ML20094Q608

From kanterella
Jump to navigation Jump to search
Forwards Responses to Addl Questions Raised by Chemical Engineering Branch Re Structural Steel Survivability Evaluation.Info Supports Final Resolution of SER Open Item 14
ML20094Q608
Person / Time
Site: Limerick  
Issue date: 08/08/1984
From: Kemper J
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To: Schwencer A
Office of Nuclear Reactor Regulation
References
OL, NUDOCS 8408200262
Download: ML20094Q608 (26)


Text

7

\\.;

s.

PHILADELPHIA ELECTRIC COMPANY 2301 M ARKET STREET P.O. BOX 8699 PHILADELPHI A. PA.19101 8 1984 JOHN 5. KEMPER m..

..mm ENGENEE NDNG AND RESE ARCN '

I Mr. A. Schwencer, Chief Docket Nos.: 50-352 Licensing Branch No. 2 50-353 Division of Licensing U.' S. Nuclear Regulatory Conmission Washington, D. C. 20555

SUBJECT:

Limerick Generating Statlon, Units 1 and 7 Structural Steel Survivability Evaluation AddItlonal Clarification Information

Reference:

Telecon between NRC Staff and PECO on August 8, 1984 File:

GOVT 1-1 (NRC)

Attachment:

Responses to Additional Questions Concerning the Structural Steel Survivability Evaluation

Dear Mr. Schwencer:

Pursuant to the Referenced telecon, the attactinent provides our responses to additional questions raised by your Chemical Engineering Branch in concert with their Fire Protection consultant.

We hope that this information will support the final resolution of the SER open item no.14.

Should any additional Information be required, please do not hesitate to contact us.

Sincerely, e

GJR/mlb/08088402 M-p Copy to:

See Attached Service List 8408200262 840808 00A PDR ADOCK 05000352-1 E

PDR l

g.-

e t

- cc: Judge Lawrence Bremer (w/ enclosure)

Judge. Richard F. Cole (w/ enclosure)'

t Troy B. Comer, Jr., _ Esq..

-(w/ enclosure)

Ann P. Hodgdon, Esq.

(w/ enclosure)

Mr. Frank R. Romano.

(w/ enclosure)

Mr. Robert L Anthony

-(w/ enclosure)

Charles W. Elliot, Esq.

.(w/ enclosure)

Zori G. Ferkin, Esq.~

(w/ enclosure)

.Mr. Thomas Gerusky (w/ enclosure)

Director, Penna. Emergency (w/ enclosure)

Management Agency-Angus R. Love', Esq.

(w/ enclosure)

David Wersan, Esq.

(w/ enclosure)

Robert J. Sugarman, Esq.

(w/ enclosure)

Spence W. Perry, Esq.

(w/ enclosure).

Jay M. Gutierrez, Esq.

(w/ enclosure)

Atomic Safety & Licensing (w/ enclosure)

Appeal Board Atomic Safety & Licensing

.(w/ enclosure)-

Board Panel Docket & Service'SectIon (w/ enclosure)

Martha W. Bush,_Esq.

(w/ enclosure)

Mr. James Wiggins (w/ enclosure)

Mr. Timothy R. S. Canpbell (w/ enclosure)

Ms. Phyllis Zitzer (w/ enclosure) dudge Peter A. Morris (w/ enclosure)

%l -

3 i t i

s k

.l

-Columns - The latest revision (rev. 3) to the methodology describes the f

exposure criteria and acceptance criteria for columns.

The " exposed f

columns" in.the methodology included all steel columns not imbedded in the h

walls, k

Columns were exposed to ~ plume temperatures of 1500*F either from cable tray lo' cal effects, pool. fires, or transient combustibles.

+

The exposure durations were (1) the duration of cable exposure, (2) the duration of pool fi res, or (3) 30 minute transient fire exposure.

1he longest of these exposures were used where multiple exposures were possible.

For Limerick areas containing columns, all in-situ exposure 1 exceeded the 30 -

minute transient exposure.

The calculations contained in the -appendix to q

the steel analysis contains the time-temperature history calculated for each column.

i The results are summarized in the table below, The failures were as follows:

j Calc #

Column Corrective Action 4

W14X730 Automatic Sprinklers 18,19,20,23

.W14X87 Not required structurally 19 W14X119 Coated Column - 3 hr. protection 4

1 I[

.hn

= r:

T f-Summary of Column Response to.-

Localized Fire Exposure-

-Localized Fire l

Calc # -

-Type

& -Duration Column Sizes Column T(s) 1 011 85 minutes W14X730 893*F Oil 44 minutes

-W14X730 590 F 2-011.

