ML20086B466

From kanterella
Jump to navigation Jump to search
Control Room Outside Air Intake Radiation Monitor Setpoint Calculation
ML20086B466
Person / Time
Site: Waterford Entergy icon.png
Issue date: 08/20/1993
From: Ramly S, Sicard P
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20086B448 List:
References
HP-CALC-93-004, HP-CALC-93-4, NUDOCS 9507050396
Download: ML20086B466 (7)


Text

- - - -

g. ,

)

9 f

CONTROL ROOM OUTSIDE AIR INTAKE RADIATION MONITOR l

SETPOINT CALCULATION 1 (HP-CALC-93-004) l

.I CALCULATED BY:.td.d!..f..d.C.?[...DATE:.22?;.Tl!.?22 REVIEWED BY:..Rdd.>5.i.CMb.......DATE:..Y. .* 73 9507050396 DR 950628 ADOCK 05000392 PDR

e- .

CONTROL ROOM OUTSIDE AIR INTAKE MONITOR l SETPOINT CALCULATION

=======================_ =sz--- ---- =------ --  :- -_-- -

==

CONTENTS Page

==========_======e-- - - <- --- =-==-- --  :

s=------ - =- - _ _______ ,

l Purpose........................................................ .. 1  ;

Summary .......................................................... 2 References ....................................................... 2 .

t Input cri teri a and As sumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Me thod of An a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 +

Calculations and Results.......................................... 6 Attachments....................................................... 7  :

Figure (1) Control Room Envelope Ventilation Configuration Model (1page)

Attachment (A) Control Room Outside Air Intake Monitor setpoint Based on the MPC limits. (2page) ,

Attachment (B) Control Room Outside Air Intake Monitor setpoint Based on the DAC Occupational Value limits (2 page) i

====____-____- m - - - - - - -

. - - - - - - - _ z- - __==_

PURPOSE:

To determine a new high alarm setpoint for the Main Control Room Envelope Airborne Radiation monitors at the Outside Air Intakes (OAI).

There are Four normal Control Room Outside Air Intake (CROAI) radiation monitors The current high alarmsetpoint (ARM-IRE-0200.1, -0200.2, -0200.5 and -0200.6).

12.3-3 and Technical (Specification 3.3.3.1, Table 3.3-6, item 2b.< 2 x Backgro Exceeding the current setpoint has caused the Control Room Ventilation System to isolate and Control Room Emwergency Filtration Unit (EIIS Identifier VI-AHU), an ESF, to automatically start . Since 1984, these spurious Control Room Emergency Filtration System actuations were reported to the NRC in 22 LERs which had an indeterminate root cause for the origin of the spike that apparently caused the CROAI radiation monitor to alarm. Commitment i A20059 is currently open to determine a  ;

conclusive cause for these events. l

)

i i

i

c.

N' SUPMARY:

This calculation contains a new high alarm setpoint for the Control Room Outside Air Intake (CROAI) radiation monitors (ARM-IRE-0200.1

-0200.2, -0200.5 and -0200.6). ThenewsetpointfortheCROAImonItors is 8.07E-06 uCi/cc based on the radioactive material concentrations inside the Control Room will not exceed HPC limits specified in 10CFR20 Appendix B, Table 1, Column 1. Incaseofthenewregulationwhichwill be implemented on January,1994, the new setpoint is 5.45E-05 uCi/cc based on the DAC occupational value limits specified in the new 10CFR20, Appendix B, Table 1, Column 3. The newly calculated setpoint will replace the current setpoint ( 2 X Background ) after obtaining an approval from the NRC for a Technical Specification Change Request. The current low setpoint may be the root cause for the majority of the past ESF automatically start events which were reported to NRC in 22 LERs.

REFERENCES:

1) 10CFR20, Appendix B.
2) Waterford 3 Final Safety Analysis Report (FSAR) Chapters 6.4 and 11.3.
3) LER 92-005-00, submitted to the NRC in July 8,1992.
4) Commitment #A20059,anActionItemidentifiedintheWaterford3 letter # W3F1-92-0179 dated July 8, 1992 for LER 92-005 which refered to the previous LERs in the Similar Events section.

