbs) u4 . . . ._ ] ATE
/ Data Point Moment (Ft-lbs) 7 emark l / Loadcase MMi j
j Tank T-056 and Fy = 88 sgp3 (BR IDN b' ' ' T-054 Fz = + 0 L Ngggg$ ) l Nozzle K
/ D.P. 5 Mx My = = + + 287 0
[-
- / Dead Weight Mz = - 287
~. Fx = 182 j Fy = 146 i l Seismic (OBE) Fz = 182 Seismic loads Mx = 244 are +/- l- My = 512 l Mz = 244 Total Design Fx = + 182 ! Load - 182 i 1 Dead weight + Fy = + 0 2(Seismic) - 334 Fz = + 182
- nT - 182 Mx = + 531 See Note (1)
{ -0
!!y = + 512 7, / X - 512 4~
i Mz = A 0 4
- 531 i
i Note : 1) Nozzle loads are qualified by calc. M-DSC-269 Rev. 0 1 i i o --n' I MI,7 J
NES&L DEPARTMENT l CALCULATION SHEET =s c:= ,,p,, , PreJoct er ocP/sep 2 & 3 - 6742.07 SM m. -i.
- , cale me. M-1203-476-3A ces m. con -
Weet SEE TITLE SHEET samet me. REY ORIG!uATS Daft Itf DATE REV cafGINATOR 6475 o p. os AtoAv 02 23 93 p bly IRE DATE 8.5
- EQUIPMENT NOEILE LOADS EVALUATIONS (CONT'D) l j
EQUIPMENT I.D./ FORCE (LBS) DATA POINT ALLOWABLE (*) REMARK s _ f MOMENT (FT-LBS) (LBS & FT-LBS) ( t' / ]l Tank - T055 Fx = 0/ - # 1 Nozzle A Fy =.+ 58 / i 'F#- f
/2/ Fz = jg$%
WT01 Mx = - 67 / 0/ (hil g g; f gg{SR! g g My = 0/ Mz = +130 / N"M THRM01 gg M-Of C-26't Fx = +755 / - Fy = + 12 / M t (g g i 1 Fz = -287 / gy - g - Mx = + 10 / ~ My = +237 / MI N
, Mz = + 38 /
SEIS01 Fx =
' 86 / -
Seismic Fy = 28 / loads are l Fz = 37 / +/- Mx = 45 / My = 47 / Mz = 115 / TOTAL IDADS: Fx = +927 / - See note
-172 / (1)
' 4WT01+THRM01+(2xSEIO1) Y Fy = +126 / 4e M O 0/ d Fz = + 74 /
\ -361 /
h I X My = +331 / 15 / 3"p - 94 / pff, Mz = +398 / .
-100 /
Notes : (1) Tank Rev. O nozzle loads are evaluated in calculation M-DSC-269 l sesasass new wee - n * '
_ _._ - _ _ - - - _ _ , , _ - . . - - - ~ ' ' " ~ ~ --
\
NES&L DEPARTMENT l 3 CALCULATION SHEET Project or OcP/MMP 2 & 3 - 6742.07 SM knf#er ,
,Aoz ,f o, m CCM CONVEA$!0N calc No. _M-1203-478-3A ccm No. ccM -
l subject i t SEE TITLE SHEET -i { rey omfatNAfot DATE tat,
$heet No. 07 DATE REV O CRIGINATOR tao VAN NGUYEM DATE IRE i
12 15 92 - { ll[gg4 ) DATE 1
- I j 8.6 EQUIFMENT NOEZLE LOADS EVALUATIONS CDP 1IDI10DI (Cont'd.) inTORMWOR EQUIPMENT I.D./ FORCE (LBS) 4 DATA POINT / ALLOWABLE REMARK j
LDCASE MOMENT (FT-LBS) 9 (LBS & FT-LBS) ' i Tank -TOSS l<<.) F.f
- j FX = - 2 Nozzle B FY = - 15
{ / 2A / FZ = + 2 4 g-T . ""1,fl,
- WT1 MX = - 2
) "" ' 2 mm 1 CMAI O M - pse - 6 on i ! THRM1 FX = - 3 EE FY = - 3 SY een lc - i " M " ~""
, ~
! CIW3CE> 04 E~ j MY = - 5 i MZ = - 12 SEIS1 FX = 27 - Seismic 3 i FY = 7 FZ = 24 loads are MX = 2 +/- MY = 59 i MZ = 6 TOTAL LOAD'S: i WT1+THRM1+2SEIS1. FX = + 59 / SAM Loads ! - 59 - ! J'( FY = + 32 / are
= - 32 negligible t FZ = + 53 / See note
- * = - 53 t n=+ 6/ (1)
=- 6 i
l ~ X MY = +128 / i E. = -128 j
- E = + 22 /
1
= - 22 i ' Notes :
1 (1) Tank M-DSC-269 nozzle Rev.0 loads are evaluated in calculation j SCE 2H2B NEW 4/30
- 4 s g, *
~-
j-$.- 4
. -- ^~ __ - - - - ~ ~ ~ ~~ l NES&L DEPARTMENT
.sgI CALCULATION SHEET by.c." O-Jg i
Project er scp/mer 2 & 3 - 6742.07 SM- ,,,,,,,,, I ccm cownista: sehjeet _ _ cale me. _M-1203-482-AA _
-cca no ccn -
\ _ SEE TITLE SHEET _ { aav carstaten mit tas oats any
$4eet No. - 31 o s. sisms estatu rce t
12 14 98
$ itlpgs, uit tse j ute NOTE :
s.6 THIS INCLUDED NOZZLE RERE ARE FOR IS NO LONGER USED14AND INFORMATION ONLY. ADS IS CAPPED i EQUIPSOENT NOSELE LOAD 3 EVALUATIONS (CONT'D) EQUIPMENT I.D./ I,113 9 DATA POINT FORCE (LBS) MOMENT (FT-LBS) Ar.rOWABLE (*) REMARY. i
- Tank - T055 (LBS & FT-LBS)
Fa = - 2 1 Nozzle C. Fb = + 64 -
/455/ Fc = - 7 3 (G/ E'N WT01 Ma = -
Mb = - 22 2 k
- a " MI M Mc = - 76 2 6=
TMRM01 ea>= = M-DM.-249 _ Fa = + 17 -- Fti = + Fc = - 2 5 M M ft" Al [ Ma = + E Mb = - 13 2 M- 2 CN BCKW-Mc = - 63 M"El " SEIS01 Fa = 71 - Fb = 211 Seismic Fc = 108 loads are Ma = 19 +/- Mb = 233 Mc = 410 TOTAL LOADS: Fa = +157 -
-157 See note WT01+TIDut01+28EIO1 Fb = +491 (1) g - -491 . Fc = +225 -225 .
d Ma = + 40
" - 40 M = +501
- 2. -501 x M8 " +M'
-959 E- : -
(1) Rev. Tan0=_ nossie 1e- E are evaluate in calculation M
~,.. + '
~
i Nt-d&L DEPARTMENT SUPPLEMENT *A* CALCULATION SHEET :::: r g io. ,,,m 0, ,, CCM CONVER$!0N l Project or DCP/MMP 2 &'3 - 6742.07 SM Calc No, __S-1415 04 cca No. CCM - subject SEE TITt.E SHEET Sheet No. A 11 aEv caic NAfDs DATE IRE DATE OA[GlNATOR REVl CATE IRE DATE o s.s swAs 12 29-92 l_qq l 74 i . l 2 8.6 EQUIPMENT NOZZLE LOADS EVALUATIONS 1 EQUIPMENT I.D./ FORCE (LBS) ALLOWABLE REMARK , q#'i i DATA POINT / MOMENT (FT-LBS) (LBS & FT-LBS) LDCASE {- Tank -T05p5 FA = - hyh f c, ) I'9 ' 1 Nozzle pc FB = + 44
/5/
W1 FC = + M=+ 2 1 gi$Ng$SttT. %)h '8 77 MB = - 5 gyppg i MC = + 40
, M -OTC-J64) f)
THRM1 FA = - 60 FB = - 29 Mf l FC = + 1 BY DMTE ~~!. MA = + 1 1 MB = + 1 CHECGD ~DATE I MC = + 42 J SEIS1 FA = 85 - Seismic ,, FB = 255 loads are FC = 73 +/- MA = 23 MB = 132 i MC = 557 TOTAL LOADS: . FA = + 231 / ~ - WT1+THRM1+2SEIS1 - 231 See note p 4,b FB ==- + 554 / (1) h 554 M , FC ==- + 149 /
@N 149
- g j. MA = + 48 /
= - 48 '2*iY MB = + 269 / " = - 269 ~1 MC = +1196 / ' ' = -1196 i Notes : (1) Tank nozzle loads are evaluated in' calculation H-DSC-269 Rev.0 sca as sas NEW 440 r a: ' , :{,tb.
NES&L DEPARTMENT . SUPPLEMENT *A* CALCULATION SHEET :::: gy-w ,, ,,y , , , Project or DCP/MMP 2 8 3 - 6742.07 SM Cale No. _807 $ cS[- subject SEETITiESHEET sheet No. A-nEv ontaturam #Att tat cart REV Calcluf0R DAff IRE DATE o iAo VAN NGUYEW 12 28 92 jh' jf.g.f) 8.6 EQUIPMENT NOZZLE LOADS EVALUATIONS EQUIPMENT I.D./ FORCE (LBS) ALLOWABLE -REMARK DATA POINT / MOMENT (FT-LBS) LDCASE (LBS & FT-LBS) 9 {7, 71 Tank -T055 FA = 0 Nozzle # (x FB = + 24 3 j$ gg Ng -[ g,i f9 -
/ 3C1 / WT1 bq FC = + ,2ftVf4L MA = +
1 1 S ggn66$ TWT td ___ MB = - 2 MC = + gm g3gy 9 mnw H - 05C- 2 6 9 THRM1 FA = - 19 ' FB = - 40 gg (fA 1 FC = + 4 SY DM I~ l MA = + 4 MB = - 13 MD - - - - DMl! MC = - 56 SF (OBE) FA = 43 - Seismic
/,2S1 FB =
FC = 91 81 loads are MA = +/- 9 MB = 192 MC.= 205 TOTAL LOADS: FA = + 86 / WT1+THRM1+2SEIS1 - 105 N (, pyg FB = + 206 / . See note (1) l = - 198 FC = + 167 /
= - 161 A MA = + 23 /
gd - =- 17 MB = + 382 / f = - 399 MC = + 419
= - 457 - ~
Notes : (1) Tank M-DSC-269 nozzle loads are evaluate ( In. calculation Rev.0 sceawasNEW W90 . *
~n . "^
- i%.:-
~' ~ ~~~ ~ ~ ~
MEtiT d* j Project.or DCP/MIP 2 & 3 - 6742.07 SM Calc No. CCM ConvEa510m . 5-1415-07 CCn no. ccn - f subject SEE TITLE SHEET i i asy omsaturen urt Sheet No. _A N i any urs nev omicturea care j o tee oars rAo van mansa 12 19 92 ff/h a.2L-72 i .I .' 8.6 i EQUIPMENT NOZZLE LOADS EVALUATIONS j EQUIPMENT I.D./ FORCE (LBS) ALLOWABLE DATA POINT / REMARK ,9 LDCASE MOMENT (FT-LBS) (LBS & FT-LBS) p.' l I Tank -T055 FA = + 19 Nozzle H FB = + 181 ( l- Q ,1 f'N i
/ 3C1 / WT1 FC = - 13 (DN jg%
MA = - 14 \NDgf\N SM,90 e CD t
= 362 -
! THRM1 FA = - 35 - g M -OfC-269 1 j FB = - 24 MM ppg f FC = - 3 M=- gy 63- - 6 i MB = - 3 NE O U MC = 71 l SEIS1 (OBE) FA = 136 j FB = 542 Seismic FC = 230 loads are } MA = 47 +/- MB = 4 i 638 MC = 1606 i TOTAL LOADS: FA = + 291 / WT1+THRM1+2SEIS1 - 288 - g See note y c FB = +1265 / (1)
= - 927 Vs FC = + 447 /
A , = - 476 4 MA = + 80 / U ,, x = .114 MB = +1326 / 3 = -1229 MC = +3645 / - -
- -2850 - "
Notes :- (1). M-DSC-269 Tank nozzle Rev.0loads are evaluated in calc _ulation sca ss.4as NEW Wee -
,e, e . e .*
NES&L DEPARTMENT ' CALCULATION SHEET **" *' - e g~ m u cemme i w2 ZW279 concewveneese
- P @ orocPmMP 743-6742 07 SM Calc No. P 4450-l. 2 2,
- cem e CCN-.
i sw SEE TerLE swear Sus cAcc. Aro: #po 4 any ouemmen Sheet No. TE an su un may amosman
== su
[O\ d 1/e7f 93.WO f '?-U b
== 1 l . /\ /\
y
'}
1 { d4 i
/\ SA- M u) .zgg-pocz l 4 *
i COM TDR WR i mf0Rgl0M sez na.yT n r. Fo t, mg L.oAo 5 $ s { AT Th ro e 9 T j
-O i' . . , a f , v,i 11, ,b k 4 CoM1ER.JmrivE
> L4xst Q i C ais) (c y p, gt f i l
@@ ( WT. VL l j
Lo A o AT" J o ' AI T - 3 N l cagt,geo M - 0% -249 \ 7%= Feg Soo. nemusu FG / BY DATE
- loa,o AT ,.) o e As T ~7 i
. 0813lW " DATE ~
Fy = t 'ao o l
-bAseo o el FApps C m e es'o) co m r>u T sg2 our PtaT Att
{ rn sen tbER.I A Q.G Af.c.d P TA G t E Fo e. sve6S: AA3 0 ptsete Ler6F
- adst o e s. As.s o Ac c5PTA G LE PE? Mt is'o FApps M Aty.r is.
