ML20086C492

From kanterella
Jump to navigation Jump to search
Design of Full Structural Weld Overlay on Pbaps,Unit 3 Reactor Water Cleanup Weld No 12-I-1C
ML20086C492
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 10/04/1991
From:
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20086C490 List:
References
PM-549, PM-549-R, PM-549-R00, NUDOCS 9111220262
Download: ML20086C492 (22)


Text

'

=

i I

~

1. Caecutaron tJo. PM-549

(

. e % ';.

10 Page 1 of CALCULATION COVER SHEET FJUCt. EAR EtJGl? JEER!!!G 2.

O LGS 3

DEPARTMErJT Ef PGAPS MS M-20599 Rcv. 2/09 3][

DOClYPE OG1 O'

a faitiating Document:

4. Responsitie Oranch:

5 Tutaf fJo. of Sheets:

G La,t Sheet (Jo:

7.

U Safety Refated

$N NCR P-91723 Piping Engineerinn 14+ Attach 1,2,3 14 O r3onsabty Refated

'2,h 8.

Description:

Design of full structural weld overlay on PBAPS Unit 3

9. Sydem rio.: 12

[

p Reactor Water Clo.anup Weld No. 12-I-IS Structure:

Reactor Buildint; Conponent: Piping 4C RECORD OF REVISIOt1S

(('

12.

Vendor Catt 13 Other Calcs 1t

/1 Signatures s1

10. rJo.

11, Deser.ption of Revision tJumber Rev.

Requiring Revisicri Preparer fei eper

p. - Apprcver/Date t

V 7

4 A!

'O h!

0 Issued for Use l

l l

l l

l l

l 1

l 16 15.

Provides Info to-j ne!cted H Manvol G.E.

Report #

Catc et.ers Receives Info trem:

SASR 91-26 El Compute Anrfl. 1991 Computer program and versbn LOTUS 1-2-1 vcr

-Ill Supersedes:

m_____

-3 q

>1 Calc l'tt-549 Rev. U 5

ATTRIBUTES

  • REV.

REV.

RER REY.

REY.

REV.

REV.

MAtl.

COMP.

CALC.

CALC.

0 1

2 3

4 5

8 ^

REY.

7"'

1.

X X

SOURCES OF D%TA & FORMULAE WERE REVIEWED AtJD VEntFIED TO DE CORRECF.

r{+1M AtJD COMPLETE.

2.

X X

INPUT D%TA FROM SOURCES IN ITEM 1. ADOVE,15 CORRECT AtJD PROPERLY -

EMPLCNED lti THE CALC ich(9 a

X X*

CALCU:.ATIOtJ ASSUMPTIONS WERE, REVIEWED AtJD FOUND TO DE COMPLETE Ato VAllD.

t.hbt 4

X

' THE AtJALYT1 CAL METHOD EMPLOYED lti THE CALC HAS DEEN COtiSIDERED AND Ok Ph4*

IS PROPER FOR THE INTENDED USE OF THE CALCULATION.

i X

t/ATHEMATICAL ACCURAC( HAS DEEtl CHECKED Af4C IS CGEECT (ItOICATE O{

, ^

. METHOD USED):

l a) COMPLETE CHECK OF EACH COMPUTATIOt3 3

b) SPOT-CHECK OF SELECTED COMPUTATIOtJS WHICal ARE INITIALED !?! THE hp CALCULATIOrt A

c) PERFORMAtJCE OF ALTER!4 ATE On APFDOXt,'ATION CALCULATION PER ERDP

/,>

l S9 CALC IS ATTACHEta A

k G

X X

CALCULATION RESULTU WERE CHECKED AGAttJST APPLICABLE, DOCUMENTED DESIGrl CRITEntA Ato FOUND TO DE IN COrlFORMAtJCE.

tNg, 7.

X X

EXISTING CALCULATIOri WH1CH REQUIRE REVISIOt1 DECAUSE OF THIS CALCUtA.

T!Ot1 HAVE DEEN IDENTIFIEQ i

u/*

a X

THE ANALYI1 CAL METHOD DESCRIBED st4 THE COMPUTER CALCULATION SUM-l MARY IS PROPER FOR THE It4TEfJDED USE OF THE CALCULATIOtt

/

9.

X COMPUTADOrlAL ACCURAC/ HAS DEEN CHFCKED Ato FOUtJD CORRECT (INDICATE j

t/LTHOD USED):

j o) CHECK SAMPLE CALC USitJG DATA OTHER THAtt USED IN sat /PLE.

0) PERFORMAt2CE OF ALTERf1 ATE OR APPROXIMATE CALCULATIOr3 FER ERDP 39 CALC IS ATTACHEQ c) DESCR:DE OTHER METHOD IF 9A On 90 IS NOT USED.

/p',3 1a X

OUTPLTT IS REASot4BLE CONSIDERING THE INPUT.

  • THESE ARE THE f.NNIMUM ATTRIBUTES AtJD ARE ?!?T INTEfJDED TO LIMIT THE ItJITIATIVE OF THE CHECKER TO REVIEW OTHER ATTRfeUTES ATTRIBUTES APPLICADLE TO MANUAL AND COMPUTER CALCULATIONS ARE TJOTED tr( AN (X) IN THE APPROPR: ATE COLUMt2. FOR CHECKitlG OF REVISIONS TO MANUAL j:

CALCULATIOt1S, THE ATTRlDUTES MAY DE UMITED TO CNL/ REVISED PORTIOPJS CF THE CALCUtAT10tl. CHECKER SHALL INITIAL EACH ATTRIBUTE COMPLETEa i

2 FAGE og 14

)'

M 20599 Rev. 2109 s

196 21453 7109

'.,,rs CALC NO PM-549 REV O

CE CALCULATION SHEET PAGE 3

OF 14 ORIGINATORNhh//_.DATE / [4/9/

REVIEWERdddnflaa._ DATE __k4I DOCTYPE:000 I.

PURPOSE Design full structural welal overlay for PBAPS Unit 3 Reactor Water Cleanup weld i 12-I-lc.

v II.

APPROACH i

A.

INTRODUCTION During ultrasonic examination of the Reactor Water Clean-up (RWCU) piping system at Peach Bottom Unit 3 (PB3), the examiner located a circumferential indication at the inside surf ace of a 4-inch schedule 80 pipe (see Attachment 1 for NCR).

This indication was found September 23, 1991 near the weld to a check valve (weld 12-I-lC) as shown in Figure 1.

The affected pipe is made of ASTM A-376 type 304 stainless steel. Details on the indication found sta contained in the.

The flaw was determined to have a maximum depth of ^ 18 inch with a pipe wall thickness of 0.40-inch 4

in this reg.on.

This flaw is located at an axial distance of ebout 0.5 inches from the weld centerline extending in length about 3 inches.

To repair the pipe at this location, a full structural weld overlay will be designed and applied at weld 12-I-1C.

This full structural weld overlay will be designed to support the entire pressure, dead weight and seismic loading in the pipe

~

i conservatively assuming that the crack extends through the wall of the original pipe for the entire circumference.

The weld overlay shall be designed in acccrdance with Section XI of the ASME code to restore the pipe to meet ASME code structural margins.

d The weld overlay design consists of a continuous 360* band a

of weld metal deposited over the outside surface of the pipe directly over the crack indication. The overlay is made with high ferrite, low carbon Type ER308L stainless steel weld metal. This material has a very high toughness and is O

resistant to Intergrannular Stress Corrosion Cracking 1

(IGSCC). The weld metal is deposited using an automatic Gas Tungsten Arc Welding (GTAW) technique with water cooling the inside surface of the pipe. Using this process, compressive residual atresses are created at the inside surface of the pipe which tende to arrest crack growth.

195 21453 7189 P -549 0

CALC NO REV

,y

>"74 CALCULATION SHEET PAGE 4

op 14 ORIGIN ATOR M'Ile M/_ DATE e[//9/

~

s NUCtEAR OROUP DOCTYPE:000 REVIEWER O A b]/1/k3DATE /o/h /4 i B.

WELD OVERLAY DESIGN METHODOLOGY In designing a full structural wold overlay, the crack is conservatively assumed to extend throughout the original pipe wall thickness for the full circumference of the pipe.

Making this assumption, the weld overlay design is independent of the size of the indication. This is conservative for the indication found which extends apprcximately 45% through wall for 20% of the circumference.

Also, the crack is unlikely to grow due to the compressive residual stresses created at the inner surface of the pipe using the heat sink weld overlay process.

The wold overlay effectively increason the pipe wall thickness with high ferrite, low carbon Type ER308L stainless steel material that is resist.2nt to IGscc.

Therefore, a crack growing through the wall of the pipe will not extend into the overlay. This will be confirmed by future inspections. The overlay thickness in designed such that a factor of safety of 3.0 is maintained against net section collapse for normal and upset condition loading in accordance with the requirements of Paragraph IWB-3642 of Reference 2.

A factor of safety of 1.5 must also be met for emergency and faulted loading.

B.1 Weld Overlay Thickness An iterative process is used to determine the required weld overlay thickness. An initial overlay thicknews, T.,

is first assumed. Considering the pressure, deadweight and seismic loading on the pipe, t-membrane (P ) and bending (P.) stresses on the i

uncracked, overlaid section (Section A-A of Figure 3) are then calculated using the methodology described in.

The stress distribution shown for Section B-B of Figure 3 is assumed at colla 1,se.

The flow

stress, o,,

is defined as 3 S. as in Appendix C of Reference 2.

For the membrano stress calculated previously, the neutral axis angle is determined by equation 3 of Attachment 3 aat B

= Tr ( 1 - T,/ T,. - P../ a, ) / ( 2 - T / T. )

p y

The bending stress in the uncracked section (A-A) at net section collapse of the cracked section (B-B) of Figure 3 is then calculated according to equation 4 of

. as

.m

~

196 21433 7t89 CALC NO PM-549 REV 0

. h CALCULATION SHEET PAGE 5

14 op ORIGINATOdd'h.a.7d DATE./.o[f[9/

/ /V b I 0

A -[laf.IA1 DATE DOCTYPE;000 REVIEWER _

9 P.=

( 2 o, / 77 ) ( 2 - T /T,. ) sin ( B )

y The net section collapse stresses are then compared against the applied stresses to determine if factors of safety on collapse of 3 for upset loading and of 1.5 on faulted loading are achieved.

(P

+ P.) / (P.. + P. ) t 3 FS.

=

(P,. + P.) / (P.

+ P.,) 3 1.5 FS,

=

If these conditions are met, the assumad overlay thickness is sufficient.

If these conditions are not met, the assumed thickness must be increased and the calculations repeated until the required factors oi safety are achieved.

B.2 Weld Overlay Width After the required overlay thickness has been determined, the overlay width is considered.

The overlay width is sized taking into account several considerations. First, the overlay must extend along the length of the pipe a distance great enough to ensure it will envelope the extent of the cracking.

For an axial crack, this overlay width must take into account the projected growth of the crack.

For a circumferential crack, the extent of cracking is confined to a small axial region of the pipe.

As described in Reference 7, CE has completed studios into the minimum overlay width required to provide adequate structural reinforcement of the cracked area and to assure that the stresses in the overlay will be reasonably uniform. These studies have shown that an overlay width of 0.5 /RT, to each side of the indication is adequate. This axial distance is also great enough to assure that the circumferential crack is fully enveloped by the overlay.

Another consideration is the ability to inspect the indication after the overlay is applied. The UT transducer must be placed flat on the outside surface of the overlay at some distance from the indication.

This distance must be great enough to locate the crack tip with a 45' or 60* refracted wave.

This requirement often exceeds the structural requirements for the

190 81dL3 ?It9 CALC NO PM-549 REV O

%nAhb yd CALCULATION SHEET PAGE 6

OF-14 ORIGINATORN k M_DAT$ AN/9/

REVIEWER O A hM/7 M_.DATE_LkN[9f NU R@OW DOCTYPE.000 L

overlay width described above.

Finally, the overlay width may be dictated by geometric constraints if located near a tee, valve or other fitting.

t III. REFERINCES 1.

Bechtel Stress Calculation S/11187/D-96, Rev. 1 2.

1986 ASME Doller and Pressure Vescel Code,Section XI l

3.

S. Ranganath and H.

S. Mehta, " Engineering Methods for the Assesstaent of Ductile Fracturs Margin in Nuclear Power Plant Piping, " Elastic-Plastic Fracture Second Symposium, Volume

{

II, Fracture Resistance Curves and Engineerirg f

Applications," 1983, (ASTM STP-803), pp. 309 - 330.

4.

Specification H-300, Rev 12 including Addenda 1 through 5 l

5, 1986 ASME Boiler and Pressure Vessel Codo,Section III

[

6.

NCR P-91723, Rev. 0 l

i 7.

G.E. Report # SASR 91-26, DRF 137-0010, " Full Structural l

Wold Overlay Design for Peach Bottom Unit 2 RWCU Weld 12-I-lD",

C.D. Frederickson, April 1901.

l 8.

Specification H-679, Rev '1 j

?

9.

Specification M-733, Rev. O l

10.

LOTUS 1-2 Lotus Development Corporation, Release 2.01, Licensed to Philadelphia Electric company (6200343-758384) i 4

IV.

DESIGN ASSUMPTIONS All design assumptions are as stated in the body of the f

calculation.

