ML20092K419

From kanterella
Jump to navigation Jump to search
Cycle 10 Startup Rept,June 1984
ML20092K419
Person / Time
Site: Kewaunee Dominion icon.png
Issue date: 06/30/1984
From:
WISCONSIN PUBLIC SERVICE CORP.
To:
Shared Package
ML20092K417 List:
References
NUDOCS 8406280355
Download: ML20092K419 (36)


Text

-.

l KEWAUNEE NUCLEAR ~ POWER PLANT In i

CYCLE 10 STARTUP REPORT

~

J U NE ,19 84 i

l WISCONSIN PUBLIC ' SERVICE CORPORATION

~

WlSCONSIN POWER- a LIGHT COMPANY M A DISON- .G AS 8' ELECTRIC COMPANY -

l

_;- s D 0 0 00 05 >'

.s P PDR

'{ ' ~

~. ,

R DOCKET 50-305 KEWAUNEE NUCLEAR POWER PLANT CYCLE 10 STARTUP REPORT JUNE 1984 s

Wisconsin Public Service Corporation Green Bay, Wisconsin Date 6/18/84 0

1

l TABLE OF CONTENTS 1.0 Introduction, Summary, and Conclusion . . . . . . . . . . .1 1.1 Introduction . . . . . . . . . . . . . . . . . . .- . .1 1.2 Summary. . . . . . . . . . . . . . . . . . . . . . . .2 1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . .3 2.0 RCCA Measurements . . . . . . . . . . . . . . . . . . . . .6 2.1 RCCA Drop Time Measurements. . . . . . . . . . . . . .6 2.2 RCCA Bank Measurements . . . . . . . . . . . . . . . .6 2.2.1 Rod Swap Results . . . . . . . . . . . . . . . . .6 2.3 Shutdown Margin Evalua tion . . . . . . . . . . . . . .7 3.0 Boron Endpoints and Boron Worth Measurements. . . . . . . 13 3.1 Boron Endpoints. . . . . . . . . . . . . . . . . . . 13 3.2 Differential Boron Worth . . . . . . . . . . . . . . 13 3.3 Boron Le tdown . . . . . . . . . . . . . . . . . . . . 14 4.0 Isothermal Tempera ture Coef ficient. . . . . . . . . . . . 18 5.0 Power Distribution. . . . . . . . . . . . . . . . . . . . 20 5.1 Summary of Power Distribution Criteria . . . . . . . 20 5.2 Power Distribution Measurements. . . . . . . . . . . 21 6.0 Reactor Startup Calibrations. . . . . . . . . . . . . . . 29 6.1 Rod Position Calibration . . . . . . . . . . . . . . 29 6.2 Nuclear Instrumenta tion Calibration. . . . . . . . . 30 7.0 References. . . . . . . . . . . . . . . . . . . . . . . . 31 l

l l

l l

l

LIST OF TABLES Table 1.1 Chronology of Tests . . . . . . . . . . . . . . .4 Table 2.1 RCCA Drop Time Measurements . . . . . . . . . . .8 Table 2.2 RCCA Bank Worth Summary . . . . . . . . . . . . .9 Table 2.3 Shutdown Margin Analysis. . . . . . . . . . . . 12 Table 3.1 RCCA Bank Endpoint Measurements . . . . . . . . 15 Table 3.2 Dif ferential Boron Worth. . . . . . . . . . . . 16 Table 4.1 Isothermal Tempera ture Coe f ficient. . . . . . . 19 Table 5.1 Flux Map Chronology and Reactor Cha rac te ris tics . . . . . . . . . . . . . . . . 22 Table 5.2 Verification of Acceptance Criteria . . . . . . 23 Table 5.3 Verifica tion of Review Criteria . . . . . . . . 24 LIST OF FIGURES Figure 1.1 Core Loading Map. . . . . . . . . . . . . . . . .5 Figure 2.1 RCCA Bank C Integral Worth. . . . . . . . . . . 10 Figure 2.2 RCCA Bank C Differential Worth. . . . . . . . . 11 Figure 3.1 Boron Concentra tion vs. Burnup. . . . . . . . . 17 Figure 5.1 Measured / Predicted RRI Flux Map 1001. . . . . . 25 Figure 5.2 Power Distribution for Flux Map 1002. . . . . . 26 Figure 5.3 Power Distribution for Flux Map 1003. . . . . . 27 Figure 5.4 Power Distribution for Flux Map 1009. . . . . . 28 l

-lii-

(

1.0 INTRODUCTION

SUMMARY

, AND CONCLUSION 1.1 In troduct ion This report presents the results of the physics tests pe rformed for Kewaunee Cycle 10. The core design and reload safety evalua tion were performed by Wisconsin Public Service Corporation (1) using methods previously described in WPS topical repo rts (2,3). The results of the physics tests were compared to WPS analytical results to confirm calculat-ed safety margins. The tests performed and reported herein sa tisf y the requirements of the Reactor Test Program (4).

During Cycle 9-10 ref ueling , 36 of the 121 fuel assemblies in the core were replaced with fresh assemblies of Exxon Design (5), enriched to 3.2 w/o U235. The Cycle 10 core consists of the following regions of fuel:

Number of Initial Previous Number of Region Vendor U235 W/O Duty Cycles Assemblies 1 W 2.2 1 1 7 ENC 3.2 3 12 1 l

8 ENC 3.2 2 8 9 ENC 3.2 2 8 10 ENC 3.2 2 20 11 ENC 3.4 -1 36 12 ENC 3.2 0 36(Feed)

The core loading pattern, assembly identification, RCCA bank ide ntifica tion, instrument thimble I.D., the rmo-couple I.D. ,

-l-2,i

and burnable poison rod configurations for Cycle 10 are presented in Figure 1.1.

On May 5, 1984 a t 2121 hours0.0245 days <br />0.589 hours <br />0.00351 weeks <br />8.070405e-4 months <br />, initial criticality was achieved on the Cycle 10 core. The schedule of physics tests and measurements is outlined in Table 1.1.

