ML20087B159
ML20087B159 | |
Person / Time | |
---|---|
Site: | Palo Verde |
Issue date: | 06/30/1974 |
From: | HARSHBARGER & ASSOCIATES |
To: | |
Shared Package | |
ML20083L542 | List: |
References | |
FOIA-84-47 R-900-74-2, NUDOCS 8403080409 | |
Download: ML20087B159 (83) | |
Text
{{#Wiki_filter:- -
- v q a,ry:e-,y ,m- . -=ie t--% .. .# , m."- -
Pm n- .r. y p . g , j.. , ' . & ': N.x.%. e ., v.W::. w.a c &;... ,,:. ' .e u .ti: .. 4;, ,.y . V . . . . .. . , . u . F.m 2.: n. 3 -t7.::. @ c,.t % .npDu.%. n . ~ w v.;w R
,.: 7 m.
_as . . . _ , , . . . e+ .e L. . __ a:..f. m,; . .,jg,gs:A Q - Q
; f.t w;Q. - ; . 9. . .. . 3 . '.v,..y.... g. REPORT . r, y. * ,
_ , _ . .7 , .
...y .
a , . ;.; .mp .,. iwt .r. . . ,, ..s..,; Q... r- 197p-
,.m.,.. . .v . u ; e .. ,,
(
.,. & R-900-74-2' ' - 1. ,. g i, > / ~'. f. . .y.. .. . .~,
1.
.4 .. J .'. , ( , .j 1 ., , s . . ' - * . 4 . ,4 . - ,.i. . .Q.1.M . (sp4 v p .. GROUNDWATER CONDITIONS . g.
0F THE LOWER HASSAYAMPA - ENTEl(NIAL AREA, , i ,..-e... 1* .? ?. *. [' '
.'3
- c.i. ,..N MARICOPA.,COUNTYa ARIZONA ". 4 . u!.tT.
. ,1.,r,
- g.:'rE W '
. . .. . u I, . . .. ... .. . . . e. ,.s,-;,o. .r *...s~- . Q . .v s
m.
= e ts tu- :.....- a :
o
. y ,c,'...~.
n,:
.>'n .* . p ? ~
- ..nt;e..
Vtnj~ .u u . :---e. b; ';%
,.,.a+.n:m ,u m Q, . . ;
S.4. ~ .xn.a,v w. ..nsi.,a. . . n s, . , , , , m, m, ~n.,A. 3 ..! 2-t
-. . c. - . .e _.a )r '.:.. .e,:c a- < . < .r,< . r, ' . e .. .; &. Ww.,. , ,Y '. f Y. l.' h NY: : f. t .i'r k?: - v i ? *m h.# A. :f.l.@,. s. ..s....
s.M QY ?'}+',ph,p..($$c > w.-.; '.W'.W
- p .
. s. . . . . . , ,. g c .a.~ , . :,v} . .. ; .s .
1;,. .. s , ,., a.9 ,.syr;. t. g. 9. ( .
. As .- ,., . . ., .
t For d
'A.- 3 4 s PALO VERDE NUCLEAR GENERATING STATION ,, 4,,','.p , .. yy. A ; in.c
- ..3
.. ..,. ". 7 '~ . . ,. .. . Submitted To ' L ~. , ,. ' ' ' ., 3 .,' 'c . ;.; . ' FUGRO. ENGINEERS AND GEOLOGISTS , *i,l' '. qq.gd. , ..'.,
[ N;f .M.'.&...W. . <.hiQ&.. and. .
c * . f*:^' ' k l:'." , .,~.t.N &; .3 ..,c'Z;T t .3:s . : v .n. * '; > .; ..w..:,
NUS CORPORATION
. . m',f 1 ~.
i S -
- ' " >' fr:
A
- w. ;f.sm ^,% . ;- n. N . : p. . % - ;s .-e. ~
'. 7.. s , s .,4 ,. ,- 4 Quei $$f.
i.. . . ,. A , , N.: c. , . -
. .. . . . :..,4 .. ...v., w,. . . - - . . . . . 3, . .w.6: 1 ! . . ..
- 3. . , , . e. . . &. ._.. w:
, ,r : . .......g.,t.. .s ,,r. s. . .py . .a ,.4.. ...-r,',.:.. -, -8
- 7. . - ,,, ., u, , ",, .
.. . . .jc, , . ,.
q e,%4
, .1, ,M ,. N ' .* . .j,' . - - ,. . . , .' ..C g;- ,..- .j , 37 g, .f' .i.. ,....s...,. v. .~... i -. .. :. . .. t% ,p. g ..g tX G$kj['.&,, .f.Y&h'&.'.%kil'&g ,j(Nn,%&,;'k,edh; .,.( , . ., tY;l.fc .U&sNYihE.'N f.i.':.:Q h .. s.a,. ysS.. ;:; .q .ag:4p. r.r,v.'Q, 4;:rfg.:qo%h.~
h.';~&g ed;
. ~ - Fu.q.',v . .L. ..L : ;... <..@b}, .. . c.:).'f-*yi % .,. G e a ' e. .. ., . a m . ..
yW .$% s...y,,. ];,n . Mn M . . w+.
- 5:.
%..;i ~; . .p x ,.n.:. , .i.W M . ,,,.' .N. W.it " . . ' t it it/,kn Wf=dIt.d-4ayeM- W, .44M%'.-(M.4 .% -4ard: C49fc ,of )'J- .:p pHip ' }4 * * . 85 ; y tm,g s .s. 3 ,p ,' ;WQ,.
(*tec.7 24*; 3 .'fi . , ., f,cb%is. .-3.$th t.*:4 #.S':
. .i. . .%t. r , p,. ... ,. , . ;. 4 .... .m ........ . . . .
w . . > . . ... <. . ; a , ,. ., , , . a
.o..... .,j 2 ,,, .. . . . .; . ., ., . ., y o e i,. . > - . .a. n,3 st i , .; . m. . 2f 4.... ..
u t. . HARSHBARGER AND ASSOCIATES numEB $lp l r M I l A ' 1525 EAST K1EINOALE ROAD
/ CoseATANTS IN HYDAOGEOLOGY i l
i TUCSON. AttIONA 8219 .l {r. 8403080409 PDR FOIA 840213 .
- RYAN84-47 PDR ,.
v._ .. . i
. .. .p+...... .c ;;; .. . : . ;;.,,. ,. s: ; o l': . . . s ,.
- .u..J
,, ;'...e,g gS... s.p.'.= \ !
5 m , 1 57s bP , -
. . e . .t $ .+ - * < ,) _ y....
3 p g...... 1, I, 4,,, e- t : ;' '. *s . s , . e s t;
- Jt -
( s ', L
. .]' ~ ,,- 'si eg ' s. .
- s ..
t
.Q *.e g 8^7 ;; gI 'g*W%
- __;
r /M I
I REPORT June, 1974 R-900-74-2 GROUNDWATER CONDITIONS OF THE LOWER HASSAYAMPA - CENTENNIAL AREA, MARICOPA COUNTY, ARIZONA For PALO VERDE NUCLEAR GENERATING STATION Submitted To FUGRO ENGINEEh5 AND GEOLOGISTS and NUS CORPORATION q -e* / g b[@gU '4 'k , , [
- ! d Joh, S
S Harshbarger
'j .'%iff +::;d l
l HARSHBARGER AND ASSOCIATES _. o . CCNSULTANTS IN MYCROGECLOGY TUCSCN, ARIZONA 45719
.l HARSH 8ARGER AND ASSOCIATES CONTENTS Section Page 1 INTRODUCTION ................................. 1- 1 2 GROUNDWATER .................................. 2- 1 2.1 Description and Onsite Use ................... 2- 3 2.1.1 Hydrogeology of Plant Site Area............ 2- 4 2.1.1.1 Regional Aqu1fer........................ 2- 6 2.1.1.1.1 Water Levels and Water Movement....... 2- 7 2.1.1.1.2 Sources and Sinks..................... 2- 7 2.1.1.2 Perched Water Zone...................... 2- 9 2.1.2 Groundwater Use for Plant Operations........ 2-15 2.2 Sources........................................ 2-17 2.2.1 Wa t e r We l l Inv e n t o ry . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.2.2 Present Regional Water Use................. 2-18 ,
2.2.3 Projected Future Water Use................. 2-18 2.2.4 Groundwater Quality........................ 2-36 2.3 Monitoring or Safeguard Requirements.......... 2-43 231 Groundwater Level Monitoring............... 2-43 2.3.1.1 Well Selection........................... 2-43 2.3.1.2 Data Collection Procedures............... 2-43 2.3.1.3 Annual Report Procedures................ 2-45 2.3.2 Groundwater Quality Monitoring............. 2-45 2.3.2.1 Well Selection.......................... 2-46 2.3.2.2 Sampling Procedures..................... 2-46 2.3.2.3 Annual Report Procedures................ 2-47 SELECTED REFERENCES........................... 2-48 l l c *e, a m b , lg r
/
M, \
- 7. (i 6 -
John j l
~ ' DN ,
O Harshb rger t O O i ai ' g. sn y %r , ' gh dc .M i
a- .m a HARSHRARGER AND ASSOCIATES , LIST OF ILLUSTRATIONS Figure Page 1-1 Area of Report and Arizona's Water Provinces. . . Frontispiece 2-1 Alluvial Basins in Central Arizona............. 2- 2 2-2 Groundwater Productivity Zones and Proposed Well Field............................ 2-50 2-3 Hydrogeological Map of the Palo Verde Site Area 2-31 2-4 Hydrogeological Cross Section, Palo Verde Site Area........................... 2-52 2-5 Hydrographs of Selected Wells - Lower Hassayampa - Centennial Area............. 2-53-55 2-6 Hydrological Features in the Palo Verde Site Area........................................... 2-56 2-7 Hydrographs of Selected Palo Verde Boreholes... 2-10-14 2-8 Hydrological Features in Lower Hassayampa - Centennial Area................................ 2-57
, 2-9 Well Numbering System in Arizona............... 2-19 2-10 Distribution of Dissolved Solids in Groundwater 2-58 2-11 Trilinear Diagram of Groundwater Samples Lower Hassayampa - Centennial Area............. 2-42 I
i i l 1 ii I
. \
Q
- HARSH 8ARGER AND ASSOCIATES I
i LIST OF TABLES Table Page 2-1 Records of Wells in the Lower Hassayampa - Centennial Area.................................. 2-20-31 2-2 Records of Pumpage from Wells in the Lower Hassayampa - Centennial Area............... 2-32-35 2-3 Chemical Analyses of Groundwater in the Lower Hassayampa - Centennial Area............... 37-41 2-4 Proposed Water Level >fonitor Wells............... 2-44 2-5 Proposed Water Quality Monitor Wells............. 2-47 APPENDICES I Palo Verde Site Pump Test........................ A- 1 II Prediction Analysis - Palo Verde Well Field...... A-10 t l i 111 l
-~
t , l '-- _. ,, , _w
(- o e , j
,t e' tt3* 112* t1 . _1_10' ___,
l
. , . e.
f ! .I [! v j c 't . 8",o ,
,0 l 0 '"
l
,, G'h.'
I M O Hl A V E A [ 'n M (N g
)1 ~ /ll4 C 01 C O N I D
- t, y,#
l' j l or ! g r
# s 'q ! ' * . . z- 4 .,/*- .ll # (y 'l e l, ', fy +f.u J- ,!
b s p,s t s
% ,I I 3. . - ;' , < ' f,r i T.,
8
\- .
T. js %
~ *\ . ,, 6 p ,,,,,,,,,
5! / - ,j ~ , , 7* Fq; t.
! ( n; i < ! = , ) ~ ' ^
s i ,
'# o -
T# s i d I
! r.M '. ' /,[. 18 sa me l , .P*= ' f ! p k 5 ,' / P S S; e ^.., u'j! g # /g !
p ,,
, , N,)
t t' w- Q,( .A
'l
- 3. . -.
Y,, . ,i s. L. , . g. , 9, --! . .
- p# . - ; $_. 3 % . / L a.
c, p st O v. g [N ' C. E T ,. U '
, L#- _t LOWER HASSAYAMPA -
2' 's*' :lll*M; p'^ t i., CENTENNIAL AREA l ; I;-, .; f
) - ~o... . _ _ _. . A g
a s t. A ,. - > s-
,/ .i ' -:
I s,s -
=- l - h ,j ! l-3 ,
( I y u M a d u 4 's ha i ' -
'd o .I . . _ . - i >n - ,vc, e 4 t J. - fx < ,,,,~
i n (,, A..,t.. .p { ' ~', ' h
..,.s., ' N v __ , .x .s 3in - -s 4, , .m. - ' ,} 't g.s r - "-- s a>
i a S .
- l. w--
7.,t- #. n .x av , y 7-
; i , ! A: , , x .
s, ;_ . -. v . c_.__. ! , _ _ . ' ] . _. r j s,
's ' ) 't '
- ; 4l- ]s.,_4,_.4
.d u ' , '-Q , s ' !4 .s '.) f, 4 p- ) I _ i (9.e;s '"J .% . . g. l a
- ot y . w y+ ; a. W r w '
l
'4' )'%s n ,+ -< ,l 4 ~ ,' , y ~, /4 \,,, \
g l : '%~ ' ci ,p. ( _ e .
- s. .
3% .sN hekl ,
.yL . ' . _ . - ?) I .-eg O-90 0 10 esittb 'k ~,L.
- 78'~ g-
,-j.
I N a.- 3 %'
- d. I ~ .:. _ .
ae i i l l 4 ALLUVIAL DEPOSITS CONSOLIDATED ROCKS l l FIGURE 1-1-AREA OF REPORT AND ARIZONA'S WATER PROVINCES. i {
o l 1-1
)
GROUNDWATER CONDITIONS OF THE LOWER HASSAYAMPA - CENTENNIAL AREA, MARICOPA COUNTY, ARIZONA I. INTRODUCTION This report comprises a reference document on the general ground-water conditions in the Gila River Valley and the specific ~condi . . tions known to accur in the Lower Hassayampa - Centennial Area (Frontispiece). The report was prepared in accordance with a request from FUGRO, INC. and NUS CORPORATION, Geotechnical and Environmental Systems Consultants for the Environmental and Preliainary Safety Analysis Investigations on the Palo Verde Nuclear Generation Station (PVNGS). The principal objectives of the assignment to Harshbarger and Associates were as follows:
- 1. Describe and prepare an analysis of the groundwater hydrolo6Y of the PVNGS Site area and the surrounding basin;
- 2. Ascertain the source of groundwater, including water well
, inventory, regional water use, and quality of groundwater;
- 3. Provide assistance for determining the aquifer flow charactar- -
istics from tho basic records and aquifer parameters;
- 4. Suggest and outline a monitor well prodram for the safeguard requirements pertaining to the groundwater levtls and chemical l quality; 1
l
-\
l
.. \
NARSHBARGER AND A580CIATES !
-2
- 5. Provide general guidance on the collection of hydrogeolo-gical data and documentation of records to field personnel
( FUGRO and NUS). Supervise the performance of selected aquifer tests. Compile and review all hydrogeological data collected during the study. Most of the basic data presented in this report were compiled from publications and files of the Water Resources Division of
- the U.S. Geological Survey, the Arizona State Land Department, and Arizona Water Commission. A list of Selected References is I
included from which this informati0n was obtained. Additional data were collected by FUGRO, INC. and Harshbarger and Associates personnel during the exploration and testing programs conducted in the cite area. i An exploratory drilling and pump testing program was initiated on the Site in accordance with the following guidelines: Delineate groundwater productivity zones in the regional aquifer system; determine groundwater levels and conditions (water table or artesian); define aquifer characteristics of transmissivity and storage coefficient; delineate chemical quality distribution of groundwater. Results from these procedures are included in Appendix I. Assistance by FUGRO, INC. personnel in collection of ficld data and pump test data and the well testing program is greatly appre-ciated. The U.S. Geological Survey was most cooperative in fur-nishing basic data. Mr. R. S. Stulik, U.S. Geological Survey
}
Office in Phoenix, was particularly helpful for the compilation
' of the water well inventory and chemical analyses of groundwater, f
o I HARSHSARGER ANO ASSOCIATES I . 2-1 l
- 2. GROUNDWATER All of southwestern Arizona lies within the Basin and Range Low-lands physiographic province. Hydrologic conditions, in general, are similar throughout the province. More than 6.5 million acre-feet of water is diverted or pumped annually for irrigating about one million acres in this province. Nearly 5 million acre-feet of the water used annually is obtained from ground-water reservoirs. The stage of exploitation of groundwater differs in various areas. The natural recharge of groundwater has been curtailed by upstream water use, so groundwater levels in the region would decline even if no groundwater were pumped.
Most alluvial valleys in Arizona exhibit three principal stages of erosion and sedimentation. Coarse sand and gravel were de- , posited on the basement rocks along the floor of the ancient structural valley. In past geologic times, the Arizona climate was more hunid than it is now, and large fresh-water lakes occupied the basins after the old gravel was deposited. Clay and silt beds accumulated in these lakes. These deposits rest on the old gravel at many places. Later the mountains were up-lifted and the lakes were drained again. Rapid erosion of the mountains again provided coarse materials which were deposited as valley alluvium. Erosion and sedimentation are continuing in the modern stage. Figure 2 - 1 shows the general geologic features of alluvial basins in the Basin and Range Lowlands. 3 Granite, gneiss, and schist are the principal rocks in the mountain blocks, but several areas contain consolidated ancient g sedimentary rocks. Some of the mountain blocks are capped with volcanic rocks. Desert basins in Arizona contain no natural lakes and ground-water reservoirs hold the natural water reserves. Alluvial basins once stored about 4.5 billica acre-feet of groundwater.
e
- t 2-2 o, %.= .
\ g \
t @ 11
, 11 1**"g 11 1 / /..~
l
>i 8' Q SO >M I
4 u Se
."3 h 11 I tn U =t .g g I- ~$'
i au he
.a,w$.; 's Np'Mg& W M P$kmh"*eu s i g $
b
\
i
**. a. \ ,'.,'c, IN = 's
("t . F i N;65 '.i.. . (' { 3 ~- l' f. 99
- 1. M d',-
* "f 5 3lf. % ,7 l',(, 1,i,r.'?.k5%
w' (# ^ \ d. 6:@.:E. 2 'W'W*.sh;,s. V**\.e. s
% e ./*a.l t.7 p ',
g L.
.' '.3*p, W.KC d.3 \ $ % . ,s r g \t.M;$N.kkiNU,[ME e ,* \ \ ~r y .\ , -
MA. v,
.- g 'g'-(N .,[, . , *
- s- 2 a* 1[. M
,.ib'.'(::'..,Y.ba- r **. %
C;. ',T '\E'2: ' ydi, jg k. .d 4 \ ,I p Y .. M !,M N
?. g. . N\ \ ;{~~
2
/' d .Y:6y l' M .1 Wt %s(() nh.).#. \j \ b'*9"[.