INPUT CRITERIA AND ASSUMPTIONS 1

1) The Gross Control Room Envelope Free Volume (FSAR section 6.4.2.2) is:

Vcr = 220,000 Ft3

= 220,000 Ft3 * (m3 /35.3145 Ft3 ) * (1.0E+06 cc/m3)

= 6.23E+09 cc

2) Assumed that the radionuclide input activity rate at outside air intake (OAI) is proportional to the total gaseous release rate (Ci/yr)

. under normal conditions . The radinnuclides intake activities are obtained from the FSAR, Chapter 11.3 , Tables 11.3-5 and 11.3-6 " Source Tenns (No Continuous Gas Stripping of Volume Control Tank) Noble Gases and Iodines-Gaseous Release Rate in Curies per Year"and are included in page 1 of Attachments (A) and (B). Also, intake activities are obtained from the FSAR, Chapter 11.3, Tables 11.3-8 " Average Annual Airborne Radionuclide Concentrations in uCi/cc" and are included in page 2 of Attachments (A) and (B).

2

. . . s- .

3) The Maximum Permissible Concentrations (MPCs) of th'e radioactive i materials in the control room air will not exceed the limits specified j in the 10CFR20, Appendix B , Table 1, Column 1 for the Restricted Areas.

According to the new regulation which will be im lemented on January 1, i 1994 the newly Derived Air Concentrations (DACs Occupational Values l arelistedinthe10CFR20,AppendixB, Table 1,Clumn3. The MPC and DAC limits for the listed radionuclides are included in the Attachments (A) and (B) respectively

4) The ventilation rates as listed in the FSAR Chapter 6.4 and Figures 6.4-1 and 6.4-2 are:

a) Outside Air Intake (Plenum) = 13070 cfm Portion of the Plenum flow to the Control Room (nonnal 0. A.I).

= 2200 cfm b) Control Room Enve' ope Outside Exhaust Ventilation Rate (normally open) = 2000 cfm ,

c) Control Room Envelope Recirc. flow rate minimum = 37030 cfm maximum = 39230 cfn

5) The Radionuclides Activity Removal Rate from the Control Room is considered equal to the sum of:

a Recirculation Rate; b Radioactive Decay Rate; and c Exhaust Ventilation Rate.

In this Calculation, we assumed no credit for the Recirculation Rate and considered that the Decay Rate is much smaller than the Exhaust Ventilation Rate. Thus, the Radioactivity Removal Rate is assumed to be equal the Exhaust Ventilation Rate which is the only overwhelming removal mechanism. Therefore, the Radioactivity Removal Rate (R) from the Control Room envelope is R = Exhaust Vent. Rate / Gross Control Room Envelope Volume

= 2000 (cfm) / 220,000 (Ft3)

= 9.09E-03 (Min-1)

METHOD OF ANALYSIS:

~

1) The Control Room Envelope Ventilation Configuration Model is shown in

. To calculate the maximum activity rate for each F1gure(1)deinsidethecontrolroom,thefollowingequationisused:

radionucli Acri(t) = {Ai(CROAI) /R }* {1-exp(-R*t)} Eq. (1)

Where:

Acri(t) = the activity rate of a radionuclide (i) at time (t) in the Control Room amosphere; Ai(CROAI) = the initial activity input rate of a radionuclide (i) to the Control Room amosphere from the outside air intake; 3

e R = the radioactivity removal rate as defined above; and t = the time from the initial activity input.

Also, equation (1) can be modified to calculate the concentration of a ,

radionuclide (i) in the control room as follows:

Ccri(t) = {Ai(CR0AI)/(R

  • Ver * {1-exp(-R*t)} Eq. (2)

Where: Ccri(t) = Acri(t) / Vcr Therefore, the control room radioactive concentration of an isotope (i) must not exceed its 10CFR20 limit (MPC or DAC) . Ccri < MPCi :or (Note:CcriThe

                      < DACi) follow ing equations are also applied for the new 10CFR20 limit substituting the MPC limits by the DAC occupational value limits).

