ML20100J170

From kanterella
Jump to navigation Jump to search
Environ Radioactivity Levels,Sequoyah Nuclear Plant, Annual Rept - 1981
ML20100J170
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 12/31/1981
From: Maxwell R
TENNESSEE VALLEY AUTHORITY
To: Cunningham A
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
References
TVA-OMS-OHS-82-8, NUDOCS 8504100384
Download: ML20100J170 (62)


Text

. ___ __ - _ - ._.. . _ . . __.

s .

TENNESSEE VALLEY AUTHORITY 1

i l

~

I i

, )

L J l l

l l

DIVISION OF OCCUPATIONAL HEALTH AND SAFETY 8504100384 811231 PDR ADOCK 05000327 R PDR

_ . _ _ --w.,-. s- - - --

---7 .- -w -- -m---.-----e w -- - . - - -

TENNESSEE VALLEY AUTHORITY I

l l

r 1

L A I l l

l DIVISION OF OCCUPATIONAL HEALTH AND SAFETY l

l l

ENVIRONMENTAL RADI0 ACTIVITY LEVELS SEQUOYAH NUCLEAR PIANT ANNUAL REPORT - 1981 TVA/0MS/0HS-82/8 i

l April 1982

CONTENTS Page List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . iv Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Atmospheric Monitoring . . . . . . . . . . . . . . . . . . . . . . . 11 Terrestrial Monitoring . . . . . . . . . . . . . . . . . . . . . . . 25 Reservoir Monitoring . . . . . . . . . . . . . . . . . . . . . 41 I

i Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 55 l

r i

I l

l l

l l

l i

i t

I i

11

List of Tables Page Table 1 - Environmental Radioactivity Sampling Schedule . . . . . 4 Table 2 - Atmospheric and Terrestrial Monitoring Station Locations - Sequoyah Nuclear Plant . . . . . . . . . . . 5 Table 3 - Detection Capabilities for Environmental Sample Analysis. . . . . . . . . . . . . . . . . . . . . 6 Table 4 - Results Obtained in Interlaboratory Comparison Program . . . . . . . . . . . . . . . . . . . 8 Table 5 - Maximum Permissible Concentrations for i Nonoccupational Exposure . . . . . . . . . . . . . . . 13 >

i Table 6 - Radioactivity in Air Filter . . . . . . . . . . . . . . . 14 Table 7 - Radioactivity in Rainwater. . . . . . . . . . . . . . . 15 Table 8 - Radioactivity in Heavy Particle Fallout . . . . . . . . 16 Table 9 - Radioactivity in Charcoal Filters . . . . . . . . . . . . 17 Table 10 - Radioactivity in Atmospheric Moisture . . . . . . . . . . 18 Table 11 - Radioactivity in Milk . . . . . . . . . . . . . . . . . . 28 Table 12 - Radioactivity in Vegetation . . . . . . . . . . . . . 29 Table 13 - Radioactivity in Soil . . . . . . . . . . . . . . 30 Table 14 - Radioactivity in Well Water . . . . . . . . . . . . . . . 31 Table 15 - Radioactivity in Public Water Supply. . . . . . . . . . . 32 Table 16 - Environmental Gamma Radiation Levels. . . . . . . . . . . 33 Table 17 - Radioactivity in Food Crops . . . . . . . . . . . . . . 34 Table 18 - Radioactivity in Poultry. . . . . . . . . . . . . . . . . 38 Table 19 - Sampling Schedule - Reservoir Monitoring. . . . . . . . 43 Table 20 - Radioactivity in Surface Water, Total . . . . . . . . . . 44 Table 21 - Radioactivity in White Crappie (Flesh). . . . . . . . . . 45 Table 22 - Radioactivity in Channel Catfish (Flesh). . . . . . . . . 46 Table 23 - Radioactivity in Smallmouth Buffalo (Flesh) . . . . . . . 47 l

Table 24 - Radioactivity in Smallmouth Buffalo (Whole) . . . . . 48 Table 25 - Radioactivity in Sediment . . . . . . . . . . . . . . . 49 Table 26 - Radioactivity in Shoreline Sediment . . . . . . . . . 50 Table 27 - Radioactivity in Clam Flesh . . . . . . . . . . . . . 51 Table 28 - Radioactivity in Clam Shell . . . . . . . . . . . . . 52 l

l I

1 l

l iii

List of Figures Page Figure 1 - Tennessee Valley Region . . . . . . . . . . . . . 3 Figure 2 - Atmospheric and Terrestrial Monitoring Network. . . . . 19 Figure 3 - Local Monitoring Stations - Sequoyah Nuclear Plant. . . . . . . . . . . . . . . . . 20 Figure 4 - Sequoyah Nuclear Plant - Site Monitoring Stations . . . . . . . . . . . . . . . . . . . . . . 21 Figure 5 - TLD Locations - Sequoyah Nuclear Plant. . . . . . . . . 22 Figure 6 - Annual Average Gross Beta Activity in Air Filters, Sequoyah Nuclear Plant . . . . . . . . . . 23

. Figure 7 - Annual Average Gross Beta Activity in Drinking Water, Sequoyah Nuclear Plant . . . . . . . . . 39 i Figure 8 - Direct Radiation Levels, Sequoyah Nuclear Plant . . . . 40 Figure 9 - Direct Radiation Levels, Sequoyah Nucler Plant, 4-Quarter Moving Average . . . . . . . . . . . . . . 40 Figure 10 - Reservoir Monitoring Network - Sequoyah Nuclear Plant . . . . . . . . . . . . . . . . . . 53 l Figure 11 - Annual Average Gross Beta Activity in Surface l

1 Water, Sequoyah Nuclear Plant . . . . . . . . . . . . 54 l

l l

iv

1 ENVIRONMENTAL RADIOACTIVITY LEVELS SEQUOYAll NUCLEAR PLANT ANNUAL REPORT 1981 Introduction The Sequoyah Nuclear Plant (SQN), operated by the Tennessee Valley Authority, is located on a site owned by TVA containing 525 acres of land in llamilton County, Tennessee, bounded on the east by Chickamauga Reservoir (see figure 1). The site is 12 miles (19.3 kilometers) northeast of Chattanooga, Tennessee, and 11 miles (17.7 kilometers) west-northwest of Cleveland, Tennessee.

The plant consists of two pressurized water reactors; each unit is rated at 3,423 MWt and 1,171 MWe, Fuel was loaded in unit 1 on March 1, 1980, and the unit achieved criticality on July 5, 1980. Fuel was loaded in unit 2 in July 1981 and the unit achieved initial criticality on November 5, 1981. This report describes the environmental radiological monitoring conducted in 1981.

The preoperational environmental monitoring program established a baseline of data on the distribution of natural and manmade radioactivity in the environment near the plant site. However, seasonal, yearly, and random variations in the data were observed. In order to determine the potential increases in environmental radioactivity levels caused by the plant, compari-sons were made between data for indicator stations (those near the plant) and

control stations (those remote from the plant) in conjunction with comparisons with preoperational data.

Staffs in the Division of Occupational llealth and Safety and the l Office of Natural Resources carried out the sampling program outlined in tables 1 and 19. Sampling locations are shown in figures 2, 3, 4, and 10, and table 2 describes the locations of the atmospheric and terrestrial monitoring stations. All the radiochemical and instrumental analyses were conducted in TVA's Western Area Radiological Laboratory (WARL) located at Muscle Shoals, Alabama, and Eastern Area Radiological Laboratory (EARL) at Vonore, Tennessee, with the EARL being the primary laboratory for samples from SQN. Alpha and beta analyses were performed on Beckman Low Beta II, Beckman Wide Beta II, and Tennelec LB 5100 low background proportional counters. Nuclear Data (ND) Model 100 multi-channel analyzer systems employing sodium iodide, NaI(Tl) detectors and ND Model 4420 Systems in conjuction with Germanium, Ge(Li) detection systems were used to analyze the samples for specific gamma-emitting radionuclides. At EARL, a ND Model 6620 system is used with both types of detectors. Samples of water, vegetation, air particulates, food crops, and charcoal (specific analysis for 331 1) are routinely counted with NaI(Tl) detection systems.

If significant concentrations of radioisotopes are identified, or if there is a reasonable enpectation of increased radioactivity levels (such as during periods of increased fallout), these samples are counted on the Ge(Li) system. Identi-fication of ganna-emitting radionuclides in all other types of samples is routinely performed by analysis on the Ge(Li) system. TVA-fabricated and

2 Tennelec beta gamma coincidence counting systems are utilized for the deter-mination of 1311 concentrations in milk. Tritium determinations are made with Beckman LS150, Beckman LS100C, and Packard Model 3250 liquid scintillation counting systems.

Data were entered in computer storage for processing specific to the analysis conducted. A computer, employing an ALPHA-M least-squares code, using multimatrix techniques was used to estimate the activities of the gamma-emitting nuclides analyzed by NaI(Tl). The data obtained by Ge(Li) detectors were resolved by the appropriate analyzer software and the metric minimization routine HYPERMET.

The detection capabilities for environmental sample analysis given as the nominal lower limits of detection (LLD) are listed in table 3. Samples processed by NaI(TI) gamma spectroscopy were analyzed for 14 specific gamma-emitting radionuclides and radionuclide combinations . For these analyses, radionuclide combinations such as 1"3'106Ru and 95 Zr-Nb are analyzed as one radionuclide. All photopeaks found in Ge(Li) spectra were identified and quantified. Many of the isotopes identified by Ge(Li) spectral analysis are naturally occurring or naturally produced radioisotopes, such as 7 Be, 40K, 212Bi, 214Bi, 212Pb, 214Pb, 226Ra, etc. LLDs for the analysis of the radio-nuclides listed below" are given in table 3B. LLDs for additional radio-nuclides identified by Ge(Li) analysis were calculated for each analysis and nominal values are listed in the appropriate data tables. In the instance where an LLD has not been established, an LLD value of zero was assumed. A notation in a table of "__ values <LLD" for an isotope with no established LLD does not imply a value less than 0; rather it indicates that the isotope was not identified in that specific group of samples. For each sample type, only the radionuclides for which values greater than the LLD were reported are listed in the data tables.

TVA's Radioanalytical Laboratories participate in the Environmental Radioactivity Laboratory Intercomparison Studies Program conducted by EPA-Las Vegas. This program provides periodic cross-check samples of the type and radionuclide composition normally analyzed in an environmental monitoring program. Routine sample handling and analysis procedures were employed in the evaluation of these samples. The results received during calendar year 1981 are shown in table 4. The 13o limits based on one measurement were divided by the square root of 3 to correct for triplicate determinations.

  • The following radionuclides and radionuclide combinations are quantified by the ALPHA-M least-squares computer code: 141'144Ce: 51 Cr; 131 I; 103'106Ru- ,

134 Cs; 137 Cs; 95Zr-Nb; ssCo; 54Mn; 65Zn; 59 Fe; 60Co; 40 K; and 140 Ba-La. I l

l l

l

'. (, mswur  !

? IN D. [I.. TENNESSEE VALLEY REGION \

\..U"N ,

0 ~b e

. 'M caEN500e':

(TVA NUCLEAR PLANT SITES) \,

w y g, r b) y

\,

.) g ~' K T U C K Y / (

g

.. a E} N A-A, s ,

N .. - 1-f( .

  • au .s r.

/ 80s % GREt% i p

pY"y/f /"

(

M O.

~. '

4, s

r' <')

! \ n )\ ~ -- - - - .. , ..._..}.

f r---*

A G' g ..( r ~~~~~~

, j'\) \ -- .

h,t?"~- ' ' ~ ~ - ~s --f$, (

5 '

K:  ;

> $* u "Y

^

V,! ~C. uI

/ ),.$

5h \

~\

, ~ ~) ,1

\ '

p/g s ,N

/

ll'e@

, , h ..-, .

..._, y# y..}, N--m. ,

,sC A R.

I N.j T g*qN E S S E

[

=

ms / e s

f 3

h '-'" c- v' ,.e -- /' I

- I -m/ p .

~

(g l ( s:^9 p. mn! -a--_.--.fg I

,y.h A g-_-y.._.-_.____.._..___ ..

I.55 s Ei - e+ t / r I' S C A R~

\g f _., ,

s ~n~uc j \, ,%)

d Q ;'  :

G;\

s@ALS

~

/

/[,j ~

LEGEND tilN - HARTSVILLE NUOLE AR PLANT g r\_ i

%, , / ' , N ' '4 _

M - PHiPPS BEND NUCLE AR PL ANT I /'i' .

MF- CLWCM RWER BREEDE4 M i S S' ' /

M'A GEORG l A g _ ]'CTS AR NUCLEAR PtANT j A L A B A 'g

  • M -SEQUOYAH NUCLEAR PLANT

-BELLEFONTE NUCLEAR PLANT l \ - BROWNS FERRY NUCLEAR PLANT

I E - YELLOW CREEM NUCLEAR PLANT I \
\

I LJ

4

!able 1 ENVIRONMENTAL RADIDACTIVITY SAMPLING SCHEDULE Heavy Air Charcoal Rain- Particle Atmospheric River Well Public Aquatic Life Station Location Filter Filter water Fallout Moisture Soil Venetation Milk Water Water Water and Sediment Chattanooga W W M M A M Dayton W W M M BW A M sale Creek W W M M A Daisy W W M M A M Red Bans W W M M A Volunteer ordinance Works (Harrison) W W M M A Harrison Bay W W H M A Georgetown W W M M A Chester Frost Park (formerly Hamilton County Park) W W H M A Work W W M M A Site N W W M M BW A Site S W W M M BW A Fara L Q W Fars J Q W tarm HW Q W Farm M Q W Fara Hw M Farm Br M Fare G M Chirkamauga Reservoir M Q/S E. 1. Dupont M Cleveland, TN M C. F. Industries M on Site Well (1) M Fara Ma M Farm 5 (Control) Q/M* W H Farm B (Control) Q/M' W Q Farm C (Control) Q/M" W Q

^

l W - Weekly BW - Biweekly M - Monthly (every 4 weeks) Q - Quarterly S - Semiannually A - Annua

' Quarterly prior to May 1981; monthly thereafter.

)

i

5 t

Table 2 l ATMOSPHERIC AND TERRESTRIAL MONITORING STATION LOCATIONS SEQUOYAH NUCLEAR PLANT Sample Station Approximate Distance and j

Direction from Plant LM-1 SQ, Southwest 0.75 miles (1.2 kilometers) SW I LM-2 SQ, Northeast 0.75 miles (1.2 kilometers) N i

PM-2 SQ, Northwoods, TN 10.5 miles (16.9 kilometers) WSW PM-2 SQ, Chester Frost Park, TN (formally 3.75 miles (6.0 kilometers) SW Hamilton County Park)

PM-3 SQ, Daisy, TN 5.5 miles (8.8 kilometers) W

! PM-4 SQ, Sale Creek, TN 10.5 miles (16.9 kilometers) N PM-5 SQ, Georgetown, TN 9.5 miles (14.5 kilometers) ENE PM-6 SQ, Work, TN 4.5 miles (7.2 kilometers) NNE PM-7 SQ, Harrison Bay, TN 3.5 miles (5.6 kilometers) SE PM-8 SQ, Harrison, TN 8.75 miles (14.1 kilometers) SSW

! RM-1 SQ, Chattanooga, TN (Control) 16.75 miles (27.0 kilometers) SW RM-2 SQ, Dayton, TN (Control) 17.75 miles (28.6 kilometers) NNE Farm J 1.25 miles (2.0 kilometers) W Farm HW 1.25 miles (2.0 kilometers) NW Farm L 2.75 miles (4.4 kilometers) NNE Farm M 3.5 miles (5.6 kilometers) NNE Farm Ma 0.75 miles (1.2 kilometers) W Farm HW 2.5 miles (4.0 kilometers) N Fa rm Br 2.25 miles (3.6 kilometers) SSW Fa rm G 1.5 miles (2.4 kilometers) NNW Farm B (Control) 43.0 miles (69.2 kilometers) NE Farm C (Control) 16.0 miles (25.7 kilometers) NE Farm S (Control) 12.0 miles (19.3 kilometers) NNE

7 Table 3 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS A. Specific Analyses NOMINAL LATR LIMIT OF DETECTION (LLD)*

Fish, clam flesh, Foods, meat, Vegetation Soil and Milk Air Sediment plankton, Clam shells poultry, Fallout Water and grain pCi/kg, wey pCi / l_

Particulates Charcoal pC1/R. dry pC1/R. dy pC1/R. dry pCi/m' pCi/m\ mci /km 2 pCf/1 pC1/R, dry 1.5 0.4 0.01 0.7 0.05 0.35 0.1 Total a 0.005 2.0 0.1 0.7 25 Cross a 0.05 2.4 0.20 0.70 Gross S 0.01 0.5 330

'M 40 10 0.02 1.5 0.5 5. 0

I 10 0.25 1.0 8 2 "Sr 0.005 0.05 0.3 0.1 2

"Sr 0.001 l described in HASL-300.