1 V.

RESULTS

SUMMARY

I The veld overlay shown on Figure 2 has been designed to repair the indication in accordance with Section XI of the ASME code.

l The nominal overlay thickness is defined as 0.200 inches with a i

minimum thickness of indication on the side away from the valve

[

to allow future UT measurements. On the valve side, the overlay should blend into the valve bevel as shown on Figure 2.

h s

,w y,..-,y., -, -. - -. -.__-

i 19661453 F189 IH-549 REV O

j CALC NO

(

CALCULATION SHEET PAGE 7

OF 14 ORIGINATORI6%.7dDATif._/f[/[9/

l DOCTYPE:000 REVIEWER O I bhf/LR2.DATE.lo[V/4f I

" " #"O OU" r

VI.

ATTACIDENTS 1.

PBAPS NCR P-91723, Rev. 0 2.

Weld overlay Thickness calculation Summary 3.

Q.E. Report i SASR 91-26, DRF 137-0010, " Full Structural l

Weld. Overlay Design for Peach Bottom Unit 2 RWCU Weld i

.12-I-1D",

C.D.

Frederickson, April 1991.

i h

I N

i N

190 21453 7/89 f

CALC NO 1H-549 REV 0

CALCULATION SHEET PAGE 8

O F.,

14 ORIGINATOR 82d.ed DATE.Mh[fl l REVIEWER 03 b//42_ DATE B[f['ll A

OW DOCTYPE;000 WELD OVERLAY DESIGN t

As stated previously, the weld overlay is designed using an iterative approach. The thickness is adjusted until the structural margins t

f defined by the ASME code are achieved. For this analysis, the iterations made to arrive at the final overlay thickness are not shown. Only the calculations for the final overlay thickness are included to show that the designed thickness is sufficient. The calculations for this final weld overlay thickness, summarized in

., are described in detail below.

Weld Overlay Thickness The minimum overlay thickness was determined to be T. ~ 0.175 j

inches. For this overlay thickness, the important dimensions and cross sectional properties ares 0.400 + 0.175

' Pipe + overlay Thickness, T,,,

=

0.575 inches 7,.

=

Pipe Inner Radius, Ri = 1.850 inches l

Overlay outer Thickness, R.

T,+R

=

t 2.425 inchen

=

Nominal Radius, R = 2.138 inches Cross Sectional hrea, A. = 7.722 inch" Bending Inertia, I = 17.'961 in' The actual UT moacures thickness of the pipe (0.40") wan used rather than the nominal thickness for a 4-inch schedule 80 pipe (0.337") because for the weld overlay design, the greater original pipe thickness conservatively leads to a greater overlay thickness.

Applied Stressen j

Per-Reference 4, the design pressure for this piping is 1800 psig. The primary membrane stress is thus:

j vR*P/A,.

P

=

t v (1.850 in)" (1800 psig) / 7.722 in*

=

l

[L

190 21453 7/89 l

0 PM-549 REV CALC NO CALCULATION SHEET PAGE 9

OF I4 ORIGINATOR 8d7'd1I/ DATE Mi[FI REVIEWER _Oldtsp>41 DATE _.3/

NUCtE AR OROUP H

DOCTYPE:000 P. =

2506 psi The maximum upset condition deadweight and OBE seismic bending stresses in the original 4 inch schedule 80 pipe as documented in Reference 1 are cr = 4119 psi and co.. = 5069 psi The dimensions and cross sectional properties for the original 4-inch schedule 80 pipe are:

Pipe Wall Thickness, T, = 0.400 inches Pipe Inside Diameter, ID = 3.700 inches Pipe Outside Diameter, OD = 4.500 inches Pipe Bending Inertia, I, = 10.929 inch'.

Again, the actual UT measured thickness of 0.40" is conservatively used instead of the standard 4-inch schedule 80 nominal thickness of 0.337".

Because the strength of the weld overlay is designed in relation to the strength of the original pipe, the use of the greater thickness is conservative and wil.

lead to a greater overlay thickness. The applied moments can be calculated-from the resulting stresses and the cross sectional properties as:

N=

cr., (I,) / (OD/2) = 20007 inch-lbs and cr.. (Iy) / (OD/2) = 24622 inch-lbs

=

o for the deadweight and OBE seismic loading, respectively. Using these applied moments, the upset condition bending stress in the overlaid section is determined to be P.=

(N + N..) R. / I.

p (20007 + 24622) 2.425 / 17.961

=

6026 psi

=

For the faulted case, the ssE bending moment is conservatively assume $ to ogme twice the CBE moment:

N.. = 2 %. = 49244 inch-lbs 4

The faulted condition bending stress is then calculated as i

..... _ _ ~. _.

L 196 21453 7/89 0

CALC NO REV

{

dh h

14 10 op CALCULATION SHEET PAGE ORIGIN ATOR[A7d DATE /*M/9/

REVIEWER d.l. b//D,- DATE _/_e,/ [4 i

'd OO DOCTYPE:000

a(

v P.,=

(M + H...)

R. / I,

p (20007 + 49244) 2.425 / 17.961 F

=

C 9350 psi g

=

Net'Section Collapse Stresses The design stress intensity for this ASTM A-376 stainless steel y

pipe at 550*F is given in Table I-1.2 of Reference 5 ast 5,,,= 16950 pel The ER 308L stainless steel weld material has a greater strength.

(

Therefore, the pipe material properties will conservatively be used. The flow stress is defined as three times the design

-i

[

stress intensity, or :

s o'c = 3 S = 50850 psi i

-k For the 2506 psi membrane stress (P,,..) calculated previously, the neutral axis angle is calculated as:

B

= T (1 - 0.400/0.575 - 2506/50850) / (2 - 0.400/0.575) s 0.6143 rad

=

(;

using the equation described in paragraph B.1 of Section II of l

.this cale. The bending stress in the overlaid pipe at net

{

section collapse of the cracked section is:

i i

P,

= [ 2 (50850) /1t' ) (2 - 0.400/0.575 ) sin (0.614)

{

h 24339 psi

=

)

Factor of Safety to Net Section Collapse.

r The ratio of net section collapse stresses in the uncracked, overlaid pipe over the applied st;essed due to pressure,

[

deadweight and an OBE seismic evant, yields the factor of safety of5 (h

+ P,.) /

(P,.. + P. )

FS.,

=

(2506_+ 24339) / (2506 + 6026)

=

lL 3.15

=

196 214$3 7189 l'M-$4 9 0

CALC NO

__REV t

W2 CALCULATION SHEET PAGE II OF I4

{

ORIGIN ATOR.(f2_h_M[DATG MI/[9/

i AR Grow DOCTYPE:000 REVIEWER A /Ita/JD1DATE /o/N1 t i

i This factor of safety exceeds the required factor of safety of j

3.0 for normal operating and upset condition per Paragraph

{

IWB-3642 of Reference 2.

l For the faulted condition, the factor of safety is i

(P.. + P..) / (P., + Puo,)

FS,

=

(2506 + 24339) / (2506 + 9350)

=

2.26

=

This exceeds the required factor of safety of l'5 for faulted conditions per IWB-3642 of Reference 2.

Both of the factor of cafety requirements are met.

Thereforo, the minimum weld overlay

}

thickness of 0.200 inches. No maximum overlay thickness is needed. The weld overlay repair is shown on Figure 2.

[

f Weld overlay Width As described in paragraph B.2 of section II of this calc, the overlay must be applied for a width of at least:

0.5 R T, L

=

0.5 (2.138) ( 0,. 5 7 5 )

=

0.55 inches

=

4 beyond the indication on each side to meet structural requirementn. HowcVer, to enuure the ability to conduct UT inspection of the indication after the overlay repair in completed, an overlay width of 1.5 inches from each side of the indication is recommended. The required weld overlay repair shall be as shown on Figure 2.

f I

4 i

k a

9

I

~

tjg CALC NO PM-549

_ REV O u

PAGE 12 _0F 14 ORIGINATORfd'>ti'Al/_ DATE A /f/p/

~

REVIEWER 6.A.Qep m _ DATE g g h 7

I a:

p A+

i i

l volve l

)

Pipe n'

M.

b

)

( We!d endicopcn s'

S

-- 0.5"--

ic l

.i -

Pipe Centerline il v

j A --)>-

O TDC INDICATiot4 p

s 13.E'C w -

1.2 5 " C W y

i r

\\

g T

= 0.4 0" p

Section A-A e

Figure : - Peach Bottom 3 RyCU Veld 12-I-1C Indication 4

lJ1J\\!

.l'

"./

e 9

9 /

9

/

V h/

e h

/

0 EE TT 4

AA V1 DD ER

/

/

FL 9

m e.

~

0 g

n 4

t b 2

i.

C l

)

5 5

M f A.

s e.

7 r

P R d n,

3 O

s t.

1 TR O

AE a

n.

N NW I E P

e-r CEGI C

e AARE d

e d

LGIV CPOR l

v e

iebm l

lpu e

o p.

pn W

V P-o i.

e d

et t

/

l bi s

r e

r r

F W

oe i

t f

)k yi

~

f

\\

(

la

/

y s5 a

r X

e s7 l

v a1 re

\\

op.0 v'

\\

lei ed s

O h

\\

t w

s N

f s

ot s e r

\\

c si n r

sf k

\\".'

e c

ei n

n h

\\

o k h

\\.,.

ic l

t t

0 0 i

t h ga 5 2 a

inc

\\

c edl t

o 0

1 N,s e

d i

h lu

\\

p n

cm t

. X,s P is inu s

I 4

i m

t s

i r

i on h ni T( M

}

+

i' 0

2. j+

4I 0

r agu, pd g = A :. o ?a ?' 4 i"a n t

,' a; ~. :a:

llI\\I(l ll l.1l

.!l!l llll1Iit\\

ll I

Il,I

{l

CALC NO PM-549 REV 0 PACE 14 0F 14 ORIGINATOR /6.A%g DATFfo/(/p/

REVIEWER O. A, (rym DATE fi/v/4 f 0

"}

B[F A[F f verlay

/// / / / /-lf/ / //// // t'! b i

}

\\

R;

{ IGSCC Crack l

{

ID

'J CD KMNM%MMN'ss Nl/ / / / /// / /j'l////l//

\\

~ '

1' I

i

\\

}

l T

t. - >

ALy Pipe I,

i Stie es Distrioutions Cross Sections At Nt t '.'.ection Colicose P

P +P m

m tc i

j N.

i s.

9....7....

~..........

..g.

\\ sh

[.!

li Section A-A (Uncrocked Section) O' r

y i

,i

[<-

~@

\\i 4

y N

A

.t N

N.

K '

4 4-l I

Sc tion B-3 (Crocked Section)

O l

Figure 3 - Weld Overlay Strers Distributions at Net-Section Collapsa l

3

.a

d 1 - IXIIIA!!cx

~

[qn,)

f ate 1 of

  • g ist i el 2 -

Unit

$2 0$

4 j

lasvekOtes./ql "3

~

2 t ud.:

1* UR v. No.

t 1 0 2 x

1 2 3 n

P-9/ v3 f

n/

a

( 1 7 p a.sa.:

it.e m ppgp 5 c w ig, n.. @ y f i q

' s

<r4 n.:

cig @9 l

/v/411parmim so.:

n

a. so.: _

N/g

,9 acceiver xo.: /Y/4 10 vender tvt xo.:

7t:h s c 1 khir ____

13 } 2*;'d for sm @ so 14 j

[b:ed d to _ AsxE X fire Prac.

a rl

trioliity (cp4c:7 Cecpanent System Plant If '111" XctifhCper.

15

'at'atittlY ic hxa

~

46V t e;crts'ot t Its its h (Mar 4) b m huMVP

]f afas* r.o;{fy GI/itp. T crd.

h No Tes bqg Q"[ }g3pg,c7jgggf MD@lgNan=)

f

.ebtes onsc H pticn:

UJ F-m,4 h(t4 A* I 2 -I-I c, (tw 3 62. % Pieg N

TAEA% ' $ toe dh,b}<h.U/

hN d

hat 4EXic. /,Irfg4 h h-dl f

kT.VRAL Ei) klMBA(

OI C.h710 h/

f $l IHf, hp&

07 h/[

b b6-O/g 70 oh THE (EUT E(,M M E oh hg kf 0 h,[

To, # km w.u f G. O cq P m (s 4"S/.g g.c.n60, 1

MF. AitM fD 78 Idd4.YHIf.KNB15, kLSo IME. INDI c.A.T10hr NSS

)

i cwmm

?>y LT E ws, VI ' IMT'A

[ Iso con kTT ACHs3

';rc;- W oispc:itier.: 1ewcrt M Ae%1r M14Ah _ l'st As Is 13

{

Pl.0 E hPI,MF ME N T NRH

  1. s Tyee MN Pt P6 <a hwies r-f I

'2,,

LO k

Attachment No.

I Calc. No. PH-54 9 Rev. o i

wt No.

t of 6

y i

19 l vorbAtqist. _ Tas so 20 verbat C:..:ict: b Q g g icer.ficient 2ttesse X.:

22 A Frh *Y' F

Catth 23 l.

nd x -

&1 Catt:

f ow,y /J kw= sogg16 Prt; red ly:

r vesna i

y (j

U Sici!C.V 2 011.50$!I108

- _. =. -

Inverk it;2ir 2ajtet _

t'st As Is Other _

Fed leq'd coe C;.rq, C.3ty li 25 23 finterim Dh,cosit{cn Agirt<7 Tes, No Spc({y; Pr:;msed Disp. J; proved 7 Tes No thtet No.

Unit Ap luilt 17pa A s. !vi'. : C a t.

{

c cc:.nent Tes 7f Oce'.:unt Type /Xos.

gg Changes j

.t gi r ed Xo I

j Cavst 29 i

C:dt:

31 PCRC 32 Potenttatty I

10C/2 0.!? Tes 30' salety O t ter:.in.

Ev4lcatlen Tes RevitW Tts Itfortabit!

Yes No-j Attached?

30 itquirec?

of f.E.