JAcri/(R

  • Vcr)} * {1-exp(-R*t)}(< MPCi

((Acri/MPC1)/(R*Vcr}}*{1-exp-R*t)}<1 Eq. (3) Thus, for a mixture of radionuclides, the above equation (3) will be given as follows: {(sum (Acri/MPCi)/(R

  • Vcr}} * {1-exp(-R*t)} < 1 Eq.(4)

At saturation (i.e. R*t >> 1) which happens in several few hours, Eq (4) can be revised to: { sum (Acri/MPCi) )/(R

  • Vcr}} < 1 sum (Acri/MPCi) < R
  • Vcr Eq. (5)

Accordirig the assumption (2), the radionuclide input Activity at the 1s assumed to be proportional to the total Outside gaseous Air Intake release rate(OAI)/yr) (Ci under no*1nal conditions (FSAR Tables 11.3-5 l and 11.3-6), i.e. l Acr Xe-133) =Acr Xe-133 8.0E+03/8.0E+03 I Acr Kr-85) = Acr Xe-133

  • 5.6E+02/8.0E+03 i Acr I-131) = Acr Xe-133 2.0E-02/8.0E+03 ,

i and similarly for the other radionuclides which are listed in the FSAR, ' Tables 11.3-5 and 11.3-6. Acr(i) = Acr(Xe-133)

  • A(i)/A(Xe-133) sum (Acri) = Acr(Xe-133)
  • Sum (Ai)/A(Xe-133) Eq. (6) l
                                                                               ~

From Equations (5) and (6), the control room activity rate for Xe-133 is calculated as follows: Acr(Xe-133)

  • sum (Ai/MPCi)/A(Xe-133) = R
  • Vcr Acr(Xe-133) = R
  • Vcr
  • A(Xe-133) / { sum (Ai/MPCi)}

And similarly(for radionuclide i) inthe uCi/other min radionuclides, is: the final equation for a Acr(i) = R

  • Vcr
  • A (i) / { sum (Ai/MPCi)} Eq. (7)

Where: Acr(i) = Activity rate of a radionuclide (i) inside the Control Room .. uCi/ min ); R = Removal rate = .09E-03 min-1 ); Vcr = Control Room Volume = 6. 3E+09 cc ; A(i) = Activity input rate ( Ci/yr) (F AR T bles 11.3-5 &6); sum (Ai/MPCi) = 1.1E+09 ( Ci-cc/uCi-yr ){Page 1, Attachment (A)} Thus, the Activity Rate of a radionuclide inside the Control Room, which will not exceed its HPC limit ,at the(i)ime t of Saturation is calculated by the following equation: Acr(i) = {9.09E-03

  • 6.23E+09'/1.1E+09}
  • A(i)

Acr(i) = 5.15E-02

  • A(i) uti/ min Eq. (8)

In case of the new regulation, Equation (7) is rewritten as follows: Acr(i) = R

  • Vcr
  • A (i) / { sum (Ai/DACi)} Eq. (9)

Where: sum (Ai/DACi) =1.63E+08 Ci-cc/uCi-yr {Page 1, Attachment (B)}, Other items are defined above . Thus, the Activity Rate for a radionuclide (i) inside the Control Room which will not exceed its DAC occupational value limit at the time of Saturation is calculated as follows: Acr(i) = {9.09E-03

  • 6.23E+09 /1.63E+08}
  • A(i)
       .,                            = 3.47E-01
  • A(i) uCi/ min Eq. (10)
2) To confirm the above methodolo y, substituting the Activity Ir:put Rate A(i in equations 7 and by the values from FSAR Table 11.3-8, the sum Ai/MPCi) and su(m)(Ai/D values are 2.73E-05 and 3.42E-06 (unitless), respectively and are i cluded in page 2 of Attachments (A) and (B). Therefore, equations (8) and (10) are given as follows:

1 5

Acr(i Acr(i)) = 2.07E+12

  • A(i)=uti/{9.09E-03min
  • 6.23E+09 Eq. (8a) /2.73E-05}

and; Acr(i) = {9.09E-03

  • 6.23E+09 /3.42E-06}
  • A(i)
                           = 1.66E+13
  • A(i) uCi/ min Eq. (10a)
3) To calculate the Activity Rate at the monitor location Ad(i), the Activity Rate in the Control Room is meltiplied by the ratio of the Outside Air Intake (OAI) in plenum (13070 cfm) to the portion of plenum flow to Control Room at normal 0AI (2.200 cfm).