CMEc.tr. 3 Tft& P f ct. Iq u Al '(, &Ei we r si.t. ) - 4" pi pg ! 4Llou A6tE ' pep 2. . LC D = StoG L* AD $ 38o j (F e D6 WEi.o SrvadP,) s
)
7E4sio .J Le % 'Fee, 2 531" te/EL- fos A '5 LEVE L- A Niea.AcTi o^I
- Scto s o .+. 3 .n.s2 _ o , p i
! 3 4 i , o e, ic, 2557
) W El - D LOAD. OSED i kJ8r54 Ltvet A *S alt.orW A 6 L ES, 1 O -.. _ y **
- . . .a
-.i NES&L DEPARTMENT SUPPLEMENT: 8 CALCULATION SHEET A:=iCN;;. c ^"'
Pnject er ocP/MIP
,m,, m 1 213 - 6742.07 SM - ~ cale m. P.450 1.22 CCN Couvras!0N CCN NO. ccm -
! sebject sub cale me. 110 i 4 SEE TITLE SHEET i any earsrNATen sheet h. _8 _! mit tat Oaft scy 1 { e entstmATea eAft
-i.
N.PAftL tat ' 2 17 93 M d. './7. ?j asTt I ) 1 I! SA.NW.228.H.002 ST4t$3 RESULTS IN A450LUTC TERM 5 + 4
...............................(./.) ...
1 LOAD MEM J01 NAME 1 TYPE : A2IAL BEN 0!NG SEN0!NG Y Z 17RE1sts............ WARPING SMCARSHEAR ............... $N(AR
- ... INTERAC T ION VA
.~: STRESS N0aMAL Y Z ALLOW. MA1184M MA2184JM MARGIN 1
FAULTto ACTUAL TOR $10NAL FACTOR NodMAL SNEAA FACT 04
.000 10.537 4.640 .000 2 ACTUAL .000 .456 .456 2.495 .617 .272 .000 .453 1.000 .797 .231 FAULTED ALLOW 17.594 19.140 453 2.476 1.254 19.140 19.140 12.160 1.000 .051 .229 12.760 12.760 4.358 OYERALL MININLM $74ES$ MARGIN FACTOR. 25397 ,G:
g ,gy [." tm!T5: K!PS.!NCN.0cGAtt$ cueno V -Occ- uA _ 6 f
5''.'"'"'.'"!'" "!'"H55 *^2 C ~
J0!NT O!RECTION ALLOW. ACTUAL han 7 3 x .06250 3 Y .06250
.00159 .01023 * ^
E-N f Ct' *yf f' h% gw. . UNIT 3: E1Ps,1NCH,0EGREES JOINT 013PLACEMcNis(GLOGAL) JO!NT LOAC NAME I 0157 Y 0!$P 2 FAULTto +/. Z 015P 1 40T
.00186 +/- .01276 +/. .00345 ./. Y ROT Z ACT 3 FAutfl0 +/. ;00159 +/. .01023 +/- .00345 ./. .32427 /. .04919 +/. .06291 .32427 /. .04924 +/. .06291 UNIT 5: CIPS,1NCM,0tGRits MEMetR ENO. ACTIONS IN LOCAL CagIg!NATE SY37EM . s - .
pecER JOINT LQA0 NAME 1 1 FAULTtD +/. AX1AL ..F0Ac
$NEARt YS... . . ~SMCAA . . . .I . . . . TOR . . $10NAL . . . . . . . . . . . . . . .. .. 84 MEN T S.... . . . . . . . .. . .300 */. 1.140 +/. 1.140 ./. BEN 0!NG V SEN0!NG 2 '2 2 FAULTt0 +/- .300 +/- 1.131 +/- 1.*3: .000 +/. 14.400 +/. 14.479 2 FAULTED +/- .300 +/- .000 +/- *t. .000 +/. .449 +/- .449 3 FAULTIO +/. .3CC /. .000 +/. .300 +/- 000 +/- .300 *t. 1.200 +/. .000 .000 +/. .000 +/- .000 UNIT 3: EIPS.INCN,0tGActs '
LMD h GVPPO 9 * - SUPPORTREACT!0R5(GLOGAL)
. - .. ....... ... *2 M J0!NT LDAD NAME FX FY 1 FAULito +/- .300 +/. 1.313 ./.
FZ
.300 ./.
M2 MY MZ
.000 ./. 4.800 +/. 15.677 m
- r. '.
., :r .
n*.tv., i*,.*
10/13/93 14:44 0 716 368 7330 K-22 *** N E S N L @ool i
'COIW}f $6r q'LMoV *L*7 Cl 0"
Southern Callfornia Edison Company H-03C-2.4n4'amo saa cactre Jrnalear Generattag station \
..... P.o. Box 128 m' 7~ san Clemente r California 92672
_ m ,,---
~~ ~
1 i g NUCLEAR ENGINEERING, SAFETY, AND LICENSING.' i NUCLEAR CONSTRUCTION Please deliver the following pages: Pax No. 'Date: SO ~ f5~ $3 Time: IWW l l l To: NFSFL ELA k(LY - 1 1 Firm / Location: phone samber: SI782 _ . rreau %aV Vechiaski Phone Number: 0YSSS No. of pages with cover sheet 3 CGGtENTS: 4 Southern California Edison's Telecopier Information belov
- FM B0. : (714) 368 7330 PM 90: 87330
- TIPE: CANNON FAX 510 AUTO /JGLNGAL LOCATICBT: BLDG. K-21 If you have not received all pages or are having trouble tra" =fttings please call ths sender.
i TEANK 10011 COPYFOR.YOUR INFORMATION
.__y
4/93
- c. o. 14: 44 QT14. 368 33 p.
7.e.0 K-;t2
.a. e. . c*** N E.- SXL .: . :::e. . .;. :- ; ...-..- 24gign n.%e ,f ..:.- . . I, m oc .. . .. . . . m.2 qdzM ggnamm.see,,n,,,,4a.-
- :.. :j::
- Q+neswL.-
~t A1.XU t.A 110 N b h r.r. i . +- _ w.I.. ..- - .., em .= - . . . -m- -
cas:ss ay ORWF L 20cmEE% em fo-1593 carea o
~
I
~,,_^ - ,' - __. e -
nascer ODKIASTE R % D G . E.LEDl. S'-d ,oa r
] 'I' .
suairey d -es But er liJSIDE. Mid k BBlu.; 705% l mer l q
' i t
Def.a losiccT<~.
-i l I, FeBABs7T . } .-. 's i
N ..' ., p 4 a, c .. p,
! 'g
- .- - & 'o c' i9m i
!_ dk ! ! u 221%'
s .
. : 6 i
i
'/ 2.c.co j *-
f a9- ?o.co i l i
! / d.5" 20.02
(/?t5c' ! '. i.- !
. 20.01 )
1M c>o ' 20.01 I !
. > i 4 g j
g loI*57 10.00
- .- i * ,
' ; Ie7:0!.' 10.02. \
f I(2130' 20.ol 127o* I
\
a ae c _ 155* 20.00
." 3 I 1 L ,sh*
! l i i - 19 9 ' 4 i ! ou 202%Ec' ? L
-: ! .' 1 - i 9 9d. - 49' ..., =y -
e i/b ,- Ir'" 2.1 % * \ 9 N4. j l 225' \991 j
.i % 247t30' 19 94 l - 27o* 19 9E ,/
I %, ' _ 2&l"-5"l' { . 'V ' ' 19 94 25F04,' f #99M I .
- e. 2921':"zo' i99L i: ... '
[ $ I 3, *
, + ! .t l et '4 93 .1 wtse' 19 %
- :t.-. o ' ,-.
tn I' i 5E !
.. 1 i sig i 'a i i
39 l-
- 1 -
I
- . 2 -
. COPY FOR Y0llR i i
(NFORMAT10N
.s 1 -
e..
4 '.9 3, . ,44 :45 K 22
. G714 .)68w.73Q0 r. . < . . v. . , :. ; . . , .*** N E S.N L- ., , , , . .. @.a o s. 1 3 . .,. : T '"
. 4. .y . , accuseon '
;pnas 21% o f.
neumesman,sd5: 2.79- - - -
'.~. .- . .w . .. ... Grankccm.-= ..i * .. .c . ~; . . ' " . ' ~ - . '. gg M-t sci 2399,_ .,; , j . l .s. wr 22 5 4 -
z.yg summent =- . _.__-- ,,, - ss . s y- s ...g- , <- i. .:.v - .
- s:. , , .~.!,.....
} - . . s
. .- 2 2' . n l #<.R '
fusto6<@o Justacr<% gpyg3
%.$8,'f.3. g:
YiQQ,f h
,hs.Ecw .D2.Sca& yscW@ - \ \ . h . ug. r: ., .
f_ .
- t . .....
~ ..s ;. . . , . - . . - 2 des _ zo. I( zo.r3 ..
1
,. . 20.01 1 c o u. _ . - - - . . _ _,e et n .. . ,:. ..
! . 20.05 20.05 '2 6.O k OP '4 5 di ' O. ,' . i I'.' f :/ 2006 20 06 en 07 I' 4 .. *F I
'.it..
) 1 2c.o5 2c.05 ' 2o.o1_ -4:.' # #.<
' .y l . ~
20b'7 2007 20.0% - _Y.h!b'.N... : pp '+1 s 1D& 96N Ms$fl*\C ~~.t" s -
- 3 i s . -
20.03 'Ed.o 5 1 h l d.F I' ' I . ! 2.0.00 20.0 3 2003 ma%rnel ec - : J ,, i . f 20.07. 20.05 20.01
.). .
) . 2005' 149A 1997 -
. .v ' . . /t'.-
I9 94 { , M .*>4 - 1 94)7 . . . : /, i.. i 19.9I A\ s 4
\otA mews)a-( \ *) 9A .I967 .' ;<
1.s.;*.,.' ?..u. -
'3.3;;. >; - m over: .
r q et 1992. t 1964.- % ww.ds s N
<.c. :..W .
19.92 \cip- _t 9 9 5 .; .i L.. . '.
. A %4 2.0 D I 20.0I I i - lo.co t 9_.9_ 7 ( *).9 7 _,.
j ' . .. 4 20.02. 1998 Trac 4smoyPCj ; 1 ~ 2 ooc 9 AA SfT@W '
'."^'-
i 19.98 19 9i 19.*>9 Timesm04 Pt
- 19.97 '2.o07 20.06 .-
20.00 20c3 2c.oS . /,.g - r i. J). : Y6 ,,0 ,A " .. COPY FOR YOUR 4
. [. c y.
INFORMATillN :--... .
- 1 -
4 )
}
4 . ; .