85 minutes W14X730 893 F-011 44 minutes W14X730 590 F

-4 011 180 minutes W14X730

>1000*F 12

-Cables 35 minutes W14X730 494*F 13 Cables-35 minutes W14X550 584*F W14X342 775 F 15 Cables 65 minutes W14X730 757 F 16 '

Cables 32 minutes W14X730 463*F W14X550 548*F W14X287 810*F 18 Cables 35 minutes W14X730 494*F W14X87 1402 F 19 Cables 47 minutes W14X730 610 F W14X665 642 F W14X550 714 F W14X370 989*F W14X342 926*F W14X119 1385 F W14X87 1460 F 20 Cables 40 minutes W14X730 544 F W14X665 574 F W14X87 1434*F

_ 23 Cables 35 minutes W14X87 1402 F 25 Cables 35 minutes W14X398 709*F W14X287 857 F 4

li~

k-n 1:a

i I

(

2.

Cables in' oil hazard rooms' - For calculating No. 1,'2, 3, 4, 5, 7, and 8, minor amounts of ' cables are - present in these rooms but were not included in ' the duration of these ventilation controlled fires.

The table below 1

shows the additional duration for the addition of cables.

i Cables Duration Oil &

Calculation' In-situ Transient Insulation Oil Only Cable No.

Oil (gal)

Oil (gal)

(lb)

(min)

(min)-

1 Case 1 72 72 78 85 88 Case 2 72 72 78 44 46 2 Case 1-72 72 84 85 88 -

Case 2 72 72 84 44 46 3

80 80 137 125 132 4

155 155 27 180 180 5

24 24 19 37 38 7

. 24 24 17 37 38 8

24 24 19 37 38 The areas addressed in Calc #3 and 4 are protected with automatic sprink-1ers.

The other calculations were redone using both the large quantity _ of transient oil and the in-situ cables.

The addition of cable in no case increased-the area temperature greater than 15*F.

e i _-

-i 4

1 l

3 i

c., - --

a.-.

' C Gil NOMDER T..

I 1101LDING:

' UNIT 1 REACTOR EllEVATION AND AREA DESCRIPTION:

177' RHR CASE: DESCRIPTION:.

DNE 3'X7' DOOR 4

mx *x x x xx x*x x**x x**xx xw xx *x x x x*x
  • x x x xx x xx x xx *n*x x x xw nx x.x x x y x

,, x y x.

2CEILIN(DWALL CEILING / WALL

.An Ho Aw 0

TH[CKNESS NATER I AL~

-(ft) i (012)

(ft)

(ft2)

(LW) t A X kWMX %X X X WX MM KKM AX X X X MxMXWW X X X X X M X X X XMf tX MM x M X XW X MM Y 4

3.0 CONCRETE 21.0 7.0 7840 4504 s: X

. FIRE IS VENTILATION CONTROLLED FIRE DURATIOli GAS TEMPERATURE

( M i.n )

(deg.F) 5 643 10 650 15 672 20 686

-25 l

690 30 711 35 724 40 736 45 740 50 760 55 772 60 704 65 795 70 007 75 810 80 030 OS 90 841 052 i

s 1

?

palculation No.1 ATTACHMENT 1

!i.

? fg _

c. _

.. {

.' CASE NUNDER:

2

)

DU [ LliING:

UNIT 1 REACTOR ELEVATION AND AREA DESCillPTION:

177' R!IR j; _

CASE DCGCRIPTION:

TtJO 3'X7', D00RG t-x x x xn x x x x*x xxx xx xx*n u x'4

  • x x x xn x x
  • x x xx x x xx x xxx**) x* X
  • f.

l}

CEILING / WALL CEILING / WALL Ao Ho Aw 0

L:i TH]CKNEHO MATERIAL

[,

(ft) x x x x x x.x rxnxx x x x xxx u x xx x x x x*xx x x xs un( f t 2 )x xuM x x x*M n u x hv x a V

(ft)

(ftO) ni 3.O CONCRETE 42,0 7.0 YO48 90ou x r.

x u e bl q

?

