ML20086T350
| ML20086T350 | |
| Person / Time | |
|---|---|
| Site: | Byron, Braidwood |
| Issue date: | 04/30/1995 |
| From: | Pitterle T WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML19325F641 | List: |
| References | |
| WCAP-14344, NUDOCS 9508020322 | |
| Download: ML20086T350 (100) | |
Text
{{#Wiki_filter:*
- -t.n v.
...z y 4'- ..y L, - t.. , *['_~- ' ;., ; :. :. _ -... _,,..-. ,<.,.7, ..;..:,. -., '. _ - 3...._..,.?.,,- .L_ l ' < ;;. y.,.-*:.. .c._. q, .. - - f, s.. 'aO. ;; ; -.....;_<,.. o....;..,.,: .,,;..e.
- n........q...,
- , ;.';/.. :. ;,,
L, '.,... '.. L.,..... - :...,.'f..a,. 7 ;, ', _.. ._ -. ?..; {_ -;~..., ,,r ,,.f.. :,: **,. _ [.. ?.,'..:
- N',.;s" , :: - '
,_.u. ,.. ~. -.:-.,,;...s.,... h,r.... L,<< w,,,. :., .? p : '.......... y,
- -, a.
y- ,.~ -. ~ -.... .,.a. .>.. -. e..a .', w.,'.. .w, v e. e
- n:w..,.
q ~:.;.... .. ;;.. ~ '.. : ..a. o ..a .s .=a.1....' v .a,.a..!~.. .x. c,... -n..,~ s; \\ w.'. .;.. >-'; '+i .r : . ~.,, 7 y,. ; i Q. %...,.:;.j..,... s..< g.,..', a;.f.. ;.. }.j;;.. ", ll, ? .-(, Q:.7 ' D, J:. '.f' ;... '..*::, .y: - r l .. t.,.,:. q <..r;..- ~^ ..$.'.s.. .,,s..,-
- .. _...,,; *;...,, g
- -:,,......
,e.
- 1
, _.< _ '.j..,. [-N;*;,..J;.;.,' L ;. ;;,.) } ' :; 4::],.s-;,....* o. . _.y n, .,.;.,.,..s..',.. r, ....(.,...,. '.. -...:... .,::-x '- ,u. s '.. *,l .., r. :l:.. -,,_,..: T...'w'. [.. : ,;h, ;'s 1+* i. L.:q ;.;\\g,,y;+.l3,m, ',.y,f f 3,.et, c, t". d.. +.. '.c *- '. /- # ~.. ,...,.s.. c.,~. w. + +.*.,.n.,,..,W j...y... 2 ... - ' rl p.- i ',. 4 + p.", ..*;..,. c,, r, ,-, f ~;.t. -- s y ;g" c***.- ....i,.
- u. c;;.;:( y.W; (a y.m.gl.y.Q'y.:(q;.3 y.,,.;g,.
g,;.., 7,,. i *.. -,../ ,c., j... f :.1 t,.,: '.v / .; p, ;. ;,;.3,, ' 4+.;.. g.:9;.&; l t ....; y,, J. p:H. g;;T.;.;;; t. f;9. ;:. .,7 ,3 9
- .y".;%. 4. ; L, y: x. ;':
.?,.y :.w. ;.v;. .. j :,;...o (. ". j,. -'};p.n;.l f 3%' ; ~J.. ,.f. a S. '.. ,f .e-*'% 4 c 1, +. ::}, ;* y,.*ip.,. -
- ,,o.;
iv c e .,.,A 4 % a;.n. 6,y^.': [. %,s_;.y j.l u.,~.;.f.Q:,M:.".'J},.. '.Q;. ' ;;?,.., g., g!, '. e- .n ..u., .. ~..r,...,;.,., V, y "l....,. -,V;[:; },f.
- 3.,j.'i.).)g
..s.z.,..',:. : p i.' 'in .e ,.a - .u., :..,. :.
- n...,?, v.. s,,.,$',{'. '
...- ;,... ~q+ .,, q}'?... a... ;, +..,. x.:n,, .,,.,..i.., '.. ', '; j E* , // .( ,,jg ,..,,'..._i.'. '. ' ** ,._ ) [_, ', ...s. [ ',i y.j -: /t ', ' ,*'#., _, f ,'l,
- ; f,y, 's.'...w,.,..
....i.., ,.. f ',,i.1, '$., e .[,. {.. f ' *( l. ,.,.... '.., #[' * [, ; . 4 ',A."f'w.,.'[. ;, w. ,.s..c. I-
- .
- .:...,,.......'..'.[';c...,,
s. * .I /;
- t
'1 .,;;y }* ;
- 4;.,.. :,...,..
- ..... --,,.'..,',.o... ~.. *
..,,h.c.,..,.,.v',.. ,.m....... x ' ~ J ,..:.;..,s 9_... . ~..- .'y.;.h..'_.s p:( '.. 3... , L
- g :_..n 6. *'. ',*,
?.
- . e.
-a. -,..:i .,. - :;;y,,,... .4 . y,,..,c.W..w , ;. ;_.'.,. + ;.,..,.. ; _,;.y, ',v,'.'.-.. " ,r .<l
- e
..,3 .. z.,,
- q
- , :
), n ,; g,.(-,,.....
- l g....m
- L.,j
- ' (.....,. r,. ;,.*. ;,.7 p.. '. m, b.. ';..
- .'a-e,=
.. v.
- s.., ;,
,a.. .. < ' :p @ !s 's.,'..',' '.+ f ;!N ',,:*; .;,'1- ' 1 -( .,,..,...;:9,,,.,.. ....~. .3 .,r. a[.w'. ;.v.m.,. ' jf '. '..,.a....;:): ;:..s.4.o, .,.. _:p. m- ' . s.e.: z, n r.n n ;.e. n..,:v c. >.c. :n v w.. .,e-, m.,..
- Y:.
u* z t ,;,.l,<
- h...j,....1,.
::y y., '... _..., _.,;,... - *._ _,1 :.., * 'l - a.,
- }v^. 4
. ;..[, v l? 4 ... - p / ::. .r.n. < ;; '}> \\~ ...~. -..-- ; y y,,, . ;. '. 3 y ' '.,o ,.; 4 - 3.;. _ ;.,. c
- ,.2
- : ; v
- v... ~ n ; w.s~
r..-.... ..q..... ..,n.. .c, ;... ' *. f ,'t....'..,,'..'.,.:,,'. ..,1.,;,n. 4...:. nl',. ;;, 4 ,.i-. ..s
- _^-l3.
3>....r.._.,.c. 3;.
- .. '-.b ' }. * '_ ;...,,.*
,..'._..t.,,O' ..J v;
- .. -.;.,'s,.,. ';,.. o Q;{, :.,$..qy*
,~;,,...y... ~.. 4,,,(.,,.; ]h'I'. 'y g> n_: ? . +
- q 4., t :. ',:,.
s..' s .z :.. y's..
- ,,,s,c N, t, *
- 3.7.
m ,.n. 3.....
- ._,'. ;s....::-.,;; :....,..v,..
m ... r +...... y s...i, ,.n1* .,.,,1 3-' .. ;..c ..v. ,'. j'[c f_,.. "'Q. ). O. ;.* ' &. ;:'l'yq.' N':.1 ; ~ t,Qv,..h 'M.." Y, '. ' '.*;..'.[;. s' :.l,. l ',* '. .. :,. 1 ~ ' ~, 6*
- i. :G %;
- ,
- ' t.s:_.;,~.*. W.; q:
n ....[; ,.w.s. j.:;.. g y. .s.s>..e
- 3.,:*. ~,..... f. 3 -
.".Y.- );..,... nf: L. - L..,,... u..
- .-, w.j.in,,
.i -
- >......:..'. u.c y
.w J. ".;. 3;':n. ;, 2 . y *, '.'.p.'.fg% ' .b '., : 4 3, '.".. , h,.,L's '{ :i,;,," W:*... q.}. '.h,,e.....A [s.,.
- N; i,'-.
,,,j, ....,... '...,v.,...,..e,.3..7 -.- >. +..:.... s.
- _,,,f...
9. '"', ;y._ o,, '; 4.,, ;.g.f;Q) '.,,.1..(,.t M.. v.v,. ). f. j ;t'lj yf. % ") G..h. M,l.',..,' W. gr...;( ,(,.%....,..Z., t.N.. l, -J..,..,:.- y. _;. .k .~. A.; m.. rq..,...y..,..., - e. 2,..Q. $.3., c ..;.,..,,..v.,..,:z, g,, xk.g.4w ;,,* j.;ny,,.;.;a;:.,.- 1.*:p...,r..,:,c.v ,m,.. .t;. .,l.#..........,..... w, .e q ;; - et p , c.. ...',oj7,. .......,n.'a.; ... - s. e.. ', o > p: ';7, .,'.,,i. : ?.',,.g::fY Q,,,, g;S.'r. cy..*::,,.%.. ,s }.s.; ~ : ..A ,.. 6 %.g: 9 9... v..:. i '".,.
- ,.,...,,.,,,. ;f,,,,, 9
,. y.j., 4 4 c, 0:s.x,
- ' '.Q.;. A.Q.Q.
., ; n:%.s,. j,.; y y.f %, ,v.,,.. f.r. *....,...', <:.'..~.'.p'..;.;'. s L _1 a : V. .,.. :p c,<.f;, :f.,;p... :._ ' e, :n i; n W.%.. c e. . ; t. S e.,...$.,...,. ).- g p:; h ."',R.,
- n.. :%, ' :(; -l1'
,y - _. w...,%,- .c.. g,,., g. 7, ,f.,.;,<.;, q. q.p. - 4 '.. + rp(- ,..y. - w.... .p. ,,,, _..%;. _ ;;r .,e,- )y 'f "; J': <'s.,{ $,2,...'. ', ;;/,, :. i 3. gt.., y e &.'.I4'. A.t,;e.%.;* j:,:..,,' l. :D, '.* W, T ;._. ;-,. s-n- [,...' s,* '. N,.. 3 + q' .o 4. I,. '. Y;*,. .t .p t.,, 'h '.[3....-(.,,.,- ! '.$ ~ *F '.~. ", [h] ... i.'.. 'l , j
- I
't,. ,'1'
- ,, ;g 4,....,..
...,.c;8,.3' . y 'p 3...,. P.*p..,.a - e-. ' v,g
- .. g.
- q, jj;, -.,;.
- .$,.,;{,,'...
', { d.! !;'., p..s j., g.., ;, y, ,.f ,; n gv. t, .,.i,,u;.,.., ,'=.Y ,c j '.. '.. '.*.,.',*.\\g)* t a.,/.:.- ' N ' h U. ', ]l Y j
- p o; *< m.
- ..: n:N';;&,' :. h :. *. $ lU. \\'..{0 4' 2,', m.>
l,.,. / sc,. 2.;.. !.. 't - . / w;;;~,W z. y.,.z::": ]c' ', v. es.v' f '.(.'.O,':.'n.;?. 7. ;p.'.S *l ''s 'G;. h l1. ::.' ' G I,. i '.4_ l ; _ ", '..*
- 1,1* {. ;
,.g.~ y k. ?,.j.' n.': -e.{ :c,y ';~;,..:pla),' -,
- I ': '
y4.,.1,....,.a.i,+....,,:- .~,..-q v, '.. ~ ; : 9 :c', y* .. ~. - -
- f'v
- m ;;. ;;. :.;..wt
. o:
- A....,a.;"... o.......m.
9., .9...,, . g..%p....,.*;9. . 't. i; .x
- ..m.. u. '
- y.,..; :... ;,..... -..
e.
- a
, g;,,4,..c.i.',...t..1,, ,..r..s,.. r g.J c f - p ' -l ; 7'.,.A, e *; '.,q 1. ,:;.J e,. .e.. { <.r ,1 h <.,r,.g....9,..". f. ;,, '4. g,j,te,. 4.,,.
- q ;
g ;., A.. g e..,, y* ,,v ..,/, ;. ;.,. c y, ,...y. ,. -. - ( t v c ;,. ', o ,.3 1,,-'.,.e-If ,1, 3,';..,.