Il 7cs twtify I

(Attach if Tes)

No Req'd?

Xi CE/Re;. Cord.(risme) i c;erseiti:y (cpac:7 Ccefemnt sys:tm Plant if "Yes" or if cif ferent frca sect.1 Notify C;eratices

{

1 Yes No Tes No Tes.0 (M * )

4 0 --

r -

,a

.~_

y

. shtii2<f2.

e 73 ppreved,01sptitlen:

A 4

Attachmerit No.

I Calc. No-_

P"-58' RW. o Cheet No.

2. -

of 6

26 Res (ble Ir. sir.eer/ ste:

37 l..;ttfielr4 Creg s:

ledepMer.t Dest;n leview Cea:Iders:It.u:

3!

'~

=

Irde;teden: lavlewtr/Date:

39 40 tem d kend/tata

M

$tetlen 3

  • Verk f erlcrtance 10C1250,39 Review 2eqJired Tes No A era in section ) 12 llave teen Cept <ted & Verified:

p Ter Delay (Attach if *:ts)

',--- _.-.=

~

Oate Pct:.5et:fr.1 No.

(2:q'd if h! sty Eval. 2et'd a

Cats Mock Ceder:

v.:n,/ pen Cat Red thcdt{st:

tr.s :at t a t ter.s:

cace freceira tuview Crephts/A-14 Tcers A :aded:

i

.u c:ced. cc:ups j

Cate 2 ef er t.3?:

fr::'.rteent (osr.:

e Cate

?cstira/As tulldins/2 vislen C= plate:

xiIc/:C*3 Catt It f e r tne t,:

CC:

Date hference:

C: tr:

__s i

14c:Iorn 4 X0A Review ard Ctcsure e

Tes Xo CA2 No.

44 43,cAQ:

pr: Mea Addressed:

Tes No

- {:y Jewiew (capleted Sy; 43 Approved y Datt kC2 C(esed:

U i

MM-

Calc' No. N S'9 RW, o Net No.

3-

. of..

(,

LC/ lf fdK, Yk$$OA.)

0 I

REPORT NO.:

t; h

GENuc/mEmpy EXAMINATION

SUMMARY

SHEET H

UT E6-00Z.

uv. 1,u m ?6-3 ij (i

reocrue:

PROJECT:

LO-bE DDI ^ sty. _3._, rnn m, )& S b

M

.-us:.uk m m.

m

} 6 fps UNIT 3 TSE o

= wma:

a ur En Or aw Owell nmu i z -I-t e_

g_ m, s

6muurm _

Pipa ro wtve ow=num oma s4 ne xt E.NIMG E uYRK C.u. HOIT M.W

[ dl[M'.

y

- suumtn:

enuma t.9ctru+s N 80tr

-umsk f

itor m.=

g,9.rM ruwo s. Rouwn /N,L4tuA uwyA L eeczec 7T w yte trvsc.

e s

DuetWA T4E Ev'4Mi# Tion OG THG dEova kEEEE6NCEB (dE One (; )

ll Tunieur,na -Assoe#rSh taim Tescc_ (Das Pet _caE6 Av rwe umu4t_

l T6t-HNieue UTruziN6 4 45* SHwt LOAva Sseet.H UNIT.

a IWE ASDJE TNAICATION td5 ME hotOIN6 h42dMETEE6.*

d "LS W h f "

2Etka liffJn3

$Tes#

WT WAfst 0 e,.s

. nts-

2.., s-usz

.2z ter oec..

j IU6dTAL..btfMS -AWb TMEU-td4LL b6PTH 6tzlE (d606 1

MANoaua -117 uzint, Tac P/rTT 49h th6H ANGLE 2L TecnWieues.

f TM 3D 10-10 McBa 00NVEREr0N L4ETHob t04s Alm UTiuze6 To 009ftRLt T96. IN6 cEnoN A9o M6AsuCDIANT6 06ToIN66 b' dbA. bl2:N6 3.GtNlDU65.

bo DTHER INB10ATIONS Ld6Rh k600166.6 duciN(, TifE tl5' Suse. t04vs_

l WiM A-TION.

3 D' Ecut* mon LOAS lhe.cdueA Coe. L0ata Par Inar,cw.4Na L

Tarefr-etiW6 con 6rnows t0HicH R6sats IN dio PcmeMks

//

)

j

\\

,f h 7g

. '*j,"i f

'[

L_

%dfdmemmuur use_ om I

l

Attachment No.

is g

k hk l 0 kYrf/h hh Nk.

A eq

(,

e REPORT NO.:

h GENuc/estEnergy EXAMINATION

SUMMARY

SHEET (CONTINUATION) k!OC[]

PROJECT:

3,37 t g

"""*I '2 +

pues u s 3 In TyhicAranJ5.

LLhth (fWidlnlE && A&E%JEMTLY $2.LEb AT cas M Qu46sars_unuzin6 A Lqto_stus ?uset Vat.

A Imus hs.gAar Gwoonnoa LOAs Atus ps9kWsh REsutTM A Mn Peae.eMatt Tuoremons.

do h1VicoS_ Aran LOAS AVAILAStf k(_ffvi&tO.

- M G

a 9

m.,

e 4

e e

M LEY 1 ATE d i

Mm'

[

AA, A

2 6

~~c i

9 U_$_{JA akO__tmtIcarsD %

. :,t __ c Ar pcRu 142 4 - +- 90 mikWhD S UM W AR:250 SY

a 1

s. s..n...a..... s. m.n.,dm.i,". (. w w.. s. ? m.., I i

a:

m

'.w,.., x..,Mw w w w; a.o..... a..-.v...n..n.... w ~,. m.

u

~.*w.-

w s *.

r.

.. em.. (

mim c, s~dw s*-%).w*&*m

-v d

c...M...f.p %m.,. u, e%l :d G %n ta ag +w%...W... m...,,'.*.,.O.W : %..%<.. 7. p...4.E,.

O.....C..:.'. i.,.*..>.

0 e

+

W w r.c>i

s..,

4

=%s... i.a. IN p

w.

W t4.t 4t. y...a v....iWW.Y;?.f.. f...G.@..x,. oy.B O

w ra w.v..

e..

- m.n w;n.m. pp..

. f.

.c,4 n og,

..M.gm {%... p, o. e...~. ~....,....-.

l

. n.cf %.

O d

k.5. W.4 4,t.W +.:-...e-...v......

+.

M.+4 W

.V'a.,n*.'. A,A4.,WW.a~p:~ v n.k.%,., n. /.;r:W, b^u.rp;.'.-r 4...

e W:W.Wm;w 2

X.J p ' M-#p& %1 p.e~i '.

u t.

.,s~..yv.

o

~: W.

H

,j

" -.'L v.y g ~ + u;,u.... %......m. 4 ", i..a..t.,b.+.+".. u'.f*; m... w*

m uH C

6 a v. rw s. g.

.a\\.m ;me ~._.,,,....

s m

~~

.<. M 97 em v.4.

o C

Je.

.n.g......~...~~....w...

.n.

.~L -

L.

3

a.. p 4.. n.a v. 7-A e... r-

, w...

g

,w w.n

. n gn.

-w-

}

.:,.a.h e.p os.9.,a p.

"'c.

r..r. w.. w m.t. %....e. c.fe,8. w~.. N w m, M".+. w,... ~.

e

~

n

~nm, r >. w a

o

,n...,....,........w,.m.,e.

e, _.sf. m.

.v....-

....m m,v,,...,...

c, w

u u

m 9 - 3..s.. o......

..,.,-r.. v, s.

5....

(...

., +.....

u g

3

-%..p

... -.. -.. 4.a.%...,,..- "..pd..

L. u.,.m..u.u

,, J.

.vc.

.s

. m'.,.. J... s. w,.,.w. y *e~.gW.,,4 s

1 W e'. c.' L c,,4.,...

m..

O

,I n,.

m.

.s..t.9,

~. c..

.. s..T..,V.... E. r,+h..s n..g.,,A. > +e~...,[".

h,

... + n ;.:r? %.+N wu~w.>

,l w e..,.. n......:.w...w......,e..m...w.,...:.M..

.m we.. <.w...%..,.g.4= :@:1, s. ;c.w.:. G :w.

h...e... V.r: % w :

cM.w.n '

r e

b

...n..,...Q?,.e ; 4 M 'n M %:. m...m v. h. ;-

~

s

.....g...

<,s..

i,UN.

s H y.. w'.ty y.oo r?;y m.s e.h.d.

c: O

,. a

., W Q: na.,m. g m$s.:.e;. %. A. M. uM..h;m, g.,,e... e. a w

W...

e

..-.-..,r..e. a..,W.w :

e O

W

  • ei m

a t.o... s o.. m. t,..,.,.....

y; M,

.s..

e e. J."5 4.,im.. %y

,.n.r&..

w..

w. m.,,. w.s.,..%<..+

. e. 4 w<.n ms

.%.JJ.yN. e.st !ML. m. 5 GM.J.'" /.M2.m.4 14

..s.i'.H* l.'*.i.>'. 4.1S,) ~., #'w.y".%..,.".; b. '.',.$.w ? d< - e W.

  • s t

me S<.,.

u j~

n.~ % = -

~+-.

.NM JJo.'i 5,

..i

,.4,..qx s. c,

    • -u e

C

/ >.nn.w.,2 -. v.., -

a.J.

2

..e C=.

e.

...;s.c

,i 3 W

r A...p. h p *,

a u. w

.e e 7,.: a m m.

g 7q4

  • M. '.y *.
  • g o.. e%w.

j ji( 4 syv ye,,~Ig w

  • X. fd.:
6.....-. ] e.. '. ' e*75 M. mQ.,a

, m. e,..,.l.f e Q

a.;..+.........xo...%.c,n..t.,~...,....a,.v.' + e.a. v m

g b,e

..... ~.

... 7 o *.t.=V 's-Ce., % 1.

. ;s s.+.. v.. %. 4 g t..7 4

wu

... +... = v.:... gJ" p"'.7+ '<k

.n.mw..

t p

i Y m.

s.

I

u..=,%.a f:n*O'%' %j,.. r ic.y J ', *..".& ',... 4w,,.,, nu.. h,

. C.-.

S

....t.......-

.. g.... m......~. n; %,. I %.. u...,.4 -.

..w*.P -

n,,y

.w

  • ,. pa e-e.

p

...e

.)

..a..-

.-,gs..*.A...

s

..,m

.a.a.....e....

t W.' : ~L. n, ;.y, n ;';y: Q:w& 3::.6.j.fV..-...., '

h

....d *.........

. e; ~ 2'M.:*.# '.

. %..i3 s.'

1

.s@p....oa.fcl41 *.nyr C. m.....e.,,........ mas

. m., A..,.%.. r. ~4 1. > y :. : a,.1..", m.. s..... a

....c.~..

y

..,m_.......,.u.*'qs,;m.,.

f,

.T. s. M

.C. *M '.C*, *.

..r.,s..,..

O

.,.4

$ee..; -

a

....,..'A.L :.. s' ;. x.;.e.,a m W' W

.* g }+<

. ~..-. ',. ~ k.. e $ %

.4 a

.**S.b4h.3 L;

.,-,..t

, g-t J

, m q r* + %.T w.,

b.., S o

'-t,.o,-..A..v.Ow. '. ';.-4.), W a.

...gw; s

.e.

"e.

t-

).

s. w g. u.... c e.yg

  • x.

d.

1 n

..%.n

. 0-c:::s, a.

V m.

...,y ; n -

...~,4.,,.s,.<q.1'...,.b**...a -*.. i, f' ' ?.g,w l g.,,,

4 e. J t s.:,.m, -c, ;'r,'.,.,,...... m... 4 i. + s e.a A 5...:

.s.,

3 c: p.. p

"#~

4

u. v e e. %,

Fa ;.. -

j

....."*?

's sam.d. u a..

wv.e-

~

'N

  • D i M 4 4,,. S' ; p.v,; jt'~'**"' ' stm e.g. i.e+' ** ;:w :.,

U

.. t am...~

a r

.....g er.

J " G..* H, :.'t '.h?.' t '8"%" t" "; " D ?*~O. -.. T.. {* 4T."

'.UI'."*- ',.1 J '.".

. -.#pa s s.

.f.,

C A

O 3*

r. g;...i w...e,,. #M x.'*.
  • y 1g

.e.

Q

.-,,* y:

c 9

  • eh; > ' e 4.

..w...... e,s..'".

~.

.e... W '.... M.

e%.

.w s

4 E O

.(.,

g,

.m'

'.e.

..' '.. :6">*.

w s'..

g}

a..J

.t g

  • j ',"a. i,..g.

.s,..%.'J.1",'

d,M X.

~

,L...,j.. * ?bi* ;

  • 5 i'r4 f,

..,..=<.."s.#.'

d J.*,,,,,,%

2 o

x.L...#.. v e.j W em, g

2 s.,w Q

Q.f-

  • N a..,.,h..,..

,-e,.

..,.,.,.,,.-s.

4.e r.,.

a am.*

(.*,'x g

.'b

..s.f,.,..~.a,.,~,s

.y.,.,..

i

......s

. p.

, q"' m 's.

y O,, o_

a,

',.'.i 0

z%.e, *

.a.

e..

s s

g

.y

.~.7_.,.....s...,

~

s

y. u,

,~.y.

  • ? *]

.c

,3..

h..,....... '.&....?*

M c.. s.

n +

g, w

s..~......

s,. %..s > >

m '

    • ,,v3 i

i........+u ~. D.,,f 2...W.. s i a C

%; U L U

s.i q. *

~..m,.

2.y n.%w.

t. o.

-.;..s a

r^...

..,.d s.

.~..

