ML20083K088

From kanterella
Jump to navigation Jump to search
Responds to NRC 781221 Request for Addl Info on Reliability of Ngs Load Sequencer.Forwards E-115-751, Reliability Analysis Report for Balance of Plant Engineered Safety Features Actuation Sys, Oct 1978
ML20083K088
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 12/27/1978
From: Van Brunt E
ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
To: Boyd R
Office of Nuclear Reactor Regulation
Shared Package
ML20083K093 List:
References
NUDOCS 7901040068
Download: ML20083K088 (2)


Text

.

1~

~ ~ -

_m i

i.,. o r i, u s..., ---- - -

l 1

E-115-751 I

l RELIABILITY ANALYSIS REPORT FOR BALANCE OF PLANT ENGINEERED SAFETY FEATURES ACTUATION SYSTEM Contained in Arizona Nuclear Power Project Palo Verde Nuclear Generating Station Units 1, 2 and 3 Copyright @ General Atomic Company 1978 All Rights Reserved Y

HMiTO ECTOR DOCET ill.ES so692/s93 19eiogoos,8 L* cud 12-2.V1B October 1978

PdTE1TO ET0!! JDCKET E lS -

so_sq 333 190lo o:GB Lw rL-2'RB CONTENTS 1.

SCOPE.

1-1 2.

THE MODEL.

~

2-1 3.

INPUT SIGNAL ENUMERATION 3-1 4.

INPUT SIGNAL PROBABILITIES 4-1 5.

OUTPUT SIGNAL ENUMERATION........

5-1 6.

INPUT-TO-0UTPUT RELATIONSHIPS.

6-1 7.

INPUT-TO-0UTPUT PROBABILITY RELATIONSHIPS.

7-1 T.' 1.

Decision Tree..

7-4 7.2.

Effe'et of One-Out-Of-Two Redundancy on System Reliability 7-4 7.3.

Including Power Supply Reliability 7-8 7.4.

Multiple outputs 7-13 7.5.

Diesel Generator Start Signal (DGSS) Subsystem 7-17 7.6.

Loss-Of-Power (LOP) Load Shed Subsystem.

7-20 7.7.

Load Sequencer and Auto Test 7-25 8.

EQUATIONS FOR COMPOSITE SYSTEM RELIABILITY 8-1 9.

COMPUTATION OF RELIABILITY

.........r...

9-1 10.

RE7ERENCES 10-1 APPENDIX A.

GENERAL ATOMIC COMPONENT RELIABILITY CALCULATIONS A-1 APPENDIX B.

SUPPLIER COMPONENT RELIABILITY CALCULATIONS B-1 APPENDIX C.

COMPUTER CALCULATIONS C-1 APPENDIX D.

COMPUTER RELIABILITY COMPUTATION PROGRAM..'.

D-1 TABLES 1.

Input-to-output relationships for each logic module.......

6-2 2.

Subsystem component failure rate values.

8-2 7pAm: Holo 40078 1

  • e

i FIGURES 2-2 1

1.

Simplified model of ESFAS.

5 2.

Block diagram o.f typical input-to-output relationship.

7-2 3.

Cascade model of elements required to obtain input-to-

.7-3 output response...

4.

Rearrangedcascademodeloftypi$calinput-to-output 7-5 subsystem..

l S.

Decision tree for typical input-to-output subsystem.

7-6 j

6.

Block diagram of one-out-of-two redundant logic system 7-7 7.

Decision tree for one-out-of-two redundant logic system.

7-9 8.

Decision tree for one-out-of-two redundant logic-system 4

with power supply subsystem shown................

7-10 t

9.

Cascada diagram of power supply subsystem.

7-11 2

7-12 10.

Decision tree for power supply subsystem 11.

Decision tree for one-out-of-two redundant logic system

{

with power supply subsystem included 7-14 12.

Block diagram of one input /two output subsystem.

7-16 13.

Block diagram of diesel generator start signal (DGSS) s ub sys t em............