- ,..s..,.#..,.q,,,,',.,'
-.t ,",V.,.,.t ,.4.#., 't .s. v. 4- .,..;,t
- .'i,,
..-,.,f s 3.,';..".......,. - *, *.-' + f,,, .,...:...J * -6, ,,.l p .L, ;.; A..,..-, p j.;*.. -.*y. ,s ,' h. c .?;.,s..,.,,...s..,.;.5-(.,j..,.,,v;. ;..... i. + ;p -,. .',',..l,,,.,,t,-;.'n ( -p; 3 ,s..-' -.e,a,...a. o".,.,*?.,*.....,.,;,...g, .u.. .. ~g ;.,.,.. <, - :9.,,. .,o.
- s.,, r, n.' j;.. o '.,,...'..,
e,, p. a. ..c . '...n.::... g ,..,..'...:.',;..,.s..- s.t.,.,,c p ..,,..y4,.x<<., ,o. e* ,,., > +.. a y,- ..,.',c...,. y
- w s
..".j,,. t, .s : 3:w c : .n.-
- y.,.... '.
-l.,',/."..,s;.'.' -.; ;,. ',, %,. c ;. - - - ;. : s t o, . ';
- 4,.-
,:....s..., c.,,a., ..4.... s..,. r y .L 1,:.. .. e. 9..,. '.r*%..* 'w..- 4.. -+c } 's..r -.. y
- s, j.f
. i,....,:..~.; "., ; ' ;a+ r,,,' :.., s':.L
- .e
',', : c ' g.:l.,- c. .:, ~*:.-~..'y .c c ,',',......'n-;-. ef;...,. f.q..',,';',.,-' ";. : +; i. f.' , ',.. 'y; 4 - ' _, -. "",*..~..';.:., l. ._y .:,- ? ,2 .c,,' ....,...'.n- ..';, + n,sw - :. i ',J '.*v'< r 1 '. ,-, :-.'.*.9,a i v. <*.,...,:,' ' ' ' i ;>,.
- .,n
,.; ;. +:;.'.:...,.,'..,,. ~e i * .,f. 3 '.;. ',* - l p., 15 ?i;..,
- i
.a, :. n. It,.i, 6 . y .l.. :.
- e L, ' ;, ~.,.a:','
- ,J 3
'f-..3 -,, _ ; < g..-.,.. ~.**'.+.;.,..'*.., . '. c '. ;, s.. o' '*+'te.....:,#,.,.i-f , ':,,..., + - ,. '.f :a,; ', [ 'g ' * -': : -.,,- * ' - o'..,e, '.,....... - g. -ci.- 5 ,".,R,....~.M[; *,:;. hl ' ',s ' < -.., +
- ~. ' '
,._.R'....._,':,* s, ..,r ',: ~-l-
- ',.~
.a . _',l..,3. ;, 'l;p',
- ^ :- -
.J- ,s e.,' .',.s .:'. :. :, ;. ' u a <.. :).:,,:
- t
+'R'.*.;.- '.':_ ' *?. o .";'.,=...:...:
- , n.; -
.t u - -,,'.:. ?
- ,,t_
_, '^* ,'[.,
- .'.,.,*V,:.y.j',n.,....,,-.,-.,
.4,. _, 4 :, s '
- ,,r t-
.t .,g..,- .,,,o;. . ',,, '. - ;^ s-'i. .,,s ,7 ,,'a.,j,,*,,-, ':, ;s.+,+ ,7 '. ' ---' - L ' ', :. ',,. ; :'+,. #..,,,,..s
- i. * ;
D - * .. ; :.'s.,_ Jy. : ,1. ....,a,. ',1s...,,j...,.-.,-,.,,y.,. ,,g,. 1, .e..,. ,..a,...1.;.,,,. J' r, '., ,. y ;. ;,.;-,.,.,. .A. o.- j. 3'. r. -.*' ;.. i. +,e
- l., *...,.:. :. 6. <... -
-,,
- sc 2:1 4
.',l^. 4 ' ?, %, .mi ', * ^ 'g. :,,
- n e:l
",y
- .*,;, :.,' _' :e. '
o'
- ,.~.~.'...
-
- .( m,.,';,a,C.lj ',,
l 'ri-~ f * '. .e_., b,q... - Q.
- .. J, ',,. ' ' ] ;'
s,..- s- ? ['_*.: l, W
- g'.', '. ; 3. ' :
..M.'..'.'. ..s s t.'.. ' * %.,. > '. ,o .,_,..-1...,," y '.;= ~ ,'.,s.,.-, 'y O .e -.,c:. ': * , ;.7 s:..,, *- ' /.,e,-, ',_q.,...,,r ;q '.. V,.;,'; ' _;. ~....+ *.'.,. q, i. /... m'.'.~*, ',... 's....,,4'**.'j,'s. s z.. ,.K ; - -', '. ','.: ll e ,sy { ',,c a;l ' ':'..,y r... !_ T ;.l '. f
- i *.
g. g '.i _ - q ',. >.,., '.* '. y :',!_c.._'. ~g ,,, ' ~ l' :l l, ;{. ',.e,',y.';., jr -., ,'Q ',; l :,. '. ' j.. *.L*,.',.'.l.,
- . ;. _ ;',... [;_'+- l;
- , ;
,'l_
- .'_;..a L,
(.'.,,',...,';.
- : ).1-
..l. s, , y., * ,y: :. :.,...... - l'*',.;.>,.,.'.'. '...4 s ,2' t .. '. >, ~.,, 'k ::..; a ,; y _. '.:_ ;,,..,,..:- ,- 1 .s ;, : "'>j*'.'.'j,*p'....'.;
- y
.,.,, 1 '~ ; - '., ';',e' - -;_'q, L. -.'.f,.......;,,,. . G: , L,",1'%' J,~, ., ay
- . -3es '),... - l,,
' n.. .8 n. ;;,,..':.,.'...,9.f.- l
- v.
- i -.
la.: W *.:.l. m'.t... <,. -,, C .<.....:,,i.s.* l,.. ;.. 2. ..,-. ; '.;. E', -,l i,. -. F M.,:. '[' ::.,., -..,,.,, s .,.i,.'...s..,- t,.,... + './,;.'.0....' }. ', ;,. i. t G. 3.,c. p ' '; i, '(.'... 4.-. ,>. 1 V..,, n.. a,,,;, ;..... ' :, ~ ;;.,; - ...,o.,..m,. - ;,-:, - '. + -3 .o. .1- ....-l e 1. /t..- -,
- ,'\\......,.
... i.:, '- ..s5~ ......,.i' '...s.: . ~,.,,.,.,vc,< ,e, s. .c ~
- n., _,, :.
.4'. . o: .z. ~.ge ..,..,sy,,. ?.\\
- g. -,a,..
a .y;,.;- - ~..: . ;.. s...n....,.- u,, .%'. g&.c.....,.,.. e..L, ;. 3.,;;... :..w.. f ,. r;. tgy .n,. s: ' .. - ; c.. 4 1' ,.6,- . c.r..., .*i. :. ..n ,-. '.. +. e . s. u 'H e?... :..:.. ;,. A.. . :..", l. ;... ~ &, vo';~, u,..:. . !. ::: s
- \\ );;.. :.>. t. ;:v. '.. -....', u.. t., ? ~ l 1...i'...
a,e[,;;,,, y' f '.;:..::p ',. ;.. :-' - .~s.:.
- !'.y;s.
,.f '.'; y,; ;....:7 :Y '..> v,'..t. ;J ; L _ % l < ?
- '.??-
- , c'q
- Q Q.x ' u, . ~. f;. ?. s.C..;,..t,%,.y. v/ l, b,.~. K,, ,c.
- g. t. :,,s. q..,
. ; :..,... :.3.;. a.:* t t :. _m,. -l,-u+s : > ^~ ? n.7.. %s t.. ;- , '. 3.. g:.]( lv Y ;. c- ..p '.':'.~....,;. ,.;....,, h J" '. :;.p ' T.. :,u,::.-
- ' '. le:.
v j-c M, b, :. '. . ;, 4; ..n yr y~...,, x.s. %,.,.: f,.,;,..... r. y ;. J.,;,....,i.,., s,. s, !........,. . ~., f. ...f...",.w.,; 1 v m. y.,.. : ,. a;..,.v., v - y' , ~ *,,.."-..- ;^ s
- y:,. _.
_ : y;. J c.;g. . v ;;.,n; : .,c c...; ;, ,.. ;. y,..y.,,..,.. ,',.. !r .i..,;, - y .g,a.......-... v v .c.3,.,.....3;...s.J.. 4 y i, s. 1, ..t..;,....,.,...
- g. ;,
. c%.. p[.g_ .... e.. 4,4..e n, ; p g s.,v v.m.c,., ; i;a>+e.. e, ..y . c.. ;. -. 4. ;..'? ?lQ Ql lj;l ","*Fj f" Dj f,..,,..,..,.. :,.
- t. :.
..,.,,.....i,. s 3 o; n.. c e :.. ....:.o" 1
- r..:.'.i.y x.. g.)y,,, -
t,3 - ..e ,,e; 1.Q.Q.I,Y.J.\\Q. ',',.Q;l',}, 'f.t..'s.,.,fl;l;;Q l. . ;.. ' -l..;; %,}- ) .s -... '...s i ey...; n L ;..... > ~ _., ; c f d,Q f, :f../) : *p,,,.....:%, ; ' ': b'.yf *y... d, A. '.'v*
- r. ;
.v ... ;.;.. p.kl,, ';
- ' l
..i J n. ' [_ '.y o 7 '.- _ __. _ ,.v .;} L}'+ ...b; y ., ',l;@A'..n qlQ'.y:..A.h'.% pf, ')n ; = A. y:l,sf I y f %;l'Q.f[.h: '.:. n,.., s ..) , :..rj ...w c{:4.- rv. l: ; .c2 ,. %, G : -
- .-.;...-..,.:.p.. g:.,.,., <.,. r..
.;n '.::.,. '. ;.J. '. y.; lm,;..,Y * ' '.I - L .. ;f %.. *:.;., ;,. '..l".,,, y,,"...:.., c;. yq t.
- .s-e.
o.c;..,:;, ',; u: e.. '. 7. ego. :,.,.ps o .rg:[n.".y: ', :R Q};.:.. : : l ' y._, :
- ,
- ..- _ 9. [ g;. ;. ;,
q.,,;.,,,
- ., _,;. s...
.*,.. '.,..;.\\.;,,,: ".f :. ' :._
- 3 y;.. '
- :. :,.
y ;.y. y .c*s.:::: f.;; f;$;',Q "M n,;;?;f :.ll lli,;: : h Y,Q q.. y J.;;.; ',: n;,q:,. ;', >. _. :- : ^ Q ] y. <:-,, ', ' e. ..t.; ~:- .. - c- ?'.,,..,.' V. :' ; +.,u..;, ,,.,.,): :,s - 1...'.~,.:,... w :. _ ...'6 ,.ta;, u n.......,,,.,.'.,p,1,.p...y .. - y u,,.. %.. :g, r,..,.o. .-...3...r s ,..,.,.g.q .. e. .s .,...,.i, .o . a .,g r,,,..,,.- .c ,v.- .,.3 :: ;.,,., f...,;..,....... s......'.4: '.p W 5.,. te..;3. ,4 nw ~ . '..... ; y.;.. - ~- + . ;. ;.; \\.,, ,,s ,...:a . i
- ' = *
,.... e .c - -.,.. 1;..; e.,A. . e,. e ,~, _, s . y '..:_ .;. -"V.? .... ', "yg;,.....A,, j.n.. +~..; ; ;,,, .e;.. a t. '..s , :.. e ..s. ..p ,9 c.. t j.
- +;.- -, " ' ;,e; 3.- L
-. p. c "... ^ s' ' p. 3- ;:,,.. ',,o ' \\,.X e.v. g l".,,
- 2.,.. a ; q., ;l ; *g,;q w,,._
t.