7 y((1,h Z
^ * .h fi ! ' -@d':a ] + .i *- M g -M e k .l = g C,'; M,%, -
A,, m t.,'*.. Y
"$ I f ,, ihk.hl >" f: ,e v' s'
g t 't., , N.
.t .1 .[3 Z
CA
? s .
- m'#ehg t\ h
\ . \' .s.
Y
,h,$ h)k'p' ,/ #
w/
,' ' y , r. <;p t , <
Kg, %v,,
.~ r # $ p' (Y 6. Sb w,- Mh3.\u *, n. y'
- E, 6Q
\ %' .b*.1.f' ' #~I . . $g ' W. 8WMi @**, % *'( .
s . .I
., 2 l
7' * ' , , - F 't , \ c3 ,
, l .
s ,
/
D%y?.3
~ .'.4-4 } in.$.'2'h... .c .. . .. "$. %',Qq'tr% Q3 [{-(7,h / / \.j,';.I',.Ndh,.;g, :. .$%Sg,
- i s
w,k,.'f',' f. g r s,o9..ws**...Q.w\ 3 s s.. . . w;; w a
' .' . *,p . 4 . p , .p k- . 1*4*a- .
'. ..s - {, ?,','., %, ~'*'r,f.
\s.,s'.-.'s - gW \ =e' ' 9 ls *) $ :;'4 \ *~%'?~ (.\& '.1 .t es ..i..i f. -a' 'F : W j
W82?, u 9Jr, ,r,'i. 4T / . _. .U.':s' /: /
"t';'. . i: '* ' ' ' ~
18 en
, 4. t .. ;!'", ?. '. '.a g 8 ,= / .?/. . ~;- \ *
- h/ #*
\ p \
V
~
HARSHSARGER A%D ASSOCIATES 2-3 About 20 percent (900 million acre-feet) of this original vol-ume of water could be feasibly recovered for use by man. More I than 100 million acre-feet of this recoverable water has been { withdrawn, most of it in less than 25 years (1949-1974). Development was intensive af ter World War II, and the amount of groundwater used for agricultural purposes in 1949 was about 3.25 million acre-feet. The pumpage increased gradually to a peak of nearly 4.75 million acre-feet in 1953. From 1958 to ' 1972, the annual pumpage ranged from 4.75 to slightly more than l 5 million acre-feet. More than 80 percent of all groundwater pumped in Arizona was withdrawn in Maricopa and Pinal Counties. Most water wells are located within irrigated areas. Ordinarily, irrigation water is applied somewhat in excess of the amount needed for optimum growth of crops, and some of the surplus re- - turns by deep percolation to the subsurface reservoir. The amount of irrigation water returned to ground storage is an im-i portant item in the water budget, but data on the amount re-turned are not available. Under some conditions, the return water may amount to 25 percent of the water applied for irriga-tion. 2.1 Description and Onsite Use The Site area (5-mile radius) lies within the Lower Hassayampa and Centennial drainage basins which comprise the specific i groundwater basin deemed vital for hydrogeological consideration. The Lower Hassayampa - Centennial area (Figure 2 - 2) is about 21 miles by 23 miles, within Townships: T. 2 N., T. 1 N.,
}
L T.1 S. , and north one-half of T. 2 S. ; and Ranges R. 4 W.
, through R. 7 W. The basin is bounded to the west by Palo Verde Hills, to the north by the Tonopah Desert, to the east by the White Tank Mountains, and on the south by Centennial Wash and the Gila River. The Site area (Figure 2 - 3) lies within e
HARSH 8ARGER AND ASSOCIATES 2-4 the Lower Hassayampa - Centennial basin, and comprises an area of about 10 miles by 12 miles, within an approximate five-mile radius of the plant site. Prior to heavy irrigation practices in the Lower Centennial-Hassayampa area, the groundwater gradient was similar to the slope of the land surface, and the flow direction was generally southeast toward the Gila River. In the early 1950's, the area underwent extensive agricultural development and by 1960 about 24,000 acres of land were being irrigated annually. In 1969 about 95,000 acre-feet of water was withdrawn from the groundwater reservoir for irrigational use. The amount of groundwater pumped for stock and domestic purposes was probably less than 100 acre-feet in 1969 2.1.1 Hydrogeology of Plant Site Area In order of descending stratigraphic position, the units within the groundwater basin at the Site area are: m
- Younger Fan deposits (Pleistocene to Holocene)'~ 9 -~
ze
" Upper" sand and gravel deposit y$ " Upper" silt deposit _{
Palo Verde Clay (Upper Pliocene) T$
" Lower" silt, sand, and gravel deposits zf Fanglomerate (Miocene - Pliocene) __ $
i Basalt-andesite sequence
- Volcanic-sedimentary sequence l
I The volcanic-sedimentary sequence consists of volcanic conglom-erste and tuffaceous sands and clays. These do not crop out in l the Site area. The lithology and thickness of these sediments is not well defined, as the Palo Verde exploratory boreholes l did not fully penetrate the overlying andesite. The volcanic-l sedimentary sequence locally surrounds granitic monadnocks.
~
HARENSARGER AND ASSOCIATES l 2-5 \ . The basalt-andesite unit consists of felty to trachytic basalt,
- with a groundmass of augite and plagioclase and coarse textured hyperstheno-augito andesite. The unit has been fractured in places. The thickness is not well defined, due to the scarcity of exploratory boreholes that penetrate the unit.
The fanglomerate is exposed along the lower slopes of the Palo Verde Hills,unconformably overlying the basalt-andesite sequence. {' The thickness of the fanglomerate ranges from about 35 to more than 285 feet. The fanglomerate is overlain, in most places, by the " lower" silt, sand and gravel deposits and the boundary demarcation comprises an erosional unconformity. The Palo Verde Clay is generally 80 to 100 feet thick; and the maximum known thickness is 136 feet. The known area of this continuous clay layer is more than 40 square miles. It is con-tinuous within the area to at least 5 miles southeast and 5 miles northeast from the Site. The " upper" silt is 150 to 200 feet thick and contains silt, clayey silt, and fine sand with lenses of silty clay. The upper contact of this unit is not everywhere well defined. The " upper" sand and gravel deposit ranges from 25 to 50 feet thick and contains more coarse-grained material than the under-t lying unit. Local caliche concentrations appear as stringers and nodules. L . l The younger Fan deposits occur in the site area as erosional remnants of the more prominent Fan deposits east of the Site I area in the Hassayampa River drainage. I
HARSHSARGER AND ASSOCIATES 2-6 2.1.1.1 Regional Aquifer The regional aquifer,as determined in the Site area, is a vo2canic-sedimentary sequence, which underlies the basalt-andesite unit. i
- (FUGRO, 1974). The regional aquifer is more than 400 square miles in size, extending beyond the Site area, and is defined by the mountain masses which encompass the Lower Hassayampa - Centennial basin. The aquifer is continuous beneath the basalt outcrops in the Site area. The thickness and lithology of the volcanic-sedi-mentary sequence is not well defined, as the data included on drillers' logs from irrigation wells are not definitive. Aniso-tropic conditions prevail within the aquifer, as highly permeable volcanic conglomerate layers are interbedded with low permeable tuffaceous sands and clays, and basalt flows. The regional aquifer is believed to be overlain in areas by these low permeable units .
4 which occur in the upper part of the volcanic-sedimentary sequence (Figure 2 - 4). Yields from irrigation wells which tap the regional aquifer range from 400 to 2,800 gpm (gallons per minute), but most wells yield between 1,500 to 2,500 gpm (Figure 2 - 2). The average specific capacity is 35 gpm/ foot of drawdown. The depth to water ranges from 150 to 250 feet below land surface, and the groundwater occurs , under both water table and artesian conditions, depending on the areal occurrence of leaky aquitards.
- A pump test was conducted on an existing well within the Site to assess the aquifer transmissivity and storage. The pump test de-sign and data analysis are given in Appendix I.
The results of 3, the pump test revealed a transnissivity of 100,000 gpd/ft (gallons per day per foot) and a storage coefficient of 5 x 10-3. Artesian , l conditions prevail at the Site, but in the western part of the Site area, water table conditions predominate. The low p.,rmeable l layers transmit water from the perched water zone to the regional aquifer via vertical leakage.
O I l HARSHBARGER AND ASSOCIATES 2-7 2.1.1.1.1 Water Levels and Water Movement A piezometric contour map of the regional aquifer in the Lower Hassayampa - Centennial area was constructed from 1969-73 water level data collected by the U.S. Geological Survey (Figure 2 - 2). The most conspicuous hydrological features indicated by the water level contours are: the large cone of depression north of Palo Verde Hills; the large cone of depression south of Palo Verde Hills; and the cone of depression in the basin surrounded by Palo Verde Hills outliers. The major cones of depression have been formed by long-term pumpage from irrigation wells in the central part of the cones. The water level contours indicate that the volcanic rocks in the subsurface do not comprise barrier conditions, but demonstrate that subsurface rocks near and beneath the surfi-cial outcrops are hydraulically connected with the main ground-water system, computations of the average flow velocity are given on following page. 2.1.1.1.2 Sources and Sinks The recharge sources to the regional aquifer are: underflow from upper Hassayampa Valley, infiltration of surface runoff, return flow from irrigation. The principal source of recharge is via underflow from upper Hassayampa Valley, north of the Site area. Groundwater movement is generally north to south, except in the vicinity of the depression cones. Inf11 ation of surface runoff comprises a small fraction of the natural recharge. An estimated 25 percent of the water pumped for irrigation returns to the groundwater reservoir via vertical percolation, which would account for approximately 20,000 AF/yr. f L- Discharge from the groundwater reservoir occurs as underflow, pumpage from irrigation wells, and evapotranspiration. Ground-water is discharged from the regional aquifer via underflow in l 1 the Arlington Valley. Irrigation wells withdraw an average of 78,000 AF/yr from the groundwater reservoir. Of this volume, an estimated 58,000 AF/yr is discharged to the atmosphere via consumptive use by crop irrigation. The discharge to the $ t o
1 l HARSHBAROER AND ASSOCIATES l I l DATA POR GROUNDWATER FLOW VELOCITY DOWN-GRADIENT PROM POWER BLOCK DISTANCE FROM GROUNDWATER PERMEABILITY VELOCITY TRAVEL POWER BLOCK GRADIENT (Gallons per (Feet / TIME TO CLOSEST WELL (Feet / Mile ) square foot day) (Years) (TlS; R6W) 1:1 gradient) ( 14- dbb 3.3 miles 15.6 200 1! 0.26 185 (17,425 feet) 3.3 miles 15.6 500 E/ 0.66 75 (17,425 feet) - 1! Two times the average permeability as estimated from the pump test analysis (Appendix I, Harshbarger
& Associates, this report)
E! Five times average permeability as estimated from pump test Harshbarger & Associates, (Appendix I,) this report The above computations are the considered average flow of l groundwater in the regional aquifer. The travel time of fluid to the regional aquifer from the ground surface via tha perched water zone has not been estimated, i l I l
1 MARSHRARGER AND ASSOCIATES 2-9 1 7.. atmosphere from phreatophyte transpiration has not been calculated, but it is a significant output, primarily in the Gila River flodd-plain. Hydrographs of selected wells in the Lower Hassayampa - Centennial area are shown in Figure 2 - 5. A uniform rate of decline of the water levels in the area began about 1955 due to the increase in pumping of groundwater for agriculture. The cum-ulative average change in the water level in the Buckeye-Hassayampa area from 1930 through 1971, as calculated by the g U.S. Geological Survey (Arizona Water Commission Bulletin 5, 1973), is 24 feet. The water level has declined by as mucu as 100 feet near the depression cone centers during the past 20 years. 2.1.1.2 Perched Water Zone A water level contour map was constructed from the Palo Verde borehole water level data. These data indicate there is a perched water table condition in the area of the irrigated cropland (Figure 2 - 6). Periodic water level measurements were ob-tained in all cased Palo Verde boreholes (Figure 2 - 6). The water levels in these boreholes, in and adjacent to the irrigated cropland (Figure 2 - 6), are significantly higher than in the existing irrigation wells. The water levels range from about 3 to S0 feet below the land surface. Periodic water level measure-ments were also obtained from boreholes which did not penetrate the Palo Verde Clay. Hydrographs were plotted from these data and compared with hydrographs which were plotted from data from wella which penetrated the clay (Figure 2 - 7). The similarity of water levels in the boreholes suggests a continuous hydraulic connection in the heterogeneous mixture of alluvial material. It I also suggests that clay layers within the perched zone, particularly the Palo VerJe Clay, are not effective confining layers but com-prise a leaky aquitard (Figure 2 - 4). The " Basin Sediments" which contain the perched water zone are described in detail in the geology section (FUGRO, 1974). These units comprise sediments above the basalt-andesite sequence. The perched water zone lies beneath the Site and extends toward Ibssayaupa
2-10
- - - l
___ rh _ - _._ , 900 Z -J 900 PV-12 880 ___ __
--g,-~_ 880 960 860 $ =
r g 840 840 P PV E S20 - 820 d _ _ r 800 800 .O m 860 H 860 , PV-1 g 840 840 $ 820 b= - 820
- n 5
e E
. 940 940 p PV-23 920 _
_ 920 900 900
~
1975 1974
- i omeemooo;a ag**
i 7 7hhi anni i 1 Arizona Nuclear Power Project A Palo Verde
# Unita 1,2 Nuclear &3 Genera HYDROGRAPHS CF SELECTED PAID VERCE BOREHOLES SHEET 1 of 5 i Figuro 2-7 l
1
r 2-11 l l l l a
, H - SHALLOW 5 BOREHOLE 920 920 C
PV-24 900 __- _ , _ . __ 900 sc 880 880 $ a
~
C* 920 - 920 sa c
- - PV-24 H ~
900 -
. --_a 900 $-
k 980 - 880
~
E 1 7 N . g N 920 PV-25 _ 320 g
%0 %3 2 5 ~
880 880
- 5 ~
940 940
~
FV-25 H 7' - 920 - - , - 920 900 900 t 1973 = 1974 1 1 i
~me# meoo i h? hhhhhihiki ;m a- -man Arizona Nuclear Power Project A Palo Verde Nuclear Units 1,2 &3 Genera l
HYDROGRMHS OF SELECTED PALO VERDE BOREHOLES SHEET 2 of 5 Figure 2-7
O 9 2-12
==
EF- 5 H - SHALLOW EEE BOREHOLE @920 920 PV-21 g
~
900 -- - - - : - (plugged) 900 N 980 880 -8 E e g l P 920 920 g PV-21 H __ g 900 $
~ ~
900 k 880 880 E 3 - 4 940 PV-28 940 g e 920 =:: ; ;- - 920 900 900 ,
---.. Q e
E 940 940
.V-28 H 920 -
920 NO _ _- M0 i 1973 - 1974-l l n.=m* 2 cc:a
- i i e i i i e- eeeeoeo;;an i ie i s
- i. =si7i aan t
l Arizona Nuclear Power Project Palo Verde Nuclear Generating Statios I' nits 1,2 & 3 l l HYDROGRAPHS OF SELECTED PALO VERDE BOREHOLES SHEET 3 of 5 Figure 2-7 he
O 2-13 _ 1
~~ -. - - _ = ~ - - ~ ~
H - SHALLOW 5 920 . _ _ _ _ BOREHOLE E g 920 PV-34 .22 900 .___ _ __,_ __ ___ _ _ . _ 900 8 8o ,,__ 880 $e
.u O 920 ~ h 920 F PV-34 H E 900 900 ,E a
880 880 ,0 m E 900 4 900 , PV-14 5 880 880 $
- - -- 2 860 2
660 Si g
~_
g
- _____ e'
--. :- Q 900 ._.-
goo E! PV-14 H - 880 '"~ 880 860 _ _ :T__._ 860 4 1973 - --
~ 1974 i 1 -.?.i.h.?333_::=--..i h hhihT e i Arizona Nuclear Power Project
! Palo Verde Nuclear Generating Station Units 1,2 & 3 l HYDROGRAPHS OF SELECTED PALO VERDE BOREHOLES SHEET 4 of 5 Figure 2-7
O e 2-14 860 860
'~ g a,
840 4
't 940 g PV-18 .. ._. F 820 y- _ __._
820 pl 800 800 %
=~
5
=- .e.
820 820 PV-16 E s 800 _ 800 5 e_
- 4 780 780 g a .
820 820 I r.a
~~
PV-17 % 800 " 800 _._ e 780 780 4
=. ^^~~
1973 't-- 1974 __ Ei ie N
~= $RON*E T iNnO
- n. f. a.iiiii: i , m,
=emoo3:: aa - -aan Arizona Nuclear Power Project Palo Verde Nuclear Generatir.g Station Units 1,2 & 3 HYDROGRAPHS OF SELECTED PAID VERDE BOREHOLES SHEET 5 of 5 Figure 2-7 %4
l i I l'l _ e n
. o 2 3 3 6 6 1 3 3 3 6 . i 5 5 5 4 4 7 5 5 5 4 t
c - - - - - - - - - -
. e 6 9 9 8 s7 2 2 2 1 2 2 2 1 2 2 2 2 . l - - - - - - - - - - . l C
o 9 7 7 7 4 9 7 7 7 3 n ab b nh d b b a s o b a h ad e b b b a i ab c a a d a b a b _ t a 3 8 4 6 4 5 4 a6 1 _ 2 2 1 2 2 3 l 2 1 c o, ) ) ) ) ) ) ) ) ) ) I 6 6 7 7 5 6 6 6 6 7 l
- - - - 1 1-1 1- - -
2 2 2 2 1 l e - - - - - - - - - - W nssB B s B ccc ( ( ( ( ( ( ( ( ( ( r e b m u 1 2 3 4 5 6 7 8 9 0 1 N x _X v
,t ,AN , v , \ x v
_XV v v \V ' vv,v ss AMvvv vvV Mv a v,m
** / / v v s#e/v s
s,% .- s
, v,t u a . v/ s u
n c u
. a
- se r rn m
o
\ c \ e<a .m p/,- 'h^<VV VV w j \
g \ \
#\ \vVVv V VV v i s
u v v VV vvas A/vO_7vVvVV v.c 7 VV v.
/_Vv 7_7V v /
v/ t!
,- <l
- x[ iy<2,3]nt. gEZ .
f~"a" ghago "I sM" hyE p8@E>h 3mE $ "5 5a.
