ML20095G217

From kanterella
Jump to navigation Jump to search
Rev 1 to Cycle 14,COLR, for Duane Arnold Energy Ctr
ML20095G217
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 11/15/1995
From: Browning R, Hopkins B, Nodean W
IES UTILITIES INC., (FORMERLY IOWA ELECTRIC LIGHT
To:
Shared Package
ML20095G215 List:
References
NUDOCS 9512200078
Download: ML20095G217 (21)


Text

_-

.s IES UTILITIES,INC.

Duane Arnold Energy Center Cycle 14 CORE OPERATING LIMITS REPORT Rev. 1 l

October 1995 l

Prepared by:

b ek kd=1 y

Verified by:

h 42.

Concurred by:

4m fr.

M'anager Nuclear L' ensing Ma ag'Er, Engin6ering __

ll [ 7S n

/K! ^^

~

~

enNr Principal Engineer, Nuclear Fuels N

~

Supervisor, Reactortngidering d93 Reviewed b.

.A L

l' airman, Operations Committee Approved by:

//

z#

er.'

h/89i Plantperintendent, Nuclear

g22ggg;;; ggaggp P

4 1.0 Core Operating Limits Report This Core Operating Limits Report for Cycle 14 has been prepared in accordance with the requirements of Technical Specification 6.11.2. The l

core operating limits have been developed using NRC-approved method-ology (Ref.1) and are documented in References 2,3 and 7. The Cycle l

14 values for the core operating limits are provided in Section 3.0 of this report.

2.0 References 1.

General Electric Standard Acolication for Reactor Fuel, NEDE-24011-P-A*

2.

Duane Arnold Energy Center SAFER /GESTR-LOCA Loss-of-Coolant Accident Analvsis, NEDC-31310P, Supp.1, August 1993*

3.

Sucolemental Reload Licensina Submittal for Duane Arnold Enerav

~~

Center. Reload 13. Cvele 14. 24A5171, Rev 1, August 1995 l

4.

Duane Arnold Energy Center Single Looo Ooeration. NEDO-24272, July 1980 5.

Average Power Range Monitor. Rod Block Monitor and Technical Soecification Inorovement (ARTS) Program for the Duane Arnold Energy Center. NEDC-30813, December 1984 6.

GE Fuel Bundle Designs, NEDE-31152P*

j 7.

Aoolication of the " Regional Exclusion with Flow-Biased APRM Neutron Flux Scram" Stability Solution (Oction I-D) to the Duane Arnold Energy Center. GENE-A00-04021-01, September 1995

  • Approved revision number at time reload fuel analyses are performed.

Page 2

s 3.0 Core Operating Limits 1.

Maximum Averaae Planar Linear Heat Generation Rate (MAPLHGR)-

TS 3.12.A.

a.

The MAPLHGR for each fuel type as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-5 multiplied by the smaller of the two MAPFAC factors determined from Figures 6 and 7.

b.

During SLO, the actual MAPLHGR for each type of fuel as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-5 multiplied by the smaller of the two MAPFAC factors determined from Figures 7 and 8.

c.

Tables 1-5 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER /GESTR-LOCA analysis.

Tables 1-5 correspond to Figures 1-5 respectively.

2.

Linear Heat Generation Rate (LHGR)- TS 3.12.B.

l a.

The LHGR of any rod in any fuel assembly shall not exceed 14.4 KW/ft.

3.

Minimum Critical Power Ratio (MCPR)-TS 3.12.C a.

The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of core thermal power, core flow, fuel type *, and scram time (Tau). For core thermal power greater than or equal to 25% of rated and less than 30% of rated (25% < P <

30%), the Operating Limit MCPR is given by Figure 9. For core thermal power greater than or equal to 30% of rated (P > 30%),

the Operating Limit MCPR is the greater of either:

i) The applicable flow-dependent MCPR determined from Figure 10, or ii) The appropriate RATED POWER MCPR from Figure 11

[ including any penalty for a single Turbine Bypass Valve Out-i of-Service (TBV-OOS) or the End-of-Cycle Recirculation Pump Trip (EOC-RPT) OOS), multiplied by the applicable power-dependent MCPR multiplier determined from Figura 9.