1.2 Summary All RCCA drop '

RCCA measurements are shown in Section 2.

time measurements were within Technical Specification limits. RCCA bank worths were measured using the rod swap reactivity comparison technique previously described (4,6).

The reactivity comparison was made to the reference bank, Bank C, which was measured using the bora tion / dilution technique . All results were within the established accep-tance criteria (4), and thereby demonstrated adequate shutdown margin.

Section 3 presents tile boron endpoint and boron worth measurements. The endpoint measurements for ARO and " Bank C In" core configurations were within the acceptance criteria (4). The available boron letdown data covering the first month of reactor operation is also shown. The agreement between measurements and predictions meets the review and acceptance criteria (4).

Section 4 shows the results of the isothermal tempe ra ture coefficient measurements. The differences between measure-

, ments and predictions were within the acceptance criteria (4).

e e I o

l Power distributions were measured via flux maps using the Incore code for beginning of cycle (BOC) core conditions covering power escala tion to 100% f ull power equilibrium xenon. The results indicate compliance with Technical Spe cifica tion limits (7) and are presented in Section 5.

Section 6 discusses the various calibrations performed during the startup of Cycle 10.

1.3 Conclusion The startup testing of Kewaunee's Cycle 10 core verified that the reactor core has been properly loaded and the core characteristics satisfy the Technical Specifications (7) and are consistent with the parameters used in the design and safety analysis (1).

i

TABLE 1.1 KEWAUNEE NUCLEAR POWER PLANT BOL CYCLE 10 PHYSICS TEST a

Da te Time Plant Test Completed Comple ted Conditions Control Rod Operability Test 5/01/84 1350 C'old SD Hot Rod Drops 5/03/84 1530 HZP RPI Calib ra tions 5/05/84 1821 HZP Initial Criticality 5/05/84 2121 HZP Reactivity Computer Checkout 5/05/84 2210 HZP ARO Endpoint 5/06/84 0115 HZP Bank C Worth (Dilution) 5/06/84 0140 HZP Bank C In-ORO Endpoint 5/06/84 1000 HZP Bank C Worth (Boration) 5/06/84 1000 HZP ITC De termina tion 5/06/84 1112 HZP Power Ascension Flux Map 1001 5/07/84 1914 22%

Power Ascension Flux Map 1002 5/09/84 1148 44%

Incore/Excore Calibration Flux Map 1003 5/12/84 0914 71.5%

Incore/Excore Calibration Flux Map 1004 5/12/84 1116 71.8%

Incore/Excore Calibration Flux Map 1005 5/12/84 1313 71.9%

Incore/Excore Calibration Flux Map 1006 5/12/84 1508 72.7%

Incore/Excore Calibra tion Flux Map 1007 5/12/84 1645 72.3%

Power Ascension Flux Map 1003 5/14/84 1428 90%

Power Ascension Flux Map 1009 5/16/84 1610 100%

4

-4 -

F7CI1RE 1.1 1 2 3 4 5 6 7 8 9 10 11 12 13 R at< nw on m n i JU 13 )

B too, ,

aie aca nw ae nu nw aie

\ m n.m /

too, ,

b 'M h "sh iJ C >> =w au nit an =is au nw no

,, s a mn- n mn L d L? Lib D =i nu ret =ca s34 arv ai nw  ::. nw no a mn 1a m 11 d 'E 'M "E d1J E acw ar* nw ors ato ars . ais oo2 aca noi ==

n , an an il "Ei "M AJ "M B ' n1 ' ul1J F osi == nu sie =r ris u. or uti sr. us ww ois n 1a mn

'M AJ L! 8 61 " d! ij 'us "di d 2J "M G == su an =s an uro an ae ae au a. au nw n0 g

m m ra mn nm er am n

1) 8 d1 "M sj se a.; sul a g3 dj H oro == air ne ars .o =ts to+ ni sie ae acu on n m w rm mum m il L o. my s i!.g adi Le _j

{ new ao1 nw o.o mit was hos ots new nao nw a m n mm m n 13 Le Li tg Ej J =7 atu rso nu as us ass nu rii nw wii ms m mn m n- n il 'iL6 13 " dilj K su nu ao* au n.

Loor 8 3 E saa 6

ais ==

m ari N Loof A 11 11 L RS mew nw J31 MCu == Ktt n m nm M ocr MLw ors

,a n Roc ] ' { 3rit ato BrN)

ID f/C 7 I TMinstt J

2.0 RCCA MEASUREMENTS 2.1 RCCA Drop Time Measurements RCCA drop times to dashpot and rod bottom were measured at hot zero power core conditions. The results of the hot zero power measurements are presented in Table 2.1. The accep-tance criterion (4) of 1.8 seconds is adequately met for all f ue l .

2.2 RCCA Bank Measurements During Cycle 10 s ta r tup the reactivity of the reference bank (Rank C) was measured using the bora tion / dilution technique and the reactivity worth of the remaining banks was inferred using rod swap reactivity comparisons to the reference bank.

2.2.1 Rod Swap Results The measured worth of the reference bank, Bank C, differed from the WPS predicted Bank C worth by -43 pcm or -4.6%,

which is within the 10% review criterion. Integral and dif ferential worth plots comparing measured to predicted reference bank worth are presented in Figures 2.1 and 2.2, respectively.

As is typical with the Kewaunee " Low Leakage" reload core con fig ura tions, Bank C and Bank A are calculated to have comparable reactivity worths. The rod swap measurements indicated that Bank A had slightly more worth than Bank C.

The additional worth was measured with the reactivity computer. Rod swap results are presented in Table 2.2.

_ d

I Review criteria were adequately met for all individual rod bank worths. Since the measured to predicted comparison for total rod worth was .05%, which is within the 10% accep-tance criterion, no further rod worth measurements or calcula tions were pe rformed.

2.3 Shutdown Ma rgin Evalua tion Prior to power escala tion a shutdown margin evaluation was made to verify the existence of core shutdown capability.