- - ' ; - -:'.. y ';,.y. -. :. _1 _. :
...&.,.,i..,....,,,;.. -y3 n.,,,
- ,,.
- :.. a,
-.., .'..,- -. g:... : ' y,: y. ".. s..,'V',' [J( d, :,...c ;;. b ( :.* u?)..@ .n i.. ' g ;eJ... '. ,...'.,Go .Q+.,.. 6 i:: '.,' ;:M ;. d, '.v;,.'.. s,: ' . ' %;;; T. *v n ' ; ~
- t...J. M '."?: };,..":@
y^
- '( s.
y3;f
- :'.f.'.i -,:
7l,' ;;[,':. - ',, J..:;.. s.,', ',' r _s;....:.' su .8 g,._.* ;,,;*^. n..,: i: ,;..~,%.- ...v.,~ r ;; ;> y.,,. ;..k ;;; y ;;; 74 47' z]. ;,4 .e,.,;*.,.. a 's
- s y*
js.. '..,,..... y,... :;. n. s',,,. ,....,,; :... y ;, i. 4..'. p. ......r. ,,? s :, e - :. g :g, -.4. s
- s. 3.y.,, -c /,,1
., ; ; f :.#,. i# u.-. _ q:., q ;), **. _ r y- .. + 9,c.;. ;. > c ;-, a, 4 :c.. ~ ^ ~. -. a..,U. ; s q c..
- s. ' s.>,.,<.,;...h
...,.s. t . ~.. ., ~........, 1 .,:.4.,.* ;;_. +,,. 3 v ;.:,,,.;,..:, ,3.. ;w...,, i.:...,a ~..*.
- ,q.,..,'*.-...-.,
..s.~- ...; 3g,... .s... ..i f. ,.,,.syo. t.- ...t,.s
- n.,:.. '.1; n.m,,s. e..,....., ' v.,e,
. ; r.s. n 'a 3.'<.':".. -.'..,e.,.,.- .-* - i ...,....,....,Ah......... ~. '., y:,.,) g y;, ,.,. a : ,...,.c,. n.,...........,..... v s..,. '. 'p' . s.,. ....;..,.s -'v...,.... n. ' e...v. ~....;.. * ',,.....$.I.c' q %l u.n... g:. .+ ~.. ;.,-... - 3 s / ,s,. ,.v4> ' v.'. g:* ..3 i ,..... s. 3.,. ;... ;. ' m, .s.: .. o. 2..;st... ,.. y_ 3.,......,,s:.,g,. 9508020322 950731 . M % N..,' ;,_ ;
- .c
.}* .L
- , ~,,.
v. ._.y _s*. ' SYMC MOI E} ~ Y1~"'- n i/ 7 :.G\\ : ^: b.T "'. g A Y hl.'. l:' L a %h:; b V ? a !.E? :'H ) PDR ADDCV 05000454 f PDP n : M ; E :.. W i..' b.T O,E":; i V.# e ".'> 9
- T
M,: M. mWMW, p a=Eu h nowmian,wy d,C, M. M w % ',W< M: 3L e
- i
$ R % m e d, 1:n'. n: L,1 a.cc a .S q;, ; y ,jJ0 e; C' - 7 s a un 'y r 4 ~i I' yh ^ y ,l ( t, .s -~ s -R s _' R ..ny .o a .q 3.' .y .:3 w rk p s, ,1 3,. 4 s M. t ' r-a s 1; 9 1
- :s
' L;_ J F:; 7 M .1
- f. ' >,
s'y x ~ A f^l ',1 ~ -l ,i ,4~ ~ a, AWhM.4,A M.CJWe r 3 4 %;s.. 49 l5;1'V' + ' m l .An JL&MMi4.d.',M... v ]{; s n /
- - ? ' h,...e*=*'8'5MOPAdw.isf M sarm.brr&;.i iw :.
Ir 4 ' '
- T.i t
, $' +/ T ':q
- f
- ,% c.
,r p) y_ w;. _ sc Jp s e 7.:j }c. g,. ) >~ s s ~. 2 m gg, t j l ', %' t r> d L Q i ..;, V, 3 .1 . {- n f; s r 4 l ( a,, gp;- f l.'> , m se 'y g. x g: -;; & i s b y.. s. s a y t-s 9' Q' ag Q w ]y 3 r &e r s r x s r,Q i 4 s, ) ,l V 't' ""'J!, t j .y %[ y J f L;,4 ') . 'm y]; L w f-J. ', ff b. t l' j k4 ,-i 'I 1 iF W
- R-
+ ~ ' O,. g; j p. q .Nf f m - f I t r q}y r% p -.mg. m.vy.
- e. pypy&
- -
m.g~e g <ygg.mrmw% i
- f-
- q V
e-m a y 7y p yjc i = p<+. [* bf-4 1 4 4 s s 5 I ,s [ .q' ) i >\\x.' + M . v? ,..a -a,' ' ? ",. W "; s * ..} j' J V^', 'l.c .N,,'* 1,,,., h' t y
- . 1
'? Q s .y Q;, yf";..,,, 'jp 4 T ' ' ' ' 9' ' 1 S' I i-g aQ i i s..v s l L [V m 'y f< - h- - ; p ,A"% I T t y a o, r i 4 i, i
- g,.0 :'
c j. I N , l Q l. ;' l& ) ~ t '))% 'r n h, Q f 5 y.Q, L t G i, b i 1..p -t) : 73 ,:y. 3; s ,QQ [* r ^ N, i g;;} n \\ ' :n i ys> n ' a.cg~ ~@n, nymi), yg ,p r% + ? + m; t 47' , yp g -4 < 1 9 s 7 a fg, , bl, w. ['. A 4 J' ,4 ., 'U. 4 e1 1 j[( e N^ N t j s ,,.,A. mm,, m%. t....m,. n @, w a, m, g~. w i .m em ,,m L [.%%n m, o ptf.f':1 g. y' - 8 I .. t. ' p. ^f ,,i.y g
- ur w
4l.d (( f 1 t a A: Gr. ?t N.? &g}*: < r f "p$ j
- y y,
s. if .i e Q &{Qg{ '. S'lQi ll4 w l' r ?s. y ?, ; @ i x @ ' d; %. f,,^ ~ a rumsw;g.f:b)ekiy% y gyypy ,M QCf, f 5; ' 6+g ., ' fid , ?p w; ' ~:: on A- - - w< n e ,1.d k w pp fty t 1 s4
- ly Q-g
- f:plQ;. ify? p:; v;;lf'/{
W Qt ff ,M 3 i lq" Mo / a
- w s
y&.;
- ,4 j gh gy
.; i [ Y E %M' f i s s ~..,., .w. m< e~ 1:- max. ~M1 4c:m.n./ t% C .%r, 3. 1 ' h,n, r e,M.' n ^ bp te' 9 i <L s. ,m ,cg MR < 4-(@3 3: "+
- t., g j
ys p$@ s n. s' JQ g. 4 n y o... , y +8 ,'t i 5 A,. 3 y' s m e n m, 9 -' )' 5 v*f* N .N N f # [ D,V,,. ' ' "v4."l f, .*.. 6g - w r .c . ~ >, a,Ly. s V jf b,. ,,<c ', i s- <,l - i'.,,, * ' ? :.. } }. + ', Gr' i s _h.9 ~Y Q I f Q' ) 9' l' ig, i }l
- /,
'8 ? I
- p..,,
i, } 1- ..~,,'.,f,'d:' ' y;+' 1 1 w, g g ; ; gg< g J g g jg],77p 14 y s
- m. ;s
.e. / t + , y,e+ 7 f ~tJ! u 2.f r N ,g.i g a ,s'! 7 w, E [. '=4 ,?- I t t /t [ q k 4. ,s ,,i'a ,g.. , r - 'i _ r r 4 T! t l V f\\ b 4 ',e j ~ v i i ' ' ' 4 g ~ .*p mr{< f+'if** LL f r. -{, y,f_ +,.c a-s r-s .e w -u e @m e . )- -,
- cw%s.m u..,,.
4 s o g,,,, , s,p 3. 3 fe , x p' ' st, ..a V' e+ f i , e&g. ;.( < a, 'jp%f. i :&ggs Q.... ,lr i t 8 > ' 8 Q ,'Mi 3Q{p QQQf%, yg. i 'j;[ , 8; W ~ '+ I,J4ddsdMas.dMb MMg,glM$,dgQ[gf'h. A_ a , - [f, w, g. ~ cypr,,y. el m,- ,y
- 4..
f, rs c > J, , m_., g 'c p p < c 'g9 4 s 3' om...e, U+Altd4N 4 LMg t t4g u t,w.'M, i. j M, "s e -.,,> 1 y v, ty Q dhp, ea@W L 1 - r 9 % g. n.a c.., .s w m., m PDR ADDD C500 N S4 by % r [,et r,el w%.~rd , a, g 1 o o m. ~c r, \\ j j 5I k g :t,c._.g A] Q '* k e$ $ my' t/O: 7[N. TIP"*7M M*FN7'??*"'7%,W-7 .ma u..a.. n.~.x., 7, -
- a. w
WESTINGHOUSE CLASS 3 (Non-Proprietary) SG-95-04-011 WCAP-14344 i SLIDE PRESENTATION MATERIAL NRC MEETING OF FEBRUARY 231995 ALTERNATE PLUGGING CRITERIA WITH TUBE EXPANSION FOR THE BRAIDWOOD 1 AND BYRON 1 L MODEL D4 STEAM GENERATORS L L APRIL 1995 I l [ I l L l l L l WESTINGHOUSE ELECTRIC CORPORATION ' b NUCLEAR SERVICES DIVISION P. O. BOX 158 MADISON, PENNSYLVANIA 15663-0158 O 1995 Westinghouse Electric Corporation All Rights Reserved
Overall Approach to Tube Expansion Based APC General Approach Tube Repair, Inspection and Analysis Requirements (Q. If,2b) Burst Probabilities (Q. 4) Westinghouse Proprietary Functional Requirements and Performance (Q. la) [ Tube Expansion Matrix Structural Limit Considerations (Q. 2a) i i NRC/ Comed / Westinghouse Meeting i February 23,1995 i l Presented By: T. A. Pitterle Westinghouse NSD l
WCAP/ Presentation Response to NRC Questions l NRC Question No/ Topic WCAP Section Presenter la. Overall functional requirements 12.1, 12.2 Pitterle Tube expansion requirements 10.1 lb. Tube expansion design and process 10.2 to 10.4 Keating qualification Ic. Exp. tube circumferential cracking assessment 10.6 Pitterle id. Potential for ODSCC propagation by tube exp. 10.2 Pitterle 1e. Need for stress relief of expanded tube 10.2 Pitterle If. Plugging & monitoring of expanded tubes 12.4 Pitterle 2a. Satisfaction of R.G.1.121 margins 9.10 Pitterle 2b. NDE methods for higher repair limits 10.4 Malinowski 12.4 Pitterle 2c. Assurance of TSP integrity 10.7 Keating 2d. NDE methods for TSP inspection for cracks 10.4 Malinowski 2e. Accuracy requirements for hydraulic calculations Hydraulic analyses and sensitivity 6.5, 6.6, 5.6 Hu Displacement analyses and sensitivity 8.4 to 8.8 Smith
- 3. Leakage considerations for overpressurized ind.
