ML20096G172
| ML20096G172 | |
| Person / Time | |
|---|---|
| Site: | Fort Calhoun |
| Issue date: | 03/22/1977 |
| From: | Cognizant A, Koziol J, Stewart J ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
| To: | |
| Shared Package | |
| ML19303E845 | List: |
| References | |
| TR--MCD-1, TR-0-MCD-001, NUDOCS 9205220216 | |
| Download: ML20096G172 (168) | |
Text
f
- g..
-l
-l OMAHA PUBLIC POWER DISTRICT
.g FORT CALHOUN STATION UNIT no.1
'I L'
evaluation of baseline I
Specimens I
amme I
ee REACTOR VESSEL MATERIALS g
IRRADIATION SURVEILLANCE PROGRAM I
g
- POWER E""*
I pearsa agg, n"
- 11 [.
-l TR-0-MCD-001 l
-OMAHA PUBLIC
. POWER DISTRICT FORT CALHOUN STATION UNIT NO. 1
' EVALUATION OF BASELINE SPECIMENS REACTOR VESSEL MATERIALS IRRADIATION SUPVEILLANCE PROGRAM Prepared by:
=
JA!
.Date:
,3 - / / - 7 7
.A.Ragl,CogpantEngineer Approved by:
.0 ate:
I'/8'77
. J. Ko:' 1, Pr '
Manager
/4 Date: /d TApproved by:
.,( R'. Stewart, Virbetor, interials -
MO-b -
nd Chemistry Development Approved by:
/
Cate:
.3 - 2 2 ~77
=
A. G. Sch'oedorunn, OPPD Project Engineering-Services-Manager Nuclear Power Systems COMBUSTIO.'l ENGINEERING, INC..
Windsor, Connecticut
i List of Symools anc Abbreviatjons a
= Crack length a/w Crack depth ratio
=
C,[.
= Nondimensional specimen compliance a
C Charpy V-Notch
=
y DW
- Drop Weight E
Energy to cause fracture a
af Edial Energy recorded on pendulum dial
=
E Available impact energy
=
g IC Instrumented Charpy impact
[
=
y J
J-integral
=
K 7 Fatigue pre-cracking stress t,ensity factor
=
K Id Dynamic fracture toughness
=
KBd Dynamic fracture toughness by equivalent energy method
=
KJd Dynamic fracture toughness by J-integral method
=
KIR Reference fracture toughness
=
NDiT Nil-ductility transition temperature
=
P Yield load
=
GY P
Maximum load
=
g P
Fracture load
=
F PIC Precracked instrumented Charpy
=
y P*
Equivalent energy lead
=
Longitudinal orientation RW
=
R.A.
Reduction of Area
=
RT Reference Temperature
=
NDT Dynamic yield strength c
=
yd Static yield strength c
=
ys a
Time to yield t
=
gy Time to P t
=
g M
T Brittle transition temperature
=
g T
= Ductility transition temperature g
T
= Ductility temperature D
= Total Elongation J
= Uniform Elongation Initial impact velocity V
=
g Specimen thickness w
=
Transverse orientation WR
=
vii
}
\\
l~
TABLE OF CONTENTS Section No.
Title Paae No.
I SCOPE 1
II
SUMMARY
3 III BACKGROUND 7
IV liATERIALS 17 V
DROP WEIGHT TEST RESULTS 27 VI TENSILE TEST RESULTS 29 VII CHARFY IMPACT TEST RESULTS 4S VIII PRECRACKED CHARPY TEST RESULTS 81 IX DISCUSSION 119 Appendix A Drop Weight Tests - Description and Equipment A-1 Appendix B Tensile Tests - Description and Equipment B-1 l
1 Appendix C Charpy Impact Tests - Description and Equipment C-1 f
t-l I
~
[
t LIST OF TABLES Table No.
Title Page Nr 11-1 Summary of Material Data 5
IV-1 Plate and Weld Metal Chemical Analysis 18 IV-2 Summary of Specimens Available For Preirrudiation Testing 19
-V-1 Drop Weight Test Results 27 VI-1 Tensile Properties 30 through throut VI-4 33 VII-l Impact Test Results (Base Metal - WR)'
46 VII-2 Instrumented Impact Test Results (Base Metal - WR) 47
'VII-3 Impact Test Results (Base Metal - RW) 48 VII-4 Instrumented Impact Test-Results (Base Metal - RW) 49 VII-5 Impact Test Re:alts (Weld Metal) 50 VII-6 Instrumented Impact Test Results (Weld Metal) 51 VII Impact Test Results (HAZ' Metal)-
52-VII-8 Instrumented Impact -Test Results (HAZ= Metal) 53 VIII-1 Precracked Instrumented Charpy Impact Test Results 82 through through VIII 85 IX-1 Summary of +bterial Data 124 IX-2 Instrumented vs Standard Charpy Impact Data 125 L
L n
l-iv
3 LIST OF FIGURES Fioure No.
Title Pace No.
III-l Idealized Load-Time Record for Instrumented 11 Impact Testing III-2 Idealized Energy-Time Record for Instrumented 11 Impact Testing III-3 Variation in Impact Load with Test Temperature 12 for Instrumented Charpy Impact Tests III-4 Idealized Load vs Time Plots for Instrumented 13 Charpy Impact Tasts IV-1 Metallography 21 tnrough through IV-12 26 V-1 Drop Weight Specimen Fracture Surfaces 28 VI-l Stress - Strain Record of Tensile Tes 34
+hrough through VI-12 39 VI-13 Tensile Specimen Fracture Surfaces 40 through through VI-16 43 VII-l Impact Load vs. Temperature - Base Metal (WR) 54 VII-2 Impact Energy vs. Temperature - Base Metal (WR) 54 VII-3 Lateral Expansion vs. Temperature - Base Metal (WR) 55 VII-4 Shear vs. Temperature - Base Metal (WR) 55 VII-5 Impact Load vs. Temperature - Base Metal (RW) 56 VII-6 Impact Energy vs. Temperature - Base Metal (RW) 56 VII-7 Lateral Expansion vs. Temperature - Base Metal (RW) 57 V
.~
LISTOFFIGU3,E_S.(CONTD.)
S Fiaure No.
Title Pace ik)
VII-8 Shear vs. Temperature - Base Metal (RW) 57 VII-9 Impact Load vs. Temperature - Weld Metal 58 VII Impact Energy vs~. Temperature - Weld Metal 58 VII-il Lateral Expansion vs. Temperature - Weid Metal 59 VII-12 Shear vs. Temperature - Weld Metal 59-VII-13 Impact Load vs. Temperature - HAZ f atal 60 VII-14 Impact Energy vs. Temperature -HAZ Metal 60 VII-15 Lateral Expansion vs. Temperature - HAZ Metal 61
-VII-16 Shear vs. Temperature
_HAZ~ Metal 61 VII-17 IC Load Records and Fracture Surfaces 62 y
through throug _.
VII-34 79 VIII-i_.
PIC Load Record 86 y
through through VIII-32 117 VIII-33 Fracture Toughness Values for Dynamic PIC Tests-118' y
i-vi
~1 List of Symools and Abbreviatior.s a
= Crack length a/w
= Crack depth ratio C
= Nondimensional specimen compliance 3
C
= Charpy V-Notch y
= Drop Weight E
= Energy to cause fracture af E
= Energy recorded on pendulum dial dial E
= Available impact energy g
= Instrumented Charpy impact y
J
= J-integral K
= Fatigue pre-cracking stress intensity factor 7
K
= Dynamic fracture toughness Id K
= Dynamic fracture toughness by equivalent energy method Bd K
= Dynemic fracture toughness by J-integral method Jd K
= Reference fracture toughness IR NDTT
= Nil-ductility transition temperature P
= Yield load gy P
= Maximum load M
P
= Fracture load p
= Precracked instrumented Charpy y
P*
= Equivalent energy load RW
= Longitudinal orientation R.A.
= Reduction of Area RT
= Reference Temperature NDT od
= Dynamic yield strength y
c
= Static yield strength y3 t
= Time to yield gy t
= Time to P g
M T
= Brittle transition temperature B
T
= Ductility transition temperature y
T
= Ductility temperature D
= Total Elongation UE
= Uniform Elongation V
= Initial impact velocity g
w
= Specimen thickness WR
= Transverse orientation vii
1 I.
SCOPE Combustion Engineering has developed a detailed program for the Omaha Public Power District (OPPD) to monite-the irradiation induced mechanical property changes of the Fort Calhoun Statier.
Unit No.1 (Fort Calhoun) reactor vessel beltline materialsO).
The periodic examination of irradiated surveillance capsule materials serves to a:curately measure the mechanical property changes experienced by the reactor ves 31 under ser t1ce conditions.
As a prerequisite for this evaluation the preirradiation or baseline properties of the surveillance materials must be established.
The results of the baseline evaluation of the Fort Calhoun reactor vessel surveillance materials are presented ui this report.
The materials included in this program are base metal, weld metal and heat-affected-zone (HAZ) metal.
Tests conducted on these materials include drop weight, tensile and Charpy impact (both standard and instrumented).
In addition to these besic tests, standard Charpy specimens are fatigue precracked and tested to detemine fracture toughness parameters for the materials.
The basic chemistry analyses for the surveillance materials and metallography characterizing the structure and fracture surface appearances of typical test specimens are also reported.
The three appendices to this report contain infomation concerned with t!1e test equipment used to perform this study.
The information provided by this program wil: ?nable OPPD to evaluate the postirradiation surveillance results of the Fort Calhoun reactor vessel using the criteria of 10 CFR 50, Appendix G, " Fracture Toughness Requirements" and Appendix H, " Reactor Vessel Material Surveillance Program Requirements".
By using instrumented Charpy impact test techniques and by incorporating precracked Charpy specimens in the tests, extensive 1
quantitative fracture toughness data characterizing the reacto-
- ssel materials have been obtained.
The fracture mechanics approach to anal: ting pressure vessels has already ceen adopted by t% ASME and is included in the ASME ailer and Pressure lessel Code Section III Appendix G, " Protection Against Nonductile Fracture".
This code uses quantitative fracture toughness data to set temperature and pressure parameters which insure safe operation of the reactor vessel.
The instrumented Charpy impar.t test is currently under consideration by ASTM.
Subcommittee E 10.02 has decidrtd to include the instrumentt -
Charpy test as part of a revision to ASTM E-184, " Effects of High Energy Radiation on the Mechanical Properties of Metallic Materials",
c and Subcommittee E 24.03.03 is evaluating the use of the instrumentec Charpy test on precracked Charpy impact specimens to obtain dynamic fracture toughness (Kid) values.
This test has also been utilized in materials testing programs sponsored by the joint PVRC/MPC Task Group on Fracture Toughness of Materials for Nuclear Components and the Electric Powe:. Research Institute (EPRI).
The importance of this program can not be overemphasized because these data form the basis for future testing to be conducted in the Fort Calhoun surveillance progrem.
REFERENCE 1.
" Recommended Program for Irradiation Surveillance of the Fort Calhoun Reactor Vessel Materials," Combustion Engineering, Inc.,
Feb. 25, 1969, transmitted by letter C-E-750-1011, March 26, 1969.
2
l 1
1 II.
SUMMARY
The Omaha Publit Power District has initiated a reactor vessel irradiation surveillance program for the Fort Calhoun reactor vessel.
As part of this program, the baseline or preirradiation material properties were determined for the pressure vessel materials, including the base metal, weld metal and heat-affected-zone (HAZ) metal.
The material properties were characterized by drop weight tests, tensile tests, instrumented Charpy impact v ts (IC ) and instrumented tests on precracked Charoy specimens y
(PIC ).
Further material characterization was provided by metal-y lographic examination.
A sunmary of the baseline test results is provided in Table 11-1.
Major results from each testing phase are reported, including Charpy impact data, drop weight NOTT and static ana dynamir room temoerature yield strength values.
_A,,1,1,,, reported Charpy imoact upper shelf energies exceed the 75 ft-lb minimu't requirement of 10 CFR 50, Appendix G.
The low preirradiation RT,7 and NDTT (24*F or less) further demonstrate the high degree of toughness of the Fort Calhoun surveillance materials.
Dynamic fracture toughness data were determined from precracked Charpy impact tests.
The fracture toughness values for each of the surveillance iraterials exceed the lower bound teuahness requirement of the ASME Code Section III, Appendix G, reference
,c,u rv e.
It is evident, by comparison of the Static and dynamic yield strength values (Table 11-1), that the reactor vessel materials possess sicnificantiv hichar yinia eterngthe under dynamic loadino conditions than under static loads.
The Fort Calhoun surveillance materials m. fabricated from FA 533-B, Class i steel plate and submerged arc weldments.
These materials represent the reactor vessel beltlin - regior, and meet ASME Code,Section II and Combustion Engineering (C-E) chemical composition specification.
3
Metallograonic examinations were performed on base metal, weld metal and heat-affected-zone samples from the surveillance progran The base metal exhibited a tempered bainitic structure with an average ASTM grain size of 10.
The weld metal was a fine grained ferritic structure.
The heat-affected-zone showed a transition structure from tempered bainite of the base metal to fine ferrite of the weld metal.
An inclusion content determinntion, per ASTH E 45-74, was performed on the base metal.
An average of four (4) inclusions per field were counted on a transverse microspecimen; the longest inclusion measured on a longitudinal microspecimen 1
was-0.0045-inch.
The orientation of the inclusion stringers accounts for the lower transverse Charpy upper shelf impacc energy typically found 'in plate material.
N 9
4
ime TABLE II-1 SUPEARY OF MATERIAL DATA 30 ft-lb 50 f' - lo 35 Mils Lat.
Ri Yield c
d d
C Upper Shelf Fix Fix Exp. "ix tiDTT RT ength hsi) y ilDT Material and Code (ft-1b)
(*F)
( F)
(*F)
(*t)
(*F)
Static Dyr.amic l
Base Metal Plate 121 36 78 58
-20 18 69 99 D-4802-2 (WR)
Base Metal Plate 137.5 26 52 34
-20
-8 71 99 3
D-4802-2 (RW) b h
Weld Metal 97.5
-18 2
-12 O
O, 7g gg D-4802-1/D-4802-3 m
t D
HAZ Metal 82
-70 84 58 G) 24 67 106 0-4802-2 i
4 RT(DT for the RW orientation is not valid per 10 CFR 50, Appendix G and is only reported far information.
a i
b Estimate 1 per Branch Technical Position MTEB 5-2, where NDTT is the higher of 0*F or tw 30 f t-lb i
fix t -perature, in the case where drop weight tests were not perfonned.
Determined from average impact energy curve.
c d
Determined from lower bound curve.
P
I 111.
BACKGROUND Neutron induced changes in the mechanical properties of ferritic materials are the result of lattice distortion and defect clusters in the material.
These distortions and defect clusters act to strengthen the material at the expense of ductility.
It is this decrease in ductility which is of major interest to reactor pressure vessel designers.
Ductility and :naterial toughness are characterized by several l
tests and test parameters.
Neutron induced changes in the mechanical j
properties are determined *.; comparing test results of unirradiated specimens with results of irradiated specimens.
One of the basic l
tests which demonstrates the tougnness of a material and specifically helps to define a ductile to brittle transition behavior is the drop weight test.
The drop weight test uses a large test specimen (refer to Appendix A) to establish the Nil-Ductility Transition (NDT) Temperature of a material.
At and below this temperature, the material will fracture in a brittle manner under certain conditions of triaxial stresses.- Because these specimens are large, they cannot easily be placed in a reactor environment to be irradiated.
Therefore, the drop weight test results are :orrelated with Charpy V-notch impact test -(C ) results to establish a reference temperature y
(RTNDT) which can be compared with a similar postirradiation test parameter (adjusted reference temperature) based entirely on Charpy impact data.
The comparison will show a temperature-increase for this parameter as the specimens are exposed to higher neutron fluence.
In other words, the reference temperature increases with irradiation exposure.
The RT and adjusted reference temperature concepts were introduced NDT with the addition of Appendixes G and H to 10 CFR 50 (1973).
Prior to that time, material toughness changes were evaluated by noting the temperature change between unirradiated and irradiated Charpy; data measured at the 30 ft-lb fix or C impact energy level.
y 7
This difference was labeled SNDTT for nil-ductility trt.nsition temperature shift.
The newer programs use RT and 30 ft-lb fix NDT techniques together in an attempt to establish a relationship between the two so the RT method can be applied to past data.
NDT The advantage of the RT method is that it incorporates drop NOT weight test data and specifically defines what the toughness properties of the mat rici must be at RT NDT*
Accordino to paragrrph NB-2331 of the 1974 edition of the ASME Boiler and <
ert Vessel Code, Section 111, RT is established NDT as fol *.ws:
At a tempwature not greater than (TNDT + 60*F) test three C specimeas, each of which shall exhibit at least 35 mils y
of lateral expansion and not less than 50 ft-lb absorbed energy. When these requirements are met, T is the reference NDT temperature, RTNDTI in the event that the above requirements are not met, conduct additional C tests in groups of three specimens to detemine y
the temperature T at which they are met.
In this case, cv the reference temperature RTNDT = T
- 60*F.
Thus, the cv reference temperature, RTNDT is the higher of NDT and ('f
~
cv 0*F).
When a C test has not been performed at-(TNDT+60*F),or y
when the C test at (TNDT + 60'F) does not exhibit a minimum y
of 50 ft-lb and 35 mils lateral expansion, a temperature representing a minimum of 50 ft-lb and 35 mils lateral expansion may be obtained from a full C impact curve developed y
from the minimuta data points of all C tests performed.
y The adjusted reference temperature is defined in 10 CFR 50, Appendixes G and H.
Accarding to 10 CFR 50, Appendix H:
8 l
l l
I The adjusted reference temperature for the base metal, heat-affected zone, and weld metal shall be obtained from the test results by adding to the reference temperature (RTNDT) the amount of temperature shifts in the Charpy test curves between the unirradiated material and the irradiated material measured at the 50 foot-pound level or that measured at the 35 mil lateral expansion level, whichever temperature shif t is greater.
Another measurement of the neutron induced changes in mechanical properties is the change in the Charpy impact upper shelf energy.
The C tests measure the amount of energy required to fracture y
test specinens at a series of test temperatures.
There is a range of temperatures over which the specimen will fracture in a manner that is partially brittle and partially ductile.
Below this range, fracture is 100 percent brittle (100 percent cleavage fracture) and absorb,ed energy values are low; ebove this range, fracture is 100 percent ductile (100 percent shear fracture) and absorbed energy values are high.
The measured impact energy for the 100 percent ductile case is called the upper shelf energy.
As a material becomes irradiated and ductility decreases, its upper shelf energy may decrease.
10 CFR 50, Appendix G, specifies that reactor vessel beltline materials (those materials which
~
will experience a minimum 50 F shif t in RT ver the vessel NDT life) must have minimum initial upper shelf energies of 75 ft-lb unless it can be demonstrated to the Commission that lower values of upper shelf fracture energy still provide adequate margin for deterioration from irradiation.