The minimum shutdown margins at beginning and end of cycle are presented in Table 2.3. A 10% margin is allowed in the calcula tion of rod worth in these shutdown margin analyses.

Since the measured rod worths resulted in less than a 10%

difference from predicted values, the analysis in Table 2.3 is conservative and no additional evaluations were required.

6

TABLE 2.1 KEWAUNEE CYCLE 10 RCCA DROP TIME MEASUREMENTS HOT ZERO POWER All Westinghouse Exxon Fuel Fuel Fuel Average Da shpo t Delta T (Sec) 1.279 1.352 1.277 S tandard Devia tion 0.033 0.000 0.031 Average Rod Bottom Delta T (Sec) 1.806 1.792 1.807 S ta nda rd Devia tion 0.028 0.000 0.029 l

.j

TABLE 2.2 KEWAUNEE CYCLE 10 RCCA BANK WORTH

SUMMARY

Rod Swap Measured WPS Method Worth Predicted Difference Percent RCCA Bank (PCM) Worth (PCM) (PCM ) Difference D 741.3 756.0 -14.7 -1.9 C* 899.3 942.0 -42.7 -4.5 B 784.0 725.0 59.0 8.1 A 977.5 940.0 37.5 4.0 SA 560.2 580.0 -19.8 -3.4 SB 558.3 580.0 -21.7 -3.7 Total 4520.6 4523.0 -2.4 .05

  • Reference bank measured by boron dilution.

l 4

l

W N

! t -li , I  ! 4  ? } N O

.i.

i t - d i

4 . . .. ,

m 3

N ll l j  ; i g l I

-._[.._..y_,..___._.

n  : I 1 + }

., y u , 2 .

i 1

' l O F "

l -

j  ! + i l  !

- E o i -

j  ! i 1  : O o . .! ....L__..-- t- --4-- - * -- - ?-- b--- '- 1 O W

J o) o t- ,

i t I' l

' h N

O Mo W __..I....._ _..._a ._

I  ! '

>Zo H l 1 i ogy -

o l

I i

,  ! /

~/ i O CD w oO. ._4._.,... 7-- -_L_-_.... j -_. . co wJ J wW  !

! . .+i .. .- _ y/ -

2O g E[

o l- f r

]~ i'i A 3E -

/
  • 4 ui 4H w  !  :. / .._--

3Z p g. '

I

'/ O W

.wO MOz 23

-- 4-'

~'

-f i

n/- - "i --~ ~ -- I W

l

, * /- . .- ,

l

! , . i  ! /'  : .

t

. . . - .t ----- --l - ~ - - i ----- i- r -------[--

i i ,


---f--

1

'-~ ~ ' ~ /i l --j---l i O

. ._.!.._,,..  ! l/ . . n . . __ . _ . .i . ,

7 i _

1 /!

_ . . . _ _ . . _ . ._. . . . I . .. . _ i /_ t g

./

7

!  ! 3 i

+- - - . .

!/

. _ f..

4 O <

g

._.}._.. . . .__. - _...._._._____w..- m

_ , ./ .i . .

O

_ ; _ _; . 1. _ _ . l-

. . /. I -.

N l/  ;

! . i l l  ;

3 d

/  ; O

.f4 ..._r.. . .' -_ . _ j _. ._ . .i .

o e A /

i .

- i 1

'! l l W

_q._ . . _

. . . . . . ' . - . . _ . . _ _ _ . _ . . . . _FM _ _

/

i t i  ! k I l / l- f-  ; -i I

.. , / '

. . _ . 2_..._ . _ .

O

/

' ' - i 1

m

./ i '! j

. . ./ . . . ..m._.._.. i f  !

/ l t i  !' '

O

.;._._....._._7_.,!__...._.

.f.

. ,i /  ;

I.

i

i

-_..__..f l .i.... .-i_._-..L.._.__q

_.. . _ _.i _ _ p -

3 i 4 il i

. i . p i

.. ._..-_../. - . , ' ... ._..._.._ 7 1

.. y._.  !  ! t O i I i 1

  • f .  ! .

, .J:

2_....g.....;__.j.  !

t I:  :

! li. , ' I  ! i  ! l

..__,_..p.L _.. .L . '

i._....__. ._.'.1_...._ O 6 i r  ; i  ; N t *I i l' I

+

l' i _.-~.i ...._g..

i

..g i f.

-. g 9

I i l i l

O O O O O O O O O O O O N

O CD W t N

( W Od) H1HOM COM 7VW931NI 4

1 FIG. 2.2 8

KEWAUNEE CYCLE 10 7

CONTROL B ANK C DIFFERENTI AL ROD WORTH MEASURED  ::

~ '

W.P.S. P R E DIC T E D -----

W 6 - *

  • F 7,__

u) s s f' s ,

y ~

i \ ,

, ,~c -

o .#

/ \ ,'

-s / N j

-\'/ j\ ,

- . -- -- - - - . s-O  ! / -- --

._, 5 - - - - - -,--r----

,/

I \.  ;

r

  • t> ,

1 ' * # .

i g !' {

! i . _ g.

p ,

,/

7 g 7 _,. .

0 / i  !' . 4

/

3 4 - - - --- + -

- - - - - -- -- - - -- -+--- -

- + - -- \ --~

' f i O '

t o . .; .

1m

~ ,. . .

a .-

i  : ,

S f i f i 4

a

-- -- - r 3 - - - - - - -

e j i

- -  :  !  ! i  ! j~ 4  ;

p  ; t  : '

i j - r i z i-i i W

__ _ ! . _ _.I ___ _' _ . __ ! . # . . . _ . . . .i_ _.. ! . . _ . . .

~

- ___......a....I  ;

_! . -_ ..L _ .

i g .

t ,

  • ; +

w . i ,

j-  :

  • f  ;

i

- g

u. I .

h- 2 '

j  ;  ; ._ j ,' f , i 1:

5 ,  ; i y Q .. .i . . i

. _ . . .'.. .t _ . _ . . . . _ . . _ . . .

t

.j i

T

, , ~

l i 8 f - -

i  !  ; t

!. n l __.__a__.. _. . _ = _. 4 ..  ; ..;__._. .. __.-.1_ p _._ ,-. ._ y_. , ,

i i

- i i i

i 4 .

i i

-1  ;

i, - -

. t  ! t j  :

t .