Page 3

b.

During SLO with core thermal power greater than or equal to 25%

l of rated, the SLO Operating Limit MCPR is determined by adding 0.03 to the Operating Limit MCPR determined above.

l Cycle 14 MCPR limits are applicable to all DAEC fuel types.

4.0 Reload Fuel Bundles FUEL TYPE CYCLE LOADED NUMBER GE10-P8HXB321-11GZ-70M-150-T 11 4

GE10-P8HXB317-7GZ-70M-150-T 11 4

GE10-P8HXB321-11GZ-70M-150-T 12 24 GE10-P8HXB316-8GZ-100M-150-T 12 80 i

GE10-P8DXB327-10GZ1-100M-150-T 13 56 GE10-P8DXB327-8GZ2-100M-150-T 13 72 i

GE10-P8DXB327-10GZ1-100M 150-T 14 88 GE10-P8DXB327-8GZ2-100M-150-T 14 40 5.0 Thermal-Hvdraulic Stability - TS 3.3.F.3

a. Continued reactor operation within the " Exclusion Zone" on the power / flow map, as defined on Figure 12, is not permitted. The

" Exclusion Zone"is used when the thermal-hydraulic stability monitor (SOLOMON) is operational, j

b. Continued reactor operation within the " Buffer Zone" on the power / flow map, as defined on Figure 12, is not permitted when the thermal-hydraulic stability monitor (SOLOMON) is not operational.

Page 4

TABLE 1 Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type:

GE10-P8HXB321-11 GZ-70M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 10.77 0.2 10.85 1.0 11.02 2.0 11.27 3.0 11.56 4.0 11.86 5.0 12.08 6.0 12.24 7.0 12.41 8.0 12.59 9.0 12.78 10.0 12.97 12.5 13.12 15.0 12.89 20.0 12.25 25.0 11.57 35.0 10.24 45.0 8.68 50.5 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page5

j l

1 TABLE 2 l

Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fueltype:

GE10-P8HXB317-7GZ-70M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft)

O.0 11.50 0.2 11.50 1.0 11.56 2.0 11.69 3.0 11.84 4.0 12.02 5.0 12.21 6.0 12.42 7.0 12.64 8.0 12.87 9.0 13.07 10.0 13.21 12.5 13.24 15.0 12.93 20.0 12.23 25.0 11.54 35.0 10.21 45.0 8.71 50.7 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 6

TABLE 3 2

i Linear Heat Generation Rate as a function of Planar Average Exposure

  • i i

Fuel type:

GE10-P8HXB316-8GZ-100M-150-T Planar Linear Heat l

Average Generation Exposure Rate (GWd/ST)

(KW/ft) i 4

O.0 11.22 0.2 11.28 1.0 11.42 2.0 11.62 3.0 11.81 4.0 12.02 2

5.0 12.22 6.0 12.34 7.0 12.46 i

8.0 12.59 9.0 12.74 10.0 12.89 12.5 12.99 15.0 12.76 20.0 12.27 i

25.0 11.63 35.0 10.23 45.0 8.79 50.8 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 7

TABLE 4 Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type:

GE10-P8DXB327-10GZ1-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 11.49 0.2 11.56 1.0 11.71 2.0 11.88 3.0 12.05 4.0 12.23 5.0 12.42 6.0 12.57 7.0 12.70 8.0 12.82 9.0 12.95 10.0 13.09 12.5 13.17 15.0 12.90 20.0 12.16 25.0 11.38 35.0 9.92 45.0 8.51 50.7 5.77 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 8

TABLE 5 Linear Heat Generation Rate as a function of Planar Average Exposure

  • Fuel type:

GE10-P8DXB327-8GZ2-100M-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft)