~g...+ c r.a,.., 2,i.,...,n.o

.,,,,.c.gn......p...,c.c,., f pg., pcv.-6 l

(.;j

.:..,... 4.. '*f..4.~..L.M..e.n.n. i. o.

O

.,,,,...3,>..P. ;.^< v v y.

..,..,33............,.......i.,.....y...'

a

  • e

. ~.

.oy

..s a s..

.g 3

m m, c

7.,,....'.....s.

y

-m 3;.

....w-

.. <., s ( g.N "r.P.

w,, N.,.,*

..y.

. s

.i..,....... e w.. c at ; r^ra-

.,4..:./.:.Ju*.,

e

.. @ ' " t i ch. +.....'. x..?. %.

s.

  • 7..

w

,<.a gen.

' c - J, t

A,, h,..r.6.;.?.p* w% t.A/.. m e A %.

.~.o

-4/}

C,.

s

.w

.. ~ -~s

n. -

g w

e; i..

.m

, ',,f.C...,,,, ~'.{'.C,

p.,

y*7,.. 7 e.

. w* +

i. x u..,..,o, a :..

IM.. N.m.. y a h u..e%,

t. e y

,g.

.A

.s 6.

..,..r. '3. )?., s,.}..! ',,. '...,.

f./.4.... ;..

.m3 a..

.s

<t.,,*

.e,.s.,

s

.e.

,m...

'...<.A.,4

..[

.m. > n'...

c

.. v -

.M

.w m,

s.~..r, w. u '. %

h.s.r, n..

.e %.,~s.L,.,"p'..3 ~ ~*;. y v~

.. ~. *...

m ;. c..

u

%.=

ius

.c.a,.e...........>.,,.c.....~....~

sw

,a

- ~

.v

.-.........=

.~y-q u. #.. m,

.s q<

.,...m.4......

..,.p

. g. u.,

e s

, s,., r,.

,.e...g r

%. s

..c

..a.....4

.., w....,,.

; m. vK......,..

.. A p,.

... i.m. '.:.

3 'W....

w.

7.,=, 3,.A' *
  • s. ~ -*<. >r.. s...

^v.

...i-

.v..**

.#**g

.. v~

a

.s-a..+.g

,'.j 'o ~

s

n..

.x 3,;

....g..i 3

.. Le.. -

u,i,~,,,..

Ll d

..m.s.c..e.r...g-

......m,

.........J 6

. -...=..M. %. L. ;, :,,. n ~..6. <,,d.-c'. ; N~ /. %- > '.

m

~~

W

/.- :

Y.,,.:M Jf M. i w

^ 4.'A

-m.+%..

.s.. ~,..

.#s

~

s e

...., aw-.

. 4. t r4 f:.

s.... %w

.a-e., ; w '.. '

. " ; G...,s....._.sv...

. :t v'

~. i %..

~

+.3....:. p u......

% ~

I

  • v s.

q y. m,.e, L..

,s

- Q : m. j.

N.>

. ~,s...

.w w :;

.4, m.r-e

.o........~.

.c L_,,

y

,c

.a..m.,.c...

.~2

.,.s-w-. <

4 a

. a Ln v., p m, W..;.

4..

.a m

,....u,.~.m..r..-.-~..m..

n e

g 9 ?%.

. x.,. 3 e...s v

, s.,;..,

.w..

.... -9. ;

+,.m w -

. p..

u,... s.. ya.v..

.y

. +% ->. :n r

..4....

~

... e9. 3 o

u m.

y pc.

N,.

c.

m

. m.7. _

... m.4 4

~v......-)..'

.........g ;..A.

" /6, ". '.' N L.:(,*,)..d,.EG}y *m..Wgw +4 M ".. ',

ya

,..c.

..~

e,...

M}.%.c.k, t.M. i t'.W..,'J S.* a.*..* - J @2"N 1 4

'm

.. _,f 7.

..y.

....,m.. g..

..m....

}:-=

.,.e.,.

..%.. N.

m

..2%y y...W*w.

,...~.

G y.

~~ -

u..u(..{,,.-

...i.

a:

~. 4 s. ~

...y.,

g.

~.

v

.x. g a 0

...~L m.

..s.-

~.7..y.w 1

O'

) ; 7.:;..W...: '.P. : %.

3= +.,:7..'....u..,,.,., ;s.

~

z.

~..

..u

.m..,:;.~.._~:,..

.s a

, z

@w,

=.

m.m..+

,,a

%;'
a w

,n

% c.m. ~.. a :,.,..n,. ~,..,.. m.,.

g n.vu, y u,.;~.. y; ;a; ~,;* r; 1.,.,,

c j

..r

,.;. ~. =

  • ~

s.a u.a.

m,..

,.r;-w,

.. +, -

.e.

., w.,

4.

i,,,. -.. r,.

a-q....a..

%c

. y-O.

M. v}.; ~ e.~~- :y. ; <. m.,, a

..Q....-..a...,..,..,....%.

y

.~, e,..x.,.

.f.f.4 +.we n.

p.

g,,: s, <.

-.m m-..

. ~...

......-s.2..,..,

.,.m.>...4..:..,........-.c~..>,.

....,.,G. i

  • =

-s.w :: ~,, ;,..

.w....

..C.... V.1 L W S >o s.,

O b,.

5( "N...@.,. 3,., T... E.. e. ;"

3'.5. ~ F... W,,; 3^.f...* M....h..

  • i.! : '.'."..'.......,..M....#.A<.6 o '..

G.'

L.

c;

~

s s.....,m,.'., gg,. '.'. u -q.nc,:

  • J...C.. "..

a u%

w. n

. n%.,. <-e me e h(*

%.u.;.a W4.fcJ. 4 i.m. >.,&..

M.

~

,;.." y o u!

4* Af..

'.c.m

.,. p.s.

p. ~...

T :. y

'.m

/o

,..v.+.... :

s v,,3.a ;..;,.:. ?.. p. -m.u. m.

.a a m.

.n l

Cl. C VW,.. a.#.

i..s,e.. t.

~....2...."..%... %..

u....a..

.3..v...s...y m....

...w.,

m...

4,.

A

'.O :.% ;n:

w.v.. %..

y,s.

C.

O

" i.s

.r.

.. c..

(L:::.+ ' @ih G. =

y

.r C'M'*i T.^. k.

.f.

3 Q

M,.:.,;Y;Q.:? J =* V % 6,:n.".a n m.M s W.,'% 2-7

,e,.

M.4 ~ sd.&.s.%w'.ws.:%,V

.:.u,v M.

O O

W, :.y. ~.

V. m

  • e.. ; L h; e :.'.. ~

..;,.u. M., ~

r-m., -;rn...;. :,n. g:, rm,".(mW,. mm t :7.: r.w.. qr, m.. ' w.v. ~a.s.:n., L. n n:

Q we...-e....,..... w%

N a

c-m v

4. -. -

t..

4.y m

.w

,e u

%.,.,4,.,..., %u 5., g.,.e.. s. - s,.m.. c. 3 v,a. e...;.,,.'.+,...,.

x., p p.

a-e.s 4,4

.,%..g,..y.a., v,f.....~s....,..,

N,,n ms...).y..

m.

,.,s

.r 3

x 7

....3,.. - y.<.v.-

.3.,.

p.. s.,....

....,.,o :,....,

>.s.

w.

. J,

,s c

y..,

r".u. z...eF.i...,.

. v, v

.. o,. c:.

? ' + "...

....,......p.

4

. y.

m-7;. + 4... f'.,c.N.., W-.. -.....;

.s.w..,.....,,..,....,.. W :.,.,, m:

. s. --...

..m,...,p% y m

.. >+

m.

o 4

u.

.s..

.. 3.Q

.m.,.,

x...

%,. s... u. s.,.a.a.

x.,m.,4.t

%...;.. w..,.4..p% a. c.

.a,<... n

.m.. o A... *.. w

.t.

eT, W.; p.

..s

...... 4

..,s.....

\\

. p h:,,n..u-.c

~. g...,m.~ r... ~ ~,........,

J.

4

.f..

v

. +s

...a.,. 4

<w.. w. c..e.m. w.:,.

..,..a.v m

, :n. ;.m, e

,. +

.".......a.

..n

..,.c... m:.

1. h; m u,

.u.. - =-

m...

.n ;

7.. +.y.

v.

.r.

v O.. ~ =.e. 4 y :.. n.,,., u,..,.3..,, e.s.w.,4.

+.m. u..s.

. s :.

I us

.%, w..

w: 4. x, c m..

....,r.. -....

nw~...:,, f u.

..n~

s v.

+

.m w.mi; r.w..m,A; e e.n.;,..-

.,m~ wm..m.,w.m.,, %.o,;-;, /.,,,2.4 s

.,.u. r,,w. s.m,,.--u. w.w....%

m. m~.....v ~'g, o.,e..y.m.m

~,.

w.

e3 y,u

-u w

x.

.... ;.x W

w<

u--

m

.ee

.'*.<:.ww....

s.

n m

"a..-

p 1.m. y,N W;*'W.:.~....P.. 7 %:. %.. 4..

n.-

. ~..-n s

w ~.v.-. m.nm... -

v*. - m.4. c m.y:<: n.-re

.,~~. %,

4.,,.r...u.s. i..'. t ',. -,.. s:.h.. ; se%...%.e%.,. *.s.c.m..e,.......

+.

n...,f....'.*;. * :4,..., < v n.%n. w w

tg wm.

. % -sv -

..O..

.p W.

.~

2

, 7.

,2 6.

- A.o V w. < %,o4....3 e.

.w.

4 %... g. c.G, e w e. e. m.,..,++.n

?.<

m, 3

w.r

..r:,r.*n % n %n. w.........-s.?%: w;.

W<,rg,,,n ?y

~..,..u

. 4..

L'4 w..

wn

. v...a..

ww

....,&..w..,, a,

.v M 5... %c.;;m....n..

c..

a sw ib m

v4 rv

u. + -

r w

cr

.2%

a

)

., x -.;, m.. " ( n. u.%m.. m. msw1wy s -.

~,m

..,..;%..<.:..p..c.......................,..mn. ?.;. A.

w; w.n.p t, s

g..*r.p :c,3 4 n. h..,.. g "'"

~%w

. 7+3 e

.v;..., n;u t

..s.....9 ~c s

  • . *? L... na,,p, +

.A w...

/., w. ? :. ' *........n,..,.

.-4....-

.,,.4 y

.r. s,

.%.3.......-m..w l',' y

  • q y-M* *.%[ ?f>..

.o.... ;,%..g g, w

.w

... r. c., t.v.,w C 3 6.. cNw..w...s.J..'*W..?.; a.

a.
  • s -

....s v 'c n!.....%;,..W.s y W;*j*.Q',144 Q C. ^.' ',j Q

n 1

,.g

-7

. s

.a%.~*

h. -... c.. ~.. N'.

J ',.aQ,g(

W.

m.. "q F. Q *M*,*,'w," Q S.

+:n.v

......~..r'. a.~.,o w - :

e Mpw,W. T "' *'.'? * * 'i *W~ W.e S.... o....,.:u......,.....,.,. :..

.m..r

.n

. c o:w

~

.w",pM 3s.

  • "l g-

..an *mM 'l '" i.'g u. -

P..'c'.f.....m...........

w3wn-y v.

T

  1. " w..=....s.. ", b. f f yg t.,: >>..i,r..s.o..... a,Q,,U$.

%~

4

~

q d,:p' 'w..

. 3

,g;-m.-.,...e;.,u..s...vw.,,k..'.'.'?..'.,.[.~...'

Q, gf., es.

m.

b.

.t.

.w. %m> ;e A.. u...

...w,..~.

M

..,,e,.,.

. _, m..,r. ~

w.x -.y...m. m~a W;"4'T,N.

.~ :a..

s,

..s...

s' i-6 g :.,.t.m.,. a e =v,, e 3

y a

.. - 3

,
;;d]

m

.,.gy

=,w. e,,..%.,.

$I

?

'I

,,Ng w*.-

,,[.

s

%,,,.. ya,m. a..

Qf*#*

k.*'.t..h..A..Y.'..%., F..D...N ?.M *d. s. s 4J-

.,. n, } p.%. + m' N,.8 ".m, b h.*.

.*..',.J.a. '.4 *'

c,", *,m* C,+.

4 5.#

~

,,L,,W*,.,.....w

.'.8..s

~ g. s.,-

. J f*[

.m.

.. n 3,,, p d,m

..et ":%j..

.e.

e

  • '*n,-

-t.

.,3

. h %.~m~b.",9 c"..

,s w,

c

..M.

...,.? sc',N *.% '.. : w, J -

-....#..e, f no y

,,v

,4

."+...g*,*"..,10s.~..~.r~.m..a..,

  • u-.[. g%.*i 4r*

~p. w.o %.., e*

i 4*

t s "m.

og c-

,~ g r,.

g.s..,

e

....-m...,...

...~...uV,s,.

J.

f...m... 4 '.~. '#

o>

=

as c.

..a..

a

^%'*w

,.n P (t:4.g4..*

~...*

.....e.. e. s s O r,.a ( ; :. -.

E*

t pq 6

/}

.. Ae'

'f**.L4 p

4,'

r y

.-.~.

~. -

..qs'.g u

.,.v*.;.W',.*,a 3,,. ::, *... 8 *Pq. * ]-e

~'t s-w**;

  • 4y p.

.4

., G e

  • ' T',
  • V

...u...

Y: ss.

l,'

..... w c.u.. r. %.

sQ

.,......,,.......,:#*, yn ".... v

  • .,2*......%

a,,.

,s

i

\\

  • u-L,.

_%..: 2..

.,.,.......#.w;....

1. b%

v...