FIRE IG VENTIL ATION CONTROLLED e

FIRE DURATION GAS TEMPERATURE (min)

(dag.F) 2 034 4

849 y

6 O

062 076 10 12 890 903 14 16 917 930 10 m

7 20 944 i

22 960 i

971 24 4

905 26 3

20 998 1012 30 32 1025 1039 34 1

36 1052 30 1066 40 1079 42 1092 44 1105 1118 i

46 1131 i

1 i

i i

1 l

Calculation No.1 ATTACHMENT 2

m- :.

.~z ;x ra a.-

CASE NUMBE'R:

2 k

ItU1LDING:

UNIT t REACTOR i

(

ELEVATION AND AREA DESCRIPTION:

17'/ ' RilR CASE DESCRIPTION: W 24 x 68 l

5.

EFFECTS OF LOCAL HEATINC ON S1RUCTURAL STEEL

?I h

FIRE TEMPERATURE-(deg. F):

1131 WEIGHT OF STEEL MENDER ( l b s.. / f t )

60 bq SURFACE OF STEEL MENDER HEATED (nq. f t./f t ) :

6.06 TIME STEEL TEMPERAIU~4E (Min)

(deg.F)

N 5.00 442 10.00 605 15.00 042 20.00 944 25.00 1010

'i 30.00 f'

1052 35.00 1080

+

40.00 1090 45.00 1110 50.00 1117 m

55.00 1122 60.00 112S 65.00 1127 t.

p k

i h

1

(

9 i

9 T

1.,

t.

I t

1 I

i lI, i

Calculation tio. 1 i

d

w.

. -~.w.a

m. c n.. -

M' JCASE NUNDER :.

1

. BUILD.ING :

UNI TL--! REACTOR.

,ff ELEVATION AND AREA DESCRIPTION:

177' RhR. ROOM t it3 p.

CASE DESCRIPTION:

GNE 3'X7' DOOR tg;;

s n u x

  • n *
  • x * * *
  • x x * *
  • x
  • n u x x x x
  • x x x x x x x *
  • n x *
  • u.
  • xxxu xxxxuxx*uxxxr.x u
  • k*p

- CEIt,1 NG/ WALL CEILING / WAl.L Ao Ho Aw i)

~ THICKNESS

.f HATERIAL (ft)

.e.

- x xx x x xx nx x *x n* *x xx *x x n* x x u n

  • xw u x( x *t 2 )x * *
  • x x *
  • x a
  • n E

f (ft)

(ft2)~

kW) t 3.0-CONCRETE

'21.0 7.0 9060 4504 k

0 FIRE IG VENTILATION CONTROLLED A

/t FIRE DUR ATION (min)

GAS TEMPEHATURE (deg F) 5 605 10-

}

610-1E 630 4

20 647 jl 25-30 652 663 35 40 673 45 603 1

693 50 55 703 60 713 I

723 65 70

.732 4

\\

75 742 80 751 761 US 90 770 779 i

i I

Calculation'No. 2

Dq ATTACHMENT t it; J

X:.&-

,n.,.

[

, (CAGE Hl#1BER :.

2

...- ~.-

-f-

'DUILD.tNG :'_ UNIT.1- _ RiiACTOR -

5!

ELEVATION:AND' AREA DESCRIPTION:-

177' RHR kl CASEJDESCRIPTION:

-TWO.3'X7' DOORS

..{ i ;

f L x x uxx xxx*n**xx xx x xnu xx*xxxx x xxx x xxxxxx xx xx x x x *x x xxxx x x Y

i-CEILING / WALL CEILING / WALL Ao Hu Aw 0

$(

THICl(NESS NATERIAL 4

(ft). _

(

(ft)

(ft2)

, x xx x xxxxx xxx****x*xnxxxxxxxxxxn xx**f t ?)**xx*x **x xx xx*x x x x xx u r r x.y x x(

P-(

3.0 CONCRETE 42.0 7.0 906u 9000 xyxxxx e

' T' 5

FIRE-IS VENTILATION CONTROLLED s

v l

FIRE DUR ATION GAS TEMPERATURE

--C (min)

(deg.F) 2-700

.3 4

001 6

812 0

024 l

10 035 1

12 046 4

14 057 16

{

10 868 B79 20 i

090 22 24 901 912 26 923 y

28 934 30 t

32 945 955 34 36 966 977 30 40 900 998 42' 1009 44 1020 46-1030 i

Calculation No. 2 ATTACliMENT 2 1

i; m, - -

~~

I!