9.7, 9.8 12.5 Keating Probability for overpressurized ind. Leakage evaluation of the constrained tube
- 4. Burst probabilities with tube expansion 11.1 to 11.3, Pitterle Multiple tube burst probability considerations 12.2
- 5. Structural considerations with locked TSPs Stress analyses 8.10 Smith l
Locked TSP interaction effects 8.11 Pitterle l
Tube Expansion Based APC Overview i-I Why Tube Ernannion? Significantly increases SG safety margins by essentially eliminating the potential for tube ruptures at TSP intersections under accident conditions Significantly increases tube repair limits for indications at TSP intersections by eliminating axial tube burst as a basis for limiting repair limits 1 How Achieved? Expanding tubes above and below TSP intersections to limit TSP displacement under accident conditions and, thereby, permit TSP constraint to prevent tube rupture r i l I l
1 ) Tube Expansion Based APC Overview r How Have Significant Issues Been Resolved? Circumferential cracking concerns by plugging expanded tubes to lower temperature, including sleeve stabilizer at expanded tube intersections and adding redundant expansions TRANFLO load concerns by applying factor of two on expected hydraulic loads for expansion design analyses SLB leak rate for potentially overpressurized indications by including a bounding term for this condition in addition to conservative free span leak rate analysis Implications for locked TSP effects from expanded tubes shown to be i negligible based on expansions increasing " total stayrod stiffness" by about 10% and: With minimal tube / TSP contact force, no significant change in tube / TSP or tube / TSP / wrapper interactions With tubes " locked" to TSPs, expanded tubes are equivalent to another plugged tube with no new loading conditions
.w -. g, ? -{$
- General Appmach to Tube Plugging Criteria I
i . 3 ~ i Define Acceptable TSP Displacement Requirements
- Achieve burst probability-negligible (10 8) compared to NRC 10' Reporting Guideline y
l i i Conservatively Apply Fador of 2 Margin on TRANFLO Hydraulic Imada j Factor of 2 envelopes collective uncertainties found from TRANFLO j sensitivity analyses and independent analyses with MULTIFLEX code Include Provisions for Postulated Severed Expansions Due to Cimunferential Cracking at Expansion Incations l I Obtain tube stabilization with a sleeve stabilizer j i Include redundant expansions at critical TSP locations approaching the 0.31" displacement acceptance limit' i r Demonstrate that TSP Displacements are Less Than Are=Mahle Ilmit for - c Tube Burst Probability Considerations Demonstrate through TSP displacement analyses with factor of 2 on ) TRANFLO loads and without including redundant expansions 1 More Limiting TSP Displacement Goal De6ned for Tube Expansions to Provide for Option to Implement In Situ Leak Testing ' TSP displacements of about 0.1" or smaller permits direct application of ' in situ leak rate measurements since these small displacements would not expose significant through wall crack lengths I r, r,_,_ ,,m ,,,,._m,
I ~ 1 Braidwood-1 and Byron-1 Tube Repair Limits i For hot leg TSP indications, bobbin flaw indications > 3.0 volts and confirmed by RPC inspection shall be repaired. Bobbin flaw indications > 10.0 volts shall be repaired independent of RPC confirmation. For indications at cold leg TSP intersections, bobbin flaw indications > 1.0 volt and confirmed by RPC inspection shall be repaired. Bobbin indications greater than 2.7 volts shall be repaired independent of RPC confirmation. Other tube repair criteria related to cracks outside the TSP, circumferential cracks, indications at dents, etc., are the same as the NRC generic letter. i i \\ l
GeneralInspection Requirements The bobbin coil inspection.shall include 100% of all hot leg TSP intersections and cold leg TSP intersections down to the lowest cold leg TSP with ODSCC indications. All bobbin flaw indications exceeding 3.0 volts for hot leg TSP intersections and 1.0 volt for cold leg TSP intersections shall be RPC inspected. In addition, a minimum of 100 hot leg TSP intersections with bobbin voltages less than 3.0 volts shall be RPC inspected. The RPC data shall be evaluated to confirm responses typical of ODSCC within the confines of the TSP. A RPC inspection shall be performed for intersections with dent signals > 5.0 volts and with bobbin mixed residual signals that could potentially mask flaw responses near or above the voltage repair limits. The RPC inspection sample shall include a minimum of 100 intersections. i y r w- --w-,- prw*
SupplementalInspection Requirements for Tube Expansion If a 570 mil probe does not pass thru a dented TSP intersection (dent > 65 mils), all surrounding tube locations must be repaired to the free span cold leg TSP criteria Braidwood-1 and Byron-1 have no known corrosion induced dents at the TSP intersections. Thus, there is no concern for TSP integrity and there is no need to identify exclusion areas for application of the APC repair limits or for tube expansion candidates. 1 The tubes selected for expansion and the surrounding tubes shall not have corrosion induced dents > 5.0 volts Since Braidwood 1 and Byron-1 have no corrosion induced denting, there are no restrictions on selection of tubes for expansion Following application of tube expansion, the expanded TSP intersections shall be inspected with a bobbin probe for process verification Bobbin profilometry to verify acceptable expansion diameters and to demonstrate proper location relative to the TSP At every third refueling inspection following tube expansion, a minimum of three expanded tubes shall be deplugged and inspected for circumferential crack indications at the expanded TSP intersections If circumferential cracks are found, the adequacy of the expansion sample size and the redundancy in the tube expansion matrix shall be evaluated
SLB Leak Rate and Tube Burst Probability Analyses i SLB leak rates and tube burst probabilities shall be evaluated for the actual voltage distribution found by inspection and for the projected EOC distribution Acceptance and Reporting Requirements The SLB leak rate shall be compared to the allowable limits as given in the Tech Specs and potentially modified by administrative controls The SLB tube burst probability for cold leg TSP intersections shall ) be compared to the reporting value of 10 2 and the NRC shall be notified prior to returning the SGs to service if the allowable limits are exceeded If the allowable limits are exceeded for the projected EOC distribution, the NRC shall be notified and an assessment of the significance of the results shall be performed j i The SLB leak rate analysis can be symbolically represented as: LRsts = [(1-POB)* POL *LR, + POB*LR ]3,13,,7sp, + [ POL *LR,],,3a 3,7sp, 3 I
Table 11-1 l Allowable Model D4 SIE TSP Dispiar*=*=ts for. i Acceptable SLB Tube Best Pmbabilit/) l ] No. Hot leg Acceptable Best Pahability Total SIE Tube Bent 'UiP Intenections SIE U P - PerIndication Pabability i Displaceme=t j Unifonn HP Displee*=*=ts at All MPs and Tube 14 cations - I 32,046 036" 3.1 x 10* ' l.0 x 104 32,046 033" 3.1 x 10 1.0 x 10 4 d 32,046 031" 3.1 x 10 l.0 x 104 Non-Unifonn HP Displae*=*=ts i 45 0.434" 2.2 x
- 0 0.99 x 10 4
4 32041 0311" 3.1 x 10- O.01 x 10? 32046 1.0 x 104 150 0388" 5.7 x 10 - 0.85 x 10 d 31896 0315" 4.7 x 10- O.15 x 101 32046 1.0 x 10d 10 0.424" 1.0 x 10 1.00 x 10 4 d 32036 0.282" 13 x 10-" 0.004 x 101 32046 1.0 x 10d Notes: 1. Bunt probability estimates very conservatively postulate that all hot les TSP intersections i have a throughwall crack length at least equal to the SLB TSP displacement 11-4 1 es. yar-.*ue -ew s -"-it
m
'-P"'-^--'-^*-"--^-'-'""-# ~ --
x-Table 11-2 Objectives forModel D4 SLB HP Displacements and SLB Tube Burst Pmbabilities with Tube Expansion
- 1 l
r a No. Postulated SLB TSP No. H P Slagle ladication Total Sevesed Dispt-Intersections SLB Bm st SLB Tube Burst Expansions Objective Displaced Pmbability Probability 0 $ 0.10" 32,046 s 10-'8 s10- I,2 or 3 s031" 32,046 s 3.1 x 10- s 10-8 at redundant tube locations Any 2 except s 031" 32,046 s 3.1 x 10- s 10-8 reference plus its redundant location t Notes-L 1. Burst probability estimates very conservatively postulate that all hot les TSP intersections have a throughwall crack length at least equal to the SLB TSP displacement l i i i i i 11-5 1 4 1 k h' t
t Table 12-1. Overall Requic===+= for Tube E-== ton Application j i l TSP Di@% and Tube F-=-ton Process Design Inada Shall be Based on Fador of Two Margin an TRANMD Hyde==lia Inada j l Provides margin against load uncertainties based on TRANFLO une.ertainty study and independent analyses with the MULTIFLEX code i Marinn=n SLB 1SP Dispa=nants Shall Be Ims Than 0.31" Even ifIt is j Pbstulated That an E-w Tube Severs i Provides redundant tube expansions against a postulated circumferential crack in an expanded tube 4 Results in a tube burst probability < 10 even under extremely conservative assumption of throughwall cracks at all hot leg TSP intersections As a Design Goal, the Marin=== SLB 'ISP Disp 1== nanta Shall Be Imss Than 0.1" With No &._d R===W Tubes Permits application of in situ leak rate measurements if required to limit leakage to acceptable levels (applied if predicted free span leakage using EPRI correlation exceeds allowable leak rate) i Expanded tube stiffness shall be sufficient to satisfy this requirement i Provides tube burst probability < 10* even under extremely conservative assumption of throughwall cracks at all hot leg TSP intersections l 'Ibe Tube Fraansion Pmoess Shall Provide Adequate Tube Stirne== to Limit TSP ~ Displamnants to Agable Imels and Shall Provide Tube Stabilization Capability for a Postulated &~M F-== ion l This requirement is further developed into process functional requirements in l Table 12 2 12 13
Table 12-2. Tube E==== ion Pom== Requirunents Tube R-naion Shall Be F=f-.wi with a Hydraulic F-naian Prv-a Limits residual stresses compared to alternate expansion processes Tubes Shall be E==nM Above and Below the 'ISP Provides for uncertainty in the direction of the hydraulic TSP loads i 'Ibe E==nM Tube Shall Have a 'ISP Pull Force Capability of [ ]*** Provides adequate tube stiffness to limit TSP displacements to < 0.1" at design hydraulic loads (twice expected) and to < 0.31" at twice the design loads. The tube stiffness requirement in used in TSP displacement analyses. A Sleeve Stabili=r Shall be Installed by Hydraulic E==naion at the En=nM H Parent Tube 'ISP Intersections Prevents damage to adjacent tubes for a postulated severed tube at the tube expansion % Marimum E==nM Tube Dinn=+ar Inaease Shall be [ ]'h' Limits residual stresses for hydraulic expansions to less than that typical of a tubesheet hardroll expansion. This is a process development goal and not a basis for rejection of field expansions. 4 12-14