...i-7

.-7.__ __._.._._;_._

r i f  !

/-

O 20 40 60 80 100 120 14 0 160 180 200 220 228 STEPS W I T H D R AWN

TABLE 2.3 KEWAUNEE CYCLE 10 MINIMUM SliUTDOWN MARGIN ANALYSIS BOC

~~

EOC RCCA Bank Worths (PCM)

N 5988 6504 N-1 5248 5724 Less 10 Pe rcent 525 572 Sub Total 4723 5152 Total Requirements (Including Uncertainties) 2103 3090 Shutdown Margin 2620 2062 Required Shutdown Margin 1000 2000

_d

3.0 BORON ENDPOINTS AND BORON WORTH MEASUREMENTS 3.1 Boron Endpoints During rod movements to measure control rod worth and differential boron worth, the dilution was stopped near the f ully inserted position of control Bank C to obtain a boron endpoint measurement. The boron concentration was allowed to stabilize and the just critical boron concentration was determined for the configuration desired.

Table 3.1 lists the measured and WPS predicted boron endpoints for the RCCA bank configura tions shown. The results indicate a -9 PPM dif ference for both the ARO and

" Ba nk C In" core configurations. The acceptance criterion on the all rods out boron endpoint is 100 PPM, thus, the boron endpoint comparisons are considered acceptable.

3.2 Differential Boron Worth The dif ferential boron worth was calcula ted by dividing the worth of control Bank C by the dif ference in boron endpoint measurement of the corresponding bank out and bank in con fig ura tion. Table 3.2 presents a comparison between measured and predicted boron concentration change and differential boron worth. The results show good agreement.

No acceptance criteria are applied to these comparisons.

_j

3.3 Boron Le tdown The measured boron concentration da ta for the first few days of power operation is corrected to nominal core conditions and presented versus cycle burnup in Figure 3.1. The predicted boron letdown curve is included for comparison.

1

(

TABLE 3.1 KEWAUNEE CYCLE 10 RCCA BANK ENDPOINT MEASUREMENTS RCCA Bank Measured WPS Predicted Difference Con fig ura tion End poin t( PPM)

Endpoin t( PPM)

(PPM)

All Rods Out 1308 1317 -9 Bank C In 1197 1206 -9 1

L-__ j

TABLE 3.2 KEWAUNEE CYCLE 10 DIFFERENTIAL BORON WORTH RCCA CS CB Bank Change Change Percent Con fig ura tion Measured Predicted Difference (PPM) (PPM)

ARO to C Bank In 111 111 0.0 RCCA Measured Predicted Porcent Bank Boron Boron Difference Configuration Worth Worth (PCM/ PPM) (PCM/ PPM)

ARO/C Bank In . -8.1 -8.5 -4.7

.0

5-15-84 THROUGH 6-05-84 DEPLETION OF CHEM. SHIM CYCLE 10 i2 KEWRUNEE NUCLEAR POWER PLANT

?

2 2

8

=

o W

"oS

  • i

-g .

'] - U-e

-s 3g u N b 'w u4 N x b

=: \

E 8 N.N N m

3 '

N N 8 N g N .

ce N

\ N o \

e N

' . i .00 .10 00- 20.00 30.00 40.00 ' 50.00 60.00 70.00 80.00 90 00, 100.00 110 00- 120.00 130.00 140.00 150.00

=10 CYCLE BURNUP (MWD /MTU)

~

4.0 _ ISOTHERMAL TEMPERATURE _ COEFFICIENT The measurement of the iso the rmal temperature coef ficient was accomplished by monitoring reactivity while cooling down and heating up the reactor by manual control of the steam dump valves. The temperature and reactivity changes were plotted on an X-Y recordor and the temperature coef ficient was obtained from the slope of this curve.

Core conditions a t the time of the measurement were Bank D slightly in, all other RCCA banks full out, with a boron concentration of 1300 PPM for the cooldown and 1302 PPM for the heatup. These conditions approximate the HZP, all rods out core condition which yields the least conservative (least negative) isothermal temperature coe f ficient measure-ment.

Table 4.1 presents the heatup and cooldown core conditions and compares the measured and predicted values for the isothermal temperature coefficient. The review criterion (4) of 13 PCM/ Degrees F wa s me t .

l 1

L_

TABLE 4.1 KEWAUNEE CYCLE 10 ISOTHERMAL TEMPERATURE COEFFICIENT Cooldown Tave Start 546.0 Degrees F Tave End 540.0 Degrees F Bank D 205 Steps Boron Concentration 1302 PPM Measured WPS Predicted ITC ITC Difference (PCM/Deg F) (PCM/Deg F) (PCM/Deg F)

-4.6 -5.9 +1.3 lieat Up Tave Start 541.0 Degrees F Tave End 545.5 Degrees F Bank D 205-Steps Boron Concen tra tion 1300 PPM Measured WPS Predicted ITC ITC Difference (PCM/Deg F) (PCM/Deg F) (PCM/0eg F)

-3.6 -5.9 +2.3 5.0 POWER DISTRIBUTION 5.1 Summary of Power Distribution Criteria Power distribution predictions are verified through data recorded using the incore de tector system and processed through the INCORE computer code. The computer code calcu-la tes FQN and FDHN which are limited by technical specifica-tions. These parame ters are defined as the acceptance criteria on a flux map (except for low power) (4).

The review criterion for measurement is that the percent difference of the normalized reaction rate integrals of symme tric thimbles do not exceed 10% at low power physics test conditions and 6% a t equilibrium conditions (4).