Ad(i) == Acr(i) Acr(i) * *5.941 (13070/2200) u Ci/ min Eq. (11)  ; The radionuclide Concentration at the monitor location in uCi/cc is 4)lculated ca as follows: Cd(i) = {Ad(i) uCi/ min /[ Flow (cfm)}

  • 35.3145 ft3/m3/le6 cc/m3]

where: 1 The Outside Air Intake Flow = 13070 cfm i Cd(i) = [Ad(i)

  • 3.53145E-05 ft3/cc] / 13070 cfm
                         = 2.70E-09
  • Ad(
                         = 2.70E-09
  • Acr )
  • 5.941
                         = 1.60E-08
  • Acr ) uCi/cc Eq. (12) ,
5) The sum of the Cd(i) for the radionuclide mixture is the projected l setpoint for the CR0AI monitors.
                                                                                             ]

I CALCULATIONS AND RESULTS; Using the activity input rate A(i from the FSAR Tables 11.3-5 and 11.3-6 in Equation (3) [or Equation)(10) , the radionuclides activity l rates inside the the Control Room, Acr(i]) are calculated. Equations (11 and l and)concen(trations Cd at i12)areusedtocalculatethecorrespondingactivitiesAd(i)) the monitor location. The sum of the Cd 1 ' column is the High Ala(rm) Setpoint for the CROAI monitors which will n(ot exceed the limits inside the Control Room Envelope as specified in 10CfR20 Appendix B ( MPC for the Restricted Areas or DAC for OccupatIonalAreas). The calculation results are included in page 1 of Attachments (A) and (B). To confirm this results, the activity input rate A(i) from FSAR Table 11.3-8 is used in Equations (8a 10a)}. Thus, the l Acr(i), Ad(i) and Cd(i) values a)re[or Eequation calculated an (d are presented in page 2 of Attachments (A) and (B). 6

i i 5 The Projected Setpoint for the CROAI Monitors are: a) Based on the current 10CFR20 MPC limits: j Setpoint = 8.07E-06 *SF

                                         = 8.07E-06*0.75                                         ,

l Setpoint = 6.05E-06 uCi/cc l f r b) Based on the new 10CFR20 DAC occupational values: Setpoint = 5.45E-05 *SF

                                         = 5.45E-05 *0.75                                        ,

l Setpoint = 4.09E-05 uCi/cc l  ! I J ATTACHMENTS:

                  ===============   r---   -        =-    -- __ __ u===r       ----- =-

Figure (1) Control Room Envelope Ventilation Configuration Model Attachment (A) Control Room Outside Air Intake Monitor setpoint Based on the MPC limits. Attachment (B) Control Room Outside Air Intake Monitor setpoint Based on the DAC Occupational Value limits.

                  ================--------    ===_______&==r---:--     ==-- -

_===ss,- - 7

L  : i FIGURE ( 1 ) CONTROL ROOM ENVELOPE VENTILATION CONFIGURATION MODEL

i

                                                                                ^

2p00 CFM A EXHAUST ' DETECTOR MAIN LOCATION 20,430 CONTROI y CFW ROOM

                    ]u OUTSIDE                CONTROL       F   )

AIR INTAKE l ROOM PLENUMy y _ NORMAL OAI- y .

                                                                               +

(13,070 CFM) L (2,200 CFM) { l l ( i

                                                          'ELSEWHERE 16600 : IN CONTROL 9, CFM         ROOM

[g ICNVELOPE V RECIRC. OTIIER 1

                                                                              . l AREAS                              37030 CFM                I

a es

 . I.
          ~

ATTACHMENT ( A ) CONTROL ROOM OUTSIDE AIR INTAKE RADIATION MONITOR BASED ON THE MPC LIMITS h

i 4 . l I Page 1 Attachment (A) I CONTROL ROOM OUTSIDE AIR INTAKE MONITOR BASED ON THE MPC LIMIT S j Al Acr(i) Ad(i) Cd(i) } at at at  ; FSAR Nuclide Tables MPC Al/MPCI Control Detector Detector , 11.3-5&6 Room (CUyear) (uCl/cc) (uCi/ min) (uCl/ min) (uCl/cc)  ;