a, r O ? Table 12-3. Comparison ~of Tube Expansion Design Requirements and Demonstrated Performance > Demonstrated Parameter - Requirunent Design Goal ' Perfornmance Result ' Report
- Section :
I' Design Requirements Maximum TSP Displacement
- All 21 tube expansions functional s 0.31" s 0.10" 0.094"'
8.5 16 tube expansions functional (Excludes redundant exp.) .s 0.31" s 0.31" 0.094" 8.6 + Expanded tube stiffness ~ ~"# Expanded tube TSP pull force at 3/8" displacement a Sensitivity Analysis Results 'l Maximum TSP displacement with factor of 4 on TRANFLO None 5 0.31" 0.189" 8.6 loads (design basis is factor of 2) Maximum TSP displacement assuming severed expansions -s 0.31" 3 0.31" 0.097' 8.6 for 6 of 8 expanded tubes (excluding redundant locations) - Note 1 at TSPs 3,5 and 7 (lower 3 TSPs above FDB) Maximum TSP displacement assuming severed expansions s 0.31" s 0.31" 9.200 8.6 for 12 of 17 expanded tubes (excluding duplicate nearby - locations) at TSPs 8 to 11 (top 4 TSPs) 4 Maximum TSP displacement with only 7 of the 21 s 0.31" s 0.31" 0.199 8.6. expanded tubes functional (duplicate expansions functional) Note 1. The sleeved expansion is fail safe against severed parent tubes at the lomt 0 TCPs for which the _ hydraulic. loads act in the downward dirwetion toward the tubesheet.- 12-15 w^- ______.Am__._m____m.-___m_--_.___.i..m-m. .-2_ ___n
Table 12-4. Summary of Conservatisms in Application of Tube Ex=mion for limited TSP Displamnant Hydraulic Imds for TSP Displamnants and Tube Ermnaion Requimnents For design and analysis loads, TRAhTLO hydraulic loads on TSPs increared by a factor of two to envelope TRANFLO uncertainties and independent analyses with the MULTIFLEX code Sensitivity analysets show that acceptable TSP displacements to limit burst probabilities can be obtained with a factor of four on the TRANFLO hydraulic loads Number of Ermacious Redundant tmbe expansions are included at regions oflargest TSP displacements without expansion to limit tube burst probabilities even if the reference (excluding redundant expansions) expanded tubes are postulated to sever Sensitivity analyses show that acceptable TSP displacements to limit burst probabilities can be obtained with only two expanded tubes limiting displacements TSP Disal==nants TSP displacements are limited te 0.10" compared to the acceptable 0.31" to limit tube burst probability TSP displacement analyses are based on an expanded tube [ ]*** which is exceeded by all acceptable expansions [ ]'"" based on process qualification tests TSP displacements are essentially independent of a severed expansion at lower three TSPs (3, 5, 7) due to downward loads on the TSPs and lateral restraint to tube motion provided by the sleeve stabilizer Burst Prn1=hility Estimates All hot leg TSP intersections postulated to have a throughwall indication at least equal to the TSP displacement at each tube location SLBImhage SLB leakage initially calculated as free span leakage as long as the conservative results remain within acceptable limits l 12-16
(, u t t . 8 1 3 I .} . t ? f 7 I I i 1 i i P i e 5 9 1 i l ( ) l i -l Figure 31. Model D4 Steam Generator Layout i .l l l 5 -l - i .i i 4 .p ---+-..:-.,me., .,,--..-.v.c, ,- e. m.-- ,r-w.,
1 Tchls 2-1 ? i Example of. Generic Tube Expansion Matrix - a.c i e 'D i I e 1 I I i 1 h i + a ' I l t h } - !i l h A 2 . [ .[ k a 9 f' I ,j 4 I i t r .l t k i . i f I i I l l
p-a,e 4 L Figure 2-1. Map of Tube Expansion locations i '1 24 Ii..li .s. ij...,.,...,.,
x. Structural Limit with Tube Expansion et TSP Intersedions (Q. 2a) l l ~ Strudural limit of EPRI ARC not applicable due to constraint of TSPs under both normal operating and accident conditions With tube expansion, potential strudural limit is axial tensile tearing resulting fmn pressure diffemntial across the tube j i Data used to assess axial tensile tearirg structural limit l Pulled tubes with cellular corrosion define applicable database since significant IGA has not been found at TSP intersections j 1 Plant E-4 pulled tube tensile test results for cellular corrosion 1 Pulled tubes with measured uncorroded cross section profiles j -(Braidwood-1, Byron-1, E-4 and L) i i Pulled tubes burst tested inside TSP help to define lower bound of the structural limit Since the indications opened axially inside the TSP, it is clear that the axial tensile capability is in excess of the burst pressure obtained for these tests Structural limit at lower 95% confidence for nrini tensile tearing found to be > 35 volts based on 3APuo margin of R.G.1.121 I i l
l i ll' <lllll en 4 iT =be SL X.A TADAG I a taD no isorroC 3A -9GI e /r lb a alu Tlle C fo yra m mu S o. N@ t l l
Figure 9 9 Residual Strength of Tubes with Cellular Corrosion (Data Fit Excludes IGA and Burst Data) 1 co 5g G U i .8 s' i li! 3 oc ? S sown von. - Ch-Sumry2iGADATA.XLS
^' Tube Expansion Description Comed / NRC i Meeting on Increased Voltage IPC for Braidwood 1 & Byron 1 February 23,1995 Tube Expamion for TSP Restraint R. F. Keating Steam Generator Technology & Engineering Nuclear Services Division Westinghouse Electric Corp. l I S:\\APC\\0CE95\\RFK\\TSPJtFK1.OVH Expansion - 1 February 21,1995
Tube Expansion Descriptson. l o Tube Ernanaion Design Description o The design consists of converting out of service tubes into pseudo-stayrods to prevent significant TSP motion during a postulated SLB event. o Conversion is effected by [ ja.c.e o To provide additional structural integrity, the tube is lined with a [ ] ^^*, Alloy 690 sleeve prior to i effecting the expansion. o The sleeve provides parent tube constraint in the unlikely event that the tube severs at the Tube / TSP expansion. l S:\\APC\\OCE:95\\RFK\\'IEP_RFK1 OVH Expansion - 2 F.bruary 22,1995 i
t ^ *~ Tube Expansion Description 6 8 i l ? i Tube Support Plaec Sleeve / Tube Bulge J Tube (Alloy 600) a f C; C: M J T Sleeve (Alloy 690) C 3 w Flowe 101: Cepene oft 5r byTubesseve h r i 1 - 4 1 S:\\AP(h0CEp6%RFK\\1sP_RFK1.OVH . Expanaion - 3 F. bro.ry:i,isos ,y-e-e a sa +-n-.n
l 1 Tube Expansion De:criptwn ) i NRC Question 1.b) i e Design Summary. o Surrogate sleeve used to bolster stiffness and act as stabilization device. [ m i a ]=c.e o Special expansion mandrel designed for TSP expansion sleeve length and configuration j Similar to LWS mandrel, except only one bladder u expansion area provided i S:\\APC\\CCE95\\RFK\\TEP_RFK1.OVH Expansion - 4 February U,1995
Tube Expansion Description NRC Question 1.b (Cont.) e Process Description o An existing LWS delivery tool positions the sleeve using an eddy current coil to locate the edge of the TSP,'then is stroked a finite distance to position the sleeve. o A computer controlled expansion process is used to adequately provide appropriate expansion, [ }a,c = [ } a,c o [ n,c l l L l \\ l S:\\APC\\CCE95\\RFK\\1EP_RFK1.OVH Expansion - 5 Febnury 21,1995
p a + n + - +a w .s h . } Tube Expansion Descriptfon ? e i f a,c,e - l L 1 1 l 2 i i seccasxRrKvrSP RFKr.OVH Expansion - 6 r i.n=ry si, isos
Tube Expansion Description NRC Question 1.b (Cont.) e Process Development Testing o Low and high yield strength tubing used i o " Unit cell" TSP collars used; sized to represent stiffness of actual TSP hole pattern o Simulated TSP specimens exhibited no permanent deflection in the radial direction for the maximum expansion pressure. o Expanded specimens tensile tested to determine stiffness of expanded joints a Bulge size versus pull force curve established Minimum bulge size projected for low and high yield a tubing such that minimum acceptable stiffness is provided by minimum acceptable size bulge o Implementation qualification in a full scale mockup will be performed at Waltz Mill prior to field installation. o Post expansion NDE to include diameter verification of each bulge S:MOCE95\\RFK\\1SP_RFKi.OVH Expansion - 7 F. bro.ry si,199s
,y.,,. + 1hbeExpansfon Descriptfon 1 L' i 8,C,0 i ~ l simOCD5\\RFK\\ TSP _RFK1.OVH Expansion - 8 F br ry si, isos
Tube Expansion Description l t NRC Question 1.b) (Cont.) l e Exparmion Design Tests o Pull tests performed in a calibrated tensile testing machine at 0.5" per second. Similar testing at 1.0" per second revealed no change in response. o Force versus bulge size curves were established for a variety of expansions at displacements of 0.125", 0.250" and 0.375". o Bulge size range of [ ]*b* determined to be acceptable for tubing ranging from [ n,b,c o Achieves stiffness of [ Ja,b,c Force / Deflection curve conservatively includes initial a slack in the load testing fixture (~20 mils) and tube gripping devices (~30 mils). m Actual capability at a true TSP displacement of 0.1" could be expected to be 20 to 25% higher. o Maximum load of [ ]^b* deflection. S,mCCE95\\RFKVIEP RFK1.OVII Expansion - 9 February 21,1995
4 l lhbe Expansion Description i i 1 1 l 1 l i {. a,C,0 8 4 I i ~ ; i i ), 1 1 t 1 'I 6 a ii ? 1 - i i .i t i .1 ? . I - t l I ' j S;WOCEs6\\RFK\\1EPJFKl.OVH Expansion - 10 r.bn=y n, isos .n. .....e ., ~.
2hbe Expansion De:cription NRC Question 1.b) (Cont.) e Expansion Process Tests o Tested oversized unpacked and packed crevices with no significant effect on the bulging process. o Collars were monitored for permanent changes in diameter. (All collars were new.) e All collars remained elastic during the expansion testing. Collars were sized to provide the same average m radial stiffness as the TSP based on finite element analysis. o Testing in a TSP simulant with twenty-five tube holes and flow holes was performed. No changes in any hole or ligament dimensions were observed based on micrometer measurements. SAAPC\\CCE95\\RFKYISP_RFKr.OVH Expansion - 11 r.bn -ysi,isos
Tube Expansion Description P l e TSPIntegrity o Elastic-plastic Snite element model analyses performed considering: a No denting u All neighbors dented a Four pitch direction neighbors dented a Four diagonal neighbors dented a Two pitch direction neighbors dented o Only about 4 ksi of radial pressure is transmitted to the TSP hole. o Peak stresses ranged from 19.4 ksi for no denting to a maximum of 20.1 ksi for four diagonal neighbors dented. o Denting of neighboring tubes has only a minor effect on the peak stress on the ID of the TSP hole. l smCCE95\\RFK\\ TSP _RFK1.OVH Expansion - 12 February si. W95
s-s- H N/ N/ i \\\\ /// \\\\\\ / // \\\\\\ /// .\\\\\\ 4/s /s i -~ o- -s s n . Tutt ~ls-s- N/- / \\\\ // / \\\\ // // \\\\\\ /,/ \\\\\\ j N /N
- man.n.
'ls n -s .= l Figure 10 5. Finite Element Model of TSP With Expanded and Dented Tubes 1 10 34
l .1 .1 i i 1 s s. a mm.: l f j si.. = u ss i /N j v . swr s
- m. msu l
l l ne...mm - gy m.mm
- n. mm
- u. mm g>
... m.
- a. asim i
is mm 4 a. m. 1s. tWE y .:"~ h A/ ...sn z e.am x
- -'$m e
..u = s. .. um 3 s.- 0<< =
- s. sam i
n.an a s j [, i
- ................ 1:i "PW 1
) -1 i i Figure 10 7. Stress Intensity Contours Near Expanded Tube 10 - 36 I
_4, l h*. I T s** /- w. m,-.. ; ? oss j i / - f was.ed.. Nff .mias t i i .m as: Nk# 3 10. N i i
- n. nisa
- n. ins.
l M. 620. e is. . im. 1 i / T n. e - n. n. W n. f. il \\ \\ s / i
- > =
l { l
- 3. m.