The review criterion for the prediction is that the s ta nda rd deviation of the percent dif ferences between measured and predicted reaction rate integrals does not exceed 5%.

The review criteria for the INCORE calcula ted quadrant power l are that the quadrant tilt is less than 4% at low power j l

physics test conditions and less than 2% at equilibrium conditions (4).

1 l

5.2 Power Distribution Measurements Table 5.1 identifies the reactor conditions for each flux map recorded a t the beginning of Cycle 10. No hot zero power flux map was taken due to flux mapping equipment difficulties.

Table 5.2 identifies flux map peak FDHN and minimum margin FQN. This table addresses acceptance criteria by verifying that technical specifications limits are not exceeded. The Cycle 10 flux maps met all acceptance criteria.

Table 5.3 addresses the established review criteria for the flux maps. All review criteria were met for all the Cycle 10 flux maps.

The graphic displays of power distributions measured for re pre sen ta tive flux maps are exhibited in Figures 5.1 through 5.4.

I l

1 1

)

s i

TABLE 5.1 FLUX-MAP CHRONOLOGY AND REACTOR CHARACTERISTICS Percent Boron D Rods Exposure Map Da te-Time Power Xenon PPM Steps MWD /MTU 1001 5/07/84-1835 25 0 1231 202 0 1002 5/09/84-0945 44 EQ. 1098 189 0

! 1003 5/12/84-0815 72 EQ. 881 228 71 1004 5/12/84-1019 72 EQ. 881 207 73 1005 5/12/84-1221 72 EQ. 881 197 75 1006 5/12/84-1420 73 EQ. 881 191 77 1007 5/12/84-1552 72 EQ. 881 174 78

1008 5/14/84-1322 90 EQ. 845 209 109 1009 5/16/84-1516 100 EQ. 792 228 207 Y

s p

a .-

. v-4 9

.,' ~ d l/

TABLE 5.2 VERIFICATION OF ACCEPTANCE CRITERIA Flux Core Map Location FQN Limit 1001 H-12 DJ ,19 2.53 4.28 1002 H-12 DJ,23 2.34 4.31 1003 F-12 DE,21 2.11 2.99 1004 F-12 DE,25 2.13 3.01 1005 B-6 EK,33 2.16 3.07 1006 L-6 ED,35 2.21 3.04 1007 L-6 ED,36 2.33 3.05 1008 B-6 EK,32 2.11 2.46 1009 B-6 EK,34 2.10 2.21 Flux Core Map Loca tion FDHN Limit 1001 H-12 DJ 1.59 1.78 1002 H-12 DJ 1.60 1.72 1003 F-12 DE 1.50 1,64 1004 E-10 HH 1.51 1.64 1005 E-10 HH 1.51 1.64 1006 E-10 HH 1.51 1.63 1007 E-10 HH 1.51 1.64 1008 B-6 EK 1.50 1.58 1009 B-6 EK 1.51 1.55 FQN and FDHN include appropriate uncertainties and penalties.

Limit on FQN is a f unction of _ Core Power, Axial Loca tion, and Fuel Rod Exposure.

Limit on FDHN is a function of Core Power and Assembly Burnup.

~

1 l

i

'N TABLE 5.3 VERIPICATION OF REVIEW CRITERIA Flux (a) Maximum (b) Standard (c) Maximum Map Percent Devia tion Quadrant Difference Tilt m

1001 .7. 5 2.4 0.8 1002 8.1 2.7 0.6 1003 1.0- 2.0 -

0.6 1004 1.9 2.1 0.5 1005 l'. 7~ 2.1 0.6 71 1006 1.5 2.1 026 1007 1.3 2.1 i 0.6 '

x 1008 1.~ 4 2.1 . 0. 5 g ,

1 \

1009 2.2 2.1 '. ' ' 0. 5 x

(

s s

-g , h \>

\

3 ~ \ ~ "

I s (a) Maximum ^ Percent Dif fere_nce be tween symme tejc< thimbles for

'\1 s, .

measured f, reaction rate < injeg'rals. Revieb criteria is 10% a t

-w., '

low power. Review criteria is '6% a t e quilibrium power. .

(b) Standard: Deviation of the percent dif ference between . ,

measured and predicted reaction hate integraldX Review criteria is 5%. s s

i s

Percent Maximum Quadrant Tilt from normalized caf,1cula (c) ted I (e

1 I

quadrarit powers.

+ 4 i

Review criteria is 4% at* low power ', 2% a t

., )

equilibrium power. '

+

ss

, o \

z.

E' ~ .W i

s.

1 2 3 4 5 6 7 8 9 10 11 12 13 6

F IGURE 5.1 a

0.338 0.593 0.338 Q 0 341 0.599 0.341

-1 08 -1 08 -1 08 0.540 6.366 1 158 0.841 1.158 0.958 0.535

'@ 0 541 0 988 1 171 0.851 1 171 0.988 0 541 LOOP 8 -0.18 -0 19 -1 10 -1.10 -1 10 -1.09 -0 96 LOOP 0 480 1 135 0 986 1 129 1.046 1 123 0 977 1.126 0.477

{ 0.481 1 137 0 988 1 127 1 049 1.127 0 988 1 137 0.481

-0.19 -0 18 -0.19 0.13 -0.32 -0.39 -1 10 -0.97 -0.96 0.541 1.137 1 021 1 276 1 118 1 278 1.109 1.266 1.021 1 134 0 535 g 0 541 1 137 1 023 1.270 1 113 1 276 1 113 1.270 1.023 1 137 0.541 0.00 -0.02 -0 19 0 43 0.48 0 19 -0.32 -0 29 -0 21 -0 25 -0 96 0 968 0 988 1 268 1 055 1 295 1 316 1 294 1.055 1 277 0 993 0.973' E 0.988 0.988 1.270 1 050 1.288 i.305 i.208 i.050 2.270 0 988 0.968