The minimum upper shelf energy allowed af ter irradiation is 50 f t-lb, because this energy level is required to establish the previously mentioned adjusted reference temperature.
Tensile tests are also employed to characterize radiation effects on materials. The tensile test can determine the amount of radiation strengthening by comparing unirradiated test results with results from irradiated specimens.
9
Instrumented Charpy impact tests (IC ) add another dimension to y
the characterization of ductile-brittle-behavior in ferritic materials.
The standard instrumented Charpy test provides infor-i mation depicted by Figures III-l through III-4 These figures are representative of oscilloscope traces and data generated by specific tests.
Figure III-l is a load versus time plot which shows the yield and toughness behavior as a function of time.
The entire process, as shown, generally takes place in 5000 microseconds with shorter times experienced for low temperature tests.
Values for general I
yield load (Pg), maximum load (P ) and fracture load (P ) are g
p obtainable as indicated.
Figure III-2 shows an integration of the area under the load-time curve (Figure III-1) and represents the energy from initial impact to complete fracture of the specimen.
The integration process is performed electronically and the results are superimpost on oscill_oscope traces of the individual test records. The integration line starts at the lower left-hand corner of the trace and rises to.the right, peaking and leveling off at an energy corresponding to the total impact energy required for complete fracture of tne specimen.
This curve allows the determi-nation of energies corresponding to any specific time during the test.
l l
Figure III-3 is an idealized plot showing the yield, maximum and I
fracture loads (taken from a series of traces as shown in Figure III-1) plotted as a function of test temperature.
This represents-the toughness behavior o a given material such as base metal, weld metal, or weld heat-affected-zone material.
Four temperature regions are shown, each of-which-is delineated by a distinctly different fracture mode of the material.
The dotted line at the bottom represents a typical C impact energy versus temperature y
Curve.
l:
10
=
' I -
MAXIMUM LOAD (PMI qr YlELD LOAD (PGYI I
BRITTLE FRACTURE LOAD
/
(Pp) e
<t
. S i
H TIME TO YlELD TIME TO CRACK INITIATION l TIME TO UNSTABLE FR ACTURE
~
Figurel!!1 Idealized Load Time Record for instrumented Impact Testing i
TOTAL ENERGY 0
ENERGY TO MAX. LOAD tEaf)
I 3
. z w.
ENERGY TO YlELD (Egy)
/r l
l.-
TIME l
Figure ill 2 Idealized Energy Time Record for instrumented Impact Testing l
11 i-7.,..
.r.
s ~, - _ _. -........
-._....,.m..
I N \\
Ty N N \\
\\ h Pg4
-T g
B
's N
\\
F
\\
pGY al 9
g TD a
,/
P
/
p
/~ CHARPYIMPACT ENERGY CURVE
/
d
/
/
/
/
/
REGION 1 REGION 2 REGION 3 REGION 4 TEST TEMPERATURE Figure 1113 Variation in impact Load with Test Temperature for instrumented Charpy impact Tests 12
i O<
3
.1 1
TIME Figure lil.4A Temperature Region 2 O<
S TIME Figure 11148 Temperature Region 3 l
i o<
3 TIME Figure ill.4C Temperature Region 4 Figure 1114 Idealized Load vs Time Plots for instrumented Charpy impact Tests 13
i At extremely low temperatures, fracture usually initiates by a i
slip or twinning process in the first grain below the specimen notch.
An oscilloscope trace of the test result will differ from those idealized traces discussed and will appear similar to that of Figure III-4A, but with a much lower amplitude.
Fracture is completely brittle and the temperature range is indicated as Region 1 in Figure III-3.
When the test temperature is increased to the range of Region 2 (Figure III-3), the load / time trace appears as indicated in Figure III-4A.
In this region, the specimen acts primarily in a brittle manner, although there is a very small amount of plastic behavior.
For this case the fracture load is approaching the dynamic yield strength of the material.
The load read from such a trace is simply Pp - the_ fracture load.
For tests conducted in the temperature realm of Region 3, the i
specimen is near its brittle to ductile trans,ition.
In this l
region, the load time plot becomes' typical of Figure III-48 and the specimen fractures after yielding at maximum load.
Tests in temperature Region 4~ produce load versus time plots indicative of the idealized plots (also shown in Figure III-4C).
At these temperatures, the strain required to initiate cleavage fracture becomes so large that it surpasses the ductile fracture strain and fibrous tearing occurs.--
Figure III-3 also points out three temperatures of interest.
The brittle transition temperature (T )
ccurs at tha intersection of B
P values with the P curves.- Correlation with this _ value and g
7 the C energy versus temperature plot (dotted _line) shows that T y
B-compares with the start of the transition region of the Cy curve.
In other words, above T the Charpy test specim es start B
to show some ductile behavior so fracture above this temperature e
will occur after yielding is experienced.
The load versus time trace in Figure III-4B illustrates this-behavior.
16L- - - - - - - - -
I The second temperature. T. is called the ductility trar.sition g
temperature.
At this point there is a sharp rise in the maximum load and corresponding fracture tougnness.
Comparison with the C impact curve (dotted line) shows that this corresponas with y
the midtransition region.
Fracture will occur after maximum load (P ) is achieved at temperatures above T.
This is a result of g
3 fibrous tearing being experienced. The load versus time trace in Figure Ill-4C illustrctes this behavior.
The third temperature of interest is characterized by TD - the ductility temperature.
This point is defined by the intersection of the P curve with P At this temperature fracture is completely p
GY, ductile and corresponds to the beginning of the upper shelf on the Charpy impact curve (Figure III-3).
Any loss of ductility as a result of irradiation damage will cause these temperatures to increase.
The various regions of toughness behavior will also shift and occur at higher temperatures.
As mentioned in Section I, precracking Charpy specimens for instrumented impact testing enables quantitative fracture toughness data to be gleaned from the nualitative C test.
Among these y
data are K values representing a plane-strain or purely elastic
!d stress intensity factor and KJd (J-integral) representing a stress intensity factor for naterial which deforms in an alastic and plastic manner.
A third stress intensity factor, K Bd (equivalent energy), is similar to K D"t **PI 75 diff*"*"t Jd method of calculation.
The stress intensity factor, K, relates the magnitude of loading forces to the configuration and size of a crack in a body (within the limits of the linear elastic region).
Thus, the stress intensity factor may be interpreted physically as a parameter which reflects the redistribution of stress near the crack tip due to the introduction of a crack, and, in particular, 15 ee
-w-r
-s 7
r-w
it characterizes the crack instability conditi and field of deformation in a zone surrounding the crack.
Beyond the linear elastic region (i.e., at higher temperatures) the relation between the magnitude of loading forces and the crack shape and size (the stress intensity factor) is no longer valid.
However, the KJd and K Bd values approximate the stress field near the crack tip which would cause crack instability under certain loading conditions.
j l
ASTM E 399-74, " Standard Method of Test for Plane Strain Fracture Toughness of Metallic Materials," gives procedures and calculational methods for the determination of the critical stress intensity factor for linear elastic fracture.
Standard techniques to determine valid fracture toughness properties from a precracked Charpy specimen are currently being developed by ASTM E 10.02 and ASTM E 24.03.
Several techniques were developed in separate programs sponsored by the Electric Power Research Institute (EPRI) and the Pressure Vessel Research Conrnittee/ Metal Properties Council-(PVRC/MPC) to determine fracture toughness in both the linear elastic region (e.g., Region 2 in Figure III-4A) and the elastic-plastic region (e.g., Regions 3 and 4 in Figures III-4B andIII-4C).
The analysis of the Fort Calhoun precracked Charpy data employs the EPRI calculational techniques for kid' KJd and
-KBd*
E 16 a.
I l
IV.
MATERIALS i
l A.
Selection The specimens for the Fort Calhoun surveillance program were manuf actured from SA 533-B, Class 1 steel pressure vessel plate, weld and heat-affected-zone materials.
Selection of the candidate surveillance materials was restricted to the six plates in the intermediate and lower shell courses (I)
Selection criteria followed the general guidelines of ASTM E 185-66, " Standard Recorrended practice For Surveillance Tests For Nuclear Reactor Vessels".
B.
Chemistry The chemical composition of the plate and weld materials for the Fort Calhoun surveillance program is presented in Table IV-1.
The chemical analyses were perforined on specimens from the quarter thickness (1/4 T) locations.
As required by ASTM E 185-73, paragraph 4.1.3, the residual elements phosphorous, sulfur, :opper and vanadium are reported as well as other major alloying elements.
The chemical composition of the plate and weld conforms to ASME Cods,Section II and C-E specifications for SA 533-B, Class 1 material.
C.
Specimens The numoer of specimens available for testing and their orientation with respect to the major rolling direction of the plate are presente in Table IV-2.
The types of specimens included are drop weight, tensile and Charpy V-notch.
Additional information concerning these specimens is presented in the Appendixes to this report and in Reference (1).
17
- i TABLE IV-1 i
PLATE AND WELD METAL CHEMICAL ANALYSIS Weicht Percent Plate Weld Element D-4802-2 0-4802-1/D-4802-3 51
.23
.14 S
.014
.011 P
.009
.013 Mn 1.43 1.57 C
.22
.14 Cr
.04
.03 Ni
.48
.60 Mo
.50
.50 i
V
<.001
.002 Cb
<.01
<.01' B
.0003
.0002 Co
.007
.014 Cu
.10
.35 Al
.030.
.009 W
.02
.02 i
Ti c.01
<.01 As
<.01
.01 Sn
.002
.007 Zr
.002
.002 fL
.009
.012 c
F 4
42.
= 18
.A
.~
.2
TABLE IV-2
SUMMARY
OF SPECIMENS AVAILABLE FOR PREIRRADIATION TESTIf4G Ouantity of Specimens Type of Base Weld Specimen Orientaticn(,)
Metal Metal HAZ Total Drop Weight RW (Longitudinal) 16 16 Charpy Impact RW(Longitudinal) 30 30 f
WR (Transverse) 30 30 30 90 Tensile RW (Longitudinal) 18 18 36 WR(Transverse) 18 18 36 TOTAL 112 48 48 208
(*) With respect to the plates' major direction of rolling for base metal; with respect to the welding direction for weld and HAZ metal.
D.. Heat Treatment The heat treatment for the piste material consisted of austenitization at 1600' 150"F for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> ; water quenched and tempered at 1225'F 125"F for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
After a 40-hour stress relief at 1150'F 125'F, the plates were furnace cooled to 600*F.
The weldment received a fi::ai 40-hour and 30-minute stress relief at 1100'F to ll50"F.
E.
Material Structure A metallographic analysis was performed to provide a record of the microstructures of base, weld and heat-affected-zone metal.
This will be valuable reference information for subsequent postirradiation analyses.
t l
19
The pnotomicrographs shown in Figures IV-1 through IV-12 represent the base metal, weld metal and HAZ metal.
Figures i
IV-1 and IV-2 show the polished, but unetched base metal in both the transverse and longitudinal direction; these photo-micrographs were taken to determine the amount of inclusion content in the base metal, per ASTM E 45-74 An average of four inclusions per field were counted on a transverse mircospecimen; the longest inclusion measured on a longitudina micro was 0.0045 inch.
Figures IV-3 through IV-6 are repre-sentative of the tempered bainite structure of the base metal in the transverse and longitudinal directions.
This structure, with an average ASTM grain size of 10, is typical for SA 533-B, Class 1 thick section steel plate.
Figures IV-7 through IV-10 represent the weld metal in the transverse and longitudinal directions.
The fine grain ferritic structur.
with uniform carbide' distribution is typical for an automatic submerged arc welding process.
Figures IV-ll and IV-12 show the heat-affected-zone (HAZ).
The larger grain area is-the heat-affected base metal with its bainitic structure. The fine grain area is the weld metal with well dispersed carbides in the ferrite grains,
{
All specimens were prepared using standard metallographic
~
cutting, grinding and polishing techniques.
A Villela's
. solution was used to etch the specimens for structure determination, photomicrographs were taken at magnifications of 100x, 500x and 1000x.
REFERENCE 1.
" Summary Report on Manufacture of Test Specimens and Assembly-of Capsules for Irradiation Surveillance of' Fort Calhoun Reactor Vessel Materials", C-E Document CENPD-33 Proprietary Infonnation, dated November 15, 1971.
20
t, o
3 e
l 1
4
~
Figure:
IV-1 Base Metal (lfR) Siiowing Inclusion Stringer Content and Orientation.
Photo Shows Smail Amount of Stringers.
flot etched.
100x l
l l
l l
~
I l
c.
Figure:
IV-2.
Base Metal (RW) with Inclusion Distribution for this Orientation.
Not etched.
100x 21 ll,,
- - ~ ~ ~ -
- ~ ~ - - '
'- ~ ~ ~ ~ ~ - - ~ ^ ~ - - - ~ ~ ~
t!m;p v.,,
. e 9
- y
<'?,
t
... e q Q)
L
- v
' '; m n r
/,rm
- +
v.s
,. Egy 9),k-
. b,r,i&.1
. : :%z.i';
6, ** [.T @y:.j.
l$
k$th.kW~.'*%.CQ~f.':%/',l;.1(,*T N-e,..3... yv,u, 2
- s..
.. 1.;. n n,
a -.
H.sd.,.m,0,:D.6E#-
.,.; '. #.m.v' i
. fp;;.
y 4,
3, 9 >1 l.4, g ;d.s.
..vd. :t..:%,,,
JW'@..
~ ~. *l'ha '. 4.
3, t,
..c,t
.s
'. y,
.mt a
ej ' -
T4 l; iy k;ft v
2 4-P1:' a.)
64Q.C. y,$,
Figure:
IV-3.
Base lietal (WR).
Typical Tempered Bainite Structure of A533-B Material.
Vilella's Etch. 500x f
.. *,.W' '.T,
.t 5%
. 'qh'T'$N
- f. q 9 J. ;;i>~ 3. >
... i
~a j-r
'{.g.. y.. %Y' ;J
.l.
..'a.
?-
. O'N <
%.,[.,
I Q),'
- TiQwtR:.... n,
?,'
- f. 5 i
~
a 9
.,r
- 'u*.,
x ' g*
- g. hei iFr'
\\. [
e w.dg g
'(
4.'
/
e-
,w *..
t.
s g(;&;B.p.
s "'
fiy (4.f.iq.RTgh e
q
- r.,t
,, - (
.,f a
la s.
s.
c.
Qife; m.v. *4'
M' w, yg iy'
@ (k
, Tp;
(,'p' frU
,o m
Figure:
IV-4.
Base Metal (WR).
Enlarged View Shows Individual Tempered Bainite Grains.
Vilella's Etch, 1000x 22
_ =_
n hf.
-w&;ny)<p;g;c,'.
g.+:r
.. n.' :e.w.~ ": '.:x-q\\.,..
i s..
'W q.m p<-
....v< n;.4 c
a r
.. m \\
w
..,;p,,. y. L.; i,' -m j g
- .3 fp p> q
- .g;g %y. Q,,. 3 y
.r a, N,...
q... n,-g ;.'-,.::y.,
A
-...-;-f 6',
n
-a u,]g. :',,
,o
%i5%..a....
k,N
, D
?*.
f, Q0., g-,
6'?.
cT
( ff; Mk.. s.: /hh y
% (i P.i8
-l p.
'4'&. :. Q,,. Q.i='.h V (,E k:g I
gihi '.
4 4
v2 3.....u 4.e i
hN'N. A t.?l!. lhV
?
5.
N' Y..'l E
hg?~>r.*3 i
O/w
%. Me.%~)f>y.f:r?$,8
'l@yfy#".". #"
r 1
w.NN
. w.-, o '?@.'Egs.r ss~e.r\\
s & n* %r*%
'r
. 49.-
Figure:
IV-5.
Base Metal (RW).
Typical Tempered Bainite Structure.
Vilella's Etch. 500x C7
.f.
h,
- t. s
[.,
- E f! f '
na y ' r,.,,q% Y..,
/}
H.%&3,yJh'!;f,M':'r.' k t.. j
,e pu M -
J ;,Q+ s f
'(/y p.I.,['d
.[4,k,k ' (, c.
' I ' NY.
.g\\
p.
v..
. ~.,
p 2 ;. e.. e: k ' .
r h
~Y,. '-l,s d'h.,wr di'.'h'.
s'
- n. *. -
>g.
y
.Y :; n.:.
g
..- )%
- g,,. y,
-;.3-Q'-,* d. Q:. m; s.t X (.,.,.<*
4;
\\..
f.u
~
-s~.-
,.y s < g -l N..%.',
^
.M ~
s,-
-.'e 4,, A -[I m
o.
T h.
/-s.p %.w th. 4.h: h,g..t,c,. +
'. <.... :.J.
Figure:
IV-6.
Base Metal (RW).
Enlarged View Shows Individual Tempered Bainite Grains.
Vilella's Etch. 1000x 23
l
- ps % L9frM
'kif.?
QgvtWpHT %...
gyaydf vi,jLl&cre.h??
4 c
yr2 f
I
'S m :.Ih$
.y N b Sdhkkk 4 b
< %.. %i.5 "J
v :. :.. -
-,a.
Ib
??
e.&"
~u g P'&,&.n %'4 RN d.ll(f.,rh.=
- kkJW d C W R. r,9 h.
.. rt.fW h
4.)k'5..? !2$qd} g*Miu.'.,,.,.
.$$f%iif( '
&.L N.]7e?.
- a N..n 2s,5.1:'.\\'pwp,Np Wr.c(J 3...
.e s.
-3 Ih.
Y
~".@ DZ /5'?M, J6.Enw 0.
7.:.n'
' ;um.. c #s..%.
Figure:
IV-7.
Weld Metal (Transverse Section).
Typical Fine G Ferritic Weld Structure of Automatic sub-Ar: Weli Process with Nomal Carbide Distribution.
Vilel Etch.
500x 4
L.
- t. I 4
h[ DIE.;
'I i+ %JI.
~
~
<p.
,6 *
).*:f;t..';N',s.(.d, f Q ( :l ~e.% ~ f.. ' % ;. f.h'[
li
' **N g
?1,
't 4
m.%.--
- es.,g,ika,,
- g x
f Yi Figure:
IV-8.
Weld Metal (Transverse Section).
Enlarged View o Ferritic Weld Structure. Vilella's Etch.
1000x 24
I
\\
- i..,.
. =g' ;.r, : ww' ** :m. < ;.
,.n q' q....
? Y N.L' W Q :',G W:4r M a W;Y!.i N.q,i h's {:l,~.4
.. *.. fr.a..
' ' "Q.t^
p-
..'},'.
,l< $p.
- to, s.
-Qi '- }$.',.&+L :. ; '"" I *
,.f 4
h&: 6::
' %., g;,.*&&.y.t,u m. W* y.x'+Q'
(~..
f u'. '.~,:, ?. D,, y-c'9,;p. 7.m?,yd w.- m g
o z.. ;. 9 e-
.yyg...
,3 rf
'.'p.>.,5 a p..