.. g

..n.

7,.,-

.Mk; z.. m m..- -.* :-- :.m * ** ~. n ' '

^

.. m.,...

m...<

g d:. -.... *.?;

., s.n.,.

"' PJ

  • O9 ' **A 4 b*i"#9 0* *h. '6D..D <
  • b'.D^N"d.-[. '* *.

A",

N*

  1. a

..%r e

~e%54 -i'.W.4 pW,w:@

5

+c

    • ? % **

-==.. p.W'm.. r.f. >.W.,.'e..**d%..$.e*4k'6 M **Yf.'*4' y 4 M.4,'h A~.. M. e '... +.. a i g

M.h..M =..n,&. 4. g*f Qs e. ew eb. ~."e we n.. y., W+'.

--n. w m.w *.e m-m a -

L y

,:, e&..,4 p.e.g. wmW:

~

. r

,4 u.pm *^.u~Mt:~ dmWya

3... W i*...z,p='*4MM.y ~.k. u.. e:(.M..m. (h... h. a *. g o v 4..

1 O

I g.A.~&. QVJ MW:7. t.

w :9 n

N.r.e.,.~M.g %qM.My *@8'MN~O - *n.J Di::?v m *'l}f. f,..s;;.J g3 r :::,.M-f ab 1

1

=

ci e ~.

w T

p.

e,.j.

.. ' a. n,. !

.n.

W JJ

.~~.

1 r.

  • ~v w.

. e

' *S *W v **~.m.-

  • r4 =w, P. 4 f..w.:je.'p: :;y.r. m:.

O y

. g ;,9..e~u p. N.. m:<e.L ey p; M.

M a+ e n.....A....,4..

c,.

M.,..G..w.;/b. *wa p2.,.y..v

&...a.,+. a. m u.n.m e y,*

~.

6hYM.[*99 jfd."$ I r.

s

~J 3

r o

4. A..+.% t -~

k m.s w q.

A,y.

3 e

i"d'., w&.a., %..MMW 'YiW.9,,Y M@..-.@n.,r~T.'D

.4+. p. m. s ~*~. e.... m<.

.~...!.~.

%ww.g; a..a.. v c=

9 u.

c n

a

  1. w? e.... n 4

..~.s.

F

.~.

s; m

P C.

k

.. v...,pm. w.a. %m,e:;s, @,. n '. m..i....r..c.m.........

O w.........$ r. w..,. r..r.;O.... m..x 9>. n. *q.4. :.n. v.. ;eG

.s,v.

w" M. w. N ! E. w w w...., m.w M.).;>

a n

o b

  • - a%a-t.

, > +.. bp y,1

.v*nr w*

n

.n U * *. * * ".'./ * ~ '* W 'J ' '.f;'M.,. n T

    • 3 M eCi rw.
w. y.

wt.*r.--.*,e.#.s

.? * :. 3 M* f...,M.v< -; g, t% m.* :

  • o.i. M -

xc

~-

. -*

  • w.n e
5. ~*?.".!. h: 2.W* H ;- 9 *'.4.- -

..t.3 p

4

.r Q M N" :hiW M'

,.. j ww.

p.* Lle. W 8' *i

.M.9 a b.n.a-eyt t y,*'.W" *..?%m e.~ k. s.. %a. y Nj.Cz.p %m o

.. h,.%.u gN r4 %-PM O.. ~ p.M... n.. D f.g g,ge M;. w 4* p. %.;M.

Ig

    • l'M P

g

-s c*'

c m

cw.N,. % N.. >p, G t

... > @. C *.&e O.Ty24*y d"%:

u a

y n

e

. M..y

.t s.,

G.M....W~..w.+...~ c. ~. u...+... n $'.8I* b D"

i 1

.g.

m

/.i k' N v

<M

.a4

,'mh..*,b.e. 4.M. u.

~ s...

, G.. a.*+,3.*a.>a.. *.. ~....,..LM M NMN T ,[.

N f

. b%O.U.*N*M.a[$ M#*MO.*DM*A44' #d@b_,h.7.Os*2.7 ea%'Unsas.J1 d,,,.*.

  • t J.. % r. y.,

b W

un.M *.* E T

.g m w + m. w) _.*'kng*4.w W.N 6u.Q;y %.v.:

p

., M~.;.4 e %.+-,? + 1 ^'=.9..

e

    • b.f
M,.f QQ,'Aaa

.m' M.% fy.w b *

'.*e*

wa.q,yp* *./yr,w>+. 7. T *,y.' -

e

~

k H

7.~

W.e

=.v. * * *

  • s.. d..,;* *.7, ;",,

w~

+s.

w's ( [

T M

p.

t

~.~......e. m,8@f:p y a.s.ym.wX,3s,n.*..*.M. n/*t.w M.Q.[c.J."%m.no. W$. t;i d*P.$..'. p.D '

  • ?.$.. y ;M.. i y. f * >]w:'

-..u

..%*M-

.C m W

  • 5= M Q

b i t..

.g 9

.p..>

/*i DO 6 M

f

. s...;

/ W:

. uh. ?.4@p[M vy..,. b *.E. 9Ws. < v..$. 5;..r.

J.-. e..f a.

m y.

3 v.;Q y w $pa.$,~W.,y '.whW.y%,,, %..ST...N.. *x.W$..Y.,:..%n.m.

c,,.. *.W, g..

A?

3 *.s $.e.

e+.

2

.t.

f

+ :wn m

e n.t;;gft... m.

1 eu r

< *m m:a m.r,.gw,.y 7, y s

  • s. '.

,f,, r: c

    • p ;

M

4. W T

g<.w.ow a.q. r.,,. c* /..%. s

Y.*

3-

+%

  • i

{y G

n

.'$...O ;9..w, M.gf.a

l m- &..;,..,.e m

..Vr_'.'..-

... a"M;,t

.,...f'm3..Y.

%, W. "'. %...y:~y * %..w.&. 2!.,. w,,+ t.?.%e$ *.K m'v,...rA

. ~.. -

k.

Q p y;. s *l y

e. o..s...v v..1w..

.m... < W.. s

',..x.di p..-

.s...

i.

u

- ~

';.:

  • Y. ?.'**

'!1W <?

f

^

a Q *f : @ %.1 J.. @,

p n

.;@,U & g, C..'.'. %.5.,JL '*

  • W 'Med C c 4 A r.M MLW. e.M ?,9. ~ -

(

x ;.

... m

?g/ihMMW.% 2JF*A.*.:.W. o. *LW/J.k 7..* ' f C.N u.3m..,c.m. an

.pM pM' e n.'*;40=~;. < ~~ --@~...

~.-r 7

..h

.V@

Qe7

~ r

' St.kM* kh.

n v

C &

%Q

.J.

.. r.& ?

. O. e.~. m. x..,..

.-- m. s.9 < ~.-

.i* b

    • y 3

4.s >

s D

%.-Q. o?.M.m.:

N-W **5

~..

v.

m..~*

k 0

  • ~.

. W.. n.. g.,, %..,m...r.,v.

5..:

a "

s y

~

y q.; p<. m...u.% &.,..>w m..:.

2.r..

W..

&c :..

-me.. u..

...m., + A.M,, vign a.ww :* k n r h M.. %.a8. A.,f W,3 -i.rsw i

v.

....u....

. m y r... a...

m M4*

o..

L.

,.....x a i 2v. ;.4? ? e s ~ * " < < r, C

u

%,"ft ) -

,:~;:

7.

.:,;n...a..,s.u. q%...m.. ).:

s u re.x :

.u.

....w.

y Q

3. cz. *w we m.

..s u n,.... s.. * +.u o

N.?.'se.w. ~y 9

...v.e

  • w m,.. n..

a.

r %.acew';.w n..w*...w.,.......r...a...<.4.a.,m...,.,x,.w.+,*>w

  • ..,*w 0

H o

-..v.. ~,o."

. w.>,.9. %w....V.

... w ;o :~ s..*.s..--

c.

-.'S.. ~. J' m.. n. b...m N..c. ne. ;
  • %..-t.....P x* ' V v.. We m-s

~

-n 0

.;;y..y;.m m;.nn v...

.r

.~* ". ~., ' v; x,.~e.. w'.

, y --

e

. s +:-

. ' "a r.

.. n m'.A w;A.m.+0. k..

P...!.

<pT..,.e.. ns.5

.w. W. &...".. c,.; n. myp w s

o

.-c w

-., a

< w w

a

%. n ' s k. t.

C

+'x.,,,

r. 4.y. b..v v ** m,..,. e.J.

1

..,..>f.e.e:

+." *e # *? as v

e ww.

. "W %eM.!w.w

,...~.~,,.A x. w v..

LV O~

n.

F

..-w

.* u

.m. y -,%

.m m. 3 %

y z.O. t ! *,. <* >

%.,Mu,j.e.

m, ww v

4. rr

.4.rin.>w.4 m

y-m.a

.9 u s.~

,.2W r

.... o., w ~h.,.,,..

m....,. r

..., v. m...

N,.~W e

..u...

'\\*I# #2%*

O C.

...a.u u +

a m..,e-.d*?*O.*$..*."--

m 0

.. r 4.N..'..W... b.,.a.N.

  • r -.*..
  • *.'.t,W,.. w..*. v.

/

.D..s

- 4

s..

s w::a.....;r

.. - V<.....

m.

s

<s <

r. y. %,.. '

f.. A. 7 '.,., d.,. '.

f; y 3.

..t s.

  • c

+>

.. M4 4h

.4

  • .t....,

C

m.,

n. r<N

.shn

) h.e. e e..

.J........

r tr 6

.,w

.L.. k..,.f. s,,,..,.......n...

9.

J.

q.

M s a.

'..,. %.h +..,. r ) (m..I.,. e A..J"d. e~tM. a.

-e

  • %e A

t g

  • .Jh*.- es

.O

.m.

A

...s.n. /.d.

.I

, y *) A. *m: g.,

  • o-
  • .....,', W 4 " ** [ ' *' i
yi

..4..,..

>v

.e. 4.y.. A., *w*.;.,' p -, '.

~.

.+n._

(.. ',

a. s.. '
  • }s e
n.,a..m..y...,..... '...

'. U *"N# N F A

  • I
  • V

~

's

..,4...

..,,, " "~ ~.,

L

-=

?.

6.

3 'm.iwC.4 ' ' .e'b.Y e

~ ~ ~.

nY I.f.. *.'

4

........r......., [ h.,...,. s.

w..ap... w..

(

..,t

$'.tNOZN. *.T.'M Cc,6.I D h." l A /. '.*.M*'D D7.1 N* 12.*.

um.

j, (.

s..<

s M.:

W

.e m

.mn.

- v*xw, =h. M..Z.. O k..k.d. d. a7

[

n..:.,

~

p N.

m.,

~lp ~.

]/1.3m C,D+.OL".

f=*

e

.r* C _ M.

a..w d'C*

T.... ~

-~ -

)

+ 3 m.M~.W 'h.4 Q._N..

,'.i..

d t :

m* w 4 e

.St: Md.. 1

.c s.ey

.4 M..N....' M..v..M.. $...*.O.. _N gn. m

.... 3,: p.d.da,g #****.Pds':.'8J'.*.~,6.-.',...

i G

.a s.,..

,i w 't

=.a y

.r..~.

d.d I'..s

  • n y 4,

,..g

.s $ w.,.4..}* P.. Je

.g y,;,.y. r.. m.~p* N..- O

4. t r.

N q.e............~o...7

. h..#...... ' '.* j w.w s.*

,3.m.a a..^...D:.

  1. .,.a..-*..

..:~

s,,,*.%..%....3.....3.., M%

y

  • c' n..

,...d,a.,.,,O..'#.W.4....s.,,.,dO'#*'#.

C s

w.s.t.a-e.,Y L. s n .(.

..am...s....

~

-. a g.

. m a

.e. o w.. M.. g..g.

\\.

7

..:.....L..

w m/

.s.,.,i e.A w.

.r

.,.. e..d.

. 53u...,-.es**

A. r..e..* /..;T l

)

.g.

yw V

.Lwa a~=..

. :... s.

.'a iw M, c..,... w' I. l. s. x s,'s'.'.".,..<t.w.9..g'%..

e.

  • ..=
  • % ;.,, (,.

....~,j j,,; N,. + g e w # yy..

e., 5 4,.

.,.=.4

.g.-.

s..

ke * w ^*.#" s p' M. c.e,j '

  • ws C.

u

~e.,.....

.: e w."

.c..e....,s..

.. y l'J w..,

.l==

.. m. e.

... e.L.... J...,g.A.a.. a.

. F'.s. e.

g Q/? "w' '. ',04 *3 g.....,.m."

-u x

. y

..u n

  • .e4.-

,s,,...,.....o. ;,

O

,.,,v

~..,..g,,,c....

....s.T..v,v.......

A 3..

.s

.w...

..,~.,4, % m#. a.. o

.~z,.o..,,,.

s..s o,

..,e

c. e%,,.

m m ~. w.

]

5 /,

u.

s q.

N

.. +,

,, p..,

.:~,.,,.#,va...,,.c %..n.. w..~.,.. a p r.

.,,w. o. g.*

. rw.

y :..

c m.y.

N.

jym

. n y... >.. a. ry. 4 v%,w.w.

u -cm -. y'

..y

-.u...t 3-e 2-

3..
  • . g. 3 2..

.' /.:.*. r 6 A..W t.,s.'

- %.',1. 4 c

+.

Ce

,ps, pw.., s

... ~, M.g

.a

.we

.s. _ D*

. 3 [.o... Q'.t..

s. g. p.,.m, m s; M u %J.m

,..... o i ;, gm %

.v.