-0 02 -0.02 -0 19 0.49 0 52 0.80 0.46 0.50 0.51 0 51 0.51 0.341 1.170 1 134 1 128 1 314 1 170 1.348 1 170 1 306 1 128 1 132 1 244 0 363 f 0 341 1.170 1.126 1.112 1 287 1.143 1 317 1 143 1.287 1.112 1.126 1.170 0.341 0 00 -0.02 0.73 1 48 2.06 2.36 2 36 2.33 1.45 1 39 0 51 6 33 6 33 0.599 0.863 1.064 1 295 1 338 1 364 1.109 1.345 1 333 1 306 1.116 0.904 0.637 g 0 539 0.850 1.049 1 276 1 305 1.317 1 079 1 317 1.305 1 276 1 049 0 850 0.599 0.00 1 45 1.46 1 46 2.51 3.55 2.74 0 12 2 14 2.33 6 33 6.33 6 35 0.329 1 127 1 142 1 112 1.301 1 157 1 348 1 165 1.314 1 138 1 076 1 244 0 363 H o 3*2 2 17o 2 228 2 "2 287 2 243 2 327 2 2'3 2 287 2 22 1.i26 1.170 0 341

-3.63 -3 64 1.46 -0 02 1 10 1 22 2.32 1 92 2.12 2.32 -4.48 6 33 6.33 0.933 0.952 1 238 1.G34 1 288 1 328 1 310 1.036 1 213 0.944 0.925

{ 0 968 0.988 1 270 1 050 1 268 1.305 1.288 1 050 1 270 0 988 0.968

-3.64 -3.64 -2.57 -1 55 0.01 1.72 1.73 -1 30 -4.48 -4.48 -4.48 0 521 1 096 0.996 1 250 1.110 1.201 1 117 1.213 0.977 1 088 0 516 J 0.541 1 137 1 023 1 270 1 113 1 276 1.113 1.270 1 023 1 137 0.541

-3.63 -3.64 -2.62 -1.55 -0.28 0 34 0 35 -4.48 -4.49 -4.49 -4.48 0.474 1 121 0.996 1.118 1 040 1.118 0.944 1 088 0.480 o 482 2 237 o 888 2 27 2 04S 2 227 0.988 0.481 K

LOOP 8 / -1 48 -1.38 0 75 -0.85 -0.86 -0.85 -4.48 i.137

-4.49 -4.47 3 LOOP 0.545 0 975 1.159 0.842 1.159 0.957 0.516

[ 0.541 0 968 1.171 0.851 1.171 0.968 0.541 0.76 0.74 -1 01 -1 01 -1.01 -1 17 -4.48 0.337 0.592 0.337 M 42 588 342

-11*l -1.15 -1 17

+--- MERSURED FONN

+--- PREDICTED FONN 4--- PERCENT O!FFERENCE FLUX MRP 1001 6 = 2 . 5 :.

. J

)

1 2 3 4 5 6 7 8 9 10 11 12 13 F IGURE 5.2 0.348 0.608 0.352

'58 822 " '58 A -2 00 -2.03 -1 07 0.545 0.954 1 143 0.844 1 154 0.964 0.552 558 *'8 2 287 858 2 287 8 S75 558 B LOOP 8 -2 06 -2.09 -2 09 -1 60 -1 08 -1.08 -0.88 LOOP R 0.511 1 121 0.975 1 116 1.021 1.121 0.985 1 135 0 494 0 498 1 145 0.956 1 118 1 025 1 118 0.996 1.145 0.498

[ 2.69 -2.10 -2.09 -0.13 -0 39 0.29 -1 08 -0.87 -0 86 0.571 1 176 1 040 1.272 1.122 1.265 1 113 1 267 1 037 1 149 0.552 o 558 2 245 228 2 258 28 2 28' 2- 8 2 245 558 0 2.70 2.70 2 o3' 0.63 28' 0 63 1.27 0.57 0.42 0 27 0.40 0 34 -0.88 1.001 1 023 1 266 1.056 1.284 1 300 1 297 1 069 1.284 1 005 0.975 8 S'S o SS8 2 28' 2 oS2 2 273 2 28' 2 278 2.052 i.26. 0.996 0.975 E

2.70 2 70 0 19 0.41 0 90 1 27 1 91 1.61 1 61 0 84 0.05 0.3b0 1 149 1 103 1.103 1 281 1 150 1 321 1 147 1.289 1 121 1 127 1 204 0.368 F o 355 2 887 228 2 207 2 273 2 237 2 3Do 2 287 1 78 2 2o7 228 2 287 o 355

-1 52 -1 52 -1 31 -0.36 0.60 1 13 1.61 0.91 1.25 1.26 0.80 3 14 3 43 0 612 0 843 0.990 1.252 1 292 1.319 1 092 1 30S 1.289 1.264 1 025 0.887 0.644 g 0.621 0.858 1 024 1 257 1.284 1 300 1 078 1 300 1 284 1 257 1 024 0 858 0.621

-1 32 -1.89 -3 29 -0.41 0.62 1 49 1 31 0.45 0.38 0.54 0.12 3.44 3.72 0.352 1 152 1 081 1 090 1.271 1.142 1.314 1 143 1 278 1.113 1.120 1 246 0.380

'55 2 287 2 228 227 2.273 1.is7 i.300 i.is7 1.273 1.107 1.118 i.i67 0.355 H -1.51 0.47

-0.96 -1 32 -3.30 -0 19 1 11 0.55 0.35 0.51 0 18 6 80 6 81 0.992 0 981 1 241 1.030 1.285 1.290 1 278 1 037 1.237 0.975 0 932 0.975 0 996 1 264 1 052 1.273 1.284 1.273 1 052 1.264 0.996 0.975

} 0.75 -1.54 -1 84 -2.13 -0 64 0.45 0.41 -1.43 -2 13 -2 12 -4.41 0.548 1 127 1 014 1 237 1.106 1 267 1 118 1.208 0 987 1 094 0.532 J 558 2 245 2 88 2 28' 228 1 258 128 2 28' 2 88 2 245 858