L ,)-s .u. s e r l .. m \\ ~ 's................,,,. v l-i s e....................... . i i Figure 10 9. Stress Intensity Contours Produced by Tube Expansion With Four Dented Tubes in the Diagnonal Direction 10 38 w ~ w w
Tube Expansion Description. l t i i i ) o For no denting, a minimum ligament of 0.072" could l exist without yielding of the TSP hole at the ID surface for a TSP with minimum structural properties. o For the. worst denting case the minimum allowable I ligament is about 0.075" for a TSP with minimum structural properties. o The minimum ligament for gross yielding could be 1 significantly smaller than those determined for yielding at the peak stress location. o Nominal ligament is 0.110", hence it is unlikely that a - minimum ligament case could occur. i l 'I 1 t S:\\APC\\0CED5\\RFK\\ TSP RFKi.OVH Expansion - 16
- r. bro.rr si, im
)
l-s eres e lmd amp e i I.oumme o I ' \\ / \\/ sw 6
- #N
/ v .siwr heen. e M991 f p' Iden e.97Fl4 W e,se.5. s s' I. e 27395. r \\/b . i. ms 11e 34231 ,g \\ \\; g s y lle11315. ie s i s J ,} l n...m n e uasi-i j,. W ) g\\
- i. e s
t o MSS. I ~ .e But$ $ e e.85 l T / (. y e f,bst s e sses. b S e uts y a e 733 } y L.............. ,,rM'< +" @~~......,,,-,, i l l Figure 10-10. Stress Intensity Contours for Minimum Ligament l i 10 - 39 i
Tube Expansion Description l lY L t o Cmdusions o Bulges in the range of [ ]*^* will be achieved in j the Braidwood and' Byron tubes as a result of the expansion process. o The bulges [ ]*^* will provide 1 the required axial stiffness to restrict motion of the TSPs during a postulated SLB. o The Tube / TSP expansion process will not result in any i yielding of the TSP ligaments. l seccs:95WFKYTSP_RFK1.OVH Expansion - 18
- r. bro.ry22,1996
Tube Expansion Process Evaluation Potential for Circumferential Cracking (Q. Ic) Locked TSP Interaction Effects (Q. 5) ODSCC Propagation by Tube Expansion (Q. Id) Need for Stress Relief of Expansions (Q. le) ) 1 NRC/ Comed / Westinghouse Meeting i February 23,1995 Presented By: T. A. Pitterle Westinghouse NSD. i i i = y
Potential for Cirunnf rential Cracidng at Tube Er== ions (Q. Ic) Evaluation based upon: Operating experience for tubesheet expansions adjusted to plugged tube temperatures Hydraulic expansions with no indications Hardroll expansion time for hot leg circumferential cracking adjusted to plugged tube temperatures and no reported cold leg circumferential cracks Operating experience for implemented preheat region hydraulic expansions at cold leg TSPs (including Braidwood-1 and Byron-1) and U bend repair at Plant G-1 Laboratory tests on cracking of expanded tubes Temperature sensitivity tests SCC tests of bulged hydraulic expansions Stress indexing tests w n e
1' Potential for Cirmmr rential Cracking at tube Evrmnaions e Conclusions No amirrences of circumferential aacking in hydraulic tuhaaheet expansions operating at >615'F, in preheator hydraulic expansions or in field hydraulic expansion repairs Stress Indaring Test Results . ID residual stresses typical of normal hydraulic expansion (i.e., minimal sensitivity to diameter ur to about [ ]"* . ID residual stresses less than or equal to hardroll expansions for range-of expanded diameters [ ]** for tube expansion process. Therefore, times to crack in bardroll expansions adjusted to plugged tube temperatures provide an acceptable estimate of time to crack for the exparded tubes. . OD residual stress approximately independent of diameter up to the [ ]** Therefore, ODSCC less likely than PWSCC. i SCC tests of bulged hydraulic expansions (TF Alloy 600) Bulges up to [ ]** exhibit only axial PWSCC and do not progress Throughwall in times equivalent to operating conditions in < 28 years . Bulges of about [ ]** had circumferential cracking in shorter test times A w m-=s m e-'+- m m rn w4- +e
i. iu . Figure 10-18 Polythionic Stress Index Testing Results for Hydraulically Expanded Tube Specimens a,b,c w i e 1 10 - 47
Figure 10-17. PWSCC Test Results for Bulged Hydraulic Expansions in Alloy 600 'IT a,b,c i l L BULGETST.XLS
4 Potential for Cimunferential Cracking at Tube Expansions Conclusions Extrapolation of hartl roll expansion time to ciraunferential cracking (3-4 years minimum) to plugged tube temperatures (<540'F) support time to cracking in expanded tubes that exceed the planned operating periods (i.e., times of about 48 or more years) Overall Conclusions Circumferential cracking in the plugged, expanded tubes would not be i expected in the operating period of the plant i Axial cracking is more likely to occur than circumferential cracking for the expansion diameters ofinterest i PWSCC more likely than ODSCC based on residual stresses but ID of plugged tube likely to be dry and less susceptible to PWSCC i 1 i f i +
Table 10-6 Temperature Based Time Factor for Circumferential Cracking of Plugged Tubes Operating Time Plant Tube Dia. Ex Process When Circ Crack Reported T. T. Tirne Factor Expected Time to IDSCC ODSCC ( F) ( F) (note 1) Crack Plugged Tube (years) (years) (years) B-2 0.75 Mech 3 619.9 542.6 16 48 S 0.75 Mech 4 618.8 541 16 64 O h V-2 0.875 Mech. 8 610.9 617 32 128 to W-2 0.875 WEXTEX 8 609.7 524.7 16 128 (note 2) Note 1: Tirne factor based on Arrhenius equation Note 2: No mechanical expanded tube data are available m__a
Imked TSP Interaction Effects (Q. 5) Potential concerns assessed Interaction of tube / TSP or tube / TSP / wrapper / wrapper shell supports when TSPs are " locked" in position Assessed nominal tube bundle condition with minimal tube / TSP contact force and tube / TSP lockup condition Both conditions exist without tube expansion. Tube / TSP lockup is the expected condition in most SGs Backgmund Information In Model D4 SGs, TSP axial positions are determined by 13 stayrods/ spacers and " backup bars" welded to the wrapper or divider plate above and below the TSP Addition of expanded tubes is similar to adding more stayrods except that expanded tubes are an order of magnitude less stiff than a stayrod Net effect of adding 21 expanded tubes is to reduce the flexibility of the TSP (increased out-of-plane stiffness). The TSP position and interaction with the wrapper are predominantly determined by the stayrods, backup bars and wedges Addition of e::panded tubes does not add any significant new loading j mechanisms to the TSPs while limiting SLB plate deflections L i l
y m -2; I-Irari TSP Interadion Effects ' Nominal bundle conditions with minimal tube / TSP contact force Tube expansion does not change tube / TSP or tube / TSP / wrapper. interactions or loading mechanisms If hot and cold' TSP positions were determined by tube / TSP contact forces prior to expansion, slippage after expansion may result in some indications extending outside the TSP at cold inspection conditions Tube / TSP " Lockup" Condition Prevalent current condition as indicated by presence of ODSCC within TSPs even for upper TSP indications Many tubes participate'(denting not required for " lockup" condition)- such that TSP elevations follow hot / cold tube expansions. Reference condition for lockup is the hot operating tube / TSP elevation with nominally zero interaction stresses Cooldown condition causes interactions among tubes, TSPs, wrapper, wrapper support structure and tubesheet - TSP bending occurs with a maximum at the top TSP and minimum at-lowest TSP - Local bending of the TSPs at stayrod and backup bar locations - Since tubes are anchored to the tubesheet, net effect is to load the i wrapper to shell support structure to react the wrapper loads and the tubesheet to react the stayrod loads l e
Locked TSP Interaction Effeds 1 1 Tube / TSP " Lockup" Condition (Continued) With tube expansion implemented at cold conditions, expanded tubes are equivalent to tubes plugged after lockup has occurred. No adverse structural effects have been observed in plugged tubes and none would be expected for expanded tubes Tube expansions introduce no new loading mechanisms for SG structural considerations since the tubes are already locked to the TSPs Conclusions Operation with expanded tubes is enveloped by existing conditions with acceptable operating experience and additional analyses are not required-to support operation with expanded tubes l
Potential for Propagation of Pre-Existing ODSCC by Tube Expansion (Q. Id) l t l i I i Expansion process mn result in overpressurization of existing indimtions within the mnfines of the TSP Crack face may open by up to the crevice clearance - Burst tests for indications within the TSP generally show small crack extensions and similar results can be expected for the expansion process Even if crack tearing from expansion, or corrosion crack growth at pre-i existing ODSCC indications would occur, the axial cracks would not significantly affect the stiffness of the expansion for resisting axial displacement of the TSP Conclusion Pre existing ODSCC is acceptable for expanded TSP intersections and would not significantly affect the functional capability of the expansion 4 l
Consid: rations for Stress Relief of Expansions (Q. le) Very low potential for circumferential cracking at plugged tube expansions Design margins included for postulated circumferential cracking by implementation of sleeve stabilizers and redundant expansions Sleeves result in fail-safe design against severed expansion at lower 3 TSP elevations with downward (toward tubesheet) hydraulic loads Based on the low potential for circumferential cracking and the expansion 1 process design margins, stress relief to further reduce the potential for circumferential cracking is not necessary l I
f i Hydraulic Loads l NRC/ Comed / Westinghouse Meeting February 23,1995 1 i Presented By: M.H.Hu Westinghouse NSD
l HYDRALLIC LOADS UNDER AX SLB EVENT j f i t MODELS TRANFLO ANALYSIS l MULTIFLEX ANALYSIS i SENSITIVITY STEDIES CONCLUSIONS
MODELS A SCHEMATIC OF SG FLOW CIRCULATION LOOP Pressure Drops along the Loop Unique Features of Moisture Separation Initial Conditions l i Boundary Conditions
CONDITIONS OF ANALYSES
- VENTURI FLOW LIMITER-
- BREAK LOCATION - sonozzte
- BREAK SIZE - ou1uonus
- WATER LEVEL - 487-
- TSP LOSS COEFF. - NOMINAL
- DOWNCOMER LOSS COEFF. - NOMINAL
- MOODY DISCHARGE COEFF. - 1.0 4
I
COMPARISON OF TRAXFLO AXD ME'LTIFLEX REST ~LTS
- SIMILAR BREAK FLOW RATE
- TSP PRESSURE DROPS Similar Transient within 2 sec TRANFLO > MLLTIFLEX
- STILL NO DEFINITE ANSWERS FOR DIFFERENCES BETWEEN CODES O
e ~-n. ~ -yn,.
g . Table 5-1 -Hot Standby Pressure Drops Calculated by TRANFLO and MULTIFLEX 8,C 4 5 - 14
EFFECT OF ACOUSTIC WAVE t
- MULTIFLEX CALCULATION
- With Flow Limiter - Case 31 - W/O Flow Limiter - Case 31a
- Case 31: Smaller Pressure Drops than TRANFLO
- Case 31a: Similar Pressure Drops like TRANFLO
- BOTH CASES YIELD ONLY 5%
PENETRATION OF INCOMING WAVE TO STEAM DOME
- BOTH CASES SHOW NO DISCERNABLE ACOUSTIC WAVE ES' TUBE BU:SDLE
^ e y--,-wr y -*T**w-"
I SENSITIVITY STUDY o
- UNCERTALSTY PARAMETERS i
i i BREAK LOCATION BREAK SIZE ~ WATER LEVEL i TSP LOSS COEFFICIENT DOWXCOMER LOSS COEFFICIENT MOODY DISCHARGE COEFFICIENT +-9 m t-----*rn-<s- -w,yputue--ytmw--
8,C. 1. 4
- l. '.