,~ 3 -
tI - lll l l 1
O i HARSHSARGER ANo ASSOCIATES 2-43 All the samples except Nos. 1 and 5, are the same generel weter type, sodium chloride. The variance exhibited by samples 1 and 5 as compared to the other wells may be explained by their location with respect to the depression cones. Samples 1 and 5 were obtained from wells along the outer fringe of the de-pression cone, whereas all the other wells are located within the influence of a depression cone. These data reveal the re-cycling effect on the quality of water in the aquifer. 2.3 Monitorine or Safeguard Requirements Due to the dependeace of agriculture and municipalities on groundwater for their water source, the impact of an additional groundwater user on the hydrologic environment should be given careful consideration. In order to detect the impact of the , plant on the groundwater system, a monitoring program is de-i signed to document the fluctuations of the groundwater levels and variations in groundwater quality. 2.3.1 Groundwater Level Monitoring 2.3.1.1 Well Selection A list of candidate wells for monitoring the water levels is presented in Table 2 - 4. Water levels from selected wells ; would provide data to show groundwater level variation of the
, depression cone in the vicinity of the site. A final selection of water level monitor wells is dependent on the availability and , suitability of existing wells for monitoring purposes.
s. 2.3.1.2 Data Collection Procedures i i Water levels in the proposed monitor wells should be measured I biannually. Date and measurement should be recorded prior to the irrigation pumping season in early April and after the main I pumping season in late September - early October. This particular
HARS4BARGER AND ASSOCIATES 2-44 TABLE 2 - 4 PROPOSED WATER LEVEL MONITOR WELLS (SEE TABLE 2 - 1) T. 1N: R. 6 W. T. 1 S.: R. 6 W. Section Section 13ana 3bbb 15abd 9abe 12bbe 16ddd) 17ada y 13 cab 20bba 14dbb 20 dab 17abb 22 add y 20aab g 25 add 21cbb 26baa 23adb 27ebe 27dde 32cbb 34abb 34acc t o b- I Well designation conforms to the well location system used in the State of Arizona (Figure 2 - 9) . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - _____--__-J
HARSH 8ARGER AND ASSOCIATES 2-15 River to the east, but terminates at about 2 miles west of the Site (Figure 2 - 6). Water has not been withdrawn from the perched zone within the Site area; however, the yield to a well from the perched water zone is estimated to be less than 50 gpm, and the main productive zones are the interbedded sand and gravel units. The general flow direction of the perched groundwater is radially
- outward from the center of the irrigated cropland (Section 34, T. 1 N., R. 6 W.) (Figure 2 - 6). Discharge from the perched water zone is via underflow and vertical downward leakage. As the groundwater moves radially outward, it migrates to the regional aquifer west of the irrigated cropland where the low-permeable layers are believed to be absent. Downward leakage from the perched water zone through the leaky aquitards into the regional aquifer l is due to a posit-ve head differential between the perched and re-gional aquifer water levels.
Pumping from the regional aquifer for irrigation use during the past years has created the recharge mound in the perched zone. Groundwater is pumped from the regional aquifer onto the land sur-face; and a significant portion, which comprises return flow from irrigation, infiltrates and contributes recharge to the perched zone. This return flow provides water for growth and/or mainte-anance of the recharge mound in the perched water zone. 1 2.1.2 Groundwater Use for Plant Operations l' The groundwater reservoir in the Site area is the primary source t'- of water for the service water supply (1,000 gpm) for the plant construction personnel and plant operations. The continuous withdrawal of 1,000 gpm (1,600 AF/yr) from the groundwater reservoir is slightly less than the annus1 withdrawal L.
r-HANSHSARGER ANs ASSOCIATES 2-16 from an existing irrigation well in the site area. The regional e aquifer could sustain additional withdrawal of such magnitude without significantly offecting the groundwater system. In the event existing irrigation wells in the immediate site area are retired, the not result would be a decrease in annual withdrawal from the groundwater reservoir. A prediction of the drawdown in the pumped well and the inter-
; forence effects on existing wells was based on calculations made using the modified Theis non-equilibrium equation (Appen-dix II). The values of transmissivity (100,000 gpd/ft) and storage (0.005) used in the prediction model were derived from a pump test conducted on an existing well within the well field location. Based on this model, the drawdown in the production well after 35 years of continuous pumping at the rate of 1,000 gpm -
would be 30 feet. The drawdown at distances of 0.5, 1, 2, 5, and 10 miles would be 10.6, 9.1, 7.5, 5.3, and 3.7 feet, respec-tively. These predictiods are based on the assumption that all water is withdrawn from storage and negative boundaries are not encountered by the depression cone. These values indicate that the withdrawal of 1,000 gpm for plant operations would not create a serious impact on the groundwater reservoir, or impose major interference effects on other water users in the Palo Verde Site area. The well field for the production of 1,000 gpm is proposed to be in the northern half of Section 34 in T. 1 N., j R. 6 W., and consists of two wells (Figure 2 - 2). One well could supply the water for normal plant operations, and a sec-ond well would be for standby purposes. The total depth of each I i of these wells should be 1,500 feet; cased with blank casing
~
from land surface to 500 feet; and equipped with 1,000 feet of louvered screen from 500 feet to the bottom of the borehole. 4 e
r HARSH 5ARGER ANO ASSOCIATES 2-17 2.2 Sources Water for irrigated agriculture constitutes the single major use in the Lower Hassayampa - Centennial area. The source of' water for irrigation is the groundwater reservoir. An average of 78,000 AF/yr was pumped during the period 1966 through 1972, from the Lower Hassayampa - Centennial area. The total accum-ulated pumpage for the 1966 - 1972 period was 544,000 acre-feet. The locations of irrigation wells and irrigated cropland are shown in Figure 2 - 8. The source of water for municipal and domestic use is also obtained from the groundwater reser-voir. Annual pumpage for municipalities and stock and indus-trial purposes is very small, less than 100 AP/yr. Quantitative estimates of annual consumptive-use of water by , phreatophytes are not available; however, areal extent and plant density indicate significant amounts of consumptive use. Phrea-tophytes occur extensively, and the greatest plant density occurs in the floodplains of Centennial Wash, Hassayampa River, and Gila River in the southeastern part of the Lower Hassayampa-Centennial area. Phreatophyte growth is relatively minor near the proposed plant site along Winters Wash and several other unnamed intermittent tributaries. Phreatophytes are considered a major user of groundwater in the floodplain area along the major drainages. I The general flow direction of groundwater in the regional aquifer is north to south, and the approximate gradient is 30 feet per i mile. 2.2.1 Water Well Inventory A well inventory was conducted by the U.S. Geological Survey in the Lower Hassayampa - Centennial area. Well locations are shown in Figure 2 - 2. The well numbering system used in m.
1 HARSH 8ARGER AND ASSOCIATES 2-18 Arizona is given in Figure 2 - 9. The inventory includes information on the following: well location, type of well, altitude of land surface, depth of well, casing diameter, water depth and date of measurement, altitude of water level, yield and drawdown, specific capaci~ty, driller's log availability, and water quality data availability (Table 2 - 1) . The data were obtained from U.S. Geological Survey files, Arizona State . Land Reports , Arizona Water Commission Bulletins, and from field surveys. 2.2.2 Present Regional Water Use The production history of the wells in the Lower Hassayampa-Centennial area is compiled in Table 2 - 2. The table con-tains a list of well locations for all known active wells and , the annual pumpage rate for each well for the years 1966 through 1972. Water levels in the crea began a steady rate of decline
} in 1955, due to increased groundwater pumpage for agriculture.
The average change in the water level is 24 feet, as discussed in Section 2.1.1.1.2. Locally, the water level has declined as much as 100 feet near the depression cone centers during the past 20 years (1954-74). These depression cones are described in Section 2.1.1.1. There is no large public water supply within the Lower IIassa-yampa - Centennial basin. The nearest public supply is at i Buc keye , Arizona which is about 16 miles east of the plant site. t 2.2.3 Projected Puture Water Use The production of water from the groundwater reservoir varies directly with the acreage of irrigated cropland. Available re-cords indicate no significant change has occurred in the total acreage of irrigated cropland from 1965 chrough 1973. Pumpage records indicate a nearly constaat withdrawal rate for the L.
oI 2-19 I 8 A 4 1 4 T 1 N GILA AND SALT RIVER BASE LINE R6W 5 4 3 2 R1W T R1E 1 S g I O 2 g w E z 3 W 3 C Z - i T. P. D 4 g 4 j
- p. .
l O 3 R. 2 W. 2 3 4
- 4 f T C 6
i S l I/ Well (C-4-2119eaa R. 2 W.
/ Sec.19 6 5 4 3 2 1 i h bla bla 1 / -- b - ---a-----b-- -- a - - / I l cjd cId '
7 8 9 10 11 12 b : a 7 \, I bia 51a , i ' i 14 13 -'c- -d- --c-- -d-
- i T'
4 is e 17 is is I\\ jg cjd cld S. g le 20 21 22 23 24 ! \M L- b -- -a-- -b
! I .a --
I i I
' l e N N N U N N c , , d ;
! .' l i 8 l 3, , , , , , . . c - _' _ . d- .c- -- - d -- Arizona Nuclear Power Project A Palo Verde Units I,2 Nuclear
&3 Genera .
WELL NUMBERING SYSTEM IN ARIZCNA Figure 2-9
TABLE 2-1.---RECORDS OF WELLS IN Tile LOWER UASSAYAMPA - CENTENNIAL AREA 1 (Data Compiled from Files of Water Resources Division, U.S. Geological Survey, Phoenix, Arizona) Type of Well: I-Irrigation; D-Domestic; Hemarks: L - Well Log Available S-Stock; U-Unused; X-Destroyei SC - Specific Conductance C - Chemical Quality Land Surface Altitude from U.S. Geological Survey Topographic Maps LAND SURFACE DEPTH WATER LEVEL PUMPING DATA I TYPE ALTITUDE OF CASING ALTITUDE YIELD UltAWDOWN SPECIFIC OP (feet WELL DIAMETER DEPTli DATE (feet CAPACITY HEMARES WELL LOCATION WELL above ms1) (fee t) (inches) ( feet) MEAS. above ms1) (gpm) (feet) (gpm/ft) 4 (B-2-4) 29ded S 1,187 10 218.3 1/70 968.7 (B-2-5) 15bbe S 1,160 16 125 1/70 1,035 29aac D 1,133 155 8 140.6 1/70 992.4 29dac U 1,127 270 16 136.8 1/73 990.2 L 29ddb 1,123 136.78 2/67 986.22 31bca n 1,098 200 16 111.7 3/62 986.3 32aba U 1,120 285 16 128.7 3/62 L (n-2-6) 4can I 1,208 1,000 15 283.8 1/70 924.2 Acad U 1,198 505 16 5daa I 1,201 890 16, 14 285.0 2/71 916.0 2,350 45 53 L SC l 6 chb U 1,216 663 16 288.3 2/71 927.7 L 6daa I 1,198 1,000 16, 12 282.1 1/70 915.9 2,290 63 28 L SC 8aan I 1,190 710 16 265.4 1/70 924.6 L SC 8can I 1,170 241.5 i1/70 e 928.5 9aba I l',197 1,090 20 L 9hba I 1,194 600 20 2,480 10aac U 1,200 250 6 Dry 1/70 12aan S 1,233 250 6 16can I 1,157 520 20 228.4 1/70 928.6 600 93 11 SC 17ena I 1,160 675 20 233.1 1/70 926.9 2,830 93 30 L Sc 17bdb U 1,142 220 12 190.7 3/61 951.3 17daa I 1,144 1,000 20 214.7 1/70 929.3 1,710 88 19 L SC 19btb I 1,130 300 6 L 19daa I 1.,114 525 22 193.2 1/70 920.6 SC 7 o
7 TABLE 2-1.--RECORDS OF WELLS IN Tile LOWER llASSAYAMPA - CENTENNIAL AREA (CONTINUED) WATER I.EVEL PUMPING DATA SUR CE DEPTH TYPE ALTITUDE OF CASING ALTITUDE YIELD D11AWDOWN SPECIPIC OF (feet WELL DIAMETER DEPTH DATE (feet CAPACITY HEMARES WELL LOCATION WELL above mal) ( fee t) (inches) (feet) MEAS. above ms1) (gpm),(feet) (gps /ft) 16 205.5 1/70 916.5 1,120 76 15 sC (B-2-6) 20bba I 1,124 500 976.6 20cddy X 1,102 4 123.2 3/54 20cddo~ U 1,100 8 20daa I 1,118 1,032 14, 12 172.0 3/61 946 720 L SC 20dec D 1,103 715 8 21bba 1 1,136 209.0 1/70 927.0 960 148 7 SC 21bbb 1,134 1,100 L 21dbb I 1,127 500 200.0 1/70 927.0 1,160 1,002 16 182.8 3/63 977.2 1,070 L sC 23aab I 23aba U 1,162 382 20, 16 181.05 3/66 980.95 L C SC 23 d.ic U 1,138 6 147.2 3/63 990.8 24can X 1,154 300 16 L 24cba I 1,150 485 16 164.5 1/70 985.5 350 21 17 SC 24 dab D 1,155 300 8 D 1,123 6 24dbet 6 24dbc3 D 1,122 25baa U 1,139 6 152.1 1/58 27ada I 1,118 405 16 135.3 1/70 982.7 L 27bab I 1,122 610 16, 14 144.8 3/62 977.2 L 28aab D 1,114 502 28t:ab I 1,111 1,000 16 182.8 1/79 928.2 2,000 117 17 L C sC 31daa I 1,065 158.0 3/69 907.0 2,450 106 23 SC 33caa I 1,075 1,208 20, 16 170.5 1/70 904.5 1,740 227 8 L SC (B-2-7) 12 chb n, I 1,194 600 12 260.2 1/70 933.8 14cbb I 1,184 685 16 254.5 1/70 929.5 1,730 42 41 C sC 20cdd D 1,188 6 259.3 1/70 928.7 22bbb I 1,194 600 20, 16 265.7 1/70 926.3 1,280 23 55 L SC 22 chb I 1,175 600 16 247.2 1/70 927.6 760 23 34 L SC 22dbc I 1,158 325 12 310 L i
- s
. _ _ _ _ _ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ . . _. - -__ -~ _ - - _ _ ___- . .. . _ _ . __ . .- . _ _ _ . _._
TABLE 2-1. --REC 0ltDS OF WELLS IN Tile LOWEll llASSAYAMPA - CENTENNIAL AllEA (CONTINUED) WATER LEVEL PUMPING DATA SUIFACE DEPTII TYPE ALTITUDE OF CASING ALTITUDE YIELD DitAWDOWN SPECIFIC CAPACITY llL' MARKS OF (feet WELL 1)l AMETElt DEPTIl DATE ( f e e t. (gpm/ft) WELL LOCATION WELL above mal) ( f ee t) (inches) (feet) MEAS. above mst) (gpm) . - - - ( f e c t. ) (B-2-7) 23acd U 1,140 12 222.0 1/70 918.0 23bbb U 1,165 338 12 Dry 1/70 390 10 223.7 1/70 917.6 L 23cca U 1,140 L SC 23ceb I 1,145 600 20 227.4 1/70 917.6 1,910 38 51 23cda U 1,132 160 4 6 Dry 5/68 23cdc U 1,134 208 8 187.1 2/63 946.9 24bba D 1,145 360 10 L 24bbb 360 lo L 1,109 345 16 196.5 1/70 912.5 760 34 22 SC 25bea I c SC 26aan U 1,119 208 8 26aab I 1,122 400 16 860 L 26aue D 1,117 342 8, 7 . 26aba U 1,125 188 10 Dry 3/66 L 26abb I 1,127 400 16 210 1/69 917 900 72 12 L SC 26ach I 1,119 500 18 203 1/69 916 1,920 44 , 44 L SC 26bab I 1,128 450 16 215.1 3/69 912.9 1,110 'L 27aab I 1,146 350 16 247.6 2/73 898.4 1,080 183 6 L 28aaa U 1,164 6/ 192.3 1/58 971.7 28bab I 1.,168 ' 28bbb I 1,175 1,047 20,16 255.4 1/70 919.6 660 113 6 L SC 28bdd I 1,155 / 242.6 1/70 912.4 400 97 4 SC
-28can I 1,150 243.3 1/70 906.7 1,100 96 13 28dua U 3,140 - 225.4 3/69 914.6 29aaa S 1,180 10 253.4 -3/69 926.6 33 ban X 1,143 817 None 150 430 / ,L / L 34bba I. 1,126 1,000 20,16 214.9 1/70 911.1 . /
1,082 990 20,16 172.0 3/69 910.0 2,300 37 62 L SC 36abb -1 20 L 46 36bba 'L 1,092 340 16 170.3 3/69 921.7 910 970 20,16 1,200 L y< ,
, ,36 chb 6 I 1,080 / - ~ tQ i
to 80 g
, [ -- - - . . . - - ~ .--_.-j _._ _ ./ . e
TABLE 2-1.--RECORDS OF WELLS IN Tile LOWER 11ASSAYAMPA - CENTENNIAL AREA (CONTINUED) ATER IMEl, l'UWG MA SUI CE DEPTil TYPE ALTITUDE OF CASING ALTITUDE YIELD DRAWDOWN SPECIPIC OP (feet WELL DIAMETER DEPTH DATE (feet CAPACITY REMARKS WELL LOCATION WELL above mal) ( fee t) (inches) (fee t) MEAS. above msl) (gpm) (feet) (gpm/ft) (B-1-4) 4 bad U 1,144.8 12 244.5 12/56 Sbba 1,125 1,690 L Sdad 1) 1,110 300 6 208.7 1/70 7edh 300 90 5/58 L 7daa 610 160 6/56 16aab 1,062.4 330 182.4 2/71 880 16baa 1,059.5 16e L 19edb 19 dad U - 292 L 20cbn 1,100 L 20dda U 400 L 21eed I 320 L 21 add 23dda I 300 L 25cua 85.4 26baa 27assd 300 1,570 58 27 L 27abb 1 988 350 136.0 1/70 852 1,100 70 16 L 27dbb 292 120 4/51 28dua I 385 L 7 29ece U 700 L 29daa U 570 109 8/51 L 30 chb U 300 13 9/51 L 31cba I 946 40.5 1/48 1,965 135 15 L 31ced 919.7 250 C 32bbbl U 939 770 L 32bbb2 I 939 1,580 L 32daa 1,105 L 33ada I 268 3,000 31 97 L 34bab 280 C Sheba 1,288 L 34dec U 903.9 212 68.2 2/71 835.7 L C to a m