K.. '* Q V Wyn y?.)Nn ' 2;.;;,>M.9 c..s:9.c.gg. ' y;c'f1 tt; cv :
s.*.
p a,. r.-m h?'g.,.r.;;6A. s, i. 43^ JV.L e$f ? h.h/y:f~
'% ht.1 ' "*l!?.$..$.>.,>zN..
gh M-p. !. ;
,? s 4?i:b h fa h
r
- c.. p t
f,., Y'y' 9 :
h.y ::.V 5
,yWsy,.,d..'
v. NM.,c,,G
.%r's vi-
. r ::, WV2...
y y
i m
.. :., m cw-A.
m ~
v.
- a;e.ks&e gl
- V, 4& >' wr@ w.e, a
5,;L%e.f rkle,jN:qpig7,g. tn'.4). :},e$
p 4
c A ;h, d:n p.
ff>'f.D %r,.
Q f-
+
2 i.f M 3x.4 n#
,.y>tgikt5 T, L g'je n
D/
- (pt 7.!?sW N n
. t
S -. '
< %e w;.r. h. @p+ ~y.j:.%g-h ^.
g*<
%C,6 pd' n:m 4
ff k.
[Y; Y f.
fh!
Figure:
IV-9.
Weld Metal (Lotgitudinal Section).
Typical Fine Grain Ferritic Structure. Vilella's Etch.
500x
'.
- Vc.,. ii.g.:...g. '". +pp,gg'a. %. * ;..r.,.y w?73'iffkidh@.
qss ps[w4(p~i,j ap*ht-
<M.93lrpiN^
~..a 4 j.,
b : n..,-.,, m. *.... nw..,,..
e
. s&).a.,g., a., ~ v w
WW
- y.. <':1.e!;s. g...yr;R wv G.%
.. V. ~ f.'.. ;;
^ * ~.
@w.,;~.y..'
f.-
'mt.,o.Na.MW's, M.,$..,y Y. '.b -
q%
- ';, /,:,-
t w.
a..
=.R ) y f.*. b. s.,. c % c...;%...Jy...
.- :,n
?. U #6. :'?g?: 9T*. < I.lg@$.:.
f.
y ft
~.
AK..2;.. c.. ;
- y 9), :~. \\
4.;,
. m. e'..n n., -
.? t.
[G. ;.. + ' " ', s', ;5.......r;;p 7.p. c,;,,, n *,.1.y >y,;.-- % j.-
r
. s.
. %'y e
.,iw Figure:
IV-10.
Weld Metal (Loraitudinal Section).
Enlarged View of Ferritic Stru:. Je Showing Good Carbide Distribution.
Vile 11a's Etch.
1000x 25 1
1
....... 1.. w. y,.
,,e.,,
g...
.....,.,7.
n.
g.W (% n: @h
,ap.,Qg lQ{@:y
%@j$w.%,S.zOb W. ;&:L s
t-3 Y
h M
?!h. jk4
.,a..S..>9~u.w.... /.n if>Tf 9
- .'.,..r m b 4.'Pw^'.s y ;K.t' e ' R3 T'
u6
. w --
1 r
Aw
- W
- 4. t. t, yr
. i
. TW;-
.c%I. 4 Ph%N2dj4%t' O)&;,<
Mf.b,.fg:.<;g),?
e a
g& YAM ~?p? %d.f ;j-ej5id<N. Q%: a.r:%.5V'O5 i
i b(M'..'ntQ[$?
4t hhfN[f &}NL'i
'M? Yfk$h$I9 N$[*Wh;%.h.+ 4 ';
N hd.h[M hh
!8I$$8Ihi!I@4V[$:
4%+:* '1,
$. 4;#v4.W,..l %.c*$
M b*
f$
tt i %,, p.,.. e.-,M,,..,4..
.hs.;
+
.. s.
- 4. >.
g im
'*4l.,.
7.g~.,',W
. ?..'N f % ? 15'.;,;g g ?.*
9 o
' A4I
.I f.#NM Figure:
'V-11.
HAZ Metal with Transition from Bainitic Base fiotal (Large Grain) to Ferritic Weld Strue.ture..Vilella 'i Etch.
100x
- c. <.p.,.i..w.c:
- ..,r.m. y.s. i.,: w.,..
A.. x..,,..,;.,. c+ m..:,m...
n.c
..,..4 4
o 9.r
[
4
,h/,rf ' %gkivf,:.i.:.* d M e p j 6, f c.#.;p -tk.\\
- c. *
.e
.,,kge1
- p,' m..+i,,, hp. f ; e. bw
- h. A.v, ;@: :
yk.'M3@Q, ':, :.my/j. Mi%p 4yI y
A
-Pj djf :{' y.\\,.
'hf
'r p
.p,;;
1
.,. ?gf.p) W-
<t.
1 s
m.vg5 -
- p..
p..
.La
'r a,,pm,y v Lk:...,.m.c.c p Y.,
t
- ! N ' * ;&'..%,*i
- pr;*: ' ".
q
.]' $.
q'h:* Q ~tj. 195 W
' y)1 -
?
?,. J'-
,;2.Tp.., g ?f f R N ks?.,}ff
~
l
.,?. h,& ' / $N Y^y e.
.. c.
W
?.]'.wl?if G:
.i; err
. ??'t.$..2d ' 4
?hh f bh.bh:&bN,,h.f.l h[Y,Mi?;h{
- l.
l* W '
M
- l $%%.nQ Q.%.
h".Y jDgj!! I,'
'. O iY: DQ,Q;3
- $4Wh W.yff1;#=~9kj%: )
W.y pl.; <0?PL.
Y ~*
.,i? '. ?),L S M~~ ~s. & v
': ML, 0; *~W Figure:
IV-12.
Enlarged View of HAZ Metal Fusion Line of Bainitic Base Metal Grains to Ferritic Grains of Weld.
Vilella's Etch.
500x JA
f-V.
CROP WEIGHT TEST RE5Dl.TS All drop weight tests were conducted according to applicable procedures outlined in the OPPD Test Plan No. 23866-TP-MCD-002.
These tests were performed to determine the nil-ductility transitit a temperature (f4DTT) for base metal (RW)*.
The results are presented in T6ble V-1.
Drop weight specimens were not available for weld metal and HAZ metal, so the flDTT was determined in accordance w
+'.1 Branch Technical Position HETB 5-2, " fracture Toughness Requirements for Older Plants".
MTEB 5-2 states that NOTT "my be i
assumed to be the temperature at which 30 ft-lb was ottained in Charpy V-notch tests, or O'F, whichever was higher".
Figure V-1 shows the fracture surfaces of the droo weight specimens.
The fracture surface was obtained by heat-tinting the tested specimen, subcooling it in liquid nitrogen, followed by final breakage using the procedure described in Appendix A.
The heat-tinted (dark) area of the fracture surface is the original fracture zone (resulting from the test).
The lighter untinted area shows the zone of final separation after subcooling.
I TABLE V-1
~
DROP WEIGHT TEST RESULTS I
Specimen Individual Material No.
Test Results NDTT Base Metal 1C7
-20 F - Break Plate 0 4802-2 1C2
-10*F - No Break
-20'F RW 1C3
-10 F. ho Break 1C4 0'F - No Break I
- ASTM E 208-69 states that the droo weight test it insensitive to specimen orientation, so transverse (WR) and longituuina. (RW) NOTT are considered equi /alent in the determination of RT,
%erefore, the 'OTT derived frca longitudinallyorienteddropweightskimenscanbeusedwithtransverse Charpy in,cact data to establish RT NDT.
27
f FIGURE V-1 DROP WEIGHT SPECIMEN FRACTURE SURFACi" BASE METAL PLATE D-4802-2 (RW)
I:
gj
[ h f$ h I urgan Riigiii auqpW'
' Specimen Code:
1C7 Specimen Code:
IC2 Specimen Code:
1C3 Test Temperature:
-20*F Test Temperature:
-10 F Test Temperature:
-10 F g
i Test Result:
Break Test Result:
No Break Test Result: No Break 5,
f,l.
Specimen Code:
IC4 Test Temperature:
0*F Test Result:
No Break 5
I l:
E I.
I I~
28 It
F VI.
TENSILE, TEST RESULTS Ter.sile tests were conducted according to applicable procedures outlined in the OPPD Test Plan No. 23866-TP-MCD-002.
The tests i
were performed at room temperature (71*F), 250*F and 550'F for base metal (WR and RW), weld metal and HAZ metal. The tensile test data are reported in Tables VI-l through VI-4, including yield strength, tensile strength, fracture load, fracture strength, fracture stress, reduction in area, uniform elongation and total elongation. The 0.2 percent offset method was used to determine yield strength for those tests that did not exhibit upper and l
lower yie16 points.
Stress versus strain diagrams have been prepared for typical tests for each material and test temperature.
They are presented in Figures VI-l through VI-12.
Photographs of the fracture region and fracture surface of these specimens are l
presented in Figures VI-13 through VI-16.
A description of the test equipment is given in Appendix 0.
I
'I
'I I
I 1I I
I I
I 29
TABLE VI-l TENSILE PROPERTIES BASE METAL PLATE 0-4802-2 (WR)
Yield Strength Ultimate Elongation Test A. 2% oi '
Tehsile Fracture Fracture Fracture Reduction (1-inch gage)
Specimen Temp.
Code
(*F)
Lpp( '*ower Strength Load Strength Stress of Area TE/UE
_ j ksi)
(lb)
(ksi)
(ksi)
(%)
(%)
2D7 71 66.
64.3 86.5 2880 58.8 169 65.3 29/11.6 200 71 69.2/ C5.1 89.1 2940 60.0 184 67.3 28/11.7 2El 71 70.4/67.4 90.6 2880 58.8 180 67.3 28/11.3 2E2 250 63.7/62.5 83.0 2760 56.3 173 67.3 25/9.3 2E3 250 64.9/62.5 83.8 2640 53.9 176 69.3 25/9.6 2DC 260 62.5/60.0 80.0 2760 56.3 162 65.3 26/10.9 2DL 550 55.7/53.9 83.9 30:0 62.5 153 73.5 25/10.5 E
2DY 550 57.6/56.3 87.1 3120 63.7 173 63.3 23/10.0 2DD 550 55.1/53.9 83.3 2880 58.8 169 65.3 24/9.6 i
a
TABLE VI-2 TENSILE PROPERTIES BASE HETAL PLATE D-4302-2 (RW)
~
Yield Strength ' Ul timate Elongation Test
.0.2% or Tensile Fracture Fracture Fracture Reduction (1-inch gage)
Specimen Temp. Upper /?ower Strength Load Strength Stress of Area TE/UE Code
( F)
(ksi)
(ksi)
(1b}_
(ksi)
(ksi)
(%)
(%)
105 71 72.2/68.0 91.1 2760 56.3 184 69.4 26/10.1 1E4 71 68.6/63.7 85.5 2640 53.9 189 71.4 31/11.2 1EP 71 71.6/68.6 90.9 2820 57.6 188 69.4 28/11.1 108 250 64.9/63.1 83.8 2580 52.7 172 69.4 26/10.0 1DJ 250 63.7/61.2 81.0 2520 51.4 194 73.5 26/10.2 106 250 64.9/63.7 84.1 2640 53.9 203 73.5 25/9.6
,3 1EU 550 58.8/56.3 89.3 2940 60.0 184 67.3 24/10.5 10E 550 56.9/55.1 85.7 2760 56.3 173 67.3 22/10.0 1E3 550 55.1/53.9 81.9 2640 53.9 176 69.4 25/10.3
TABLE VI-3 TEt4SILE PROPERTIES WELO f1ETAL, PLATE D-4802-1/D-4802-3 Yield Strength Ultimate Elongation i
Test 0.2% or Tensile-Fracture Fracture Fracture Reduction (1-inch gage) i Specimen Temp. Upper / Lower Stren9th Load Strength Stress of Area TE/UE Code _ 1 Fj_
(ksi)
_Jksi)
(1b)
(ksi)
Jksi)
(%)
(%)
3EP 71 75.3/73.5 90.3 2760 55.3 184 69.4 27/10.0 3EJ 71 74.7/72.2 88.9 2760 56.3 184 69.4 29/10.1 3JA 71 83.9/76.5 91.4 2760 56.3 197 71.4 29/10.6 3EY 250 72.3/69.8 83.5 2580 52.7 172 69.4 25/8.3 m
3DU 250 69.2/68.6 83.5 2700 55.1 180 69.4 22/8.2 3DP 250 74.7/68.6 82.4 2520 51.4 180 71.4 24/8.7 302 550 68.0/66.1 87.0 3180 64.9 159 59.2 21/9.0 3JK 500 63.7/62.5 83.8 2880 58.8 160 63.3 22/9.3 3E7 550 66.1/63.7 84.7 28S0 58.8 169 65.3 23/9.3
m' m M
m mm m
mM M
M WW M
M M
fWS M
M. 4 TA8LE VI-4 TENSILE PROPERTIES IlAZ METAL, PLATE D-4802-2 l
l Yield Stren9th Ultimate Llon9ation
-Test 0.2% or Tensile Fracture Fracture Fracture Reduction (1-ir.h gage)
Specimen Temp.
Upper / Lower Stren9th Load Strength Stress of Area 1 'llE Code
( F) __.
(ksi)
_{ksi)
(lb)
(ksi)
(ksi)
(%)
g%)
4E3 71 64.9/61.2 84.2 3120 63.7 156 59.2 21/1 0.1 4DJ 71 66.1/63.7 86.9 2820 57.6 176 67.3 22/9.8 4EM 71 69.0/64.2 84.1 2580 52.7 172 70.0 29/10.2
'OL 250 60.0/58.8 79.8 2760 56.3 162 65.3 20/8.1 4DE 250 61.2 80.3 2700 55.1 150 63.3 21/8.0 4DK 250 58.8/58.1 79.4 2880 58.8 152 61.2 19/8.3 4EL 550 54.0/52.8 80.7 2880 58.8 169 60.0 22/8.3 g
4E5 550 52.7/51.4 81.3 3120 63.7 149 57.1 18/8.7 407 550 51.0/52.8 83.5 2910 58.8 163 64.0 24/9.2
100,000 i
i i
i i
i i
i i
i I
80,000
@ 60,000 N
I y 40,000 20,000 1
0 O
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/lN Figure VI 1:
Stress strain Record of Tensile Test g
Base Metal Plate D 4802 2 (WR) 3 Specimen No. 2DU, Test Tempera.ure: R.T.
100,000 i
i i
i i
i i
i f
80,000 I
l g 60,000 -
l vi Fu 55 l
c:
l
$ 40,000 --
20,000.-
I I
I I
0 0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/IN 5
Figure VI 2:
Stress Strain Record of Tensile Test g
Base Metal Plate D-4802-2 (WR)
Specimen No. 2E2, Test Temperature: 2500F
100,000 i
i i
i i
4 4
6 i
80,000 I
e C-60,000 8
E-
- 40,000 I'
20,000 I
0 O
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/IN I
Figure VI-3:
3 tress Strain Record of Tensile Test Base Metal Plata D-4802 2 f,WR)
Specimen No. 2DL, Test Temperature: 550 F I
100,000 i
i i
i g
i i
i i
I 80,000 I
E g 60,000 I
d 5
40,000 20,000 0
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 I
STR AIN, IN/IN l
Figure VI 4:
Stress Strain Record fo Tensile Test l
Base Metal Plate D 4802-2 (RW)
Specimen No.1EP, Test Temperature: R.T.
35
100,000 I
80,000 r
E ui 60,000 -
iE m
40,000 20.000 E~
0 O
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/IN Figure VI 5:
Stress-Strain Record of Tensile Test Base Metal Plate D 4802 2 (RW) g Specimen No.1DB, Test Temperature: 250 F 3
00,000 1
80,000 I
E 60 000 vi i
I m 40,000 I
20,000,-
I I
I 0
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, INilN Figure VI 6:
Stress Strain Record of Tet.sile Test Base Metal Plata D 4802 2 (RW) 0 Specimen No.1DE, Test Temperature: 550 F I
l I.
38
100,000 1
4 I
i e
i i
t i
i I
80,000 -
I Ui Q. G0,000 -
m E
I a
40,000 E-20,000 0
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/IN Figure VI 7:
Stress Strain Record of Tensile Test I
Weld Metal Plate D4802-1/ D-4802 3 Specimen No. 3EP, Test Temperature ; R.T.
100,000 I
80,000 -
I E 60,000 I
i
's
- 40,000 I
20,000 I
e 0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 I
STR AIN, IN/IN Figure VI 8:
Stress Strain Record of Tensile Test Wald Metal Plate D 48021/ D 4802 3 Specimen No. 3EY, Test Temperature: 250 F 37
F-
'100,000 i
i i
i j
i e
a i
i I
80,000 L
Gm, 60,000 -
s 8f 40,000 20,000 I
0' O
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 g
STRAIN, IN/IN E
Figure VI 9:
Stress Strain Record of Tensile Test Weld Metal Plate D-48021/ D 4802-3 g
Specimen No. 3E7, Test Temimrature: 550 F g-100,000 i
i i
i i
i 4
i 4
l 80,000 G
Q, 60,000 Ew s
I M
40,000 p
20,000 I
t i
t i
I I
I l
I I
O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR A!N, IN/IN Figure VI 10:
Stress Strain Record of Tensile Test H.A.Z. Metal Plate D 4802 2 l
Specimen No. 4E3, Test Tem;mrature: R.T.
I i
l 28 gi L
. ~.....
I 100,000 i
i i
i i
i 4
i i
4 80,000 US n.
y; 60,000
!O I
a 40,000..
I 20,000 I
O O 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 STR AIN, IN/IN I
Figure VI.11:
Stress-Strain Record of Tensile Test H.A.Z. Metal Plate D-4802 2 Specimen No. 4OL, Test Temperature: 2500F 100,000 i
i e
i i
i i
g I
80,000 I
N j 60,000 I
Y u.
C:
$ 40,000.-
.I 20,000 I
0 O
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 I
STR AIN, IN/IN Figure VI.12:
Stress Strain Record of Tensile Test H.A.Z. Metal Plate D4802 2 Specimen No. 4ES, Test Temperature: 5500F 39
FIGURE VI-13 TENSILE SPECIMEN FRACTURE SURFACES BASE METAL PLATE D-4802-2 (WR) g) at nhI b
a v
t 1
spe4-m.3. 2ou, Test Teg. 71 F I
at
- - q::ll? '$'
I I
Specimen No. 2E2, Test Temp. 250*F I
I2 g
spui m no. m, Test Temp. 5sr F I.
I I
Ii 40
f-FIGURE VI-14 I
TENSILE SPECIMEN FRACTURE SURFACES BASE tiETAL PLATE D-4802-2 (RW)
='
[Y (111 I
I:
Specimen fio. 1EP, Test Temp. 71 F t
Speciman Ito. 108, Test Temp. 250 F I
k 222m== asume35 $
Specimen rio. IDE, Test Temp. 550 F I
I I
I I
= _..