CAUC NUMBER:

1 DUILDING:

  • UNIT 1 REACTOR

(('

ELEVATION AND AREA DESCRIPTION. 177' CADE DESCRIPTION:

DNE DOOR CORE GPRAY HM 110 t!j t,-

u x.< x u.t x x n x x x x

  • x n x x x xx x x x x n u x x x x x x
  • nx x x
7.. xxe Cell.1NG/WAL.l.

CETLING/ WALL ho llo no a

T!!ICKNESG MATERIAL (ft) u x x x x x x n x xa n x.x x * *n

  • n u x
  • x x x x x x x x( n x x) x x x n( f t )

0t2 a

(fta)

(qu)

[

CONCRETE

i. x > e n r e x v x. 7, x f. : y ; x,.x x.....,, x.

3.0 17.5 G.0 274Y 3417 i

FIRE IS VENT 1LATIOtl CON'I R OLLED FIRE DURATION

( tii n )

GAS 'lEMPERAIURE (deg.F) 2 4

860 6

076 0

891 10 907 12 922 14 937 16 952 10 (768 20 22 9 '? O 1014 1029 un.

1044 1060 32 1075 34 1090 1105 1120 1135 Calculation No. 5 ATTACUMENT 1 S

.\\w&MMll! Erit! 'V".dtfar*.immtnem a n ' - --

i CnUEUUMDEh:

1 1

BUILDING:

UNIT 1 REACTOR CLEVATION AND AREA DESCRIPTION:

l'77' C.B.

RM110 CAGE DESCRIPTIONI W27x04 EFFECTS OF LOCAL HEATIhC ON 9 TRUCTilif AL S'I E t:L FIRE TEMPERATURE (deg. F):

1135 t

WEIGHT OF STEEL MEMDER (1bs./ft):

G4 SURFACE OF GTEEL NEMBER HEATED (sq.ft./ft):

6.70 c.

TIME STEEL TEMPERATURE (Min)

(deg.F) 5.00 4 0 fi 10.00 640 15.00 790 30.00 905 25.00 970 30.00 102b 35.00 1062 40.00 3

1006 45.00 1101 4

50.00 1112 55.00 1119 60.00 1124 j

65.00 1120 1

i j

1 1

i i

i i

1 Calculation flo. 5 i

l s

-~

'l

..h l 1

.i^.<

r Y

' CASE. NUMBEli

-;i:

BUILDINGt UNIT.1 REACTOR I}

'. ELEVATIdN' AND AREA DESCRIPTION:--

.A

'{Y

-- 17 7 ' CORE SRRAY Rf1 CASE DESCRIP. TION:

DNE-DOOR

~113

~

' {

> x x u s x x * *p s'x x * *

  • x x x x * * *
  • x x x x *
  • x x *
  • x x * * * * *
  • x x x *
  • x *
  • x x
  • y p

. CEILING /UALL'

. CEILING / WALL Ao His Au Q

y

THICKNESS f

MATERIAL u x x x * * * * * *

  • m "a,

(

(ft)

( l' t (kW)

.ft)

. * * * * * * * * * * * * * * * * * *

  • x
  • x x x x *( *f t 2 )x x x x x*x xx x x
E

-3.0-CONCRETE 17.5 5.0 2976 3417

>.x x v. x x v x. x x. x. x x u s

..w FIRE IS VENTILATION CONTROLLED

,. _ FIRE DUR ATION-(nin)

GAG TEMPERATURE (deg.F) w 2-

)

4 034 6

049 062

.G w

076

{

10 12 090

903 i

14

. 16 927 931 IU 1

20 944

  • 2 2 rjsg 1

24 973 993 26 20 999 1012 30 32 1026 1039 i

34 36 1052 1066 30

. j. o --

1079

,i L.

'/-

s Je_

,p Calculation No!'7.

ATTACHMENT I'~

t,

.p -

1

g

.+ a% e,=:~ r a w +ffs g

.c a

g

. CASE ;NUND(:R :- 1

' 4;

 !.tu I t. D I N G : ' UNIT 1 REACTOR i

ELEVATION ANI) AREA DESCRIPT10Ni177" CORE SPRAY RN 114

.J CASE' DESCRIPTION:

GNE DOOR 3]

fh kx xxx xx x x*xx*z* x*xxx*******x*x x x x xxx xx xx xx*x*xxxxxxx x xx x xxxxxyxxxxxf.ywxx

. 9l CEILING / WALL CEILING / WALL Ao llo Aw q.