- 0
TABLE 2-1.---RECORDS OF WELLS IN THE LOWER IIASSAYAh 'A - CENTENNIAL AREA (CONTINUED)
' VATER LEVEL PUMPING DATA SU 'AC E DEPTH TYPE ALI'ITUDE OF CASING ALTITUDE Y1LLD DRAWDOWN SPECIFIC OF (feet WELL DIAMETER DEPTH DATE (feet CAPACITY HEMARKS WELL LOCATION WELL above us1) ( f ee t) (inches) (fee t) MEAS. above msl) (gpm) (feet) (gpa/ft) 880 1,M10 L (B-1-4) 35aad 1 67.60 662.4 35acb1 930 117.8 e/46 930 1,990 1,500 L c 35acb2 1 L
35bbe 1 1,152 36abb L c 36cbb I 280 3,058 250 200 9/70 818 L i (B-1-5) 3c c~o 1,018 c Ec hadh U 1,044 70 46 Dry 9/69 ' 6ced U 1,064 60 Dry 12/56 6 dab S 1,061 6 69.7 1/70 971.3 6ddb1 D 1,060 109 8 88 5 1/70 971.5 6ddbo~ 1 1,060 160 12 85.. 1/70 970.1 7aab 1 1,047.7 253 16 75.79 2/63 971.91 L 7abb i 1,060 350 12 V2 89.4 1/70 970.6 L 7baa D,S 1,060 7beb 1,048 156 90 3/71 958 L 8 dub U 1,057 304 16 89.1 2/73 967.9 1,100 68 13 L 10bbe .U 1,010 16 40.0 1/70 970.0 10bec< 1 1,001 352 16,12 Y4 37.8 1/70 963.2 L 10 chb. 'O' 1,000 44.5 None 38.5 1/70 961.5 10ceb U 1,000 60 39.8 1/70 960.2 10cce 1,D,S 998 44 36 37.6 i/70 960.4 15bbbi D,S 994 8 15bbbo 1 994 12 37.6 1/70 956.4 15cbb{ U 980 , 140 12 40.84 2/63 939.16 15chbo Us 978 100 12 36.90 2/63 941.1 15che' I 980 159 16 45.1 1/70 934.9 L 15cdc U ' 962.9 150 20 17.0 2/73 945.9 s t
' *
- 6 i
. . y 4 __. ____ _ _ _ . _ . . _
TABLE 2-1.---RECORDS OF WELLS IN Tile LOWER IIASSAYAMPA - CENTENNIAL AREA (CONTINUED) WATER I.EVEL PUMPING DATA ; SU bE DEPTli TYPE ALTITUDE OF CASING ALTITUDE Y1 ELD DRAWDOWN SPECIFIC OF (feet WELL DIAMETER DEPTH DATE (feet CAPACITY REMARKS WELL LOCATION WELL above as1) ( f ee t) (inches) (feet) MEAS. above ms1) (gpm) (feet) (gpa/ft) (B-1-5) 16bbb I 1,040 320 16 86.1 1/70 953.9 500 L i 16bca 1 1,034 650 16, 10 92.1 1/70 941.9 L ! 17acd I 1,023 303 16 e3.5 1/70 939.5 I i 17adb U 1,025 205 16 83.4 3/69 941.6 L 17 add D,S 1,028 142 16 L 17 dab 1,023 300 90 6/70 933 L 17dde D 1,014 270 8 L 17ddd D 1,006 330 6 19hedy U 990 125.5 8 62.4 1/70 927.6 19 bed.,~ D 990 8 20acc X 1,005 73.5 60 71.30 5/49 933.7 20dch U 995 9g 6 66.5 12/54 928.5 l 21bbb I 1,004 320 16 63.8 1/70 940.2 500 l 21ddb I 980.5 275 12 65.4 1/70 915.1 340 52 6 SC 21ddd D 982 8 22bbb D 980.5 6 39.32 S/63 941.18 27bbe I 977.3 384 16 68.0 2/73 909.3 430 63 7 L SC l 28 anal D 981 160 8 28aaa2 I 981 1,115 71.2 1/70 909.8 l 28ada U 973 320 16 28adb D 965 150 6 28 dab D 958 10 58.6 1/70 899.4 29aab U 975 120 8 57.65 1/70 917.35 30cha u 967.6 177.o 7 67.5 1/70 900.1 30dec 950 252 31can D 941 160 e l 34bbb 957 240 78 6/66 879 L 34bdc U 944 3,505 35aba 1 920 300 16 49.0 1/70 871 640 35daag U 917 20 1,510 35daa2 I 917 337 16 1,300 L SC 36ceb I 900 300 16 69.8 3/69 830.2 L ro
, , - _. ~ )
TABLE 2-1.--RECORDS OF WELLS IN Tile LOWER HASSAYAMPA - CENTENNIAL AREA (CONTINUED) SUR CE DEPTH R WEL PUMFWG DM TYPE ALTITUDE OF CASING ALTITUDE Y1 ELD DRAWDOWN SPECIFIC , OF (feet WELL DIAMETER DEPTH DATE i (feet CAPACITY RDIARKS WELL LOCATION WELL above as1) _. ( fee t) __ (inches) . _ _ . _ _ . _ _ _ (fec t) MEAS. above mst) (gpm) (feet) (cpm /ft) (B-1-6) labb U 1,082 1,223 108.4 1/73 973.6 L 16, 12,Y410 1cbb I 1,062 358 16 95.5 1/70 966.5 L Iceb S 1,060 2abb I 1,077 1,001 16 103.2 1/70 973.8 L 3bbe U 1,069.1 400 6 107.2 1/70 961.9 L 7abdi U 1,024 95 96 35.3 1/70 988.7 7abdo U 1,024 185 6 33.0 12/56 991.0 7bdd' 1 1,024 340 16 146.5 2/73 877.5 600 65 9 L Babb I 1,030 805 20 134.15 2/63 695.85 1,360 L SC 9hba U 1,034 670 16 134.6 1/70 899.4 L 10aab I 1,044 1,690 20, 16 162.5 1/70 881.5 1,640 206 8 L SC 10bab S 1,052.3 10 100.21 1/58 952.09 ' 11bca I 1,040.7 81.2 1/73 959.5 320 160 2 SC 11ccc D 1,024 220 8 11ced D 1,030 350 12 11 dad D 1,018 7 l 11dbb D 1,040 11dbc D 1,036 260 8 L 12baa I 1,054 470 16 89.16 2/63 964.84 L 13aan U 1,018 962 16 66.4 2/71 951.6 L 13ach U 1,025 695 16 , 85.5 1/70 939.5 L 14aub D 1,021 180 8 1 y 14 bed S 1,021 8 14ccc D 1,004 15aaa D 1,023 67.4 1/70 955.6 15abd 1,018 275 70 11/71 948 L 15 add U 1,012 12 70.5 3/69 941.5 15bbai D 1,025 250 8 15bbag U 1,024 86 e Dry 1/70 Y i R I
" w ae==^*.* *4m wm_ -_,=.--e.--. ___ . . , , _ , , ,, , . , , ,_ , ,, ___, ,,.__._m 4
TABLE 2-1.--RECORDS OF WELLS IN Tile LOWER llASSAYAMPA - CENTENNIAL AREA (CONTINUED) A E R I. N PUFHM MA SUR CE DEPT 11 TYPE ALTITUDE OF CASING ALTITUDE YIELD DRAWDOWN SPECIFIC OF (feet WELL DIAMETER DEPTH DATE (feet CAPACITY REMARKS WELL LOCATION WELL above as1) ( fee t) (inches) (Ice t) MEAS. above ms1) (gpm) (feet) (gpa/ft) (U-1-6) 16ddat X 1,009 119 10 62.9 3/60 1 16dda2 D 1,009 200 8 l 16dddi U 1,006 402 8 L l 16dddo D 1,008 ( 16ddd3 D 1,002 14 85.3 1/70 916.7 l 17adai D 1,002.1 300 16 176.6 1/70 825.5 1,070 L 17adao I 1,002 179.7 11/73 822.3 18aaa' U 1,007.4 200 20 33.9 12/56 973.5 L 18aaag U 1,007 87.11 2/63 919.89 20adb U 978 188 16 L cobba U 985 254 20 132.5 5/70 652.5 20 dab I 965 229 16 184.06 3/69 780.94 410 L 20dbb I 970 792 20, 16 186.4 1/70 783.6 1,360 L 22addy U 994.9 115.7 8 85.1 3/69 909.8 22addo D 995 218 6 22babi U 1,003 86.7 10 67.87 12/63 935.13 22babo D 1,003 200 8 23ded' D 987 460 8 138.1 8/68 848.9 L. C I 25 add S 960 68.0 1/70 892.o 26baa U 983 20 188.2 1/70 794.8 27 ace X 970 656 L 27ebe 1 965.4 1,200 20,16,14 174.0 11/73 791.4 120 119 1 SC 27dde I 952.9 1,05o 20, 16 172.4 12/53 1,250 L 32cbb S 930 139.2 1/70 790.8 34abb 1 958 1,413 20 128.73 8/54 829.27 2,260 L C SC 34 ace I 945 1,100 20, 16 207.0 11/73 738.0 1,840 SC 34ade I 945 1,122 20, 16 257.02 3/63 687.98 1. 35aba X 960 1,090 L 36abb X 940 205 138 2/63 802 L ro
,_. _. l
(.. l TABLE 2-1.--RECORDS OF WELLS IN Tile LOWER 11ASSAYMIPA - CENTENNLAL AHEA (CONTINUED) WATER LEVEL PUMPING DATA SUR CE DEPTil TYPE ALTITUDE OF CASING ALTITUDE Y1 ELD DitAWDOWN SPECIPIC OF (feet WELL DIAMETER DEPTII DATE (feet CAPACITY HEMARES WELL LOCATION WELL above as1) ( feet) (inches) (fee t) MEAS, above ms1) (gpm) (feet) (gpm/ft) (B-1-7) Ibbb I 1,070 166.7 1/70 903.3 3,180 (C-1-4) 5dca 7eaa 12dec 890 L 14aaa 441 1,420 L 17daa 825 275 20 4/70 605 L 18ada 186 3,152 L 18baa 195 2,805 L 18daa 75 3,360 19 ebb 450 L 24can 321 2,000 85 24 L 24cdd 277 1,900 26abc 530 L - 27bdc 321 1,600 L 28aady 410 1,845 65 28 L 28and a 501 L (c-1-5) laab u 919 185 6 Plugged 2/65 lbab 898 310 16- 68 1/72 830 2,200 L Sc Idec 1 870 202 20 45.0 1/70 825 L 3baa i U 931 170 20 103.8 2/73 827.2 L 3 bang I 931 300 16 110 3babt D 930 3babo 1 930 200 16 D 930 100 6 4aaa{ 4anao~ I 930 600 16 99.9 3/54 830.1 L 4ddd U 897 97 95.6 8/70 801.4 5bab 920 55.6 9/71 864.4 7abe 870 670 12 L 11adh U 856 44 36 34.4 10/4E 821.6 ,3 13aab I 837 184 20 26.6 1/70 810.4 2,500 29 86 L SC i 13aad I 835 I5C 20 1,930 L SCl$
- O
(. 3, TABLE 2-1.---RECORDS OF WELLS IN Tile LOWElt IIASSAYAMPA ~ CENTENNIAL AHEA (CONTINUED) WATER LEVEL PUMPING DATA SUI CE DEPTH TYPE ALTITUDE OF CASING ALTITUDE YIELD DilAWDOWN SPECIFIC OF (feet WELL DIAMETER DEPTli DATE (feet CAPACITY REMARKS WELL LOCATION WELL above as1) ( fee t) (Inches) (fee t) MEAS. above msl) (gpa) (feet) (gpm/ft) (C-1-5) 13 bad I 835 154 20 2,060 L SC 13bba I 849 236 20 39.3 1/70 809.7 2,080 L 13cdd 1 823 1,820 SC 17abb1 U 862.6 417 10 75.6 1/70 787.0 17abba U 863 75.0 1/70 788.0 17dda U 838 87 48 49.0 1/70 789 L 21bbb U 834 57 6, 4 51.2 12/56 782.8 21cdd I 798 569 16,12 48.6 1/70 749.4 1,760 L
- 22ccc I 788 170 20 19.8 1/70 768.2 2,710 L SC i 23ccc I 787 664 20,16 L 23dca I 795 740 20,18 69.3 1/70 725.7 24ceb 1 800 114 20 2,240 L 26abb I 795 842 16 u 782 150 20 L 27dddl 18,16.12 27ddda I 782 525 47.3 1/70 734.7 2,240 L Sc 28aab I 787 597 16,12,10 1,680 L SC 29adcy 788 114 43.94 1/56 744.06 L 29adc3 I 788 650 20 67.0 2/73 721.0 1,940 129 15 L SC 32baa I 780 843 20,14 2,800 L SC 32ceb I 796 910 20,16 85.0 1/70 711.0 L 3 34ade I 778 443 20 20.1 5/73 7 57. 9 1,210 108 11 L SC 34daa U 790 30 16 pry 7/63 34dbd I 774 532 20 32.6 1/70 741.4 1,700 L (C-1-6) 2aba X 945 952 L 3aaa X 926 657 3baa X 932 1,100 20,16 84.9 1/51 847.1 L 3bbb X 939 1,065 20 84.9 1/51 854.1 9abe U 917 176 4 168.5 1/70 748.5 9ebd U 901 12bbe U 925 1,000 20,16 L to
i . TABLE 2-1 --RECORDS OP WELLS IN Tile 1,0WEll llASSAYAMPA - CENTENNIAL AREA (CONTINUED) WATER I.EVEL Pi!MPING IIATA SUI CE DEPTH TYPE ALTITUDE OF CASING ALTITUDE Y1 ELD bitAWDOWN SPECIPIC 0F (feet WELL DIAMETElt DEPTH DATE (feet CAPACITY REMARKS WELL LOCAT1oN WELL aboveas1) ( f ee t) (inches) (fee t) MEAS. above mst) (gpm) (feet) (gpa/ft) 890 20 195.3 11/73 694.7 690 115 6 Sc (c-1 6) 13 cab I 1,200 L 14aan U 904 1,000 18,16,14 211.3 1/69 692.7 14dbb I 891.2 1,114 20,16 204.8 2/73 666.4 , 2,700 180 15 L Sc 17abb I 890 1,219 20 222.3 1/71 667.7 2,690 L 18bbb I 911.8 1,333 20,16, 205.8 2/73 706.0 2,840 c Sc 12 3/4 19abb I 890 1,045 20,16 193.7 1/70 696.3 1,900 110 17 L 19 ebb S 876 168 6 154.0 3/62 722.0 U 875 340 20 L 20aabi 20,16 L 20aabo I 875 1,110 178 1/70 697 20aba' 860 280 170 11/68 710 L 21abb X 880 1,25.2 21cbbg U 866.6 408 20 171.1 1/70 695.5 1,200 ; elebbo 1 867 1,012 20,16 175.3 1/70 691.7 1,360 L Sc 23adb' I 869 1,158 20 180.7 1/70 688.3 1,740 L Sc 23bab 1 876 1,010 20,16 170.5 1/58 705.5 610 L Sc 23cna 1 873 1,157 20,16 200.2 1/70 672.8 1,900 L 26aba I 864 1,130 20 174.5 1/70 689.5 1,870 L c Sc 26 dad I 828 1,135 20 103.5 12/56 724.5 2,680 L Sc 27 ace X 838 655 L 27bbe I 847 1,090 20 2,130 L 28aceg U 848 144.4 1/70 703.6 780 28acc o 1 848 337 15 2,470 Sc 31adb' S 890 6 196.2 5/70 693.8 34 cab U 820 116 6 61.6 12/56 758.4 1 tu e
TABLE 2-1. --RECORDS OF WELLS IN Tile LOWER llASSAYAPIPA - CENTENNIAL AltEA (CONTINUED) l l WATER LEVEL PUhlPING DATA S CE DEPTH TYPE ALTITUDE OF CASING ALTITUDE YIELD DRAWDOWN SPECIPIC I 0F (feet WELL DIA)lETER DEPTH DATE (feet CAPACITY REttARKS l WELL LOCATION WELL above ms1) ( fee t) (inches) (fee t) FIEAS. above ms1) (gpm) (feet) (gpe/ft) (C-1-7) 11baa u 970 286 6 262.9 1/70 707.1 C SC 12cbb U 943 1,300 18 228.4 1/70 714.6 14 add U 920 16 233.0 12/71 687.0 ( 14bbb U 939 1,200 20 225 1/70 714 L 14ded U 910 165 12 Dry 6/69 15abb U 947 20 225.8 1/70 721.2 15bbb U 948.6 650 20 227.0 2/73 721.6 L 15dbb U 930 10 22nde U 903 187 e 151.5 6/69 751.5 32 dab U 965 20 54.4 5/70 910.6 (c-2-5) 3ana I 783 501 16 1,310 sc Shed I 790 900 20,16 78.5 3/69 711.5 3,150 sC Seeb I 790 2,300 sc ' Baab U 772 150 20 15.5 2/70 756.5 L aaba D 775 300 6 L 8abb I 787 502 10 65.6 3/69 721.4 L 8bca D 783 98 4 23.6 2/71 759.4 ' 8cce 1 779 61.8 1/70 717.2 2,980 sc 9 chb 1 768 590 20 40.8 1/70 727.2 L sc 16abb I 763 112 20 29.4 2/71 733.6 L l 16daa I 762 20 32.5 1/70 729.5 17eca S 778 102 (> 58.7 1/66 719.3 18ade S 785 850 lb L - 18 chb D 812 793 10 Y4 104.4 5/70 707.6 L l M 9
l,. r. . --
-- ~ ~
3 , l l TABLE 2-2.---RECORDS OF l'UMl' AGE FHOM WELLS IN Tile LohER llASSAYAMPA - CENTENNIAL AREA (Data Complied from Piles of Water Resources Division, ll . S . Geological Survey, l'hoenix, Arizona) ANNUAL PilMPAGE IN ACllE FEl?P WELL LOCATION 1966 1967 1968 1969 1970 1971 1972 (H-2 6) 5daa 1,374 1,363 1,277 1,707 6daa 1,N27 1,659 1,997 2,087 8ana 1,560 1,372 2,193 2,303 9hba 1,334 979 1,995 1,896 16caa 561 414 448 647 17aaa 1,925 2,200 2,193 2,412 17daa 1,022 1,479 1,463 1,565 19hbb 20 19daa 89 207 680 998 20bba 841 606 981 890 20daa 758 762 827 661 545 802 604 21bba 386 662 466 670 23aab 364 1,140 1,205 706 807 805 705 24cba 100 28bab 1,184 1,494 1,829 984 1,340 1,661 1,767 31daa 1,557 2,325 2,581 2,394 2,365 2,258 2,505 32db 33caa 658 1,341 994 962 1,134 1,069 2,038 (H-2-7) 12 chb 20 14cbb 1,241 1,489 1,461 1,866 22bbb 22cbb 549 670 355 353 144 246 23ceb 773 1,399 1,454 1,453 1,685 1,631 1,562 25bca 15 35 475 386 588 1,058 946 26aac 1.9 2.1 3 4 4 26abb 619 884 682 724 759 713 697 26ach 1,286 1,588 1,305 1,216 1,340 1,467 1,479 26bab 318 516 674 802 1,106 970 823 27aab 358 491 607 594 598 28bab 1,020 1,067 909 919 667 1,283 1,390 m 28bbb 528 564 442 394 410 466 559 d. n
- 6
-~
l . TABLE 2-2.--RECORDS OF PUMPAGE Fit 0M WELLS IN Tile LOWEH llASSAYAMPA - CENTENNIAL AHEA (CONTINUED) ANNUAL PUMPAGE IN ACHE FEEP __ WELL LOCATION 1966 1967 1968 1969 1970 1971 1972 __ 653 822 393 80 (B-2-7) 34bba 3,414 36abb 1,324 1,996 2,012 2,041 3,198 3,407 477 952 895 845 776 720 606 36bba 36 chb 503 1,110 1,121 1,056 887 986 832 80 (B-1-5) 6ddbo 80 [ 7aab' 2 5 1 l 10bec 10ccc 1 5 15bbbo~ 2 2 16bbb 556 654 470 663 0 16bca 558 550 372 448 0 105 117 92 96 212 328 140 ! 17acd 21bbb 249 284 34 14 0 21ddb 82 75 58 81 30 36 101 48 54 49 41 55 48 27bbe 28aaag 83 74 61 81 15 56 258 240 249 309 290 302 154 (n-1-6) 7bdd 1,959 799 852 435 758 715 8abb 398 . 10aab 592 812 763 709 492 661 813 11bca 40 35 97 33 18 103 161 20 dab 57 76 42 76 43 129 486 478 1,155 849 ( 20dbb 25 63 106 315 97 22 24 44 27ebe 27dde 723 957 790 916 655 779 1,277 34abb 2,099 2,684 2,373 2,176 2,157 2,105 2,583 1 34 ace 2,279 2,960 2,319 2,914 2,247 2,343 3,638 166 31 45 0 34ade 1,725 1,820 2,690 2,800 3,064 2,991 3,815 (B-1-7) Ibbb l to I d u l
- O
3 TABLE 2-2.---RECORDS OF PUMPAGE FitoM WELLS IN Tile LOWElt IIASSAYAMPA - CENTENNIAL AREA (CONTINUED) E- estimated ANNUAL PUMPAGE IN ACitE FEET .__ I WELL LOCATION 1966 1967 1968 1969 1970 1971 1972 (C-1-5) ledd 500 3baa2 422 300 502 106 4anag 26 21 44 46 13aab 2,429 2,028 1,633 2,193 13aad 1,62ie 1,310 790 1,018 13 bad 917 1,578 1,431 1,255 13bba 1,076 1,647 787 1,049 13cdd 910 1,616 1,245 1,167 21cdd 501 736 382 476 678 1,330 556 22ccc 614 1,541 531 858 1,328 1,875 1,060 23cce 2,513 2,545 3,614 1,496 23dca 951 747 1,071 360 24ceb 574 861 1,302 502 26abb 1,838 2,352 4,336 2,380 27dddu 1,117 1,201 1,763 1,751 1,212 1,704 1,536 28aab 343 490 405 356 583 621 608 29ade 571 820 471 910 588 1,490 614 32baa 1,395 1,988 1,600 2,578 2,000 E 2,547 1,s75 e 32ceb 713 526 1,113 1,250 1,944 986 34ade 301 548 862 755 660 890 677 34dbd 36 0 308 359 255 63 (C-1-6) 13 cab 397 52 5 513 544
- ' 14dbb 1,510 2,019 1,935 1,538 1,270 1,763 1,892 17abb 1,738 673 1,269 1,242 1,231 1,310 2,260 18bbb 1,196 1,005 752 1,496 728 1,750 1,300 19abb 79 867 772 1,388 66 21 chb 2 153 816 870 1,016 23adb 1,026 1,500 1,219 1,131 1,120 974 1,468 23bab 410 260 396 374 234 478 488 i
23caa 965 901 772 878 1,016 1,325 26aba 711 956 926 830 561 604 539 26 dad 1,510 1,714 1,672 1,939 1,685 2,066 2,130 m 27bbe 2,391 2,560 2,239 2,454 2,046 1,955 89:e d# 28acc2 1,560 2,610 1,996 1,992 1,792 1,384 985 8
g TABLE 2-2.--RECORDS OF PUMPAGE FROM WELLS IN Tile LOWElt ilASSAYAMPA - CENTENNIAL AREA (CONTINUED) ANNUAL PUMPAGE IN ACitE FEET ._ WELL LOCATION 1966 1967 1968 1969 1970 1971 1972 (C-1-7) 14bbb 141 78 135 114 (C-2-5) 3aan 928 752 999 764 Sheb 913 718 959 1,126 1,595 745 5ceb 617 1,022 511 518 588 999 333 8abb 1,281 906 1,160 1,130 1,064 1,317 acce 2,237 2,726 1,541 2,135 1,770 2,546 3,254 9 ebb 2,865 2,189 2,726 2,238 1,145 907 16abb 0 1,450 1,106 1,197 1,265 840 16daa 1,111 1,060 1,342 5}0 530 1,490 1,641 l l I e
HARSHSARGER ann ASSOCIATES 2-36 ' seven year period from 1966 through 1972 (Table 2 - 2). It is projected that the acreage of irrigated cropland would re-main constant,which would maintain the present withdrawal rate from the groundwater reservoir; therefore, the groundwater flow directions and gradients would not change significantly. 2.2.4 Groundwater Quality Water samples from wells in the Lower Hassayampa - Centennial area have been collected by the U.S. Geological Survey for chemical quality analyses. Temperature and specific conduc-tance of the groundwater from each sampled well are listed in Table 2 - 3. The range in specific conductance is from 290 pahos to 6,000 pmhos. Distribution of the total dissolved solids concentrations, represented by specific conductance, is , shown in Figure 2 - 10.