FIGURE VI-15 TENSILE SPECIMEf1 FRACTURE SURFACES WELD METAL, PLATE D-4802-1/D-4802-3 I
I i
- y 73
",4f'fR
/
I Specimen tio. 3EP, Test Temp. 71'F I
f' g, ggc v ""-
y
@v I2 Specimen flo. 3EY, Test Temp. 250 F I
I i-I Specimen tio.3E7, Test Temp. 550 F i
I.
r I
I Il m
= -. - -
r-
,4 I.
FIGURE VI-16 TENSILE SPECIMEN FRACTURE SURFACES HAZ METAL, PLATE D-4802-2 g
g
-et I
Specimen No. 4E3, Test Temp. 71*F I
I
-ja g gg:
Specimen No. 4DL, Test Temp. 250*F I
I Specimen No. 4E5, Test Temp. 550 F s
' I LI L
'I e
~
p.
I I,
I I
y I
I I
I I)
~
I I
I' I
I, I
I; It
f VII.
CHARPY IMPACT TEST RESULTS The instrumented Charpy (IC ) impact tests were performed in I
y accordance with applicable procedures outlined in the OFPD Test Plan No. 23866-TP-MCD-002.
Tests were performed on base metal (WR and RW), weld metal and HAZ metal.
For each material, both standard and instrumented Charpy impact data were determined.
The standard C data are y
reported in Tables VII-1,
-3, -5 and -/ including the RTNDT' determined from lower bound impact test results, and the NDTT frcm drop weight test results.
From the oscilloscope t' race for I
each impact test, the loads corresponding to yielding, maximum load and fracture were determined (refer to Section III) as shown in Tables VII-2, -4, -6 and -8.
The data from Tables VII-l through VII-8 are shown as a function of test temperature in Figures VII-1 through VII-16.
From these curves, the brittle transition temperature (T ), the ductility transition temperature B
(T ) and the ductility temperature (T ) were detemined as shown N
D in Figure III-3 in Section III.
These temperatures as well as RTNDT, NDTT and the upper shelf energy (minimum impact energy corresponding to 100 percent shear for two tests at one test temperature) are reported in the IC tables for each material.
I
~
y (Note that RT f r 1 ngitudinally oriented base metal materials NDT is not strictly valid and provided for reference purposes only).
Fix temperatures, as reported in Sections II and IX, were detennined from the lower bound curves for 50 ft-lb and 35 mils lateral expansion and from the average curves for 30 f t-lb.
Figures VII-l through VII-16 present impact load, impact energy, lateral expansion and shear, all as a function of test temperature, Fracture surface photographs and oscilloscope traces for typical l'
specimens from each test series are provided in Figures VII-17 through VII-36.
I A description of the testing equipment is given in Appendix C, I
1 45
t.
'ABLE VII-1 IMPACT TEST RESULTS BASE METAL PLATE D-4802-2 (WR)
Test Impact lateral Specimen Temp.
Energy Expansion Shear No.
(*F)
(f t-lb)
(mils) 230
-80 4
3 0
23E
-40 6.5 8
10 22P
-4C 8.5 10 10 233 0
17 18 20 l<
247 0
26.5 27 25 21E 40 30 30 30 210 40 32 32 30 21C 80 60 43 40 22T 80 62.5 53 55 242 120 78.5 66 60 218 120 96.5 74 75 22C 160 94.5 76 90 23B 160 102.5 74
^5 21T 190 121 85 1s >
22U 210 122.5 83 100 24D 210 125 84 100 217 230 110.5 83 100 I
RTNDT _= 18 F (Detemined from lower bound curve) f NDTT = -20 F I
Upper Shelf Energy = 121 ft-lb t
I:
I:
El
TABLE VII-2 INSTRUMENTED IMPACT TEST RESULTS BASE METAL PLATE D-4802-2 (WR)
I Impact Impact Loads Test Energy Specimen Temp.
Dial PGY (1b)
Pg (1b)
PF(Ib)
No.
(*F)
(ft-lb)
I 23D
-80 4
2800 23E
-40 6.5 3200 22P
-40 8.5 3500 233 0
17 3100 3500 247 0
26.5 3100 3900 21E 40 30 2800 3600 21U 40 32 2900 3700 21C 80 60 2800 3800 22T 80 62.5 2800 4000 3900 I
242 120 78.5 2700 3800 3700 218 120-96.5 2700 3800 3400 22C 160 94.5 2600 3700 23B 160 102.5 2500 3700 l
21T 190 121 2400 3600 22U 21 0 122.5 2500 3700 24D 210 125 2400 3500 217 230 110.5 2400 3000 I
I T = -40'F g
T = 80*F g
I T =104 D
I I
I 47
TABLE VII-3 IMPACT TEST RES' JS BASE METAL PLATE D-k M-2 (RW)
Test Impact Lateral g
Specimen Temp.
Energy Expansion Shear 5
No.
( F)
(ft-1b)
(mils)
(%)
120
-80 4.5 1
0 15K
-40 7
8 10 13J
-40 9
8 10 15P 0
20.5 21 20 13E 0
25.5 24 25 l
11C 40 41.5 38 35 162-40 45,5 39 35 i
11M 80 78 62 50 g
i 151 80 79 60 50 11P 120 115 85 80 12E 120 132.5 90 85 110 160 137.5 94 100 g
11T 160 140 93 100 5
13Y 190 147.5 90 100 11E 210 133.5 90 100 15L 210 144.5 90 100 I
L I
RTNDT = -8*F (Determined from lower bound curve)
NDTT'= -20 F I
Upper Shelf Energy = 137.5 ft-lb l
I l
I
t-4 TABLE VII-4 INSTRUMENTED IMPACT TEST RESULTS BASE METAL PLATE 0-4802-2 (RW)
I Impact Impact Loads Test Energy PGY (1b)
Pg (1b)
Pp(1b)
No.
(t b) 120
-80 4.5 3100 15K
-40 7
3400 13J
-40 9
3500 15P 0
20.5 3200 3600 13E O
25.5 3300 3900 11C 40 41.5 3100 4000 162 40 45.5 3000 4000 11M 80 78 2700 3900 3700 I
151 80 79 2700 3800 3700 11P 120 115 2600 3800 2800 12E 120 l f,'.
5 2600 4000 2400 110 160 137.5 2600 3800 11T 160 140 2600 3700 13Y 190 147.5 2600 3800 11E 210 133.5 2400 3800 15L 210 144.5 2400 3700 T = -22.p g
r.
52.,
- y u
to 120.,
g I
I E
49
TABLE VII-5 l
IMPACT TEST RESULT 3 WELD METAL, PLATE 0-4802-1/0-4802-3 Test
'mpact Lateral Specimen Temp.
tnergy Expansion Shear No.
J'F)
(ft-llb (mils)
(%)
364
-120 5.5 4
0 350
-80 5.5 9
10 32Y
-80 18.5 17 15 332
-40 20.5 21 30 31L
-40 30 28 35 35E 0
49.5 41 40 l
3!2 0
55 47 50 35T 40 66.5 55 65 31Y 40 74 64 70 33C 80 97.5 83 100 324-80 105.5 86 100 35P 120 92.5 81 100 330 120 105 89 100 346 160 105.5 83 100 j,
310 160 115 89 100 I
I RTNOT = 0 F (Determined from Lower Bound Curve)
NOTT = 0 F (Estimated per Branch Technical Position MTEB 5-2)
Upper Shelf Energy = 97.5 ft lb I
I g
50
F-TABLE VII-6 IfiSTRUMEfiTED IMPACT TEST RESULTS WELD METAL, PLATE D-4802-1/D-4802-0 I-Impact Impact Loads Test Ener y Specimen Temp.
Dia Pgy (1b)
Pg (lb)
Pp (lb)
No.
( F)
(ft-lb) 364
-120 5.5 3500 35U
-80 5.5 3400
.g m
32Y
-80 18.5 3400 4000 332
-40 20.5 3300 3800 31L
-4C 30 3200 4000 35E 0
49.5 3100 4000 3800 f
33E 0
55 3100 4000 3900 35T 40 66.5 3000 3900 3S00 31Y-40 74 3000 3800 3600 330 80 97.5 2900 3800 324 60
~105.5 2800 3800 I
35P 120 92.5 2700 3700 330 120 105 2800 3800 l
346 160 105.5 2600 3700 31U 160 115 2600 3700 LI T = -112 F B
l'I T = -30 F l
T = 80 F D
I Lg I
51
TABLE VII-7 IMPACT TEST RESULTS HAZ METAL, PLATE D-4802-2 Test Impact lateral Specimen Temp.
Energy Expansion Shear No.
("F)
(f t-lb)
(mils)
(%)
444
-160 3
1 0
42L
-140 13.5 11 10 423
-115 28 23 25 43C
-80 20 20 25 46A
-80 34.5 2G 25 44Y
-40 28.5 32 35 44B
-40 70.
50 40 430 0
83.5 68 80 431 0
110 73 80 45E 40 30,5 30 45 415 40 101.5, 67 80 417 80 113.5 81 80 45D 12" 65.5 60 85 416 12; 12" 84 90 45Y 160 d2 73 100 467 16')
87 68 100 466 200 93 67 100 I
RTflDT = 24'c (Determined from icwer bouni curve)
FCTi = 0'F (Estimated per Branch Technical Position MTEB 5-2)
I Upper Shelf Energy = 82 ft-lb t
i I
h 52
E-TABLE VII-8 INSTRUMENTED IMPACT TESTS RESULTS HAZ METAL, PLATE D-4802-2 Impact Imoact loads Test Energy PGY (lb)
Pg (lb)
Pp (lb) to (f
b) 444
-160 3
2500 42L
-120 13.5 4200 4300 423
-115 28 4000 4300 43C
-80 20 3700 3900 I
46A
-80 34.5 3700 4200 44Y
-40 28.5 3300 3600 448
-40 70.5 3300 4200 4000 430 0
83.5 3200 4000 3800 431 0
110 3200 4200 2800 45E 40 30.5 3100 3500 415 40 101.5 3100 4200 3900 l
417 80 113.5 3000 4200 3600 450 120 65.5 2800 3600 3200 416 120 129 2900 4100 45Y 160 82 2700 3800 467 160 87 2700 3700 466 200 93 2600 3700 I
T = -140 F B
T
-40*F
=
g I
T = 160 F D
I I
I
?
4000
^
j
- 2 I
I N
'T N I
O 2
N 3000 2
1
(
di a
b OPGY 2000 OP
~
y Oe l
g T
TN T
B D
1000 I
I I
80 40 0
40 80 120 160 200 240 g
TEST TEMPER ATURE, F 3
Figure Vil-1:
IMPACT LOAD vs TEMPERATURE BASE METAL PLATE D 4802 2 (WR) 140 i
a i
i i
120 O
0 100 L.
O m
O o
580 o
if I
z 60 w
I 40 O
20 I
10
.go 40 0
40 80 120 160 200 240 g
TEST TEMPER ATURE, F E
Figure Vil 2:
IMPACT ENERGY vs TEMPERATURE BASE METAL PLATE D-4802 2 (WR) 54
=
w s
100 i
j i
j g
80 o
9 m
I' d
60
- 2' O
I O
40 d
I.
l a
e o
20 I,
5 I
I I
I I
I I
O
-80 40 0
40 80 120 160 200 240 TEST TEMPER ATUl4E, OF Figure Vll 3:
LATERAL EXPANSION vs TEMPERATURE BASE METAL PLATE D-4802 2 (WR)
I 100 g
g g
g g
O 80 I
60 O
g ze O
$ 40 O
I m
20 I
i l
l I
I Oh0 40 0
40 80 120 160 200 240 T EST TEMPER ATURE, F Figure Vil 4:
SHEAR vs TEMPERATURE BASE METAL PLATE D 4802 2 (WR) 55 1
Q:
^
4000 i
i
.g' 2
O O
O
/
\\
3000 O
O 2
5 8
0 2
a m
H-O Pgy
~
2 2000 OPg Q Pp TB TN TD I
I I
I I
1000 80
-40 0
40 80 120 160 200 240 TEST TEMPERATURE, OF Figure Vll 5:
IMPACT LOAD vs TEMPER ATURE BASE METAL PLATE D 4802 2 (RW)
I I
I l-1 I
OI O 140 E
O O
E 120 100
~
c 80 5
5
$ 60
~'
f
- 2.
40 0
20
~
0 1
I I
I I
1 80
-40 0
40 80 120 160 200 240 TEST TEMPERATUR E, OF Fisure Vll 6:
IMPACT ENERGY vs TEMPER ATURE BASE METAL PLATE D 4802 2 (RW) 56
i l
l l
l in 1
2 80 U
[*
E
$ 60 ~ --
a
- I.
2 I
d 40 y
e k 20 I
a 1
Of I
I I
I I
I 80 40 0
40 80 120 160 200-240 TEST TEMPEP ATURE, OF Figure VII.7:
LATERAL EXPANSION vs TEMPERATURE BASE METAL PLATE D-4802 2 (RW)
I g
100 l
l l
l M
^
2 2
l1
- 00
~
1:
60 1~
x
=
g 2
I-
_ 40 l
vs Y
2 l3 O
,l 20 0L l
-80
-40 0
40 80 120 160 200 240 l
TEST TEMPER ATURE, F
- Figure Vil 8:
SHEAR vs TEMPERATURE BASE METAL PLATE D 4802 2 (RW) l-57
I I
I I
I I
2 4000 O
l O'
2 N
\\
3000 s
2 O
d 2000 O Pay E
OP3 h
r Q Pp TB T
T N
D 1000 E
-120 80
-40 0
40 80 120 160 200 E
TEST TEMPER ATUR E,0F Figure Vll 9:
IMPACT LOAD vs TEMPERATURE WELD METAL, PLATE D 48021/D-4802 3 I
12 6
O u
100 l
0 ms l
4 80 l.
R O
i c: 60 L
l7 0
l b< 40 a
I f
20 O
O 0
120 80 40 0
40 80 120 160 200 TEST TEMPER ATURE, OF Figura Vll-10:
IMPACT ENERGY vs ::IMPERATURE WELD METAL, PLATE D 48021/D 4802 3 58
100 l
l 1
I I
I C
J O
O 80
}
E kJ 60 1
5 A
f O
d 40
.)
2 s
Ol 20 0
I O
I l
I I
I I
120 80 40-0 40 80 120 160 200 TEST TEMPERATURE, OF Figure Vll 11:
LATERAL EXPANSION vs TEMPERATURE WELD METAL, PLATE D 48021/D 4802 3 I
I 100 I
I I
T T
2 2
2 I
80 I
O p
60
~
. 'v' g
i
$ 40 O
N O
20 g
i I
I l
1 120 80 40 0
40 80 120 160 200 I
TEST TEMPER ATURE, F Figura Vll 12:
SHEAR vs TEMPERATURE WELD METAL. PLATE D 48021/D 4802 3 59
r 1
I i
i i
1 6
i O
O O
O O
4000 P
o
\\
[
2 O
x s
o\\
3000 2
Q l
9 I
b o
f 5
O Pay 2000 O Pg
~
Q Pp Tg Ty TD 1000 1
I I
160
-120 80
-40 0
40 80 120 160 200 TEST TEMPER ATUR E, UF g
Fiwre Vll 13:
IMPACT LOAD vs TEMPERATURE 3
HAZ METAL, PLATE D-4802 2 I
I I
i l
l Q
l 120 O
g 100 4
O.
E O'
O O
>?
80 0W O
z:
O El W
60 B
g e
c.3 40 O
O O
O 20 O
0 0
I I
I I
I I
160 120
-80
-40 0
40 80 120 160 200 TEST TEMPER ATURE, OF.
E Figure Vll 14:
IMPACT ENERGY vs TEMPER ATURE E
HAZ METAL, PLATE D-4802 2 60
[
_. ~..
E-100 g
g i
l 80 O
m I
N O
O O
O G
o
$ 60 o
I 0
e Pc w 40 I
O O
o I
20 O
a 0
0 I
k--
I l
I l
0 160 120 80 40 0
40 80 120 160 200 TEST TEMPER ATUR E, OF Fivure VI 15:
LATERAL EXPANSION vs TEMPERATURE HAZ METAL, PLATE D 4802 2 I
i 100 O
g g
g 4,
g O
80 Q
O I
2 60 I
se cd<
O I
$ 40 O
m I
O 20 2
O I.
i l
i I
I i
1 g
160 120 80 40 0
40 80 120 160 200 TEST TEMPER ATUR E, OF Figure Vll 16:
SHEAR vs TEMPERATURE HAZ METAL, PLATE D 4802 2 I
I 61
j E
j SPECIMEN No. 23D TEST TEMP. -80 0F O
i cc '
I wi 2
w O
f I
z4 O
i 3
w erwar h uonemusemuseum
~
l.
I TIME l
II
}
I i
SPECIMEN No. 22P TEST TEMP. 40 "F
g 1
0 ft H
. g, g yppmen a
.,u.
4
.. %,s3tgr> !. /((. -,. 2.. -
+.4~
,l.
C
_ 9 % ;. [.? <t.._~ ',,
z
-...p=
l 4
&@, a :$% h,y.. x. F; '].'Ri& %
.i
}...
,. --.n
. 3 y.
w L*- _ _
TIME 2
Figure. Vil 17:
Instrumented Charpy impact Load Records and Specimen Fracture Surfaces of Base Metal WR Plate D-4802 2 I
62
l!
SPECIMEN No. 233 TEST TEMP.
O "F
>C I
a:wzw o2<
0<
I O
.J
~
TIME I
.g 5
~-
I t.y- - -f -
l T,
6 -.,-
SPECIMEN No. 21U t
j.,.
}, -~* -
TEST TEMP. 40 CF 8
,.g.
E
'[
j E
n
.g k y,* '
g.
i U
hh 4
~'j'*7T[.T g
4 3..
I
~
w
. },..<,, -
'4 -
z g
. '$s ' '.
'-l, [.'
z 4, $ fe.. f
..'6.
I
'-;c, ;
o
- 4
>\\
i e e.;@ * - *
'5 ap q
E P Q F R Y_'l]l & ',lp]l.~'. [
.~
0 l
s
- r..,
t
.v -
..e
"..l e
l TIME I
Figure: Vll 18:
Instrumentad Charpy impact Load Records and Specimen Fracture Surf aces of Baso Metal WR Plata D-4802 2 I
I 63
l l
SPECIMEN No. 21C TEST TEMP. 80 CF l
C
'S ri r
z 8'
?
t w
o k
)
- hfr.?j.'
~~
Q
.A.
.,f_Lv. l, ' : ;.
y 0
J
~
- '. 6,9 - i. -,, '
..._h TL.,L s..
v 7..
%,,,,,w s S m.c o
s p.
p.
r, Q.
f l
..r
l
-+
TIME
,,.m n.
SPECIMEN No. 242 p;W TEST TEMP. 120 F g.
m
.,F 3'sT w, P,
'h >
1-
{
a s r.i s..ht. t 4:,-a
-9 x
. m:;.
- ~ ~
- . f.'s il f.,
ih,.b.dhk[f[g. NU'~.'H.
I
~~
4 ON'
. t,$a. IYh hh.k. h Nk O
- w. :- * * ^^ %u,. s
{ ~ ' \\P'?;;
~ (
i7.5 '.1', 3 e
..bstag-TlME Figure: Vil 19:
Instrumented Charpy impact Load Records i
and Specimen Fracture Surf aces of Base Metal WR Plate D 4802 2 I
Il,.