- ~ _ .
m NO ANCHOR RING IN i THis AREA TO AV010 f ( INTERFEREPCE 24' HANWAY UREINFORCING PAD d N @ x+. 240* !?tStj 4 g C2 . 45' ( N 82
'r TAESFEld 4
g s R N
- 4' A2 11 o i*
N
. - \
No l g l l k - -
'\ T-055 h V12-20] **I ' q i
N D , (REF) i _t a je,l'I 1 ' sv
- === ,i i
- 44' % .V :1 l .
J . ,, + . m - . .
- i. ~ ~/
- NOTEt 4i
- li p 4-
'[ FOR N0ZZLE CETAILS j .
{ fel y
~'
1/2* SEE ORAllNGSt A2 S023-407-3-63 h /l2-2 DETAll 3L TYP.NSFOR\ g 3 ' ANCHOR I k o 82 S023-407-3-63 FS FOR CHAIR / V4 / j
$$ G i E2 TA* 8ASE m I 3-C C2 g 407 -63 PLATE }. -
02 DETAIL 6 4 ORIENTATION ,, S3 o ;g3T 5"' ' 4 S3-1203-ML-480 SHI.1 N0ZZLE SCHEDULE 3C S023-407-3-63 J _ 243' Rib 105 4 L MARK CUST MARK l _ _DESCRIPfim , V 244' RADIU( 4-G I l 24' SHELL HAKfAY j 4-C 2 JREMOVEDb) ( REH0VED j 4-F 3 (-RL@3E0 ) M w f ANSTEC - - ERWM g ( j A-2 B-2
- 2. inter-RECiRC.
2h* [NLET i i i ( % tw tam sant C-2 4* PUMP SUCTION i , , , . I ; Available on (> D-2 E-2 J_ - 3* CCW PUM) StXT . 1* CCW PUM) SUCT. f p Os
\' ' '
( s oj s Aperture Card
, ___ 't 'st,,3.;-r; fk V %,7cts c ,,,,n,,
om
-y,, ,
N w (et.ss'-o' 2' [ f
< a. w - .- f ' , ,_ ,g ~
7,,-r. q \';..:.... fs=,-nt+<m) v- , t .na.: e 1 . ..
. 1.4. . . '"" e [ ~DETAll. 7 3-J 5C418 80 6 ], ( ft.lt'- 6* 0 4
T L g
,q w i.
as -;
== -e o == ,
p'"* - _ J IIW* _, me e
- 40'. 0* IMstCE Ota.
g- ELEVATION
*-Q FIELO NOTE:
f DETAIL 2
- 1. FIELO MAY RELOCATE CROUN0!NG PA0 I tocart stic sPt!CE AS EQUtMD 11 M10 PQtNT t !
AS REQUIRED. ectittx noactxt soce sats
- 2. PROPER PRECAUTION SH0 TAD BE !str mrt n TAKEN TO PROTECT CONCRETE.
- A
% . ns, m i ==='= -u a ..... j == ,,,,,,,,,,,,, " "*" "" I f ;4M,'7,'?,'l,"y,*,j' "*'" ** "" *"' .- v...- um ..
- g. - , gy ,
g , _ h- -- m ====. g 5 %* . UPPER RING I " " g ' *,j,78,,',$',"; *f,
- 8*'"' - -
RAo m II is sea sminumsiW at ae.W tom.svwaus sa.m . . j g g
= = nens u.m f g n i.
ge_o.t y. g m,a,n .s . .
)
n .n.,,o w. , w. . .i.e . . . y g . . 5*$ V gy i* rr.'. = :r sst2 'ri'er r
~ __ %
d
% - STRINCER d - - s 7 TO EE NOTCHE0 AT TANX SHELL LFPER CHAIR u y,,3.,,,,.....
Net! Emit'* RING jg ~ ?* '*""l'- - - _ _ l
-"== e _ - e , p ,, #TYP. *o I Y N EeESTam'sh. iT. E N .'- ; : T r'/3.5"e*:. ,'2. ::73 A
7 i / 1 . N ) r :: = s . r. .,_. :r=,' y : 4
, I ( _ _ _
h
- RADIUS 6%*
l' R
~
STIFFNER PLATE NG a TO BE NOTCHED AT ANK SHELL jR OR!a 1%* O DRth,800LT j LC1ER CHAIR lAA McHOR BET HOLE (TYP. 36 PLACES DR 2* 8 BOLT (REF1 ' R[NG LOCAT[0NS ( FOR EXI$ TING BOLTS 1 CRILL 2Y4 0 I HOLE (TYP. 34 PLACES) ANCHOR BOLT CHAIR uePER CHAIR RING
, FOR net 2 BOLTS #_ [ .
CETAIL 2 - [~I V' g'; 2
- t
" 'd.'. %
- TMc rust satt STIFFEhER PLATE . F ' '
4 . l 3 scu. 4o P t,t h* t %*g %= ] g 2 u,- v h /\ 7 2 me.9 mv.i m I -? 2 1ei 7 ' - l . LOCATE R!tG SPt.!CE + h* ' 1 AT HIO FOINT BETNEEIA t k.
~'
A0JACENT rNCHOR 3 - h* i _ . _ 1 .. .._ . . _ . . u."2 . e,ySj,Sg,etRED. SECTION A-A
c ' . Lcyg; CHAIR 2% 'Ilh*8 BCLTS1(REF) 2%*
3%" * (2*W 80LTS) (MLl > EX
/ PLATE / , hV \
- j ~~ ~~*,
i O' CRILL1*f*3 HCLE (TYP. 36 PLACES N x l DETAll 6 FCR EXISTING BR TS) N 7 SCALD NCE OR!LL 2%* 3 A)c>ca int Cata HOLE (TYP. 34 PLACES) FCR NEN HCt.ES [~ N. t Q Y t
,";t s yc *I l 0\
- 1. 08tLL SCLt M11s In AtEs e Coettitos CF AgHon gaf twstALLArtei. / l,, , ' , , , , * , , , * , * ,, } f
, , VARIES
- 2. st! 80Lt ParitIIe 01 CM 21170 FCR Ef & E21s7(NG LCCAI!Ots EI!S W j j 7%*
i
- 3. IRIM to MAtxTatM A CLEARA)Ct er)h'stitcDe T4 AENOR SCLI CHAIR tarta atm ue ALL cestaucttoe iAXX BASE PLATE (REF.)
- 4. arm PLart tosius sHaLL st cut 10 sittf 87 ritto. {CROUTAS s statwas at A.t to.a. tzaLLr spActs i 2* tu titwR otarctica is rtex-Ca
%*-45] -o moe
- s. ren class *2*,7tPt MAttatAL to et fra Asw stcticM 111.
Ca w ER (REF) DETAIL 1 - REWIRED CCCC class J.1989 E0l!!CN. NO AOC04A tcLOS 10 E Pt2 SECT!Cu 11.1989 t#!fl31. no ACCOCA. maal #1
- 7. et<> stomal tcLtamct n' tutss OT4ntist Norto l*["']&3-6742.07SH .,,. o .., l l s. Q. uto Jethi snea fca As* stet!Cn !!! Coct ICLD. , , , , g ,,,
' $~ 2 ' *$" I '
9.17 LFPER (R LCsER CHAtt R14 sPLICt3 CA).Cf IMitRtW !*$1Cai W idofICt 8"*m., .a a pas, a gmg et INSTALLf3 f(TM!N MIS PO!Mt TOLERA) Cts.fME sPLICt s>CL19 HD30/ S023-407-3-61 l - l 2 SE INSTALLED Us!)4 A ftLL ft)tTAA!!Cu '********N8 -r atto s>cm ettee. mi I s,ssw.i e.as I[I '3, l ~T, l g F. CCPAR O ==,-= (Ii7'ia O =M O == gir, cuss tw [ stuae'= a, o a 0 '.'s O* a= *u
- sur - ~~~
9(103/2xqf- 0L "" on " -
b > r N q - - o.ai25- ., , s :hf_j!8 a
% E -W t* w7 oye. .L'El 'kpg W
h MP. A u 1 'S Aq) ' 1 , r-77.4as- <
- DETAIL e t '
p 5L l I 4 l j IhI k r I I m ,y . 1
~
f , I
'a ,
c mn
.r . z- : . ,\
s1 ' I d A
# ( S \ \ ASME SA240 . >3 % / TP 304 , gg j > st \ .# SECTION A-A REI CING PAD hggt @ 24" SHELL MANWAY - v x g . ygg, %'WEEPHOLE ,N y TANK $ HELL ,, [ 3 4 INSIDE RADIUS (REF.) d' *v,
- n. ~ ~ ,
_ g . ..,_ 4' :
<e;,gJ _.[hp j i 4 , nPE T JB (
LC SECTION F-F n an.-- 40' ,0* 1.0.
.. 4@ . ,. . .m .a.
g.
@ IN1.ET 3 j
SA-1415-M.-012 . d y .1 2, m , s. i ry-> j g TYP.
~ = $g ' , 2Ao a:a =g 4.'hi C
_?.p-p.u"u. moi c"*
-1.
_e- ,
= = -
asis g.3 . gy
,TYP.
s SECTION B-B SECTION C-C
)
_ ~ - - w/ %
=; = _ ,_ ,',7% ra me n ....$
l0E TANK *
- iun h= WELD JOINT SYMBOL FOR ASME SECT. U l!!! 8": 'u'U.'. = ='N/.... E'Oll: '# l}
CODE NELDS t'o aoi"I sYaso' roa *S c Sect. xi < l
- m '* '-
- 5'4L".J Y' ,A*i.'.".X", .
==
2" ., 7
, O C00E nELOS. M l.
FOR CONT. SEE OWG.
'E '""' EIE=' '
I SA-1415-ML-22T , SHT. t j i 1 x --w.
- .3% -
3
' ' ~ ' ' - / ;' ' 4,'l" ".' ? ','. t ~
EL. 4i'-6h * (REF) [-f i {l! U IEre"$"scII. E".*l t . E-7Mll% UE BEvEt ENo lNU E E. N .' q
, sag 22g-H-007 COUNTER BORE I ,sA.NW-227-H-006 i
PIPE TO MATCH h{ l ELBOW. P S 1 EL. 24'-0" A - Y
- l 'M ti L'" N -l h c
- :l '%.0%7g.'.";4TJ'.1"'
r 8 d5-
-Os 7s ,= . y , ,, e e,,2 3 4%'s C.O.- Z D -- @b * '. 'M TJ'1:r',.:" :::::" l
- =-
4 /> :: :: ::.n.74.-l met,, ;
!! ..! , ed" " " E" .
M'
", x .c=- , n = = e. = : .rm - . ,
r
\Y g* I 'M 9 D * = QUANTITIES ARE FOR ONE TANK OR.Y. T-055 STRESS CALC. H SC-269 g,g @ 4" OVERFLOW q
Q ' n erno sac l h "T*. tam snett ]E P J- t
.- % > 2I/ ^'
l s rm. yv new.1 L' W Task sactt j# ,
, ,.,4 ! @ k N4 h .J ?Y
- I 'h tEt.si'-o*
g ' '
% 3,. .
SECTION D-D (\ ANSTEC"r,rects/-_~ 4 catso TMSaL'- .
%- g $_S'"""""""
_NLM' % - APERTURE .d s mx ,--- -- N dO E CARD .T..",^.*l.Z' g'Ie,}, T Also a ' r sr @ INLET RECIRC. SA-i.is-n.-056 l l @PUMPSUCTION SECTION E-E i . SA-i4is-a.-024 _ l 4 1 j ,,,,,,, %OS/2006 3- '" - ~ ~
- 1. FOR ALL N0ZZLE LOCATIONS SEE o.c.11 l l,__ c . 263-6742.07sH o l l
~
OWG. $023-40T-3-61. _ j __ ' l =4=, j a" - j "aa *
- 2. FOR CLASS 'Z', PIPE MATERIAL To _,,,,,,,,,,,,,% ==,
BE PER ASE SECTION III, CODE sinspin asom m moucs m CLASS 3, i989 EDITION, N0 A00ENDAe r - - . $023-40T-3-63 l .=, - - l .3 WELDS TO BE PER SECTION IX, 1989 -- . . e. . . __ - _ . ,. F. GOPAR EDITION, NO ADDENDA. l -m e se ' l11'5 f G I\ -l
- 3. O!NENSIONAL TOLERANCES +1/8'
==-===== 0 = =< G7 'm O'*U U"' U "'"" U "-
i REVISE 0 N0ZZLES
# ^
F , my~-
% -o d
- 4 L % N e
I I M n y d
; i'-s-n 4\ 74 S*
pg y
- 4. I N.S.
o I d SF \ {7 Th' o.!). i l k SG -4 %* f 0.D. o y n g. _ _ _ . 4 @- )! - -
- - 7 W! g g g - ? D g -
g._,. _ . p _ _ ,c , g b ? l.