. The lower concentrations occur in the northeastern part of the area where only small amounts of water are pumped for irriga-tion use. The larger total dissolved solids concentrations occur near the major pumping centers, due to the recycling effect of return of waters from irrigation by continual pumping from the groundwater reservoir. This concentration decreases as the distance from the pumping centers increases, due to less influence of the recycling of water. The zoning of total dis-solved solids concentrations is well demonstrated in the cones of depression northwest and southeast of the Palo Verde Hills.
Constituent concentration data of water from 11 wells in the
- b. Lower Hassayampa - Centennial area are listed in Table 2 - 3 A trilinear diagram of the percentage ion concentrations was made of samples from selected wells (Figure 2 - 11 ). This diagram provides a ready comparison of water quality types.
-
- I e tm F
i eo F h & ^ to to to to to to to w w - > - > F"
.a- u u w C C C e -a -a -a ma en u 8 m # 8 o e oo eeaa ee ee az ao ao ao e o a o a w o
a > e e D 2 e2 2 2 9 2 2 9 9 9 9 9 2 a o e Z e o tr
% j g o e e meee au I m I vi vi meeu m m o #
- 4 1 3 1 8 1 4 8 1 8 1 1 1 F
- IO 1
- rc w w w w w F *
- I I
C Cn %3 *J 4i Cs 4 Cn Cn %) mJ m %) wJ te a-3 W & u I I G a I I I e I I e i I OM '
-a u es es en en en es en m m en en ch cn 8 2 ** I C to e m mm me e am m e a a g ; gl ~
s o ,. to to to to to to to to to m to to to u to 2 m en -a en a mm e en a sa cn e u m Temperature (,C) * *9 "5 p@p > e o a a > ? tj Silica (SiO2 2 > l '
; as 2 C > , , Iron (Fe) ! S Q \[e e e tn M
t- *5 r3 Calcium (Ca) n ye B tt: *M
< o vi Magnesium (Mg) lm N c 9 EC s 'O u , Sodium and ;i OE Potassium (Na+k) j e Q l ,w 1 -> - , as < *e - re g Bicarbonate (HCO3 ) Z m
- m o -
Io z z u
'd Sulfate (SO4 ) e -
i o e ::s Chloride (C1) !# In t-C C i8 O :t Fluoride (F) lte o e m o = j! i 2 Nitrate (NO3 ) ;; tr. mE5
;g l
i b l* - $$ i Boron (B) c y ) e *s > Ilardness !mc *I y (Calcium, Magnesium) l5 *
. e , ,S , y* Percent Sodium i y @.g.
i o
- Specific conductance @g z l vi u vi m.c--aC -a O re C -a '- en -a -aCDen u vi C v1 .t- -a -a m vi vi vi u (micrombos at 25'C) --
M > Cu oC C C C C C C C C C C C
- F g
Dissolved Solids $$ W (milligrams per liter) *g O z Conversion Factor ?,,,
* (micrombos to milligrams per liter) e w s - w - - - g Water Use 0 *
., n t m e M i i F to to T A 1 I f* i -J Cn CC to ec to to to to to to to - - uu to to >
cn Cn Cn Cn Cn u u to to e # u - cD cE d
- e o e o e e e e e o e o o e e e o c. e e
- o i to o ee e e o e a e i I e e eeo a e ee ee o a e e 2 y n i mI eu co -a cr u ce m -a ce cm co -a m o 1 I I I I I I I I I I I I I I FU I
- w w to to r> n cn cn I uuI ce enI vi en en e cn u u e -a g4N ::
1 cn -a cn cn 4
,I en I e i en en en u en I I I en en vi m I I I e @ -
m - m m en e co ce m u ce cm co u a g g u
*J *a a e euuuuuu # to u cc to chu to W cn cp to u to to t" l 9 u Cn cn /
Temperature ('C) g I p I to cc u u Silica (SiO2 *
- to -
g e o i Iron (Fe) I e e @
~ c ,
c-
. $ C U Calcium (Ca) l 5 e
l z ! l p u u Magnesium (Mg) I E !
; b e G Q '
g g to [ Sodium and ; E ro e e cn Potassium (Na+k) l I *
* - w A cs -a - u Bicarbonate (HCO3 ) l = -
to u e to ; m C o If e .a e Sulfate (SO4 ) e c t vi to m lj o $- $w - en Chloride (C1) ! G
.en e Fluoride (F) i 5 l
- v. i v. i l
- e to ; e D
e y 5 Nitrate (NO3 ) 7 j
! ro o -a , .o 1 I I Boron (B) l n
m i e m l 2
, m l Hardness l p i $ t$ $ ';0 (Calcium, Magnesium) ,
z a cr (r Percent Sodium l l c I e u F l l - ----- - - - Specific Conductance , h
'e 'u 'u 'e 'en 'e -a -a u u L '-
o -a o to ooeo-oe o u uuu cc L cn cn (micrombos at 25'C) ! R cooooooooooo ooa o I Dissolved Solids j Q
-J m cn en u e (milligrams per liter) l 2
- e e vi to e - -
' '-3 -J o e -J to vi '-*
2
, , , , , Conversion Factor g .
vi vi u
'd "
cn en
"" (micrombos to e milligrams per liter)
- M c- M M w H w - - Water Use BC-C 3 -
_,.m __ ,. , . , . _ _ . _
n n n e e e g m
'e# Y f
- e 3 g =
u u u to to - - u to to u to to - e e e -a u - o co u -a -e m cr e Q g j o e a o a eo a a e ao o e e , o e ee o o o e a e a a ea e e l ,(- o e er o aa ec ya e e en e x 9 l n i cD -J cc (D e ct cc cD (D 03 ea @ cD ct o I ) i to I I I to to i 1 1 1 1 I to to to I I I I I hh gg g k Y 'l* YYYYYY EYY* 7Y QM Q cn u m en m m m en eu mee cc cm e m cn m a m cn m m ;; emee co e t.d y n u to to u to to u u to to to to uuu C* { ,l
-eeu m m-- w en u e mu ro Temperature ('C) '
g G u cr E I Silica (S102
- l 12 C
e I Iron (Fe) @ to e ::e C # # G Calcium (Ca) l C cr o ; Magnesium (Mg) i E D 6 + ro - Sodium and { _U y $
$ Potassium (Na+k) ! ,
e i Z ro to a g j g Bicarbonate (HCO3 ) y
- l o m e- - m u
e Sulfate (SO4 ) I o at
- D i is e e Chloride (Cl)
~
C
- l l 5 i y i v:
en u
- Fluoride (F) ;
i m e to i -:
- D p f m Nitrate (NO3 ) i j m = l I
I w cn Doron (B) o m a z H Ilardness ' M
$ % $ (Calcium, Magnesium) I E , e , Percent Sodium l cm , , ,,,, , , y Specific Conductance $
u to o to en -a u e
-a u e m u o co (micrombos at 25'C) 5 ew to e -a e en o o to o to to m o o O O O V O O O O C C M o a 2 ^
Dissolved Solids e j ,e 3m (milligrams per liter) $ o to -
, , , Conversion Factor m l cn m en (micrombos to o milligrams per liter) -- o--- ., W c: * *
- Water use 6C-3 l
+
e
-, - r -
w- --<, - - - - - - - - - - - ---- ,-- -
J l
. 4 ~ - ~
O n>* o t iu . I!nc . .w e>
- g E @ c:::gzfa Q ,* s@ f5 _5v.g<D$ i oEsQz $ $g ., e$mz@e l' l lI lit!i iIi il li !i';I i'f[(!
- ) ) r r e e e
) c) t t ) m nC i i 3 u a' l r l ) ) O i t5 s o C k C s c2 dr t r ' ) + H e m u i e c e
( g a ( ) ) ) n u dt l p aop 2 ) M N 4 1 ) 3 g i na o Ft - e O a ( ( e O C F O a d o Ss s r i C d t S ( ( N M, So Cs m nsm u S ) ( m nm a ( ( ) o da ooa s t ( e u aui n e e B sm cb er ihr smg e a F m i o e d d e ( su t im vg U r a ( u s ms b t i i t ei n fo li roi e c i e us r a r r a n nc e ir ol erl r ga.m p i n c n ia a f o o r o dl c cc sl vcl e m l o l g dt c l l u t r ra r ei si nii t EF $03.weg o@emoeme e i r a e oo i u h l i o aC e Pm i m omm a T S I C M SP B S C F N B l I( P S( D( C( W
..oLi$
w&2C mi Jiwt o o tm u'eeo wu22V mi oi.o a-o tu w'ooo - wuD2G mi oi4o o tu h c'ooo - wu&2G J n mi -iea o to uboo m wuOaD oi i-o a oo tt
.'eoo m oo ttOOO mi to ice n on te t'eoo o .
oa t-L&L r ai a.ieonc uo u'eoo w n no o tm22C mi cima o ue eto ~ oe9GO t h n mi ciem ut o eao o ut7D2 mi iao - u- .
~ hoo -
o m'ooo ueCGO
. mi wiwo te m n n eiee om m'meo ue2LO t o
noLI$ wuODO s n
- a. eicm u- ~'mto w
~ boo weLCC m ot lme uo wJ-3&0 mi mimm u- aeo .
3
.n 3o m4 wm&&C wi oo t t uu um ,cn g - u$ 3 om g r w* '
ero eo ~ hmo w ', eo 'ct 0 l !' l1l l
n n n c c a. o m N u 4 m e l W e , g ,
- to to to ro to to to l Q l e o e e a e
e n $$$$$5 o o e e o a e
- to l e 1 eo e ea a gna a a eg z u l o !
i ???? e en to to Y ??fY*?? to -
$g a 3:
i e - - -a to to mg I - m os i I I I
~ es to a e os e I I I I I I I em 4
j Q
-a m es en m e os es o m os en en m ee 2 m emue-em e l g
t-u to u u to to u to to to to u i to e o to ch -a to e e m -a u ' Temperature (*C) $ v -,
\ ,
i u e Silica (S102 I
! E i 6 o e i Iron (Fe) ! 9 - , c =
Calcium (Ca) ! $ z e y G Magnesium (Mg) l to no Sodium and b 3
$ j Potassium (Na+k) l *-
z 4 7 ,1 Bicarbonate (HCO3 ) l 5 e o i g g jo Sulfate (SO4 ) l @ u to i
!.5 , rg g Chloride (Cl) l g
to or l ,
,; Fluoride (F) i u e i g
m e u" Nitrate (NO3) l
'o e , , Boron (B) ;
z l H
$- E liardness l E to (Calcium, Magnesium) '
a .a Percent Sodium t-w
- - - ~u - to - - -- - 6Peci11c Conductance b 'u ', 'e 'u 'o 'u 'u '.a *m 'e 'e *e 'm (micromhos at 25*C) l 9 ooo o o e m to m o to -a u i C C C O C C C O C C C C C l Q C ~ Dissolved Solids I .a e ,,
(milligrams per liter) l $
$ * $ I h
Conversion Factor m mm (micromhos to 8
-a o o milligrams per liter) w - -w - c: r - - m m - Water Use 14-3 I .
O
l l
< Date of Number Well I.ocation Collection 1 (s-2-6) 23aba 9-26-52 2 ( br.-ti) 28bab 7-29-53 S 3 (B-2-7) 14 chb 7-29-53 / S 4 (s-2-7) 26aan 7- s-46 5 (B-1-5) 4adh 4- s-46 g , 6 (B-1-6) 23ded 9-17-71 7 (B-1 6) 34abb 7-22-53 8 (C-1-6) 18bbb 7-22-53 9 (c-1-6) 26aba 7-22-53 g to (c-1-7) 11baa 3-21-46 sa f 4 , **
_7vvs
/vvx "g
M _/VVV\' s/VVV\
, #7VVVV\h #Wt ~
ho e _7vvvvvs, 7VVVVVV\
<e_
la ly"I s<t i ,7,vvvvwvuvs
/VVVVVVV\' /VVVV\Nx s/V.VVV\M7M\_
a .,- /vx7*/vvvvvx E_ jj g
-o dg $[R l /VV.VVVV\79&
sv s came ss r/VV, VVVV, nacorner smacres wuss svmums VV, V\ se a Pa$- ll = g> *bS Bvs5 n 5 i
HARSHSARGER AND ASSOCIATES 2-43 All the samples except Nos. I and 5, are the same general water type, sodium chloride. The variance exhibited by samples 1 and 5 as compared to the other wells may be explained by their location with respect to the depression cones. Samples 1 and 5 were obtained from wells along the outer fringe of the de-pression cone, whereas all the other wells are located within the influence 01 a depression cone. These data reveal the re-cycling effect on the quality of water in the aquifer. 2.3 Monitoring or Safeguard Reauirements Due to the dependence of agriculture and municipalities on groundwater for their water source, the impact of an additional groundwater user on the hydrologic environment should be given careful consideration. In order to detect the impact of the , plant on the groundwater system, a monitoring program is de-signed to document the fluctuations of the groundwater levels and variations in groundwater quality. 2.3.1 Groundwater Level Monitoring . 2.3.1.1 Well Selection A list of candidate wells for monitoring the water levels is presented in Table 2 - 4. Water levels from selected wells would provide data to show groundwater level variation of the
, ; depression cone in the vicinity of the site. A final selection
- i. of water level monitor wells is dependent on the availability and suitability of existing wells for monitoring purposes.
i 2.3.1.2 Data Collection Procedures Water levels in the proposed monitor wells should be measured biannually. Date and measurement should be recorded prior to the irrigation pumping season in early April and after the main pumping season in late September - early October. This particular L
O MARSHSARGER AND ASSOCIATES 2-44 TABLE 2 - 4 PROPOSED WATER LEVEL MONITOR WELLS (SEE TABLE 2 - 1) l T. 1 N.: R. 6 W. T_. 1 S.: R. 6 V. Section Section 13aaa 3bbb 15abd 9abe 12bbe 16ddd)
- 17ada y 13 cab 20bba 14dbb 20 dab 17abb 22 add y 20aab 2 25 add 21cbb 26baa 23adb 27cbc 27dde 32cbb 34abb 34 ace L.
b- Well designation conforms to the well l location system used in the State of Arizona (Figure 2 - 9) . l t
MARSHSARGER ANo ASSOCIATES
-45 '
timing of data collection would provide a near-static water level and a near-maximum decline due to pumping for each calendar l year. 2.3.1.3 Annual Report Procedures An annual report should be compiled on the water level monitor program. This report would include a tabulation of all his-torical and recent water level data listed by well location, a water level difference map of conditions before and after pumping, and a water level contour map overlay of the annual water level data. Presentation of annual data in this form would facilitate comparison with past water level data. Comments, concerning annual water level trends and suggestions as to any modification of the water level monitor program, should accom-pany the data presentation. 2.3 2 Groundwater Quality Monitoring Critoria for selection of water quality monitor walls from existing wells include the groundwater flow system and dis-tribution of chemical quality in relation to the plant site. Wells are proposed up-gradient and down-gradient, in respect to the groundwater flow system; and adjacent to the plant site. This suite of sample points would provide data on the quality of water which enters the Site area; the existing quality of water at the plant site before operations; and the quality of water in the area during the construction and operation periods of the plant. The water samples for chemical quality analysis should be obtained from pumping wells to insure that a repre-sentative ssmple of the groundwater is obtained from the aquifer system. l l 1 l 1 I
I HAR8HBARGER AND ASSOCIATES 2-46 2.3.2.1 Well Selection Candidate water quality monitoring wells are given in Table 2 - 5. All of the wells given for the water quality monitorin5 Program may not be readily usable. Field inspection is needed to determine which wells would be suitable and available for the final selection of monitor wells. , The water quality monitor well program would consist of sampling f the wells at quarterly intervals, or more frequently if warranted. Samples should be taken during the following periods: in late May after pumping for the summer irrigation begins; in late August during the end of the summer pumping season; near the end of December; and during the early part of March. The quarterly sampling program should begin prior to the plant construction, and should continue until water quality trends indicate that a less frequent sampling program would be adequate. 2.3.2.2 Sampling Procedures The water quality data to be obtained from the monitoring program would include specific conductance, temperature, and constituent concentrations of groundwater obtained from all monitor wells. i The complete selection of constituents to be determined by chemical analysis is dependent upon the potential elements that might be in
, the plant effluent. It should be borne in mind that boron, bromide, iodide. lithium, and strontium have special importance in relation to water quality as related to crystalline rock. Additional de-terminations are important from the viewpoint of geochemical inter-pretation and possible toxicity of selected trace metals. Several constituents may be added or deleted from future analyses with additional experience.