h 4 I F 1 I 6 - 12
9 i e Tatde 6-2 i SLB Peak TSP Pressure Drops and Ratio of Each Case to Case l' s a,c h l f 3 i h i 9 I i 4 i I h i i i l l i I ^ 6 - 13
'E .m CONCLUSIONS i
- ACOUSTIC WAVE IS NOT DISCERNABLE INSIDE sg i
- EFFECT OF ACOUSTIC WAVE ON TSP PRESSURE DROP IS NOT DISCERNABLE
- TRANFLO CODE HAS BEEN SPECIFICALLY DEVELOPED FOR SG 1
L
- TRANFLO BEING PROVEN ACCEPTABLE AND CONSERVATIVE
'4mv m e r- ,*w-
CONCLESIONS (CONTISUED) ]
- A FACTOR OF ON REFERENCE LOADS REPRESENTS A CONSERVATIVE LOAD ADJUSTMENT FACTOR
1 1 i i j l ) TSP DISPLACEMENT ANALYSIS FOR MODEL D4 STEAM GENERATORS SUBJECT TO STEAM LINE BREAK IDADS i i WITH AND WITHOUT TUBE EXPANSION l l 1 3 RICHARD E. SMITH .i i FEBRUARY 23,1995 ? 4 DISK 227. BRDWD\\TUBEXP\\NR002 - 2/21/95
o t TSP DISPLACEMENT ANALYSIS PRESENTATION OUTLINE \\ .i GENERAL METHODOIDGY 't TUBE EXPANSION ANALYSIS - BASIS FOR TUBE SELECTION i i TUBE SUPPORT PLATE SUPPORT SYSTEM FINTTE ELEMENT MODEL i APPLIED PRESSURE LOADING
SUMMARY
OF DISPLACEMENT RESULTS - WITH TUBE EXPANSION COMPARISON OF EXPANDED AND UNEXPANDED CASES l RESULTS FOR REDUNDANT EXPANSION CASE [
SUMMARY
OF TUBE EXPANSION I4 CATIONS i SENSITIVITY TO IAAD AMPLITUDE AND POSTULATED CIRCUMFERENTIAL CRACKING 1 SENSITIVTIT TO TUBE EXPANSION POSITION
SUMMARY
OF AKIAL FORCES IN EXPANDED TUBES ANALYSIS CONCLUSIONS i l i l I i DISK 227. BRDWD\\TUBEXP\\NROD2 2/21/95 l 5
TSP DISPLACEMENT ANALYSIS-GENERAL METHODOIDGY I r L TRANSIENT DYNAMIC ANALYSIS APPROACH e GENERATE MASS / STIFFNESS MATRICES FOR ALL STRUCTURES INCLUDED IN THE ANALYSIS ACCOUNT FOR PLATFAD-PLATE VARIATIONS IN GEOMETRY AND SUPPORT CONDITIONS l INCLUDE HYDRODYNAMIC MASS EFFECTS DEFINE APPROPRIATE DYNAMIC DEGREES OF FREEDOM GENERATE MASS AND STIFFNESS MATRICES i - APPLY TRANSIENT PRESSURE IAADS i CALCULATE TIME HISTORY RESPONSE OF PLATES DETERMINE DIFFERENTIAL PLATE / TUBE DISPLACEMENTS CAILULATE DISPLACEMENTS AS A FUNCI1ON OF TUBE POSITION FOR. LIMrrING PLATES CAILULATE NUMBER OF TUBES FOR GIVEN DISPLACEMENT AMPLITUDE i EVALUATE STRESSES IN STRUCTURAL MEMBERS AND COMPARE TO MATERIAL YIELD STRENGTH i I DISK 227. BRDWD\\7UBEXP\\NR002 1/2745
TUBE EXPANSION ANALYSIS-BASIS FOR TUBE SELECTION REVIEW INDIVIDUAL PLATE DISPLACEMENTS FOR CASE WITHOUT TUBE EXPANSION IDENTIFY LOCATIONS OF MAXIMUM DISPLACEMENT AS TUBE EXPANSION POSITIONS INCORPORATE STIFFNESS FOR EXPANDED TUBES IN'IU DYNAMIC SOLUTION PERFORM INITIAL DYNAMIC SOLUTION ITERATE ON NUMBER AND LOCATION OF EXPANDED TUBES UNTIL 0.100 INCH CRITERIA IS SATISFIED PERFORM SENSITRTIT RUNS FOR IDAD / POSTUIATED CIRCUMFERENTIAL CRACKS AND LOSS OF TUBE SUPPORT DEFINE REDUNDANT TUBE EXPANSIONS AT CRITICAL IACATIONS PERFORM RUN TO DETERMINE SENSITnTIT TO EXPANSION POSITION EVALUATE STRESSES IN STRUCTURAL MEMBERS AND COMPARE 'IU MATERIAL YIELD STRENGTH DISK 227 - BRDWD\\TUBEXP\\Mt002 1/27/95
TUBE SUPPORT PLATE SUPPORT SYSTEM - SUPPORT SYSTEM IS A COMBINATION OF TIERODS / SPACERS, l VERTICAL BARS, WEDGES (Ahm EXPANDED TUBES) TIERODS ARE SOLID BARS THAT RUN FROM TUBESHEET TO TOP SUPPORT PLATE ONE CENTRAL TIEROD RUNS FROM TOP OF PREHEATER 3 (PLATE L (8H)) TO TOP SUPPORT PLATE SPACERS ARE HOLLOW CYLINDERS I4CATED ON OUTSIDE OF TIERODS, AND ARE LOCATED BE'nVEEN SUPPORT PLATES SPACERS ARE NON-LINEAR SUPPORTS (THEY ARE NOT RIGIDLY A'ITACHED TO SUPPORT PLATES, EXCEPT FOR CENTRAL TIEROD) VERTICAL BARS ARE RECTANGULAR BARS WELDED 'Io EITHER WRAPPER OR PARTmON PLATE ABOVE AND BEIDW TUBE SUPPORT PLATES i EXPANDED TUBES PROVIDE BOTH UPWARD AND DOWNWARD SUPPORT TO PLATES AS A RESULT OF EXPANSION ABOVE AND BEIDW PLATES TUBE / PLATE INTERACTION DUE 'Io PLATE ROTATION INCLUDED FOR CASE WITHOUT TUBE EXPANSION DISK 227 BRDWD\\TUBmaCO2 1/27/95
p; ( FIhTI'E ETRMEhT MODEL NINETY DEGREE MODEL -- INCLUDES ALL HOT 12G PLATES, CHANNEL HEAD,' SHELL, TUBESHEET, AND TIERODS ALL COMPONENTS, EXCEPr TIERODS, MODmRn USING THREE-' DIMENSIONAL SHELL ELEMENTS TIERODS MODELED USING BEAM ELEMENTS - MODELING OF PLATES INCLUDES CUTOUTS ALONG TUBELANE, AT { OUTER EDGE OF PLATE FOR PLATES N (10H) AND P (11H), AND CENTRAL CUTOUT FOR FDB (PLATE A (1H)) DISK 227 BRDWD\\TUBEXP\\NR002 - 1/27/95
B,C d 1 1 I 1 1 1 1 i l i l i l I Figure 7-14. Overall hite Element Model G~- -+y 7 - 39
APPLIED PRESSURE LOADING i 1 SEVERAL DIFFERENT SETS OF LOADS CONSIDERED FOR UNEXPANDED CASE p VARIATIONS IN INITIAL CONDITIONS (FULL POWER VERSUS HOT STANDBY) VARIATION IN BREAK LOCATION (S/G NOZZLE VERSUS OUTSIDE l CONTAINMENT) APPUCATION OF UNCERTAINTY FACTOR 'Io ACCOUNT FOR ANALYSIS UNCERTAINTIFE i Ia11 TING SET OF LOADS USED FOR TUBE EXPANSION EVALUATION BREAK LOCATION - S/G NOZZLE LNITIAL CONDITION - HOT STANDBY UNCERTAINTY FACTOR OF 2.0 DISK 227 BRDWD\\TUBEXP\\NRCO2 1/27/95 I
e
SUMMARY
OF DISPLACEMENT RESULTS CASE WITH TUBE EKPANSION COMPARISON OF EXPANDED AND UNEXPANDED CASES a,c k DISK 227. BRDWD\\TUBEXP\\NRCD2 1/27S5
I
SUMMARY
OF DISPLACEMENT RESULTS CASE WITH TUBE EXPANSION RESULTS FOR REDUNDANT EXPANSION CASE I F 1 8,C f 6 I l l i I I i DISK 227 BRDWD\\*IUBEXPNNROD2 112755 I I l I
1.- TaNe 8-11 Summary of Tube E-nainn Locations 8,C i i I 8 - 25 ~
a,e e i a Figure 8-26. Map of Tube Emancim htims 8 - 53
SUMMARY
OF DISPLACEMENT RESULTS CASE WITH TUBE EXPANSION SENSITIVTIT 'Io LOAD AMPUTUDE AND POTENTIAL CIRCUMFERENTIAL CRACKING a,c h a L e O F N DISK 227 BRDWD\\nJBEXP\\NR002 1/27195 e
y Expand:d Tube Loacati:ns Breaks at All Plates (Maintain Redundant Expansions) a,c I i 1 I i i DISK 225-BRDWD\\TUBEXP\\TBL214 01/22/95
SUMMARY
OF DISPLACEMENT RESULTS CASE WITH TUBE EXPANSION 1 SENSITITTIY 10 TUBE EKPANSION POSITION L l 8,C l F l i I. DISK 227. BRDWDN7UBEXP\\h1002 1/27s5
i i i
SUMMARY
OF DISPLACEMENT RESULTS CASE WITH TUBE EXPANSION PLATE P AIDNG TUBE LANE FINITE ELEMENT MODEL CONSIDERD HOT LEG ONLY ) COLD LEG DOES NOT HAVE 'IUBE EXPANSION DISPLACEMENTS FOR CASE WITHOUT UPPER PLATE EXPANSIONS AIDNG 'IUBELANE APPROXIMATES COLD LEG RESPONSE j COLD LEG DISPLACEMEN'IS APPROXIMATELY EQUAL TO [. ]'A' DISPLACEMEN'IS AIDNG TUBELANE WILL BE APPROXIMATELY EQUAL 1 'IO AVERAGE OF THE HOT AND COLD LEG RESPONSES, OR [ ]*
WeedaMm Proprietary Class 2 p TmW 8-18 Simry of Axial Fareas in Fra,L-1 Tubes SLB Transient Model D4 Steam Generators soc l. 4 I I l l 1 l I t 8 - 27
F ANALYSIS CONCLUSIONS 'IUBE EXPANSION IS EFFECTIVE IN LIMITING PLATE DISPLACEhENTS, ESPECIALLY FOR THE IDWER PLATES IDSS OF SUPPORT OF AN EXPANDED TUBE AT A NON-REDUNDANT IDCATION, MAX PLATE DISPLACEMENTS [ ]* EIASTIC ANALYSIS PROVIDES A GOOD APPROXIMATION OF THE PLATE RESPONSE UNDER SLB IDADS
Analy:is Methods for Burst During SLB Comed / NRC Meeting on Increased Voltage IPC for Braidwood 1 & Byron 1 February 23,1995 1 1 Methods for SLB Tube Burst Analyses R. F. Keating Steam Generator Technology & Engineering Nuclear Services Division Westinghouse Electric Corp. y S:\\AKAOCE95\\RFKYIEP_RFK2.OVH Burst - 1 Febnmry 21,1995
Analy:Is Methods for Burst During SLB NRC Question 3. e Prokhility of Burst of Analysis Methods o Correlation of Burst to Crack Length Used for Probability of Overpressurization a o Correlation of Burst to Exposed Crack Length a Used for Probability of Burst o Probability of Burst to Crack Length o Probability of Burst to Exposed Crack Length S;MOCE95\\RFK\\ TSP _RFK2.OVII Burst - 2 Febnury 21,1995
Analy:is Methods (wBurst During SLB NRC Question 3. e Burst Pressure as a Function of Crack Length o Non-Linear Regression analysis of database of 206 test results (EPRI, W, NUREG): .,C,g (1) where A= (2) }R,,, t S.\\APC\\CCE95\\RFK\\ TSP.RFK2.OVH Burst - 3 Febw 21,1995
m; q Analy:is M:thods forBurst During SLB NRC Question 3. r e Index of Detenninntion of 99.1% e Allp Values < 0.1% e For 95%/95% LTL Material: o a,,,,a = 0.75" for 2650 psi @ 650 F l o a,,,,;ca = 0.51" for 3657 psi @ 650 F l ) secemwnsP_xrx2. ova Burst - 4 r.bru.,y si, im D
Analy:Is Methods forBurst Dunng SLB NRC Question 3. e Burst Pressure as a Fimdian of Crack Exposure o Based on constraint offered by the TSP hole clearance as determined by testing. a,c,e i = i o For small clearances, e.g.,13 mils, the burst pressure is the same as for a throughwall crack with a total length equal to the exposed length of the crack-1 o For larger clearances the burst pressure is slightly decreased from that for small clearances. Over the range ofinterest this amounts to about [ ]" 1 SAAPC\\0CE96\\RFK\\1EP.RFKt.OVH Burst - 5 February si,1985
j Analy:is Methods for Burst During SLB NRC Question 3. l e Burst ProbabiHty as a Function of Crack Length i o The distribution of the Burst Pressures for a specific crack length is the product of the distribution of the Normalized Burst Pressures for that crack length and the distribution of the Flow Stress of the tube materials: 2t P3=. pS (3) xr Rm where P ~ N(P,o ) and S ~ N(S,o ). Py is defined by y y r f f s equation (1). o The Standard Deviation of the distribution of the Burst Pressures is P y(g,) g V(P ) + V(S )V(P ) (4) 2 U,= p y r 3 r 3 I l S.MOCE95\\RFKYISP RFK2.OV}i Burst - 6 Februry 21,1995
s Analysis Methode forBunt During SLB NRC Question 3. o The Skewness of the burst pressure is M oc P '5r'V(P )V(S ) (5) 3 y 3 r Ma is always > 0, hence the distribution is skewed right. o The statistic ~ 8 8IS t= (6) OP may be conservatively assumed to be distributed as a Student's t distribution with [ ]8 o The probability of burst is taken as the same as the probability of obtaining a value of t equal to or greater than the value from equation (6). o Since the t distribution is symmetrical and the expected distribution is skewed right, the lower tail of the predicted distribution of burst pressures would be j expected to be higher than the actual distribution of l burst pressures. I t- ) SAAPC\\0CD6\\RFK\\7EP.RFK2.OVH Burst - 7 r.bru=7 si, ms