/ J \i . .t d '.g - . l-' ,
G BRACE 1 g g g'g 2-m , E B 95 5
!e 8~
N.S. 9 3" DRAIN F.S. 4
\ , /%V \
Ib.'s : 3%" ( c.o. ll, , vu. INSIDE TANK ouTSIDE TA* l g 21/2" INLET
.- l C~)
4
~
h l, ...;c
/nv \ ?8.'i c .__
_2% t c.o. j ?#! Els 1
\
_. & ll 1
#x e \..
g $* rustoE TA*- ote.s
.Elii e 2" INLET-RECIRC C
3 m y c : :: :n:=.n: - - ( : :: .v.. .=: ,. . ::= h +C ;.... We:: . r ; :: : -
--- : -1 .t;';
ui w. R.;;g. .;;;. 2..:.; (w-
. 21:=::. - -)
(* INTECRAL ATTAC)+ENT, USE ASE 5CTION !!]. l SUBSECTION 'ND' MATERIAL. { + OUANTITIES FOR__. ONE___ TAE ONLY T055-ANSTEC i APERTURE I , CARD I 1
- i Also Available on l Aperture Card j l
NOTES: ) 1.) FOR CLASS 'Z'. PIPE & TA* HATERIAL TO K PER ASE SECTION III, CODE CLASS 3.1969 EDITION, NO A00004 ELDS TO BE I PER $ECTION IX.1969 EDITION. NO A00ENDA. 2.) DIMENSIONAL TOLERANCE 2 %'. i 3.I ha ELD JOINT SYle0L FOR ASE SECTION Ill CODE 50.0 ] ELD JOINT Sn90L FOR ASE CODE ELOS:
} @'= EG.SOCXETELD. SEAL ELD. AND FILLET OR O ='o 3orat s'"ao' roa is= ste'ro" xi cooc 'e'a- d k4.) FCR NOIRE LOCATI'0H SEE Duo. S023-407-3;61 ,
5.) D!#ETER OF PLATE TO BE TVICE THE DIAMETER OF TE 4 ' HOLE CREATED BY REH0YING THE N0ZILE. PLATE TO BE CENTERED ON HOLE CENTER. 1 g . 4%" ( C.O. (REF.) I GJALITY CLASS II r 3_ e 3 ew
,. 283-6747.07sM 0 INSIDE TA E OUTS 10E TAE = == " 77 4 l=====*
A
.... ._s" son .._'"*'_*
i
- .-. S02340T-3-64 l ~' ' l't - - - m N_,,, '"'"
g " 4PUMP SUCTION .- o - m o.aac ., o a- a; -. I O # " DCP 2&3- 6742.07sM Rev. SHT. -
" - ,! ; i
. t. S s 4 a t e I t a 2- _ r . e f . e c e 2- 0 - c s 3 e e A C t r a 1 2 Z t s I M O C f ,w R S pa o . - t w i UN O S A o
. s . Z. eem D;3 YI O L T
- e. A st RA C 7 r cn.
- se c
m
- - f ~ OM _
e s
= .
s O l Mc - TR O - CE T S 7 iI s TT PN OI J O N i e z g e.. C R . e a P - S
. D ~ S p n
o-. - m l -
#_ F e
e. o n a a m 6 o
. 5 e
a c in e mM 4 s
- N 4 M 23 e l a T ee . D R 3 K U r.-
g W .E 9 e3 e t e t t < N A T e 2 O Y l0 l N o m e o c n t a 1 s3 a
.t ~-
m n
/
e c
- e. 7 e c
m-aF 5 n t ,. 6 m 4 .t c o I W t s E E S Y 4 rT RA l Ot F R m YF O o s s fe f e - D - iPN OI g s e y t - C C . - oi t a er,a r t t m r t s C m a
- o v r t
sm e r e s n t ni e _ e" e t l - te a ne )3 r'* m-i t* r-e e w tt r $ l l _ r a m- t e c*
- s e
i m m ar e-t t l e te e w s t M
<- q$(n~ = .7av )
s es
)
a i s i et - 3 J v o r < J s "m eY X. s-a e-e
>. e>
s 4 ( ( -
; oJ - _
e > _ m" t e _
. {e t x- _
e s ; _ g. e
,s =m
_c e e e t e t a s s
- r e ( u u- e t
( u, s 7
' 3 q
i o c
),
( {3v
> - r e . x- 2e ,X ^ " a1, r
f._ q
;e _
u. a _ r - f.. .t a _ co > _ r . e
- x. -
/. _
l ( _ x _ 4 . qli lggI l ii
- NES&L DEPARTMENT l
CALCULATION SHEET i::::14;" . ,A y,, z n CCN CONVERSION .
- Project or DCP/MMP SONGS 2/3 cale No. M-DSC-269 CCN NO. CCN -
/
subject see title sheet Sheet No. j REV ORIGINATOR DATE 1RE DATE RTV ORIGINATOR DATE IRE DATE
/
WUSHONGTOWg'4p 9/30/93 J.GAOR$, 10/7/93 l i j i } i i 1 i i } i 1 1
- APPENDIX E l
- ESTIMATION OF 95TH PERCENTILE FLAW LENGTH l i
1 BY STATISTICAL ANALYSIS t l + + 1 ) f 1 i SCE 26426 NEW 4/90 l
NES&L DEPARTMENT CALCULATION SHEET =", M " .
,AeEu,ou n :
Project or DCP/MP SONGS 2/3 Calc No. M-DSC-269 CCN CONVERSION CCN No. CCN - [ , l subject see title sheet sheet pe. M / ! REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE WSHONG YOWgq 9/30/93 J. CAOR 7/f. 10/7/93 l i
- 1. PURPOSE Appendix E performs a statistical analysis on the sample welding flaws taken by I
radiographic films from the Unit 3 Primary Plant Makeup Storage Tank weld seams l in August 1993 prior to the Cycle 7 refueling outage. The statistical analysis is the j first phase of the two phase analyses to determine the acceptability of the welding defects for the structuralintegrity of the tank. The statistical analysis determines the 95th percentile defect length which bounds a 95% probability of the total flaw population on the tank at a 95% confidence level. The calculated 95th percentile defect length will be the basis for the phase two fracture analysis to demonstrate acceptability of the weld defect with a high degree of reliability. Phase two analysis is contained in Appendix F. I
- 2. RESULTS/ CONCLUSIONS l
From a total of 126 sample welding flaws ranging from 0.0625 inches to 4.5 inches, l it was determined that the 95th percentile defect length is 3.5 inches. That is, there is a 95% chance that the flaw length in the total flaw population on the tank will be less than 3.5 inches at a 95% confidence level. SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =":M;f" ,mzza, z n l Proj:ct or DCP/MMP CCN CONVER$10N / SONGS 2/3 Calc No. M-DSC-269 ccN No. CCN - l l t i subjset see title sheet Sheet No. U1 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE WUSHONGYOW[dq 9/30/93 J.GAORf(,, 10/7/93 s g i i
- 3. ANALYSIS (1) Sample Data In August 1993, radiographic films were taken (Figure E.1) showing the welding flaws on the Primary Plant Makeup Storage Tank (SA1415-MT055). These flaws were apparently the results of poor workmanship in the original construction welding of the tank. Attachment E.1 shows the film locations, flaw characteristics, and the dzes of flaws as obtained from OC (Reference 3). Based on the examiration of 61 films, produced by spot radiography,126 flaws were identified.
Table E.1 lists all these 126 sample flaws in an ascending order of flaw length. (2) Characteristics of Sample Data Among the 126 sample data, the range of the flaw length is from a minimum of 0.0625 inches to a maximum of 4.5 inches. The sample mean and standard deviation are calculated as n x = I x, /n = 59.56/126 = 0.472 i=1 n s = { I (x; - x)2 / (n-1) ]'" = 0.714 i=1 SCE 26426 NEW 4/90
NES&L DEPARTMENT
- CALCULATION SHEET = a.">~ ,A m 3 a n CCN CONVERSION j PrGject or DCP/MMP SONGS 2/3 Calc No. M-DSC-269 CCN NO. CCN - l subject see title sheet Sheet No. S N REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE WSHONG YOW 9/30/93 J. CAOR Q , 10/7/93 j Figure E.2 shows the probability distribution curve of the sample data. It can be seen that the probability distribution function does not have a normal or near-normal distribution. In fact, the probability distribution of the sample data fails to
- pass the goodness-of-fit tests for normal distribution, log-normal distribution, and the second-order Erlang distribution functions. Therefore, instead of pursuing an
- extensive mathematical derivation to establish theoretical confidence intervals, it is necessary to pursue an afternative procedure using the theory of order statistics i
for a non parametric testing as discussed in next section. 1 (3) Non-Parametric Confidence Intervals l A. Minimum Samole Size i The minimum sample size required to perform a non-parametric test is dependent on the required probability of the population and the level of confidence. i According to Reference (1), the minimum sample size to ensure with 95% confidence that 95% of the population will be less than a certain sample flaw s length is 93. The sample size of 126 used in this study is more than the smallest l sample size required to produce the specified probability at the level of confidence desired. i B. Estimation of Flaw Lenoth for 95/95 Probabiftty and Confidence Level The theory of order statistics with binominal test is used to determine the upper bound of the flaw length which will envelop 95% of the flaw population on the tank SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::nM" ,Aou,e n ; CCN CONVERSION Pro. ject or DCP/MMP SONGS 2/3 Calc No. M-DSC-269 f CcN No. CCN - ( subject see title sheet Sheet No. M k REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE 9/30/93 WSHONG YOWg J. CAOR 1-410/7/93
' i i
with 95% confidence level. Table E.1 shows the 126 sample observations in the ascending order. I Let l X, s X2...... ....s X, s ...s Xn represent the ordered sample, where X's are the observed flaw lengths and n = l 126. According to Reference (2), the upper bound flaw length X, which has a 95% confidence level for the 95% probability of the total flaw population being less than X,is determined as 3 s = np + w, sqrt[np(1-p)]
= 126
- 0.95 + 1.645
- sqrt(126*0.95*0.05)
= 123.7 i where p is the specified probability, and a is the desired confidence level. w, is l the one-tailed 95th percentile of a standardized normal random variable. The value for w, is available from the standard normal distribution table in any statistical handbook. By rounding s upward to the next higher integer, we obtain s = 124.
From Table E.1, t i X124 = 3.5 inches. Therefore, from the 126 sample observations, we determine with 95% confidence that 95% of the total flaw population will have flaw lengths less than 3.5 inches. SCE 26426 NEW 4/90
~ NES&L DEPARTMENT CALCULATION SHEET = :o M c " ,A;<,,;s, z 7, 1 Project or DCP/19tP SONGS 2/3 CCN CONVERSI l Calc No. M-DSC-269 CCN No. CCN - I subject see title sheet Sheet No. 2 3 b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE I WSHONG YOWg 9/30/93 J.GAOR[f, 10/7/93 I t l i
- 4. REFERENCES i
(1) G.M., Hesson, W.C. Cliff, and D.L Stevens, "A Mathematical Model for Assessing j the Uncertainties of instrumentation Measurements for Power and Flow of PWR Reactors," NUREG/CR-3659, PNL-4973,1985. s (2) W.J., Conover, Practical Nonparametric Statistics. John Wiley & Sons, Inc. 4 l
- (3) SCE NDE Data Report, Radiographic Examination Technique Sheet i
] Report Nos. 3RT-035-93,3RT-049-93,3RT-055-93,3RT-064-93 ' 3RT-065-93 1 ) i 1 SCE 26-426 NEW 4/90
NES&L DEPARTMENT l, CALCULATION SHEET :"n/4 "'. ,m 2 uo,z u Project or DCP/MMP SONGS 2/3 cale No. M-DSC-269 c$ EccE- f subject see title sheet Sheet No. 2 3 6 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE W$HONG YOW 9/30/93 J. GAoR $ 10/7/93 1 ' J TABLE E.1 RADIOGRAPHIC FILM FLAWS FOR MT-055 Sample No x x2
- 1 0.06250 0.00391 2 0.06250 0.00391
- 3 0.06250 0.00391
- 4 0.06250 0.00391 j 5 0.06250 0.00391 6 0.06250 0.00391 7 0.06250 0.00391 8 0.06250 0.00391 i 9 0.06250 0.00391
- 10 0.06250 0.00391 1
11 0.06250 0.00391 12 0.06250 0.00391 ! 13 0.09375 0.00879 ! 14 0.09375 0.00879
- 15 0.09375 0.00879
) 16 0.09375 0.00879 17 0.09375 0.00879 18 0.00375 0.00879 19 0.09375 0.00879 20 0.09375 0.00879 21 0.12500 0.01563 22 0.12500 0.01563 23 0.12500 0.01563 24 0.12500 0.01563 25 0.12500 0.01563 26 0.12500 0.01563 27 0.12500 0.01563 28 0.12500 0.01563 29 0.12500 0.01563 30 0.12500 0.01563 31 0.12500 0.01563 32 0.12500 0.01563 33 0.12500 0.01563 SCE 26426 NEW 4/90
NES&L DEPARTMENT l CALCULATION SHEET = O o*.