  • All LIS values for isotopic separations are Calculated by the method developed by Pasternack and Har ey asc all sa:ples are analyzed within ae werk of the Factor s such as sample size, decay time, The assumption is cade that may change the LLD value for the given sample.1 pCi
  • 3.7 x 10 8 Bq ; I mci = 3. 7 x 10 ' Bq .

collection date. Conversion factors:

l

Table 3 DETECTION CAPASILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS B. Ga=ma Analvses NOMINAL LOWER LIMIT OF DETECTION (LLD1 Clam flesh Foods.(tomatoes Meat and Air ' Water Vegetation Soil and and plankten Clam shells potatoes, etc.) poultry particulates and milk and grain sediment Fish pCi/g, dry pC1/g. dry pC1/g. dry rC1/ kg_ wet PCi/ k s we:

pCi/m' pCi/l pCi/g. dry gC_i / g . dry Nal Ge(L1) Nal Ge(L1:

NaI* Ge(L1)** NaI Ge(L1) Na1 Ge(L1) Na! Ge(L1) Na1 Ge(L1) Na1 Ge(L1) NaI Ge(L1) 0.35 0.35 39 90 2'3'3**Ce 0.03 38 0.55 0.35 40 0.22 0.06 0.06 0.35 0.06 33 3*'Ce 0.02 33 60 44 200 90 53 60 44 1.10 0.47 0.60 0.10 0.60 0.10 0.56 0.60 0.10 Cr 0.07 0.03 0.07 0.20 0.02 15 8 50 20 333: 0.01 0.01 15 8 0.35 0.09 0.20 0.02 0.20 0.02 40 150 0.65 0.45 0.45 0.45 3

3'3Ru 0.04 40 0.11 0.74 0.11 40 90 3Ru 0.03 40 0.51 0.11 0.12 0.08 0.48 0.12 0.08 10 26 40 50 3Cs 0.01 0.02 10 26 0.20 0.33 0.12 0.08 0.i2 0.02 0.08 0.12 0.02 10 5 40 15

Cs 0.01 0.01 10 5 0.20 0.06 0.12 0.02 0.12 0.12 10 40 esZr-Nb 0.01 10 0.20 0.12 20 0.03 0.15 0.03 10

Zr 0.01 10 0.11 0.03 0.01 0.07 0.01 5 15

Nb 0.01 5 0.05 0.01 15 0.20 0.01 0.07 0.20 0.01 15 5 55 5'Co 0.02 0.01 15 5 0.23 0.05 0.20 0.01 0.15 0.01 0.08 0.15 0.01 10 5 40 15

Mn 0.02 0.01 10 -5 0.20 0.05 0.15 0.01 0.23 0.02 0.17 0.23 0.02 15 9 70 20 ,

'5 2n 0.02 0.01 15 9 0.25 0.11 0.23 0.02 '

0.11 0.01 0.08 0.11 0.01 10 5 30 15 10 0.17 0.06 0.11 0.01

Co 0.01 0.01 5 0.90 0.90 0.90 150 400

K 0.10 150 2.50 50 0.68 0.15 0.15 0.15 15 3Ba-La 0.02 15 25 50 0.34 0.07 0.07 0.30 0.07 3*'Ba 0.02 25 15 0.08 0.02 0.02 0.10 0.02 7 3*'La 0.01 7

  • The Nal(TI) LLD values are calculated by the method developed by Pasternack and Harley as described in llASL-300 and Nucl. Instr. Methods 91, 533-40 (1971). These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on a given sample. Water is counted in a 3.5-L Marinelli beaker. Vegetation, fish, soil, and sediment are counted in a 1-pint container as dry weight. The average dry weight is 120 grams for vegetation and 400-500 grams for soil sedicent and fish. Meat and poultry are counted in a 1-ping container as dry weight, then corrected to wet weight using an average moisture content of 70%. Average dry weight is 250 grams. Air particulates are counted in a well crystal. The counting system consists of a multichannel analyzer and either a 4" x 4" solid or 4" x 5" well NaI(T1) crystal. The counting time is 4000 seconds. All calculations are perf ormed by the least-squares computer program ALTRA-M. The assu=ption is made that all samples are analyzed within one week of the collection date.
    • Ibe Ce(Li) LLD values are calculated by the method developed by Pasternack and Harley as described in HASL-300. These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on given samples.

Uzter is counted in either a 0.5-L or 3.5-L Marinelli beaker. Solid samples such as soil, sediment, and clam shells are counted in a 0.5-L Marinelli beaker as dry weight. The average dry weight is 400-500 grams. Air filters and very small volume samples are counted in petrie dashes centered on the detector endcap. The counting system consists of a ND-4420 multichannel analyzer and either a 25%. 142.16%, orThe 29% Ge(L1) detector.

The counting time is normally 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. All spectral analysis is performed using the software provided with the ND-4420.

assumption is sade that all samples are analyzed within one week of the collection date.

Conversion factor: 1 pC1 - 3.7 x 10-2 Bq. Y

Table 4 co Results Obtained in Interlaboratory Comparison Program A. Air Filter (pCi/ filter)

Gross Alpha Gross Beta Strontium-90 Cesium-137 EPA value TVA AVG. EPA value TVA AVG. EPA value TVA AVG.

EPA value TVA#AVC.

( 30) WARL EARL ( 3c) WARL EARL ( 30) WARL EARL Date ( 30) WARL EARL 23 19 9 24 26 0 2 <2 19f9 20 22 12/80 21 9 22 C

50!9 55 49 18 2.6 18 15 14 9 15 14 3/81 30 13 31 31 32 54t9 62 59 19 2.6 19 23 16 9 17 18 6/81 28 12 29 c 20 26 25 51 9 61 C

54 16 2.6 16 19 19 9 21 9/81 25!11 B. Tritium in Urine (pCi/L)

Date EPA Value ( 30) TVA AVERAGE WARL EARL 3/81 810 549 713 390 6/81 16002585 1637 1830 9/81 2050tS99 2103 -

. 11/81 2700i615 2573 2623 I

j a. Western Area Radiological Laboratory, Muscle Shoals, Alabama

b. Eastern Area Radiological Laboratory, Vonore, Tennessee
c. Efficiency curves were checked and known spikes were run. Everything found was within acceptable limits.

We are awaiting the next cross-check for further investigation.

d. Results were mailed to EPA but not reported by them,
e. Sample was lost in analysis. There was insuf ficient time to obtain another sample from EPA and reanalyze.

i 1

Table 4 (Contd)

Results Obtained in Interlaboratorv Comparison Program E. Milk (pC1/L)

Cesium - 137 Barium - 140 Potassium Cobalt - 60 .

Strontium - 89 Strontium - 90 Iodine - 131 AVC. EPA value TVA Atc. EPA value TVA AVG.

EPA value TVA AVG. [PA value TVA AVC. EPA value TVA WARL EARL EPA value TVA AVG. EPA value TVA AVG.

WARL EARL (! b) WARL EAR 1 i!33)

( t h) WARL EARL (t h) WARL EARL (!P)

Date (211) WARL EARL (!3c) WARL EARL 24 21 43216 40 41 0 <25 (15 1550t232 1490 1453

<10 20t 5. 2 26217 1/81 0 <10 1122.6 21

  • 20 13 26t10 21 29 22t9 21 24 0 <15 <15 1559t135 1513 1674 4/81 2529 28 0 <15 <15 1600t139 1623 1620 3129 32 32 7/81 25t9 23 30 1722.6 14 " 16 .01t <l5" <l5 27 27 1530!133 1620 1500 28 1822.6 17 16 52210  !.9 47 2529 10/81 23t9 25 F. Foods (pci/kg, Wet Weight) 7 P gg P 119221 126 5329 56 55 0 <15 <15 26402229 2857 2917 3/81 4729 42 44 29*2.8 38 121' 4529 43 54 9 0 <25 <25 26402229 2870 3437 4 51 3122.8 31 32 82214 80 106 7/81 4429 53 29 35 0 <l5 <25 27302237 2820' 2720 25 32 None 3329 30*9 11/81 38t9 49P $4 P 23t2.6 25 22 1
k. Values for potassium are reported as mg/ liter of sample.

m.

Results were marginally out of limits. Ef ficiency curves were checked with no conclusive findings. Subsequent results have been satisfactory.

n. Only two results were sent to EPA. Results were not included in their analysis,
o. Values for potassitan are reported as og/kg sa:nple, We suspect difficulties arising from sample
p. Investigation of this problem was initiated but no satisf actory conclusions have been reached.

inhomogeniety.

An incorrect weieht was obtained in the gamma analvsis ef this sanple. Further analtsis destreved the sat:ple se that the cerrect ve i cht could q.

not be deter-ined. ,

r. Investigation was conducted. No satisfactory explanation was f ound. Other cross-checks on this isotope in different media are satisfactory.

6 d

j

Table 4 (Contd) 8 Results Obtained in Interlaboratory Comparison Program C. Radiochemical Analvses of Water (pCi/L) f Strontium - 90 Tritium Iodine - 131 Gross Alpha Cross Beta Strontium - 89 AVG. EPA value TVA AVG. EPA value TVA AVG.

EPA value TVA AVG. EPA value TVA AVG. EPA value TVA WA RL EARL EPA value TVA AVG.

(t 37) VARL EARL (t 30) WARL EARL (t 37)

(!30) WARL EARL Date (t3c) WARL EARL (!3c) WARL EARL h

16t9 11 14 34t3.1 38 E 28 10 9 44t9 49 49 1917 1753 1/81 929 1760tS91 2/81 26 29 25:10 23 151 25t9 2467 2723 30!10 32 28 3/81 27102615 4/81 14 16 3629 40 33 22!2.6 21 22 5/81 2129 21 14 14r9 1950t596 1990 1947 6/81 15 18 73 7/81 22:10 20 22 1529 2630t613 2623 2713 73tl3 79 8/81 1 29 26 2319 26 23 11t 2.6 11 10 33!!4 29 18 2&29 221Dt 603 2263 2197 9/81 10/81 18 24 56 5

11/81 21t 9 21 13 23t9 27002615 2717 2807 76t13 65 12/81 D. Gamma-Spectral Analysis of Water (pCi/L)'

Ruthenium - 106 Cesium - 134 Cesium - 137 Cobalt - 60 Zinc - 65 EPA value TVA AVG. EPA value TVA AVG.

chromium - 51 EPA value TVA AVG. EPA value TVA AVG.

TVA AVG. EPA value TVA AVG.

(t33) WARL EARL (1 37) WARL EARL EPA value WARL EARL (1 33 ) WARL EARL WARL EARL (t 37) UAPL EARL (! 30)

Date (t b) _ 429 6 10 0 <40 <40 36t9 39 35 25 25 85!9 84 83 27 30

<60 <60 25t9 15!9 <40 <40 21t9 23 21 3129 2/81 0 18 17 0 <l5 <l5 24 32t9 35 32 0 <60 <60 1719 0 <40 <40 2119 21 6/81 2229 25 22 2429 26 21 34t9 <60 <60 10/81 l' 1 1 to test the procedures used for the analysis of milk. Results have been satisfactory since that time.

f.

g. Specific analysis forInvestigations of the analytical procedure were conducted and new ef ficiency curvesd were determined. Subsequent resul in the difficulty with this h.

New efficiency curves were determined subsequent to this analysis. Excess humidity in counting room and a ch i.

sample type. Steps have been taken to correct or compensate for these items. d Investigations continue.

Results are possibly due to an incorrect chemical form of the precipitate counted in this proce ure.

J.

11 Atmospheric Monitoring The atmospheric monitoring network is divided into three subgroups.

Two local air monitors are located within the plant boundary. Eight perimeter air monitors are located at distances out to 10.5 miles (16.9 kilometers) from the plant in the towns of Sale Creek, Daisy, Red Bank (Northwoods), liarrison, and four other populated areas. The remote air monitors used as control or baseline stations are located at distances out to 17.75 miles (28.6 kilometers) from the plant in the town of Dayton and the city of Chattanooga. See figures 2, 3, 4, and 5.

At each monitor, air is continuously pulled through a Hollingsworth and Voss LB 5211 glass fiber filter at a regulated flow of 3 ft / 3min (0.085 m3 / min). In series with, but downstream of the particulate filter, is a charcoal filter used to collect iodine. Each monitor has a collection tray and storage container to collect rainwater on a continuous basis, and a hori-aontal platform covered with gummed acetate to catch and hold heavy particle fallout. Moisture is collected from the atmosphere at each local monitor and at one remote monitor and analyzed for tritium.

Each of the local and perimeter air monitors is fitted with a GM tube that continuously scans the particulate filter. The disintegration rate of the atmospheric radioactivity is continuously recorded at each station.

The data from the two local monitors and the four perimeter monitors located within five miles of the plant are radiotelemetered into the plant control

! room.

Air filters are collected weekly and analyzed for gross beta activity.

During this reporting period five samples were not obtained because of equipment malfunction. Two samples were lost during the strontium analysis. No analyses are performed until three days after sample collection. The samples are composited monthly for analysis of specific gamma-emitting radionuclides and 90 Sr analysis. The results are presented in table 6.

quarterly for 89 Sr and The annual averages of the gross beta activity in the air particulate filters at the indicator stations (local and perimeter monitors) and at the control stations (remote monitors) for the years 1971-1981 are presented in figure 6. Increased levels due to fallout from atmospheric nuclear weapons testing are evident, especially in 1971, 1977, 1978, and 1981. These fluctua-tions are consistent with data from monitoring programs conducted by TVA at nonoperating nuclear power plant construction sites.

Table 5 presents the maximum permissible concentrations (MPC) recom-mended by 10 CFR 20 for nonoccupational exposure.

Rainwater is collected and analyzed for gross beta activity, specific gamma-emitting isotopes, and strontium. During this period one sample contained insuf ficient volume for any analyses, and one sample contained insuf ficient volume for strontium analyses. For the gross beta analysis, a maximum of 500 ml of the sample is boiled to dryness and counted. A gamma scan is performed on a 3.5-liter monthly sample. The strontium isotopes are separated chemically and counted in a low background system. The results are shown in table 7.

l

i 12 i

4 The gwmmed acetate that is used to collect heavy particle fallout is i changed monthly. The samples are ashed and counted for gross beta activity.

The results are given in table 8. During this reporting period one sample was

! lost during analysis.

Charcoal filters are collected and analyzed for radiciodine. During

, this period five samples were not obtained because of equipment malfunction.

l The filter is counted in a single channel analyzer system. The data are shown 1 in table 9.

An atmospheric moisture collection device containing molecular

sieve is located at each local monitor and at one remote monitor. Samples are I taken every other week, the moisture driven off the molecular sieve, collected in a cold trap, distilled, and counted for tritium content. The results are j i shown in table 10. During this reporting period 20 samples were not obtained because of equipment malfunction and 5 samples were lost during analysis.

In late September the levels of tritium measured in the atmosphere increased from 6-10 pCi/m3 up to 100-400 pCi/m3 . Since the increases were

, observed at the offsite control station and at two stations around the Watts Bar Nuclear Plant construction site (nonoperational plant) as well as at the I SQN onsite stations, it was concluded that the increased levels were not attributable to SQN. Efforts were made to determine the cause of the increases but were unsuccessful. The levels remained somewhat elevated but decreased to around 20 pCi/m 3 by the end of the year. The highest concentration measured is only 0.2 percent of the MPC for tritium in air as shown in table 5.

l 1

i 1

l l

I l

i a

j l

k l

l

13 Table 5 MAXIMUM PERMISSIBLE CONCENTRATIONS FOR NONOCCUPATIONAL EXPOSURE MPC In Water In Air l pCi/l* pCi/d

  • Alpha 30 Nonvolatile beta 3,000 100 Tritium 3,000,000 200,000 137 Cs 20,000 500 1*3'106Ru 10,000 200 I""Ce 10,000 200

'5Zr ' 5Nb 60,000 1,000 I"

I""Ba La 20,000 1,000 13*I 300 100

'5 Zn 100,000 2,000 5"Mn 100,000 1,000

Co 30,000 300 89 Sr 3,000 300

'"Sr 300 30 53 Cr 2,000,000 80,000 l

33"Cs 9,000 400 seCo 90,000 2,000

  • 1 pCi = 3.7 x 10-2 3q,

a ?

l )

3 14 a b

v W

8  %

M b

M .C uJ > ea b 62O2 E O M kJ hJ $

M-E ,

tg 3 fif laJ CL W O O cc G3 K Ln. 3 E E enJ M h

3 O or 4 g 22 W W E w e

u we I am an a a sus em a een a s= a= as am a en an ) l N @ 4 4 @ 4 4 =c 4 4 4 @ 4 4 'n 40 **

O@ N e4 N e N N N O N & N 4 N O N 4 W re O N CJ N O N e4 N M ee C g O O w O N E mM O O N m., e e O. + O. O. e e O. O. _J, e O. e e O. O.

er i %O  % c5 % C % O % O % O % O % O % O % D %/ %O%C%C%C%O%O qyi

$.A Ma og e its N e e ar) W O ee e eJ' e og e N C

& J Z am O we ce ev M *4 M ee O I rs OO64 ee laJ D

Uq so u E M w km.

g a= > > LB4 = l es* $ w l w 0 to l w 8 ** 4 *8 4 w 1w 5 .J w 9 *im 8 w I w l w 0 ** l O O r. 2422 & eg see.e M N e4 O N M e **sr1 O M N M N O O 4 M O O O M O sti M *eee C O O l O t.J O U at 4 OO OOOOOONNOOOO '"1 a yOwg e o Oe O e O~O e e A.e O O Oe O. Oe Oe Oe Oe Oe Oe Oe O. OeOese e e e e e e e e e o e e e .J 3. OO O o O O O de O O O O O O O O O O O O @ Og,3 O O e C O O O e O O g C0 N ==

2 at. v4 1 WH Wu 4 o.

3C O as yg e. so en an en a en am s= am ** ** sm a en em m OL O N F1 M F1 W1 p) M M M F3 #1 M M 8r) "1 e e W ug a @M s e N eg e ce N s so og 0% en P= ** e e= e ** O ** e4 e u ce c == N == P ee O O 2 O O O e.2 e4 O O g 4 .An. P.) O. O. O. e e e O. O. e O. . O. e e. O. e u WI O%O  % ca % O % O % 63 % O % O % C % o % O % o % ca % O % c3 % O % a % o C E F2 N N N O #1 N Os e4 ee O ye 4 O N ** N og W 44 0 h

. .J Wm 5.

kJ 4 E 3

> sm Of w 0 w

    • I ** we art0 *N $eetie pr) N 3 O w e44w ern 0 er Oe 8 ew e0e =o O $ ** ****l-P= ** 0 ** O w I == l w 4 ft O m e4 m @ 4 $.e wo O 3 (A

.J W1 29 O tw 9

e. w it a c, W w r 4 e e cse ec e e eQ O. ec eo n* o* Oe O o ce ee Oe ne Oe O eO e O e n e n e oe c3 e e nO e e c ee ee De oenen. 8

% 7 eo e o es C O O n O O O O O O n o O C2 O O o o C O O o O cs O O O n o e ir G >= O e4 a= a. e a=4 4 9

as Q kt 7

N sai s. t Tu 01 ul WI Ug

== o wl ==l ai X 7 2 w e erg T a F *a 2 1 7 W 6.- F 2 kl

  • ns2 4 J "9 W 5D > Q cf,g ,

eial oppP. ga e qa > gjy >- 3 > 3 > 3 6. g 3 3>3 g 3 z>M p. 3 p.' M N W H 6.JB Z kJ $ 3 3 3 M M M th M M Lad *M

  • M th M t.J e tr 2 ^3 3MM 3  %

.J ** I 7 > E Q1 * *

  • LnJ kJ 6#
  • 3E 3C W * *
  • W
  • o gt 3 .c em as .20 th M M (,1 M to 3 M ~a M 3 M P M gr th ir e/a *e M 2 M 3; '< a v. M M (a s 'e w, M M C

at o=

>* O 6'

% 7 4l0 tO J W O laJ O isJ Z W Z W Z U 3 W 88 W *E W I 4.J 3 W af W O J O .J > .J > .J e ,,J O .J clL J n. .J F .J c a L .J P J O .J > .J w ,,J O g b.! O h 7 kJ I W n La O

u w 2 How OM CM3mD=3m>M w w3M >> =H"OM m3=O= M *u as y CA L a *e E "3 K s E Cs F Q Y O E L.J F > 1 >F01 Wr>r 1 .e E *3C3 *a r u O  % ==t 74I Z T M M M 0 >= >= t/s O *= I > eh I W f0

  • = m= t=1 atl >. to k- O > 0 to c c er F42m u) er 2OY >@M c D. A ** be OI Q est t=l cr e at eg e es rem esp =e4Pm EL g e 4 u.