J 0.0 11.72 0.2 11.77 1.0 11.88 2.0 11.96 3.0 12.04 4.0 12.10 5.0 12.17 6.0 12.24 7.0 12.31 8.0 12.39 9.0 12.47 10.0 12.56 12.5 12.57 15.0 12.33 20.0 11.81 25.0 11.29 35.0 10.20 45.0 8.48 50.1 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 9

f MAPLHGR VS PAE GE10-P8HXB321-11GZ-70M-150-T 14

^ 13

~%

k M,2

_ =.

tr 2,,

/

\\

1 pw 2 10 k

5 O.

O

}

k

> 8 2

I g7 26 y

5 0

0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.5 PLANAR AVERAGE EXPOSURE (GWd/ST) l FIGURE 1 I

e MAPLHGR VS PAE GE10-P8HXB317-7GZ-70M-150-T 14

~

n 13

\\

y 1 12 3

m i

(

a ll Z 10 k

5 a.

W 9 l

k

)

x Wit "

s 3 7 5

426 5

0 0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.7 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 2

=____ _ -.

MAPLHGR VS PAE GE10-P8HXB316-8GZ-100M-150-T 14 5

f p13 u.

m h

E12 Y

E

/

h p

(

~

  • O 1a 11 l

T e

Z jo i

a b

a.

W 9 O

1 i

E i

W 8

1 3 7

?

426 l

i 5

i 0

0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.8 j

PLANAR AVERAGE EXPOSURE (GWd/ST)

\\

FIGURE 3 i

1

I MAPLHGR VS PAE l

GE10-P8DXB327-10GZ1-100M-150-T l

'4 i

l p,3 N

h,2

^

x

\\

o 51, e

h'o 3

m i

UJO9 h

[

9<8

}

2 ay7 q

e s

5 0

0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.7

[

PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 4 I

i

[

i

i MAPLHGR VS PAE GE10-P8DXB327-8GZ2-100M-150-T 14 13 E

12 3

E N

e 1 11 E

2 10 5

Q.

9

)

5

(

4*

2 D?

4 6

y 5

0 0.2 1

2 3

4 5

6 7

8 9

10 12.5 15 20 25 35 45 50.1 i

PLANAR AVERAGE EXPOSURE (GWd/ST) j FIGURE 5 l

FLOW DEPENDENT MAPLHGR MULTIPLIER TWO LOOP OPERATION 1.1 -

1 10 u_ o g a

r

<E

$'8

[

O For F<75.8 00.7 MAPFACf=0.00678F+0.4861 e

For F275.8

@ 0.6 MAPFACt=1.00 s

g Where j

F= Core Flowin % of Rated 0.5 0.4 i t...

30 40 50 60 70 80 90 100 CORE FLOW (% RATED)

FIGURE 6 i

POWER DEPENDENT MAPLHGR MULTIPLIER 1.1 t

1.0 E

[

Ok k0.9 E

/

Z OF08 k

$50% CORE FLOW 3

For P<25: No Thermal Limit Monitoring Required k

For 255P<30 and F<f0 MAPFACp=0.6+0.005224(P-30)

M For 255P<30 and F>50 00.6 MAPFACp=0.5+0.005224(P-30)

I 3

For 301P<96 l

Q-MAPFACp=1.0+0.005224(P-96) i j

For P>96 0.5 MAPFACp=1.0 Where P= Core Power in % of Rated l

F= Core Flowin % of Rated

>50% CCRE FLOW 0.4 20 30 40 50 60 70 80 90 100 CORE THERMAL POWER (% RATED)

FIGURE 7

9 FLOW DEPENDENT MAPLHGR MULTIPLIER SINGLE LOOP OPERATION 1.1 i

i 1.0 5g0.9 I

I

[

= 0.f, s

1 For F<56.6 O

MAPFACf=0.00678F+0.4861 3

For F>56.6 Q 0.6 MAPFACf=0.87 Where F= Core Flow in % of Rated 0.5 0.4 t

30 40 50 60 70 80 90 100 i

CORE FLOW (% RATED)