7-18

14. Decision' tree for typical input to diesel generator start signal (DGSS) subsystem..

7-19 l

15. Block diagram of loss-of-power (LOP) load shed subsystem.

7-21 1

16. Decision tree for two-out-of-feur initiation section 7-22 17.

Decision tree for loss-of-power (LOP) load shed subsystem.

7-24 18.

State diagram of ESF load sequencer..._............ 7-26

19. Block diagram of load sequencer and auto test 7-27'

.7-29 i

20.

Decision tree for load sequencer and auto test i

l l'

11' b

y.%

,.,-9

,, + - - -

s 1

1.

SCOPE The steps to be performed in arriving at the final Reliability Analysis Report are to:

1.

Develop the reliability model.

2.

Establish the probability of input challenges.

O 3.

Determine the relationships between input and outputs; 1.e.,

determine which inputs determine each output.

4.

Develop input-to-output probability relationships using decision trees!

5.

Determine the failure rate for each component in the decision tree.

6.

Compute the reliability for each component.in the decision tree for a mission time of 30 days '(Ref. 1, page 4-25, Papa. 4.6.2.9).

7.

Determine the probability of success, given t' hat the system is challenged.

8.

Determine the required automatic testing interval to increase the probability of' success to 1 - 1 x 10-6 (Ref. 1, page 4-25, Para.

4.6.2.9).

This may be an iterative. calculation'resulting from the intractable nature of the equations for component. reliability calculation.

6

- - _.- -~. -..

e t

r

\\

{

i 2.

THE MODEL i

Figure 1 is an oversimpl-ified model of the Engineered Safety Features Actuation System (ESFAS), but it will aid in understanding the ESFAS reliability prediction.

4 In general, there are n inputs to the ESFAS system. These inputs are logic command signals, e.g., Fuel Building Essential, Ventilation Actuation 1

Signal (FBEVAS), etc.

The system can be generalized as a set of logic functions that generate m output signals, e.g., Fuel ~ Building Nonessential Ventilation Actuation Signal, etc.

See drawing ELE 342-0100, Block Diagram, BOP ESTAS, for a more detailed view of the inputs, outputs, and logic j

interconnections.

4 Given the generalized physical model, we need a mathematical model to permit a quantitative prediction of the reliability of the ESFAS syst'em.

The mathematical model can be constructed as follows:-

4 Let P(I )/C = the probability that input I is stimulated given a system g

challenge.

4 Let P(SO )/I the probability of a successful output 0) given a stimulus

=

3 g

at input I, where i ranges from 0 to n and j ranges from f

0 to m.

Lac P(S)/C = the probability of a successful system response given'a system challenge.

l Let P(SO )/C = the probability of a successful output' j given a system challenge.

t 9

fr t

4 e

t 9"e

  • =

e.

e

s' s

e i

e

'7s

_ 0

/

b N'

E b-

- N

=,~.

.w 4

/

..-u*.

%.-- >. = g g

\\

==.==.

s

', f [;*[.* ~ l-N.*

j.

f f.,,._. _

g

~ '.

,-,3

.. -.,f p

... ! r s.*~,s.-

e.

...:..~....

a j

4.,,..

J,#,.

. ~...

-. - * =

+...

.- g-

.-e.

.<=

q:..

s.

3. c.9

.a

. ~>

.. g g

.v

.s

.t s

5 n.

.#.r, y.

. w..* +.=...... t. A....-.-.3

~ -

s

.q

=-

. i*

  • .e v. e.,m. } *s..'.y N.

/,

,.s,

.... -.... c... t f'.ie r.T.

.s.9

. - -fi, '.a,. -

w 2

.r

,"* ? -

% A. *&.*,m<.,.,

ri..

N' l1 4

-a E

.;sa. -....e*-,.*..

.g a

e,g... %.'.

+

,....4

~2

'.r.

.L

  • ~.

A. i.a ~

+L w*...' c..., i.. ;'..

  • \\..

.w

... '. ' '-r...~.-,2,

..-*ur.:.