O V= HARSHSARGER ANo ASSOCIATES 2-47 , 1 i TABLE 2 - 5 PROPOSED WATER QUALITY MONITOR WELLS 1! (SEE TABLES 2 - 1 AND 2 - 3) T. 1 N.: R. 6 W. T. 1 S.: R. 6 W. Section Section 16ddd 9abe 20 dab 13 cab t 23ded 14dbb 27cbc 17abb 27dde 21cbb 2 34abb 26aba 34 ace 1! Well designation conforms to the well location system used in the State of Arizona (Figure 2 - 9). 2.3.2.3 Annual Report Procedures An annual report should be prepared on the water quality mon-itor program and should include the following: 1) A table con-
! taining all recent and historical data; 2) an annual water quality map showing contours of equal specific conductance; f 3) a trilinear diagram of the constituent percentage concen-trations of camples from selected monitor wells; and 4) a water quality change map. Suggestions concerning modification of the water quality monitor program should be included in the annual report, l
i
'l HARSHSARGER AND ASSOCIATES 2-48 SELECTED REFERENCES
- 1. Anderson, T. W., 1968, Electrical-analog analysis of ground- '
water depletion in central Arizona: U.S. Geol. Survey Water-Supply Paper 1860, 21 p.
- 2. Arizona Bureau of Mines,1969, Mineral and water resources of Arizona: Ariz. Bur. of Mines Bull. 180, 638 p.
- 3. Arizona State Land Department, issued annually, Annual report i
on ground water in Arizona: Arizona State Land Dept. t Water-Resources Reports: 1956 through 1970.
- 4. Arizona Water Commission, issued annually, Annual report on ground water in Arizona, prepared under the direction of H. M. Babcock, District Chief, Arizona District, Water Resources Division, U. S. Geol. Survey: 1972, 1973, 1974.
- 5. Culler, R. C., 1970, Water conservation by removal of phreato-phytes: Am. Geophys. Union Trans., EOS, v. 51, no. 10, ~
- p. 684-689.
- 6. Dutt, G. R., and McCreary, T. W., 1970, The quality of Arizona:s do.sestic, agricultural, and industrial waters:
Univ. Arizona Agri. Expt. Station, Report 256, 83 p.
- 7. Fugro, Inc., March 26, 1974, Draft Copy, Sections 2.5.1.2.1 through 2.5.1.2.11 PaloVerde Nuclear Generating Station PSAR Text.
- 8. Halpenny, L. C., et al, 1952, Ground water in the Gila River basin and ad Jacent areas, Arizona--A summary: U.S. Geol.
Survey open-file report, 224 p. l , 9. Harshbarger, J. W., Lewis, D. D. , Skibitzke , H. E. , Heckler, W.L. , and Kister, L. R., 1966, Arizona water: U.S. Geol. Survey Water-Supply Paper 1648, 85 p. I L 10 Ibrahim, M. S., 1962, Subsurface geology and the chemical quality of ground water in Buckeye Valley, Arizona: l l unpublished master of science thesis, Univ. Arizona,
!, Tucson, 97 p. ; 11. Metzger, D. G., 1957, Geology and ground-water resources of the Harquahala Plains area, Maricopa and Yuma Counties, Arizona: State Land Dept. Water Resources Rept. No. 3,40 p.
12 Schucann, H. H. , and Poland, J. F. ,1970, Land subsidence, earth fissures, and ground water withdrawal in south-in Land subsidence: Tokyo, central Internat.Arizona, Assoc. U.S. A. , 331ogy, Pub. 88, v. 1, p. Sci. H: 295-302. l
)
l
HARSHSARSER A n ASSOCIATES 2-49
- 13. Skibitzke, H. E., DaCosta, J. A., Lewis, D. D, Bennett,Jr.,
and Maddock, Thomas R. R.,61, 19 Symposium on history of development of water supply in an arid area in south-western United States, Salt-River Valley, Arizona: Inter-national Assoc. of Scientific Hydrology, pub. 57, p.706-742.
- 14. Stulik, R. S., and Moosburner, Otto, 1969, Hydrologic conditions in the Gila Bend basin, Maricopa County, Arizona: Ariz.
State Land Dept. Water Resources Rept. No. 39, 63 p.
- 15. Stulik, R. S., 1974, Ground water conditions in the lower Hassayampa area, Maricopa County, Arizona: Arizona Water i Comm. Bull. 8. (In press).
1
- 16. U.S. Geological Survey, Bibliography of Survey Water-Resources
, Reports for Arizona, May 1965 through June 1971, com-piled under the direction of H. M. Babcock, District Chief, Arizona District, Water Resources Division, Arizona Water Commission Bull. 2, 60 p., 1972.
- 17. , Bibliography of Survey Water-Resources Reports for Arizona, 1891 to 1965, prepared by the U.S. Geological Survey, U.S. Dept. Inter 13r, Arizona State Land Dept. ,
no. 22, 59 p.
- 18. , issued annually, Surface water records of Arizona:
U. S. Geol. Survey open-file reports.
- 19. , issued annually, Water quality records of Arizona:
U.S. Geol. Survey open-file reports.
- 20. White, N. D., 1963, Ground-water conditions in the Rainbow Valley and Waterman Wash areas, Maricopa and Pinal Counties, Arizona: U.S. Geol. Survey Water-Supply Paper 1669-F, 50 p.
______________.__.__________-_________.________-______.________-___.____m_ _ _ . _ _ _ _ . _ _ -
5 OS f3 8 E II '7 ft g== jc 5 e! l =dE E C U $ $' i j . ?, : $ .
! * ! .I I I ,,
- O E ,
i
- 8 i sisi t. s' E i !. - T! o O! U 2 8 J
3 E gv ' E "
'wo: a E *{ l ,1 e4 1t v w @ Y <5 # -at > .
5 . E,E4' 5E S Ei E ". i l d 's !E E l'= 15Ef Ei 'd !! e l_ e
!s i poi p p i> P g y~ 4M i ,,AL..L-j-ll - .-+
ppy& Awa .
.,. / s. - m a. 8 m , .a.44y '.-t E - 1 o g g* .-Q .,
s "r _ f,
* >6 ii l'
g , gaW s '". - i 'sV
- 1
{ g '. ( glN [ ', 3 5' N l h hM *1f'iA)7f& i Yhff.M Y ,4$'Nl wu
! A _.g,yk3b,b . .(( g 1 - 9 i_ , M L- -
- ahb-'k' -
t n up$QQ7;['~ -Y: ' , i 3 ,3
- - o ~
3x wi -
, , . ~ _ / s ' ft_f_ e 5 . m w' l ,i [ _. ... . . ,
l /.
/ ,d m _M _/l- .I /
s
'zi: =
- ) U
- J-t \, g s! ,
28 ;% [,, ] s4 , g?
% i.T _s f, p)4 s
yk l '- ;,_,i
' 3 ', . l , . . .l y v -
(' # _jg*i'_ +-l~_ 't ! iIfg 3 .. Af ,3 A :f -edt Ac ~ i
.: 's 's ,p I' e(p //
- ks/
7 e; .&
+
d. s $:1 L i
._, q l % e)
J g
-. 'q).4 'b ,: 't ", ,
x ,Y N .
, ,w o p, j ji,k[.k
- h. '.-Q' O' 7 h fth,bh kd[{ 2. 9x 8, W 4 .. - y='h-k
- s . %. a 4 x.%.%. .-
l
,n Q =- 1 .... ! /N - ' Y...- i ,. 1.'. , 4 9 =
_&_0 ' I'.xh,,N~:p\[y: .' . n, :k I ,_
, n: e -; ii s' Sg-- ': .e~ , ~- f, < . ' u g%-4 o I<h , s' W #- - 2 t N% ' ' / ~ M.e=4'6 t Nsf.
g J ; _ _~. ' $., k*'4'l#Fx ;-_* . A
~
c' = ~ ,p'[m ' L. k u;..,ft. w J i
'- !, p i,e e -
a /~s. > i
,- , i < c ,1 , i p; ,r.- - ~p,E _-{_ _ _y c ' f \ j y j- - h 'x
- p; g,_ ,
_ %_ . 9.m4_ g_y__ . .- _ 9' . Tjif -u_, +R _ ___ , ,i' ?'
~'
m 4' ~ x ; h I w -[.,-d7-p._ $m., A ,:a&- .- % *~- *.sM ,g-
*a. ?
ss -+~ ta;g h
.g llt-6y. $ ' * ~
h e . J?i t5 M 3s-3q . - /Q ,- p .. ' ,ry..* *. ?..l .- u* \ x .---
,w , :'
j,Y* psy.1 e .3-~ . t-}.g;(., ssu:'; lg, g
$th w hr, s Y h.k Y . , %- ';< M \<1 L4 -gg% s-4A\ . T-ao --o-- . - ,:s D - %}}, ~ %. -v. ! 7-qG9,3: %s%
oc w -p ==d.(i s-4 x 4 sq 73g : : M,
.e&,___L _ 1wy ra, .n, E 'sn. 3.6 nu "- ..? 4 v -. 4 . . - - - ,
t}4
'f, .?. .g '4 g ~g-0 .
d'(u Y T Y)'/ .y (/. I h
.Q yg o *. :,gv.% f[Oy ._ % . ffi s
i
. . - _.. !'#i ' ww[ .c a s e ogk N *m 8 N /l .. ( '7h'k.gaf y w fc,:x ],% * ) - .kD.*
i L ~ && wWa9%g@h b-; -fe MgG - 7
-sy >o mg
c - 4 : t
- li E E 5
!s .
2 = r .%. s, t
- s. .
5*.
.E . ,r e .. e. >?
I i. m e
= ?-
r 2 r
, 1 '
1 pe : . e 5, : { e c . at
- t> t
- s 5} 4 elIp-:
. 35 :r r c. - - -
a !! 1. 5s. & Ic . b,,.g4
- . p" .- . - ": I.<l* -
t; - n! p. w";
- n! r,
- c 8- - **
m!" -
, r ir 8 i' Eos r-i s I t 1 'i <i r 6:a G S i b[:r j;a h g:
I; E grd. .
.= lB _. .: = fw6:o : I'I;_= , *. ir ; :' :. 1 .e :; ,t . .__J e .. ,, gy t ., s. ' s . l '- . .i T- ' ' r- ., s % T' ,
I ^ 1 e e -l. g i
", j /' / z. ;,g!t a e t 'g ., }
t i I' I e ja '<
/ ,
e
/
f.._ i _ ,,.- .\ g,p e4
\'g\.$t' . e f
u, j'c. s s = k : l y ;8; L s - yvspt - t -. . . . - - .
. e 7
g,f th(G,a
/
l [
/ I J# .g* j. .
s V-
,, sj .s ."f-- g a : / .1I -
sI' .e.pe 4'l /4\**
*I % i I s \ , t> ,
- 1
.e?. -t g,e .t _e_._ L g- .- i . i % ,/ , ,i
- o. %.
. g. ~cia.
r.> <
. 1 %,,s% ' c r_
q .y i, -
; .... o.
c'm_ _..1:..._
- i. ,.u " .._
s y -
/
_ _ . _ .y> a =
.v t
1 6
;' - ./ --
n
. t 5 . s } )' -
g .l - g
-N Ukk,( ..___<t / ,-k d'3I_d #
xP ;,' n,.s; m.:.w / i lGp.AW: sf'r.q,% s J .. - g ir n (.n *s .i.. ,+'.
^ .. -' - \ . 'y l1 l x n Cid:ES. f . -s ..t :.:..y:4' - '?fhf:- m s C'P .t 4> - V- ..
c w - fg ,u' J we ?'Nl.g i y 'w..:$..', ,u n{ ----- y A 9; - . - 1, - gs s. H.. % D
>=,' l ' '
n =; .: a..M qGhg. .l.-7w-pM.y &n..vf~ '% . % [ . T
, A e -
M4
~ , ,... i 3.s f. . r q ;
I
> te .--- , . _~. . ,,.* 4,
- . . y ,
- 4. 1 e. a - >. ,,- 1 77h- g t d'J.i '
4o,>>> c 42
. w- -i. .. e .x'n -- . sN. : L :: . .'.' -. :~~ -l .:.-s . , r.. . . ..c.. .. .. .
r,
- .>o . < -
,. ~c 5. WA n.;*,, . g % 1>s=.s , L-. t ,.~ ~
L.u g- . . . . w-
+4.-i c.
a j- %. m.. v% . m. . _ ,
. t t , x .. r -
y . \,
_ p# ~ <b-h '. C[?,. L w.. * ' ~ * * ' \
i...--A-i '? : - l h ---- -- . s (%. ;.,s g.;. h--
.(:LL,f. ..gy:.
t pi m. E::Ww( cm
.- 4 I . e , (*
kG .*:$; ?' *\ . je . . .; ' %%. MW i' %- Y h:: Q,. .\l
,lw.m . m ., . sw, i,c .
A,.s ... , , .,. .} t. , , ., .. \.. 7 v' 2. i @~. e - i 1 Q,._c?> 'i s -; . 2? ".'. ~ r -
~
_ _~ _(_.. t : f.b . g. ' . hf '
, .i
- hj
,/. ...
k.t. .[f hy . ~h v hi. ' i. g_ _. h samesm.pm.4 g .
. s4m/y...u. a .. . ^ - ebENd~dND.PMifEd$$q l 7[ ' i
- t ,s . g hh h; f .d = et
'.)
e e
W t to-x\ ' i l
\ ! i too N s { S 1-6 ) 7 Die \ ~
123 \
\ ,
1 +J s u (3-1 6) !? eda g, 160 h. .-
" N . .
10 N - e m , i : , I a ' a 4 g J 1si -- - - - - - - - ~ ~ - . - - - - - * -- - "-- - - - - - -
- - - - - - - ~~
3 f8-1-4) 20 Jt%
.I a tw __ _ - . . . _ _ _ _ _ . - . . _ . - . _ _ _ .
s
- -e > t a 190 __ _
W - 4 m #
. 4" - a 4 . e / !
a f60 -Y C-- -p u
~
('
' ~ \ ,
d I I ggo a .
# -- - - - - - - +- - - - - - - - - - - - + - -
200 E i a (8-1-6) 27 cte .
' ' 220 l a . %. .
_ l a . , - ag.=a m ewe - . + - we.e -- h--- -4 e-.e p ,--4 %
-e -
n 4 - rE
, , , =s i t 2eo _. -_ - -. . . . ; ,- ., -- _l t N, <se a ,
le ,,
- - r /; s - " -
l1. *' .,i
,, g 290 _ ._ -. . . . , - - _ _ ~ - - _ . _ , - '5 ~ > { '; ! , - ;; 3 - -
7 l ! 1' 4
~
f, 1948 1930 1952 195* 1956 193s 1960 1944 -
"196* 1966 1964 1970 s, f,? n*
5 ft
. e f
l l 1 l l r , I l *
~
( (3 2=6) 53 cea i IN i ,
, ?
i -
~ . I t !
r 160 ,
, j, b . , \_ l1 i
I , g . m i n h
)
a
~ '
i { f a 200 - I
* (8-2*7)14###l - . 1 .1 6 3 _ f E
m - g
., . . =
w a -- a
- 8 1H - --
.( s.a.7) 25 tem i .
m Y k l
- k a f l 1 3
= 22 , ; j i'
i I i ! ! ]
, e 2o, - , , i , i i
a ' '
! i ! , l h * . r . ! -
i'
,N l O l E
- a. } .
'; g a !, ! I '{ , . , _ t__ .
g 1. t '
; ,s (n-a-7) 26 . . -
- . 4 1 1-' i i i
*t too - ~
Ie 3
-. I*t @
- p M 1 f b
- h. ',.=,%_ i i _ _ _ _ ,
* 't. L 7 i Iy g;. i . .e
- l
;r . .
m
, i7 . 1 - ' I'I I '
q ~1: tsu use 19sa 195= 1954 1958 196o 196s 1964 '1964 176e 197e s s- ?
- , '__ __]L . .. . . _ _ _ _ -. - R
. e N
160 j , 6
" I
- (s.2 7),27 set .
it0 t W 200 i \ A 220 -- L a e 240
. l b , .