64
E g
SPECIMEN No. 23B TEST TEMP. 100 "F l
5 s
I i
a 1
3 S.m.
~
4%
- 4..
I SPECIMEN No 21T TEST TEMP. 190 F
a l
5
~
s<,
I O
r o.
TIME I
Figure: Vil 20:
Instrumented Charpy impact Load Records and Specimen Fracture Surf aces of Base Metal WR P!ato D 4802 2 I
I es
E.
I SPECIMEN No. 22U
-gy ~
3_.
E
}W
$f MM
[ 4 _f, - T F ~'
O zw
.a
+-t
'+j" n,
E "i. L O
It 3
i
~.
'hTM 3
% 1, b) W, %p3,._uaimund g_
i TIME I
7 I
1 SPECIMEN No. 217 TEST TEMP, 230 F
1 pem9
%~
g g
b~
,. D :-f xf I_
j) k 3
a' + *WA B
a
- m.,A g
h'-
a -
w-gp
.wy
_r r / l* '
f.
,A4
.]..._'.f;.'.,.
_ ' _ [.:m 1
y
,,, MM T.' ~I,'
,i !/
.h f
3 TIME R
Figure: Vil 21:
Instrumented Charpy impact Load Records and Specimen Fractura Surf aces of Base Metal WR - Plate D 4802 2 1
1 66
lE-F SPECIMEN No.12D
.c i
i TEST TEMP. 80 F
i ci
$l w
- d
% m.,,..: ~ ;. '. w;; a...
a
- -. y ~e. ~
.p n -
,, s ny- : ?
y ' t. - [w. h,
_.}3,rry -
},Y
'Q 4
.v. = + 4e. w.,.. ;. r e, s ',,.. -
f
- 7 $
'g
.. ' '* ', V 3. / ++.,,p 4
f...
o
^
}g l
g
-m p
. ' j p.
l
... ;,.~ -
.f I
i I
TIME l I i
SPEC,lMEN No.13J I
l TEST TEMP. 40 0F I
0 c
k I
wi
. /.. -
g!
wI
. k/ '
l 3,% (;,
. -.' '.f.
~. ' ;; j ql l.
4,.
I 4
y, 3 9..-g- - y..p2..p*
+y.
j-4
?.,.g 'n.4 m j
o.
- +
ad',
g y{< s',.
J I
y
%.3 L. I. + ',t,&.E '
s.,
.+ d
~.
i
,{
~
j
@. c.d....
1 -
TIME I
Figure: Vil 22:
Instrumented Charpy impact Load Records t
l and Specirnen Fracture Surfaces of Bata Metal RW Plate D 4802 2 I
I G7 v
-, e - ww-re
---eu
---*mm-me m
m
f.
t*,
..g.. j... p, g
s i
- t SPECIMEN No. 15P 3
/,' Q'.
4._
7 7-S'
.i TEST TEMP. O F
t t
i 6,.
r
'7
>.c
,4
. 4
. '. ; y,. 4.. -..... j i
5.
t
.'M
[
4;
... w w.,,,,
I.
,. 7: 'I qV57T,$. k '.
f '. (t, '.
I
.' i
! :l. t ). g '4 i
4',
aj. '.,,'~,. +
,.g Q ';, '
a
. yl, g.
y a
_,,..,. - 7, 3
'\\
g
=
m s
- . =,
TIME I
.. ~. -
4
.... 4 j
a.,
s SPECIMEN No.11C i
-. 4 'T
.j TEST TEMP. 40 0
{..g.
M.m......
F L.
-,,, 7 ' ;.
,,. ' 3
- A, )
, a y,%
w 1-k e 4 r " * $, -'.
- t g.. w,'
a.
w r,
- . ~. -
r,
, r-w-
.i.
O
- s. L ss -
g%l
- p.~.
si : :fi', ' ; -,,
L i
8
, - 7.
O'
- - T, _. g,.3 +.
. 'g 0'
o f. Y m.. : S 7. "-
'~
q.
1 b,
'(~
1
^
- i. }.
(
..e.
N Y&x
~~
j.'
^
TIME L
Figure: Vil 23:
Instrumented Charpy impact 8.oed Records and Specimen Fracture Surf aces of Base Metal RW Plata D 4802 2 I
68
'E SPECIMEN No. 151 TEST TEMP. 80 F
l
>i g
o1 l l
.;r;Ag.,,fis+&W'[% s x.. ;e 4
C
- 'l~
se-
..&t-l z*
".r. k ',,$.
2 '. 's$ :
l k
l ~[
c
?
l v b j.!. -*g;*hy,~tf;;'~.l v-f J
w... v,,g
.3,. f,...,
.. _ I.,dN4
__.' '$ __1.; '.
n t
'E f
..q h
g.;"
,E
. 3 5.,4y,
u.s
d n
L TIME
.I f
SPECIMEN No.
11P i
l TEST TEMP. 120 F l
l g,. i 5{.' 4-
,X l
0 ct'
?:c.
l yl pk
- P,;_.4 5
w w
l az
.i 4
4}
O4 yxi.
O
,v9 b!???'Wr I
-F
,.. ~. 1
.f..
- r-i
' ' [.[
?-
i- '.. ' ' d I
J j;;_ ' ' ;
. s:
~;
.3 3
TIME Figure: Vil 24:
Instrumented Charpy impact Load Records and Specimen Fractura Surf aces of Base Metal-RW Plata D-4802 2 I
I 6A
,.._,__..,,,m_....,..
,,...,,. ~..
,,..-#.,.....-,--..g,
a
%;y.y SPECIMEN No.11D
..a _. ',... -_;- - g., ; 3.. ;9,,
es g.
+..
4, ', '. =
. 'f y
y,_..
t.~~ ' - + a +
- s._ : _
2.
'is.,
.;.- 4.
n l
l o<
y [,,. a : **,,,*"Tel*NYl [ [Q'arl
~~ ;u.M : t-4l q
n' 1
W
'.p2;[
a
-p pM.
n.
s
-l,f.n*
h.h {.
m,,
TIME I
I SPF.CIMEN No.15L
,.,iN)
TEST TEMP. 210 F
akvy.e? -
f gii,P'..
s.
i
's' M n{. s m., I *':* sh!
4' y
o f..
- c. {
g, i. ;,;:. -[ft '#33. - 3 '.'~ q
.2
.f
. tX O
(,~
's;E,
^i
, p,',
tnRYd:y:yfig.f,iiQ g ~ '
k.
z
- l
- I.:':.,. 5.; l 7
\\
<l
',yr
,f ' ~- - s,
=,%ag i
' k'.)
T W M' l
h s: A L :: I
_J TIME Figure: Vil 25:
Instrumented Charpy impact Load Records and Specimen Fractura Surf aces of E
Base Metal RW Plata D.4802 2 5
I 70
._G. - _ - - _ - - _ _ _ _ - - _ _ - - _
- E-f a.
SPECIMEN No. 364 w.
L...
4 TEST TEMP.120 F
C
~
cc r,
--*t I
w e
Z
~
W l.
o E
i I
4 a
t s
t r
~
0' E
_ r_t s
a. __
4,
,,,s.m
,' " - ~...
E TIME a
I
^
s g._..,,
- ,- ~
I SPECIMEN No. 350 i ',.- 1
-4 y
TEST TEMP. F 2
1-I
- j..
![. K...
..4 e
m 4.-
-+
w.. ;..
h.4
..,,l R
.A.
7.:,;~;.e
- t
a-s..
u a
p 9z 9.u--
t
+
W-g
,....un.
.,,.-g, cc V.
~r. n..c,...
u.
-g
.A z
4
}
-. m 4,,,,;..,g,,.. ' s. w,.
-n..
NMhb 4
s,-
[:.:;.1 % W :q...--,a,
- r..
....t
-r:
- _ _ _. -s.n:s
~
gq,
~.
a-
,- A-.
(;
pg
[*4
~
t u.
r b.
t -
QQ)
,0,h}
,i
~L. ',.
w.
5-it to TIME I
Figure: Vil 26:
Instrumented Chaspy impact Load Records and Spacimen Fracture Surfaces of I
Weld Metal, D-48021/O-4802 3
+
E 4
e.
. i
' - ~
I f
SPECIMEN No. 31L g..,
)
TEST TEMP. 40 F
't i'[' bNbNNh$
b 9
i h$ W?W $hN.c N
l' w
J :.w k:. "s,\\
c
,..,.g,...v.....
p--
tiOAD:7: D, */g og i r, -
p t
y 4
,7.,.,
7 6
4 q
i
- c.
2 TIME I
SPECIMEN No. 35E
'N' TEST TEMP.
O F
a WI #
l 5!
?.r p Mti;f h g
i
,17 ~, ' W..
w l
$ie4 @"dd de,,.
j 2,....
l l
O!
C : % N T @i y.$ 5 9 3 9 ~ L)]: N ..mg >.... me a, .f p. ___ _ _-t3;t 3 tu, , e.. h; f ', J."k; d', l ,i .. [ ~ !.. - \\ J..!.#S 2l?N tir f,3:l '. ' i L! . #:.,,j ..~ $ 2.J jg' .{ 2,3, -kf,I D ^L ~... l-
- g -,.
s i a e.,.. s 4 TIME E Figure: Vil 27: Instrumented Charpy Impact Load Records and Specimen Fractura Surfaces of Welt Metal, D48021/D-4802 3 I: s 72
f-SPECIMEN No. 31Y [ 4t.*pg v24 %#Nfj$F2 r .g;j.. l* *.Ww $ ~ : + ^. "' ' ' '-**888* e I - n:m1 mya TIME I SPECIMEN No. 33C TEST TEMP. 80 F '... b. ~ - @j,
- },;
"W . -g l 5' I N) if E: h MY J,... l h M. i [, L s*, f., { f --)I .i ., g. ~ i TIME Figure: Vil 28: Instrumented Charpy impact Load Records and Spccimen Fractura Surfaces of Weld Metal, D48021/D 4802 3 I I 73
I - - + ~ b-
- k-n l
f ' f, ~ t SPECIMEN No. 33D ' (*i. ; ? ? r 4 ~,. . I..... I 1 >. T-i TEST TEMP.120 "F g i l l ~ -.g 2 ~ &. ~.i .y j w 4, 2 1 p> p 4 f W Id .Y. ' /,[ k' M
- .,f;.
O %" 7: 'W V-X." NQ G. e r - ci-- t z ' k<m' 'N,. }.V f E ), - T, t q g o. fp igjjirjQ.., 9 ' 6 ,-. i s-e a l r TIME g l . t- &- 7 pr-.i. .+ t - 1;_:.",.'
- 3.
- SPECIMEN No. 340 m
g 3., .:,l +- N -m r TEST TEMP. 160 F ib - [ L y. ,o '4; m :p.... 4 4 ..g g 1
- 4..
l wi , 1 > yP.'4 ) 2' + .i ui I um f.^89 ? A g.. t. g .uT. e, .U >u, ' ]' '. 4 '.', i z, I ' 4 D '.. f .} - 4 Q! f*. a y, g } 4 .i. : 8 . ff.:p
- q [( }.
t $ 63. ' ~ TIME Il A Figure: Vil 29: Instrumented Charpy impact Load Records and Specimen Fracture Surfaces of 5 Weld Metal, D-48021/D 4802 3 5 i I: 74
E- 't; l SPECIMEN No. 444 ) i TEST TEMP. 160 F b ll E i 4 c-g g E ? ig S-
- 1" N l
'j} {; 7W. ' ~ )
- .;q Q
Gr* -~tp*.?b .m / TIME t .' e - j l SPECIMEN No. 423 TEST TEMP. 115 "F yi ..j 2* r i .n u. p- '1 g-1 w E w 3. ~
- i f,
I %hrt. TIME l Figure: Vil 30: Instrumented Charpy impact Load Records and Specimen Fracture Surfaces of HAZ Metal, D 4802 2 i w l .;h.- . ;f,_ 75'. i
t I SPECIMEN No. 4GA w i TEST TEMP. 80 "F E me..z z_. i
- @*' M E siiS S E S I
( w w---e..
- t o :;
,y 4 Q ! ~~; o j, i ? ? T_ 1 [b ~ ' l-I "[ m TIME 3 g .. {._.,. 4 j j '.. g, p SPECIMEN No. 44Y g 3 y- .-3 4 4. TEST T EMP. 40 F 3 f < h-f q ) , i.} _ g.1 y {_... p j
- 4...
i .;7 i y, j ~ j, l g ,[t 4 wi o Q\\ g1 ' " ~ : '7 .. h.Qrn.l.r.?. ~i ~ 'd -.' ~ yl y o; . - g a s.m....s.......... p. - 4 k,, ' O 't' k .(,. y } g,,, - 'aj, A t TIME Figure: Vil 31: Instrumented Charpy impact Load Records and Specimen Fractura Surf aces of HAZ Metal, D 4802 2 I li 7e
E I SPECIMEN No. 43D TEST TEMP. O F TIME I SPECIMEN No. 415 TEST TEMP. 40 F b s g s O k I e 3. E L TIME Figure: Vil 32: Instrumented Charpy impact Load Records I and Specimen Fracture Surf aces of HAZ Metal, D 4802 2 I I n
1 l t SPECIMEN No. 417 k'+s.N 5 TEST TEMP. 80 F 5' ) , ;f O i x f. w O 2 A <ta tWHh5.rrm::M,' c TIME I ~ N, SPECIMEN No. 45D
- N' ' "
0 TEST TEMP 120 F .i' O ' 5%. 5.435.L:?.2:::N8H%+JM: b ! M %._ sis %iR kMif#I N I e k .i f Mdf 1-. j :,,,lyj f
- i,Ig; dg - Q j,.
'y y.s aa. , ~ . ~~ ~ ~, < > v. l 0 ap u
- v., argg.', 3 ia_,..?.,f g?g-gpg y
giysj.9 5 / i ,1<., is. ,. = l a d4h.i!. h ' '? } ..,e, ,s.. g TIME s Figure: Vil 33: fostrumented C.arpy impact Load Records and Specimen Fractura Surf aces of HAZ Metal D4802 2 I Il l 78
E-I SPECIMEN No. 467 TEST TEMP. 160 F I es I e (I W .a TIME I SPECIMEN No. 466 TEST TEMP. 200 F l l a l t a 3. ,3,,,. g [ TIME Figure: Vil 34: Instrumented Charpy impact Load Records and Specimen Fracture Surf aces of HAZ Metal, D 4802 2 I I 79
l VIII. PRECRACKED CHARPY TEST RESULTS Precracked Charpy impact tests for Fort Calhoun were performed on base metal (WR and RW), weld metal and heat-affected-:one metal. The testing and precracking methods used to perfonn these tests I are described in Appendix C. The computer input data necessary for the computation of fracture toughness parameters and the calculated results are listed in Tables VIII-l through VIII-4. The computer plot of the impact load signals for et.ch test and the fracture surface appearances of the specimens are shown in Figures VIII-l through VIII-32. Figure VIII-33 provides a comparison of the calculated K and j id K values to the reference stress-intensity factor (KIR) versus Bd temperature curve provided by the ASME Boiler and Pressure Vessel Code, Sectien III, Appendix G, " Protection Against Nonductile I Failure". This ASME Code presents the procedure for obtaining the allowable loadings for ferritic pressure-retaining materials in Class 1 components based on principles of fracture mechanics. I I I I I I I I I 81
TABLE VIII-1 PRECRACKED INSTRUMENTED CilARPY IMPACT TEST RESULTS BASE ffETAL PLATE D-4802-2 (WR) Test Data Calculaten Results Test KId Bd Jd Test Specimen Temp. C* V t P t P E E a ksi ksi ksi 3 g gy gy g g af g yd No. No. ("F) (in./sec) (ps) (lb) (us) (ib) (in.-lb) (in.-lb)(in.) a/w /In. /In. /Gi. ksi 2670 228 -80 56.7 40.8 170 932 170 932 3 113 .197 .50 40.0 79
- 2671 21D
-40 51.3 55.2 140 1101 140 1101 3 207 .187 .47 43.5 85 2673 243 0 50.3 62.4 140 1350 140 1350 4 265 .185 .47 52.6 102 2674 231 40 50.6 69.6 200 1401 200 1401 9 329 .185 .47 54.8 106 2672 21Y 80 51.8 87.6 132 1271 214 1279 15 521 .188 .48 87 88 99 2675 241 120 51.6 93.6 109 1155 518 1481 57 595 .187 .48 189 191 89 2677 216 160 51.3 103.2 90 1176 772 1635 110 724 .187 .47 264 266 90 2676 21P 210 50.9 103.2 106 1078 876 1558 117 724 .186 .47 259 262 82 8 s I ~ g
M M M M M M M M M M M M M M M M M M'q TABLE VIII-2 PRECRACKED INSTRUMENTED CilARPY IMPACT TEST RESULTS BASE METAL PLATE D-4802-2 (RW) Calculated Results Test Data K K Id Bd Jd Test Test Specimen Temp. C* V t P t P'g E E a ksi ksi ksi yd 3 g gy gy g af g No. No. ( F) (in./sec) (us) (lb) (ps) (ib[ (in.-lb) (in.-lb) (in.) a/w /In. .7 n. /in. ksi 2678 152 -80 58.3 40.8 200 1094 200 1094 4 113 .200 .51 48.0 96 102 2679 15M -40 55.8 40.8 220 1222 220 1222 5 113 .195 .50 51.7 2681 110 0 54.1 69.6 140 2182 140 1182 4 329 .192 .49 48.8 96 113 2680 13K 40 55.6 78.0 2~0 1350 200 1350 11 413 .195 .49 57.0 2683 163 80 52.8 93.6 113 1253 404 1492 42 595 .190 48 170 172 99 2682 13U 120 52.3 93.6 99 1177 820 1684 595 .189 .48 262 264 92 .u, 2684 14Y 160 56.0 103.2 105 1090 884 1556 116 724 .196 .50 284 285 91 2685 12C 210 51.3 110.4 95 1130 936 1647 143 828 .187 .47 287 290 87
TABLE VIII-3 PRECRACKED If4STRUMENTED CHARPY IMPACT TEST RESULTS WELD METAL, PLATE D-4802-1/D-4802-3 Test Data Calculated Results Test K I E Id lld Jd Test Specimen Temp. C* V t P t P E E, a ksi ksi ksi 3 g gy gy_ g g d yd No. No. 1F) (in./sec) (us) (Ib) (us) (1b) (in.-lb) (in.-lb) (in.) a/w 6n. 6n. 6n. ksi 2697 31M -120 52.6 40.8 220 1222 220 1222 4 113 .189 .48 49.3 96 2699 331 -80 56.7 55.2 160 1215 160 1215 4 207 .197 .50 52.2 103 2696 363 -40 50.1 69.6 120 1266 120 1265 3 329 .184 .47 49.1 i 95 2694 34P 0 49.7 87.6 117 1400 623 17?S 76 521 .183 .47 223 226 104 2695 362 40 52.8 87.6 133 1317 563 1607 61 521 .190 .48 205 206 104 2698 34M 80 50.0 93.6 105 1304 G13 1721 111 595 .184 .47 264 267 98 2701 347 120 49.2 103.2 122 1314 772 1727 114 724 .182 .46 264 267 97 2700 35J 160 51.6 110.4 119 1239 673 1618 99 828 .187 .48 249 252 96 I W
M M M .M M M M M M M M M M'M M M M H. M TABLE VIII-4 PRECRACKED INSTRUMENTED CHARPY IMPACT TEST RESULTS iiAZ METAL, PLATE D-4802-2 Test Data Calculated Results Test K T'Gd K Id Jd Test Specimen Temp. C* V t P t E a ksi ksi ksi o 3 g gy gy H M af g yd No. No. (*F) (in./sec) (ns) (lb) (ps) (lb) (in.-lb) (in.-lb) (in.) a/w /In. v7'n. /in. ksi 2689 442 -120 63.6 55.2 160 1148 160 1148 4 207 .208 .53 54.0 109 2686 43B -80 59.9 55.2 320 1570 320 1570 17 207 .202 .51 70.4 141 2690 41J -40 57.5 78.0 130 1440 1085 1748 127 413 .198 .50 301 302 124 2593 42K 0 54.5 93.6 133 1484 489 1603 58 595 .193 .49 202 203 121 2688 443 40 57.1 93.6 156 1328 742 1572 92 595 .198 .50 244 245 114 2687 42J 80 54.3 110.4 112 1297 758 1604 113 828 .193 .49 276 278 106 2687 422 120 53.4 130.8 102 1311 802 1680 149 1162 .191 .48 316 319 105 2691 434 160 54.9 130.8 115 1275 784 1619 139 1162 .194 . 4.: 308 310 105 0$ 3
i TFST NO.= 2670 1000 TEnP.= -80 F [ 800 l I I 600 I 9 i LORD LB. } i ig 400 l i / 200 p t O O 400 800 1200 1600 TIME MICRO-SEC Figure VIII-1: PIC Load Record for Base Metal Plate D-4802-2 (WR) y l .L yf EW W M M M M M M W M M W M M,W M r
me sua sua uma sua sua sua sua um em aus out aus aus sus sur as aus ag -, j TEST NO.= 2671 2500 TEMP.= -40 F 4 l l 2000 i 1500 1 a i i LORD LB. 4 1000 ( 1 500 i \\ t i k t 4 V l v% O ~ l l 2 l 0 400 800 1200 1600 i 3 i ) TIME MICRO-SEC i 1 1 Figure VIII-2: PIC Load Record for Base itetal Plate 0-4802-2 (llR) l y 1 i i d I l 1 l. s
~ : TEST NO.= 2673 2500 TEMP.= 0F l i I 2000 1500 \\ LORD LB. l 4 1000 4 i ;b g i 1 I 1 y b 500 Jj l/ N w
- ]
I v. "-'~m 0 1000 2000 3000 4000 TIME MICRC GEC l Figure VIII-3: PIC Load Record for Base tietal Plate D-4802-2 (llR) y um M M _M M M MM M M M M W M N M M 9 {
EEMEUM 1 I TEST NO. = 2674 2500 TEMP.= 46 F 2BBB i 1500 i ..GRD LB. m 1000 500 - f ~ Am N ~ B 1 0 1000 2000 3000 4000 TlME MlCRO-SEC figure VIII-4: IC Load Record for Base tietal Plate D-4802-2 (WR) y
,._-a.1 -.4_a--
- m-
_s_-4-.L 4m4 4-ah--M--J4-se -+ 4 h A- -"--ma- -mA44_me e-.< a 1.>---* h e Cime,mi a,_.,a -.e_am,,,,,e,AS.x s 09 C9 J i l l i I Cs C9 i C9 l O I I i I i j s j I L O g g co i t l w i j \\ n s l I l i l W O g f (1) E l l La w l l l w w '/ (. L i C9 CD / G 1 l I i ~% I i ( ( ( C9 CQ C9 C9 C9 c9 G CR C9 CD CQ C9 l LD CQ LD CD LD CN CN CD .1 O CE O' l i 90 t
i t! ir i 1; .; l:II!lli!l I I I
- f'I m.