~ e

...,W

.'~ ;7 7*

.t

  • J.*,'f., j *s -
  • .* '. =.

.. [

..,..;..,.e,..,',q, g *3: ".,-.,, ":

. y :y _. '; ~

-r.

u...
  • . g.

_ : y,-,

. ~ -

.,.s,-_.,...

yf.,.,..

........,& ~ o

,..s

)

m

pj,..,

tr...,~.~

.y

  • ,,'.f ."..'~.~ *. %.*k..'[n. ~[.y".

.'h.. *,[%.. w'* I'[3[.eU[N.

  1. \\. f.

N'

    • c.

% "..,.4.i...

~... -.

- e.**. %. ', ~. ~.. 7.,

.d. - M

_... a w.. y.g.r.g#..o-

-.,: * - % ~ ' t..

..s t.

~

3* t, J.

3, $;a. g..e.,..y.,, ;. _ g., yg

%,1. -

s, n,.

. v.,at

~..

q. 4.. ;. ~ <

e,-

w

-f

,+.,. f-J.

.... 2m..~.- - i., 9.,

s

.-.,.y.

9.p.,,

,.i,..

  • g s*

a -.,., - *.g ?

p. t.

~

w

~,

-;A

'-3

.,et m,..;.rm -..v. s. --M+y(. ' T s

..,...J.L.,..v'*:,.'.T._..-

-.. ~ = -

  • 1 'I.**:.,. '. '..
  • .q, 6
  • ^

..r*.

-~ +

4.

~.

.y s,...

.=t,~..,. _

.p*.: y w:.,.,~;-

3. z

.y. w.n.... ?,- y A......,..~,..f.

.,,, ; 3.g

...w.-

.... e t r.

-3;.

s g

y,;w

- m.

. a

..g,.,..,.,.,.

e.

.. c.,-.-._,...

s.

, +.................

f.....--2 e

c. e.

, c..

. ~

t p*-

w I

s

...... ~..

._; ~.

a

.n. e-m......,...,.,.,..w.c..,... w.m....,..u.....,

~.. - - -

-.... w w w %,., w.-...S. g.

,.,m

.m,,.,__ y.gwu

.....,. s. w.

m.a. -

Fig. 1.

Simplified model of ESFAS r

9 e-a

Based on the above definitions and making the simplifying assumption that there is a simple one-to-one correspondence (m = n) between the input and outputs ve obtain:

P(S)/C = P(I )/C P(S0 )/I) j 3

+ P(I )/C P(SO )/I 2

2 2

+ P(I )/C P(SO,)/I, P(S)/C = P(S0 )/C + P(SO )/C +... P(SO,)/C 3

2 In simple words, this states that the probability of a successful system response given a system challenge is the sum of the products of the probabilities of a given input stimulus, I, and the probability of successf,ul

, g operation of the logic components that generate the output 0.

When there are multiple outputs for a given input the equations become slightly more complex.

For simplicity assume output 2, 0, ccurs when 2

either input 1, I, or input 2, I,

ccurs. Then for this specific case j

2 P(S)/C = P(SO )/C = (P(I )/C P(SO )/1 )

2 j

2 1

7

+(P(I)/C..P(50)I$)

2 2

The complementary situation, multiple inputs for a given output must also be satisfied. Assume that outputs' 0 and 0 should both result from 3

2 input I. Then j

P(S)/C = P(SO )/C. P(S0 )/C j

2 l

m 9

a implies that the system success depends on obtaining both required outputs.

Expanding this for the specific case, we obtain P(S)/C = (P(I )/C j

P(SO))/I)).