-1.53 -1.54 -1 82 -2 13 -0.22 0 74 0.73 -4.41 -4.41 -4.41 -4.40 0 509 1 172 1.055 1 125 1.031 1.121 0 974 1.118 0.478 o 488 2 2*S o 888 2 228 2 228 2 245 K

LOOP B / 2.13 2.31 5.93 0 63 2 25 0 62 0.25

" 888

-2.22 -2.33 8 '88

-4.42 N LOOP O 0.589 1 033 1 164 0.856 1.164 0 973 0.556 0.556 0.975 1.167 0.858 1 167 0.975 0.556

{ 5.93 5.93 -0.29 -0.29 -0.24 -0 14 -0.14 0.351 0.613 0.353 p 0.356 0 821 0.356

-1.21 -1.21 -0.67 l

1 4---- MERSURED F0HN l

+---- PREDICTED F0HN l

+--- FERCENT DIFFERENCE l FLUX f1RP 1002 6 = 2 . :. 7 l

- a

1 2 3 4 5 6 7 8 9 10 11 12 13 FIGURE 5.3 0.370 0.849 0.378 o '88 ' 8*2 o 8'S A

0.27 1.14 1.95 0.545 0.977 1.174 0.894 1 186 0 970 0.554 0.561 0.974 1 171 0.888 1.171 0.974 0.561

@ LOOF S 2.87 0 28 0.27 0.68 -0.40 -0.49 -1 23 LOOF R.

0.489 1 120 1.004 1 131 1.088 1 118 0.983 1 120 0.506

[ 0.503 1 134 1 000 1 130 1.090 1.130 1.000 1.134 0.503

-2.86 -1 19 0.41 0 06 -0.19 -1 27 -1 72 -1.23 0.82 0.555 1 120 1 017 1 262 1 115 1.264 1.094 1.242 1.028 1 150 0.565 g 0.561 1 134 1 0E8 1 247 1 108 1 260 1 108 1.247 1.028 1 134 0 561

-1 10 -1.20 -1 11 1 19 0 60 0.31 -1 27 -0 37 -0.02 1 43 0.62 0.980 1 005 1 263 1.081 1 262 1 266 1.252 1.062 1.275 1.015 0 981 E o S7' 2 ooo 2.247 i.045 i.249 i.256 i.249 1.045 i.247 i.000 0.974 0.55 0.55 1.29 1.50 1 01 0.76 0.20 1.66 2 27 1.50 0.69 0.358 1 138 1 110 1.120 1.273 1 149 1 297 1 137 1 270 1.126 1.143 1.176 0.370

{ 0.368 1.170 1.130 1 108 1.248 1.120 1.268 1.120 1.248 1.108 1.130 1 170 0 368

-2.71 -2.71 -1.77 1 06 1 98 2 62 2.25 1.47 1.75 1.62 1.15 0.52 0.49 0.632 0 875 1 066 1 266 1.281 1 308 1 085 1.283 1.275 1.280 1 102 0.892 0 645 G o 8'2 o 888 2 088 1 zsS 2 258 1 288 1 088 2 268 i.256 1 259 i.089 0.888 0 642 0

-1.51 -1.44 -2.10 0.52 2.00 3 03 1.80 1.16 1.50 1.67 1.18 0.51 0.47 0.364 1 156 1 107 1 103 1.260 1.135 1.290 1.133 1.269 1.113 1.128 1 159 0.369 0.368 1.170 1 130 1 108 1 248 1 120 1.268 1.120 1.248 1.108 1.130 1.170 0.368 H -2.01 1 36 1.77 1.15 1.64

-1 14 -1 16 -0 46 0.94 0.44 -0.'1 -0.92 0 27 0.979 0.992 1.236 1 034 1.250 1.269 1 262 1.047 1.227 0 983 0.939

] 0 974 1 000 1.247 1.045 1.249 1.256 1.249 1 045 1 247 1 000 0.974 0.43 -0.79 -0.87 -1 01 0 05 1 04 1.03 0.17 -1 63 -1.74 -3 58 0 555 1 123 1 018 1 235 1 112 1 275 1.121 1.233 0.990 1.093 0.541 0.561 1 134 1.028 1.247 1.108 1.260 1.106 1 247 1.028 1.134 0.561 J -1.12 -1 00 -1.00 -0 94 0 32 1 17 1.19 -1.10 -3.65 -3.64 -3.58 0.497 1 120 0.988 1.140 1.103 1 138 0.990 1 100 0 484 K 0.503 1.134 1.000 1 130 1.090 1.130 1.000 1 134 0.503

-1.21 -1.21 -1.25 0 87 1 17 0.53 -1 01 -2.31 -3.70 0 554 0.962 1 167 0.885 1.165 0.966 0.556 0.561 0.974 1 171 0 888 1.171 0 974 0.561

[ -1.28 -0.51

-1.27 -0.32 -0.33 -0.85 -0.88 0 363 0 632 0 364 j y 0.389 0.642 0.369

-1.52 -1.51 -1.19 i

l l

W MEllSURED FDHN i 4-- PREDICTED FDHN 4-- FERCENT DIFFERENCE FLUX MRP 1003 l l

1 6 1.L8

1 2 3 4 5 6 7 8 9 10 11 12 13 F IGURE 5.4 0.382 0.682 0.382 A 878 o 858 o 878 1.59 1 49 1 43 0.549 0.989 1.182 0 905 1.162 0.971 0.563 5 8 S 2 28' " ' '2 87' 5" 8 L80F 8 -3 36 1.57 1.57 1.25 -0.21 -0.31 -0 85 LOOP A 0.494 1 111 1.011 1 131 1 098 1.118 0.991 1.120 0.517

{ 0 511 1 130 1 003 1 127 1 090 1 127 1 003 1.130 0.511

-3.35 -1.70 0.78 0 36 0.50 -0.85 -1.21 -0.86 1.23 0 557 1.108 1 014 1.281 1.118 1.266 1.098 1 238 1.030 1.145 0.575 Q 0.568 1 130 1 031 1 242 1 108 1 253 1 108 1.242 1 031 1 130 0.568