0 0 0 s 4 -v ~ 0 0 0 s 3 ) R / t ( 2 20 w C 8 4 E S D e O t a R l x C P 0 I l 5 F X 0 M a t 0 e 7 6 2 l f 0 E 2 e 2 M sa 1 I = T B r O o N N = f d N r T P o S M c E E e R T T da N 0 o 0 L 0 y 1 C I P ,'^ 6 I I I V er -ld u .l I g i ,II F 0 0 0 0 0 0 O 0 0 0 0 0 5 0 5 0 5 2 2 1 1 B L D AG t e" 1,1l1l!l
- liii l!
llIl'
I,... O ( 8 CO I I i e l l / i / ~ a nm W. W 11 - a / e 09 \\_ b b A R E = m o ~ ) aC C 92
ii t ll!
- ' ; ff:!t g
g 0 8 ~' N 0 0 0 6 ) RW x ( 2 2 0 \\ C 8 4 E S D e O t R a l C P 0 I l 6 F 0 M a t 7 0 e 6 4 M 2 O E e M s 2 = N. I a B T r O o N = f N d T P ro S M T T -N c E E e R da 0 o 0 L 7 1, C I P 8 I I I V e f ru q k i F 0 0 0 0 0 2 0 0 0 0 0 0 5 0 5 0 5 2 2 1 1 B D R O L .m 1i: li
/ k "a / / 3 g, /, R 8' si Z 'l GE wW a R ,\\ \\ \\ L\\ 6 c9 G s s,b s q ~ m J Ca 94
REST NO = 2679 2530 TEMP = -40 F 2000 r s 1500 ORD !.B tD 500 U^- IV VL t~% L ,) TN '~ms, _,, - ~^^ ~ ~ v~;>_. ~ _ g 0 1000 20M2 3000 ., y gt,s TIME fil CRil -SEC Figure VIII-10: PIC Load Record f or Uase lietal Plate D-4802-2 (RU) y
--,---,.,-----.------w., ya.w a a. s vs-_a .ac.ma. g.aas.A.h J.=. a 4 6w_=e a Wae J.- 4.mAaA-44h._i-di. -.*-4
- e h
+ i' G k{ Q d i I' s J ) t l l 1 Q ( 3 i 7 l O C. L U t l I c, I CE ( G E j G 00 S l LO 3 ,a l N E 11 O j r. n W E W W b i f H H G G G 1 / f u a g t 6 5 G G G G G G G 3 G G G U' G tr G LD (N (N i J C l l C O 96
i-: i. i, t't: L ![ !T .!t i ib, i !l t 0 2 0 4 ~ ~ ^ 0 w 0 0 ) W 3 R ( 2 20 8 4 C E D S e \\ t O a l R P C W 0 i la 0 M t 3 e F 0 i 8 t 2 6 e 0 E = N I B 2 s 4 M a T ro O ^ s' f T P N N = droc S M e R E E T T d ao x 0 L 0 y 0 C I 1 P 2 1 v i l / I V eru ) g i
- .j 1
F e 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 2 2 1 1 B L 0R0 1 0 l1 lll1 lJ!l. 4.) i
i l l I' G l 5 l e e i 4 l l i i l Y ~ C9 i G l l / I k / i i / m Cr3 - M 4 cp G W S' CS g W j l n 1 .I) j a z ,i $\\ W k ( e W E L4 LM W w CS G ~ a ~_ .~ } C9 3 G CD G c9 C9 C9 Q G 10 C9 W C9 m N N O E C C-1 O ~~ 98 i I
g ..a mm ,2.. a.,a_ w __4. __.A..v. 4 4 .m-...a 4A 4 .-a,.s A..A. s 5A. am L_.s s4.. it. __,Ma.J mL.sk.,w.ea4,,.Aa i ) a f Q e VD 4 i 4 l 4 ( i \\ I. a G GG C (n T i j c: l I ? OJ o ca O l J J O LO e u l C x a U G ~ d 1 (%' G l w a J o w O o S ~ L) m (N E m l} m k' '-o . g W z ti e s W k O U M E LA) W w w, u i to O Q J G / b U N E m i
- at M
l I h L. g CD G G G G G G G G CQ G L.^ 'S in G in CN CN 1 4 L i CCo 1 99
4 b s j C9 T i CD G LO k a d O ) G (.0 J d 3 11 OZ !) / + c i e (A E W LJ W W ) Qa3 NJ i i\\s 7-____ s G G 3 G Q s G G c9 3 13 9 G W G w n n. 03 a O C l 1 100
l! ,l !I! !t f :, i;! tt g o g a ~ N_ 0 0 3 ) U 6 R ( 2 2 0 8 4 C E D s S e N' ta 0 l o, P r l O i a O M te 5 F i, M W 6 6 e 0 E s 2 M a 1 2 I B = T ro f U N = dro T P ce S M R E E r T d N ao K 3 L 0 y N 0 C I 2 P m 6 1 l l I V er u g
- I i
F 0 0 0 3 0 0 0 0 W 3 0 0 5 0 5 0 5 2 2 1 1 B l 0 0 0 I o~ i
4 k G f (D ~ I i i l 1 l i l I 3 ) G tN t l ) h G N N L. l e to LO G W N ?) I I OZ 'l +- 0-W E LIJ Ld s w. t Q t N, G l G N G 3 G Q S G G Q G lO G LD Q tn r N N i I (13 l l t c: 6 c t O 102 i i
~' ---.m___ l .g \\ t Q 3 a i l i l M h s3 G 3 ,c m i M O l' lc hs i o CO r. v ~ ) I\\ l la ( l M 3 I m J ; l O E D' ) t i1 t\\ I 7 'm Cn ". I I m E a Ed CT) } Q ~ 6 W id 2 C { M D D )) ~ I) s 2 OZ tl 2 h o 2. 3 M M E 5 ww L w-, 7 7 t m f-L m c< 4_ e ~ ~ n.J h mm ~- d N. L m D 3 a O m v, m 7 LO en N CD C7 103
,a--
.a
,s..m ~ --m-e- .m- =~.m..--a-_w2a x .z a, e .a n n a. at..a_.w .m 4 na_.ma.. s 2s-a.. n_ a 9 33 i G -J-l' Ii b t e i G i M 1 ) l i l 8 l l Q (D G G / Q W D, o-Q .J-l I t l OZ 11 f W Q ( (I> r_ ww ( i k h-- ? ) i I I I CQ f l l l s I l _l b G G G G m s G G G G s T G tn cg try l CN N l l ? C1 1 I i i C I C-i O I _ 104
I 1 1, ~W i
- 7; f
G ( o 5 4 4 L G N m o 1 Q { e en i ( j Q l i j N O 4 CO l' 4 9 a w i U ? i e ( ~ O i ~' T I-U g m F - G E Y c) G r / rN w 3 I LD u s u O D Z 'I ) m 3 L b 1. tD E.
- a 14 LJ H H q
m _a g a m a ) e-3 u s m. Wome "J h i L. M N O N G G Q 'S S CD m m W G LO Q to N N CO J C CD 105
" ' ~ ' ' ' - - ~ - - - - - - - -, - - _ _, - - - - - -, _ _ _,, _ _ i I-5 G ,f. CSI ) G 2 m J E 1 / O h n m g a, g II i ,a2 ii W C. mm I 1 x h h G G a I N a m a m J CC O 106
f,a2..a e w au sA e- -4. m_a-- _.-._.s.44 J ew A.. _m_. a...u ...s m-,..w d _J.eaam-4--a eqm .a ._4.A.e m.gie,;.aym_,_4a,3a,..a man-4a.m.m.,e.a eAi.--m.m.%a, 4 E s- ,? I 3 1 ~ / ) ) f / M i b h o 3 00 S e M ~ ) i i / N I O .2 [ C i t O I A 1 (D 3 i f e i c T f 'J l / o a r. t m-a i O a = e 1 (o fN O ( m W N co E. .? ?! l \\ e o + l Z 'l V I o' % k { u U E l O !d LD ) k k 2 m '5 c O n a 3 U N N O' ] i 2 j ~ p i 7 G tm c9 Q G ~9 Q 'N G G LD G LO G LO rt cN s C3 J 1 C O 107 r e m - -. -v,- - - - e
G G ( J-( t J I G l G s i G r-to /) ( L I ( C C ( G s en m 'A N N N D N ~ ~ 11 h o ./ 2 'l I t / l b-- CL LO "e__ 4 LD F-E-. / ) I i G [ G { l G ~ l -nL e ', N G G S G G 3 G T 09 Q G Q LP S Ln G Ln N N Q3 CO ~ 108
,.4 a m u... ,.,-w .,-._a.-.y,.*i.--,sa_a-a.a 4 C. d..m 3m 4; a p_a ,...a__.a ..rumM_a. _wp,a_ e ..4,-.,, g, _ _, _,, E _,.A_amA
- .,A&
4, t-l m a I G l J ,I i /.k l / l s I / e i 3 N i l a l m a I O } N l. n l NO / CO I T f I U a w l [ (O 3 i I c r 1 1 7 T i -) e A Q b M G. m Q
- n ca u.
l G J p'. l N. 3 j u) 3 E o w i I H L i O i, O [ ? Z 11 J O b--- 1 O LO 'E t. ww I o w p.. es i O G J T ~D J, l I \\ g I 3 e t M i CJ L. e s ( l l Q 'S Q Q l S 7 (7 3 ~ LA "9 W G LD l CN (N l i I C l C O r 109 i r e
A. 4wAA a.-- J.aA-a---,- 2 4N-4 +4 e--,-L-~and-s> L-wee AA ham =en suAM6--- 4 v W ~ a' man--~L& --wko.* mea-"e-eA.-N'a sw +e--m rarmezai-mm_,a e jt Q cq (P l-f i I ) / ! l 1 / ,7 eg N / l l l C (r l-I i 1 9 e k CD sm E CO T (D O I N N / 1 L Cs "P t} \\ H C1 I LO E i a' j uJ ( L + i ,7 G 7 4 / o- '" - ~~.. - mb ~ 3 3 s G 7 G G m m C9 -S G to s LD G LO W N C3 C O 110 .,, -,. ~- ~
a 4a%,-- _,,a a A4, _.4.1.L4,a dm ,,.wA&A.,ea aa. 4=aa a ,_,.,,u.,;. m.a.w 2 2.
- -sm
.,,..r.2 .m. ,a 1 1 i l
- n
(
- Ta l
) 69 d T ( l l \\, l 1 's r cn l 7e i I k N, = l 1 O 4 'a ch l I LO 1 0 [ f ~ +> i C f3 l l g \\ l \\ O'~ n l w. L a +> l a c> i w +-
- ~
a 'N' -,d m E. I ( Ey = ,I ( H .-o C 4 Z 'l ? f*" C.. O LO E. T( j i W ia) 5 a W w.. 1 g ,w C J r La N Ca. b i c N T5 C 2- _,%,,b"'%= h. L 3 m N__ e gmum g 5 m.a = 5 n 3 G Q 7 9 Ln C to 7 LO N cv Q3 J O C" O lil
ym a , -+ e u -.+-,.saa.,-a swn--wk--n4,A4a,A-m 1sa .a 4 si M..n,m ru -a9-, mama. -44A-,a 2 _K se -JL~.,k e,. O h Q ..g N CC s i I t / r G Q i (O S. l I l s / I I. C ( / ( C / m g ,-A g f G CO 4 g N 3 l 11 ~ F l \\ ' O ) Z 1l / i l i H a. { LO E ww t w I (i G } 3 'm j es l l l %~ 8 L t i G G G G G G l G S G Q C9 t LO S W G LD l O: 'N CQ J C C l C I J 112 l
,,a,,,, e_ e a a >._m-_, m_ _u- -..mu._a-,-- w- -a _m k.4 n2-H+ama.-i > - -,. _ ~ s amA.s2x.M_a .G -a,, b-J4 m2ad4A-.sA.A+,4,e Aa,me Q -nam 6 _-u,a f 1 1 m ?) f .O f \\ 1 i l a i ,'9 l D \\ I ro I f DJ t I N C O a T o a [ 3 j o a f 1 C. f-U iQ ~ 9w ~5 R i w m = G W (N y i E fl W-t O C w 2 !! I o / i. F-CL 0 M E S laj La.f e H-W- m O O a Q G v 1 ~ ) y i ?O k 3 W> b 0 3 U O, ,5 m 3 m 3 co a C CO 113
t l l l. 3u ~ ) rc l !t f l l r l \\ e i f G G (.D i I l-( f1 l
- lJ f
T / 1 O cr l 5
- )
f a l co. m E l co ~L G O m 14 ,F E 1 Il W 0 l Z [ W a mt
- )
LM .1w w [ Q 0 J-m / W /* / / 2 i L 6 j m a m m a e Q ?.Q Q 09 3 T S LD G Ln m: n i O CO 114
t I Q f 7 ) t J l i I k G 1 G / l G CD i OJ l 4 o
- 3 U
T (
- .J o
U) es I a m m C2 E U Q ~ G E 3 m *. Q m 2 N, O d Q g m o E = 5-t o OZ !! 7 L Q_ O H, -s u e LJ [4 H H. s er o 5 a G ? G u g = A b E ? ~%... _- u. G S G t7 G G Q S G Q Q Q LD G LD Q Ln N (N 03 a O C-O 115
e \\ ' 2d m G Q 3 7 7 C.) 'D W i l O Cr L.s ~ G E N 00 W - N W ~ r !) y a Z 'l H CL M E LU W h. w.- G / G 1 G \\ s 2'k W-f S G G G 5 ,s a Q 3 s c in 5 LD 5 Y' N N C3 CC 116
sA wa r r m. - - a wm-aa,a=*=*'- ' vw' s e sm"~maa=~~"=+-w-m.a-mmmmm.ss.-.~------.--~a,-, ? n E i i I 7 7
- g
) s I i i j I i / l 7 G 3 cm y / a t -/ Y (.,- I i / w a l {# l W "a l l ~,t a j i es ~. 2 c I () G ~ ~ b ~ i u. G m a { (D 7 N t 12) N W $ l E 5 11 W L l o s l 2' 'l 2o L-1 ) [ W E i = W W h H. y m la o Q J ( Q a s a f9 4 w W F g". c k N N Q Q 3 5 -Q G L7 Q 3 (P Q LD 7 1.D n m l C. O 117
400 ~ V BRSE METRL (WR) GBRSE METAL (RW) 350 o WELD METRL A HRZ METRL K10 = OPEN SYMBOLS E KBD = + ON SYMBOLS a 5 300 a cm e S a ._ev +e+7 9 250 9; a d E + u. 200 a + s G V z W e -.2 150 m m Ld E-a 102 w 6: u,. r a_ I O d 50 S0 00o5 ,e D ? O --300 -200 -100 0 100 200 TEMPERATURE RELAT!VE TD RTNDT U-RTNDT) DEGRi Figure VI!!-33: Fracture Toughness Values for Dynamic PIC Tests y 118
E-IX. DISCUSSION A sunnary of all major tett results is provided in Table IX-1. This table serves as the basis for the following discussion of each of the phases of evaluation of baseline specimens from reactor vessel materials, as part of the irradiation surveillance program. A. Materials The Fort Calhoun surveillance materials consist of SA 533-B, l Class 1 plate, weld and HAZ fabricated from sections of the vessel shell plate which would first appear to limit the l operation of the reactor vessel. The enemical composition conforms to ASME Code Section II and C-E specifications for reactor vessel plates and weldments. A metallographic examination was performed to characterize I the structure of the surveillance materials. The tempered bainite structure for the base metal ar.d ferrite structure for the weld metal are typical for thick section SA 533-B steel in the quenched and tempered condition. A small amount of inclusion stringers was found in the base metal; the stringers were oriented parallel to the major rolling direction. This accounts for the difference in toughness normally experienced between longitudinally and transvarsely oriented Charpy specimens. In a lonnitudinal specimen, ga toughness is not affected because the advancing crack must cross the stringer. In transverse specimens, the stringers are oriented parallel to the advancing crack, offering a path of low resistance, thereby reducing the toughness relative to a longitudinally oriented specimen. As seen in Table 11-1, this difference in toughness appears.as a lower upper shelf energy for transversely (WR)- oriented base metal. I I 119
'I B. Drop Weight Tests Drop weight tests were performed to establish an f1DTT value of the vessel base metal. The baseline NDTT value is used in conjunction with Charpy impact data to determine the reference temperature, RTriDT, f r the material. NDTT for the base metal (RW), was -20*F, demonstrating the excellent teughness of the vessel plate. tiDTT for the weld and HAZ was conservatively estimated as 0 F using Branch Technical l Position MTEB 5-2. g In addition to the NDTT determination, the.~recture surfaces of each specimen were heat tinted to show the extent of crack extension after impact. The extent of crack extension (shown as a dark, heat-tinted area in Figure V-1) decreases with increasing temperature. The frac +ure surface photographs g also confirm the break-no break perfonnance determined prior 5 to heat-tinting. I C. Tensile Tests The results of the tensile tests show that all materials exceed the yield strength, tensile strength and elongation requirements of the ASME Specification for SA 533-B, Class 1 pressure vessel steel at all test temperatures. In addition g to the ASME requirements, the fracture load, fracture strength, a fracture stress, reduction of area (R. A.) and the unifonn elongation (UE) are reported as required by ASTM E 185 in order to more fully define the material properties. A l comparison of the material tensile properties shows that the l weld metal exhibited the highest yield strength of all materials. The other materials had similar properties. I I 120
l-D. Charpy Impact Tests Charpy impact tests were performed on plate, weld and HAZ I surveillance material to provide baseline data for subsequent t comparison to irradiated surveillance material. Standard Charpy data are summarized in Tables 11-1 and IX-1, l including uoper shelf energy, RTNDT, and fix tempern ures corresponding to 30 f t-lb, 50 f t-lb and 35 mils lateral expansion. The upper shelf energy for the base metal was greater for the RW orientation (137.5 ft-lb) than for the WR I orientation (121 ft-lb) as a result of the preferentf e: .;rientation of inclusion stringers (as noted in Section IX.A). The HAZ metal hM the lowest upper shelf energy (82 ft-lb), but all three materials (plate, weld and HAZ) had upper shelf energies in excess of the 75 ft-lb minimum l requirement of 10 CFR 50. Appendix G, for unirradiated beltline materials. RT values ranged from -8' to NDT +24*F, the lowest value being for base metal. It should be noted that the weld metal NDTT, which controls the I lower bound value of RTNDT, is typically -20"F or wer. Since no weld metal drop weight specimens were available for testing, the NDTT had to be conservatively estimated I as 0 F using Branch Technical Position MTEB 5-2. The highest value of RT was for the HAZ material. RT NDT NDT determination for the HAZ was made difficult by the inherently large scatter in impact test results (see l rigures VII - 14 through - 16). In the discussions of IC and PIC results, the HAZ is actually tougher than is y y indicated by the standard impact test results, g In addition to the standard Charpy impact data, instrumented 5 impact test data were obtained to more fully characterize the surveillance material. T,T and T from the load vs I b y D temperature curves for each material are compared to the standard Charpy data in Figure IX-2. It is noteworthy that
- RT for longitudinally oriented base metal specimens is not strictly valid NDT and provided for reference purposes only.