THICl(NESS

~ MATERIAL Y

fft)

(ft2)

(ft)

(

a

,. w x w x x x

  • x x * * *
  • x x x x x x x
  • x x x
  • x x x x x *
  • x x. :t x x x x x x x k n *
  • x x x x x x
  • x f' t 2 )

j

( it u ) -

3.0 xxxxxxxxxxxxxxxx CONCRETE 17.5 5.0 2704 3417

. [

3-

' i FIRE IS VENTILATION CONTROLLED y

-FIRE DURATION

( t1in )

GAS TEMPERATURE (deg.F)

.2 4

056

'j 6

872 i

8

-807 j

10 902 1,2 917 14 932 16 V47 1

10 962 20 22 992 24 1007 26 1022 20 1037 30 10G2 32 1067 34 1002 36 1096 30 1111 1126 t

f.

4 F

Calculation No. 8 ATTACHMENT 1 c

y

- z.,.

Ei; x c. c VD, ',. p

~-

.,u..

1

^ V'

~ = r;;....

..r..

a.,

r.

E CASEztlUHb5Ra

_1 Tl YDUILDING i UNIT.1 REACTOR

~

E l! ELEVATION AND'AREAJDESCRIPTION:

  • ~

_.I CASE DESCRIPTION:. W27x145

. 177' C.S. RM114 -

.p E

.h EFFECTS 'Oi? LUCAL HEATING ON STRUCTUR Al - STEFL 4

)7 FIREIEMPERATURET(dog.'F):

-1126 N$

WEIGHT :GF STEEL.NEMBER. (lbs./f t ) i

-145

- n),

~!;URFACE.0F STEEL'MEi,1 DER HEATED (sq. O t./f t ) :

~. 7. 8 7

. h.,

TIME

~

/-

(nin)-

GTEEL TEMPERAiURE y

(deg.F) 5.00-

  • i 295 5.
10. 0 0 ~

fl 473

' i t:i. 0 0 '

20.00~

-613' 723

-i";'

'809 25.00' w

9 30.00' 35.00 077

.,~

s;-

'35-

'? 1s731 3

40.00.

.~

' i

.\\50.00 1005 972 45.00-l 1031 UB 00

u 1052 60.00'-

'c' j

1967, 65 00 n - ep, 10002r J

s 3.

s

' 's.

L

- >c

1 p.

1 O ( t y, N I

S.-

a-t +;1 ;

N s

^

. NN g

,a kj a hgig

<g Q,,,

y,

). \\ ',

-\\ w.; s

?m.

I M. >,

-.t

~'

,a m

Calculation fio. 8 pj:4;,

16 ',,

y 4

k jg s

i

j

g,

'Y$.

U

[

2 '. IStratification -:The use of Ja maximum constant fire size ' fr 3

Gy

throughout - the. fire, and.1the omission of _ radiative and convective heat M

g f'

_ losses - through openings make the estimates of area temperature conserva-tively high.: ' These 'conservatisms for the area temperature, combined with p

the evaluation of lplumeL ef fects adequately address the problem of strati-4 fication.

g.

-. g j]

heat balance area temperature method was At - the. request of NRC, ~ the applied.to the UL -conducted 20 foot' separation. test for comparison pur-H.S poses.- This-comparison is shown in the tables below and indicate that the il heat balance area temperature is conservative enough to compensate for the

. problem of potential stratification.

1 UL Test Comparison Test Heat Measured Peak Temp.

Description Balance Room Hot Layer 0

T Average Average

  1. 1 5 gal. heptane and E/PVC 1160 kW heptane 1284 F 784*F 1212*F i

PE/PVC cables, Exp.

1750 kW cables peak at 5 min duration 4

15 min ii

  1. 2 5 gal heptane and XLPE

'1160 kW heptane 1036*F 659 F 1027 F

- 1 cables, exp. peak at 1234 kW cables

-6 min duration 14' min

-#3-10 gal heptane 1160 kW 696 F 524'F 710 F Experimental ' peak at 20 min Dufition 25 min 4

L. #l.

4 j

m Wl,

=

J

r g.

t4 7;

p 4.

