ML20095G217
| ML20095G217 | |
| Person / Time | |
|---|---|
| Site: | Duane Arnold |
| Issue date: | 11/15/1995 |
| From: | Browning R, Hopkins B, Nodean W IES UTILITIES INC., (FORMERLY IOWA ELECTRIC LIGHT |
| To: | |
| Shared Package | |
| ML20095G215 | List: |
| References | |
| NUDOCS 9512200078 | |
| Download: ML20095G217 (21) | |
Text
_-
.s IES UTILITIES,INC.
Duane Arnold Energy Center Cycle 14 CORE OPERATING LIMITS REPORT Rev. 1 l
October 1995 l
Prepared by:
b ek kd=1 y
Verified by:
h 42.
Concurred by:
4m fr.
M'anager Nuclear L' ensing Ma ag'Er, Engin6ering __
ll [ 7S n
/K! ^^
~
~
enNr Principal Engineer, Nuclear Fuels N
~
Supervisor, Reactortngidering d93 Reviewed b.
.A L
l' airman, Operations Committee Approved by:
//
z#
er.'
h/89i Plantperintendent, Nuclear
- g22ggg;;; ggaggp P
4 1.0 Core Operating Limits Report This Core Operating Limits Report for Cycle 14 has been prepared in accordance with the requirements of Technical Specification 6.11.2. The l
core operating limits have been developed using NRC-approved method-ology (Ref.1) and are documented in References 2,3 and 7. The Cycle l
14 values for the core operating limits are provided in Section 3.0 of this report.
2.0 References 1.
General Electric Standard Acolication for Reactor Fuel, NEDE-24011-P-A*
2.
Duane Arnold Energy Center SAFER /GESTR-LOCA Loss-of-Coolant Accident Analvsis, NEDC-31310P, Supp.1, August 1993*
3.
Sucolemental Reload Licensina Submittal for Duane Arnold Enerav
~~
Center. Reload 13. Cvele 14. 24A5171, Rev 1, August 1995 l
4.
Duane Arnold Energy Center Single Looo Ooeration. NEDO-24272, July 1980 5.
Average Power Range Monitor. Rod Block Monitor and Technical Soecification Inorovement (ARTS) Program for the Duane Arnold Energy Center. NEDC-30813, December 1984 6.
GE Fuel Bundle Designs, NEDE-31152P*
j 7.
Aoolication of the " Regional Exclusion with Flow-Biased APRM Neutron Flux Scram" Stability Solution (Oction I-D) to the Duane Arnold Energy Center. GENE-A00-04021-01, September 1995
- Approved revision number at time reload fuel analyses are performed.
Page 2
s 3.0 Core Operating Limits 1.
Maximum Averaae Planar Linear Heat Generation Rate (MAPLHGR)-
a.
The MAPLHGR for each fuel type as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-5 multiplied by the smaller of the two MAPFAC factors determined from Figures 6 and 7.
b.
During SLO, the actual MAPLHGR for each type of fuel as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-5 multiplied by the smaller of the two MAPFAC factors determined from Figures 7 and 8.
c.
Tables 1-5 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER /GESTR-LOCA analysis.
Tables 1-5 correspond to Figures 1-5 respectively.
2.
Linear Heat Generation Rate (LHGR)- TS 3.12.B.
l a.
The LHGR of any rod in any fuel assembly shall not exceed 14.4 KW/ft.
3.
Minimum Critical Power Ratio (MCPR)-TS 3.12.C a.
The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of core thermal power, core flow, fuel type *, and scram time (Tau). For core thermal power greater than or equal to 25% of rated and less than 30% of rated (25% < P <
30%), the Operating Limit MCPR is given by Figure 9. For core thermal power greater than or equal to 30% of rated (P > 30%),
the Operating Limit MCPR is the greater of either:
i) The applicable flow-dependent MCPR determined from Figure 10, or ii) The appropriate RATED POWER MCPR from Figure 11
[ including any penalty for a single Turbine Bypass Valve Out-i of-Service (TBV-OOS) or the End-of-Cycle Recirculation Pump Trip (EOC-RPT) OOS), multiplied by the applicable power-dependent MCPR multiplier determined from Figura 9.