-1.87 -1 96 -1.62 1.51 0.91 1.05 -0.88 -0.30 -0.08 1 31 1 23 0 963 0 998 1 262 1.071 1 263 1.262 1.243 1.058 1 260 1.013 0.980 E * 2 *' ' 2 ' *** 2 2' ' 2 2 ' *

  • 2 2'2 '" *

-0.48 -0.48 1 63 2 17 1.57 1.06 -0 02 0.96 1 41 1 03 0 63 0.365 1 129 1 107 1 129 1 275 1.158 1 293 1 138 1.262 1.125 1 136 1 162 0 375 F o 878 283 2 227 2 208 2 2'2 2 222 2 288 2 222 2 2'2 2 208 2 227 2 283 o 8'8

-2.95 -2.95 -1 79 1.86 2.65 3.33 2.38 1.53 1.56 1.54 0.83 -0.08 -0.40 0.646 0.881 1.066 1 263 1 278 1 306 1.088 1.277 1.285 1.274 1.0S9 0.892 0.649 3 0.652 0.894 1 089 1.253 1 248 1 263 1 073 1 263 1.248 1.253 1.089 0.894 0.852 0

-0 98 -1.37 -2.08 0.77 2 41 3.38 1.38 1 10 1.35 1.69 0.95 -0 12 -0.51 0.374 1 150 1 104 1 103 1 256 1.136 1.t81 1 134 1.261 1.112 1.121 1 144 0.371 H 878 2 28 2 227 1.iOS i.242 1.i2 1.2 3 1.i21 i.242 i.108 i.iz7 1.i63 0.376

-0.58 -1 11 -2.04 -0.45 1 15 1.35 1.45 1 17 1.55 0 36 -0 52 -1 62 -1 44 0 978 0 992 1 231 1.043 1 246 1 260 1.254 1.050 1 222 0.986 0.938 0.974 1 003 1.242 1 048 1 243 1.249 1 243 1.048 1.242 1 003 0.974

{

0.43 -1.06 -0.86 -0.49 0 21 0.89 0.88 0.20 -1 60 -1 73 -3.88 0.563 1 120 1 023 1 232 1.111 1.266 1 120 1.235 0 397 1 093 0.546 j 0.568 1.130 1 031 1.242 1.108 1 253 1 108 1 242 1.031 1 130 0.568

-0 76 -0.92 -0.80 -0.79 0.26 0.99 1 03 -0 54 -3.27 -3.32 -3.87 0 504 1.116 0 988 1 131 1 101 1 128 0.993 1 104 0.497 2 28 2 oo8 2 227 2 227 2 28o K 522

-1.27 -1 29 -1 54 0.36 2 o'o 0.37 0.12 oo8

-0.97 -2.28 o52

-2 74 N 0.559 0.958 1.157 0.888 1 153" 0 957 0 558 0.566 0.974 1.164 0.894 1 164 0.974 0.568

[ -1 57 -1.56 -0.58 -0.59 -1.00 -1.79 -1.78 0 371 0.843 0.370 y 0 376 0.653 0.376

-1.51 -1.55 -1.65 W MERSUREO F0HN 4-- PREDICTED F0HN 4-- FERCENT OIFFERENCE FLUX MRP 1009 6 = :. 56

6.0 REACTOR STARTUP CALIBRATIONS 6.1 Rod Position Calibration The rod position indicators are calibrated each ref ueling in accordance with an approved surveillance procedure. The calibration includes the following:

a) The position signal output is checked at 20, 200 and 228 steps for all rods.

b) The rod bottom lamps are checked to assure tha t they light at the proper rod height.

c) The control room rod position indicators are calib-rated to read correctly at 20 and 200 steps.

d) The pulse-to-analog convertor alignment is checked.

e) The rod bottom bypass bi-stable trip setpoint is checked.

The calibra tion wa s pe rformed sa tisfactorily during the Cycle 10 startup; no problems or abnormalities were encoun-tered and site procedure acceptance criteria were met. At f ull power an adjustment was made to selected RPI channels to compensate for the tempera ture increase associated with power ascension.

J I

6.2 Nuclear Instrumentation Calibration The nuclear instrumenta tion (NI) calibra tion was performed in accordance with the Kewaunee Reactor Test Program during the Cycle 10 startup (4) . Several flux maps were performed over a range of axial of fsets at approximately 75% power.

The incore axial of f set to excore axial of fset ratio was generated for each de tector from the da ta collected during the mappings. These ra tios agreed well with previous results. The NI's were then calibrated with a conservative incore axial of f se t-to-excore axial of f set ra tio of 1.7.

)

7.0 REFERENCES

(1) " Reload Sa fe ty Evalua tion for Kewaunee Cycle X," Wisconsin Public Service Corpora tion, February, 1984.

(2) "Qualifica tion of Reactor Physics Me thods for Applica tion to Kewaunee," Wisconsin Public Service Corporation, October, 1978.

(3) " Reload Sa fe ty Evalua tion Me thods for Applica tion to Kewau-nee," Wisconsin Public Service Corpora tion, February, 1979.

(4) " Reactor Test Program, Kewaunee Nuclear Power Plant," Wiscon-sin Public Service Corporation, May, 1979. (Revised April 14, 1980)

(5) " Generic Mechanical and Thermal Hydraulic Design for Exxon Nuclear 14 x 14 Reload Assemblies with Zircaloy Guide Tubes for Westinghouse 2-Loop Pressurized Water Reactors," Exxon Nuclear Corporation, November, 1978. .

(6) " Rod Exchange Technique for Rod Worth Measurement" and " Rod Worth Verification Tests Utilizing RCC Bank Interchange,"

Westinghouse Corpora tion, May 12, 1978.

(7) "Kewaunee Nuclear Power Plant Technical Specifications,"

Wisconsin Public Service Corporation, Docke t 50-305.

i i

l l

1 1

1