[!

Enclosure Feedback Effects - In those cases where enclosures are small all cables are burning simultaneously, and adequate ventilation t

is sup-

{i plied (so the fire is fuel controlled), the question regards whether the

((

"open burning" mass loss rates from EpRI/FMRC intermediate scale test are

4. !

conservative enough to account for potential enclosure feedback ef fects.

(

Also, if. mass loss rates increase with a corresponding decrease in fire

[

duration, how significant would the change in enclosure temperature ~ be?

9 e

Tests conducted at Sandia Laboratories on cable trays containing cross-linked polyethylene cable insulation showed that nass loss rate was a function of the inverse square of the diagonal distance from the ceiling-wall corner.

The tests also showed that these effects drop off rapidly within the first five feet of this distance.

Beyond that distance, the

[l mass loss iate was rather flat.

Based On these Sandia tests and the i!

Limerick cable configuration below deep beams, it is not anticipated that 4!

the enclosure feedback effect would have a significant impact on the

((l conservatism built into the methodology.

Y N

Sample calculations were run for calculation #9 and #31 picked as arbi-9 trary examples of all cable burning to assess the effect of increased mass loss rate.

For Calc 9 mass loss rates were increased by 7, 25, and 50%.

These increases resulted in increases in calculated temperatures of 19 F, 4

63 F, and 118*F, respectively.

For calculation 31 mass loss rates were increased by 17, 40, and 55%.

These increases resulted in increases in y

calculated temperatures of 61*F, 139 F, and 157*F, respectively.

f both cases 50% increase in mass loss rate only increased the resultant Since in g

calculated temperature h

by approximately 15%, enclosure feedback effects would not have a significant effect on the conservatism built into the I

methodology.

5

~. #. E E l i,.,,h s c.

}

1.

?F CA!JE NUMBER:L 1

4

?DUILDING ' UNIT 1. REACTOR 4

ELEVATION'AND: AREA DEGCRIPTION:

n 177' SUMP RODM-

- C ADE ? DESCRIPTION : ' ALL CABLES DURNIt1G f;,

],h I'-

xxxx kxxx*x xxwwwzunx**x wwwwx******* x x x*xxx*wx xr*xx xt* F4Xxxx%y

.v k

- CEILINC/ WALL CEILING / WALL xn UXxy

[;~

LTH ICKNESS _.

MATERIAL.

Aw

~u' Ao Ho br

-(ft) l$ie D

-x x x'x x x.x x x x

  • x x x n
  • x x x x
  • x x x x x x u w x (ft)

Pt2 le W

-2.5

4,j.j;.

. CONCRETE' 17.5 5.0 2595 1020 O'}

FIRE IS FUEL CONTROLLED

. FIRE DURATION'

]

.:(min)-

GAS TEMPERATURE i

(deg,F1 i

1 2i 2

681

~i.'

3 606-3 4

691

/)

s 5

695 6

699

-j 7

703 0

707

~

9 711 10 714 11 718 1

12 721 13 725 14 729 732 l

Calculation No. 9 ATTACHMENT 1

.h-"

~

.~

CASE'NUMDER:

2

{;

DUILDING:

UNIT 1 REACTOR LLEVATION AND AREA DESCRIPTION:

177' SUMP ROOri CASE DESCRIPTION:

ALL CABLES BURNING i.

x x s x x x

  • x x x x x
  • x x x x x x x x x x x x x x :x x
  • x x x x x x x x x x x x
  • x x x n x x, x x x x x x x g

p

1..

CEILING / WALL CELLING / WALL no Uc Aw a

C

'l HI CK NCU S MATERIAL j.;

(ft) xxxxxxxxxxx**xxxxxxxxxxxxxxxxxxxxxxxxx(ft2)xxxxxxxxxxxxxxxrxxex (ft)

(ft2)

R:

0,.