,Axmo,z 7,,
Project or DCP/MP SONGS 2/3 CCN CONVER$10N l ) Calc No. M-DSC-269 CCN NO. CCN . l l subject see title sheet Sheet No. 13 7 REV ORIGINATOR DATE IRE DATE I REV ORIGINATOR DATE IRE DATE WSHONG YOW 9/30/93 J . GAOR Q , 10/7/93 1 , , 1 I 1 TABLE E.1 RADIOGRAPHIC FILM FLAWS FOR MT-055 (continued) Sample No x x2
- . .. I
{ 34 0.12500 0.01563 1 35 0.12500 0.01563
- 36 0.12500 0.01563 37 0.15625 0.02441 1
38 0.15625 0.02441 J 39 0.15625 0.02441 I 40 0.15625 0.02441 41 0.15625 0.02441
- 42 0.15625 0.02441 4 43 0.15625 0.02441 44 0.15625 0.02441 1 45 0.15625 0.02441 46 0.18750 0.03516 1 47 0.18750 0.03516 48 0.18750 0.03516 49 0.18750 0.03516
! 50 0.18750 0.03516 4 51 0.18750 0.03516 52 0.18750 0.03516 53 0.21875 0.04785 1 54 0.21875 0.04785 55 0.21875 0.04785 l 56 0.21875 0.04785
, 57 0.21875 0.04785 l 58 0.25000 0.06250 59 0.25000 0.06250 ; 60 0.25000 0.06250 '
61 0.25000 0.06250 62 0.25000 0.06250 i 63 0.25000 0.06250 s 64 0.25000 0.06250 j 65 0.25000 0.06250 66 0.25000 0.06250 1 SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET gr,"oitee.*~ ,A m n,z n CC8 CONVERSION Project or DCP/N4P SONGS 2/3 Calc No. M-DSC-269 cci No. CCN -
/
l subject see title sheet SheetNo.$ REV ORIGINATOR DATE IRE DATE I;EV ' ORIGINATOt DATE IRE DATE WSHONG YO 9/30/93 J.CAOR[f,, 10/7/93 TABLE E.1 RADIOGRAPHIC FILM FLAWS FOR MT-OSS (continued) Sample No x x2 67 0.25000 0.06250 68 0.25000 0.06250 69 0.25000 0.06250 70 0.25000 0.06250 71 0.25000 0.06250 72 0.25000 0.06250 73 0.25000 0.06250 74 0.28125 0.07010 75 0.28125 0.07:310 76 0.31250 0.09766 77 0.31250 0.09766 78 0.31250 0.09766 79 0.31250 0.09766 80 0.37500 0.'14063 81 0.37500 0 14063 82 0.37500 0.14063 83 0.37500 0.14063 84 0.37500 0.14063 85 0.37500 0.14063 86 0.37500 0.14063 87 0.37500 0.14063 88 0.37500 0.14063 89 0.37500 0.14063 90 0.37500 0.14063 91 0.37500 0.14063 92 0.43750 0.19141 93 0.43750 0.19141 94 0.43750 0.19141 95 0.43750 0.19141 96 0.43750 0.19141 97 0.43750 0.19141 98 0.50000 0.25000 99 0.50000 0.25000 SCE 2G426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :: Z " . ,m yn, m l l Project or DCP/MMP CCN CONVERSION l SONGS 2/3 Calc No. M-DSC-269 CCN NO. CCN - l subject see title sheet Sheet No. N N REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE W$HONG YOW 9/30/93 J.CAORk, 10/7/93 TABLE E.1 RADIOGRAPHIC FILM FLAWS FOR MT-055 (continued) Sample No x x 100 0.50000 0.25000 101 0.50000 0.25000 ; 102 0.50000 0.25000 103 0.50000 0.25000 l 104 0.62500 0.39063 I 105 0.62500 0.39063 ' 106 0.75000 0.56250 107 0.75000 0.56250 i 108 0.75000 0.56250 ! 109 0.75000 0.56250 110 0.75000 0.56250 111 0.75000 0.56250 112 1.00000 1.00000 113 1.00000 1.00000 114 1.00000 1.00000 115 1.00000 1.00000 116 1.00000 1.00000 117 1.25000 1.56250 118 1.50000 2.25000 119 1.50000 2.25000 120 2.00000 4.00000 121 2.00000 4.00000 122 2.50000 6.25000 123 3.25000 10.56250 124 3.50000 12.25000 125 3.50000 12.25000 126 4.50000 20.25000 SUM = 59.50000 91.73828 SCE 26 426 NEW 4/90
-. . _ _ ~ - _ . - _ _ . . . .- ---. - - . . - . _ . . - . - - - . - . . - .- - -. _ . - -. . . _ _ - . - . - -
. scen noi ya enamecono. l ./4 _
SW$ , SA NS rM os'> cAu:no. M D3c-26Q,_
~
SUPPLEMENT SHT 9 r. 2.lt 0 4 -m4w NVer 2 7',' in, F& ony,ToA i
=
i T.i l . .. TI I .. h1 ,Tr l, $ \ j
? Il. # -v -l .. -
a -M . .. P l ..... pe, ;l ..L- p i.. . . . . E _ll, 3,, _. .,,, j j - ,,,, y ,
.p = -
0 l., l [j .I) t l 1.... < I...I
.b ==.Il'.':...t m -- . i.--.....
1 I"?_ , _s . .... r i ._. . . . n[la' .... .I_ i- ,- ... ,
,,l.,,,,
I s et a c ..I T
- I IJ It '-
l
-~ ' ' -- 4.'"W P m . ,an l e ;iT,'. P e[_ _.. n .,F'-g;..,,,,7 s= -=r m.w I . n x. n.<,r .=. - -=.
2 .,e yL L. [ 3 -
.. 1IL. l."f .j j ; "1" i O .:.!!-
r[I , T 11-e FIGURE E.1 RADIOGRAPHY MAP FOR TANK SA-1415-MT055 LI
I y a-Er
-u 7 g
EE l FIGURE E.2 PROBABILITY DISTRIBUTION 5s
- O I 0.2 gg *5 r= y g l , . g O.18 ~~r E O
vi m Czm 0.16- - k si
- e hi
! CC7 Pr 2
m H 0.14- - l Q >, 8
- g 0.12- ----- -
6 zlg a _ @H
= 0.1 - 1- - - - - - - - - - - - - - - ~- - - - - - - - -
5 5 bZm r 0.08- - - - - - - - - - - ~ - - - - - - - E x 0.06- ~ -- - 2 k 0.04-y i &
!B - -- I 2 ??
1 D'3, 0.02-66 ?' 0 0 i 0.5
,j i
iA . . A i i Ab . .
/ hg5 1 1.5 2 2.5 3 3.5 4 4.5 ._s FLAW LENGTH, INCHES y
7 F A g
~ 's i = ~
N N 4
,i ( 4 NES&L DEPARTMENT ! CALCULATION SHEET :: n /N;." ,A c c o, 4 Preject or DCP/MMP SONGS 2/3 CCN CCNVERSION l l Calc No. M-DSC-269 CCN NO. CCN - I g subject see title sheet Sheet No. 29b j REV ORIGINATOR DATE IRE DATE REV ORIGINATC2 DATE IRE DATE WSHONG YOW D 9/30/93 J. GAOR T-(r. 10/7/93 i i , i i ! ATTACHMENT E.1 . l RADIOGRAPHIC FILM RESULTS FOR MT-055 { a j l (Source: Reference 3) l i 1 l 1 4 a l 1 i i 4 l
- i
! 1 1 l 1 i l SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET i
=Mo " . ,A,au ,, m Project or DCP/MMP SONGS 2/3 CCN CONVERSION f Calc No. M-DSC-269 CCN NO. CCN - f !
! subject see title sheet Sheet No. M3 \ REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE WSHONG YOW p&) 9/30/93 10/7/93 J.GACRk . t i ] Film Accept (A) Flaw Size of
- Location Reject (R) Charac. Flaw 4
R1V1 RN UCS 5/32 X 1/32 l { 1/2 X 1/16 1/4 X 1/16
- l. 3/4 X 1/32
{ 1 X 1/16 i
; R1V2 R UC 1/8 X 1/16 1/4 X 3/32
- 1 1/2 X 1/16 i
j R1V4 R UC 1/4 X 1/32 1 1/2 X 1/16 7/16 X 1/32 i j R1V5 R SI 1/16 X 1/16 1/8 X 1/16 5/16 X 1/16 {i 1/8 X 1/16 { 1/8 X 1/16 4 3/8 X 3/32
- UC 3/8 X 1/16
{ 5/32 X 1/16 3 1 X 1/16 31/4 X 5/32 4 j R1VS R UC 1 X 1/16 IF 1/2 X 1/32
, R1V7 R UC 3/4 X 1/32 .' 1 X 1/32 5/32 X 1/32 i
1 X 1/32 i 1 SCE 26426 NEW 4/90 I
NES&L DEPARTMENT CALCULATION SHEET ::" % = . memo,2 n Project or DCP/fMP SONGS 2/3 Calc No. M-DSC-269 c!n cc[- f subject see title sheet Sheet No. Nk REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE 1RE DATE WUSHONGYOW[fLj 9/30/93 J.GAORT-(,, 10/7/93 i Film Accept (A) Flaw Size of Location Reject (R) Charac. Flaw R2V1 R SI 3/8 X 1/16 1/8 X 1/32 1/8 X 1/32 R2V3 R UC 3/8 X 1/16 R2V6 R IF 3/16 X 1/64 R2J1 R UC 1/16 X 1/32 1/16 X 1/32 3/32 X 1/16 3/8 X 3/32 IF 9/32 X 1/32 5/16 X 1/32 7/16 X 1/64 3/16 X 1/32 R2J2 R UC 1/4 X 1/64 1/8 X 3/32 3/32 X 3/32 IF 7/16 X 1/64 1/16 X 1/64 3/16 X 1/64 R2J4 R UC 1/2 X 1/32 5/32 X 3/32 1/8 X 1/16 IF 3/4 X 1/32 R2J5 R IP 1 1/4 X 1/64 IF 1/8 X 1/64 R2J6 R IF 1/2 X 1/32 UC 3/8 X 1/32 SCE 2G426 NEW 4/90
CALC $* LYT 5d^ EdHEET g r a c e. " ,A, . , m l CCN CONVERSION Project or DCP/M4P SONGS 2/3 Calc No. g M-DSC-269 Ccn no. CCN - l subject see title sheet Sheet No. 2 k E l REV ORIGINATOR DATE 1 IRE DATE REV ORIGINATOR DATE IRE DATE W$HONG YOW 9/30/93 J. CAoR Q , 10/7/93 Film Accept (A) Flaw Size of Location Reject (R) Charac. Flaw i R2J7 R IF 7/32 X 1/32 j i R2H1 R UC 2 X 1/16 2 X 1/16 ; l R2H4 R UC 1/4 X 1/16 l 3/16 X 1/16 R2H7 R UC 31/2 X 1/16
- R2H2 R UC 3/4 X 1/32 i
9/32 X 1/32 1/8 X 1/32 l 3/32 X 1/16 ; I 5/32 X 1/16 i j 3/32 X 1/32 1 R3V1 R IF 3/8 X 1/32 5/8 X 1/32 R3V5 R S1 7/16 X 1/16 I ! 5/16 X 1/16 i i IF 1/8 X1/64 1 7/16 X 1/32 1 UC 1/4 X 1/16 l l 3/8 X 1/16 R3V6 R IF 1/4 X 1/64 R3V7 R SI 7/32 X 1/16 i 1/16 X 1/16 ! UC 3/4 X1/8 ! i I I SCE 26426 NEW 4/90 I
NES&L DEPARTMENT CALCULATION SHEET :: n a see
. ,Acayo, z n Project or DCP/lelP SONGS 2/3 Cale No.