. moo OOOCE eK er ew O O. o 3 N. Dcor N e4 . u. >= Q . O Q 3 N. rgC4. O e e= @ eis e, >=eCe 'g '=

e rr I e-4 2 e4 2 e4 F e=s .J o .J C3 .J O O tb U M u en .J O O P u so m e F e4 C O .J O 2 4 .

f*M C >s -

a ms M C

o 1 en a s= a en an = em .=. m a= .= ,= m ,. 9 O F t P= O n O O n sa o o a o o O O O C 1 to O . eg e art N srt e er) are M 4 so en ers P= M th ar) e eri e art 4 pr) r . p . a er) c4 se & w, eri o 4,4 w a= 0e e4 O e s e e-e n og O ee ce ce L e=e e

  • u ** U eg n e4 es c. e .4 o em e n r= le C 1

>A e e e e o e o e e e e e e e e o e UW as am  % Ca e  %

@ O% P' O % P* O % OO% P=O % eg C3 % EP O % e n% u O %.ees % we C' % 4 O% c O %ogts %& c3 %, <t C $ h.

.g 6 d

I O O=L l'.D.J1 ** ** N O O 4 0) o9 e9 e 4 e og 3 4 ,P .J J O it) WW

> 0 J C2 9 9 9

O' e- as cir 4 at w I w g tar 1 ** I w Iw I w 0 w I w I ** 6 w l =e $ w I =g w 0 ein 3 =e g m h 3 OWo m .= e we w) N og C pi w e .e eJ O M N M N o u me ce 4 in ca o .= c., & m en 4 OO

? ' e-.J. t= E v C' O O (J c's O u o O O O o O O O o o C r"3 O O c) o r3 o ci o e e o o o O c.J e W y as e e o e e e e e e e e o e e e e o e e e e e e e o e o e e e e o e e s.J M M 4 u cs as u cs o C o n a3 O n Q ca O c c n '3 C2 C CD u n 6 O r3 o o c> r1 ca u o em *4 t

i 'I ** g3

> c 0 u

> 2 ga @

en p. ee ww j

.J > uW j mm

, ua .-

4~ ea ,i i i f. %

QO e

I

+0 1 G f te.e 3 0-4 m e*

lC O ca m e r* e n o rc r, o ga m e n .=

66 .J w > *e e-e se at se ce 4 N tw en at c en as sa a is O .g o c u cj o eJ. > e, >- r= e- >. , > > p.

u. a aJe o.

t-v.

r*

e e o ei e e ih en e .o i,a u e.

e e .u4 mg iu , *J e n O u O C3 us O n W W n i.: u W e- o S9

    • J'3 3 .1 hJw M
  • L <* O g4 b- >- e- W 6- 0+ w g

.* c' .J n O O O O O O

6. eo
    • F i* 7 7 2 7 WC

>= 34 a 6*

r= t' c ./a j u e.J M en a O e 4 m C O .c ** Cl 4 == et e4 C g cd

. .J 2E vt W6 4 .J

=4 "3 > X i e= 6# C

? .J (2 + 0 9- ** O W

622a

=C c Q t w **

e e, en e o o e

e m

f4

-0 N

e.

J N

e O

h8, zx

> er 4 cri ve as me y= ee fis er (* N N N m t- PJ o. (4 tr-

' >> ud en r e e e g a e e e a e e a e a ,

o is. sti n r W i. 3 er m e me m e. 4 u .a en 4

9. O fr as t3 y er N P y 33 c. n er in e 4 r1 te rr O C M rh i

_ - - - - - _ ~

TABLE 7 ReDI0 ACTIVITY I% #AIN. ATE:

D !'l - 0.T!? 39/L NawE fF FACILivv $[CfSv = _ _ _

OJCFFT NO. 50-!!1112i L.CiTIC r5 FACILITY wSil(Try ,,_ __TrNi(1S( ,, REPCPTIAG PERIOD _1* 1_

TfDE 24; L1.fo L!*tT ALL CONTRCL AUMBER OF T3TAL NUM6L4 Of 1%DICAT08 LOCATf NS kEEA Ib ilTM Hist [ST ANhMAL_3(AN LOCATIchg N0hROUTINE F: ANALYSIS DETECTIW4" MEAN e g)b NASL "EAM ( 3I~. PEAN tF) REFORTED

._'L1LGLEL2 __iLL21 -

'"ML 2157AN~L_P 0 011011L2% W A N G E[ MANEL MEASUREMENTS 530$$ SETA 2.40* .15 438 IL7/ 150)._ GEORGETJWN, TN 15.7at 10/ 13) 16.3af 21/ 25) 15t 2.63- 55 12 1.0 MILES ENE 3.55- 2h.6C 3.23- 42.28 1AM*4 ( *J % I l IJ9 FC-79 h3T ELin3 S.156 35/ e6) COUNTY PARK, TN S.JC4 1/ F) 4.00t 10/ 16) 0.ti- 9.): 3.75 MILE! SW S.30- e.00 0.60- 7.20 2C-7 Not ESTA3  %*.tet 72/ E6) WARRISON BAY. TN 73.324 6/ 03 54.908 15/ 193 12.10- 29.17 3.5 *ILES SE S1.10- 90.00 1.50- 33.30 lauPA t3ELI) 5?

21-95 10.JC: 11.lat */ 44) C?UNTY PA94. TN 12.Cet 1/ 51 14.I's 1/ 7) 10 20- 12 04 3 75 "1LES SW 12.Gn- 12.08 14 19- 14.19 NS-95 5.000 8.354 8/ 44) GEORGETOWN, TN 12.424 1/ 4) 7.45t 2/ 7) 5.rt- 12.-2 9.0 MILES ENE 12.32- 12.62 6.51- 8.39 d-42 SDT ESTau 32. alt 15/ 44) NORTHWOODS, TN 65.428 1/ 4) 70.48t 1/ 7) 3.71- 29.0;

  • 16.5 "ILES WSk 65.42- 65.42 70.48- 70.46 31-214 NOT ESTA3 3 2't 15/ 44) HtRRISON BAY, TN 9.538 2/ 41 10.164 4/ 7) 1.05- la.?2 3.5 "!LES SE 0.05- 1?.02 0.44- 32.33 33-214 i3T ESTA3 10.094 S/ 44) HARRIS 3N 84Y. TN 34.let 1/ 4) 12.648 2/ 73 1 56- 34.16 3.5 "ILES SE 34.16- 34.12 f.31- 17.37 f3-?l2 NOT EST AS J.12t 13/ 44) LM1 S 7U T H.'E S T 4.6?( 2/ 5) C.L5s 2/ 7) 0.30- 11' 3.7' "ILES SJ 1.23- 7.18 0 03- C.C7

?E-? NOT EST As 45.:3t 14/ 44) 3 ALE C-EEK, T '. 54.374 2/ on 36.665 3/ 73 25.73- F6.69 10.5 MILES N 40.06- 7E.64 26.4s- 43 65

_ $; (? 19.rc- 1.* . 4 2 t 27/ 1293 WORW. TN 15."4s 2/ 13) 13.294 t/ 25) 1;g 1J.77- 13.d4 4.5 MILE 3 %NE 15.75- 1L.13 11.15- 14.65 S4 4 2.'03 2.75t 3/ 124) H47RIs0N, TN 3 336 1/ 13) 25 V ALUE S (LLO 154 2.15- 3.33 e.73 "!LES SSW 3.33- 3.35 Tktituu M 3 3. M Sil.dle 1/ 130) SALE CdfE4 TN 391.51t 1/ 13) 366 604 2/ 25) 155 2 1. 4?1.e1 10.5 *ILES N 341.61- 3*1 61 35k.46- 375.14

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

s 9

TAELE 8 1AGI0 ACTIVITY I 'J HEAVV DARTICLE FALLGUT m s

'CI/MM(2) - 370"C??3.0G 33/K"t0) 5 NrME OF F A C I L I T Y ,,1[1U 3Y A H _ __ __ LOCKET f.0._11:l Ug12f

' LSC T IDP. OF F 2 C I L I T Y__HawilJ,0% _ _ _ _ _ _ _ _

((Pj%_($gr __ ' RE POR T ING PER IOD_19 8'1 CONTROL buMBE; 0F TfPE ZND LOWER LI*IT ALL LOCATIONS NONROUTINE T 3TI.L NUN 8- CF INDICAT09 LOCAf!ONS (0(ATI1N dfTM HiQtiE1T_AigtL MLAN MEAN ( MEAN ( F )b REPORTED er ANALYSIS ?E T E C T I O *. a McAN gr) NAME b

__f.' .t F 0 & '3(2 _1((29 _iMQ( b od'J 132 _ h2_21t; Lit 0N AQQL{} PAhEL MESSUREMENTS 64055 e;TA 0.r5' 3. 368 12S/ 1?on___ G r 0R G'_ T 0 dN , TN 0.978 13# 355 D.854 26/ 263 0.37- 3.1C 1.3 '4ILES ENE 0.11- 2.74 C.09- 3.10 155

a. Nominal lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

I d

t

T ABLE 9

. RADI0 ACTIVITY IN CHARCOAL FILTEd5 3CI/'tM1 - 3.037 ?3/H 3)

'. APE EF FACILITY _1G pfw _ ecCPET N o .EM2326

, trC.TIOV Of FACILITY __Hawl(TQ3 __

TLMN(11[L_, , _ _ _ _ _ _ _ _ _ EEFORTING PERICD_19t1 TYPE AND L 9 hT R LikIT ALL CONTROL NUMBER OF TOTAL '.U4dEE CF INDICATOR LOCATIONS (Q(lilQN JITH $1Eti(S T Aggtli(d1N NONROUTINE OF ANALYSIS DETECT 10Na graN gr b gang PEAN g LOCATION MEAN ( ( RLPORTED

_dllBMLfd _iLL. . 3 aaNGgb _ _ _

qigay;g y g y ar2 1Q3 R hG[glb PAhEL{} MEASUREMENTS IGJiNE.IN AlW  ?.329  ?.'5t 31/ 517) SALE CHEEM, TN 3.334 1/_ 52) 0.02( 2/ 102)_

614 0.10- 0.04 10 5 MILES % 0.03- 0.03 0.02- 0.02

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

I I

i i

~ ~~

l .

I TA9LE 10 R4010 ACTIVITY IN ST40 SPHERIC MOISTUEE PCl#*(33 - :.'57 60/Mt33 ,

to ret 10 f FACILITY M a o '. v a w ____, ___

__ DOCMET No. 50-521tEl_

TfNN(11[i_. REPORTIht- PERIOD _1211____

LOCeTION OF FACILITY __tl MLTON _

CONTRCL NUMBER OF TYPE AND L O .E 4 LI*IT ALL NONROUTINE 0F I?.01 C A T OR LnCATICNO (f(il1Q3 giltLjlq$[ST ANygiL M(AN LOCATICNg TUTal 'tJeaE; mEAN (F)b MEAN (F) REPORTED utaN gy)b NAPE DF ANALYS!$ !ETECTION a 9thggb 4ANg[b_  !![A S U R E ME NT S _

__El _ idsi b ___ E1*TA*,Q_A,$g_gli[gigN

_i(AF03M(k .

1~. 3( 42/ *2) L*? 'ORTPEAST 21.094 23/ 233 41.218 20/ 20)

T4!TIU" '4 D T ESTAS ~5.39 0.16- 409.45 1.a2- 123.07 0.75 "ILE3 to D.49-6?

t

)

a.

^

Nominal Lower Limit of Detection (LLD) as described in Table 3. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

b. Mean and range based upon detectable measurements only.

i 4

1

?

t i

19 Figure 2 ATMOSPHERIC AND TERRESTRIAL MONITORING NETWORK ATMOSPHERIC AND TERRESTRIAL SAMPLES COLLECTED AT EACH STATION O LOCAL MONITOR

@ PERIMETER MONITOR e REMOTE MONITOR DAYTON RM-2SQ G SALE CREEK

\

4SQ PM- SQ SOODY 6SQ e EORGETOWN PM 3So ORK O

D AtSY J LM-2SQ LMISO f FM-7SO pg.,$g PM-2SQ S4 L REDSAN O UOUNT N SPM-eSo R M-t SQ g CHICMAMAUGA OAM 30 MILES

\ y 1 CHAT TANOOGA N ,

LOOMOUT s IS MILES WOUNTAIN

\

20 MILES j l

20 Figure 3 LOCAL MONITORING STATIONS SEQUOYAH NUCLEAR PLANT l

l 0

/

of

/ )

)

O

/ ~

O l

A '

A 9e Q Air Monitor O

I Scale of Miles

^

2

[

A TLD Station 1 0 Dairy Form a

l

w.t e g p --

"S** GWNW-3 NNW-1 0

%^

$%f~"  %

N W-1

_f 7-iso ; L/ (s"

' N'O sW-i j w 9 -

fs q.

{

c'C s w.

N

[ h p

f) .-

f .

30 SS W-1

  • 4

\ N N

/ Q ,

W- Y

'~ ~

f'f -

ENE

[

/ f/

[ N.

j fy' LEGENO

((g#

/

[ 8 ATMOSPHERIC MONITORS a TERRESTRIAL W-(+, __ . ' /g y e TLD STATIONS

/V A wELL

%. , f#y ,

. PLANT 800NDARY

- ROADS SEQUOYAH NUCLEAR PLANT SITE MONITORING STATIONS "

1 l

l l

Figure 5

, ,, + :,

v qyw- n .. ~~.

, s ' .

2

., i, l I

,, ,. - 'Dh.;Mhr.. , Nh 's s Q ,f.; , . ; N.q y , -3 , [;

~

^

s' N. 4,P. s

.s

.v

.j .-

' , ~7L, s

,1,9

. ) , .s t..,r ..'..

.s.;W i L .

~

g

<gg;e> C'Myp%' "g. .,

. s i

u ~

. .9  ;. ..

p .,yt . e,

'. I s' ,

.A I.,

~ *

';\ i '

..e, -

f, , ,

',- .f.-

Ag, - .

y o . . , , 2.<,

iz 2 ,, R' , ~ , '

~

yo - - .'

.,.v - .:' ~

a m .  %, ." r. > ~ .

o -

~ .: - - %

d  % .,h e.[

  • a

... ga. *

),

'-~ r.' , ' 'i rd .

. ' T' )y.g ' g.; .?Q '-fsM%- &

- ', - . r .

/ ,

.' [, _

MV

f ', -3 i_

[ 'x.,

.. W, , . - ',,i

1. j; e --

. > . , 'Q.2.y.,.4%, ,_e l4.', , . ' ' Gj,. 's, . , , ,,

' p. , , s t

.s: f, ,

q .

, .s...., j

', ,~~

i '4 T, s. .g' . M' . D \ g,, - _' ,

^/, -

'hQ . ,. G .q ?, ' 1 3 G S @ l & }, 4 .. <,i D ~ T_ + , x

+

. .e .,A 3

/. . ',-.

A e, a ..

~

.# t i  ; . , ,

'g \, 8*. . *t)

~

.Y h j t ,'

-1 g 8,,,

I . ,- 7 e y' , g,'< ,-

, , .. %f . . .$

. a s s ,

. ',a+.5 ,.,t

.- .p

.. , e. ,.

,f ...- s - i, .

I.

. ,. + f> . , ,, ,.. ,

s .,

t

.a

-Jr e

- c ,.. 4,r,3 ; ,,

w. ,

. 6.; , o' ,2' '

-.eTw: , * ,; h ., s. %* s p.

V

% v'e.g

+, -~,' Q -

, i

a l, .,

q%Si N - 'T:,l7l, q

  • N,

', , ) 's r) ' 'GZk i '

5'L '

~

.N n y i i'il  ?

U 'f \ ; w Y '.i\ + hc w} Ct -p::

p'u' %c 4 l4l.q ,

t  %):;Cy%w.)m. ,;:  ;, cu

,'~O. W, %..;2 ;x's= 2 p~ .a.

3

. .8 ~ , . ,

, 1p l ' {','Y- 1

r. n T ,,a { . l 1

~

% gyi.%.$

I i I, p -' 3% "' % i ' .c <t t - ,,--. b~ -

s ,y,],

' .i , i.. .s ( , :'-) d .,i '

W e' ! V' bb:[ '

g# Ih *=, .(l

'N '

. j, , .-

l 'pp ' ~

< l' .[,/ .

~

r r..,,

, e .,i N,-

r s J

.h- l- ' .'). yJ.*,

, s

. 'Ql ., p, ij

.y- .+- ..

.<.,..t..... s.. . ,, b x, N.* a-78. -

%;y. ~ . , , e ;, 1 ,x.

3 ,

f,r;i . . -

k ',a .

  • I

, , ,.'* '[ ,l g-

, .e.a.,

s n, _ , ,,___..,, ,

,,'y l ' ',

'N. g~ T ,/. ,,

. g , '

g. . , 1-

..= ,,

'sg.. i N fs ,

t I .,4*,' 'e k' 0 l

, ,o% n '. .p~ f. yt?," ., ~. ,

3 2 '

[" s , .[j,

[2]a. , -

), w ;:v. - m a .y.

.(.

er- g. ,

6 N ,w .. .

' ,4] N(' 'i.AJ "

3

12. a,%. . . ,' -

1s

.,s ,

t> V.. ;, i - -

,s , . ,,; -t t J:I i .

.. c , - r y ,

1

g. W - . , .

. s ,, l\ sl o < y,4, J s 9'. , u ,e*

Jk '.cA,,L/ &

. 'v 4, . ' ' '.

% j/ gq s g'y* 1 ,/

. '.. d .

7 . ,-

~ 2 D's. seg ., .y v (._ . e

.. r b. / t. . ,,.

1 I I I I I I I l l l l l l l l l [

At:4uAL AVERAGE

.30 -

GROSSBETAACTIVITY E IN AIR -ILTERS S : SEQUOYAH IAJCLEAR PLANT 5$

c e M Y.

.25 -

3 -

e c E

m =

b 35

_f .

~~O - -

p Preoperational Phase Operational Phase 4 -

- .15 -

1

$ l F5 I

.10 - -

~ '

Average: Preoperational Phase

- n _ ------

g

- - - - -l I!!E E

.05 - -

LE su pm -

I .