-121.
the T temperature is, in most cases, nearly the same as the l B highest temperature at which 100 percent cleavage fracture is experienced as shown on the fracture surfaces of the Charpy specimen. This indicates that the load behavior e analysis can approximate the temperature at which the material g fractures in a strictly brittle mode. Further comparison of 5 the IC and standard C data shows that the T temperature y y g closely represents the 50 ft-lb fix temperature for most materials tested. This comparison is difficult for HAZ material due to the large scatter normally found in the test results. For example, the T temperature for HAZ (-40'F) g was 124*F less than the 50 ft-lb fix temperature (+84 F). However, the IC results for the HAZ (Figure VII - 13) y exhibit considerably less scatter than the standard impact results (Figure VII - 14), indicating that instrumented test results more closely represent the true material toughness. Since the T temperature is also that point at which the g material exhibits close to maximum load behavior and at the same time precedes the onset of ductile fracture, it may l well be considered as a material property selection criterion l in the near future. Similar to the T temperature, the T B D temperature defines a material property ccndition which can be substantiated by a fracture surface analysis of the broken C. specimen. T is the temperature at which the y D material fails in a completely ductile manner. It-is also characterized by the first 100 percent shear appearance of the specimen tested at elevated temperatures, which also f defines the upper shelf energy. The close relation between T.and 100 percent shear value is shown in Table IX-2. D E The IC data demonstrate the same relative properties for y each material as observed for the standard Charpy data with l one exception. T and T are lower for the HAZ than any B N other material, which is not reflected in the RT values. NDT I I N ] 122
- t
The rapid heating and quenching of the material adjacent to the weld fusion line (the HAZ) results in an inherently tougher material than the base metal. The crack seeks the I path of least resistance, resulting in extensive crack branching preceding fracture which dissipates a considerable amount of energy. The resulting large scatter in standard data is not reflected in IC curves. The IC data in fact y y indicates much greater toughness in the HAZ than evident from standard results. Since IC results for all other y materials support the standard data, it is assumed that for HAZ material the IC results more closely reflect true y material toughness. This su trior toughness is also demonstrated by the HAZ data from the PIC tests. y E. Precracked Charpy Tests In addition to the already well defined material properties by standard tests, the use of ;;recracked Charpy impact specimens provides valuable dynamic fracture toughness information. This is easily seen when the fracture toughness data are compared to the ASME " Lower Bound Reference Curve, K " (ASME Boiler and Pressure Vessel Code, Section III. IR AppendixG). As evident from Figure VIII-33, all materials tested exceeded the lower bound K curve. The highest of IR all material t~4ghness was exhibited by the HAZ metal. This high toughness is most likely a reflection of considerable crack branching as the crack seeks out the weakest path. The precracked Charpy data for the Fort Calhoun surveillance materials were analyzed using the best currently available techniques. Developmental programs, both planned and in progress, are being directed toward the refinement of analytical E I 123
techniques for interpretation of test data at temperatures approaching the reactor vessel operating range. Recognizing the potential for this developmental effort, sufficient details have been reported in Section VIII to facilitate additional analyses of the Fort Calhoun precracked Charpy data if the need arises. The fracture totghness data presented in this report :ihould serve as a base for comparison of fracture toughness results from irradiated materials and aid in the adjustment of reactor pressure vessel operating parameters. I I I I li i I l' E E, I I 124
m m m m M M M M M M M M M M m M M M'M TABLE IX-1
SUMMARY
OF MATERIAL DATA C RT Yield y 30 ft-lb 50 f t-lb 35 Mils Upper Shelf Strength Fix Fix Lat. Exp.d NDTT RT Energy (ksi) c d NDT Material and Code (*F) (*F) (*F) (*F) (*F) (ft-lb) Static Dynamic l Base Metal Plate 36 78 58 -20 18 121 69 99 D-4802-2 (WR) a Base Metal Plate 26 52 34 -20 -8 137.5 71 99 D-4802-2 (RW) D D Weld Metal -18 2 -12 0 O 97.5 78 99 Plate D-4802-1/D-4802-3 b D HAZ Metal -10 34 58 O 24 82 67 106 Plate D-4802-2 a RT for the RW orientation is not valid per 10 CFR 50, Appendix G and is only rehb[tedforinformation. b Estimated per Branch Technical Position MTEB 5-2, where NDTT is the higher of 0*F or the 30 ft-lb fix temperature, in the case where drop weight tests were not performed. t c betermined from average impact energy curve. d Determined from lower bound curve. l
V 4 TABLE IX-2 INSTRUMEliTED VS STANDARD CilARPY IMPACT DATA f T f4 x. Temperature 30 ft-lb Fix T 50 ft-lb Fix RT Min. Temperature j B g iiDT D Temp for 100% Temparature Temp Temperature Temp HDTT Temp for 100% { Cleavage Fracture Shear Fracture Material and Code ( F) (*F) ( F) (*F) (*F) (*F) (*F) { F) ( F) i Base Metal (WR) -40 -80 22 80 78 18 -20 160 190 D-4802-2 l Base Metal (RW) -22 -80 52 52 -8 -20 120 160 D-4802-2 l g Weld Metal -112 -120 -30 -30 2 0 0 80 BC [ l D-4802-1/D-4802-3 l i l lIAZ Metal -140 -160 -44 -40 84 24 0 160 160 D-4802-2 i i i f i i t \\ i i i I I l Em aus aus man me egy sus aus sus amm se amo me as ans ame .ame aus as
-- _-= APPENDIX A DROP WEIGHT TESTS-DESCRIPTION AND EQUIPMENT I The drop weight specimens for this program were tested on the machine shown in Figure A-1. Figure A-2 depicts the drop weight specimen used. Figures A-3 through A-5 are isometric drawings showing the orientation and location of the drop weight specimens in the base metal, weld metal and heat-affected-zone, respectively. A detailed description of specimen manufacturing is presented in Reference 1. The drop weight tests were conducted in accordance with Standard Method I ASTM E 208-69, " Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels." Specific procedures used are listed in Reference 2. Heat tinting was conducted after the tests were completed as follows: 1. Heat at 600 F for 1 hour; 2. Air cooled to room temperature; 3. Cooled in liquid nitrogen until brittle; 4. Broken in half using the drop weight machine at low impact energies. Padded support anvils were used when breaking the tinted specimen in half to preserve the fracture surface. I The constant temperature necessary for conducting the drop weight testr was obtained from a series of circulating liquid baths capable of maintaining stable temperatures throughout the ranga of -150*F to room temperature. Any selected temperature in this range was maintained to an accuracy of 2' F. These constant temperature baths were composed of the following equipment. I I A-1
'E One Neslab Constant Temperature Circulating Bath Model TEZ 10, with a 'Model CT 158 Thermoregulator and a tabline 11 inch diameter thermo cup. Designated Bath 2. Medium: Isopropanol - room temperature -iG F Neslab Bath Cooler, Model PCB-2, connected Two Low Temperature Stirred Baths, two 11 inch diameter themo cups, two Honeywell Controllers and Solenoid control valves to liquid nitrogen bottle. Designated Baths 3 and 5. Medium: Isopropanol - room temperature to -150*F Coolant: Liquid nitrogen and Flexi-Cool unit. All baths - copper constantan thermocouple. Honeywell six-point temperature chart recorder. Digitec themocobple themometer - 590 TF. g Standard mercury column thermometer. 5 Bimetallic-spring thermometer. I I E I I I I A-2
1 l-I I. u ifeal y I I I },C 3 v i h- 's... ~ T 59 - _.prm .. u = ,,g 4: l m.,;, y 4 I l ? I I - - - -z I FIGURE: A-1. View of Drop Weight Testing Machine, Showing Details of Specimen Support, Lifting and Release I Mechanism and Control Console, I I ^- I
I, I I. I I h M a l.5" 2 5,, a 3 ., Q l 0.6 5 g 7 o" l % Standard Crack-Starter 2.Do Weld With Notch N FIGURE: A-2. Typical Drop Weight SPecinen I t I I. I I A-4
l!' -ll I D Side I N 5,, = E / I O I ~ - J> g / / / / / t l / / l / / / / / E / n / f / /j, l !/ ""'~~ V y/, , /}t ,/ / I ,/ /l / / ectio 7 0 D Side, / t= Plate Thickness / / l ~ / l l/' s / F!r-UP,E : A-3. Location of Drop tieicht Specimens Hithin Base tietal Test 'taterial I I A-5
'i. Weld Metal { 10 Side k _ 3" g A'f,,/? O. / l g , e-m ~ 1g l -=
- +
/ / / / l / / vi / / 1Y j l g ', _ __ _ / s !/ C'J[#//[' !/ l W / /M/ ^ / 3 l / Princi al Rolling / / Direct on - l l / t Plate Thickness \\ rg /j/ / 0 0 side l I 889: / l FIGURE: A-4. Location of Drop Weight fpecimens Within Held tietal Test flaterial I I A-6 5
I-l Weld Metal) I 5" HAZs g 1-i g Base Metal } i n ~ x @ly / / ,M'/ t I / ,o fy / / I / / e I. l -.y, l pl--------- / ' l /< V "'."9* W V AA }t I 7 t l Mj / / /EIN/ ! 3% g / Principal Rolling y 0DSide / Direction ----
- l 7
p/ / t= Plate Thickness / / /' g / /4___4y'/ /
- lI l Utys
- //
i M
- /
I I FIGURE: A-5. Location of Drop Weight Specimens Within Heat-Affected-Zone Test 11aterial l-A-7 'j 1 l
APPENDIX A REFERENCES 1. " Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of fort Calhoun Reactor Vessel Materials", C-E Document CENPD-33 Proprietary Information, dated November 15, 1971. 2. " Test Plan for Omaha Public Power District, Fort Calhoun Station Unit h No. 1 Evaluation of Baseline Specimens - Reactor Vessel Materials Irradiation Surveillance Program", Test Plan No. 23866-TP-MCD-002, dated April 1976. I I I i; I A g I' I I, I I A-8 g
-~ F-APPENDIX B TENSILE TESTS DESCRIPTION AND EQUIPMENT l The tensile tests were perfonned using a Riehle universal screw testing machine with a maximum capacity of 30,000 lb and separate scale ranges g between 50 lb and 30,000 lb. The machine, shown in Figure B-1, is capable of constant cross head rate or constant strain rate operation. The tensile testing was covered by the certificate of calibration which is included at I the end of the Appendix B. ~ Elevated temperature tests were performed in a 2-1/2" 10 x 18" long high temperature tensile testing furnace with a temperature limit of 1800 F. A 'l Riehle high temperature, dual range extensometer was used for monitoring specimen elongation. The tensile specimen is depicted in Figure B-2. Figures B-3 through B-5 are isometric drawings showing the orientation and location of the tensile specirens in the base metal, weld metal and heat-affected-zone, respectively. A detailed explanation of specimen manufacturing is presented in Reference 1. l Tensile testing was conducted in accordance with ASTM Method E-8, " Tension Tests of Metallic Materials: and/or Recomended Practice E-21, "Short-Time ,l Elevated Temperature Tension Tests of Materials," except as modified by Section 6.1 of Recommended Practice E-184, " Effects of High-Energy Radiation on the Mechanical Properties of Mettalic Materials." Specific procedures I used are listed in Reference 2. I lI I i B-1
I 1 .t 4.. t t r==== ) ..- r rm b = I Ii I I! I' I l I 1 Figure: B-1. Tensile Test System with Control Console and Elevated Temperature Testing Equipment ] I ~' It j
a A,. .-__b aa_A e _as .s4 p.A u u.- t-I I .I I I 9 l 1.50" h ,1 p m' I h - 14 NC 2 Thread I oJ,h x j o.23a oie p 3,, i (NQ#k y / 1
- I i
i l FIGURE: B-2. Typical Tensile Specimen l 1 . l! I . I-I B-3 f
t I I ~ Sn Weld Metal [ O 1 k I D Side-jgy /' r g M
- 1 l
e 11/4" /f[f5 I/ / I l 'M k ' siU# $ g j g fl2 gh = / /. g 90:R j,
- l gg '/ :?