+

f.*.

sp.

% v.

C

,..s......,..

w'.

.. v 2.s

+

s 4 % 4., 4 4j.-.. w. %.. N..s...a.

t o

f R

  • h.'. w.: > n

. g'd:. -.. m e t.,n s. g......... 3...., e.

E 3,.,

t.i Q'f.':

....a...s..

J, s.

<." w w a.a.

7.

W D.~..d..r.,-e ".* Q%.m..,v".D.D m T.. f.:* P...,.W.. s.........

c 4.

H

~.m%

~.g O

L M.,f

-s G, s::..

  • p%.. l., r o +.

1 M;4%.

.s...

s.

ys

.m. m

~....,.#..v..,..

A e"vpyr a.,:,q.

w.... e. s. o, - %

.~ s

.Ss

.a.

.h.

s-e....n,.

, u.;;p.;.,..n*d.r.@..y% r&,,ri :W..ww.M:ww.t. %.. a,o ow.&

,c. n,. 3..a.

w u

n o

+9;\\D & ::m... W.. m%;',w2.V.. Q. =.?i V.'y;s

~.:

.G c s,.

M

,o,1.e. uiv%.m, W... ;M;e. !Ws..w

.N..

Y

\\,

.W".....

s

.. -^

'M'" &e ~~.1:s f.M W..%

sd.ig Q

-u m.

o,,e ~*.

J 4 * ;d": v..n.... m...u. m...,c.. q {:u.c. $a.,s.e..

b

..w

~.v. +m.

  • m c. w s

v-

Ma'-Q

.g %...%n:w v. c,a..? -;' < t%% x'.*QA.%W C.

-w

.~w r

~.

Q w..........p

-.o-v:

.. UW P*

cm: nik sL%*>fM p.e...,.....,

C'

. %m.m WW. : W..

cs.

a ;u:. r.m

  • s.

<w w.,.C%6, w.e.A.%g *id.. y

,"x. ow.:o.W' W %' 'C" b:; $,M. N'W 7,W %.*,'YJ'..*m.

.A* WM. tY..,.+1

,e.,

.m

-m

.a

.'% r w:n

~m

  • A,

m m.a

.e to Q

O

r. '"** *"z,m..m. m,..

s. v.s, n.. 6.H

'. 7. - - &.m,.c,..

r. 9.

m%.e..,n. 9

  • 3, C s

C i 5,",.,.n*M u" yM 9.9 %. 5.,.n. $.s.~:!.. & 4.w"*. N+ a. M.

.s n,u..

  • T Q

..,.~,..%.c.s.w.a...<.

. %. a ;.N.0:.... m 3.D. g N n e. p*:.bs.Q 1 '?. %. p.$

.w s

1 my l

uw

...q a.

.m f.N. ",

pf am v.1 n.w

- w..m,,..Q '.. *.w.#'.Q,.Q$.T. y.3W. G.. j]49 CMS Mpl N.4 m mff l.

r..n r..m.,, i jf b.,;.'d'g.gf.. ; 3p7.f, .' ',. J a., iD.. -A,,* t.?.?-M.@...,M.,.,.3 1

  • =

a CS !J%

  • wy d.-

'd ".ef e -

.m.

.A

.3

)W %

@e,,,.......

i Q( ' r-.~,$.***

% [ *:*@p&...

m.

.~

' -... R '...@.K.

r. *.>,.. W.. W.,.4

-\\

y

. N..

A N.J6c.~l. E,myh..~, WP. n.!.*.f.1.h... mn @ f..%..

W.m..,.W....h. a.W..m.r~...,q g; Q. ~~ u u.;

w..,.g FN ;,#c.w s.A, m

.~h ~,.

n

.......;.:...,p Q W. B :

  • r. s v.>.

I f

+. p:

g

.+4... %g >....,,. w. w rg..k op...m a.

a y+

Wu..~....~%,r. %._P I l 3;r.,.

m. w..w.~.-

m4..=

t.km *T.~-e tu,. mp g ** A1,a.w.1-I a,,,;.y,;,,,a.,,

c...w w.* My%r w;'.,.. 3 ow..

u.%.

u

.. u.+..a.

m o,1

.. e., s,;n

. n.

g p' f y!. e..Y,.A..d..., b~a ?. **M... E.,b.e + at::M.+c %sy.

.m. 3 M

m.;7~

wt J., m.4 ",n,n..m a. p ; > m<M,;.,

a.

~a1

<..v -

y.. W,...u.

. y..w. m.a & W

  • 4i~ y:.

a p e. C.J %.

&T. -o.w a e

~.

e

// a

  • x. ;. w,m. W th c....A* m % w w w r..

w.aw.m..~.'c. %... v 4tw9~ m. $a n* h^.'

w, g..~,~.

m,. e

.yc-n

.C; rM 4-

.r...~41.m h.c s N ;** ~..

..., 3 y*

. - a ;;

r c

3.t4:A n

u.-

u %p~h.wsnre,~ p m. % y,m--~.

.% w 4

. ~.

.y g

W sq'%.

M*P? NQ@%

.".Y..'..g;Q,. v y%l:*%'.%... *19.. 3q,.ep7%* %. ~u v.%..p*N' a

...'.y.

T w.

m es l

m 4m p

.MC* V.V *~

M a:p i;.n.w..'g

m...,

,p.,o,

WW v

Q4'M*D.T.KWlb L.%.st.k I &p;M'"la,*u Ma gi.w>(aW n.

.c g..q v

. e

,,3

v. 'Qf*M6.

C.'JM;. y%,

. h

..w.....y y.: n.

g

2

,r....WJe v.mp..,s......a......w w u q. '. n,..

".--.1.,.M....,v....<.m,

w em

~

w,e.

&... m#

C.MN, C.*. G 4 4.M...w.M...,.

... a.. w.. %+

  • p..

4."

.w m

y es.w ~w. %gn m n a 6-M.4....f.

J

h. d(($ ).t....-.*.~...~~M v

O v

. 'y +.v

...e....w.J..,,; *w,......m...

t.

^.m-

)

w,.e.. -.,, k:+.~ ~ y a m

.,#.~.

.M*:r.%

y..e w. y E

g-

~ c:- 4....w m-x:4.n..

c~,

e...

,c k

.... '. s s 'e d...g w

. e a u.m.~.gan e...>m..v.....'m.....~..-

y v

N. 4

... - >< T. :..a,

. m.. W<w., q..w,.... 1.v

..c. % w...... %,n.. n..

.D*

- mn:.:.n* - e am w w m.~S. e%o.e.2m.s.;? n m#w.vgr. p 3.~; m

\\.. $

g...m c.g. i%m.m..;-+e

-L,6.%,j..

w...

.n-o :s n.

w n

,,.e y r. n 0%

..a

.n.pp:@m.c. Qd we qL WTM.N.g'T.Z2 m. a-w

. v.m... n.

w

~

' Ws ;;q.a c.a.. :.s.v.#m. e.m e..s,k.w,*:'!?MrX9'W-WJ'@. T;s.m' n ww o.:-~ m.

+

g A.n%M<<

0

. - w~.

  1. e<

.w w.3w..~.x y

,,\\

3

w. c., c m. - m.7 n ~ M v %.. r.:**'. n, -e.1. ~.,. m~ ~;; n. n. &..,. ~..,~.,. n. x W.c t.G T ::C'

'N T

w 9

}

~.

  • 41
  • .I9;

% m:3

] j,,,,,p'. '%.,m.....m.~c.*

6.b y * *^ 4 pCf.,.'.".#:)

w n ~~

7 q.

WM4L

m. w,

u-

  • ~

y g,-

.g p._.

s &.,QVy {:u g.; Qg.'l aW p. 'g g;**

4.

.d g

.~

s.vm p

m

+l**

e.

9g.e

- y ggt g,..

3,e.4

.y g c. s.t

-m & ~~,

M,.:.2-

+2...

-..+"i*

st....... *; * > ~ + -a.%

Y h.."4.e.x.

... a

.j pg. g

. x. 3....s, _m.. ~.~-

ia I.g[.- ~...c...s _.n..<..u...-.....a....~

W W N.. 'W ~ ~.J

.v.

b d* 7 I NNhk

.{' %. Q{g 4,

.m

y. [\\h hv.Qt e4 h,"i,.p p, y. 4.w..,.. w y** *.w

=~

h-w

.,.-s

. o.-

r i

4,*

"N.

Y.,.. D $sN L:1

.x L ~....

q-

'l

  • b8' fi. 2 l'

LI j.

d.

D.h?$..'b.,,_ov C.

v

+o,...

a d *.Nd

..~.

h 1.a4 &".

c>

a 4

e H

.-_...h..W. a W 3. '*W'w.-ln.~.c.:

~

..... W. ".; e W. '

w-4

- : m.

- m m.au. -

gO h

w'

-mm v

b.u. f.

m m.r ::,&;".9

  • N v

~N o

Il 3,o.n

%.... A.7.s 4

3 i

-qg

=. *

.e e.

= = =. - we.

..,4

]

i NWELD 6VERLA CALCOLATION!5UMMARYd yC@sM)FUMfp"WV6$ff?

$P 976 M @ OMsf @ #if ~ L Z.~C 2

$$%3DM@MEIS(" UNIT!*3 rRWCU. wsgwa v: Attar 3 ment No W M 9

M l

eb wgig;gev+BAPSi,i;ry % Dggun.

Mi' C

+em

~~ e-spmsem q

MP l2?l!1 M M &w...

e calc ~.' Now. eg-S *,

' <,

  • geya oe a E m i M-l 3 % g5y m m y$Ri?x7 V

es W e by g% f..Mi%a/ ELD 4#

n yWW6%24 s; 'ilikt NP' C n?"" ~ ~- ~ef""_~"2'e'.-

v ve?c A gMAnts.

ma6

-a-0 9

s unamu xL ne

,, n

.n. c,.,

~

Eipe_gnd Flow Dimensiont Pipe ID ID 3.700

( in ).

Well Thickness Tp 0.400 i in )

a Pipe OD OD 4.500

( in )

f Pipe Cross. Sectional Area Ap 5.152

( in'2 )

Pipe inertio fp 10.929

( in^4 )

  • Assumed Flow Depth Di 0.400

( in )

[

0 4

f Overlav Dimensioni Min. Overley Thickness To 0.175

( in )

)

Min Overlay length L

.0.554

( in )

Total Min Overley length 2L 1.109

( in )

Pipe + Overlav Dimensioni l

i Wall + Overley Thickness Tpo 0.575

( in )

Pipo inner Radius Ri 1.850

- ( in )

Overley Outer Radius Ro 2.425

( in )

Nominal Radius R

2.138

( in )

Cross Sectional Area Apo 7.722

( in"2 )

Bending inertio ipo 17.961

( in 4 )

a

)

Motorial Propertiet

]

Pipe: ASTM A-376, TP304 SS Overlay: Type 308L SS Design Stress Sm 16950

( psi )

{

Flow Stress Sf 50850

( psi )

  • NOTE The pipe is conservatively assurned to have a 360 degree through-wall crack for this full structural overlay design.

\\

overlay.wkl 10/03/91

]

?

9 I

h

g-

$[bkh[ENIkhbhTMN$3h($$2(iSU,MMARYM.$:2%^ @^jE.]{fg'E?

d.

$$IEMf8Mf%$

~"^

$qW-ELD.,.O,VERLA,TCA,LC_ULA,,TI,O,N,,,nd?,". "Q+y (v ~naha!Nor.,32 m, egyg 7

0m.m u

g @AEg5 m.s4su

" Reco" "2

e y

m@eg ~ Kl?BAPS! UNIT!3 RWCUM B

W

)m 8

's an!w #ne4'

~

w~

g gw l", l^g ;W & *N;_ ?' "CtiN0! M I M W kP Yk, M - WELD 1C 12 MR

? gf L N'LW ' ',e w

W b h; a y g w?.

!&l gh.s

, w ggm m m et:. m

,s 4

~

Eipina Loads -

r_

_ ps!)

(

Design Pressure P

1800-Axial Loods: Deadweight Fd

( lbs )

OBE Seimsic Fo

( lbs )

Moments: Deadweight Md 20008

( in-lbs )

f OBE Seismic Mobe 24622

( in.lba )

i:

SSE Seismic Mssa 49244

( in-lbs )

E L

s..

. Eipina Streut.1 Meiabrune Pmp 3756

( psi )

Bending, OBE Pbpu 9188

( psi )

Bending, SSE Pbpf 14257 (psi)

[

?

i t

Eioe Overley Stresset f:

5 Membrane Pmo 2506

( psi )

Bending, OBE Pbou 6026

( psi )

1 Bending, SSE Pbof -

9350

( psi )

c

. L.

8 Critical Bendino Stren_Colculation j

Neutral Axis Angle B

0.614

( rod )

Min. Critical Bending Stresses Pbcmin 23090

( psi )

?

Critical Bending Stress Pbc 24339

( psi )

3.0 1

Req. Factor of Sofety, Upset

_ 3.146 i

Fodor of Sofety, Upset FSu Req. Fodor of Safety, Faulted 1.5 l

Fodor of Safety, Faulted FSf 2.264 l

Critical Bending Stress, Pbc =

24339 (psi) is greater than the Required Cdtical Bending Stress, Pbemin =

23090 (psi)

Therefore, the overlay design thickness of T =

0.175

( in )

cnd length of L =

1.109

( in )

l is su$cient.

~

~

l i

l i

overfoy.wk1 10/03/91 k

i.

i I

8

. - ~.

Attachment No.

3 SASR 91 26 f

DRF 137 0010 Calc. No._ PM-54 9 flev. 2_

Sheetth.