2.5 CONCRETE 17.5 S.O 25Yb 213b xx;xxxx r

FIRE IG FUEL CONTROLLED FIRE DUR ATION (nin)

GAG TEMl'ER ATURE (deg.F) 1 i

724 2

730 3

I 7%

4 j

5 741 t

6 745

[f 7

750 754 a

0

't 759 9

10 763 4

I 760 11 12 772 77b I,

i i

i s

I I

Calculation flo. 9 ATTACHMENT 2

1:

a, g;

CASE NiltiUER:

3 p

I4UI LDItlG :

Uti1T 1 IROCTOR i;

ELEVATION AND AREA DESCRIPTION:

177' silHP RI)OM i.1 CAME DE.UCRIPTION:

ALL CADLES DURNItJG P

i

< x x,. x x n

  • x x x x x x x x n x k x x x x 4 r x x x x x :; r+ r r x x x x w x x > x x
  • x x x u n ) x x x x x.+ r x x x a ) < < y x

.g 1

i CEILING /tJALL CEILING / WALL Ao llo Au

(,'

[

IllICl(NCSS MATERI AL (ft) x r. x x x x x x x x x x :4 x x x x x y x x x x x x x x x x x x x

  • x x x x( f t 2 )

( i' t )

(rt2)

(hus F

xxxxxxx*xxx*xxxyx**.xwxxrxxxxx<sxxx I

2.5 CONCRETE 17.5 5.0 2SYS 2550 FIRE IS Filet. CON'IROLLED FIRE DURATION G AG TF MI'l-:l! A l't;R E (nin)

(dog.F) r 1

770 a

705

-9 3

?

791 4

7Y7 5

003 2

6 O t19 7

014 g

8 020 V

9 twu 10 031 hy

+

6 l

3 i

s 8;

b l

l i

i l

l, 3

?

t

?

Calculation No. 9 ATTACl(MENT 3 3

=. ;.

~aamucedw-.--u

-~ - --

_-..a..-

a. t..

. CASE. NUN 1!ER :

1

-DUILDING:- CONTROL--- STRUCTUR E

-ELEVATION AND AREA DEGCRIPTION:

lCAUC l>CSCRIPTION :

100' TANK AREA 163

-h ALL CADLES TruRNING

@p)k :-

x zwu x x x *xx*w *n** xx.xx x xx* x x x x x x xw* xwx x xx x*xx

  • a x
l' l-x.x x x:: x x x CEILIllC/ WALL if THICKNESS CEILIN0/ WALL Ac Ho Aw Q

-lii NATERIAL

. t' t )^

(

,p x x n x x x x *

  • x x x a
  • x x x x x x
  • x :c x x x ** x x
  • x x
  • x x x

( f t)

(ft2 V.

3l.0-CONCRETE x ve r x x x i

k 21.0 7.0 2772 3380 s.:

L FIRE IG FUEL CDNTROLLED

{

FIRE' DUR ATI0ti

'[

(min)

Gns TEMPERATURE 7;

( d o g, F ')

S

- i 10 077

--:4 {

15 914

.30-951 25 i

~~

908 30 1026 f

1063 Y]

y a

t1 4-i h

!ll 0

1 il 1

'I 1

i i

i
i Calculation No. 31 ATTACHMEilT 1 ikI

dw

.- --. ~..-,

._.m..

~

$ CASE'NUHDER ~

~

? BUILDING

. CONTROL-STRUCT'URE Y

ELEVATION AND AREA DESCRIPTION:

.!GO TANK APEA 163.

' CASE DESCRIPTION: -ALL CABLES UURNiilG xin x x x ix*x xx* x x x x xmas * ** x * *x x x x x x x x x x x ku x x *x e au xxx y CE1 LING / WALL CEILING /. WALL

-Ao:

llo Aw a

fillCK NESS '

MATERIAL.

'(ft)

(ft2)

(Pt)

(012)

(kW x x x k x x x x x x x

  • x x x x x..x x *x x x x x x x x x x x x x x t: x x x x.x.x x x x x x x x 3.0

-CONCRETE 21.0.

7. 0.

2772 4060 I

FTRE IS FUEL. 'CONTR01. LED FIRE DUR ATION (Min)

-CAS TEMPERATURE

( d eg. F. )

5.10-945

- 15, 993

f:

20'

1042

- 2S; 1092' 1141 K_

Y

\\

i t

2 4

-M'i:

-Calculation No. 31 c,

T S.

ATTACHNENT 2

,j Lj-

"~

1

('.t.

.-1 ~,:r.n.n..