                                                                                                            }

Kr-85m 7.00E+00 6.00E-06 1.17E+06 3.60E-01 2.14E+00 5.78E-09  ! Kr-85 5.60E+02 1.00E-05 5.60E+07 2.88E+01 1.71 E+02 4.63E-07 I Kr-87 2.00E+00 1.00E-06 2.00E+06 1.03E-01 6.12E-01 1.65E-09 Kr-88 1.00E+01 1.00E-06 1.00E+07 5.15E-01 3.06E+00 8.26E-09 Xe-131m 7.40E+01 2.00E-05 3.70E+06 3.81E+00 2.26E+01 6.12E-08 l Xe-133m 5.50E+01 1.00E-05 5.50E+06 2.83E+00 1.68E+01 4.55E-08 . Xe-133 8.00E+03 1.00E-05 8.00E+08 4.12E+02 2.45E+03 6.61E-06 l Xe-135 2.70E+01 4.00E-06 S.75E+06 1.39E+00 8.26E+00 2.23E-08  ; l-131 1.90E-02 9.00E-09 2.11E+06 9.78E-04 5.81E-03 1.57E-11 1-133 2.00E-02 3.00E-08 6.67E+05 1.03E-03 6.12E-03 1.65E 11  ! H3 1.00E+03 5.00E-06 2.00E+08 5.15E+01 3.06E+02 8.26E-07 i Mn-54 4.70E-03 4.00E-08 1.18E+05 2.42E-04 1.44E-03 3.88E-12  : Fe-59 1.60E-03 5.00E 08 3.20E+04 8.24E-05 4.89E-04 1.32E-12 Co-58 1.60E-02 5.00'd-08 3.20E+05 8.24E-04 4.89E-03 1.32E-11 Co-60 7.30E-03 9.00E-09 8.11E+05 3.76E-04 2.23E-03 6.03E-12 Sr-89 3.40E-04 4.00E-08 8.50E+03 1.75E-05 1.04E-04 2.81E-13 Sr 90 ~ '.20E-05 6 5.00E-09 1.24E+04 3.19E-06 1.90E-05 5.12E-14 Cs-134 4.70E-03 4.00E-08 1.18E+05 2.42E-04 1.44E-03 3.88E-12 Cs-137 7.80E-03 6.00E-0G 1.30E+05 4.02E-04 2.39E-03 6.45E-12 Ar 41 2.50E+01 2.00E-06 1.25E+07 1.29E+00 7.65E+00 ' 2.07E-08 C-14 8.00E+00 4.00E-06 2.00E+06 4.12E-01 2.45E+00 6.61E-09 Total I i i 1.10E+091 i 8.07E-06 i Thus-The Concentration flow at the Detector location to give MPC in the Control Room dunng NORMAL Operations will not exceed I l  ! 8.07E-06luCi/cc , l l t