=

. =

g iv-

, .g 4

= IE _ il i I l l l l N 198(' 1980 1981 1971 1972 1973 1914 1975' 1976' 1971 1978 1979 P O

25 Terrestrial Monitoring Milk Milk is collected weekly from two dairy farms and two other farms within a 5-mile radius of the plant (see figure 3), and from at least one of three control dairy farms. Raw milk is analyzed weekly for 131 1, and monthly for gamma-emitting isotopes, and for strontium. The results are shown in table 11. Samples were unavailable from one location for a period of f(,ur weeks when the cow went dry. Strontium analyses were not conducted on two samples when one of them spoiled and the other contained an insufficient volume of milk.

As has been noted in the other monitoring reports, the levels of 90 Sr in milk samples from farms producing milk for private consumption only are up to six times the levels found in milk from commercial dairy farms.

Samples of feed and water supplied to the animals were analyzed in 1979 in an effort to determine the source of the strontium. Analysis of dried hay samples indicated levels of 90 Sr slightly higher than those encountered in routine vegetation samples. Analysis of pond water indicated no significant strontium activity.

This phenomenon was observed during preoperation monitoring near Sequoyah and Bellefonte Nuclear Plants at farms where only one or two cows were being milked for private consumption of the milk. It is postulated that the feeding practices of these small farmers differ from those of the larger dairy farmers to the extent that fallout from atmospheric nuclear weapons testing may be more concentrated in these instances. Similarly, Hansen, et al., reported an inverse relationship between the levels of 99 Sr in milk and the quality of fertilization and land management.

In April 1981 milk producing animals were identified at three loca-tions from which milk samples were not being obtained and where the calculated doses to consumers were higher than those at some of the locations being sampled. The owners of the three farms were contacted and asked to partici-pate in the milk monitoring program. One individual had discontinued milking and the other two did not get enough milk to provide a sample. Consequently, monthly vegetation sampling was initiated at these three locations on June 8, 1981.

Land Use Survey The routine land use survey was conducted in the summer of 1981. It was determined that there are no milk animals nearer the plant than those in areas from which either milk or vegetation is being sampled. Milking had been discontinued at two of the farms. It was concluded from evaluations of the survey results that the small changes in land use have not increased the projected doses to individ: als in the area and that appropriate sampling is being conducted.

"Hansen, W.G., et al., Farming Practices and Concentrations of Emission Products in_ Milk, U.S. Department of Health, Education, and Welfare; Public Health Service Publication No. 999-R-6, May 1964.-

26 Vegetation Vegetation samples are collected quarterly f rom the farms f rom which milk is collected and analyzed for gamma-emitting radionuclides. As described previously, monthly vegetation sampling was initiated at three additional locati in June 1981. To facilitiate evaluation of the data, sampling frequency at the three control farms was increased to monthly at the same time. Approxi-mately 1-2 kg of grass was broken or cut at ground level and returned for analysis. Efforts were made to sample vegetation that was representative of the pasturage where cattle graze. Table 12 gives the results obtained from the laboratory analyses.

In addition to the gamma spectral analysis, gross alpha and gross betaanalgseswereconductedon10samplesand25sampleswereanalyzedfor 89Sr and U Sr content. These results are also presented in table 12.

Soil Soil samples were collected annually near each monitoring station to provide an indication of any long-term buildup of radioactivity in the environ-ment. Two additional samples were taken at one of the control stations in conjunction with the Watts Bar Nuclear Plant monitoring program. An auger or

" cookie cutter" type sampler was used to obtain samples of the top two inches (5 cm) of soil. These samples were analyzed for gross beta activity, gamma-emitting radionuclides, 89 Sr, and 90 Sr. The results are given in table 13.

Ground Water An automatic sequential-type sampling device has been installed on a well downgradient from Sequoyah Nuclear Plant. A composite sample from this well is analyzed for gross beta activity and gamma-emitting radionuclides monthly and composited quarterly for determination of tritium. A grab sample is also taken from a farm near the plant and a control well across the river from the plant. The results of the analysis of well water are shown in table 14.

Public Water Potable water supplies taken from the Tennessee River in the vicinitt of Sequoyah Nuclear Plant are sampled and analyzed monthly for gross beta and gamma-emitting radionuclides. Tritium, 89Sr, and 90 Sr concentrations are determined in quarterly composite samples. The first potabic water supply downstream from the plant is equipped with an automatic sampler with composite samples analyzed monthly. Five additional water supplies are sampled monthly by the collection of grab samples. An automatic sampler was installed on the upstream water supply in May 1981. Grab sampling was discontinued and automat:

sampling begun the first week of June 1981. The results are shown in table 15 Figure 7 shows the trends in gross beta activity in drinking water from 1971 through 1981. The annual averages reported in 1981 are consistent

27 I

with the patterns established in the preoperational phase of the monitoring program and are slightly lower than levels reported in surface water samples j (figure 11).

i Environmental Gamma Radiation Levels i Bulb-type Victoreen manganese-activated calcium fluoride (CA 2F: Mn) thermoluminescent dosimeters (TLDs) are placed at 16 stations around the plant near the site boundary, at the perimeter and remote air monitors, and at 22 additional stations approximately 5 miles from the site to determine the gamma 1 exposure rates at these locations. The dosimeters, in energy compensating shields to correct energy dependence, are placed at approximately one meter above the ground, with three TLDs at each station. They are annealed and read with a Victorcen model 2810 TLD reader. The values are corrected for gamma response, self-irradiation, and fading, with individual gamma response calibra-tions and self-irradiation factors determined for each TLD. The TLDs are exchanged every three months. The quarterly gamma radiation levels determined from these TLDs are given in table 16, which indicates that average levels at onsite stations are approximately 2-3 mR/ quarter higher than levels at offsite

{

, stations. This is consistent with levels reported at TVA's nonoperating nuclear power plant construction sites where the average radiation levels onsite are generally 2-6 mR/ quarter higher than levels offsite. The causes of these differences have not been completely isolated; however, it is postulated that the dif ferences are probably attributable to combinations of influences, such as natural variations in environmental radiation levels, earth moving activities onsite, the mass of concrete employed in the construction of the plant, and other undetermined influences.

Figure 8 compares plots of the data from the onsite or site boundary stations with those from the offsite stations over the period from 1976 through 1 1981. To reduce the variations present in the data sets, a four quarter moving average was constructed for each set. Figure 9 presents a trend plot of the direct radiation levels as defined by the moving averages. The data follow the same general trend as the raw data, but the curves are smoothed considerably.

Prior to 1976 measurements were made with less sensitive dosimeters, l and consequently the levels reported in this phase of the preoperational moni-l toring program are 1-2 times the levels reported herein. Those data are not

included in this report.

1 PouItry and Food Crops Food crops and poultry raised in the vicinity of SQN are sampled i

annually as they become available during the growing season. During this i sampling period, samples of apples, cabbage, corn, green beans, potatoes, tomatoes, turnip greens, and poultry were collected and analyzed for gross

, beta and specific gamma-emitting radionuclides. The results are given in i tables 17 and 18.

i a

I n.,,,-- - - , - , -

_ _ _ _ _ _ . . - _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . _ _ _ . _ _ _ . __ _ __m__ _._____ _ _ . _ . _ _ _ _ _ -_ __

i

- ~

1 4

T astE 11 4AJT3 ACTIVITY l '4 "lLM FTI/L - G.137 94#L 5-NA*C 78 FACILITY V1tnysw r.GCMET f. 0. 5 0-3 Eld 2 9 TML1HE REPO4 TING PER100 J961 LJC2Ti n GF FACILITV h mlh _ l CONTROL NUMBE4 0F 4

TraE AND LJdE8 LlHIT ALL ACAROUTINE TOTAL .v M M e _F

' IN9ICATC; LOCATIMS G 811M_tllHJB101Lin323L_3EAN LOCATION (

MEAN t REPORTED MEAN (F) MAME MEAN t OF ahALYSIS JETECTIONa csNGEb RSTAWcE AW U 1g((IT04 R ANGF{ P RANGE {} RE ASUREllElef f J 4F01mrg JLM GAQ9A (?4 A I )

4*

LOWELL Fang 1297.98, 13/ 13) 1283.734 37/ 37)

Q-4J 150.000 12c8 944 46/ 46) 1107.10- 1920.P0

  1. 16 20- 1393.10 2 75 MILE
  • NNE 1153.30- 1365.50 156 VALUES (LLO IC3IVE 1% "ILM E.SG; 2L4 VALUES CLL3
  • 36. ANALYSIS PE9FCR9ES GA=MA (GELI)

? 2/ 2) 2 VALUES <LLD 9.558 5/ 53 JONES F ARM 11.25t

CS-137 5.33C 9.53- 12.93 6 96- 12.95 1.25 MILES W 2/ 2) 1240.664 5/ 51 JONES FARM 1299.818 2/ 23 1315.59t 4-4? 10T ESTa? 1239.66- 1359.96 1290.04- 1341.13 l l';56.00- 1359.95 1 25 MILES = 2 VALUES (LLD i

26.07t 1/ 5) 26.074 1/ 31 I 31-214 h0T ESTAB 26.07- 26.07 26 07- 26 07

2/ 5) JONES FARM 2.99t 1/ 2) G.718 2/ 2) j 39-?l2 Ncf ESTA9 1 59t 2.*9- 2 99 1.56- 0.s6 G.19- 2.49 1.25 *ILES W l 1 75t 1/ 2) 0.004 1/ 21 NOT ESTAS 3.958 2/ 5) JO%ES FARM TL-203 1 75 1 25 "ILES W 1 75- 1.75 0.00- 0.00 0.15- 2/ 11) 39 VALUES CLLD l */ 4') 16.13t

! sa .a 13 780 14.22t 12.55- 14.71

- 11.36- 19.71 291 3")

1 17.564 111 11) 2.984 54 22 2.000 10 34r 4P/ 49) 10.12- 41 0a 2 03- 4.15 4

  • 4 2 30- 41.C5 5

e

a. Nominal Imwer Limit of Detection (LI.D) as described in Table 3. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

4 b. Mean and range based upon detectable measurements only.

i

\_-_-_____ .__ _ _____ _ -____-__ _ _______ __ _ _ - - -

DCI/G - 0.13T 9&/S (Daf WEIGHT)

NAPE O' FECILITY SE?7 vaa __,,__ _

CCCKET NO._10-327g328 L 3 C : T I T. OF FacILITv -;mtLTcs TEsN(11;E REPORTING FEP10D 1991 TYPE IN3 LOWER Ltali ALL CONTRCL huMBER OF T D T t L *. subi" Of IN2ICATC% LOCATIONS (0(AY10N wild _gikgist A31g[L MEAN LOCATION 5 h0NROUTIh[

OF %ALVS15 UETECTim.a ur N sp y b 44ME "EAN Fb MEAN ( REPORTED  ;

l 3(9F0:4[2 __1((?) _

3aNGdL __ 21 STANCE AND D15((IION RANG P&3GE{1 PEASUREMERIS  !

G43SS aLpra 0.05C 6.576 6/ 61 MtLONE FA*" 6.988 2#  ?) 7.674 4/ 43 f 1 4 14- F.44 3.5 MILES %%E 6.9e- 6.99 3.67- 9.36 G1tSS 9 ETA 0.2J5 3'.368 b/ 6) MALCNE FadM 49.25t 2/ 21 42.664 4/ 43 3 1 25.91- 5d.94 3.5 MILES NNE 39.57- 5d.94 24.61- 64.44 i aa444 (SELil 7:

CE-141 0 200 1.666 10/ 433 MALONE FAGM 1.32( 1/ 9) 0.53t 7/ 2P3 0 21- 1 59 3.5 MILES hNE 1 32- 1.32 0.21- 1.39 CE-144 0.22; 1.394 35/ 43) M ALONE F 44M 1.768 3/ 43 1.064 20/ 263 j c.37- 3.05 3.5 *ILES NNE 1 23- 2.36 0.32- 2.76

, P4-144 NOT ESTaB 3.2ce  ?/ 43) 3 838 1/ 41 4.144 1/ 283 I

2 73- 3.e3 3,33 3,g3 g,gg. q,g, 4J-IS3 0 2G3 3.556 10/ 431 9ALONE FA4M 0.614 2r 43 0.51t 5/ 263 0.22- 1 03 3 5 MILES NNE 0 22- 1 00 0.20- 1 22 RJ-106 0.510 2.574 5/ 433 MALONE FARM 0.654 1/ 43 0.534 1/ 2e3 C.53- 0.65 3.5 MILES NNE 0.65- 0 65 0.53- 0.53 1 05-137 0 063 C.14t 31/ 433 S.178 3/ 93 0.11t 12/ 26) 0.07- 0.31 0.09- S.31 0.06- 0.2P 29-95 0.113 3 60t 27/ 433 LOVELL FARM 1.474 2/ 49 0 754 14/ 26)

.13- 2.62 2 75 MILES NNE 3.67- 2.27 0.12- 2.79 i 44-75 0.050 1.174 37/ 43) MALONE FARM 2.194 3/ 43 0.928 22/ PS)

! 5.05- 4.25 3.5 MILES NNE 0 88- 4 20 0.06- 4.76 i

u-4J NOT ESTA3 16.22: 43/ 433 21.53t 9/ 91 18.58t 28/ 283

1.e3- 33.29 5.85- 33.29 2.9C- 43.53

, =N-54 0.250 C.378 11/ 4?) 0.094 2/ 4) 0.06t 2/ 2e3 l 3.35- 3.11 0.07- L.11 0.05- 0.07 l 61-?la 3.1P0 0 218 161 43) LDVELL FAa* 3.268 3/ 49 0.224 11/ 2el J.10- C.9%  ?.75 MILES NN: 3.10- C.36 0.10- D.53 l -b-214 N3T ESTAd C.135 25/ 431 0.128 6/ S3 0.11 If/ 2e)

! 0 02- 0 21 0.03- C.19 0.02- 0.37 72-212 MT ESTa9 f.54t 24/ 431 JONES FAPW 3.374 3/ 4) 0.058 19/ 26) 3.J0- 0.14 1.25 MILES d 0.01- 0.13 0.00- 3.32 I 9A-226 NOT ESTAi 0 26t S/ 453 0.41t 2/ 93 0.06 6/ 26)

I c.34- 3.7s 3.04- 0.78 0.04- 3.12 9E-? NOT EST43 5.32t 4?/ 433 7.634 4/ 48 4.208 26/ 2ND j 1 25- 12.31 3.20- 12.31 1.21- 9.13 TL-2*8 NCT ESTA9 J.;2t 19/ 43) MALONE FAdM S.05t 2/ 43 0.024 18/ ?9) 0.ci- 0.37 3.5 MILES hNE 3 03- 0.07 0.00- 0 12 i A: '2? N3T ESTAB 3.14t 14/ 43) JONES rARM 0.288 2/ 43 0.124 12/ 263

.?4- C.35 1 25 "ILL'. J 0.21- 0.35 C.03- 0.35 I 34-234* NOT ES' A3 o.41t 1/ 43 6.414 1/ *) 2b VALUES (LLO i 6 41- 6.41 6.41- 6.41 SJ 17 C.25? 1 24: 6/ 15) LOVELL FAGM 1.34t 2/ 31 0 978 5/ 1C) 25 ~.39- 2.14 2.75 "!LES NNE J.53- 2.14 c.39- 2.03 St :. cont] 0.215 15/ 153 0.31t 3/ 33 0 154 10/ 103 $

25 3.St- 0.51 0.20- 0.51 0.06- 0.25 i

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Traction of detectable measurements of specified locations is indicated in parentheses (F).

8

. . . . . . . . - . . .~.....~...~.... . . - ,....

_ . . - . .s.. . . . . _ . . . . ,_.

7..

30 m

k w

e W

W) e fn A 62 >= y Lk 2OF .

g,.

O me 4.J w eg t= t= E

a. 3 E isJ Q.

ka O O MI ID E ik 30 [

K 2 e.J Mt 305 =0 22 a e5 U

ae r

9 m en een .= en. a em a a e a en en saw a c e e e f e # 4 e t f *

  • 4 e e we O O O P=
  • e.g. era o y) e e c m a; O w a t= c P.

e4 P= J m @ r <J rs **

Ne. .J, so

<u.

N u e

.J

.4 a e. o. o. N. .J,. L. e . e.e e .J e . e eri G4  % S< V v %c3% o% o%>=V  % o% M%r3%**% o%oV fv V %o e e est q,,23 g ee e e)r M t t f f *

  • N  %
  • o* % M %1 CJ C M M O M M M Ml sw

.J 2 m 0064 w w w w w

  • u m .O a-w w a o a w 0 w I = I w I w 0 w 0 J 2

w 0

  • I w I 3

.J =* B a

v a we > t- o w .J .J w I en 8 =e t w 4 .4 4 g 7 at 2 A g. 3 . as as t. P. e m 4 e c 4 at e 4 o P= 0 ** N e *e 4 4 @ 4

46) b o 4 4 >

m 4 *J w & F as N re P= 4 a s w a eN

=) m ee O I eD 4 O u as 88 oo > >

a yoya e e feNe o. oeo eo e@oMe Jo Mo4 e(83e OeP*o P*P'o e e e o e e e o e e e o e o C3 o e .,8 E Nm t e Q o o Ca Q o A N e uooouoooJooot C3 o e s:e N m P g we OO m $>a a 4

  • e 'U

>~ W y Ind it gh VO m en e= en a en en a em a a a en a ao a en om u4 en aan w

o m se ** ee ce ce me ce ** ee e e= == n M ee es a Ow pie

@ W P* CJ  % =f. N O wa m N 0- 4 G W 4 P= N f3 f GJ rJ g P= M G3 ce to N P* O o P= Q M Q 4 N f w3 F fra g an e e e e e e e e e e e e e o e e e e e a y tSe % e  % o%c3%ee%63% o% % %c.%ee%ee%c.e%==% e%e.e% o%,eo% ese4 % ris  % La c ee e4 ee se e e.e we se se ce ee ce se em m ,e g en i 3 pF M w3

-  %. g g,.