CCN CONVERSION / M-DSC-269 CCN No. CCN - I Subject see title sheet Sheet No. Mb REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE WSHONG YOW 9/30/93 J. GAOR j[,, 10/7/93 l l Film Accept (A) Flaw Size of Location Reject (R) Charac. Flaw I R3J2 R IF 5/32 X 1/32 R3J3 R SI 1/4 X 1/32 3/16 X 1/32 3/32 X 1/32 R3J4 R IF 1/4 X 1/64 1/8 X 1/64 3/32 X 1/64 R3J5 R IF 1/2 X 1/32 R3J6 R UC 3/8 X 1/16 R3J7 R SI 5/32 X 1/16 1/4 X 1/16 R4H1 R IF 3/8 X 1/32 M 21/2 X 1/32 UC 1/2 X 1/16 R4H2 R UC 31/2 X 1/32 R4H3 R UC 41/2 X 1/32 R4V1 R IF 1/4 X 1/32 R4V4 R IF 1/4 X 1/32 R4V5 R SI 1/4 X 1/32 1/8 X 1/32 R4V7 R IF 7/16 X 1/64 SCE 26-426 NEW 4/90
4 NES&L DEPARTMENT CALCULATION SHEET i g r a u ,;. " ,A,ayo, yy , Project or DCP/W(P SONGS 2/3 Calc No. CCN CONVERSION / M-DSC-269 CcN ho. CCN - f i subject see title sheet Sheet No. M7 REV ORIGIMATOR DATE IRE DATE REV CRIGINATOR DATE IRE LATE
- wsNoua vow tv4; 9/30/93 1o/7/93 a.croR46
.l 1
- Film Accept (A) Flaw Size of Location Reject (R, Charac. Flaw I
l R4J1 R IF 1/16 X 1/64 ! 1/8 X 1/64 j 3/16 X 1/32 R4J2 R UC 5/8 X 3/16 1/4 X 3/32 1/16 X 1/32 } 4 1/4 X 1/16 3/32 X 1/16 i IF 1/8 X 1/64 4 1/16 X 1/32 R4J3 R IF 3/16 X 1/64 l 4 5/32 X 1/64 4
- R4J4 R UC 3/8 X 1/16 l 1/16 X 1/32 1/8 X 1/32 4
5/32 X 1/16 l 7/32 X 1/16 1/16 X 1/16 j IF 1/16 X 1/32 R4J5 R UC 3/4 X 1/16 i 1/4 X 1/32 IF 5/16 X 1/64 ( R4J7 R, UC 1/16 X 1/32 7/32 X 1/32
- 3/8 X 1/32 3/32 X 1/32
- i IF 7/32 X 1/64 1
SCE 26-426 NEW 4/90
1 l I NES&L DEPARTMENT CALCULATION SHEET =gs see
. ,A ,,, z 7y CCN CONVERSION Project or DCP/MMP SONGS 2/3 Calc No. M-DSC-269 CCN No. CCN -
subject see title sheet Sheet No. 2 k 8 , REU ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE WSHONG YOW hl 9/30/93 J. GAOR g 10/7/93 i Notes: (1) A designates " Accept"; R designates " Reject"
- (2) The defect Codes for the flaw characteristics are i IF - Incomplete fusion i IP - Inadequate penetration l SI - Slag inclusion 1
Tl - Tungsten inclusion j BT - burn through M - Mismatch DT - Drop through UC - Undercut OX - Oxidized root t CV - Root concavity CX - Root convexity P - Porosity
- FA - Film artifact 3
i l 4 i 4 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET '"" ~o ' A = PR[ LIM. CCN NO. PAGE h 0F 4 7 "7 i
+
Project or DCP/ HHP SONGS 3 Cale No. CCN CONVER$10N M-DSC-269 CCN NO. CCN - 1 Subject See Title Sheet Sheet No, M9 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE NA8IL M. EL-AKILY 10/12/93 10/12/93 JUN GAOR k i , I i APPENDIX - F l i FRACTURE MECHANICS EVALUATION 4 i l l l l SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ll:IS/N0m ,A ,2 , . 0, _, - ,i Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION l cCN NO. CCN - [ j subject see title sheet Sheet No. REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE I R. QASHU 11/10/93 JUN CAOR ((,, 11/10/93 1 1 1 l l TABLE OF CONTENTS , PAGE l l t
- 1. PURPOSE ........................................... 250
- 2. RESULTS/ CONCLUSIONS ............................... 252 1
- 3. ASSUMPTIONS ....................................... 253
- 4. DESIGN INPUT....................................... 254
- 5. METHODOLOGY ....................................... 255
- 6. REFERENCES ........................................ 258
- 7. NOMENCLATURE ...................................... 259
- 8. CALCULATIONS ...................................... 260 ATTACHMENTS TO APPENDIX F........... 266 SCE 26-426 NEW 4/90
NES&L DEPARTMENT - CALCULATION SHEET :n&." mm., ,, a. ; . Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION CCN No. CCN - Subject see title sheet Sheet No. 2 3 I REV ORIGINA' TOR DATE IRE l DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GACR Q , 11/10/93 1.0 PURPOSE / BACKGROUND: During a QA surveillance activities of the primary make up storage tank T-056 (Unit-2) modifications, QA identified evidence of poor workmanship in the original construction welding of the tank. The poor workmanship was identified for example; as excessive weld reinforcement (greater than 3/32"), and undercut (greater than 1/32"). QA also reviewed the original 10 radiographs and found two unacceptable. The QA assessment was later confirmed by QC. Additional five radiographs were taken and found unacceptable by QC. It was evident at this point that continuing the radiography will continue to show same type of weld defects, and an evaluation must be developed to address the structural integrity of the tank with the weld defects. It was also concluded that similar defects are to expected in T-055 (Unit-3). In order to address the weld defects, a plan was put to try to characterize statistically a bounding defect with high confidence. The number of radiographs was increased to a total of J 60, covering basically all of the tank shell weld seams. The results of the radiographs is used to perform a bounding fracture mechanics analysis to demonstrate acceptability of the welds with high reliability. SCE 2642G NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =l:%" ,Ax w o, m Project or DCP/ HHP SONGS 3 CCN CONVERSION / Calc No. M-OSC-269 C:N N3. CCN - f subject see title sheet Shee No. b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. CASHU 11/10/93 11/10/93 JUNGAOR[4 The analysis is comprised of two phases. Phase one a statistical analysis to try to calculate a reliability of at least 95% of a defect ' length not to exceed a given length, with 95% confidence level. The bounding defect will be used in phase 2 conservative fracture analysis to show that the defect, simulated as a crack will be acceptable for the life of the tank. Phase 1 is addressed in appendix E, and phase 2 is addressed in this appendix. The following calculation was originally performed to address the welding defects of Unit-2 PPMS tank (T-056), and the results are documented in calculation number M-DSC-280. However, the maximum defect size found in T055 of Unit-3 is enveloped by T-056 maximum defect size. Therefore, Unit-2 calculation is bounding, and applying the results to Unit-3 PPMS tank is conservative. SCE 26-426 NEW 4/90
) NES&L DEPARTMENT CALCULATION SHEET l r:Ch.e"- ,Ax w 0, m Project or DCP/M4P SONGS 3 calc No. M-OSC-269 CCN CONVERSION / CCN No. CCN - f subject see title sheet Sheet No. REV ORIGINATOR DATE IRE DATE REV ORICINATOR DATE IRE DATE R. QA$NU 11/10/93 JUN GAOR p [, 11/10/93 2.0 RESLTLTS/ CONCLUSIONS : The worst defect reported in appendix E was assumed to exist in the highest stress region of the tank shell, and oriented axially to maximize the stress and the stress intensity. The defect was analyzed by two methods: 3 In the first method the defect was assumed infinitely long and depth equals to half the shell thickness. The analysis showed that the flaw will be stable with a safety factor of 4.4, and the amount of radial crack growth over the life of the tank is within the remaining tank shell thickness. In the second methodology the crack was assumed through wall and i 5" long. The results showed that the crack will be stable with a safety factor of 3.13. SCE 26426 NEW 4/90
l l NES&L DEPARTMENT CALCULATION SHEET g;:,:Mfaur ,, , , CCN CONVERSION Project or DCP/MMP SONGS 3 Cale No. M-DSC-269 CCN ho. CCN - i subject see title sheet SheetNo.25N l REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE !RE DATE R. CASHU 11/10/93 JUN GAOR 11/10/93
3.0 ASSUMPTIONS
- 1. The material is isotropic and elastic (the nominal stress is within the yield strength).
- 2. None of the specifications of the used filler metal in :he tank shell welding (E308, E308L, E309), requires material tor.ghness value. But the data published by EPRI and others (Reference 4) provide toughness values in the form of J ze which was used to calculate.K 3e of the filler metal.
- 3. The tank was assumed to undergo 400 cycles of fill and refill-corresponding to the number of plant shut downs over 40 years.
l 1 I l l SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ntN4;." ,Axy, o,3 ;,y Project or DCP/MMP SONGS 3 Cale No. M-DSC-269 CCN CONVER$!ON / CON No. CCN - ( Subject see title sheet sheet No. 2bb REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUNGAOR((, 11/10/93 1 4.0 DESIGN INPUT: Tank material SA-240-304 Reference 8 Tank Radius, 240 inch Reference 8 Filler metal E308,308L,309 Reference 6 J ge, 990 in-lb/in 2 Reference 4 E, 25 E3 Ksi Reference 4 Material Yield Strength 29.8 Ksi @l04 F Reference 7 Tank shell thicknesses 5/16", 1/4" and 3/16" Reference 8 Maximum defect 4.875 Appendix E l SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :::: i 4 . " ,Ax m o, , y Project or DCP/MMP SONGS 3 Calc No, M-OSC-269 CCN CONvlR$lCN l CCN No. CCN - 4 [ subject see title sheet Sheet No. 2 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GACR [f , 11/10/93
5.0 METHODOLOGY
From appendix E the worst (largest) defect is identified as 4.875 inch long lack of fusion (radiograph G2-3, in the second horizontal seam 14 feet from the tank bottom). For the purpose of the analysis the defect will be assumed as a five inch long vertical flaw (the ratio of hoop stress to meridional stress is about 3), extending halfway through the plate thickness as shown in figure 1. Also in figure 1, in dotted lines the credible paths of flaw propagation are shown.