I Page 2 Attachment (A) l I CONTROL ROOM OUTSIDE AIR INTAKE MONITOR l I I I BAS _ED ON THE MPC LIMIT l5 I Al Acr(i) Ad(i) Cd(i) FSAR at at at Nuclide Table MPC Ai/MPCI Control Detector Detector , 11 3-8 Room (uCl/cc) (uCl/cc) (uCl/ min) (uCL/ min) (uCVcc) Kr-85m 2.10E-13 6.00E-06 3.50E-08 4.36E-01 2.59E+00 6.99E-09 Kr-85 1.72E-11 1.00E-05 1.72E-06 3.57E+01 2.12E+02 5.73E-07 Kr-87 6.02E-14 1.00E-06 6.02E-08 1.25E-01 7.42E-01 2E-09 Kr-88 3.01E-13 1.00E-06 3.01E-07 6.24E-01 3.71E+00 1 E-08 Xe-131m 2.22E-12 2.00E 05 1.11E-07 4.61E+00 2.74E+01 7.39E-08 Xe-133m 1.66E-12 1.00E-05 1.66E-07 3.44E+00 2.05E+01 5.53E-08 Xe-133 2.41E-10 1.00E-05 2.41E-05 5.00E+02 2.97E+03 8.02E-06 Xe-135 8.13E-13 4.00E-06 2.03E-07 1.69E+00 1.00E+01 2.71E-08  ; l-131 5.42E-16 9.00E-09 6.02E-08 1.12E-03 6.68E-03 1.8E-11 1-133 6.02E-16 3.00E-08 2.01E-08 1.25E-03 7.42E-03 2E-11 i Mn-54 1.41E-16 4.00E-08 3.53E-09 2.92E-04 1.74E-03 4.69E-12 Fe-59 4.82E-17 5.00E-08 9.64E-10 1.00E-04 5.94E-04 1.6E-12  ; Co-58 4.82E-16 5.00E-08 9.64E-09 1.00E-03 5.94E-03 1.6E-11 Co-60 2.20E-16 9.00E-09 2.44E-08 4.56E-04 2.71E-03 7.33E-12 Sr-89 1.02E-17 4.00E-08 2.55E-10 2.12E-05 1.26E-04 3.4E-13 Sr-90 1.87E-18 5.00E-09 3.74E-10 3.88E-06 2.30E-05 6.23E-14 Cs 134 1.41 E-16 4.00E-08 3.53E-09 2.92E-04 1.74E-03 4.69E-12 Cs-137 2.35E-16 6.00E-08 3.92E-09 4.87E-04 2.90E-03 7.82E-12 Ar-41 7.53E-13 2.00E-06 3.77E-07 1.56E+00 9.28E+00 2.51 E-08 C-14 2.41E-13 4.00E-06 6.03E-08 5.00E-01 2.97E+00 8.02E-09

           -Total        i             t              i 2.73E-05l                 I            i 8.81E-06 i

Thus: The Concentration flow at the Detector location to give

     ~

MPC in the Control Room during NORMAL Operations will not exceed l l l 8.81E-06luci/cc l

      ~

ATTACHMENT (B) l CONTROL ROOM OUTSIDE AIR INTAKE RADIATION MONITOR l I BASED ON THE DAC OCCUPATIONAls VALUES ; i

' i b . i Attachment (B) Page! I l CONTROL ROOM OUTSIDE AIR INTAKE MONITOR BASED ON THE DAC OCCUPATIONAL VALUES _ l Al Acr(i) Ad(i) Cd(i) FSAR at at at , Nuclide Tables DAC Al/DAC Control Detector Detector 11.3-5&B Room i (Ci/ year) (uCi/cc) (uCi/ min) (uCi/ min) (uCl/cc) l Kr-85m 7.00E+00 2.00E 05 3.50E+05 2.43E+001 1.44E+01 3.9E-08 Kr-85 5.60E+02 1.00E-04 5.60E+06 1.95E+02 1.16E+03 3.12E-06 Kr-87 2.00E+00 5.00E-06 4.00E+05 6.95E-01 4.13E+00 1.12E-08 Kr-88 1.00E+01 2.00E-06 5.00E+06 3.47E+00 2.06E+01 5.58E-08 Xe-131m 7.40E+01 4.00E-04 1.85E+05 2.57E+01 1.53E+02 4.13E-07 Xe-133m 5.50E+01 - 1.00E-04 5.50E+05 1.91E+01 1.14E+02 3.07E-07 Xe-133 8.00E+03 1.00E-04 8.00E+07 2.78E+03 1.65E+04 4.46E-05 Xe-135 2.70E+01 1.00E-05 2.70E+06 9.38E+00 5.57E+01 1.51E-01 1-131 1.90E-02 2.00E-08 9.50E+05 6.60E-03 3.92E-02 1.06E-10 1-133 2.00E-02 1.00E-07 2.00E+05 6.95E-03 4.13E-02 1.12E-10 H-3 1.00E+03 2.00E-05 5.00E+07 3.47E+02 2.06E+03 5.58E-06 Mn-54 4.70E-03 3.00E-07 1.57E+04 1.63E-03 9.70E-03 2.62E-11 , Fe-59 1.60E-03 2.00E-07 8.00E+03 5.56E-04 3.30E-03 8.92E-12 3 Co-58 1.60E-02 3.00E-07 5.33E+04 5.56E-03 3.30E-02 8.92E-11 Co-60 7.30E-03 1.00E-08 7.30E+05 2.54E-03 1.51E-02 4.07E-11 Sr-89 3.40E-04 6.00E-08 5.67E+03 1.18E-04 7.02E-04 1.9E-12 Sr-90 6.20E-05 2.00E-09 3.10E+04 2.15E-05 1.28E-04 3.46E-13 Cs-134 4.70E-03 4.00E-08 1.18E+05 1.63E-03 9.70E-03 2.62E 11 )' Cs-137 7.80E-03 6.00E-08 .1.30E+05 2.71E-03 1.61E-02 4.35E-11 Ar-41 2.50E+01 3.00E-06' 8.33E+06 8.69E+00 5.16E+01 1.39E-07 C-14 8.00E+00 1.00E-06 8.00E+06 2.78E+00 1.65E+01 4.46E-08 Total i I t 1.63E+081 1 I 5.45E-05 Thus: The Concentration flow at the Detector location to give DAC in the Control Room during NORMAL Operations will not exceed I I l l l 5.45E-051uci/cc l