I J 64 m

S Q 4 2 ee g et me 36 w I w 0 =e 3 w 1 ** 0 ee $w 4 w $ es* l w $w 0w I w f e- 0 w 3 ** O w $ eie $

.J w 7) NN e e e e e

  • 4 @ M N N N u o e e ra' rJ sn e o o P= tm o o su N a. + @ e NN tg t @we O O ee em M e.e N N P= P= F3 o o o P= P. O o e m r3 8's ( @ gr) er) e o e e e e eo e e e e e e e e e e e e o e e e . eeNeNeg eg eFJeme @

om '3 #6 >= P* e n ., e e e . e e M > l 2 g e rs M o C3 e* *e r3 0 o o P G' o f3 es em M e=* ee ne se e ** ,* w ee C3 o o o ce ce N N oO g

        • e.e it *=1 O W1 M 1

.O -

7 t'i tal

  • U 7 69 w 04 n.J g e  % si a=4 .a 1 w

ees

-e == ri int T me .' t.J 3 P t.J Pw pw 7 e.2 w e

>. p > 3 >= 3 M >= 3 >= "B >= F >= >= >=2>= >=2>= > >= 3 > P >= 3 > "k P 9 D sta v4 l p

LI w 60 I l.a W MMMM2MM64 MM taJ M a7 to F ha M E 1.J M a* M M M en yMMeM  %

.J >= N 7 > Fd* ki W h end W

  • es el e et
  • w W t.J e u 8.. g u e # == as F .*M 38 M :s M M .* M 3 M 2 ML.JM kJM 2 V kJen F Mto wr* ~1 # D M 2 t/ 3 M *D &) M f'

at u t.> a er at e wJ r L.J T W e hJ Z t.J Z kJ *a ha 3 w E y 3 t.J I t.J 1 1.J I .J I W I kJ "I h.e I L.J Z e.3 w C pa C

>- O # >= l O .J >= .A > .A 2 .J >= .J == .J O .J e= .J >= .4 0 .J >= .J o J > J > .J > .J o .J >= .J > .,

y$

pe as 2' L.; > == "") om D == 0 me D *e D *e >= == a me a ** >= se a >= p . s'e rr *== 3 *= 3 == >= o.e 3 s-e 3 e.3 >==

f1 09 4 wT C3 OKM3 O E' C E kJ E o E O K kJ D OFkJKO1 03 P 1 e.1 3 0 1 "' 3 y y se ==$ F Q EP M *e M M O 2 2 O 2 @ J' M M Q M t/- e e eg 4 me b*

>f 4 er O @WC O 4E @ @r 'J' W 41 0 0 tr O 4 y fr .O k Q sel > OM ge

% u. M e., e **

3 P= e em r eP=s. W P=ere ** P= c,e r== emC eS ,N Net N P= euem 0 O re P= .m f3 o P. e 3.P et er P= er -e P=emer 0 n omera P= ce P. c e pe g

== Of dm .J <3 .J f3 I c0 .J M J tJ G m .J O .J c c M .J n M tr. .J o .A o .J O o (I' .J o s n .

=A C.e m>

V, C

m a = == en = a= en a en en a en en ,. m = ,. "O C M e.

P ea ee eJ o n ee t se e ce of r

o.

e ee o o e se 4 we P= ed N *e o me e ce @

cv Ls t. r3 n O et er ee w. ee n we P= en e7 ee el ce a e J (3 t.J ** N te a,1 nu 3e we w l .CJ

= ** pe cm e.e rio N P- o f* P= a w) 1 e c4 e on er .J *i e be c U U P4 e e o e e e e o e o e e 'o e e e o e .J ar e es as %e  % u% o%**% o%cs%a) %o% %M%ee% e % w % we % u%4%-%Nyo%e.

u ' e = we e- m) 6n o es og @ o u O C* 4 e.4 C2 c (* w we .$ g 6$.

O k.g (P-

't. 6.Jl e. eat s's me em M n.

e e4 e.e tr .g 3 y , .. # M at 3J

  • tt
  1. 'O

> 0 #

- .J.,

.. .e. et w . = . e. . .. . u

,. w e.e = .w . w . . . w .w em .. ,e ,.==e.i ,. . . e.eo o 3, t.z ,=, N ._, g n ., e w .. . . - - P= - N o N . .N

  • N N N m .a u o m., u t. , . <. ,, =

et m. >= 3 .it ed ce n LJ Q gie 9 e C.s em ti 80 O d"= E3 *e @ N t f* P- O P. 4. O ce " e.e e M* Ps #9 P= 4 e y pe >n er; o.J G e

af e e o e e o e e o e e e e o e e e e e e e o e o e e e o e o e o e e o e .n e e .J ed t,

e i

8 es u.

c

  • e.

.4 -

o 6) o o e, e t e t s 4 4 $t es c3 rJ 7 o M 43 Cs t1 ** (J u teo rv't n 74 t ee.a es caa > n et

  • j, , ,

r et oy D- (7

>- # 3 we e M u s' e.e > w UW

,,J p G *Q

    • me g LI J e - D.*.

e q c3 C th U 1 C e c. '*'*

as me me ca ti an 4.1 to e, c o O r' g. rf) i JJ st 4 a. .3

.J nk >* en n*p f en N M ** Ift ** Ife O A er 6 *s @ N 4 af e, e" 4,

( L6 sa u 0 P* e* >= n O L N t. is ** a h k s *= ed a a >. t # u e e M e e e e e e e e M e A e e e M e #, we 6 ff kJ *J t.J O LJ >= d C e M i.3 d O c n o Ps O o kJ Q W n n r3 6.3 e > N 3

-s y o

  • teJ *9

>= >= >= >=

]

rs l C C O ne .

.

  • s1 J f O

== 7 7 48 4 @

p-

  • f M 4 4 .e et ee m .* e. e O a,M C- rJ .u me Di me ce .J 85 J #F M t.at et .J C
  • ;J > F >- neJ **

.a Q E' (J .* .4 etNO C ** e fr) P= f N e N J e ad n f w .J at eL 4 o n O C 9 en ee ** *e N N ~3 N **1 ,

M et ' me se se fm rf eN ett N N N N Pc N * N fv N sh a

== as as

>=>= 6. er.

M I $ $ $ $ $ d p

B 9 l 9 $

.$f

$ l $ 9 $ .I Ck in t) W e.a ) en N art I me e= rt fS et t. e .J 43 as

  • t- f i ce r8 #3 rF O N # y T Ti (L Lk 4 4t  ?  % >= st Lb T v7 d @ M M

fuwgevu

(

32010tCTIVITT 1% WELL WATER PC1/L - 0.757 61/L e 12"E 'F FACILITY _1[i;9v** .._

DOCMET NO. 50-327.32n L;C T!v". ;5 F:Citiiv nswi( :' Tr w>.[ligg _ etponyggs pgpgco ,y .i__,, ,

TYPE -49 L wE4 Lim!T ALL CohTROL WJMBER OF T3TAL *>wa;- CF INDICAT09 LOCA{!343 (CC11123_11TH dlEg[ST Ag$gik_M[1A LOCATIONg NONR00 TINE *

ANatf5IS '.: E T E T I O V" =~th IF3 NAPE MEAN Eftb MEAN REPORTED F E a F 0 4 M(Q __{((2) :AAGEb Q1?TANir,ANO

. D1i[(TION M AhGN #AAG(F) t MEASUREMENTS ,

34 753 at T A 2 653 5.754 9/ 269___ SON JELL sh 4.244 6/ 13) 3.854 11/ 137 32 2 40- 5.36 CNSITC NNE 3.29- 5.56 2.54- 5.11 349"A t '4 13 24 FE-44 M37 ESTAS 3.7et 6/ 15) utvs FAR" 4.171 3/ S3 4.908 2/ 95 c.25- 6.53 0.75 "!LES e 0 20- 6.50 4.20- 5.40 54994 (Grtg, 15

<-40 A37 E3':9 11.128 5/ 11) Sch DELL s6 14.778 2/ 63 9.604 2/ 43

3. 2*.31 ONSITE NME 5.24- 24.31 8 54- 10.66
-214 '.0 7 ESTAS 12.4?: 7/ 111 44YS FAR" 19.594 3/ 51 63.794 3/ 41 3 35- 47.33 0.75 "ILES W 3.35- 47.36 5.42- 123.86 Pi-21* TOT ESTES 25.934 3/ 11) 4tVS FARM 2T.176 2/ 51 61.984 3/ 43 7.93- 46.45  ;.75 MILES m 7.90- 46.45 3.19- 114.63 Pa-212 *0T IsTAs G.43e 21 111 S3% . ELL sh 3.40t 2/ 61 0.771 2/ 43 C.26- 0.54 DSSITE NNE r.26- 0.54 0.02- 1 53 T.-23? NJT ESTA3 .?At 3/ 111 SON . ELL e6 1 244 2/ 69 4 VALUES <LLO
.1)- ' 1 42 DNSITI NNE 1.36- 1 42 AC-224 %D* ESTAB 11 VALUES <LL3 1 156 1/ 43 1 15- 1.15 T11T10k 3?".iO' ' VALUES <LL3 4 VALUES <LLO
2 4%ALYS!! DE9 FORMED
a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

e

J f

i T ASLE 15 4 1 4AD13&CTIv!TV 11 PUnLIC WATER igpFLy ,

s' i PC!/L - ?.;37 *0/L U

f

! TOCFET NO. 50-317312e i

i *E cr 'a0!L;?Y_lillA" _ _

EEPORTING FLR10D_1991 3

_;L;iL11;L___ _

1 L.C T i r. O F F3:1LITY *1:1LTC%

CONTROL huMBEe CF Tvrt ;NC LC.Ei LI*IT ALL hokp0L' TINE -

l rF Iy!! CAT 3R LOCATTONS (0[iTITj_glig_dlEg;!T 111QiL_MLah____ LOCATI0kg  :

T3T4L *ame; MEA 9 #F3b MEAN (F) REPORTED

": ENALYS15 .tTECT!. a =EAg erp sa"E g a g gg> MEasugEMEhTS  !

b gycygg;g_ggy,gggg;7,og ElhG N

cr;FO
"L2 __iLLit PANEL CF IAJJiTd!CS 3.248 12# 13) 4 22t 14/ 26)  !

G40SS r* T A 2.*CC 3 1Ct 30/ $?) 5.72 2.41- 8.68 2 97- 5 72 Tc= 473.0 2.4F-

' 1:

C&wwa (NAI) 67 7.504 1/ 11) 4.13t 6/ 19)

MQT ESTAE 4. 75 t III 43) DAIS 7. TN 3.00- 7.00 i FE-53 MILEt W 7.50- 7.5C

1. J C- P.A? 5.5 i

f G44=A (Grtg> t

.? 13.t74 2/ 33 2 48f 1/ F)

\0T ESTAS .iis */ 47 CF INDUST 4fES 2.46 i j a-40 T+= 473.S 7.32- 13 12 2.46-P.62- 13.12 9.364 7/ 9) j CHICMAMAUGA D&* 12.31t 2/ 23

  • 3? ESTAd 7.4?t </ 93 15.00 1.88- 19.42 .
dI-219 TR" 465.3 9.G5-2.55- 15.00 9.696 1/ 21 6.146 5/ E)  !

%3Y ESTA* 6.99f 6/ op E.I. OUP14T 5.37- 10.41 f 33-214 TRP 473.5 9.e9- C.d" 2.So- 1C.24 1/ 33 1.608 2/ *) 3 93 CF INGUSTEIES 1.956

<4-212 N3T EOTAB 1 241 2/

1.95- 1.95 0.27- 2 93 i 0.53- 1.ag yp= 473 0 [

2.D2t 1/ 33 1.154 2/ 83 3

N3T ESTA9 2. 2t 1/ 4) CF If Dust 4 If 5 3.90- 1 39 j TL-2: T4= +73 7 2.32- 2 02

' 2.;2- 2.?? 3 VALUES <LLD Sa -4 10. SCC 16 WALUES (LLC i

' 24 ANALYSIS PERFORMED

7 94 - 2.53? 16 VALUES <LL3

, 24 Af. Alv!!5 DE4F ORMED 333.074 1/ 43 I

i T4!!10F 3?C.;30 16 VALUES <LL3 333 07- 333.07 j - l t  !

7 1 '

a. Nominal Lower Limit of Detection (LIB) as described in Table 3. Fraction of detectable measurements of specified locations is indicated in parentheses (F). i j b. Mean and range based upon detectable measurements only. l

.I a

I E

l l I

t b _ _ _ . __ - . _ . _ - _ _ - _ _ _ _ _ _ _ _ _ _ - _ _ - -_

- - _ - . . _ .- - - _ . - . ._ . - .-_ _. .=_-_ - - .- -.

33 4

i Table 16 i

ENVIRONMENTAL GAMMA RADIATION LEVELS

! Average External Gamma Radiation Levels at Various Distances from Sequoyah Nuclear Plant for Each Quarter - 1981 mR/ Quarter" i

i Distance Average External Gamma Radiation Levels miles 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter j (Feb-Apr 81) (May-Jul 81) (Aug-Oct 81) (Nov 81-Jan 82) 0-1 18.6 1 1.2 17.411.9 20.7 1 1.8 18.3 i 1.4 1-2 17.9 1 3.5 15.5 1 2.7 18.1 i 3.5 16.0 3.3

); 2-4 15.6 1 2.2 14.3 t 2.4 16.4 1 2.5 14.8 1 2.1 I 4-6 15.8 1 1.7 14.2 1 1.9 16.8 2.5 15.6 i 1.8 l

i >6 15.8 1 2.0 14.3 1 1.2 16.9 1 1.3 15.3 1 1.4 4

Average, f 0-2 miles (Onsite) 18.3 1 2.4 16.6 i 2.4 19.6 2.8 17.2 1 2.7

}

s l Average, i >2 miles (Offsite) 15.7 1 1.8 14.3 1 1.8 16.8 i 2.2 15.3 1 1.7 4

I

a. Data normalized to one quarter (2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br />),
b. All averages reported ils (68 percent confidence level).

t i<

l 1

i l

4 .

1, a

i

. - - _ ~ -

T A"LE 17 4AD!tsCTiv!TV I t. FOOD CROPS rCI/uG - :.C37 84/uc t.ET WT)

%AFE cr FACILITY 5F;goIA- _ __

DCtaLT NO._1[-Igl2125 g LOCATIOA CF F ACILITY HA*!LTGN___ _

T E P,h E ( . rt EFFChTING FERICD_llil.

CCNTFOL P. L P E ! P OF TYPE AMO LO.Ec LI*IT ALL

!*.DI C A TO R LCCATIONS ((( A T I O*. _ MI T " PlGPEST ANNEAL "EAN 6__ LCCATICf5 P.O N F C U T I N E TOTAL NU*SE4 CF

  • Eat sFab mare MEAN ( MEAA ( F )g PEFrRTED CF ANALYSIS DETECTIGN* 9{hg(,g (((((((((g((,,

(LL21 a A Ng[_b_ [15TANCE AMQ, gig (((lCh ,,,, EAN({b _

__ELaFDA*E2 RADIGACTIVITY IN APPLES NARPISLN BAY. T 9- 2691.608 1/ 13 1302.454 1/ 11 GROSS PETA 407 ESTAP 2891.634 1/ 13 2 2891.60- 2851.6D 3.5 PILE! SE 2Pa1 6C- 2F91.6C 13C2.45- 1302.45 GAMMA (GELI) 2 4.31t 1) PakRISCN EfY. i t. 4.31t 1/ In 1 VALUES (LLD CS-137 %CT EST AP 1/

4.31 4.31- 4.31 3.5 MILE 5 SE 4.31-h0T ESTAS 1136.C9e 1/ 1) HAARISON FAY, TN 1136.C94 1/ 11 764.074 1/ In m-40 1136.C9- 1136.i1 35 *1LES SF 1136.CS- 1136.09 764.07- 764.07 P1-214 407 ESTAS 11.26t 1/ 13 b4REISON PAY, TN 11.268 1/ 19 15.054 1/ Il 11.26- 11.26 3.5 *ILES SE 11.26- 11.26 15.C5- 15.C5

1) HARRISch bay, TN 5.238 1/ 13 7.95t 1/ 13 PR-214 NGT ESTAS 5.236 1/

5.23- 5.23 3.5 *ILES SE 5.23- 5,23 7.c5- 7.95 1.68t 1/ Il TL-238 40T ESTAP 1 VALUES (LLC 1.68- 1.F8 FACIGACT!WITY IN CAbtAGE 1/ 13 1 *ILES '.'. 3181 998 1/ 13 3eC5.3Fs 1/ In C005% aEYA 25.00C 31st. cat 31P1 99- 3191 9" 3181.94- 3181.99 3est.38- 3eCf.36 2

GA"*1 (GELit 2 18 0 t .t 3 4 1/ in 1498.104 1/ 13 1 "ILES Nw 1498.106 1/ 13 a-4D N3T ESTAS 1498.1".- 1498.10 16 C 5.5 3- 18 0 5.5 3 14*9.10- 1999.10 6.458 1/ Il 91-214 hCT ESTAR 1 VALUES < LLC e.45- t. 43 f*7'8 1/ 'I CH-014 ACT ES T A9 1 VALUEC < LLC e.7E- t.7F

o. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

VAELE 17 (CONTD)

RADIDACTICITY 10 FOOD CROPS PC1/40 - G.C37 FG/KC (WET *EIGHT3 NA=E CF FACILITV_1[QUOvaw DGCnCT NO._12-122 32e __

LOCAT109 0F F8CILITy Na=1LTCN T[hiL11LE REPPATING PERICD_lael TYPE AND LC.EE LI"IT ALL CONTROL ALMfrp or total %LuBER OF INDICATCk LOCATIONS LOCATIOk WITH HIGHEST ANNU A L_ME AN LCCAT10kg A C ?.R CU 11 N E cr ANALYSIS CETECTIG'.a ara, g b MAPE MEAN ( b MEAN (F) REFCRTIC PEEF02"ED (LLS) PANQ[g3 [YOTANCE AND EIFECTION RahGE{3 aAkiEb igaiU'E*f%TS RACIDACTIVITY IN CORh GRCSS BETA 25.003 3714.35t 1/ 13 1 FILES NW 3714.30t 1/ 13 3650.054 1/ 13 2 3714.33- 3714.50 3714.30- 3714.33 365C.05- 36SD.05 GA"*A (GELI) 2 CS-137 5.003 7.58t 1/ 11 1 MILE! N'u 7.58t 1/ 11 6.05t 1/ In 7.5*- 7.5R 7.5P- 7.5h 6.05- 0.C5 K-43 NOT ETTAR 2241.*Ft 1/ 11 1 MILES NW 2241.9Rt 1/ 13 2033.714 1/ 13 2241.*8- 2241.96 2241.96- 2241.98 2033.71- 2C33.71 81-214 NOT ESTAB 1 VALUES <LLO 12.031 1/ 11 12.C3- 12.33 Pa-214 NOT ESTAB 1 WALUES <LLO 7.594 1/ 13 7.59- 7.59