3 m , a , n i i i l I x 200 f '(e 2 73 29 ..e l I e i a r , l
~
220 ,
= _ :
d i a 240
= l 4 ~ ** l s
a m 4' l I a it0 -
. (c t.4) is ht4 * . i ,
a sto ' e a e j' f 4 L
, 200 t i .
a r I ! I j ! l , a
- i I , .
e ' 7 - t
~ , i i
- a. 160 - d------ --
l 5 a , (C.i.7)isadel . -
! i ;j gg . _ _ . . . . . _ _ - - - - - - . .e' , ;. I ! '
j , f . 200 +-- -- - '
- i. -fn ;
5 l la 7, I_s E f.'6 L i ;
- I 3
i i i -t i
.."" s. ' e, s* gh ggn ~~~ ~- * #
4 l i ' '
> - >(i F ;" . .;i j
r , , , i l j-
. . 7-i ! i I , ; .i.1 3 i,.. i,30 2,,, i,3% 1,s. i,s. i, 0 i,42 - t, i,64 19 . isa - ; . - ~ , . _ A. I_. ,'n
~ _
o g '5,3- c dr b
* ~
re a
*w -
n r I-a :- V-y T -
> P . :n ., e *
- 1 (f. (E.E# E g y*o l w. .! ?.
o ts g.a
.. f..-[-[
g e
.E .-
e-=~~ .. - I- T
,e; . .- l l; . : .i -y" r s,
- a dit ..E.k c3 '
c _ [E;
- I
- p. ;... g
* "3 y ,:. =
a s a E,$ e e.2ea j
.E8 v. "~ ;;<g . h. =~
kIf z l ;. 6 ,.,_ s . . ,
,F ~ a.i l' i .. s '. , csi: ' :
es tl j.
! J- ' [=~
j
] cll ,' -' 3'. , ,1l * \ :tN' :
[', D 'I'J *; w, ! 's =- r! ' qg ' l ,
. a _. 'b EI.._ ._i ' , 'ir..! ' g wr. :
Pn< [4
. .f . . l .a w $~. . .~.:I , , ,
s a g .: ' 4, \
-{ ' , e q= :*-* f-7.=i .-.f. 9r, i ,, " \j 1 s. .L. t t,-
_~ Ju.1
,=. , tu - ne t ,3 -p x.d ,
l i g 9 , [ h v- cl; ,
. . -1, :- pa n. i = !\ j ~,..... . -.r-a.d. l i r. ..: m e.=
a.. s. n
; -~.7,,.e.1 I ,
i :e-
.; / . .,
t _.. u_! t .' ' '
. _ _ "_: \
I! Fy 1, 9
;r ; - c-e q . ! 1 i,l=-F . _ .:
I 1 i i. s [ s - - 4, i p,,_ , *. ,. I * . . - i, Q<e.j ]
.~- .J ,
- a
's. ,
y 1 r*:r :
- y. 'c
*/
i y c, , 3 x ( n 1_ \ \. d , -?? (- t,- i.: - q. - 3.--
.\ - .- l T\ ~ =~e , /?,? if .u \, ur ~ \ .
g
\. :+* /
- a. - ag -
*It /ri 4 .,
1 'S f Ip -) s ,r r l . 4_;. .
.i c.i, f: ,'/ . - .4; G C mA,,%.,47 - - \
E $ ' \*.- l~' I f M[-3 8 I / / s' 3" .? -
\.
k$ r 3
~
y 1 Y / I y\ YQw
- i :
i t_3
= . . _-- * . g,s.~a __u g ; _,;.#g,,_.q.,.,g, $n , i; -
s# y
;,, _ (w,.: f ,, r :s 2 .. ,- ~:a. i e _. -. m. i.- - ,, 7 8< s.ag:
i ra I+ g; ft g
>psw 7 .
i n 9 ,
... v . ,(t ..ig I,i_ ,wm nf et .t s : ci.,
r,. _.
~
3 . bn. ,:::
, .9, r,2 M, i Y.O,, w , .. > t. , , h- .: s, e=
4 y -
. .. n-=..,..., . ',,- - i -ie% e< >. t ~ . ( t i )
N, f % ' t, f 1., g e ., " .._. 5 w, O.- ' > ;= ,. (- i s: $
?
1l w;x<s
. . : x :.y . s. 9 e i. .e , . _e_ -_ li _ ' .. t . o, -~~
O,- eF g ' s I .,, _ g I
!! . : ' "; ;, d I' ] : a lt.t- g l c:( cchb(k'. ['((/
g
- I.
4 . ed
.a a
y;. -(: s
.A f, ._
54 my ( t
,,j .; .
- i. . h,, .,. i i
-, ,. t
( _ . . t a-i) a
} g -\.,/\fcL 9 s W,7 z = ( saw. - ~~
f 1
= r. ; . ,g i
p-- c Ksb/' q %:2, t- ( N- ; - # ! 3 W* , t
\ v a e n g m y a s a$ o 3 g $ .h 3 r ii a 5 3 i z o r
<* u E
e c B 8 !{c
- 6. ~
=
E
;- 5 3
- g $ 3 o ;
s 's .: "i.
- O l , vr A J2 f^ y P-jsa,*c, v
<g ey $ w i 5 E IE E
- 5 !. -did NJi $$ I g :s s * , 6 3 E *=
! 'i4 O )i x
w {FC oe [ E 3'
- - E
;. n-ir l
2 s, Y Pz
, s I ,l o l 4 55 as . .,- o s . . .
- n. . . c.
~ ~ * ', ****" Y.S s \
w~'. y em E
'a /* ]'
n
.dd 6 M s id'w/ ,,. . , k/ /
- x. -- m a -C M c .( 'N l
bs g h'.h.u, f / _l 1 *(' !s
's W M t %w e! g r s;h' Q' 4,. ' )' . , M'kW. g W[t-y'\.
i i
#Jt4 ~hr a i :.~sy , --m 1 a,;i. .S 's ,s %.4. %. c , ;4 FS
[pl t \a m ' ,9 h,, . sD j/ 4 y, ' b:g/j,i+p, 47'a-'y [. .[e1 , ~>}
- -~ s d
~J 's c,,.tr r >- - I '
prl s l' _R . /-
- f"W !
w =l 7 { y,_ ~~ g },.N'\ n ;:r-y:3 - y:xi . , . KW p 6. , a 3-1',Jy a
/ j a. n ;- ) y <
1 ,,
- c. q , - n ,s .,
c .q /b f? (, u w [,s. Q {os-- ., u L i+h'(c.Q~y$'*!l\l, -; [- n -.'M s
, ./ ;-- ,g i . s. y. c a --a4 ; - ;
1, , ,2 . I'
'f* e -- .I , A I . :, r Fo C .t :,; E o g J %mlm- = ' /*
f
, I '-
s
/l ii f, ', ;[ . f j }, f*t, f' ?4_- 4 ! _ 'I - 62L2~L . 6. , - y & ; : p A g ity J. 1 ' %,V / ' C ; T -i r ,
j v 1;;c,. A a8 N ,,b m_ I~ _f of2 l t , .a 3 9c X i).h;; .n y M&jh,, Yd m _e u
- .L _r%d _.-
s ._. l __w__. %
-v -t v_.w*
m.
.y w: o cm .s e
gg g
.'us .% m; q..v's. at p!,y . .'y v[:& ._
n >. L ---[ - Q's- . .y%* '- -gy /- se*s
- w. t Ni N,w. a~ ~r ., ~' m,c '.')-+- -,,y.',, .- - n >
f
's s c ,i t - . , .,1/p h v.$..
n a FLU u + ipn
- k. , % s~.,.@ , , ,m?
p~ b }gV u 4. g W, $ , w \ 7 p, .-
- y. ,.
{ .y/ ED 6 s.
~~ + -~ c, g? 3 ~ .s t
m .g4.g1 gr , -- N , jf; t h j E {-
?3A ' & _ , e;a ~*h ' m_
5 '
%. $ i =
ls r " fl i, ! k *7o j'
= = , ; y Dk ; i .7,.
7 i%~ 3 - -@- , .
'.?
f (~ \ o
$ /;i [;. -is.
t i en .. E' - -Y !' -
' f. t F 4 !
94 \ h.ata[pe %
. be C/ h 4p' g 7 j~~' . 5'-t ' b. - O ~'- % '- sk
( ' --g ' l-
,- %- -- o ,w i \ se "
Q4
,9 -w -y, fe >
i
- %g3
' h.. n 3 _ *r';tj_y- +3 .^ f r '
hod M M., &- !qf9.fi}w?Q" 3w l y- 1f-[k t 'as\
- n :
kmq l .= ,
- s. , y ,, s e O \, - f' [ , , '/ p' ! -
x %,, 7
- ..- A 8/ '
m .)I *
. 39, , .
p -o~ & $1 * " , 7,.k AW(- = / y (ji sgo
- '; . .5- 7
.- l ,~,1 .,
s e c/.%p,(. l 6' ..,'g s
/7 C'b- ( .d g . ~'
T.*Oq , f* - g ll,.. J . i z i i s j
y 9 t, . ! ' N ,% {[ e- Em Y *e Lh e - 6* -t , ,' tre : I 2 O E, t aE e E' o s.! .).*N O* v2 -
- %g c c 9 G > t!- Ey l
& sv - @ t E - G, a
e hi:
!: s 'g o l *j .
i I, @ b f a j -
$=~ !
a e e 2 - c = 2 H x. . a x
- s. t z m q
- s*
; l l 'o.; r; ti !'
W ' ' * " o . ; j l I I ? S, o. $)&
, I 1 )) e i.
IE h, h I I '-- {g ---d
--Q s[ h ' 's kC w k s& p( 4.j w .
aa ~% q w,( A. .c .. - '
\ , >rG f( aksh GCQ$,Qk/-),i_m_i ^ y.,?Q%{ &u%M~, .
m d,m. We. e t
- u-5 l.5
- zt >r i x
-(gA)dfMk' -i- /k
- } '-/, '- 4, l ) - D f n A%Q.\ $h 'bg '
9a %s4+h~.CW
~c s -
yyf .- q .
, 4[-
m ;l. L.I d,I,
@dj D p e b, _ ; y 3, ~te:) a
_:. g . x , ,- x
._ w s 8 ,,. e w.{< x p.., -., .., ,
f 7 . 9 . s .,
.7 i ,, , , , c , _j % n.~ = -
t
/ .7 ,/ { /y') l .,- a i y .
n,s.U .;,[n
.r , / *: js ~~,..: '
1
- c. _ -<
n .; e-
~ 'N .w.
- v. .-
t?-- w- - -g4 . .: g/_ t [<,'l ! l 1 i *4:. ,p 7 w jg":- l' L I O J _m C- -. 4 d 8 '7 -)- I VI l j i [ !. : h,, , %p 3
- s_. j ! k ice t N J.f.,p , c g -}__..._,,,
+.9p .g J._ y.,,._.g.y g .pi, ww g.g.
g
'5 k~.'.; % Q l, ~~~ -. p4~~ ~q~ .?' n mIf - m/Y mI y' gf)% . n{ f.m%, G. - ms u , y e q < m. 6 . n. e,,....czu,y-~k. r s .
y up .r Y - { -e
..y%; 4 4tw, ~ , a 'y a s - ..
nn .-,_ ! c 2-ft1 W 3,
.f a wu g, %e y a \ _'t sj),/m- , .._ f z.~ f ,-) . '- ,f " s i. , , gd t--
M'Aex, r x v.. . , r e ., - t, i, ,00. At,:
'o- ~y~J. * . . - ; ;- - - r , - j '\ ~ - i- ,
e p# . - - - -
...-4 _,
j,/. , \ c.} ;
.# . . . qe .. '
O',,
. .Y.. y .n ;-__ y /_ / / *. ,5 .1 _ _a e .z.. . _- - ..
g .. E _/ - I *-- -- L 4e f d #1I \ p7[r 7
-( "
l l t'j f 25- he1 q.: L s - ( p:v m~.gy{A i l:: F* *j,' s --
<p' s ,.3,v 3
e i e
\
1 \, e - Eg>-u.-. A .. }-- . .: =.yg( .: ec i '
,o;z. . E C - -e e c 2 , 4 - --* -- - .<,- .ai , -w. j ,,- 3, ;.1 ,as r:e .3
- i. .> 3 ie,xnt f .. :
s3 - . .,. a
,/ .w .Q e ys e - * - - - -g .t - v ~ . , <
_[.. -- . su D
, --f.g, i ,,g~M. .s. U s i ' 3*d .h f"C,' E ' 's.i __ - /
h-q 7* WI
/ *? *' d.:p ;.iM.\.jh? '
[g' u. \ \.,
, f. <n : ---e.. - - 3 L '- ~-;
g ,' 1
. ,. C m.
n e n s g. y -*
.. 5 ,x, W y:% W" C,e14 y' 474i W ,a f psg C~~ b ???j s ;n. 3.=-? . .+
t > lY,e- n ee t x e.a.; u :.!. ;f y .
,6 ..
I, . ... :,
- m. mv - 's $
l ,.4 ) { O.;.e 3- .i . c is ,N *
's ? l )
f' a' f, 2., M // o-%;Wh.,pS./,'A'*I'\, ee s 5 ( y i.. ../,= W-l.
- r en a ,-<, x . .w-
/ <o g-Q~- ,, r -
l ~. - . 3. ,s '
,3 , . ~ ,s s - ., h 1 -[l ..
g O N p si ' f'. N ,- i z .A F & g~3 8a 7
-o 7 . 'I 7
4 4 %, j.h.<qh 7p~k[N, ,,
~~ , /2 . ,-~, w y- -l %v,)% G ' l f& ,- ,,.s; , 1 > p : - 1 q, .p.
s& $g>l . l _ i. / %.% ' r'I - * *I * ~ - ' L tdf
HARSHBAdGER AND ASSOCIATES A-1 APPENDIX I PALO VERDE SITE PDIP TEST ILLUSTRATIONS Figure Page I-A WELL LOCATION >!AP FOR PALO VERDE SITE PDIP TEST A-3 I-B HYDROGRAPHS OF OBSERVATION WELLS FOR PALO VERDE SITE PU>IP TEST A .6 I-C HYDROGRAPH OF IRRIGATION WELL (B-1-6) 27dde FOR PALO VERDE SITE PDIP TEST A-7 I-D TI3IE-DRAWDOWN GRAPH, OBSERVATION WELL OB 1, PALO VERDE SITE PDIP IEST A-9 I-E RESIDUAL-DILWDOWN GRAPH, OBSERVATION WELL OB I, PALO VERDE SITE PRIP TEST A-9 I
A-3 R. 6 W. N l O O 49 50 26 28 27 l 09 / 22H gg n 6 00 j O* g/M U '
/9 O O 43 44 l 24 .#3 o 34 35 33 lO 0 24H 0 0,,
2SH T. I N. T. 4 3 2 i S PLS! PING WELL O OBSERVATION WELLS O PALO VERDE BOREHOLE 24 Borehele and observation well number 6 EXISTING IRRIGATION WELL OS/ Observatica well number FIGURE I-A WELL LOCATION >fAP FOR PALO VERDE SITE PLSIP TEST
HARSHBARGER AND ASSOCIATES A-4 Discharee The discharge rate during the pump test was monitored by a 10-inch orifice plate mounted on the 12-inch discharge pipe. Head measurements were made from a manometer tube loca ted approximately 2 feet from the orifice plate. The average dis-charge for the 4 day pump test was 2,360 gpm (gallons per minute). Water Level >feasurements Water levels in the observation wells were measured period-ically during the pump test with an electric sounder. Hydro-graphs were made from the water level measurements and are shown in Figure I-B. No water level decline was detected in any of the observation wells except for observation well OB 1 ((B-1-6) 27dde) (Figure I-C). The water level in this well was monitored for 6 days after pumping stopped in order to procure recovery data. ANALYS IS OF PDtP TEST DATA A semi-log plot of depth to water versus time since pump-ing started was made from the water level data from observation well OB 1 (Figure I-D). The Jacob" modification u. the Theis non-equilibrium equation was employed as the mathematical model to determine aquifer coefficients of transmissivity and storage. The calculations for these parameters are as follows:
1-6-74 1-7-74 1-5-74 ; 1-9-74 1-10-74 , 1-11-74 i _ _. _u_ . __._..__m__. . . . . _ ..u_.__. ..
.u_ .__ _. .py_19 .. _ ____ p... . . . . . _ . _ - _ . ._ . . _ _ ._. . _ . . .J . _ _ _ . . . ..3._ . _. _ . _ y ___ _ t_ . . ._ . _ _ . _ _ _ ,t 9 .;._._._. _ _ _ . m . _ . _ _ --__.....q _ . _ __ . _ . . . _ .
{... _ . _.. _.~.._.. 4__ j
. - . . . . _ . _ _ . . .. a._...
_ - _._.._ _ __.... _._ . _.g-___._ .. . ..
,, p . _. __ . __ _ .q __ . . . p y 2 .'g ._ - >.) .___._...__..p._.__._____ .- _ _ _ . _ .
_ _ .__-_.__.__r _._t _ - . . .
._. ___.._._._.L.._._._._._.
i 7 JU _W
._.2 Z . _ . . _ ..__ f __. .._.I__________.__.____.--._,L-._..;___ ..L_._..._ . __
p ... _ . _ p ._.__ ..._._
._.__Z.j._.__.____.__.._ __. ._.__ _.__
_.1___.
..2 - w u_ . _ . . _ . p y_ ., .,
_ _ . ._ J . ~ .~. J -- n . _ ~ . _ - _.--_7_.- _., . . . . _ , _ . _ _ _. s. _... . -t t_. >_.- _ . p. __
- t. __. _
r.
- _. . - . _ - _._._,_..___._.______.__.___,___e.__.___.__.
?1 M_ _ . _ .._.m...._ . _ . .
j _. . _ _- -__y_._. l _ . _ _ _ . _ _
. _; . , . _ _ _. . .. .y
_...____-..y_--.__._a_ _.___..__---j_
---. _ r PV-22H ~-- - -I ---- -- ~~ ~ ~ 1 -'- ! - -) __u..__.. 2 . .._._ _ ., __._._._._.._p_._.. . , , _ _ . p_
_ __ .-. _ -. _ _.__ a. _ _ x ._, b
-- ,- 4 ; j z-. ._7 . _
__ 1 _ _ _ i
}__. p_. _ ___. _. .________I_.___ ,
_=- -_ _ _ . _ _ - - . _ _ . _ __ u__ _ _ p r . . - _ _ _ _ . . _ - _ . . . _ _ _ .. -. _ _ _ _ t _ ._ __ _ y 3 .__ a __._ 3 _ __ 1_ i
._..4_._.___ . _ . _ _ _ . . _ .
r .
- _; - _i . , .__. -t, - __- . .__1_ _ . _ __- __ _ '; _- _ . _ _L l ; p y_2 ,, .
_ _ , ____4____. _ _ _ . . _ _ . q
,' 9 1 - /-. _ _ _ __. .-_ f _
_0 3
- _ T^^ m _f; _
.__. __ _4 _ _ :_ _ _ _
1 _____.i _- .._ __._ _ ,t___.
%._. _4_.