I of SS l

l

=.

l l

WLL STRUCTURAL WELD OVERLAY DESIGN FOR PEACH BOTTOM UNIT 2 RWCU WELD 12-I-lD 4

April, 1991 Prepared For i

Philadelphia Electric Company By C.E. Nuclear Energy i

Prepared By:

4

/Z W

i C.D. Frederickson Senior Engineer, Structural Analysis Services s

Verified By:

H.S. Mehta Principal Engineer, Structural Analysis Services Approved By:

O "' N ' '^ "

S. RanganatM

Manager, Structural Analysis Services 1

k

?

?

l s

4 s

Attachment No.

3 4

Calc. No-PM -5" Rev. o

"!a' NC.,. 2-DI 15 I

IMPORTANT NOTICE REGARDING

~

CONTENTS OF THIS REPORT Please Read Carefully The only undertakings of General Electric Company respecting information i

in this document are contained in the contract between the customer and General Electric company, as identified in the purchase order for this report and nothing contained in this document shall be cotistrued as changing the contract. The use of this information by anyone other than the customer or for any purpose other than that for which it is intended, is not authorized; and with respect to any unauthorized use, General Electric Coepany makes no representation or warranty, and assumes no liability as to the-completeness, accuracy, or usefulness of the information centained in this document.

+

l

\\

l l

t l

1 L

i l

b I

I 5

i

Attachment No.

3 SASR 91-26 Cac.No.

PM 549 Rev. O DRF 137-0010 Stet No.

3 of is 1.

INTRODUCTION Duri.,g ultrasonic examination of the Reactor Vater Clean-Up (RUCU) piping system at ~i'each Bottom Unit 2 (P32), the examiner located a circumferential indication at the inside surface of a 4-inch schedule 80 pipe.

This indication was found March 9, 1991 near the weld to -

heck valve (weld 12-1-lD) as shown in Figure 1.

The affected pipe is m.

e of ASTM A-376 type 304 stainless steel.

Details on the indication found are contained in the Reference 1 report.

Further UT and radiography examinations were used to verify the existence of the flaw and to accurately characterize the flaw-The flaw was determined to have a maximum depth of 0.14-inch with geometry.

a pipe wall thickness of 0.40-inch in this region.

This flaw is located an axial distance of about 0.8-inch from the weld centerline extending in length from about 1 to 3 inches clockwise from Top Dead Center (TDC).

To repair the pipe at this location, a full structural weld overlay is designed and applied at veld 12-1-lD.

This full structural weld overlay is designed to support the entire pressure, dead. weight and seismic loading in the pipe conservatively assuming that the crack extends through the wall of the original pipe for the entire circumference.

The weld overlay is designed in accordance with Section XI of the ASME code to restore the pipe to meet ASME code structural margins.

I 2.

SUMM>aY The weld overlay shown-on Figure 2 has been designed to repair the l

l indication in accordance with Section XI of the ASME code.

The nominal overlay thickness is defined as 0.200 inches with a minimum thickness of 0.175 inches.

The overlay must extend at least 1.5 inches past the indication on the side away from the valve to allow future UT measurements.

On the valve side, the overlay should blend into the valve bevel as shown on I

Figure 2.

The Reference 6 CE' overlay procedure may be used to provide guidance in developing a site specific procedure.

SASR9126.UP 1-i

~

l

Attachment No.

3 SASR 91-26 Calc. No.

PM 54 9 gE o DRF 137 0010 sheet No.

4 of_ g 3.

VELD OVEP1AY PROCESS The weld overlay design consists of'a continuous 360* band of weld metal l

deposited bver the outside surface of the pipe directly over the crack indication.

The_ overlay is made with high ferrite, low carbon Type ER308L stainless steel weld metal.

This material has a very high toughness and is j

resistant to Intergrannular Stress Corrosion Cracking (IGSCC).

The veld metal is deposited using an automatic Cas Tungsten Arc Welding (CTAW) f technique with water cooling the inside surface of the pipe.

Using this process, compressive residual stresses are created at the inside surRe.e of the pipe which tends to strest-crack growth.

The Reference 6 CE wild overlay procedure may be used to provide guidance in developing a alte specific procedure for PECO.

4 WELD OVERLAY DESIGN METHODOLOGY In designing a full strue.tural veld overlay., the crack is conservatively l

assumed to extend through the original pipe vall thickness for the full l

f circumference of the pipe.

Making this assumption, the veld overlay design is independent of the size of the indication.

This is conservative for the

}

indication found which extends less than 40% through wall for less than 20%

of the circumference.

Also, the crack is unlikely to grow due to the compressive residual stresses created at the inner surface of the pipe using the heat sink weld overlay process.

The weld overlay effectively increases the pipe wall thickness with high ferrite, low carbon Type ER308L stainless steel material that is resistant to ICSCC.

Therefore, a crack growing through the wall of the pipe will not extend into the overlay. This will be confirmed by future inspections.

5 factor of safety of 3.0 is desi ned such that a The overlay thickness is l

maintained 1 gainst net section collapse for normal and upset cordition loading per Paragraph IWB-3642' of Reference 2.

A factoh of safety of' 1.5 must also be met for emergency and faulted loading.

SASR9126.WP _

i ss 1

. ~.

- = - -

~ ~._ _

Attachment No.

3 SASR 91-26 PH 54o Calc. No'.

DRF 137-0010 Sheet No s

og 4.1 Weld overlay Thickness An iterative process is used to determine the required weld overlay

~

thickness.* An initial overlay thickness, T, is first assumed.

Considering i

the pressure, deadwe ight and seismic loading on the pipe,.the membrane (P )

m and berding (P ) stresses on the uncracked, overlaid section (Section A-A of b

=

(P c) in the untracked, Figure 3) are then calculated.

The bending stress b

overlaid section of the pipe (Section A-A) at the point of net section I

collapse of the cracked section of the overlay (Section B B) is next calculated using the methodology described in Reference 3.

The stress distribution shown for section B-B of Figure 3 is assumed at collapse.

The

+

in Appendix C of Reference 2.

For

[.

flow stress, cc, is defined as 3 S as m

che membrane stress calculated previously, the neutral axis angle is

+

determine d by equation 3 of Reference 3 as 1

p - x ( 1 - d/t - P=/of ) / ( 2 - d/t )

The bending stress in the uncracked section (A-A) at net section collapse of the cracked section (B-B) is then calculated according to equation 4 of i

Reference 3 as P c - ('2 of / n ) ( 2 - d/t ) sin (4) b s

The net section collapez stresses are then compared against the applied stresses to determine if factors of safety on collapse of 3 for upset loading and of 1.5 on faulted loading are achieved.

m + ! lupset h3 m + P c) / (P (P

b b

(Pe + P c) / (Pm + P } f aulted t 1.5 b

b If these con'dition are met, the assumed overlay thickness is sufficient.

If the' assumed thickness must be-increased and the these condition are not met, calculations repeated until the required factors of safety are achieved.

SASR9126.VP 1

-, ~.....

Attachment No.

3 2

~

SASR 91-26 Calc. No-PM 549 Rev, o Sheet No.

fo of ts DRF 137-0010 r

' 4.2 Weld overlay Width 3'

After the required overlay thickness has-been determined, the overlay width h

is considere'd.

The overlay

  • width is sized taking into account several

[

considerations.

First, the overlay must extend 'along the length of the pipe' a distance great enough to ensure it will envelope the extent of cracking.

For an axial crack, this overlay vidth must take into account the projected growth of the crack. For a circumferential crack, the extent of cracking is f

confhed to a small axial region of the pipe. CE has completed studies into t

the minimum overlay vidth required to provide adequate structural 0

reinforcement of the cracked area and to assure that the stresses in the overlay will be reasonably uniform.

These studies have shown that an overlay width of 0.5 /iit to each side of the indication is adequate.

This axial distance is also great enough to assure that the circumferential crack is fully enveloped by the overlay.

{

Another consideration is the inspectibility of the indication after the overlay is applied.

The UT transducer must be placed flat on the outside

= surface of the overlay at some distance from the indication.

This distance must be great enough to locate the crack tip vith a 45' or 60* refracted i

vave.

This requirement often exceeds the structural require nents for the I

overlay vidth described ebove.

Finally, the overlay width maybe dictated by geometric constraints if located near a tee,- valve or other fitting.

I 1

)

b SASR9126.WP _

S 5

v-

-s-w e-,,om>

g y,,-,-

p

---w.,--

m--v<

nw-

,e

--e

~

Attachment No.

3 SASR 91-26 Calc. No. PM 549 Bev o DRF 137-0010 l

3 heel (Jo.

7 of 15

'5.

WELD OVERLAY DESIGN As stated previously, the weld overlay is designed using an iterative approach. The thickness is adjusted until the structural margins defined by the ASME code are r.chieved.

For this analysis, the iterations made to arrive at the final overlar thickness are not shown.

Only the calculations for the final overlay thickness are included to show that the designed thickness is sufficient.

The calculations for this final weld overlay thickness, su=marized in Table 1, are described in detail below.

5.1 Weld Overlay Thickness The minimum overlay thickness was determined to be T - 0.175, inches.

For this overlay thickness, the important dimensions and cross sectional properties are:

Pipe + Overlay Thickness, t - 0.400 + 0.175 - 0.575 inches Pipe Inner Radius, Rt - 1.850 inches Overlay Outer Thickness, Ro - 2.425 inches Nominal Radius, R - 2.138 inchas Cross Sectional Area, A - 7.722 inchs Bending Inertia, I - 17.961 in' The aerual UT measured thickness of the pipe (0.40") was used rather than the nominal thickness for a 4-inch schedule 80 pipe (O.337") because for the weld overlay de:ign, the greater original pipe thickness conservatively leads to a greater overlay thickness.

Applied Stresses 1

Per Reference 4, the design pressure for this piping is 1800 psig.

The I

F primary membrane stress is thus

(

~

2 - 2506. psi j

Pm-xR2 P/A-x (1.850 in)2 (1800 psig) / 7.722 in 1

-SASR9126.WP -

)

3

aa-+

JE :

-. w..,,

' /,

j

[

3 Attachment No.

SASR 91-26:

Calc. No._

"M - 549

- Rev.1 DRF 137 0010 g

Sheet No -

9 of ts-

?

condition deadweight and OBE seismic bending stresses in

[-

'The maximun upset

[j

- the original 4-inch schedule 80 pipe are also given in Reference 4 as g.

y y,

ad - 5127 psi f

and a0BE - 4575 psi t

The dimensions and cross sectional properties for the original 4-inch

(

schedule 80 pipe are:

(.

4

{f Pipe Wall Thickness, d - 0.400 inches, Pipe Inside' Diameter, ID - 3.700 inches,

(

Pipe Outside Diameter, OD.- 4.500 inches,.and

[

4

[

Pipe Bending Inertia, Ip - 10.929 inch.

1 5

is conservatively used Again, the actual UT measured thickness of 0.40" nU standard 4-inch schedule 80 nominal thickness of 0.337".

instead of the b

to the strength of the weld overlay is designed in relation Because the strength of the original pipe, the use of the greater thickness is (3

l' The applied y

and vill lead to a greater overlay thickness.

conservative moments can be calculated from the resulting stresses and the cross

[

sectional properties as a

4 M '" "d (I ) / (OD/2) - 24905 inch lbs d

o F

and inch-lbs Mogg - a0BE (I ) / (OD/2) = 22222 p

for the deadweight and OBE seismic loading, respectively.

Usir,g these applied moments, the upset condition bending stress in the overlaid section

-is determined to be I

l P u - (da + MdBE) Ro / I - (24905 + 22222) 2.425 / 17.961 - 6363 psi b

g SASR9126.WP

-. =-.: xm.. _.- w : c ~._

3 4

Attachment No.

N' N Ret 9--

SASR 91 26 Calc. No -

9 of -

ogy 337.colo is

(

Sheet No.

i l

'For the faulted case, the SSE bending moment is conservative 1f assumed to I

equal twice the OBE moment Mgsg

.2 MOBE - 44444 inch lbs L

The faulted condition bending stress is then cal:ulated as Pbf - (Md+MSSE) Re / I - (24905 + 44444) 2.425 / 17.961 - 9363 psi Net Section Collapse Stressa.s

, y-o The design stress intensity for this ASTM A-376 stainless steel pipe at 550*F is given in Table I-1.2 of Reference 5 as 1i S - 16950 psi p

m a greater strength.

The ER 308L stainless steel weld material has Therefore, the pipe material properties will conservatively be used.

The flow stress is defined as three times the design stress intensity, or og - 3 Se - 50850 psi s

f_

For the 2506 psi membrane stress calculated above, the neutral axis angle is i

calculated as S - x( 1 - 0.400/0.575 - 2506/50850 ) / ( 2 - 0.400/0.575 ) - 0.6143 rad as described in Section 4.1.

The bending stress in the overlaid pipe at net section collapse of the cracked section is Pbc - [ 2 (50550) / x ] ( 2 - 0.400/0.575 ) sin (0.614) - 24339 psi r

~

L SASR9126.VP " - - - " --

Attachment No.

3 SASR 91 26 Cate. No-PM*49 Rev.-

DRF 137-0010 Sheet No.

to of is

..Section Collapse

' Factor of Safety to Net l

The ratio of net section collapse stresses in the uncracked, overlaid pipe over the applied stresses due to pressure, deadweight.and an OBE seismic i

event,' yields the factor of safety of (Pm + P c) / (Pm + P u) - (2506 + 24339) / (?506 + 6363) - 3.03 b

b This factor of safety exceeds the required factor of safety of 3.0 for normal operating and upset condition per Paragraph IVB-3642 of Reference 2.

q i

For the faulted condition, the factor of safety is

)

1 m + P c) / (Pm+Pbf) - (2506 + 24339) / (2506 + 9363) - 2.26 (P

b This exceeds the required factor of safety of 1.5 for faulted conditions per 103-3642 of Reference 2.