  1. 9-212 NOT ESTac 3.23t 1/ 11 1 MILE! NW 0.234 1/ 13 1 VALUES <tLD 3.23- J.23 0.23- C.23 RADIDACTIVITY l'. CRLEA BEANS

, GRCTt BETA 25.300 3118.50t 1/ 19 1 MILES %= 311F.50t 1/ 13 556C.414 1/ 13

! 2 311P.50- 3118.53 3110.5C- 3118.5C 5560.41- 5560.41 GAmms (GELI) 2 w.43 NOT Ed1 AP 16C'.098 1/ 1) 1 MILES h. 18CO.C91 1/ 13 2552.471 1/ 1) 1AOC.C"- leCE.09 1900.69- 1PCO.C9 2558.47- 255R.47 P1-214 NOT EETAS 1 VALLES CLLD 17.e41 1/ Il 17.84- 17.R4 PB-214 NOT ESTAe 1 VALUES <LLO 15.791 1/ 11 15.79- 15.79 PP-212 NOT EST Ab 3.a7f 1/ 1) 1 91LES NW 3.*71 1/ 1) 0.334 1/ 11 3.*7- 3.97 3.97- 3.a7 C.33- 3.33

a. hataal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

1 TAELE 17 (6 RADICACTIVITY 15 Y J /0 C %* '

PCI/N6 - ?.537 - /*: s.ET mEIGNTI LCCFET hC. 50-?27.32R NA"E *F FACILITY SECU"vaH TFA%ESSEE kEPGRTING PERICL 19P1 g LOCATION CF F ACILI TY Harit70%

CCNTROL NUPEER OF TYPE AF:D LOWE4 LI*IT ALL NCAFOUTINE IN31CATOR LOCATIONS LC;3T10N WITH HIGM(ST a%NUAL *EAN LCCATIChg TOTAL Num8ER OF MEAN (F)D MEAN IF) REPORTED OF A%ALYSIS DETECTIO%* *Esg gpyb NAPE

  • ANGEb yLA}kPEMEN11__

RANGE b PE*5 comed (LLL) 6 A3gdb__ LISTancF AhD DIF((IJON RA010 ACTIVITY IN POTATCES 6736 41t 1/ 15 62C4.734 1/ 13 GROSS PETA 25.PCC 6736.41t 1/ 11 1 "ILES N's 6736.41- 6736.41 62G4.73- 62G4.73 2 6 736.41- E 736.41 Games (GEL 13 2 13.9at 1/ 1)

CS-137 5.*CC 1 YALUES <LLO 13.9a- 13.99 1 m!LES N'. 3332.336 1/ 11 2664.6Ct 1/ 1)

ACT EST As 5332.33t 1/ 13 a-43 3332.33- 3332.33 2864.6C- 2664.60 3332.33- 3332.33 0.124 1/ 1)

PI-214 NOT EST A3 1 VALUES <LLD C.12- C.12 Il 1 MILES hm 4.278 1/ 13 1 VALUES CLLD PS-214 40T ESTAB 4.274 1/

4.27- 4.27 4.27- 4.27 5ALICACTIVliv !% T(NATCES t265.134 1/ 1) 3263.E36 1/ 13 25.03C 5265.136 1/ 1) JOAES FARP GROSS 9 ETA 1.25 MILES w 5265.13- 5265.13 3263.63- 3263.e5 2 5265.13- 5265 13 GAW9A (GELI) 2 13 JGNES FARP 5.638 1/ 11 1 VALUE5 (LLO

5. 5 ; *. 5.634 1/

I CS-137 5 63 1 25 MILES W 5.63- 5.e3 5 63- 13 1E35.248 1/ 13 j

2281.3Pt 1/ 13 Jo*ES FAR- 2281.3Pt 1/

h-40 NOT E ST AS 1 25 MILES 6 2281 3e- 22RI.36 1835.24- 1R35.24 2281.38- 2281 38 4.448 1/ II ei-214 NOT FSTAS 1 VALUES <LLD 4.44- 4.44

3.7Pt 1/ Il PB-214 NOT ESTAP 1 VALUES < LLC 3.76- 3.78 1

JONES FAP" 3.078 1/ 11 1 VALUES <LLD 3.C74 1/ In PB-212 NOT ESTrP 3.07- 3.07 3.67- 3.07 1.25 FILES =

- - - - - - - - - . .m.__ _

__ _ , m gpg _

_-.__---_____-___n n __. .w _m

V AGLE 17 (CO?CD) 8ALIDACT!v1TV I ?. FOOD CROPS FCI/*G - G.537 !"./nr t.ET .Tl NA*E C8 f-CILITY_1[]g(vat _ CCCrfi f.C._11-127 f28 L CC & T I D': CF FA:!Li dA*It72%__. TENNE 55(L GCTOETILG F E C I C D_1111 TYPE 3%O LC.E- L1"!T ALL CONTFCL kU* fem 0F TCist NLp6E4 OF LCCATIOr.g NC A E CU T I P.E OF ANALYSIS DETECTIL.a 1 *.C I C=Ea%

ATC a n LOCATIONS ([$3TJT _.ITb HIGt[iT ANAuA(_w(A$_3__

NA=E P L A r. F3 PEAN (F) GEF-CDTED PEG 50E*ED ( L(r > m agg[g h__ p15'aret Anc E,1FL[TICN -. EaAG, . . . . .Rahit ..

m{ A *URE PE N _T *_

  1. ADICACTIVITY f ra TL>N gr esEENS Cross 9 ETA 25.SC* *Fe6.95 1/ 1) LOWELL FAkF 4c66.954 1/ 11 F4 4 2. 29 6 1/ 13 2 -866.*5- *se6.'5 2.75 =!LE! NAE 4666.95- 4 Pet.c5 t642.2*- 56.. 20 OA*'A (GELI) 2 W-4' %QT ESTzC  ??4a.5ag gj g3 toggtt rgqp pyeg,594 g/ ;3 ;44%,$ag gf ;y 2349.50- 2544.t9 2.7% "ILES AhE  ??4%.59- 2349.54 2444.04- 24*+.09 BI-214 NOT ESTAP 15.004 1/ Il LOWELL FAEP 10.0G8 1/ 13 9.*:t 1/ In 19.00- 19.C0 2.75 w!LES *: Af 19.CC- 19.00 a.90- a."C El-212 NCY E'TA5 ut.5Gt 1/ Il LOVELL FAk" 96.t9t 1/ 11 1 VALUIS (LLD 56.59- a f .f
  • 2.75 MILES NAE 46.59- 96.5*

Fe-214 %0T ESTAE 11.51 1/ Il LGVELL FAR* 11.?lt 1/ 1) P.666 1/ ll 11 51- 11.51 2.75 m!LES *NE 11 51- 11.51 P.66- P.F6 r?-212 NOT EST2e **. Sit 1/ 11 LuYELL F AD

  • aB.P64 1/ 11 7.654 1/ Il "P.86- 9H.n6 2.7" NILE! NAt a8.Se- "* 66 7.e5- 7.65 RA-224 %3T E!TAE 1 V a t t'E S < L L ?, 2.Pf ( 1/ 13 2.96- 2.hA PE-7 %37 ESTAI 1 VALUES (LLL 67.304 1/ 11 47.3C- 47.30 TL-204 NOT E* Tan  !*.674 1/ Il LOVELL FAG" 34.67 1/ 13 2.156 1/ 1) 24.67- 34.$7 2.75 MILf a NbE 34.67- ?4.57 2.lt- 7.15 AC-22a NOT EST2P !5.004 1/ 13 LGVELL FAEa 15.604 1/ Il 25.498 1/ 13 13.F;- 15.cf 2.75 *1LES N B:t 15.6C- It.60 21.4"- 2t.40
a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Nan and range based upon detectable measurements only. Traction of detectable measurements of specified locations is indicated in parentheses (F).

_ . - _ - . _ _ _ - _ -_-_m _m.m.__. . _ _ ____ -..m.m_.___-__. _ _ _ _ . ._ .___.____.m. . _ - _ . . . _ . . . _

l

+

T A dLE 18 4A01~,ACT1WITY I% 800LThe ,

PfisW; -

. 037 53/W1 s.ET WEIGHT) $ I

' *st*E nr Ft: ILITV_ m gqvE CCCNET to. 50-327 378 rQ1[11[E PiPDFTIP.C FER10D_19*1 LLCATIG'. CF PACILITv J a*YLTG4 CONTROL NUMBER OF  !

LOkte LIMIT TYPE *%2 ALL LOCATIOkg N0h80UTlhE CF 1%31 CAT 3* LGCATIC%S Lot A T Ir$N _y1 TH *15 HEST ANgual #EAN T3 Tat '.J*EE4 MEAM F )I_ MEAN t SEPORTED i j 3r 44ALvils OETELTIONa " fat (F)b NAMf R&4G P&hGE() REAiuSEREkTS (L{ p 8a%C-Y DISTANCE AND_21*[g]104 3 8E4FOL=f0 s l 5A94A 4 GEL 1) is 1) LOVELL FARM 1142.728 1/ 11 1103 37t 1/ II ,

J hCT CSTAB 1142.72t 1153.37- 1133.37 [

i s-4J 1142.72- 119?.72 2 75 "1LES NNE 1142.72- 1142.72 2.40t 1/ 11 14.234 1/ 1) ,

2.40' 1/ 1) LOVELL FARM

< SI-214 k37 ESTA9 2 75 "ILES NME 2.4c-  ?.40 14.23- 14.23 2.40- 2 4 .' 1/ 1) 13 LOVELL FA4P 0.128 1/ 17 7 224 23-214 NOT Esf AB  ?.124 1/ 7.22- 7.22

', 2.75 "ILES NME O.12- C.12 t.12- 2.12 1 VALUES (LLD y 13 LOVELL FA*M 0 18t 1/ 17 3;-212 8:07 EST33 0 1Pt 1/ j

.1' 2.75 MILES kNE 0 18- s.18 7

?.1"-

/

4 7 s. Moeinal laver Limit of Detection (L13) as described in Table 3. Traction of detectable measurements of specified locations is indicated in parentheses (F).

b. Mean and range based upon detectable measurements only. I i

i P

i i

i i

i 1

b - - - - - . . - _ , , _ _ , , . . - - . _ , _ , __

' tl>

. , ;l :l l T _

, N *_

A

" ,L 2R PA 3" e

c"AECL ^

A^cU e

s^ N vSH A

" A e

g f

r" tLO U

A Y

U r?

N Q , e*.

N" E v A?S > A "2 .

c.

, O O I

, . P

. 1 c.

T.

, ~

j

.; o Y e

,s

~

u -

h 3

{

'jii i )1 k f ) , '

40 24 .

Darect Rodtation Levels Sequoyoh Nuclear Plan i

22 .

i i

i I

20 .

Onsite

~b p i t  :. .

t 3 18 o

l ',.

j N

. 'q a o .d D. t. ,o- .

E .,i - t.

9 o,

l '. * '

l '.

( '. l '.

e '. -

. Oo, r ts s t el- b - 4' ,lt' .

16

i. =

e

  • I e . o. l' '. .

o

. ,, e

. 9 ,d a . .

. t. .

14

*.,
b ll .' .,d l

I

'.6 t- IBegin Plant f j0perat6on

/

I g i I I I2 1977 1978 1979 1980 1981 1970 Figure 8 24 . Otreet Rodtotion Levels Sequoyoh Nuclear Plon 4-Quarter Moving Average 22 .  ;

B l

I 20 .

Oassto l t l e ,

= .

L -

s ie o

s i a .es. '

e  ! s '

r s e .A \

,d ?q.\.

16 .

o-

  • b-(/n \

s Y  %.'-o '

Offsate 'h .P'.; i

./ .

e .

I 1

14 .

  • i lHegen Plant  !

lCperatson o'

, 3 1 8 I "

t ig7e 1977 1978 1979 IW3 1%I Figure 9 l

l

l 41 Reservoir Monitoring Samples are collected from the Tennessee River as detailed in table 19.

Samples collected for radiological analysis include water and Asiatic clams from three of these cross sections, sediment from four cross sections, and fish from three contiguous reservoirs. The locations of these cross sections are shown on the accompanying map (figure 10) and conform to sediment ranges established and surveyed by TVA.

Water Water samples are collected automatically by sequential type sampling devices at three cross sections and composite samples analyzed monthly for gross alpha and beta activity and gamma-emitting radionuclides. Further com-l posites are made quarterly for strontium and tritium analyses. Results are displayed in table 20. Figure 11 presents a plot of the gross beta activity in surface water from 1971 through 1981. Indicator stations are those located downstream from the plant and controls are located upstream. The levels reported are consistent with gross beta levels measured in surface water samples taken from the Tennessee River in preoperational monitoring programs conducted by TVA l at other sites.

t i Fish l

Radiological monitoring for fish was accomplished by analyses of composite samples of adult fish taken semiannually from each of three contigu-ous reservoirs--Watts Bar, Chickamauga, and Nickajack. No permanent sampling stations have been established within each reservoir; this reflects the movement j

of fish species within reservoirs as determined by TVA data from the Browns Ferry Nuclear Plant preoperational monitoring program. Three species, white crappie, channel catfish, and smallmouth buffalo, are collected representing both commercial and game species. Sufficient fish are collected in each l

reservoir to yield 250 or 300 grams oven-dry weight for analytical purposes.

All samples were analyzed for gamma, gross alpha, and gross beta activity. In addition, two samples of each species were analyzed for 89 Sr, and 90 Sr. The composite samples contained approximately the same quantity of flesh from each fish. For each composite a subsample of material was drawn for counting.

Results are given in tables 21, 22, 23, and 24. During this reporting period an insufficient sample of each species (four samples) was available for analysis in the first sampling period.

l I Sediment l Sediment samples were collected semiannually from dredge hauls made for bottom fauna. Gamma, gross alpha, and gross beta activity and 89 Sr and DO

! Sr content were determined in samples collected from points in four cross l sections. Each sample was a composite obtained by combining equal volumes of sediment from each of three dredge hauls at a point in the cross section.

Results are given in table 25. In accordance with the Watcs Bar Nuclear Plant

[ Qonitoring program, samples from the upstream station were collected quarterly, i

42

In addition to the sampling described above, shoreline sediment samples were collected at three recreation-use areas (two downstream from the j plant and one upstream) in the vicinity of SQN. Samples were taken in June and November and analgzed for gross alpha, gross beta, gamma-emitting radio-1 nuclides, 80Sr, and 9 Sr. Results are given in table 26.

Asiatic Clams Samples of Asiatic clams were collected semiannually with a Ponar dredge from three stations and analyzed for gamma, gross alpha, and gross beta

. activity. The 89Sr and 90Sr content was determined in the shells. At the upstream station, which is also a part of the Watts Bar Nuclear Plant monitoring!

program, samples were collected quarterly. Results are given in tables 27 and 28.

I 1

1 l

i f

i 4

i

43 Table 19 SAMPLING SCHEDULE - RESERVOIR MONITORING Biological Samples Tennessee River Benthic Shoreline (Mile) Fauna Sediment Sediment Fish" Water Samples 472.8 X 473.2 Automatic sampler 477.5 X 478.3 X i

, 480.8 X X b

483.4 X X Automatic sampler

! 485.2 X

, 496.5 (Control) X X 497.0 (Control) Automatic sampler b i

a. Fish samples are taken from Watts Bar, Chickamauga, and Nickajack Reservoirs.
b. Composite sample analyzed monthly.

i l

)

\

. _.~_ . . - _ _ . - n. - - . . . - - - _ - - _ _ - . . - . . _ , - ,. . . _ - .u . - _ . - . . - - - . ...- -.~ ~

TAEsL 20 l

42GISACTIVITY IN SU4 FACE . ATE- TCTAL 701/L - 0 037 6Q/L DOC ET A O ._M-RhMi A N!!*E CF FACILITY _EE N?va'_* _____ _ __ __

RfP0;TlhG PERIGD_12g1 LOCtTIOe OF FICILITV H_51(TON _ _ _ _ TLh1(H L(__

ELL .CONTFOL NJPBER OF TYPE 243 LOWEF LIMIT 0F LOCATION 6 9:0NROUTINE TJTAL NUMbtw INSICATCE OF ANALf515 GETECTI0t* MEANLCCA{ (F IONS L OC A11E*1_.filt!_tilitLS NAME T AaNun MEAN

  1. EAN F)b KEAN (F) REPORTED J A AGF_b ) Qg lgy ( Q_g1g(ClION. RA E PANGEb ME A S URE ME N T S 2 F 4 F C 4 w1.() _1(k2) _-__

it 13) _ 2.054

?/ 13)

StOSS ALPHA 2 003 3.228 3/ 26) TRM 473.2 3.6*f

'" 2.40- 3.29 3.s9- 3.49 2.02- 2.08 r.90$S BETA 2 400 4 664 25/ 261 TEM 493.4 4.816 13/ 13) 4.97t 10/ 13)

'  ? 2 56- 4.39 2.89- s.39 3.C1- 7.51 GawA-(Nat) 31 FE-59 NOT ESTA3 5.464 11/ 71) TR' 4s3.4 6.774 6/ 13) 5.538 3/ 10) 0.s3- G.71 4.40- 8.79 3.80- 7.20

~

~ Ga**4 (GELI)

~

. 4-43 NOT EST AB 17.42t 3/ 5) TRM ed3.4 22.36t 2/ 37 3 VALUES <LLD 2.62- 42.;3 2.62- 42.0a ND' ESTAE 8.534 4/ 5) T9M 433.4 9.544 3/ 33 3 VALUES (LLD FI-214 4.61- 15.30 5 73- 15.00 NOT ESTA* 10.248 1/ Ss TRM 483.4 10.244 1/ 33 3 VALUES <LLD

  • B-214 13.24 10 24- 10.24 13.24-t Pt 4 T, E S T A 3 5 VALUrS CLLO 5.03t 1/ 33 F3-212 5.C3- 5.03 7 VALUES (LLD t 4 VALUES CLLD S4 54 10.'c3 13 ANALYSIS PERF09=ED 2.2C5 7 VALUES <LLD 4 VALUES <LLD S3 %'

II ANALYSIS PERFCRPED 3?$.43t 2/ 7) T4M 473.2 439.014 1/ 43 401.73s 1/ 4)

T4fTIUM 33C.?00 332.oS- 43*.;1 439.01- 439.31 401.73- 401.73 11

a. Nominal Iower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

1 4

. m_ _ . _ _ _ _ . . - _ _ - .- _ __.m._ _ . - . . _ _ . . _ _ . _ _ _ _ _ _ . __ ._ __ _. _ . _ _ _ _ . _ . . _ _ . _ . _ _ _ _ _ - -

TABLE 21 4AS!caCTIVITY I*. JHITE C;APPIE (FLE5H3 eCI'G - 0.C S T a ; s t, gaay grigni,

  • &E SF F1CILITY,%31Qig,_ ,,,,

00CMET *a 0 . 5C-327e326 L t ; 110N CF F L C I L I T Y,,t[111(M _ _

_ T Q*t($iL( #19C8171% P[P 100,12rl_

TfEE 150 L 7 4t F L1"If att CONTROL NJM6Et CF T?TiL W " V. ; J:F INOICATJ9 LOCAftONE (0(11121 t (IT H hlQdL11 ,gMhdAt 84E A h LOCATIOgs hometouT INE

  • F a *. A L Y '. l ? DCTECTIch* MEA 4 t F ab taut a:E Ag s g sh seC A N (g r R E P98t T ED

__iLL2' ElMLIL_.... 11111E L_A.'Q-Ql*LLlION pagst pahGE M ASMNais I

__C4F03"_L2 sus 5 aLunA  :.13? 2.97( 3/ 3) CHICKAMAUGA RES 2.97( 2/ 2) 3.73( 2/ 2) '

5 2.So- 3.27 TRM 471-530 2.66- 3.27 2.73- 4.73 G4.13$ PETA 3 104 29.13( 3/ 3) CHICKAMAUCA RES 30.02( 2/ 2) 37.86( 2/ 2) 5 25.39- 34.64 TRM 471-530 25.39- 34.64 35.17- 40.55 "avun

, er,Etil 5

05-137 0.723 0.12( 3/ 3) CHICKAMAUGA RES 0.14( 2/ 2) 0.18( 2/ 2)

) . 0.09- 0.15 TRM 471-530 0.12- 0.15 0.17- 0.19 1 <-4: V) T EsTAB 15.46( 3/ 3) CHICKAMAUCA RES 16.10( 2/ 2) 15.93( 2/ 2) 13.97- 18.23 TRM 471-530 13.97- 18.23 15.40- 16.46 ll DI-214' O.123 0.03( 3/ 3) NICKJLTACK RES 0.03( 1/ 1) 2 WES e 0.01- 0.03 iRM 4t5-471 0.03- 0.03 a3-234 *0T ESTAB 0.03( 1/ 3) CHICKAMAUCA RES 0.03( 1/ 2) 2 Vm'ES e t 0.03- 0.03 TRM 471-530 0.03- 0.03 - 75-212 aoY s ESTA9 0.01( 2/ 3) CHICKAMAUGA RES 0.01( 2/ 2) 2vm'M e 0.01- 0.01 TRM 471-530 0.01 . 0.01 , ,, ,, .