Page 3
b.
During SLO with core thermal power greater than or equal to 25%
l of rated, the SLO Operating Limit MCPR is determined by adding 0.03 to the Operating Limit MCPR determined above.
l Cycle 14 MCPR limits are applicable to all DAEC fuel types.
4.0 Reload Fuel Bundles FUEL TYPE CYCLE LOADED NUMBER GE10-P8HXB321-11GZ-70M-150-T 11 4
GE10-P8HXB317-7GZ-70M-150-T 11 4
GE10-P8HXB321-11GZ-70M-150-T 12 24 GE10-P8HXB316-8GZ-100M-150-T 12 80 i
GE10-P8DXB327-10GZ1-100M-150-T 13 56 GE10-P8DXB327-8GZ2-100M-150-T 13 72 i
GE10-P8DXB327-10GZ1-100M 150-T 14 88 GE10-P8DXB327-8GZ2-100M-150-T 14 40 5.0 Thermal-Hvdraulic Stability - TS 3.3.F.3
- a. Continued reactor operation within the " Exclusion Zone" on the power / flow map, as defined on Figure 12, is not permitted. The
" Exclusion Zone"is used when the thermal-hydraulic stability monitor (SOLOMON) is operational, j
- b. Continued reactor operation within the " Buffer Zone" on the power / flow map, as defined on Figure 12, is not permitted when the thermal-hydraulic stability monitor (SOLOMON) is not operational.
Page 4
TABLE 1 Linear Heat Generation Rate as a function of Planar Average Exposure
- Fuel type:
GE10-P8HXB321-11 GZ-70M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)
(KW/ft) 0.0 10.77 0.2 10.85 1.0 11.02 2.0 11.27 3.0 11.56 4.0 11.86 5.0 12.08 6.0 12.24 7.0 12.41 8.0 12.59 9.0 12.78 10.0 12.97 12.5 13.12 15.0 12.89 20.0 12.25 25.0 11.57 35.0 10.24 45.0 8.68 50.5 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.
Page5
j l
1 TABLE 2 l
Linear Heat Generation Rate as a function of Planar Average Exposure
- Fueltype:
GE10-P8HXB317-7GZ-70M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)
(KW/ft)
O.0 11.50 0.2 11.50 1.0 11.56 2.0 11.69 3.0 11.84 4.0 12.02 5.0 12.21 6.0 12.42 7.0 12.64 8.0 12.87 9.0 13.07 10.0 13.21 12.5 13.24 15.0 12.93 20.0 12.23 25.0 11.54 35.0 10.21 45.0 8.71 50.7 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.
Page 6
TABLE 3 2
i Linear Heat Generation Rate as a function of Planar Average Exposure
- i i
Fuel type:
GE10-P8HXB316-8GZ-100M-150-T Planar Linear Heat l
Average Generation Exposure Rate (GWd/ST)
(KW/ft) i 4
O.0 11.22 0.2 11.28 1.0 11.42 2.0 11.62 3.0 11.81 4.0 12.02 2
5.0 12.22 6.0 12.34 7.0 12.46 i
8.0 12.59 9.0 12.74 10.0 12.89 12.5 12.99 15.0 12.76 20.0 12.27 i
25.0 11.63 35.0 10.23 45.0 8.79 50.8 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.
Page 7
TABLE 4 Linear Heat Generation Rate as a function of Planar Average Exposure
- Fuel type:
GE10-P8DXB327-10GZ1-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)
(KW/ft) 0.0 11.49 0.2 11.56 1.0 11.71 2.0 11.88 3.0 12.05 4.0 12.23 5.0 12.42 6.0 12.57 7.0 12.70 8.0 12.82 9.0 12.95 10.0 13.09 12.5 13.17 15.0 12.90 20.0 12.16 25.0 11.38 35.0 9.92 45.0 8.51 50.7 5.77 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.