- ,83 s
The stress intensity factor at c1 the crack tip can be C2 I conservatively calculated i C- ' i
/ i as if the crack front is in i the radial direction as in [, '
profile c2 Figure 1. df n Figure 1 CCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ;;;"~MC/N;." ,,,, ,, y 7y Project or DCP/MP SONGS 3 Calc No. M-DSC-269 CCN CONVER$10N [ CCN No. CCN - f subject see title sheet Sheet No. 2 b 7 REV ORIGINATOR DATE IRE DATE ORIGINATOR REVl DATE IRE DATE R. QASHU 11/10/93 11/10/93 JUNCAORf( For such a case the crack tip stress intensity is defined by the expression from Reference 1. k=Go ov (na/0) (1) where Go = Free surface correction factor for the given stress variation provided in Tables A-3320-1 as function of flaw aspect ratio (a/1 = 0), and flaw tip position 1. o= Maximum hoop stress Ksi in the tank including effects of water sloshing due to earthquake and local stress due to the ring, calculated using finite element analysis. a= Crack depth (half plate thickness = 0.125") Q= Flaw shape parameter as given by equation 2 below: O=1- [Go o/oy,] 2/6 (2) Where oy ,is the material yield strength SCE 26-426 NEW 4/90
NES&L bEPARTMENT CALCULATION SHEET =" % fe' , A3,,0, y, y CCN CONVER$!0N Project or DCP/M4P SONGS 3 Calc No. M-DSC-269 ccN No. CCN - subject see title sheet Sheet No. l REV ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUNGAOR[,[,, 11/10/93 1 Another credible path for the flaw to propagate, is to become through wall and extend longitudinally as in profile c in Figure 3 1. Given the crack is through wall, and 5 inches long, the stress intensity factor can be calculated for this case using linear elastic fracture mechanics (LEFM) provided in standard computer program PcCrack. LEFM crack model E, through wall axial crack in a pressurized cylindrical shell was chosen to perform the analysis. Detail discussion of this methodology is provided in Reference 2. The crack growth will be calculated based on Figure A-4300-1 of reference 5, assuming water environment and R = 0.25. DK is conservatively assumed equal to K.,x. SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ':::,:% m
,Axm c, m Project or DCP/MMP _ SONGS 3 Cale No. M-OSC-269 CCN CONVER$10N /
CCN No. CCN - l subject see title sheet
. Sheet No. 2 REV ORIGINATOR DATE IRE DATE REV CRIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GAOR [.[,, 11/10/93
6.0 REFERENCES
- 1. ASME Section XI working group on flaw evaluation, replacement of stress intensity factor calculation of Article A-3000 of Appendix A of Section XI, based on Stress Analysis of Cracks Handbook by Tada and Paris, Second Edition (Section 2).
- 2. PcCrack Fracture Mechanics Software, Version 2.1, Structural Integrity Associates, Inc.
- 3. ANSYS User's Manual, Revision 4.4A, Swanson Analysis System.
- 4. Journal of Pressure Vessel Technology, Vol 108, August 1986.
- 5. ASME Code Section XI, 1989 Edition.
- 6. Data report SA-1415-1.
- 7. ASME Code Section III, Appendices, 1989 Edition.
- 8. Drawing S023-407-3-61-2, Primary Make-up Storage Tank shell plate layout.
SCE 26-426 NEW 4/90
1 NES&L DEPARTMENT { CALCULATION SHEET g r,; M m ~ ,Auy, ,, z 7, l l Project or DCP/MHP SONGS 3 Calc No. M-DSC-269 CON CONVER$10N l 1 cca ho. CCN - l { subject see title sheet Sheet No. O REY ORIGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE f R. QASHU 11/10/93 JUNCAOR'[.[,, 11/10/93 l
7.0 NOMENCLATURE
l l l a Crack depth (in) F Factor of safety (Kic/K )r Go Correction factor (2.8254) I Tank cross section moment of inertia (in )
~
4 l r Tank radius (in) t Tank shell plate thickness (in) K Stress intensity factor (Ksilin) i K re Critical stress intensity (Ksilin DK Stress intensity range (Ksi[in) M Bending Moment (in-lb) N Number of stress cycles Q Flaw shape parameter a Stress (Ksi) a,y Material yield strength E Modulus of elasticity (Ksi) SCE 26-426 NEW 4/90
i NES&L DEPARTMENT CALCULATION SHEET g ;;,: N C & ,. " ,Aoy, ,, m CCN CONVERS!0h Project or DCP/MHP SONGS 3 Calc No. M-DSC-269 CCN A0. CCN - Subject see title sheet Sheet No. b! REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GAOR % 11/10/93 1
8.0 CALCULATIONS
8.1 STRESS CALCULATIONS: 8.1(a) Meridional Stress, the meridional stress is calculated from the over turning moment as follows: From page A34 the overturning moment is given at the ring i elevation (M = 237,927,613 in Ib). The meridional stress a at the ring location can be calculated as:
)
l a=Mr/I where r = 240 inch, tank radius I=7 t r3 t = 1/4 inch, tank thickness at location of l maximum stress a = 237927613*240/7*0.25*2403 1
= 5.3 Ksi 8.1 (b) Hoop Stress, To account for the discontinuity of the tank shell at the ring location, a three dimensional finite element analysis was performed using standard computer program ANSYS (Reference 3). The tank finite element model is depicted in SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =nk" , A , y,, , ,. , CCN CONVERSION I Project or DCP/MHP SONGS 3 Calc No, M-DSC-269 CCN No. CCN - j Subject see title sheet Sheet No. 2b REV Ot.IGINATOR DATE !RE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GAOR ((,, 11/10/93 Figure 2. The stress analysis results are provided in Figure 3. The computer input image listing is provided in the attachment section. The water sloshing effect due to earthquake (SSE) was converted to hydrostatic pressure and added to the tank hydrostatic pressure. The maximum hoop stress calculated by ANSYS is 15.9 Ksi. 8.2 FRACTURE MECHANICS CALCULATIONS: The stress intensity factor can be calculated using Equations 1, and 2. Go= 2.8254 from table A-3320-1 @ a/t=0.5 and a/l=0. Q = 1-(15.9*2.8254/29.8)2/6
= 0.6213 l
K = 2. 82 54 *15. 9 (r* 0.12 5/ 0. 6213 ) 1/2
= 35.72 Ksi fin A factor of safety is calculated by ratio of Kre/K, l Kre = / (Jge*E) = /( 990*25E6) i = 157.32 Ksilin l
F= 157.32/35.72
= 4.4 I
SCE 26-426 NEW 4/90 l l j
NES&L DEPARTMENT CALCULATION SHEET =N& w ,Aya c,m Project or DCP/MP _ SONGS 3 c:8 ccNvtRstcN f I Calc No. M-DSC-269 C;h No. CCN - ( j Subject see title sheet Sheet No, h REV ORIGINATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUNGAORM. 11/10/93 I The analysis was repeated using PcCrack Reference 2, assuming a 1 through wall crack of 5 inch. The results of PcCrack are graphed I in Figure 4. The calculated stress intensity is 50.802 Ksi (in. Based on the PcCrack results a factor of safety equals to 3.13 is l calculated. l l l 8.3 da/dN CALCULATION The crack growth is calculated using figure A-4300-1 (Reference 5) for water environment, and R = 0.25. DK = 50 Ksilin, which is the maximum stress intensity based on 5 inch axial crack. From figure A-4300-1 @ DK = 50 KsiVin, find da/dN = 200 E-6 inch / cycle. conservatively assume that the tank will undergo 400 cycles of filling and refilling, corresponding to the number of plant shutdowns over 40 years. Crack growth = 400
- 200E-6
= 0.08 inch The remaining tank thickness at defect location = = 0.125 .08 = 0.045 inch SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::n g.-w ,A, w ,,y y, ; Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVER5!CN f CcN No. ccN - / subject see title sheet ' sheet No. 2 5 REV ORIGINATOR DATE 1RE DATE RtV ORIGINATOR DATE !RE DATE R. CASHU 11/10/93 JUNGA04[f, 11/10/93 l l s
/
s ~% y .w x 7 * / ,. ,- /.
x ,.G/l.' ,'/, , ; ,,
l ' *
. , , , ~.'N ,yx.\~- \, < (,'.',*,Q'/.%, ) ,s \
i .
- s. N '\ ,
w
't /
i
'N , )
l
's A 6w \ * .g s ".2 E
4 Figure 2, Tank shell finite element model i l SCE 26-426 NEW 4/90
M M
" 7 E a 2 .R. R.
E Figure 3 Hoop stress distribution , ea g [O O 500 E e= E
*s >
F v. v, o Oz
~
gi m g v, Cmv>
]x a =
2 m w e 40nv w r-dmO n T c a i 2 =- Os-4 { M +- 3 /16" <--g E h 300 - 6 m
- o @ -4 It s e t I
'I B
i m i 200 -
- =*
; m . H f 1/4" 8 d
e
- h / g g s o .
*?
100 - A E y ?: h - F l
._e /4-- 5/16" =99 N?
V f
- es
'g ;
0 ~
' ' ' ~
n=
% \ -5 % i 0 E 5 10 15 .s Street Pet (Thousande) : _ _ _
R z !
*O w a o M N M.
S s P C
- u r E
2 E R b j j o 4- U e e 4 c c 2 t t 4 .R o N E W 3
.A_O=E 4 M >e O.sa 2 e.N8 Q
A S O R e s D r C A I H G e C C / U I P N 9 A t / 0 M T O R i t H P L C l e vOO
=
s S 1 1 e e h G O N UNE
/
1 0 D A _t S LS &
/
3 9 T E 1
/L A
T \ D ( OO 1 a (
%' t J U
TE I P 1X N g X t
\ t' G A
G R 1 1 R OART M y '
\ }1
( NME 1 STN e T OO 3' i ii ! t 1 i ' , 1
- \ 1 1 c
e \ 1 l t / 1 0 D A a l e H g
/ T Y.
r \ 1 1 9 3 E N
.o E
m
\ 1 \
E R M E C 4O 1\ ( 1 V D S T C o X1 O 1\ m R 2 I 6 G 9 X I X X N A T NO t O n R X X X l CC CC NN k D A T NC
.o O s
0 E CE N V e CR$ ' 0.N ,
- a a T e g 8 N
- S h
N1
- N 0
e u 2 % * $ ~c i e l I t R E N , o , f f d , D A T z E 7, l l
NES&L DEPARTMENT CALCULATION SHEET gr!"o LNcc "' ,Auure, z zy CCN CONVERSION Preject or DCP/MMP . SONGS 3 Calc No. M-DSC-269 cCN ha. CCN - subject _see title _ sheet Sheet No. 157 REV ORIGINATOR DATi IRE DATE REV ORIGINATOR DATE IRE DATE R. QA$HU 11/10/93 JUNGAOR[f 11/10/93 .l ATTACHMENTS TO APPENDIX F j e b I i I SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ;;;: M,;w ,,yy ,, , 7, CCN CONVERSICN Project or DCP/MMP SONGS 3 Calc No, M-DSC-269 j C:n no. ccN - ( subject see title sheet Shee't No. bb REV ORIGINATOR DATE IRE DATE REV ORIGINATOR l DATE IRE DATE R. QA!)iU 11/10/93 JUN GAOR j11/10/93
/ PREP 7 / TITLE, PRIMARY PLANT MAKE-UP TANK C*** FILE NAME: PPMS1.