' Tir208 EDT ESTAB 0.01( 1/ 3) CHICKAMAUCA RES 0.01( 1/ 2) 0.01( 1/ 2)

O.01- 0.01 _ _TRM 471-530 0.01- 0.01 0.01- 0.01 y ., 9 .C.5CB 1.41( 1/ 1) CHICKAMAUCA RES 1.41( 1/ 1) 0.86( 1/ I) 2 1.41- 1.41 TRM 471-530 1,41- 1.41 0.86- 0.86 gg e- 0.!!' ANALYSIS PE3tFORMID 1 VALUES <LLD 2 I VALUE <LLD

a. Nominal Lower Limit of Detection (LLS) as described in Table 3. 1
b. Mean and range based upon detectable measurements only. Traction of detectable measurements of specified locations is indicated in parentheses (F).

I l

4 l

1 O

- _ - . - _ _ __ a- - -

TAbLr 22

$ *Si'tCT!d!Tr 14 C 4 .*. s '. I L 04Trg$g gptgrps

-CI'i - . 137 3, / 3 87RY .E I Gfti l ,

cn

  • m L F FSC!LItv,ifc_3_3 , ,_,,,,,__ _ ___,,,,,

_ _ _ VC=ET f.0._5J -il h i h _

k i.r c; T 1 %G l' E 910 D,1* 51

_Tr.,(s;g; ,,_

.> C '. T I W. Er 7.: gt3ey,,gigi(

(- _ _ _ _ _ , , , _ , , _ _

CO*. TROL t;UMBE4 0F T'PE -40 LudE4 LIMIT 1%91L.T0k "LL LCCATf3Ns (QC 2 71 gN _g11d_21dL 5 T A NNp1L,at aLT, NONROUTINE T3TAL *e c r.c E s CF t gawg agag gep LOCAflog) stag gy ptPORTED "r

i 24ALysgt c r T T C T i r *.a =c as es jb s a gtb M_.ga sum E P E N T s d 14.to cb 11MLb _ --__ 2111 &EL. 62_21i GTION

_iLE GitL2 __1LLL1 - _

NICKAJACK RES 3.36( 1/ 1) 2.99( 2/ 2)

CROSS AlfHA 0.100 2.24( 3/ 3) 2.68- 3.30 3.36 TRM 425-471 3.36- 3.36) 5 1.62- 1/ 25.47( 2/ 2) 0.100 21.40( 3/ 3) NICKAJACK RES 23.64( 1) m - CROSS BETA TRM 425-471 23.64- "t3.64 24.35- 26.58 5 15.50- 25.06 l

CAMMA (CELI) 5 NICKAJACK RES 0.07( 1/ 1) 0.05( 2/ 2)

CS-137 0.020 0.07( 3/ 3) 0.03- 0.07 TRM 425-471 0.07- 0.07 0.05- 0.08) 12.83( 2/ 2) 11.51( 3/ 3) CHICKAMAUCA RES 11.66( 2/ 2)

K-40 NOT ESTAB 10.07- 13.24 10.44- 15.22 10.07- 13.24 TRM 471-530 0.02( 1/ 2)

BI-214 0.020 3 VALUES <LLD 0.02- 0.02 CHICKAMAUCA RES 0.02( 1/ 2) 0.02( 2/ 2)

PB-214 NOT ESTAB 0.02( 1/ 3) 0.01- 0.02 0.02 TRM 471-530 0.02- 0.02 0.02-CHICKAMAUCA RES 0.00( 1/ 2) 0.00( 2/ 2)

P8-212 NOT ESTAB 0.00( I/ 3) 0.00 0.00- 0.00 0.00 TRM 471-530 0.00-0.00- 1/ 2) I VAIEE (LLD NOT ESTAB 0.00( 1/ 3) CHICKAMAUGA RES 0.00(

TL-208 0.00- 0.00 0.00- 0.00 TRM 471-530 I VALUE <LLD SR 89 0.500 ANALYSIS PERFORMED 2 1 VALUE <LLD 1 VALUE <LLD SR 90 0.100 ANALYSIS PERF0kMFD 2 1 VALUE <LLD

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of sp(cified locations is indicated in parentheses (F).

Taalt 23 4L310ACTIUITY IN SMALLuoJT4 9UFFALC (FLESH) rEI#C - 3.137 B;/3 ( 8t Y JEIGHTl NLME cr *4CILIT* 1[P vJ_* _

00CMET NO.59-327.32A L ' ; T 10 '1 af FtCILITv__ M 21Lin_ ______________lin(n(;_____ __

EEPORTING PEPIGD_lif,,L TfPC iND LOWER Ll"IT ALL CONTROL NUMEE4 GF TOTAL O u31L OF INDICAT3A LOCATIONS QC A T ION mITH.HiggD T AWUAL MEAN NCNROUTINE LOCATION MEAN IF3 ( REFORTED JF ANALYSIS 't E T E C i t h a MEAN ( NAME MEAN

ill O i" M _ikk2 -- __
    • hGL{} _.., D IS TLE_Q2_211RII ON _

_.dDGE({ # 8&hcEb g g E=Ents CROSS ALPHA 0.100 2.25( 3/ 3) CHICKAMAUCA RES 2.31( 2/ 2) 2.58( 2/ 2) 5 1.94- 2.67 TRM 471-530 1.94- 2.67 2.63- 4.53 GROSS BETA 0.100 18.91( 3/ 3) CHICKAMAUCA RES 19.63( 2/ 2) 34.87( 2/ 2) 5 17.46- 20.33 TRM 471-530 18.93- 20.33 25.38- 44.36 5

Co-60 0.010 0.02( 1/ 3) CHICKAMAUCA RES 0.02( 1/ 2) 1 VALUE <1.LD 0.02- 0.02 TRM 471-530 0.02- 0.02 ,

CS-137 0.020 0.06( 3/ 3) CHICKAMAUCA RES 0.06( 2/ 2) 0.08( 2/ 2) '

0.04- 0.08 TRM 471-530 0.64- 0.08 0.05- 0.11 K-40 NOT ESTAB 9.65( 3/ 3) CHICKAMAUCA RES 9.70( 2/ 2) 12.69( 2/ 2) 8.65- 10.75 TRM 471-530 8.65- 10.75 11.88- 13.59 51-214 0.020 0.01( 2/ 3) CHICKAMAUCA RES 0.01( 1/ 2) 0.04( 2/ 2) 0.00- 0.01 TRM 471-530 0.01- 0.01 0.04- 0.04 FB-214 NOT ESTAB 0.01( 1/ 3) NICKAJACK RES 0.01( 1/ 1) 0.02( 2/ 2) 0.01- 0.01 TRM 425-471 0.01- 0.01 0.02- 0.03 AC-228 NOT ESTAB 1 VALUE <LLD 0.03( 1/ 2) 0.03- 0.03

-SR 89 0.500 ANALYSIS PERFORMED 1.91( 1/ 1) 2 1 VALUE <LLD 1.91- 1.91 SR 90 0.100 ANALYSIS PERFORMED 1 VALUE < LIE 2 1 VALUE <LLD

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

O

- _ _ _ . .._..__m

_ - __ . . _ . _ . =

l T A9LE 24 R A 71 ^ .*. C ? I v l T Y IN **aLL"00fH 9 U & F A L (' (=WLE)

C1/G - 3.C37 0.#3 (D*Y JEIGHT) ,

oz

%rE CF F;CILiiv g r ' .P v w ~

CCCKET h0._50-32.1 32F LOC TION OF FACILITY GILT a _ ._, TLiN_L31LE _ REPORTING PERICO_12tl CONTROL NUMBER OF T PE AN3 Lose # LIMIT ALL LOCATIONg NONROUTINE T0f3L \uMBLP OF !NDICATCS LOCATIGh5 (QGA112% viTH HlELil_A111LA_L_351L PEAN fflY_, REFORTED 3F a%ALYSIS EffECTIONa gg a g g y- NAME b MEAN $F )

R Ah6r MEA &MA(llE M S HR F Go %2 _MRL_ 2 A NGL {__ QIST4kCE t 2.Q HECTION R A%L ___

CEOSS ALPHA 0.100 1.96( 3/ 3) CHICKANAUCA RES 3.06( 1/ 1) 1.45( 2/ 2) 5 0.83- 3.06 TRM 471-530 3.06- 3.06 1.45- 1.45 s GaOSS BETA 0.100 13.06( 3/ 3 CHICKAMAUGA RES 14.14( 1/ 1) 13.99( 2/ 2) 5 10.62- 14.35 TRM 471-530 14.14- 14.14 13.04- 14.93 GAMMA (CELI) 5 C0-60 0.010 3 VALUES <LLD 0.02( 2/ 2) 0.02- 0.02 CS-137 0.020 0.04( 2/ 3) NICKA. TACK RES 0.04( 2/ 2) 0,06( 2/ 2) 0.03- 0.04 TRM 425-471 0.03- 0.04 0.06- 0.06 K-40 NOT ESTAB 5.50( 3/ 3) CHICKAMAUCA RES 5.55( 1/ 1) 6.24( 2/ 2) 5.11- 5.84 TRM 471-530 5.55- 5.55 5.70- 6.77 81-214 0.020 0.01( 2/ 3) NICKMACK RES 0.02( 1/ 2) 0.01( 1/ 2) 0.01- 0.02 TRM 425-471 0.02- 0.02 0.01- 0.01 PB-214 NOT ESTAB 0.02( 2/ 3) CHICKAMAUCA RES 0.02( 1/ 1) 0.02( 2/ 2) 0.02- 0.02 TRM 471-530 0.02- 0.02 0.02- 0.02 PB-212 NOT ESTAB 0.02( 2/ 3) CHICKAMAUCA RES 0.02( 1/ 1) 0.01( 2/ 2) 0.02- 0.02 TRM 471-530 0.02- 0.02 0.00- 0.01 TL-208 NOT ESTAB 0.01( 1/ 3)' CHICKAMAUGA RES 0.01( 1/ 1) 0.01( 1/ 2) 0.01- 0.01 TRM 471-530 0.01- 0.01 0.01- 0.01 SR 89 0.500 ANALYSIS PERFORMED 1.56( 1/ 1) 2 I VALUE <LLD 1.56- 1.56 SR 90 0.100 0. 29 ( 1/ 1) NICKAJACK RES 0.29( 1/ 1) 0.19( 1/ 1) 2 0.29- 0.29 TRM 425-471 0.29- 0.29 0.19- 0.19

.l

a. Nominal Lower Limit of Detection (LLD) as described in Table 3.

j b. Mean and range inased upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

l l

4

94013 ACTIVITY IN SE01MEr47 PC1/G - 0.337 5G/3 (DRY WEIGHT)

NA*E OF FACTLITY_SE2Q21eH_ DCCKET h0 50-327,32P L?C TION Gr FACILITv__t&51(Ig3__ ____ _((1N(S((r .

p[penTING PERIOD _la91 TYDE ANC LO.Es LI*1T ALL CONTROL NUMBER OF T S T al N Ju: E . OF INDICAT04 LCCATIONS LElilll1_tllH.21kd(ST Aihytk_gLAN LCCATIONS N0hR00T!ht a

7 2NAlffff GETECTIr4 NEAN f NAwE MEAN ( *EAN (F@ REPORTED b

__ELiL212Li _ 1LLil_--_ < a ?_4r() qtsrAsrk.112_ELEEEll02. d A N EI{ }D 'AEEE MEASUREMENTS 3R355 ALrHA 0 350 ___ 3 264 6/ 6) TR* 472.ac 4.41t 2/ 23 3.488 4/ 43 1 1.45- 4.45 4.36- 4.45 2.31- 4.68 343SS HETA 3 703 32.904 6/ 6) TRw 472.80 32.846 2/ 23 29.40t 4/ 4) 1 16.43- 41.45 39.43- 41.45 23.36- 35.53 6thMA (GrLil 1.

CE-144 0.060 0.291 1/ El TR* 420.82 0.28t 1/ 2) 0 13t 2/ 43 0.2F- 0 26 3.23- 0.28 0.12- 0.14 CD-se 0.510 C.let 6/ 6) TR" 472 80 0.261 2/ 28 0 194 4/ 4)

.;4- 0.31 J.25- 0.27 0.12- 0.28 0;-137 C.E20 2.644 6/ 63 TR4 472.SD 4.19t 2/ 23 1.81t 4/ 4) 0.23- 4.75 3.71- 4 67 1 05- 2.68 24 85 0 033 6 VALUES (LLO 0.066 1/ 4) 0.06- 0.06

%3-95 0.310 0.c44 2/ 6) TR= 4e0.02 0 114 1/ 23 0.12t 3/ 43 J.07- C.11 3.11- 0.11 0.07- 0.19

-a8 3 . r:10 0.054 1/ 69 TRM 4dC.52 0.054 1/ 2) 4 VALUES (LLD C.35- 0.05 0.05- 0.05

<-40 NOT !5fA0 16.42( 6/ 68 TRM 472.80 19.16f 2# 23 15.254 4/ 43 10.bd- 20.36 16.19- 20 13 12.45- 17.74 91-54 0.cic 0.364 2/ 6) TPM 4FO.82 0.128 1/ 2) 0.016 1/ 4)

C.64- 0 12 0.12- 0.12 0.01- 0.01 di-214 3.329 1.let 6/ 63 TRM 472 40 1.48t 2/ 29 1.034 4/ 4) 0.45- 1.63 1.34- 1.65 0.81- 1.34 91-?l2 0.13 r 1 93t 6/ 6) TR" 472.80 2.968 2/ 23 1 56t 9/ 43 C.-a-

- 2.;6 2.06- 2.66 1.24- 1.97 P3-214 NOT EsTaB 1.34( t/ 61 TRM 472.s: 1.634 2/ 23 1.12e 4/ 43 3.55- 1.85 1.47- 1 80 0 86- 1.48 (3-212 NOT EST AB 1.764 6/ 6) TRu 472.4) 2.196 2/ 23 1.40s 4/ 43 s.75- 2.41 2 06- 2.31 1.06- 1.?9 3A-??6 NOT ESTA3 1.1?t 6/ 6) TR" 472.P? 1.484 2/  ?) 1 034 4/ 43 a.45- 1.s3 1.34- 1.63 0.81- 1.34

<a-?24 NOT ESTAB 1.904 6/ 6) TR4 472.30 2.258 2/ 2) 1.474 4/ 43 1.04- 2.54 1.96- 2.54 0.9H- 2.01 TL-2;- 0.02L 0 51f 4/ 6) TR* 47?.53 0.638 2/ 23 0.421 4/ 4) 3 22- 0.79 0.55- 0.73 0.33- 3.57 AC-22* 0.040 1.66t 6/ 6) TR" 472.83 1 856 2/ 28 1 39t g/ 43

0.74- 2.22 1.5e- 2 61 1.07- 1.95

.t '34F NOT ESTAD 4.i34 2/ 6) TkM +72.9C 6.79t 1/ El 4.168 2/ 41 2 93- 6.75 6.7A- 6.78 3.69- 4.64 3a y 1.500 6 VALUES <LLD 3.25e 1/ 4) 3.25- 3.25 e 1

  • St c 0.330 4 VALUES <LLD 4 VALUES <LLD 1 tNALYSIS PERFORMED
a. Nominal Lower Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable m asurements of specified locations is indicated in parentheses (F).