Page 8
TABLE 5 Linear Heat Generation Rate as a function of Planar Average Exposure
- Fuel type:
GE10-P8DXB327-8GZ2-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)
(KW/ft)
J 0.0 11.72 0.2 11.77 1.0 11.88 2.0 11.96 3.0 12.04 4.0 12.10 5.0 12.17 6.0 12.24 7.0 12.31 8.0 12.39 9.0 12.47 10.0 12.56 12.5 12.57 15.0 12.33 20.0 11.81 25.0 11.29 35.0 10.20 45.0 8.48 50.1 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.
Page 9
f MAPLHGR VS PAE GE10-P8HXB321-11GZ-70M-150-T 14
^ 13
~%
k M,2
_ =.
tr 2,,
/
\\
1 pw 2 10 k
5 O.
O
}
k
> 8 2
I g7 26 y
5 0
0.2 1
2 3
4 5
6 7
8 9
10 12.5 15 20 25 35 45 50.5 PLANAR AVERAGE EXPOSURE (GWd/ST) l FIGURE 1 I
e MAPLHGR VS PAE GE10-P8HXB317-7GZ-70M-150-T 14
~
n 13
\\
y 1 12 3
m i
(
a ll Z 10 k
5 a.
W 9 l
k
)
x Wit "
s 3 7 5
426 5
0 0.2 1
2 3
4 5
6 7
8 9
10 12.5 15 20 25 35 45 50.7 PLANAR AVERAGE EXPOSURE (GWd/ST)
FIGURE 2
=____ _ -.
MAPLHGR VS PAE GE10-P8HXB316-8GZ-100M-150-T 14 5
f p13 u.
m h
E12 Y
E
/
h p
(
~
- O 1a 11 l
T e
Z jo i
a b
a.
W 9 O
1 i
E i
W 8
1 3 7
?
426 l
i 5
i 0
0.2 1
2 3
4 5
6 7
8 9
10 12.5 15 20 25 35 45 50.8 j
PLANAR AVERAGE EXPOSURE (GWd/ST)
\\
FIGURE 3 i
1
GE10-P8DXB327-10GZ1-100M-150-T l
'4 i
l p,3 N
h,2
^
x
\\
o 51, e
h'o 3
m i
UJO9 h
[
9<8
}
2 ay7 q
e s
5 0
0.2 1
2 3
4 5
6 7
8 9
10 12.5 15 20 25 35 45 50.7
[
PLANAR AVERAGE EXPOSURE (GWd/ST)
FIGURE 4 I
i
[
i
i MAPLHGR VS PAE GE10-P8DXB327-8GZ2-100M-150-T 14 13 E
12 3
E N
e 1 11 E
2 10 5
Q.
9
)
5
(
4*
2 D?
4 6
y 5
0 0.2 1
2 3
4 5
6 7
8 9
10 12.5 15 20 25 35 45 50.1 i
PLANAR AVERAGE EXPOSURE (GWd/ST) j FIGURE 5 l
FLOW DEPENDENT MAPLHGR MULTIPLIER TWO LOOP OPERATION 1.1 -
1 10 u_ o g a
r
<E
$'8
[
O For F<75.8 00.7 MAPFACf=0.00678F+0.4861 e
For F275.8
@ 0.6 MAPFACt=1.00 s
g Where j
F= Core Flowin % of Rated 0.5 0.4 i t...