Analy:is Methods for Burst During SLB NRC Question 3. e Monte Carlo verification of deterministic Probability of Burst. o Always conservative over the range ofinterest. i o Degree of conservatism increases with decreasing probability of burst. aAc SAAPC\\CCE95\\RFKYlEPEK2.OVII Burst - 8 v.arorysi,1993
Analysis M:thods forBunt During SLB NRC Question 3. AAc i 1 i i 1 S:60CE95\\RFKVISP_,RFK2.OVH Burst - 9 p.3 ,, si, i,3
Analycis Methods forBurst During SLB NRC Questjan 3. e Burst Probability as a Fametion of Crack Exposure o Adjustment of the t statistic 8,C,C (7) where P is from equation (1) and og is assumed to be 3 the same as for free-span indications. e Burst Probability for All Indications in the SG o Assume all indications have long TW cracks. The PoB of one or more of m indications is PoB(m indications) = 1 - h (1 - PoB ) < f PoB u y k=1 k=1 o The PoB of one or more indications in n bins is POB(n bins) < f m PoB, (9) i i=1 smccessurKvisP.JRFK2.OVH Burst - 10 r.bn = 7 s1.199s
Analy:is M:thods forBurst During SLB NRC Question 3. i i l 1 I e Current Method is Detenninistic i o Omits uncertainties in the parameters, BUT, f a Judged to be consemative. m Applied to all intersections in the SG. { m Probability of burst of each indication is overestimated. m For the crack exposures ofinterest, i.e., 0.15" < a < 0.36" the PoB is likely at least an order of magnitude lower than the value being used. I h I I l 1 l swmocesswmTSP.JLFK2.OVH Burst - 11 Febnury 21,1995
Analycis Methods for Leak Rate During SLB Comed / NRC Meeting on Increased Voltage IPC for Braidwood 1 & Byron 1 February 23,1995 Methods for SLB Tube Leak Rate Annlyses R. F. Keating Steam Generator Technology & Engineering Nuclear Services Division Westinghouse Electric Corp. l l I surmoci:sswmTSP_EFK3.OVII SLB Leak - 1 Februry 21,1995
. Westinghouse Proprietary Class 2 Analycis Methods for Leak Rate During SLB NRC Questian 3. ) ) i e Total Leak Rate Analysis Methods o Correlation of Bounding Leak Rate to Crack Length o Correlation of Crack Length to Volts o Correlation of Bounding Leak Rate to Volts o Monte Carlo determination of 95% Confidence Total Leak Rate d t i swooctesurmur_arxs. ova SLB Leak - 2 rw n, im -
Analy:is M:.thods for Leak Rate During SLB ~ NRC Question 3. e Free-Span Leak Rate Analyses o Correlation of Probability of Leak to the common logarithm of the Bobbin Volts. o Correlation of the logarithm of the Leak Rate to the logarithm of the Bobbin Volts. c swoccasurnvrSP.RrK3.OVH SLB Leak - 3 rebmary n, as
Analy:Is Methods for Leak Rate During SLB NRC Question 3. e Overpressurized Tube Leak Rate Analysis o Limiting mass velocity for large cracks in the free span is the choke velocity. o Apply to small cracks located within the TSP. s Turning, friction and form losses are small, thus the. mass velocity is conservatively estimated. Mass Velocity for Large Cracks 14000 12000 / 10000 r_ , 8000 I2 4000 2000 i 0 0.40 0.50 0.60 0.70 0.80 Crack Length (inch) e Limiting mass velocity is [ ]"'** llVse&ft. SNCCE95WFinTSP.RFK3.OVII SLB Leak - 4 February 21,1995
Analy:is Methods for Leak Rate During SLB NRC Question 3. e Estimation of Crack Opening Area o Assumed to contact only at the center of the crack flanks. o Assumed that no expansion of the tube at the ends of the crack takes place, leading to a crack opening area of 4 = L C = xcL 2 2 where C is the crack center COD. k1 c COD Leak Flow Mfst 4 p 4 V Area t 4 L 1 1 Tube 'w Tube Support Plate TSP M I.WPG SWQOCE95\\RFK\\ TSP _RFK3 0VH SLB Leak - 5 February 21,1995
l Analy:Is Methods for Leak Rate During SLB NRC Question 3. i o Flow is really limited by the projected area between the tube and the TSP hole, i.e., ) I A=4 c_Lf = cL r 2, 2,. where A is the limiting flow area. f / \\ + N c A=n=M Crack Area or Half V Crack Area COD Effective or Flow Limiting Crack Half Area i Tube / TSP A Diametral c Clecrance y L/2 Crack HalfI.ength LEAKARE1,WPG i SMMOCE95GFB1EP RFK3.OVil SLB Leak - 6 February 21,1995
Analy:is hiethods for Leak Rata During SLB NRC Question 3. e Bommeling Leak Rate as a Function of Crack Length o Using the appropriate crack opening area, the limiting flow is then r 3 Qua = 2 cL P s i Bounding Leak Rate vs. Throughwall Crack Length 12.0 j -+-16 mils Clearance -o-21 mils Clearance / 10.0 g / a p E 8.0 f ,/ j 6.0 a / c i 4.0 s"/ f i s' 2 / T,. -' 2.0 f V/ 0.0 i 3.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 Crack Length (inch) S:\\ANAOCE95\\RFKVISP.EFK3.OVII SLB Leak - 7 February 21,1995
Analy:Is Methods for Leak Rate During SLB NRC Question 3. e Correlation af Bobbin Amplitude to Crack Length o Developed.for the EPRI database report,,, s l where V, and 1 are parameters fitted to the data base.,,,, i i P o In practice, a lower 90% confidence bound on the fitted ~ equation is used to relate bobbin amplitude to crack length. S:\\APCNOCD5\\RFKVIEP RTK3.OVH SLB Leak - 8 r.bru.rysi.1995
Analy:is Methods for Leok Rate During SLB NRC Question 3. e Bcumding Leak Rate as a Fundian of Bobbin Amplitude o The bobbin voltage as a function of crack length is combined with the bounding leak rate as a function of crack length to obtain the bounding leak rate versus bobbin voltage. o The bounding leak rates are conservative when compared to the free span leak rates. 1 ) i o The bounding leak rate is then used in the Monte Carlo analysis for indications simulated to be overpressurized. S:\\APC\\CCED5\\RFK\\'lEP RFK3.OVH SLB Leak - 9 February 21,1995
NDE Methods Necessary to Support Higher Repair Limits and Tube Expansion (Q.2b,2d) Bobbin coil profilometry for post-expansion diameter confirmation
- Profilometry measurements of 3/4" expanded tubes agree with actual ids within a standard deviation of 2 mils, an uncertainty with negligible influence on the expansion stiffness Periodic inspections of tube expansions for circumferential cracks
- Existing capabilities (RPC, Cecco) for inspecting sleeves are adequate for expansions since only a severed or near severed expansion will influence expansion stiffness NDE Capability for Assessing TSP Integrity
- Not required since APC would not be applied to plants with high levels of denting for which TSP integrity might be a concern and tube expansion not applied at TSP intersections with > 5 volts dent which would result in minor TSP stress
- NDE capability not adequate to acceptably discriminate between cracked and normal TSP ligaments i
i l l 1
e a,b,c f gee +W ep EEL I SIM i S/C IT Itt.ET mi I.I llu \\ ) < / ?> ,s....,_,e _ -,e,o,.e f j g cat se ses.e j f j h I stasem ses.e site I n -e.e4 n. OSSiache E
- -,m t.
\\RA N ... -A' l PLST.1 v.. w.. I setta ll siane m l m l Last w ll uppEn w l v. s J o vs. s l talGt IEt ll LAeER mLD l v i I unnaua l .r. g ~o ... s ... s ',.===mic.. d ( J ( _) C -et, i - mo~ < ~> SW 5 5 Figure 10-12. Sample with two sleeves expanded at TSP locations. The measured I.D. for the expansion indicated in 0.806 inch. Note: 7/8 inch tube OD I l 10 - 41
? t ne 1 m 2 e 0 r 0 us 0 = a 9 s e
- 9. "8 M
0 l 0 ae C F = 0 / S 2 0 d E L ^ 0 I R =- o x d 5 1 =n se. D. l pI mde ru asa Se M eC bE / us Tl v au t 4cA /3
e Figure 1013 a. Bobbin Data for TSP with No Crack Figure 1013b. Bobbin Data for TSP with 50% Deep Cracks in Two Ligaments Figure 1013a Bobban Data for 13P with No Crad s n m g l l J J ervorrt e i re a 1 1 l N P i / s s
- i i
k i .e !" i E H j Farure 10 llh Bobbin Data for 'ISP with 50% Deep Crede in Two lagements i se .=I. t. u.n se.se a se 33.95 se e. C.i 1 Ese gg,ggg um_siar-saarm f_m f__ .s _essrEE se.tv .I 18. o i -i. l.1. .e s D 6 isween T.a s. g i a r ./ cc t 3 u I 9 \\ .n. esusee .em.m e. ..nte...o su H
- : "ir.
4 N R ? ! i i j 10 42
O Figure 1014a. Bobbin Data for TSP with 100% Deep Crack in One Ligament Figure 1014b. Bobbin Data for TSP on ASME Standard Figure 1014a Bobbin Data for TSP with 100% Deep Crack in One lagament 2 a cm a a cm a a sa es se e.. e se 33.ee as em ce 1 333 , g,,,, g a g 1 amBEsimEEstum as EEmirEE entst . I 1.l tem si ~ j .NWTl fD i. In puun t. inwe tesis i 4.r - 9 R ~ 9, as ses g, as se ~ 3 s.. ..e e... .. e. 2 2 R es e """==> as e a 5 l ers in ers see '.**=.8'*'*a'a= ( h [ ( ':l: l E h Figure 1014b Bobbin Data for Field TSP Expansion Candidate as. a,a a v os s e aa se se e. an e n i.si is em on t ari a g,,, g a g i amEmesugBssuRE g 4 t / sa me,m emst "8 i i..i.i l i. i. wennt sw.= mm e e 1 1 1 I
- 8 SIM r
M, M, 8 ~ s... 2 E 4 S. W oe 6 s. EE n e our 3.se us see e E" u 1 4 -d J J ..P... I F t-5, 5 li i i 4 i a I l 10 43 l
i 1 Figure 1015 Bobbin Data for Typical Field TSP Intersection .o. ..i = .m og muts.ammisum g vue g g as m.stm.mo g y. q g 1 ; ...l g se g EMElftl WD i ffC .E O { eux.in s.- - = 9 ic l ew us up m { ) e i e 1 / 4 k 3 } r m LIC i in .f sm 4 f 6.
- i. a in su
- i e-O m.ms..mm.
g ute.m y i WW M Er M N & 8' ***E'es same g M I I I I }d 4 4 J E w s a n s u r u ns, ~ P, P, 5, 5, .o. is ..i an .,, m. m = = sam.i-m.=m g m.iem mn 0 / = ..i.i = mi n, i = n in...! sc = 1 4 l 4 isc 4 S 3 r m o e o o s 5 6. n. c 3 f 3 9 t t s L 1 O ---y-g = 1 i i l -d .? E v m. = c ~ P Y ] l l ~ i i i 10 - 44 .}}