(

TABLE 26 ( l RADIDACTIVITY IN SHORE LINE SEDIMENT PCI/G - G.037 BQ/G (DRY bEIGHT)

DOCKET NO._}gNLJ[ST RgN APR pd NAME OF FACILITY _$ GygYAH REPGRTING PERIOD 1981 (  ;

i TEN g 11EE LOCATION OF FACILITY HAMILTEN____

CONTROL NUMBER OF TYPE'AND LOWER LIMIT ALL LOCATIONS NONROUTINE (

OF INDICAT0k LOCATIONS (pgAllgN WITH HIGHEST ANNUA LMQ3 REPORTED TOTAL NUMBER NAME MEAN ( b MEAN (F/'

OF ANALYSIS DETECTIONa MEAN (F)b RANGE {3 RANGL b MEASUREPENT}_

(LLO) RMgEb DISTANCE AND D2PECTION (

,_gERFORPED 4) TEM 478 2.81 ( 2/ 2 's 1.89 ( 2/ 2)

NOT ESTA8 2.53( 4/ 2.48 GROSS ALPHA 2.25 - 2.48 1.31 -

6 1,73 - 3.36 12.66( 2/ 2) j 16.574 4/ 4) TRM 478 22.69 f 2/ 2)

(

j GROSS BETA NOT ESTAB 8.07 - 37.31 9.82 - 15.50 6 7.98- 37.31 l

GACMA (GELI)

! 6 0.01( 1/ 21 2 VALUES <LLO (

NOT ESTAB O.014 1/ 43 TKM 477 CO-60 0 01- 0.01 0.01- 0.01 2/

4) TRM 478 0.09 ( 1/ 23 0.068 2)

CS-137 NOT EST AB 0.05( 3/ 0.10 (

0.09 - 0.09 0.02-0.02- 0.09 21 5.40( 2/ 23 8.51( 4/ 4) TRM 478 14.17 ( 2/

K-40 NOT ESTAB 2.95 - 25.40 4.49- 6.30 2.04- 25.40 0.90( 2/ 23 0.634 2/ 2) (

NOT ESTAB 0.72 ( 4/ 4) TRM 477 81-214 0.74- 1.05 0.53- 0.72 0.47 - 1.05 23 0.954 2/ 2) 1.14 ( 4/ 4) TRM 478 1.34 ( 2/

BI-212 NOT ESTAB 0.85 - 1.83 0.91- I.00 (

0.68 - 1.83 2) 0.694 2/ 21 0.81 8 4/ 4) TRM 477 0.984 2/

PB-214 NOT ESTAB 0.78- 1.16 0.57- 0.79 0.51 - 1.18 23 0.79( 2/ 23 1.01 ( 4/ 4) TRM 478 1.22 ( 2/

PB-212 NOT ESTAB 0.81 - 1.63 0.71- 0.86 0.62- 1.63 2/ 23 TRM 477 0.934 2/ 2) 0.6 34 RA-226 NOT ESTAB 0.72 ( 4/ 4) 1.05 0.53- 0.72 g 1.05 0 74-0.47 - 2/ 2) 0.88( 2/ 23 RA-224 NOT ESTAB 1.07 ( 4/ 4) TRM 478 1.28 ( ' l.66 0.88- 0.89 0.69- 1.66 0.91 -

2) 0.248 2/ 2) 0.30 ( 4/ 4) TRM 478 0.36 ( 2/

TL-208 NOT ESTAB 0.24 - 0.49 0.22- 0.26 0.19 - 0.49 23 0.818 2/ 23 0.994 9/ 4) TRM 478 1.214 2/

AC-228 NOT ESTA8 0.81 - 1.60 0.7g- 0.86 ,

0 58- 1.60 1/ 2) 2 VALUES (LLD 2.208 1/ 4) TRM 477 2.20(

PA-234M NOT ESTAB 2.20- 2.20 2.20- 2.20 2/ 2)

4) TRM 477 0.53( 2/ 2) 0.33( i SR A9 NOT EST AB 0.31 ( 4/

0.C4- 1.03 0.20- 0.46 6 0.02 - 1.03 2/ 23 4/ 4) TRM 477 0.14( 2/ 2) 0.084 SR 93 NOT EST AB 0.13 4 0.16 0.01- 0.15 0.16 0.12-6 0.18 -

a. Nominal Lower Limit of Detection (LLD) as described in Table 3. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

Mean and range based upon detectable measurements only.

b.

I

RADICACTIVITY I CLAM FLESH PCI/G - 0.337 BQ/G (DRY WEIGHT) t NA*E Cr FACILITY _1(guOYAH ___ 00CXET NO. 50-327.}Z1 L O C , T 10 t. 3r FACILITY HAMILTgN [L33(11[( _ _

REPORTING FER10D_1981 t TYDE t%D LJ.E4 LI*IT ALL CONTROL huMbER OF TOTAL '.'J Pb E - FF INDICATOR LOCA IONS La(ATig3_.1TH HIEH(ST ANNtt AL MLIN_ LOCAT1015 N0hR00 TINE a or AAALYSIS 'ETECTION*

J MEAN ( NAME MEAN (F f MEAN (F Y REPORTED

_.lliFS3M[g __[((() 1ANG({l __ Q11Tig E ANQ_Q{nr[ LION RANEL RAP,G[

4/

MLA1Qg(MENTS G4355 ALPHA 0.109 2.40( 4/ 4) TRM 4*3 82 3.584 2/ 23 3.524 4) i 1.26- 4.s4 2.33- 4.64 2.21- 5.99 3RSSS BETA 3.190 4.714 4/ 43 TE M 4?3 4 9 83t 2/ 23 7.79( 4/ 4) 3.3T- 16.59 3.07- 16.59 5.68- 12.12 e GA4MA (GELII e

CO-oD 0.06C G.21( 3/ 4) TRM 4*0.62 0 228 2/ 2) C.14( 1/ 43 i 0 18- 0.24 0.19- 0.24 0.14- 0.14 C5-137 0.08C 9 VALUES (LLO 0.14( 1/ 48 0.14- 0.14 .

N3-95 0.370 4 VALUES <LLD 0.324 1/ 41 0.32- 0.32 C3-iB 0.070 0.26( 1/ 43 TPM 483.4 0.264 1/ 2) 4 VALUES (LLC 0.28- 0.24 0.28- 0.28 K-40 NOT ESTA9 1 53t 4/ 4) T*M 450.02 2.28( 2/ 23 1.72( 4/ 4) 0.00- 4 22 0.35- 4.22 0.52- 2.42 BI-214 NOT ESTAB 0.31( 4/ 4) TRM 4AQ.62 0.62( 2/ 2) 1.25( 4/ 43 0.48- 1.12 0.56- 1.C7 0.42- 2.47 P3-214 NOT ESTAS 0.83( 4/ 43 TRM 463.4 0.928 2/ 25 0 714 4/ 4)

C.44- 1.41 0.44- 1.41 0.39- 1.12 P3-212 NOT ESTAB 0.08( 3/ 43 TEM 493.P2 0.104 2/ 23 0 134 4/ 43 0.04- 0.16 0.04- 0 16 0.09- 0.17 RA-225 NOT EST AS 4 VALUES <LLD 1.08( 1/ 43 1.08- 1 0F TL-2Ch NOT ESTA9 0.06( 3/ 4) TRM 493 4 0.07f 1/ 23 0.05( 2/ 4) 0 35- 0.3' O.07- 3 07 0.01- 0.0*

AC-228 N37 ESTAB 3.30( 2/ 4) T8 M 4e3.4 0.33( 1/ 23 0.49 1/ 4) 0.28- 0.33 0.33- 0.33 c.49- 0.49

a. Nominal 1 Amer Limit of Detection (LLD) as described in Table 3.
b. Mean and range based upon detectable measurements only. Fraction of detectable measurements of specified locations is indicated in parentheses (F).

S

52 .

m s

w e

e e

m W

.C u

V3 0 a >

ta. 2 0 2 h q

O M l.J a.J g t= e= E<

M 3 % h.4 O L.A O O E "

ED a dL O E 2 n.J M 30se "e

W 22 W 4 E 0 v.4

,= .= ,. a m en m ,= m .C g a. e e e e e e e e e e e e y e M @ N O e* C e= N #

o C NO NO P= to I

a oJ ri .J N. N. N. O.'

e N +

.J a O. ea ta e.4 e.e N. M. . O. . ,

%e %ov Nov  % 0% 0%e %o%o% 0%80 0%**% 0%es c l an & v e N e e Pe e og me M O '

ei H A,a e ef3 e **

P=' M M 44 N O 8

.J oOw 2 en# W W W g u

so O EM=WD 3 3 o e . >> 01.,4 w I we .J wa .J w 3 w 0 w I w I w I w awE ew eN Iw 4 = 8 4 & ** *=* e G' e4 o g 2 et 2 2$ =a e e4 N M at M P= 4 M GD 'O P= 'O th C3 'O *=8 M O' o o @**

O 6.J Q u eg eats lgn N 60 oo> ** O 3e

. e eeo o. M. ea . .** O. e* .O e . o. . . . o. N. N eN. N. O. O. l e e e e 2,

.a uCw, sE e e ,n ooe oog ooooooooooooooMMooM M w Oc **

.* i2 U

  • >F m kJ K 3C O a as an a en en a e. an a as w u g, en su. mm an as O N N N CJ N r. N tJ CJ N O ieJ N N N N N sN 89 u* P=

P= c N N 4 e M to 80 0 4 e4 m e  :"'h g o se O'e c so e4 N ** o m @ N u w P=

o. e e e e . e N. e e e g s e M. C.3 e e t=.  % ee
  • = 2.tJ LDl 22 e4

=a.J  % 4 %

N

@ %o%

we og o % C3 % o % o %saen % r > %

N we N N N o %ceo %seh %NC5 %og ee % ee e4 g

J 9

Z 1l4 4 v

h g

.J ha 43 M

di a 4s3 E 4 m

3 w 6 ** 8

  • 9 w I w 0 w 8 emp 1 w $ ** $ w 0 up I w $ w 4 w $ * $w I W

I t.J

>= P= f* U N N N N ce P=

  • e #6 P= e4 ** CJ 4 e O e IP W J @ O' e o e e @ tL P*02P= g is M O t' e ed Q o o en o en en eo o ** o eoeg c4 <3 e4 o. 90, so e @ N 28, 3 > as P= P= 4 F*

e e e e eeoee.eeeeeeoeeoeoeee e e e o e gg d T .P Q f3 e 80 o o a3 o o o o o o O Q o o o o o o C3 o o n o =e ** P* P* M es e4 D

I .a (3 > C 4 I 'J w w &

. y e g

P iS I o

~ s o u e 00 .3 kA ene WI *O N

  • m v;0 T =4 V- VI Of T L.J *. P= d I w 1

> e # > L C1 C

.J N N C N m *= <J ' 2*]v * *f 71N N 84 en e a e e x e e e 4 0 e >- e wt 'a 2 wi s, u) e. ' 'd

  • u n F 4 e e e. <r. e e e e e . e e eq e e so e

r n 80 o o n ri w) w) a ct W

u o. . , .c e,, .< , so. oO.. o.

, n, , ., s m. ..

c.

. e e e e e e e e e e e e ed he

= e4 2 e e e e 4 She C3 0 0+4 4 r r 3- t 9

% 44 > K E E E E E E E E 3 3 1 h i s =t W & E w W W W e a T w W ,

d m V ME W W W

>- > > > > e.- g >,

u C0 =4 >= >- > >= > >- > p. t- e.

we .-+ l EL A of C i

' *O O i M 8= m en em em a= mm a= mm. am a as an ,= c. ,= jg i l .

e e e e e t e e e e e e e e e e ,< a E 2 m a g? e .-e p. 6. c C P* A eq ca e e dp me e en an r t.

4 fu eg te

    • P= 09 O r3 e,e c ** e6 N,

.e t

e e e e e e en. . e e e e e

>d  % eNO  % n % ce % o %

es o % n %No %eo % ec3 %No %Ne, %en % ce e

eg %. e a- N o

$$a e4 e se m to 1 {I u O=t ta.4 sl3 4 4 et l 2 3 .J O g

>tc J 22 sa ri* es W w I ** I w I w 3 w 3 w aw g w ew g w p w g w I w g . g . g w g Ole-31.J1 ts 4.J 0 P= >= @ 4 f4 M rw N 4 e e e N P e .c N,e @ ee4 n == e.o.2 m sti P= e t, e N o an eO.

a e4 T seN $3 3 ce e

J, J3 N rJ cle= >r e es o o e r1 e m. o. oerw e ooen e oeNee.4 e e e e . e e e eg o e e e e e v4 uf J {r =t P.e f*.c4. e

t. & c4 e. 88 v,1 1 u o c.a e p3 n n e e a as o u .3 o o n c2 y rs o o e e i t- <J e n e4 g y

? I' .* o.eg

> 0 w 4.s t* u e e-.> .J.

yW 'O

.J aa mc e

ua *- M e dOa

= = = / W "3

.s u 3 C m c n o c. O at ce == c o o o ec o cm o o m cc e

o ** N 4 ** O o O = 0 N 4 -a o u

,u4 e k L., .2 6 >- en O v, m Q 4. u C. P* ) O e. S r* re s* b f. O 7 em e e @ eJ. e

,G M 44M e P'e= 4 O M e e e e 6 E L4 ,J n

  • wc w > _A rm o a n y o e o o u o o ia 6n e.

e3 1

3 sf 7 r0 O

5

.J L.a %

C3 g

>=

a Z

n 7"

w e,

2

.k y

3 d a

j e*

d G. *r (t. (p ]W .

J u WV

  • MC
  • -* g gg C O T >* O ef C

.J Jir 3. W L.J Z * ~ 'd j *d C

  • T ~3 > F (* 6 3', ON e' .J G J LeJ 13 -

e N s- p e kjl W at o a 33 w P= e N .t' o M e ce ** es e4 N o- re or) 4J26 ee aa @ N N PJ P N PJ og ft

>- a 4 #r se M 4 k >= L.A EA to 4

T B O e 0 "pr 8 0 0 ' re m 8

4 4 I

.3 et e 4

.r

  • *
  • i 94 I Y C M >< o=

C ta fk l O C- g 3'l rJ a sv o- i M .r l

>C l& K d u u y ' 5' 1'b . it i of

@ +4 I(S Lt LS s

- --- -- ,- - - w .,w,

l Figure 10 53 R ESER VOIR MONITORING NETWORK SEQUOYAH NUCLE AR PL ANT DAYTON (MILE 503.6,OAYTON)

MILE 497 MILE 496.5 b

SODDY (LIT TLE SODDY CREEK MILE O.5*

1 SODDY-DAISY)

DAISY SEQUOYAH MILE 485 NUCLEAR PLANT MILE 483 4 MILE 480B MILE 478 x

CHICKAMAUGA MILE 477 DAM (MILE 470.5, E.1. DUPONT)

NILE 4 73.2 l

, MILE 47 2.8 1

l (M!LE 465.3, CHATTANOOGA) @ SHORELINE SEDIMENT l e _ AUTOMATIC WATER SAMPLER (MILE). DRINKING WATER SOURCE l

0 5 MILES

I I I I I I I I I I I 1. I I i l BET C IVITY I IN SURFACE WATER _

'. '6 - SEQUOYAH NUCLEAR PLANT Preoperational Phase Operational Phase

.E E 5-ff

g. g l i  !

'- I ^;;;;:tionalPhase _ _ _ _ _ _ _ _

.]' __ __ _

i

!.~,_ i -

l -

l 2_

4 t

i i ,

t_-

l

55 Quality Control A quality control program has been established with the Tennessee Department of Public Health Radiological Laboratory and the Eastern Environ- l nental Radiation Facility, Environmental Protection Agency, Montgomery, Alabama.  !

Sanples of air, water, milk, fish, and soil collected around nuclear plants are forwarded to these laboratories for analysis, and results are exchanged

( for comparison.

I

{

l I Data Analysis 1

(

)

Data measured at the control stations for each medium were averaged for each sampling period. In order to describe the distribution of control I

station data, a mean, standard deviation, and 3-sigma limits were calculated.

We can expect that background concentrations would be distributed within these limits. This provides the basis for comparing control and indicator data. If j the indicator data fall within the 3-sigma limits defined for control data, we 3 conclude that the indicator data were not significantly affected by the nuclear plant. If the data do not fall within the limits, we will perform further analyses to determine if the difference is attributable to the nuclear plant.

1 Conclusions j

i  !

A vast majority of the indicator station data was~found to be within the distribution defined by the control station data. The data analysis

, software identified concentrations slightly exceeding the limits of the control

' station data for a small number of radionuclides in samples for indicator stations. Many of these values may be discounted because the error reported 1 by the analysis program was greater than the calculated concentration. The remaining isolated, elevated concentrations may be the result of fallout,

fluctuations in the existing environment, computer program artifacts, or

? analytical errors. The same type of isolated high values occurred in the.

l control station data and may be attributed to the same sources.

, Increased levels of radioactivity were observed in rainwater, air

[ particulates, heavy particle fallout, and in vegetatica in the winter and i

spring following the atmospheric nuclear weapons testing conducted by the Republic of China in mid-October 1980. This increase vas seen in control stations as well as indicator stations. ThegrimargSradioisotogesidentified 5 Nb, 131I,' 40Ba-La, and in the atmospheric media from this test were 2r,

! 103Ru.

i Dose estimates were made from concentrations of radioactivity found j in samples of environmental media. Media sampled include, but are not limited to,-air, milk, drinking water, and fish. Doses estimated for persons at the l indicator locations were essentially identical to those determined for persons at control locations. Greater than 99 percent of those doses were contributed w r- ,vi -sw-- w-s - - --e.cv4,* v-- m r -+wvvw-w,y s-i---s- v-- y- --wvw -- --

www - - - w --,i-,y-v - y w .y- w-

56 ,

by the naturally occurring radionuclide potassium-40, and by strontium-90 and cesium-137 which are long-lived radioisotopes found in fallout from nuclear weapons testing conducted over the last several years.

From the above analysis of'the data and from the trend plots pre-sented earlier, it is concluded that. there were no measurable increases in

! environmental radioactivity attributable to the operation of Sequoyah Nuclear Plant during 1981.

i 0

TEN.NE95EE VALLEY AtJfMORITY 1

NM A Cu""YP ha" MUSCLE SHOALS. ALABAMA 35GGO l River Oaks Building l

l May 3, 1982 I C > ,

N -; C

,  ;- CD x 2:=- 1" Z

-< Z 'O N O

.[* x

p CN

=

.~ .

.a. O..

e c  ;'*

U.S. Nuclear Regulatory Commission c/o Regional Administrator p f

Region II [d/gp1 -

Attention: A. L. Cunningham Suite 3100, 101 Marietta St Atlanta, GA 30303 The enclosed report No. TVA/0MS/0HS-82/8, " Environmental Radioactivity '

Levels - Sequoyah Nuclear Plant - Annual Report - 1981," is furnished for your information and use.

Very truly yours, l

R. B. Mar ell, Chief Radiological Hygiene Branch Enclosure

)"

1 9 > ?) ,

,s S

gyy@* c'0 T ?s S6ss a An Equal Opportunity Employer

. _ . . . . . . ._ . . . . _ _ _ ._.__._)