c
- /
11/4" Q.-Qj m:i i: v a s n a l E@lj'3I \\(O D Side $$?1::{ ; l. BEtWL bg$W& g gg /,r P r.incipal Roll.ing Direction =- If t = Plate Thickness I h_hY FIGURE: B-4. Location of Tensile Specinens Hithin lleid fletal Test fiaterial I I I B-5 I
E-I l 5" Weld Metal [ Sc : i u? l jef l D Side-e v i I e 1 -.=.7 L 11gn /;Vn!N o I l/ ') I l l 724W i =2, n y I (l-- I A h f,f !!] . Q x 20 =: 'A / -Mw y / V l1 t% e s tt } =Q/,-Q/ :. : . ~ -l E NN_ i MYb %0 D Side P J J 1 @%ll ) / .I 8%Wy );,/ ME/ / g. g f f Principal Rolling Direction = - - V t = Plate Thickness hh? y FIGURE: B-4. Location of Tensile Specinens Within lleid lietal Test fiaterial I I I B-5
h. 5" g e ! eld Metal W l D Side-g M'"F, I HAZ xx( q ? y i o '/4 t Base Metals ! l/ I / { gl l / / / / 'I t ll / / i i e n:2._ - - 2 / I i I g l $'@fld5 / a
- //
i fe: i 4 j < W;. N. 3 / n 2<.. / / A= > l g / I/[4I 1/4 t l E 4 / r 4 0 D Side / / ') / ,' r ' m / g l ggg,7 Principal Ro!!ing Direction E !_ _ _ _ _ _ _ _ _ j,) t Plate Thickness g ___._.__4,I gm, r I } FIGURE: B-5, Location of Tensile Specimens Within Heat-Affected-Zone Test liaterial J l I l B-6 11 l
,s.u v 000 Wilson Instrument Division '1 niente 929 CCNNECisCUT Av(hvi.tniDCLP0AT. C3NNCCTIC ut PU2. G031342$'t I"*"' AV( AICAN CH Al?d & CADLE C' VPAN f, INC I. I Cert:ificate of Caibration Calibration Date October 28,1975 Machine Description Riehle DS-30 Customer Combustion Engineering Serial No. FA-443 72 I Windsor Locks, Conn. I Wilson instrument Division of Acco certif es that the machine described above has been calibrated to AST).t designation E4 using calibrated weights and/or proving rings calibrated to t.'ational Buracu et Stan:ards I Specification. TENSION Machine Rar.ge 3,000 Machine Range 30,000 Machino reae.n3
- . Error Maernae evacmg
- k Error l
_500 .130 5000 +. Q0_, I 1500 198 1c.nno_ 1An3 inno _1 e,7 10000 .5641 -y ._r; I 20000 f ,.')? 2500 1 .173 2 5 0 0 0 1 . 0_.5J_ ' I 7000 l +.072 1n000 ! 0 Machine Ra')ge 6,000 Machine Range I-uacnm.,.aamo I. Error uacn,r.e,eae ro l *. arter g 2000 ! O j 3000 1 +.216 i 40nn i 4 o c.y ? I 5000 +.173 6000 A_M l I I I Ita: hine Rance 15,000 Machine Rat'ge Ma:nme reas.no l *i Err >r l Mu w reacino I *. Errr l +. 0 7_2 I 1 g 3000 i g _ - l --g36J j ! E 12000 i +.054 I ~~~ ~ ~ i _t .M Calibrating apoaratus used l,* cm e. >.- v. cao.w, j scw no eat e n. t.v ~EDD0 'l~SiH~~
- ' 22R '75~ TJT D171CrO,7pa f @M
.I 4.C1 I 20,000 4127 3-25-74 SJT. 01/lCp64 0 [00,000 1815 2-27-75 5JT.01/1dO773 siano vas % a> ; e l B-7
'l 0080 Wilson Instrument Division RIEHLE 4 ' " " " ' " " ^ " g m countericur Avenut. eaicotncat econecticur was. cm m no .I AMcRICAN chain & CABd COWNY, WC. k cert.,.i ica:e or ca ora: ion i <.i 4 Calibration Date October 28,1975 Instrument Description Richle Extensemeter Richic. Recorder Customer Combustion Engineering Serial No. Model DH1-lO Windsor Locks, Conn. R-67338 I' i Wilson Instrument Division of Acco verif es that the attached graoh is certihcation of calibration of the it'stru-i ment described above. This instrumerit was (11ibra'ed to ASTM designation EB3. I I l l I r Recorder E:tensometer Calibrator Equipment used in calibration EM 5'28664 L
- u Nll..h, /h h,.,, *,' M
- i
j : ',. g Cabr o' u f ' - +' 3 A d6
- j q
l ~ s m,o,,.n.... l I l l B-8 l
f APPEl1 DIX B REFERENCES I 1. " Summary Report on Manufacture of Test Specimens ant Assembly of Capsules for 1 radiation Surveillance of Fort Calhoin Reactor Vessel Materials", C-E Document CENPD-33 Proprietary Infor. nation, dated Novemt.er 15, 1971, 2. " Test Plan for Omaha Public Power District, Fort Calhoun Station Unit No.1 Evaluation of Bawline Specimens - Reactor Vessel Materials Irradiation Surveillance Program", Test Plan No. 23866-TP-MCD-002, dated April 1976. I I 1 I I I I s I I B-9 I
y uL 4 e14--ou s 4,eAAJ b rwab-n-~M4 AubM.EJAL. ds a Jrn. " knv rs'd4 44 amr & +sn,3x 24,L uJL& -mAe ae-4 A e 24, .hmM. 4,-446'nye ass 4>t-,a=*A ? 9 5 t~ T. 'h i 2 m ..m. ..._t, ,.~
O APPENDIX C CHARPY IMPACT TESTS - DESCRIFTION AND EQUIPMENT I The standard impact tests and instrumented tests were performed on a calibrated instrumented impact testing system, shown in Figure C-1. C-E's - I instrumented impact test equipment -ovides for signal retention and the subsequent data analysis. The re gut..gnal from the instrumented tup is recorded simulta. 'oud by an 4Iloscope and a transient recorder. A permanent visuai record was made of the load signal, as it was displayed on the oscilloscope sr.reen. with a polaroid camera. Another permanent recording of the impact load signal was made by a paper onch, which received a I digitized signal from the transient recorder. An electronic interface unit was used to make these units compatible. The evaluation of all collected signals was made using the punched paper tape as input to a computer program I for the data analysis. The system ennsists o' the fellowing elements: a. A Model SI-1 BUi Sonntag Universal Impact Machine with a specifically machined pendulum tup, instrumented with four resistance strain gages in full bridge circuit. This tup " load cdl" is calibrated I statically and dynamically to provide a given pounds /vcit sensi-tivity for known settings of the balance and in on the dynamic response system. The instrumented machine maets all impact test machine requirements of ASTM and is certified by AMMRC, the U.S. Army Materials and Mechanics Research Center (Watertown Arsenal). A copy of the certification papers is included in this Appendix. I b. A Model 500 Dynatup dynamic response syste;n which supplies regulated and constant de excitation to strain gages on the pendulum tup, I provides balancing, variable load sensitivity and calibration functions, and amplifies load-time signal to a 110 volt, 1100 milliampere level while preserving kHz frequency response and 0.C5 percent accuracy while simultaneousiy recor :ng the area beneath the load-time trace, g C>
c. A photoelectric triggering device and velocometer composed of a high intensity light d' ected through a grid mounted on the pendulum of the impact. ester, and passed to a photosensor through fiber optics. A special circuit ensures accurate, reliable and fail safe triggering of the oscilloscope recorder plus an accurate display of the average velocity of the pendulum during impact. d= A 5103N Oual Beam Tektronix Storage Oscilloscope with a No. 5A18N dual-trace ampli ar plug-in unit and a No. SB12N duT1 time base plug-in unit. Also included is a C-58 cemera with mounting adapter. This device gives a display of each test trace for visual analysis of the load-time impulse recorded by the instrument. e. A model 802 Biomation transient recorder. This unit receives the load-time signal from the instrumented tup and stores it for play back to the oscilloscope. Its internal analog to digital corverter g also provides a signal output in digital form to an electrenic 5 interface. I f. A model L-204 Datacap electronic interface with a model D-101 index interface. This unit is the link between the transient recorder and the paper punch. It also allows the precise numerical identification of each test signal. 2 g. A model 4070 Facit Addo paper tape punch with a writing speed of 75 characters per second on standard 8 track paper tape. The digital signal from the transient recorder and test signal identifi-cation from the interface are permanently recorded on paper tape. 3 This paper tape is used as the input to a computer. h. A PDP-llA computer. This unit is capable of accepting punched paper tape as data input into a program designed to analyze all Cherpy impact signals and to produce the required fracture toughness data output. I C-2
t The standard Charpy specimen is described in Figure C-2. For a detailed 41scussion concerning specimen manufacturing see Reference 1. Figures C-3 through C-5 are isometric drawings showing the orientation and l location of the Charpy impact specimens in the base metal, weld metal and heat-affected-rone, respectively. I All standard Charpy impact tests were conducted in accordance with /STM Method E-23, " Notched Bar Impact Testing of Metallic Materials." Specific I procedures used are listed in Reference 2. The precracking for and precracked tests of Charpy specimens were performed according to Electric Power Research Institute (EPRI) methods as reported in Reference 3 of this Appendix C. The proper stress intensity factor range (X ) for precracking is currently being studied by ASTM Comitteo f E24.03.03. For these tests, precracking was conducted at a K of 12 Ksi-f in.U2, I The data analysis techniques for instrumented precracked Charpy impact test data were based on the procedure developed in the EPRI Fracture Toughness I-Program.(3) A precracktd Charpy V-notch specimen is impact tested at a preselected impact velocity. The test record, consisting of load as a function of time, is stored in a transient recorder and is transferred to paper tape in a digital.fom. The paper tape is fed into a PDP-11A computer which is programmed to output two test records. They are: 1) load versus time; 2) energy versus time. I I I I C-3
~ f. The PDP-llA computer then provides enlarged load / time plots. From these expanded plots, the following information is obtained: t time to cause general yielding gy P general yield load gy P maximum load M Eaf uncorrected value of energy to cause fracture. I The dynamic stress intensity factor (XId) is calculated using the following test parameters in addition to the above values: notch plus crack depth a C specimen width w y a/w crack depth ratio C* non-dimensional specimen compliance, f(a/w) T-test temperature V test velocity g E available impact energy g I For linear elastic fractere (case where fracture occurs before general yielding), a value of K is calculated using the procedure given in the Id EPRI Fracture Toughness Program.(3) This states that: l 6Ya /2p" kid = BW t
- where, Y = 1.93-3.07 (a/w)
- 14.53 (a/w)2 -25.11 (a/w)3 + 25.8 (a/w)4 J
Be specimen thickness = 0.,;i4 inches g W = specimen width = 0.394 inches W I C-4
t-g For elastic-plastic fracture (when general yielding occurs before maximum a load), the equivalent energy method for calculation of the stress intensity factorisused.(3)
- I.
In this case: I 6y 1/2 a p KBd
- BW l
- where, 2E g)1/2 P* = (
Eaf I Eg=Eaf II TE-) - Eg o Eg = 1/2 PM M C tgy, CM=P t 3y C s Cs"W 6 4 E = elastic modulus, f(T) = 30.20 x 10 -0.46 x 10 T The constant temperature necessary for conducting the Charpy impact tests was obtained from a series of circulating liquid baths capable of maintaining stable temperature throughout the range nf -150 F to +250 F. Any selected temperature in this range was maintained to an accuracy of 2 F. These con-stant temperature baths were composed of the following equf 2nt: I One Neslab Constant Temperature Circulating Baen - Model TEZ 10, with a Model CT 150 Thermoregulator and a Labline 11 inch diameter thermo cup. I Designated Bath 1. Medium: Ethylene Glycol - room temperature to 250 F. I C-5
t i One Neslab Constant Temperature Circulating Bath - Model TEZ 10, with a Model CT 150 Thermoregulator and a Labline 11 inch diameter thermo cup. Designated Bath 4 Medium: Ethylene Glycol - room temperature to 250 F. One Neslab Constant Temperature Circulating Bath - Model TEZ 10 with a Mod.el CT 59 Thermeregulator and a Labline 11 inch diameter thermo cm. Designated Bath 2. I Medium: Isopranol - room temperature to -10'F. Neslab Por table Bath Cooler, Modal PCB-2 connected. Two Low Temperature Stirred Batha, two 11 inch diameter thermo cups, two Honeywell Controllers and Solenoid control valves to liquid nitrogen bottle. Designated Bath 3 and 5. Medium: Isopranol - room temperature to -150 F. Coolant: Liquid nitrogen und Flexi-Cool unit. l All baths - Copper Constantan Thermocouple Honeywell Six Point Temperature Chart Recorder Digitec Thermocouple Thermometer - Model 590 TF Standard Mercury Column Thermometer Simetallic-spring Thermometer gg The temperature instruments were n iibrated in accordance with the ASME Boiler and Pressure Vessel Code, Section 111, Paragraph 2360. Copies of the applicable calibration certificates are provided at the end of this l appendix. I, I! C-6 in
.._._._._. -. _. _ ~ __ _ _. _ _ __..- E-I l E P l \\ 1 ~ ~~*- ? ; <3' 1%c-- " CS m.x: M,Q59,g,) y Y a N
- d4, '44, 7 > ;.
. }- \\ Mi "%H i5r, hwesv Ypi w m,@2:.m g g y' . N}b'7e~ s l .S? N 2 0Q ff,ch;.h i L -a i $.4 ?,4 & t,dYs.c ~ ' ' 3 l]4 __ b
- n m
t 91 d U. - %gA P i E4 QN., g,v, '..s I e m, u,-- 7,7 - dy J t-- ~ 'y wI'$EN [ 4 Yf/4.{-{ h ]ty..[' ... _p y - 1, A k= 4 yv. m. l Qv..,r, '5 +,e 1 i l 3 I 1 I I g i Figure: C-1. Charpy Impact Test System, Associated Constant Temperature Baths and Instrumented Charpy Impact Data Processing Equipment. C-7 i !I .... ~ -- I
1. I i I I L U 45 I /dy' I i x 0.01,0 Radius 0.394" 2.165ii r CN 0.394' a BF I 1 n e m. c.2. 1,,u.,cm. ~mcu e.e 1 l Specimen I" I I I C-8 l l < n i
I' I D Side I 5" I. I =- I
- $ N==
g __ _,_ _ / g - 7_ Transvers / y T __ h,7 g', Longitudinal I ,/ 1 ! ' /l -. 7- ) I ./ .s / I v=l I / / r ,/ J I g ', li / Principal Rolling Direction + g l lI I t= Plate Thickness { L ld I O D Side i I FIGURE: C-3. Location of Charpy Impact Specimens Within Base l'etal I Test fiaterial I I ) C-9
I. 5_" =j g Weld Metal = I <-r l D Side //V'! l-lam / my:r / t 11/4" a s g 1 / cc g ,/ ./ / x n / / g Mi ; //' t l / @R@ I Em gigg Ad 6 l W8c( / 1/4" i hM / g / a (N biM / O D Side /l/ J !________iI l V l l l Pr,nc, pal Roll,ing D,irection i i = l t Plate Thickness g l/ / g Ti/ 5 $1b g I FlCUhE: C-4. Location of Charpy Impact Specimens Within Held fletal Test ttaterial I I C-10 5
ll l, Weld Metal I D Side A ? &' ' I ,,1 H Az,. ~ "=j-I Base Metalw I i 1/4 t f l / dd 'll a / /i l / / ,l / "~g \\ !M2 I I t g !N,/ ll I l, ,l i I I l i !E i / A5 / /l[/ 1/4 t g g / ,/ y\\ + l j p 0D Side / HQ.: I l'@fi ,/ Principal Rolling Direction = l L -----{ t = Plate Thickness if_,g' Alike !AW ,I I FIGURE: C-5. Location of Charpy Inpact Specimens Within Heat-Affected-I Zone Test fiaterial I C-ll
DEPARTMENT OF THE ARMY ARMY MATERI ALS AND MECH ANICS RESEARCH CENT ER W ATEMTOWN, M ASS ACH USETTS o2172 DNMQ 17 August 1976 , o Combustion Engineering, Inc. ATTN: Mr. E. Dombkowski 1000 Prospect Hill Road Windsor, CT 0609S
Dear Mr. Dombkowski:
I A set of Charpy specimens broken on the 240 ft-lb capacity Sonntag machine has been received for evaluation along with the completed questionnaire. The results of the tests indicate the machine to be producing acceptable energy values at both energy levels (see inclosed table). This machine satisfies the proof-test requirements of ASTM Standard E-23. If this machine is moved or undergoes major repairs or adjustments, this certification becomes invalid and the machine must be rechecked. Removal of the pendulum, replacement of anvils or adjusting the height of drop are examples of such major repairs or adjustments. It should be noted that if a specimen requires over 80** of the machine capacity to fracture, the machine should be checked to insure that the pendulum is straight, the anvils or striker have not been damaged and that all bolts 're still tight. This certification is valid for one year from the date of the test. Sincerely yours, J '/.. ' .,Tl '., , -- a 1 Inc1 Paul W. Rols' ton Table Chief Quality Engineering Branch dotuTio,s q e$ 9 m h 4 w.# e C-12 i
COMBUSTION ENGINEERING,INC. Nuctaar Laboratorts INSTRUMENT CAllBRATION REQUIREMENT SHEET DAT2: July 13, 1976 I EQUIPMENT Honeywell Temperature Controller EL-120 ~ AREA I INSTRUMENT READABILITY CAllBRATION CIECKED MIN FUNCTION TYPE RANGE READABILITY ACCURACY FREQUENCY BY I Temperature -350" to / Control Dial 250*F 2F +2F 3 months I I I I I I I I I I i / ' ' 'I PREPARED BY ' ~ ' - ,0 /G e e b t ' ^ S( VPROVED DY APPROVED BY ~ '. d '- m~1 s l C-13 CE 0090193 88n3)
COMBUSTION ENGINEERING, INC. Nuclear Ltborst: ries INSTRUMENT CALIBRATION REQUIREMENT SHEET I DATE: July 13,1976 EQUIPMENT Honeywell Temperature Controller EL-80 Room 235-5 AREA I INSTRUMENT READABILITY CAllB R ATIOt. CHECKED MIN - FUNCTION TYPE RANGE READAdlLITY ACCURACY FREQUENCY BY B /J-Temperature -350' to Control Dial 250*F 2*F +2F 3 months I I I IJ l I I l' I I I PREPARED BY ' i>' M ' " d " I APPROVED BY '7 c f APPROVED BY O I m+ y-C-14 El 4G @@9169 (0/721
COMBUSTION ENGINEERING, INC. Nuclear Laboratories INSTRUMENT Call 51 RATION REQUIREMENT SHEET lI DATE: July 13,1976 ~ EQUIPMENT Honeywell 6 Point Recorder EL-78 AREA Room 235-5 I INSTRUMENT READABILITY CAllBRATION CHECKED l MIN FUNCTION TYPE RANGE READABILITY ACCURACY FREQUFNCY BY I Temperature -350 to 7g Recorder 6-Point 250'F 1F + 1*F 3 months I I I ~ I i i r I .I I I I i PREPARED BY ~ ~~ +- APPROVED BY d .CJ_ APPROVE.D BY h cl " l c-15 i I CE C090193 (8n3)
COMBUSTION ENGINEERING,INC, Nuclear LaWrattri:s INSTRUMENT CALIBRATION REQUIREMENT SHEET I. DATE: June 16,1976 EQUlPMENT Dicital Thermocouple Thertrometer EL-96 AREA Room 235-5 I INSTRUMENT READABILITY CAllBRATION CHEChED Min FUNCTION TYPE RANGE READABILITY ACCURACY FREQUENCY BY - z,.. Thermometer Digital -313 tn .l *F -+1F 3 monthe a +752 F f -{ s a ) I I I I I~ I l' I i; I PREPARED BY NmM / A' e - A." PROVED BY (([ >y APPROVED BY U 'i' ,f 'I l C-16 l CE OC90193 (843) o
COMBUSTION ENGINEERING, INC, Nuclear Laborutoeles INSTRUMENT CAllBRATION REQUIREMENT SHEET DATE: J u t>J. 16, 19'/ 6 I-EQUIPMENT Dioital Themocouple Themometer EL-81 AREA Room 235-5 I INSTRUM ENT READABILITY Call 8 RATION CHECK 60 l READABILITY MIN FUNCTION TYPE RANGE ACCU 81ACY FREQUENCY CY Thermometer Digital -350* to .2*F ^^+ 2*F 3 months NN +1000 F l I I T I I
- I LI I
I 'I 'I PRePA m eY APPROVED BY (( 'e 9 ;/ APPROVED BY 3 j' ' I C-17 CE 0090193 (973)
APPENDIX C REFERENCES a 1. " Summary Report on Manufacture of Test Specimens and Assembly of Capsules for Irradiation Surveillance of Fort Calhoun Reactor Vessel Materials", C-E Document CENPD-33 Proprietary Infomation, dated November 15, 1971. 2. " Test Plan for Omaha Public Power District, Fort Calhoun Station Unit No.1 Evaluation of Baseline Specimens - Reactor Vessel Materials Irradiation Surveillcnce Program", Test Plan No. 23866-TP-MCD-002, dated April 1976. 3. D. R. Ireland, W. L. Server and R. A. Wullaert, " Procedure for Testing and Data Analysis", ETI Technical Report 75-43, October 1975, Effects Technology, Inc., Santa Barbara, California. I 33 I I l' I I o6 l I C-18 3 - ---- _ -- - _ _ -}}