Y

- CASE NUMBER r

~l-l DUILDING: ' CONTROL STRUCTURF

' ELEVATION'AND AREA DESCRIPTION::

180' TANK AREA 163 1

CnGE' DESCRIPTION' ALL.CADLES DURNING.l .u n n y. x * *

  • x
  • x * * *
  • x x x x x x x x u
  • x
  • x x x x
  • x
  • x x x x x *
  • x x x x x x x v 4.x a n x x x r x

.xx CEILING /lJALL-CEIL 114G/ WALL Ao HE -. g . THICKNESS MATER 1AL-Aw Q t -(ft). ] (ft2) ( f' t ) ' ft2 hW

r. 5 x x x x x x x x u x x x x
  • x x x
  • x n x x x x x x x x x t
  • x x n x
  • x x x
  • x x
  • x x x x x x x x x j

~

3. 0 CONCRETE 21.0 7.0 27Y2 4504 w.f f-

' y - FIRE IS VENTILATION CONTROLL ED ji ?s FIRE. DURATION g (Min) GAS TErfERA TURE (. deg.F ) - 4 5 10 906 1 1043 15 j 20 '1101 1159 I .l l i I i c Calculation'No. 31 ATTACHMENT 3 1_

. _ _.. _ _ _ _ j 1? t 4 y N 5. EPR/Hypalon Cable Test Data - Questions were raised regarding the tempera- + g; ture at which pyrolysis occurs for the EPR/Hypalcn Cables. Data reported "i in EPRI-NP 1767 indicated one cable sample started to pyrolyze at 297 C. A i k Others were reported at 488'C. To clarify these data, Dr. A Tewarson of [ FMRC, who conducted the tests, was contacted by telephone. b Dr. Tewarson - k. indicated that one sample did start to "give off gases" at around 300'C (570'F) but not in sufficient quality or quantity to support piloted ignition. Dr. Tewarson said a range of 450-500*C is where p'iloted ignition could occur. He further indicated that even with very high radiant heat flux, 70kW/m2, they could not create autoignition in the EPR/Hypalon

cables, s,

I Relating these test data to the potential for secondary fi res in areas 4 where sprea' ding cables fires were quantified, of the 7 areas evaluated for t! fuel controlled spreading cables fires, only 3 exceeded 800'F (426 C). The

8 4

other four areas resulted in temperatures calculated between 395 F and 9-650*F. For the 3 areas exceeding 800'F, two are provided with automatic sprinkler protection and the third was shown to have a self-supporting f floor slab not requiring the beams for support. s \\g Based on the test data for EPR/Hypalon and the specific results for jI Limerick, the potential for secondary fires need not be further evaluated. bil i' 1 i il 4 1 a j i 1 6 Al

W .,y -j 6.. ' Ventilation Parameters - Calculations I and 2 for the RilR heat exchanger. _j and pump rooms were performed using-two doors open as the ventilation- ,{ j -flow path. :The selection of.two doorn open is conservative for these x f{: - j ~. cases and would be. conservative for.any fire area location containing - h' safe shutdown equipment. The RHR rooms have two watertight doorn at-elevation 177' and two steamtight doors at elevation.201'. All four j(i. doors are electrically supervised and monitored at the plant security panel. Whenever a door in a fire: barrier is inoperable plant technical (f. specifications require a fire watch.. Considering that these doors have l multiple design and operational functions including not only fire "U ' but security and plant safety (flood and steam line break) the N likelihood _of even one door being open for longer than the time it takes.for personnel access is-remote. i I-- n v' GJR/bls/07318404 .[ 'q I i f ti WI Eli

t- _ t.. p F s b ..,,i-s i., fi 1 7. ' Program to assure that changes to plant fire protection features are controlled. The Limerick Fire Protection Evaluation Report h{", will be maintained as a working document for the life of the . plant. p( Engineering and Research Department Procedures will require that all project engineers. evaluate the effect of every i-1 proposed modification on fire protection features and safe shutdown separation. All modifications are accompanied by n g i. safety evaluation. ~ The Project Engineer will include in the d., nafety' evaluation a conclusion addresning the effects of the modification on fire protection features..The conclusion will be ' I based on review of a fire protection checklist which includes an evaluation of possible increased. combustible loadings, relocation g lof safe shutdown equipment, and the effect of the modification on i existing fire protection features, including sprinklers and fire g de t ec tors. ty A certain margin of safety has already been accounted for in our [ p combustibic loading and fire temperature calculations by doubling i the quantity of fixed lubricant or fuel oil and adding 10% to the cable quantity. L f' li e ? i i}}