___i i Pumping Started Pumping Stopped 0: 33 A. St. January 6, 1974 2:00 P. Bl. January 10,1974 FIGURE I-B IIYDR0 GRAPHS OF OBSERVATION WELLS FOR PALO VERDE PU>lP EEST 1
- .. 1
A-6
, , 1-6-7te 1-7-714 1-S-71a L-9-714 1-10-71e i 1-11-714 .e 5 '_..___._J.__ . _ _ . _ _ . . . . . _ . . . ...4 - . - ~ - p y _ y ,gg .
x7-f - T.
~: $ , .i '_ Z. ' _ . Z . . . . . _ . .q_. py_3 _. u _.. _.. . ._. , ,0 .3 . _a._.. ._ . . . , . . ._...( . _ _ . _ _ - _._.._ . - . - ,_ g ..e_.. .. . . _ - _ _ . _ _ .
1 ._ _ [__.._..._-.__ _ . _ _ __..._T- . . _ . _.
. . . _ - _ . _ + _ _ _ . _ .
r .__ . . _ . . _ . _ . _ _ _ . .;____.._.____ _ _ . . _ _ .4 _. .____ -
.s..__.
1 . ._
._._...__}_.__.._..._... _ . _ _ _ ._ . _ . . . _ -
_._____...a._..__.. e _. _ _ . . . _ _ _ _ _ . _ _ . _ _ . . . _ . . _ . ._
._.._._.._.p.__..____ . _ . . - ._..___p_ _ _.. __. . . _ _ _ . . . _.. . _ _ . . _ . . . .
15
. p_ . _. ...q_...._. _ . . _ . . . - __.__._.= _.. . _
_. _ . 3_. . . p y _ 2_, n_ _ _ . _ _ . . _ J. _. ._ . . .
<. 10 _ _ . . . _ ._4._ = ,._ .
g_. . _ . . t .. .. .__._.; . . . . _ _ _ _ _ j l__. _.t_. _ _ . . . _ . _ . . . .__ q _ _ _ _ . . _ __.-____+._.._ n ;-.._. _ _ 7_.__
. . _ ~L_ _ _. . _ . -} . . .
_._._f. _ __
.__--.}.._.._
__. ._ ._ . p y _ f, - __ _ ___ p _. . . . _ . . . .. . _ _ _ . . _ _ _ . - . _ - _ _ . . _ Aj
.* 3 .__ _ .._ z_ i _ . _ _ .____...i _ ._ _ __. .. _ ._._ ._~ .... m
_....__.f____,_ _ _ _ y . _ . . _ _ _ . _ _.__.._.__.a.. __ . . _ _ . _ _ _ _ _ _. _
;_ _ . . _ . _.__._i
_____.._._._l ___.._ __ _ _ . . _ _ _
> 0 _.. _ . . _ _ . . . _ . . . _
v,__
..___- . . . . _ . _ _ - ._.t__..__._._._. _. . . _ _ .-__.___._u..___ . ._u - _ _
4._ j _- . _ _ . ~ _ __ _ _ _ _ , _ . _ _ ._ _ _ _ _ . _ _ r._ _ . _. g__ . ____~H_-~.-_.___..
~~
__. 1I ---
~ -._________a___ py gi, 4._____ _ _ . __
__..__.A.. 1_.. ._____i_.____..__ e____
=_ ,W _ _. . V. _ ._ _ . . _ . . + . . - . __ . _ . . . . . _ . _ . __....p___. :___._
g__.. d
.__.._..,.______.__._._4 . _ . _ ._ _ _ -- _. --..-.__. 6 _ ___ . _ ., f } _
4 . __ . .
.s ._ . ._ .w ._. _. _
1 __ _ _._i _-.I_
.. _. _...__.o_._____ =_
n_ _ _ _ py_g9 ____..___4_-._. ._ _ _ _ _ . _ _ _ . _
- t 9 . - - _ ._....6 _ _ .o _ . _.
4 u r 1 "- + _ __ _4 __..f__.-----------4_.__.__.,___.._
.__ -.' -_.-.._ _ -._ _, .__._7___. y 50 . . -_
__..-_q.__.__ _ _ _ _ __ _ _ _ __ _ t . __ _ py_30 -_ _ p.___ - __ ____ _ l,e b . . -
-._e .__. ,, , _ _ _ _ .__..}. . _ _ . . _ . . _ ___ _.
I 't , _ _ __. _. ._. . . _ . . _ . .. _ _ . . . _. ~ __ . _._._ __ . Puinping Started Pumping Stopped 0: U A. .\t. January 6, 197!n .! : 00 P . .\l. January 10,197f4 FIGl*RE I-B HYDROGRAPils OF OBSERVATION WELLS FOR PALO VERDE PDIP TEST (continued)
l1 ) l 1ll1Il e
>a4 T
S F 7 E T
- s 1 Z
i
/ P 1 M - U P - 1 - - - M E
4 T l' 7 I
- S . _ 0 3 - 0 1 1 E D - 2 l R 4 E D7 V
_ _ - E9
- - l' 1 4 O 7 L l
- O , ~~
A T ol i2 ~ P
- - S U Yt _
f l l t l O
- N l . . ~ F l
A _ - l' l i ' e
- - l h N '4 l - U A 7 t - l' l. L- i t
7
- - ~1 l 2 - - 1 )
6
. 4 1 I. .^ 7 - - *..*.* ~- - 1 1
10 _ ( i l - --
- 1 l
_ O - -
- - 1 1 l
- l. E
~ W . lE l
F. W - 4 N _
- O A .
N -
- l
~7- I H- -
9 T 9 _ l
' - A 5 T - . 1 G
_ 6
- A V
I H t l
- , l t
D 4 .. :
. I I E 7 _
S 4 _ T 9 l
- 7 F l . _ A t l 1 O -
- i -
6 O T , l i S6 1 P A G Yt . l i N l . G I A
- 4 O I' U 7 i t
MN I - D ll A 7 Y
- I 1 J * - I
- 1 C
- _ 4 I e*. - - I 7 - E 6 i t - u 1 G I
no ex y h 6 Z ,$2.W* . rWd x" .g n<.e o pcWa F g 5 , 7 g 9 0 1 2 3 4 5 3 4 h 4 4 4 4 5 5 5 5 5 5 3 3 u 2 2 3 2 2 2 2 2 2 2 2 l I l .I,I 1l,!l)ilf;i
O
= A-8 l I l I o C.
C e W. e-m
~~"
e N
. o .
7 =
~
m. C e.*
-4 E=
h Z k
= _ ... . t : -- = . o = - & =
e :.
- . ,=
C
> . ~-
- z . m a ~
. E =. .e W Z ^
_. c,
. p , - - - es - = =w
- .-;a 1
c.4 z 4
- c
. m 2
_z, z.-
- s ~ . = F-
- z <
l - z z _ ~ =
. :c z =
e - =. :
=., . a z a - 2 = = = c
! = 3t I as < t - x I
.9 s.. .
o g l s s-o vi -
= .,= I a .- 7. %
- . = E-
.. =. .a . :
Y. = ,.: :- - C E .: I
.J . s. *. m M t .,
l . - - s _i _ ._- - ! ai : .i- m
~: * * - , . 'O I :- - :n = ~
6
- ,- t-II II
,- ,, ,- c.
II Il Il Il L\ lit l fiNill Is\"IN 40'131I JTiI NI 'lI31.V.4 01 III.d3d i
*1 '
HARSHBARGER AND ASSOCIATES A-9 i i 1 0 h'here: T - Transmissivity, gpd/ft T= 3 i Q - Discharge, gpm (2360 gpm) (f= 140,000 gpd/ft) as - Slope of straight line determined over one log cycle, ft (4.4 ft) S= 0.3Tt hhere: S - Storage Coefficient r- (unitless) T - Transmi.ssivity, gpd/ft (S = 0.007) t- Intercept of straight line with zero drawdown, days (.24 days) r - Distance from pumped well to observation well, ft (1000 ft) A plot of the calculated recovery data versus time after pumping stopped was treated by the Jacob model and yielded a transmissivity value of 77,000 gpd/ft and storage coefficient of u.uo). A plot of the residual drawdown data versus the ratio of time since pumping started with time since pumping stopped (Figure I-E) was treated by the Jacob model and yielded a trans-missivity of 50,000 gpd.'f t . These recovery data analyses indicate a transmissivity and storage coefficient values somewhat less than those values obtained from the time-drawdown data analysis. Based t on these data analyses, an overall transmissivity is estimated to I be about 100,000 gpd/ft and the storage coefficient of 0.005 Cooper, II . S . , Jr., and C.E. Jacob, 1946, A generalized graph-ical method for evaluating formation constants and summarizing ( well-field history: Trans. Am. Geophys. Union, V. 27, n. 4. b Theis, C.V., 1935, The relation between the lowering of piezometric surface and the rate and duration of discharge of a well using groundwater storage: Trans. .bn. Geophys. Union, 16"' Ann . Meeting, pt. 2, p. 319-324. 4
- O O A-10 I l i l- . l ., m.
i . ,[ l. .i o
' ' l 6 li I , i , i i e t l ! t '
l l
._. , */ . _ ... tI. I ..,
7 i - - e
.,,..._.. 1..
l .
.. ,_ a L.. r ._+. . , .. .i -. .. . . r. i .
D i l i l -] l - -
.l 'I ~4 !
0 i i l ! l. l ;- l.. .., r
' g I , , I .I i l !_ ! f .}._ -. . 1."
t
, .,, g . . . , . . .l. . -_... - .. .
a_
. . . , . . . . i. .--l---. - . . -- . =
_. . . 3 ., .. - i.. I _ - l 3
-. . j ., +
8
; *t i ii -i . ,
l _L . .,_. . I I . .;- i 6. ; . - 3
.._7.... .. . .... . .J . . .....i. ! . .!_j .! - g; 4 e . . , .._L_..... _. . . ....... .w... '
i
._.4_.. -.. . ... .-..-e M%
gg 6..
- 9. .. .
.a .a l I i- = =
i
+ i == O e i I I . , . O 4
t I t j i j E5 . t -- i l l l
- l, o I
== 4 l . . , . . 4 i ' + -- !...
- i I 3 i
; l .i . .g _ .... ..l... .-.
e l --
-j ... . a; p -
w 4 I a _ . . i ..
.l....._ . . . ......6. .
4 4 g
~ $.e I
l -1: e. l 3C .<
.a .a > !.1 l l -
l . . _! - ' '_D 'i ? ' l-9 4Z 5
.. ;, _: 7* ' ._:. ; ~ - - . . p' . . . t' :; - T .I.... . . _ . .. _. . [' .: . . .l' . .. .... ..__... ...:... l-.
_. t.,.D 10
......_i .. _ . . . . . . _ . . . .. ._. ._. _, ... ......l.
i .. . . . . . . g
. . - . . , _ . . ._ .-_.a...__
_..4 .
. - . . . _ , ,= , . . .i . . . _ . _ . , . _ . . _ . , . . . _ . ;: ::=
[ .6 . . . . .. . . _ .. . _ _. .._ _ . . - . ... _. .. .. . . , . _ . . _ . , . - . . -- - i _.
- g. j .l
.i .- . . . q. ._-. . 4 . __ .... . . _ . . pg g . ; .L..
j..6
.). ,-... . . . .
g; l . _ ., . . . . . . . . . - . . . _ . . . e t.!.y L -. 7 _&.
.4 Z
__.__i . . ,.
.. _ ., .L...... . . .. .. LL. J . .. . ..h. aa .z . . l. '. _ . .l . _ . _. .-l... ' ' . .' ;.. O
_I. ,. ._. d2di l l l. I i e s # O QQ O i ! e ; i .i
- 35 3 .g . -
l e t 44 .3 l l + =
= g t I - .- , I l i i i, - m.e l ' ' ' I 4 +J <
l I l I e I *: . . ..A l .A q . w D g
..,. l.i.: . 6.
i l s . i !. .. ,. . ! . I , y
,.i. ...l _4 .6.....I -
I ..,1 L_. . . y ,. , . .
. 6.9, .'J),
i,
. 6 ... L 6
{. 1 . . . . . . . . , . , , _ . . 3. . . . l .1. -
,. . J. . -
4 .
. .- . .. i ..L__..i.._..
4 a .6 . . - . . + . , N :llg
. 4 l .}i l * . . . a. .
_k. -- e . t w - ja# 6 l --..z; . e - ' ! ,. . l.~ - i 2 M i
... .. Em I .. . .. . . . . . ..e - -6 , . .- - e t a . ,L - - *, $, *g j er i .. . _ . . . . . _ .
- =
- a. ...._ . .._. . .
, .l...>..,_ ..,...... ..,.. _, ,,..... Q .p . . . a4 e . g . .. . .. r..., . . .,q . - , - - . . . . . . . . .
p.... '-
- 4. .
. . . . .i.... ;.._1. . .b. . , .. v . m . . (g, . . . . . _ . _ , .._,.4 .. .. i.. . . . }
g . j . .4_J _ . 9 7.} . '. 6 .. . . l .. se e e e e. :o ::n 0 - Os n .:- m
.:= c e e e e m L3 LS LS LS LN 01 71 !! 03 08 03 03 01 03 03 03 OI INI0d DNIHaSV3H M0'I3E 133d NI 'H31YM 01 HJ.d3G j . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . ._ _ . _ _ . . _ _ . ._ 2
4 HARSHBARGER AND ASSOCIATES A-ll 1;. APPENDIX II PALO VERDE SITE PRIP IEST ILLUSTILATION Page Figure II-A IIYPOTHETIL AL DISTANCE-DRAWDOWN GRAPII A-13 I l l l l
k
.e A-13 .a m l
Q
- O l
W M _,
%Q J'
I _ u j I l 6 ! . i l
- i i
! f .- I l \
l l
> \,
i t
]
4 g 4 O z
! 8 ' i
- 3 l l O
- l, ; i O
M i ! 9 3 I l
. a l i i
s _ , i .~- ,
' 8 i E 'I, . .~. -.
g
. i Z Z I
M e
- .O.e . y J m , 4 *A o
w ' " T
.~
s 1
, O.
Z U l m < *
- =
! = 2 @ i, -.
M.
= ** O % ** O I ,
i j ' E L j i j l !
=
O. .
$b
- !.e O '
4
- 1 .
em ~
'_ m *C
- E E ~
-4 c M - +8 O. '
Or
% m O \ M ~ -
y E.
" O O
( o k 2 d O LA g
~
O e % alA O @ OOO h CO 03 CO O. O= to .
== ==e OM n to Il !! Il il ll Ea 'J) 7 a a <3 m ,O e
O Y D 4 b @ @ Q see N h, m ~ M m ______1334__g _8 ( s ) _ m
. . :- ,. < , a . . , . - . . w-~~- ~~ ' ' * ~,_ # ' *;;^ ... i = .& .. w - - ' " ~ '* ~~
nN _*~^_ , [-
., 0 0\. Y e
L'O n 7 // t m
~J 7 - - : = = = = 2 ..
WASH 1214 -
& s ~ .+
THE STATE OF
" THE ART OF SALTWATER COOLING TOWERS FOR STEAM ELECTRIC e GENERATING PLANTS r ~
O e.. 5.,.3;.;; = = .. = u c u cc. m sS m bi Yl.:
;Q3]'n,l"- ' ~ . -'..,s.,., C.
20055 ,, ' B.
!!stheda It:hnbi(A.:r) .u U. S. At:mi EnsTj Cen iG-r n":; ton, D. C. 5'~
- IP.d .. ' ~ M~~~~ W tif. d F.?
r d. > w y ex W g.. . N Prepared for the U.S. Atomic Energy Com ii;ty Piii Division of Reactor Development and Tec Under Contract 10. AT!11-1;-2221 {E (CJ nt:'1 p,.7.: g r>y41 February 1973 i.'.
- e. ,
s.:.;
':N 3.y. . .
- iy Westinghouse Electric Corporation $5 k v..
Environmental Systems Department $$ P.O. Box 355 $1 \\ Pittsburgh, Pennsylvania 15230 $$@ y. v . -..
- s. u ~- w i6 a
. . . . . . . . . _ . _ - y .;. ....
. . = . .: . ; . . . - :a w - . ;; ;- . . = - . . . . = y::.- = . - +i ... :- % _*.: ; ' b _ ;. M - Cr.: s s . - - -
- I
- a. i j
4 6
. i
- 6
.i i . , , 6 NOTICE I i This repor- was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Ene ;y CommisMon,
) l j cor any of their emp'oyees nor any of their contractors, subcontractors, or their 1 emp!oyees, makes any warranty, espress or implied, or assumes any !cgal liability or responsibdity for the accuracy, comp leteness or usefuiness of any inforrnation apparatus, I t produt or process dislosed, er represents that itt use would not infringe privately owned ~ -
r:ghts. . l r I Available from the National Technical Information Senice, U. S. Department of I ' Commerce, Sprir:gfield, Virginia 22151. i i } Price: Paper Copy $10.60 p Microfiche 50.95 t i Y, I i b r t . I. 5 a q. i ll l t i i I
a
. , . ~ om
( , 3 CON F-740302
,1 ,9< ~r ]ib ~ N:
COD. $G " OWE 2 "b:!,
^ @\ 10' Y e Proceedings of a symposium held at the '974 j, e
Unisersity of Maryland Adult Education Center March 4-6,1974 Sponsored by Power Plant Siting Program State of Maryland g and Division of diomedical and Environmental Research U. S. Atomic Energy Commtnion "
,s Coordinators Stesen R. Ilanna u-Jerry Pell 1975 \ .
l Published by < Technical Information Center ,mg g % b Office of Public Affairs U. S. Energy Research and Development Administraten i x-1 9 O e e 9 I 4 i # 4
- M a M h nihl ~
MmeT<Mp . ;gggg
,l 3' [ Nd 7 6 I *"h.S *N
- hhIE*:M Np 5hN [ NitD <k. (($-
3
- a. m%5~Nnn$7. . g .". , -, -, ... , . . . - -
~. .- [:_-]2.
a (;. t
.1 . 1 ,5 f .g tibrary of Conpen Cataloging in Publication Data ,G Main entry under title- . ..y '[ Cooling tower environment-1974.
M (E RDA symposium series. CONF-740302) includes index. Supt. of Docs. no.: ER 1.11. CONF 740302
- 1. Cooling tow crs-Environmental aspects-Congresses I. Hanna Steven R. II. Pell Jerry. Ill. Maryland. Dept. of Natural Resources. IV. United States. Atomic Energv Commission.
Dnision of Biomedical ard Ensironmental Research. V. Series. United 5:stes. Energy Research and Deselopment Administration. ERDA sympostum v ries. CON F-740302. TD195.C6C66 621 31113 75-600010
- 15EN 0-87079418-2 3
Available as CONF 740302 for $13.60 (foreign. S16.10) from National Technical Infor mation Service U. S. Department of Commerce J Springfield Virginia 22151 ERDA Distribution Category UC-11
*e i
Fr nted in the United States of Ace'ica USE R D A Technical Information Center. On Rege. Tenn.ssee
,,[ ;, Aura 1975 v-A +
e
.e., 'GD}}