C*** C*** FORCE APPLIED NEAR THE TOP C*** l KAN,O i C*** j l C*** ELEMENT TYPE: ELASTIC SHELL ET,1,63 ET,2,8 C***
)
C*** MATERIAL PROPERTIES EX,1,28.3E6
- TANK SHELL (TYPE 304 SS)
NUXY,1,0.3
- EX,2,30.0E9 NUXY,2,0.3 )
C*** C*** REAL CONSTANTS R,1,0.25
- BOTTOM l i
R,2,0.3125
- FIRST TIER R,3,0.25
- SECOND TIER SCE 26 426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET gr,rik.m ,Am go,,7, Project or DCP/MHP SONGS 3 CCN CONVIR$10N / Calc No. H-DSC-269 CCN No. CCN - [ subject see title sheet Sheet No. REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DA1E R. CASHU 11/10/93 JUN GAOR @ , 11/10/93 1 l R,4,0.1875
- THIRD TIER 1
R,5,0.25
- ROOF R,6,1.0
- SPOKES C***
C*** GEOMETRY RT=240.0
- TANK RADIUS H1=95.625
- HEIGHT TO TOP OF FIRST TIER H2=167.25
- HEIGHT TO TOP OF SECOND TIER HT=408.0
- TANK HEIGHT j RBL=243.0
- BOLT CIRCLE RADIUS RBT=246.0
- OUTSIDE RADIUS OF THE BOTTOM RR=576.0
- ROOF RADIUS Al=SQRT(RR*RR-RT*RT)
A2=HT-Al
- CENTER OF COORDINATE SYSTEM 11 A3=A2+576.O C***
C*** NODE DEFINTION N,1,1.0
- CENTER OF THE TANK N,7,RT
- TANK RADIUS FILL,1,7
- N,9,RT,H1 FILL,7,9,,,,,,O.328125 J
SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::: n l " ,Aa m o, , , l CCN CONV[R$!ON l Preject or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN ho, CCN - l l subject see title sheet Sheet No. 2- 7 0 l REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE !RE DATE R. QASHU 11/10/93 11/10/93 JUN CAOR Q N,11,RT,H2 1 FILL,9,11 l 1 N,17,RT,HT l l l FILL,11,17 ' C*** I N,23,1.0,A3 l N,9000,0.,A2 1 NGEN,2,1,9000,,,1.0 l NGEN,2,1,9001,,,,1.0 l CS,11,1,9000,9001,9002 CSYS,11 FILL,17,23 C*** CSYS,O N,24,RBL N,25,RBT C*** N,9003,O.,O.,O. N,9004,1.0,,-1.0 CS,12,1,9003,7,9004 CSYS,12 NGEN,72,25,1,25,,,5.0 SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =:,;% i- u r
,,, ,, ,, , 7y Project or DCP/MMP SONGS 3 CcN CONV[RSION cale No. M-DSC-269 cch No. CCN -
Subject __ See title sheet Sheet No. f REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN CAOR ff. 11/10/93 i NDEL,9000,9004 C*** 1 l CSYS,0 N,1801,,367.875 C*** l l C*** ELEMENT DEFINITION MAT,1 TYPE,1 REAL,1
- BOTTOM E,1,2,27,26 1 EGEN,6,1,1 E,7,24,49,32 E,24,25,50,49 EGEN,71,25,1,8 E,1776,1777,2,1 EGEN,6,1,569 E,1782,1799,24,7 E,1799,1800,25,24 C***
REAL,2
- FIRST TIER E,7,8,33,32 EGEN,71,25,577 SCE 26426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ::::,"ot to: " ,A
,,7,, 3 ,y CCN CONVERSION Project or DCP/MMP SONGS 3 calc No. M-OSC-269 CCN No. CCN -
subject see title sheet Sheet No. b REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. oASHU 11/10/93 11/10/93 JUNGAOR(( E,7,1782,1783,8 EGEN,2,1,577,648 C*** REAL,3
- SECOND TIER E,9,34,35,10 EGEN,71,25,721 E,1784,9,10,1785 EGEN,2,1,721,792 C***
REAL,4
- THIRD TIER E,11,36,37,12 EGEN,71,25,865 E,1786,11,12,1787 EGEN,6,1,865,936 C***
REAL,5
- ROOF E,17,42,43,18 EGEN,71,25,1297 E,1792,17,18,1793 EGEN,6,1,1297,1368 C*** LOADING AND BOUNDARY CONDITIONS WSORT,ALL SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET :: n i-"r , Ay 7, ,, , ,, Project or DCP/MMP SONGS 3 CCN CONVER5!CN Calc No, M-DSC-269 CCN No. CCN - Subject see title sheet Sheet Ho, M3 REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GAOR /, , 11/10/93 NSEL,,24,1799,25
- FIXED NODES ALONG THE BOLT CIRCLE l
D,ALL,ALL
- NSEL,,9,1784,25 D,ALL,ALL NALL
- NSEL,Y,0 D,ALL,UY,O NALL C***
ITER,-100,100,1 ESEL,,649,720 EP,ALL,1,14.4 ESEL,,721,792 EP,ALL,1,13.6 ESEL,,793,864 EP,ALL,1,12.4 ESEL,,865,936 EP,ALL,1,11.2 ESEL,,937,1008 EP,ALL,1,9.85 ESEL,,1009,1080 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET ':::,;Mc,0 sa~
,Ac c .,; ,, . .. .
Project or DCP/MHP SONGS 3 CCN CONVERSION / Calc No. M-DSC-269 ccn No. ccN - / l Subject see title sheet Sheet No. 2- 7 k REV ORIGINATOR DATE IRE DATE I REV ORIGINATOR DATE IRE DATE R. CASHU 11/10/93 JUNCAOR%, 11/10/93 EP,ALL,1,8.5 ESEL,,1081,1152 EP,ALL,1,7.2 ESEL,,1153,1224 EP,ALL,1,5.8 ESEL,,1225,1296 EP,ALL,1,4.5 EALL AFWRITE l FINISH
/ INPUT,27 FINISH 4
SCE 26-426 NEW 4/90
I CALCULYT5bN dHEET =:otte,.w , A, , z .,, ,, , , . , .i CCN CONVERSION Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN NO. CCN - Subject _ see title sheet sheet no.2 ~7$ REV ORIGINATOR DATE IRE DATE REV l ORIGINATOR DATE IRE l DATE R. QASHU 11/10/93 JUN CAOR 11/10/93 I tm pc-CRACK (C) COPYRIGHT 1984, 1990 STRUCTURAL INTEGRITY ASSOCIATES, INC. SAN JOSE, CA (408)978-8200 VERSION 2.1 Date: 22-Jul-1993 Time: 18:27:11.99 LINEAR ELASTIC FRACTURE MECHANICS EVALUATION . I tS6 crack model:THROUGH WALL AXIAL CRACK IN PRESSURIZED CYLINDER WALL THICKNESS (t) = 0.2500 OUTER DIAMETER (OD)= 480.0000 l i SCE 26 426 NEW 4/90 i
l NES&L DEPARTMENT l CALCULATION SHEET grn(C.- * ,,,Eeuor z m l Project or DCP/MMP SONGS 3 Calc No. M-DSC-269 CCN CONVERSION CCN No. CCN -
/ l /
subject see title sheet Sheet No. 2 7 S REV ORIGINATOR DATE IRE DATE REV ORIGINATOR DATE IRE DATE R. QASHU 11/10/93 JUN GAOR f.(, 11/10/93 l CASE ID STRESS 1 15.9000 l CRACK ---------------STRESS INTENSITY FACTOR---------------- SIZE CASE 1 l l 0.1000 8.943
)
0.2000 12.693 0.3000 15.605 0.4000 18.092 0.5000 20.312 0.6000 22.347 0.7000 24.247 0.8000 26.042 0.9000 27.756 1.0000 29.403 1.1000 30.996 1.2000 32.544 1.3000 34.056 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET n;:, M e = r ,,, c ,, , , , Project or DCP/MHP SONGS 3 CCN CCNVER$10N / Calc No. M-DSC-269 CCN No. ccN - / Subject - see title sheet Sheet No. b 7 7 REV ORIGINATOR DATE IRE DATE REV CR!GINATOR DATE IRE DATE R. CASHU 11/10/93 JUN GAOR 11/10/93 I , l 1.4000 35.536 1.5000 36.991 1.6000 38.424 i l 1.7000 39.840 i I 1.8000 41.240 l 1.9000 42.627 2.0000 44.005 1 2.1000 45.374 2.2000 46.737 2.3000 48.095 i 1 2.4000 49.450 2.5000 50.802 2.6000 52.154 2.7000 53.505 2.8000 54.856 2.9000 56.209 3.0000 57.565 3.1000 58.923 3.2000 60.284 3.3000 61.650 3.4000 63.020 3.5000 64.394 SCE 26-426 NEW 4/90
NES&L DEPARTMENT CALCULATION SHEET =;o M.w ,
,A,y.,,,,y.c, CCN CONVER5!0N /
Project or DCP/MMP SONGS 3 cale No. M-DSC-269 CCh ho. CCN - / Subject _ see title sheet Sheet No. REV ORIGlWATOR DATE 1RE DATE REV ORIGINATOR DATE IRE DATE l R. QASHU 11/10/93 JUNGAOR[(p. 11/10/93 3.6000 65.774 3.7000 67.160 3.8000 68.551 3.9000 69.949 i 4.0000 71.353 4.1000 72.764 1 4.2000 74.182 ! 4.3000 75.607 4.4000 77.039 4.5000 78.479 4.6000 79.926 4.7000 81.382 4.8000 82.845 4.9000 84.316 5.0000 85.796 SCE 26-426 NEW 4/90
fAs41 A*3320 1 c0tf ricituts G01mealGa G3 70s sympACt CaACE Af 90lef 1 l 4 1 l FLAW ASPtCf RAfl0 , s/l
- a/t 0.0 0.1 0.2 0.3 0.4 0.Si l
uutteen 0.00 1.1208 1.0M9 1.0854 1.0727 1.05M I GO 0.05 1.1441 1.1000 1.0679 1.5% 1.0740 1.0575 1. 5 73 0.10 1.1MS 't.1152 1.0067 1.0779 4 0.15 1.2670 1.1402 1.10$8 1.0842
- 1. Osse 1 Gen t.4306 1.E32 Ndg g 2 c CF O.20 1.3654 1.1744 1.1210 oggg , ef9 1.0928 1.0739 1.M42
!' 0.25 1.49N 1.2170 1.1399 Otstillk i 1.1035 1. 5 32 1.0543 1 0.30 t.6539 1.2670 i 1.1421 1.1ue i.Sese 1.06u CALCf00. M-05C 2 6 9 gy,_ 0.40 2.1064 1.3040 1.2135 1.1444 1.1100 1.0772 ' f j
,, 0. 50_, ._J,. M_S4 1.3128 1.2443 1.1757 1.ul? 1.0931 N '
M py 0.40 4.0420 1.4372 it3216 1.2039 - 1.1499 1.10$8 e 0.70 6.3743 1.7373 1.3610 1.2237 - 1.1864 -1 1112 - - gg q.,, ! 0.00 *11.991 1.7099 1.3741 1.2205 1.1902 1.1065 pts - f DAT8' i t! stas 0.00 0.7622 0.M35 0.4426 0.7019 0.7214 0.7411 I G1 0.05 0.7424 0.M51 0.4433 0.7022 0.7214 0.7413 0.10 0.7732 0.6700 0.6455 0.7031 0.7221 0.7414 i O.15 0.7h5 0.6750 0.4490 0.7044 0.7230 0.7426 j C.20 0.4267 0.6891 0.6939 0.7067 0.7243 0.7420 1 0.25 0.8706 0.7029 0.7000 0.7096 0.7360 0.7451 1 0.30 0.9276 0.7193 0.70 73 0.7126 0.7382 0.7444 0.60 1.0007 0.75M 0.7249 0.7209 0.7334 0.7511 } 0.50 1J02 0.0029 0.7454 0.7314 0.7417 0.7W6 $ 0.40 1.7563 0.0448 0.7671 0.7641 0.7520 0.7631 } 0.70 2.4125 0.0904 0.7582 0.7544 0.7613 0.7707 i 0.80 4.5727 0.9204 0.8063 0. T753 0.7522 0.7792 i I ^ j aJActAttc 0.00 0.4009 0.5075 0.5310 0.S$$4 0.5415 0.6044 l G2 0.05 0.SM9 0.5046 0.1313 0.5557 0.5415 0.4066 0.10 0.5996' O.5109 0.5323 0.5540 0.5415 0.4005 0.15 0.4088 0.51&4 0.5340 0.55M 0.5415 0.4087 0.20 0.6247 0.5202 0.53M 0.5571 0.5015 0.4009 0.25 0.M73 0.5249 0.53M 0.5540 0.5817 0.4093 0.30 0.6775 0.5350 0.5430 0.5592 0.5820 0.4099 0.40 0.M$ t . 0.S$45 0.5520 0.5427 0.5835 0.4115 0.50 SE, 0.3776 0.5432 0.5400 0.5869 0.4144 4.40 1.1382 0.6827 0.5742 0.5760 0.5931 0.41 5 0.70 1.5757 0.6201 0.3907 0.5474 0.4837 0.4255 0.00 2.5997 0.6513 0.4063 0.4031 0.4200 0.4351 COPYFORYOUR Chelt 0.00 0.5060 0.42 4 0.4480 0.4735 0.5006 0.5200 INFORMATION s3 0.05 0.9012 0.4250 0.4442 0.4736 0.5006 0.S290 0.10 0.9412 0.4264 4.uas 0.4736 0. Set 6 0.5290-0.13 0.5459 0.4236 0.6496 0.4737 0.5001 0.550 0.20 0.5152 9.4317 8.4511 0.4738 0.4908 0.S W - 0.25 0.5202 0.4357 0.4528 0.4741 0.4996 0.S W 0.30 0.96E3 0.4446 4.4550 0.47 4 0.4992 0.5291 0.40 0.4065 9.4522 9.4405 0.4764 0.49F3 0.5295 0.50 0.0863 0.4465 9.4670 0.4M5 0.5410 0.5314 0.60 N 0.4429 4.47e9 0.4453 0.5454 0.5349 0.70 1.1207 0.$007 0.450 0.4965 0.Sul 0.1647 0.m i.au 8. Sit. 9 teu 0.5 5 0.s = 0.u.7 Mohe2 Inberpohlim in N /6 or u l a j'g1 is permWed
._}}