                                                                                                                 )
 .       .                                                                                                    ]

l l I Attachment (B) Page 2 I I CONTROL ROOM OUTSIDE AIR INTAKE MONITOR BASED ON THE DAC OCCUPATIONAL VALUES . e Al Acr(i) Ad(i) Cd(i) FSAR at at at Nuclide Table DAC Ai/DAC Control Detector Detector 11.3-8 I Room (uCi/cc) l (uCi/cc) (uCi/ min) (uCl/ min) (uCl/cc) I  ! IKr-85m 2.10E-13I 2.00E-05 1.05E-08 3.48E+00 2.07E+01 5.58E-08 lKr-85 1.72E-11l 1.00E-04 1.72E-07 2.85E+02l 1.69E+03 4.57E-06 6.02E-141 5.00E-06 1.20E-08 9.97E-01l 5.92E+00 1.6E-08 lKr-87

              ' Kr-88           3.01 E-13 2.00E-06          1.51E-07 4.98E+00 2.96E+01                 8E-08 Xe-131m        2.22E-12 4.00E-04           5.55E-09 3.68E+01 2.18E+02              5.9E-07 Xe-133m        1.66E-12 1.00E-04 1.66E-08 2.75E+01 1.63E+02                       4.41E-07 Xe-133         2.41E-10 1.00E-04 2.41E-06 3.99E+03 2.37E+04                       6.41E-05 Xe-135         8.13E-13 1.00E-05 8.13E-08 1.35E+01 8.00E+01                       2.16E-07 l-131          5.42E-16 2.00E-08 2.71 E-08 8.97E 03 5.33E 02                      1.44E-10 1-133          6.02E-16 1.00E-07 6.02E-09 9.97E-03 5.92E-02                         1.6E-10 Mn-54          1.41E-16 3.00E-07 4.70E-10 2.33E-03 1.39E-02                       3.75E-11 Fe-59          4.82E-17 2.00E-07 2.41 E-10 7.98E-04 4.74E-03                      1.28E-11 Co-58          4.82E-16 3.00E-07 1.61E-09 7.98E-03 4.74E-02                       1.28E-10 Co-60          2.20E-16 1.00E-08 2.20E-08 3.64E-03 2.16E-02                       5.85E-11 Sr-89          1.02E-17 6.00E-08 1.70E-10 1.69E-04 1.00E-03                       2.71 E-12 Sr-90           1.87E-18 2.00E-09 9.355-10 3.10E-05 1.84E-04                      4.97E-13 Cs-134          1.41 E-16 4.00E-08 3.53E-09 2.33E-03 1.39E-02                     3.75E-11 Cs-137         2.35E-16 : 6.00E-08 3.92E-09 3.89E-03 2.31E-02                     6.25E-11   ^

Ar-41 7.53E-13 3.00E-06 2.51 E-07 1.2SE+01 7.41E+01 2E-07 C-14 2.41E-13 1.00E-00 2.41E-07 3.99E+00 2.37E+01 6.41E-08 iTotal i i i 3.42E-061 1 I 7.03E-05 Thus: The Concentration flow at the Detector location to give DAC in the Control Room during NORMAL Operations will not exceed l l l l l 7.03E-05luCt/cc l}}