FIGURE 8

.~

POWER DEPENDENT MCPR LIMITS 2.4

>50 % CORE FLOW 2.2 550 % CORE FLOW j

2.1 o_ 2.0 O

For 25sP<30 and Fs50 2

OLMCPRp=1.9+0.02(30-P) a 1.9 O

For 25sP<30 and F>50 OLMCPRp=2.15+0.02(30-P) 1.8 For 30sP<45 Kp=1.28+0.0134(45-P)

For 455Pc60 1.7 Kp.1.35 0.coss7(so.p)

For P260

~

~~

~~

Kp=1.0+0.00375(100-P)

Where OLMCPRp= Power Dependent 1.5 Operating Limit MCPR a

Kp= Power Dependent MCPR Multiplier Y j'4 P= Core Powerin % of Rated F= Core Flowin % of Rated 1'3 N

1.2 --

Note:

Y. Axis Numbers Represent (a) OLMCPRp for 255P<30 II~

(b) Kp for P230 l

1.0 ij

... j,,,,,,,,

20 30 40 50 60 70 80 90 100 POWER (% RATED)

FIGURE 9

~

FLOW DEPENDENT MCPR LIMITS 1.7 i

1.6 For F<40 i

OLMCPRf=(-0.00571F+1.655) x (1+0.0032(40-F))

For 40sF<79.7 1.5 -

OLMCPRf=(-0.00571F+1.655) i For F>79.97 OLMCPRf= Flow Dependent Operating Limit MCPR 1.4 Where 0

t F= Core Flowin % of Rated 13 1.2 1.1 30 40 50 60 70 80 90 100 CORE FLOW (% RATED)

FIGURE 10 f

MCPR va TAU Option A 0ption B 1.32 b

t t

3 l

t 8

t i

6 i

i i

i i

i I

t I

f 5

i j

e i

e i

i i

1.30


--- ---- i--------- ---------i--- ------i, -,,,,,,,,-

- i.3o t

8 9

I, 8

5 t

L, l

8 B

4 t

1 f

A. M

~,,,

.. " ~ y EOC.RPT OOS l

l l

l l

1 t

i 1.28

~


;----------l---------l---g-l"""- -----l----------l---------'----------l--

l e

8

, as 1

,i e

i t

t r

..~...

1 1.26

.c--------

r-c---

c-----

k.26 a

e i

i a

i i

i c,t

E 1.24

l1 TBV-OOS l t

- - --- '--- ----.------ --+- -----

,y seasse

_8 i

I e

a seus*

t t

m a

t i

I t

i 1.23 i

i i

m 1.22 s


l-----R---l---------l----------:----------l--------l----------l,--------l---------:----------

t 8

8 9

t 0

1 f

f

)

i f\\

8 e

t

\\

e s

3 g

Note: For TAU less than zero; use r---------

NmnalOperatim 1.20 TAU equal to zero for MCPR'--- -- ---f-------~

deterrnination. l l

l t

8 6

f, e

s 1.18 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TAU Figure 11

~.

. _ -. -.. -. -. - ~.

+

DAEC STABILITY TWO LOOP POWER / FLOW MAP LOAD LINE 110 108 %

100 100%

90 l

l Operational Upper p

l Loadline LimitNy l

g 80 i

80%

2 l

co

_.0

/

g p

. 70 %

l 60

/

g i

Ai!

l stREEF { _

50 AM

==en=-

O gnijjg='/

l a.

40

==

w gv;;

30 l

20 l

R i

I i

N Cavitation

!' TNl Minimum Pump Speed l l Protection

- paturalCirculation l

+

0 l

0 10 20 30 40 50 60 70 80 90 100 CORE FLOW (% of 49 Mlbs/hr)

BUFFER ZONE EXCLUSION ZONE

$IiE*

ar_ >

Figure 12

_