30 40 50 60 70 80 90 100 CORE FLOW (% RATED)
FIGURE 6 i
POWER DEPENDENT MAPLHGR MULTIPLIER 1.1 t
1.0 E
[
Ok k0.9 E
/
Z OF08 k
$50% CORE FLOW 3
For P<25: No Thermal Limit Monitoring Required k
For 255P<30 and F<f0 MAPFACp=0.6+0.005224(P-30)
M For 255P<30 and F>50 00.6 MAPFACp=0.5+0.005224(P-30)
I 3
For 301P<96 l
Q-MAPFACp=1.0+0.005224(P-96) i j
For P>96 0.5 MAPFACp=1.0 Where P= Core Power in % of Rated l
F= Core Flowin % of Rated
>50% CCRE FLOW 0.4 20 30 40 50 60 70 80 90 100 CORE THERMAL POWER (% RATED)
FIGURE 7
9 FLOW DEPENDENT MAPLHGR MULTIPLIER SINGLE LOOP OPERATION 1.1 i
i 1.0 5g0.9 I
I
[
= 0.f, s
1 For F<56.6 O
MAPFACf=0.00678F+0.4861 3
For F>56.6 Q 0.6 MAPFACf=0.87 Where F= Core Flow in % of Rated 0.5 0.4 t
30 40 50 60 70 80 90 100 i
CORE FLOW (% RATED)
FIGURE 8
.~
POWER DEPENDENT MCPR LIMITS 2.4
>50 % CORE FLOW 2.2 550 % CORE FLOW j
2.1 o_ 2.0 O
For 25sP<30 and Fs50 2
OLMCPRp=1.9+0.02(30-P) a 1.9 O
For 25sP<30 and F>50 OLMCPRp=2.15+0.02(30-P) 1.8 For 30sP<45 Kp=1.28+0.0134(45-P)
For 455Pc60 1.7 Kp.1.35 0.coss7(so.p)
For P260
~
~~
~~
Kp=1.0+0.00375(100-P)
Where OLMCPRp= Power Dependent 1.5 Operating Limit MCPR a
Kp= Power Dependent MCPR Multiplier Y j'4 P= Core Powerin % of Rated F= Core Flowin % of Rated 1'3 N
1.2 --
Note:
Y. Axis Numbers Represent (a) OLMCPRp for 255P<30 II~
(b) Kp for P230 l
1.0 ij
... j,,,,,,,,
20 30 40 50 60 70 80 90 100 POWER (% RATED)
FIGURE 9
~
FLOW DEPENDENT MCPR LIMITS 1.7 i
1.6 For F<40 i
OLMCPRf=(-0.00571F+1.655) x (1+0.0032(40-F))
For 40sF<79.7 1.5 -
OLMCPRf=(-0.00571F+1.655) i For F>79.97 OLMCPRf= Flow Dependent Operating Limit MCPR 1.4 Where 0
t F= Core Flowin % of Rated 13 1.2 1.1 30 40 50 60 70 80 90 100 CORE FLOW (% RATED)
FIGURE 10 f
MCPR va TAU Option A 0ption B 1.32 b
t t
3 l
t 8
t i
6 i
i i
i i
i I
t I
f 5
i j
e i
e i
i i
1.30
--- ---- i--------- ---------i--- ------i, -,,,,,,,,-
- i.3o t
8 9
I, 8
5 t
L, l
8 B
4 t
1 f
A. M
~,,,
l l
l l
1 t
i 1.28
~
;----------l---------l---g-l"""- -----l----------l---------'----------l--
l e
8
, as 1
,i e
i t
t r
..~...
1 1.26
.c--------
r-c---
c-----
k.26 a
e i
i a
i i
i c,t
- E 1.24
l1 TBV-OOS l t
- - --- '--- ----.------ --+- -----
,y seasse
_8 i
I e
a seus*
t t
m a
t i
I t
i 1.23 i
i i
m 1.22 s
l-----R---l---------l----------:----------l--------l----------l,--------l---------:----------
t 8
8 9
t 0
1 f
f
)
i f\\
8 e
t
\\
e s
3 g
Note: For TAU less than zero; use r---------
NmnalOperatim 1.20 TAU equal to zero for MCPR'--- -- ---f-------~
deterrnination. l l
l t
8 6
f, e
s 1.18 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TAU Figure 11
~.
. _ -. -.. -. -. - ~.
+
DAEC STABILITY TWO LOOP POWER / FLOW MAP LOAD LINE 110 108 %
100 100%
90 l
l Operational Upper p
l Loadline LimitNy l
g 80 i
80%
2 l
co
_.0
/
g p
. 70 %
l 60
/
g i
Ai!
l stREEF { _
50 AM
==en=-
O gnijjg='/
l a.
40
==
w gv;;
30 l
20 l
R i
I i
N Cavitation
!' TNl Minimum Pump Speed l l Protection
- paturalCirculation l
+
0 l
0 10 20 30 40 50 60 70 80 90 100 CORE FLOW (% of 49 Mlbs/hr)
BUFFER ZONE EXCLUSION ZONE
$IiE*
ar_ >
Figure 12
_