Both of the factor of safety requirements are met.

Therefore, the minimum weld overlay thickness of 0.175 inches is sufficient.

25 mils are'added to the minimum weld overlay thickness to obtain the l

nominal veld overlay thickness of 0,200 inches.

No maximum overlay thickness is needed. The veld overlay repair is shown on Figure 2.

l 5.2 Weld overlay Width f

i As described in section 4,2, the overlay must be applied for a width of at least j

L - 0.5 / R t - 0.5 / (2.138) (0.575) - 0.55 inches

(

)

1 beyond the indication on each side to meet structural requirements.

)

However, to ensure.the ability to conduct UT inspection of the indication after the oyerlay is made, an overlay width of 1.5 inches from the

{

-}

indication is recommended. The veld overlay repair is shown on Figure 2.

g d

p SASR9126.VP i

~

i i

1 i

k

4

-a

-Y

- - = = =

'4 1.

,rw e, y.,

t.

t t

Attachment No.

3 SASR 91 26 Calc. No. PM-549 Rev. c-DRF 137 0010 j

Sheet No.

II of i.-

A c

a

[ vcive e

PI

  • rl M

[

)

P indico6cn)

L Weld

,r f

~, 0. 8 " --

e

- -._._.7._._._._._._._... _.e_._C.e_n t e_rl i n e._.

Pip A - p>-

j O

TDC 1" CW

/

Indication f

I f

a = 0.1 4' MAX

]

/

/

3" CW i

l N

xd = 0.40" Section A-A l

INDIC.'DRW

(

Figure 1 - Peach Bottom 2 RyCU Ueld 12-I-1D Indication SASR9126.WP,

l

wE5

,7 m o r

'd a4 ygO Rxi9gFD*'

3

~

r DF i m9 o W=s p

a 9

e n-i

)

l 5

r-s s

e-7 t -

a n-P e-r C

e d

g d

b y

e l

in e -

l r

e 2

go p-pu W

m i.

pn y

P-o t

d e

/

l et s

e bi r

r r

i y

(W oe F

t f yi f e

N3, op.

y l

X,,

la a

s5 re s7 r

v a1 0

v ed O

N,,

h leis N-w t

s N

f ot s

l s e N-c sf k r n si N,,

e c

n ei n

h N

o k h t

0 0 t

N c

i t

5 i

l 2

a h ga 0

N nc t

.c edl 1

io N

i u

e d

h N

lcm t

9 n

snu i

i

.A,, P im is 'o n h ni T( M

=

w g

0 r

2. lv

,l W

0 R

D.

Y A

L R

E V

~" ar =Eg", y8 aa G Asa ?" r iman O

xf

mi*

4 s':m5C* c~

.?

Attachm;nt No.

3 e

sAsR 91 26 Cale. No.

PN-n 9 RW. o DRF 137-0010 Sheet No.

G of 1.9 O

I t

B+

A + f verlay g

//// ////// / //////c/A i

h\\\\\\\\\\\\\\\\\\\\ Ys\\\\\\\\\\\\\\\\\\\\\\\\\\

R;

{ IGSCC Crack l

(_

io l cn y wv Sh % \\ % % %'1x % N % NNN W i.

M/// // //// / // /r/// ///

\\

?

\\

A e

L I T BA A+

Pipe Stress Distributions Cross Sections At Net Section CoHcose r

Pm P +E :

m c

h '

[i A

+

Neutral.....

i.

'1

[/

Axis

'\\D'\\

li Section A-A (Uncracked Section) O' s

y

  • x

-Cr*

.....'I k+... I '

r 4

y h..

4 x

sNx

,m Section 8-8 (Crocked Section) copse.ORW O

~

~

Figure 3 - L' eld Overlay Stress Distributions at tiet-Section Collapse SASR9126.VP.

. w.aw ma_ u

._,-m m._--,

-m V3 4

p;

'i

' Attachment No.

3

'SASR 91-26 d

-4 Calc No-PM 549 Rev. o DRF 137-0010 h1 Sheet No._

14 of is-

?.

~

C N

Table 1 Weld Overlay ; Thickness Calculatica Sunnary 4

M

- lie Pipe and Flaw Dimensiones Piping Loads:

Pressure, ps 1800 (pol)

E

. Pipe ID:

3.100 (in)

Wall Thickness, di

_0.400 (in)

Axial Loads:

Deadweight, rds 0 (1bs)

M Pipe CDs 4.500 (in)

CBE Seismic, Ts

.. 0 (Abs)

Pipe Area, Apt 5.152 (in*2) Mocnents:

Deadweight, Md 24905 (in-lbst.

h

~ Pipe Inertia, Ip 10.929 (in-4)

CBE Seismic, Ms 22222 (in-lbs)

I(

.v, 0.400 (in)

- f

1) Assumed Flaw Depth, at

./ d Piping stresses:

p overlay Dimensions:

3756 (psi) p overlay Thickness, T:

0.115 (in)

Me:rbrane, Pap Min. overlay Length, L 1.109 (in)

{ Pmp = (pa(PI/4)ID*2+Fd+Ts) / Apj

- W 9702 (psi)

N

{La fiIt on each side of indication)

Bending, PDps U

( Pbp = (Md+Ma j CD / (2 Ip)' )

b c'

Pipe + overlay Dimensions:

Pipe overlay Stresses s

2506 (psi) p Wa11+0vrly Thickness,-t 0.575-(in)

Membrane, Pmor 1

(t= T+dl

(_Pmo a (p(PI)Ri"2+Fd+rs)- / A )

("

6363-(psi)

' Pipe Inner Radius, Ris 1.850 (in)

Bending, Pbos.

(

Overlay Outer Radius, Rot 2.425 (in)

( Pbo = (Md+Ms) Ro / I J l'

3.00 Nominal Radiue, R:

2.138 (in)

Factor of Safety, TS:

cross sectional Area, At 7.722 (in*2) MIN Critical Bending Strees 24101 (psi) y Bending In rtia, It' 17.961 (in*4)

( Pbc > TS (Pmo+Pbo). Pmo )

/

Material Properties critical Bending stress calculations R

y

.......~..

,I 0.614*4 (rad)

Pipe Materials TP 304 ' SS, ASTM A-376 Neutral Axis Angle, 8:

overlay Material: Type 308L SS

( B = PI (1-a/t-Pmo/5f) / (2-a/t) }

Design Stress, Sm 169 50 -(psi) -. Critical Bending stress, Pbc 24339 (psi) riow Strees, Sf = 3 sm:

50850 (psi)

( Pbc = 2,(Sf/PJJ (2-a/t) sins l critical Bending Stroes. Pbc =

24339 (psi) is groster thar. the Required f

1). The pipe is conservatively assumed critical Bending Stress of 24101 (psi)

Notes to have-a 360 degree through-wall Therefera, the Overlay Design g

0.175 (in) crack for this full structural Thickness of T =

1.109 (in) and Length of L =

overlay design.

l is sufficient.

6 I

i 19-Mar-91 CVERLAY.WK1 f

1...

9

,I

-l 12 SASR9126.WP 4

e a

v<e y

,,..w--

m n,.

m

--.-w-

-,-m

,m-,e-

,- - -, -, - - -, -, - ~ -. -, -

e-,,

---av m,

Attachment No.

3 SASR 91 26 l

Calc. No. PM G o Rev.-

DRF 137 0010 Sheet No.

W

-- of W

I

'6 REFERENCES 1)

Indication Notification Report (INR) # PB2-91 INR 02, Prepared for Philadelphia Electric Company by EBASCO, March 11, 1991.

2) 1989 ASME Boiler and Pressure Vessel Code,Section XI.

3)

S. Ran5anath and H.S. Mehta, " Engineering Methods for the Assessment of Ductile Fracture Margin in Nuclear Power Plant Piping, Elastic-Plastic Er_a_q tu r e -

Second Svmoosium. Volume II. Fr a c.tu_r e Resistance Curves and EDgineerine Acolications," 1983, (ASTM STP 803), pp. 309-330.

4) Non-Conformance Report (NCR) # P-90407, Frepared for. Philadelphia Electric Company by Bechtel, July 12, 1990, Sheet XVII - 4.

5) 1989 ASME Boiler and Pressure Vessel Code,Section III.

6)

G.E. Docu:nent0 P50YP225. Rev.

3, " Process Specification for Veld Overlay for Austenitic Stainless Steel Piping Welds," July 1987.

e e

4 SASR9126.VP _.

O

4 GIl- $

4 e

i e

I

& ^

- 9 t,

s

- +

l O

AWACIlm:M II l

1 1

h i

1 i

j i

l r

i t.

I t

l i

l l'

l l

l l

c t

l.

i I

I l'

i l

l t

i e

9 b

t e

4

=m.. m7 y

...y,,.1._.___..

,,.v.4

... ~...,,. - -

~.~

-s

-_m s

e

. NUCLEAR-ENGINEERING AND SERVICES DEPARTMENT C

CIVIL / MECHANICAL PLANT SECTION 965 CHESTERBROOK BLVD, 633 r FROM:

H. W. Vollmer NOV 141991 TO:

G.-J. Beck E

SUBJECT:

Final-Report for Completion of Weld Overlay on PBAPS Unit 3 RWCU Weld 12-I-lC p

i

References:

1.

PECo Calculation PM-549, Rev. 0 - Design of Full l

Structural Wold Overlay for PBAPS Unit 3 RWCU Weld 12-I-lc 2.

PBAPS NCR P-91723, Rev. 1 3.

PECO Calculation PM-570, Rev. 0 - Analysis of Effect of Structural Weld Overlay on PBAPS Unit 3 RWCU Weld '12-I-lC The final records-for the full structural weld overlay completed on RWCU weld,12-I-lC at Peach Bottom Atomic Power Station Unit 3 have been reviewed.

Based on this review, the overlay has been determined to meet the design specified j

in References.1 and 2.

The procedure used to perform this j

overlay (per Reference 2) was the same procedure previously approved for use on the Unit 2 RWCU overlay.

Specifics of the final weld overlay and the process control information are discussed below.

j In accordance with the approved design; final measurements L

were taken for thickness, delta-Ferrite and shrinkage with the following results:

l-Thickness The final weld overlay thickness ranged from a minimum l

of 0.280 inches to a maximum of 0.380 inches as determined by 24 UT thickness measurements taken before

. and after the overlay.

These measurements were taken for 0*, 90', 180*, and 270' asimuths at six axial locations ranging from 2 inches upstream to 1 inch

. downstream of-the indication.

The weld overlay thickness exceeds the nominal thickness of 0.20 inches l:

I

. -. ~.. ~.

= - - -.,, _ _ _ _ _

.y Q

G.

D K

for a length exceeding 0.55 inches on each side of the g

' indication, as specified in the approved design.

n.

~~Q Delta-Ferrite-ht In'accordance with the approved design, delta-ferrite L

measurements were taken after completion of each weld-lay'er. -Several-first layer delta-ferrite measurements were less than the 7.5FN required,- therefore, the weld 1

overlay thicknes. described above do not include the.

first weld pass.

Delta-Ferrite measurements were taken for the second weld pass with values ranging from 7.5FN_

N to.llFN.

The-average delta-ferrite measurement for (E

this pass was 9.7FN.

These measurements meet the D

acceptance criteria as specified in the approved design.

Therefore, the second pass was included in the

{

total. overlay thickness.

The average measurements for p

the third, fourth and fifth passes were 9.3FN, 10.9FN Nj and ll.9FN, respectively.

Shrinkage i*

The total overlay width was approximately 3.625 inches.

The shrinkage was measured at four azimuths to be:

i t.

Azimuth' Shrinkage (in)

[

0.375 0

90*

0.4375 180*

0.4062 270*

0.4375

'o These shrinkage values range from 0.375 to 0.4375

(

inches for-a maximum variation of 0.0625 inches.

This variation is within the maximum distortion control

)

guideline of 0.0725 inches as specified in the approved

{

design, to assure uniform shrinkage.

The effect of the i

shrinkage on existing piping stresses has been

?

evaluated (per Reference 3) and determined to be.

acceptable based on Code allowables.

I The weld overlay process was controlled in accordance with l-the weld overlay procedure of Reference 2.

To achieve favorable compressive residual stresses at the inside 1 surface, the pipe was water cooled during the weld overlay The temperature of the_ cooling water was measured j

process.

l upstream of the overlay.

This temperature ranged from 72 F to 75*F.

Pipe surface temperatures were also monitored just j

ups.tream of the overlay.

These surface temperatures ranged from 73*F to 75 F.

The inlet cooling water temperature was thus maint,ained well below the 120 F maximum requirement specified in the approved design.

The flow maintained through this pipe during the overlay process was 125 gpm (0.279 ft3/sec).

This translates to a flow velocity of l

\\,

approximately 3.7 ft/sec for the 4 inch schedule 80 pipe.

This flow rate is within 51, of the minimum flow rate recommended in the approved design'and is comparable to the flow rate used f or the Unit 2 RWCU overlay.

It 1;. ' conclusion that the overlay meets all requirements defined by the approved design calculation and the weld overlay process was controlle'd within the guidelines of the approved weld overlay procedure.

If you have any further questions, the Responsible Engineer for this project is S.G. MacNicuol (X6365).

. U),( -

Section Manager Civil / Mechanical Plant Section cc:

G. V. Cranston p

R. R. Hess P. A. Tutton D. M. Groves ref: smlll291.1 W

G S

3-

_ - _ _ _ _ _ - - - - _ _