(P(I))/C P(SO )/I))

2 P(I)/C) P(S0 )/I)

  • P(S0 )/I )

=

3 2

1 Based on the above logic, the equation for the generalized model is P(S)/C = P(I))/C (P(S0 )/I) x P(SO }! 1 * ***

(

1}

3 2

m

+ P(I )/C (P(S0 )/I x P(S0 )/I x... P (SO,) /I )

2 3

2 2

2 2

$ P(I )/C (P(S0 )/I x P(SO )/I x... P(SO )/I )

3 2

n

~

In the limiting case, P(SO )/I = 1 when there is no required output 3

g at 0 for an input I. This may seem irrational at first, but t'he reason g

will become apparent when one considers that where there is no required coupling between input I and output 0,-then there can be no failure, i.e.,

f P(F0 )/I = 0 = probability of failure at output 03 given

. input I f

P(SO )/I = 1 - P(F0 )/I

=1-0=1 g

Therefore, P(SO )/I = 1 if there is not a required response at output 0 from an input I g

s e

O 9

+

3.

INPUT SIGNAL ENUMERATION The generalized model es,tablished a relationship between input or challenges to the system and the resulting output or responses by the system.

We now need to enumerate those inputs. Drawing ELE 342-0100 established the bloc'c diagram between inputs and outputs.

The simple one-to-one relationship becomes more complex for the Diesel Generator Start Signal (DGSS) Loss of Power (LOP) an'd Load Sequencer modules. For the latter units we will consider an input to be a stimulus or combinatien of stimuli that would normally cause an output from the respective module. The breakdown of model inputs and their relationship to the physical system becomes:

I FBEVIAS g

I CREFAS 2

I CPIAS 3

I CREVIAS (SMCROA) 4 I CREVIAS (HCG CROA) 5 I DGSS (Subsystem) 6 LOP SIAS AEAS-1 AFAS-2 1 LOP (Subsystem) 7 Undervoltage 1 Undervoltage 2 Undervoltage 3 Undervoltage 4 i

l*

i 1

7.*

?

l e

1 ESF Load Sequencer 8

FBEVAS CREFAS CREVIAS LOP DG RUN DG BKR SIAS AFAS-1 AFAS-2 t

7

  • d Y

I

o 4.

INPUT SIGNAL PROBABILITIES With the mathematical model defined, it is necessary to determine the probability values to be used in the computations.

First, the input pro-babilities P(I )/C will be determined.

g A system challenge is defined as the stimulus of one of the system inputs, I.

f Let P(IS)/C be defined as the probability of an input stimulus given a system challenge which is obviously equal to unity n

P(IS)/C = }[

P(I )/C = 1.0 g

i=1 where P(I )/C is, as previously established, ch'e probability that g _

input I is stimulated as a result of challenge, C.-

g r

Because of a lack of knowledge regarding the probability distribution among the various inputs, it will be assumed that they are equally probable,

'.e.,

i P(I3)/C = P(I )/C = P(I )/C 2

n Therefore

)[

P(I )/C = n. P(I )/C = 1 g

g i=1 or P(I )/C =

9 9

o When a more rational evaluation of the distribution becomes known, it may be substituted for.the equally probable distribution and the system l

reliability.computions recalculated.

e G

l l

e e

e i

i e

a S

i l

l l

S.

OUTPUT SIGNAL ENUMERATION The system output signal,s applicable to the system reliability analysis are:

0 FBEVAS 3

0 CREFAS 2

0 CPIAS 3

0 CmW 4

0 88 5

LOP /LS 6

0 Load Sequence 7

9 e

e t

l l

e e

-g

..-.,,y a

6.

INPUT-TO-0UTPUT RELATIONSHIPS The Specification (Ref. 1, page 4-24, Para. 4.6.2'3) states that the

" Scope of analysis shall be limited to elements of the BOP ESFAS shown in attachment 4.1."

General Atomic Company (GA) prefers to use GA drawing ELE 342-0100 in place of' attachment 4-1 because the drawing is more explicit in the actual implementation of the system.

The input-output relationships are estimated from drawing ELE 342-0100 as shown in Table 1.

The next objective is to establish the probabilities associated with these input-output relationships.

4 0

e e

m 4

i 9

I TABLE 1 INPUT-TO-OUTPUT RELATIONSHIPS FOR EACH LOGIC HODULE taput Sources I

'A 6

7 I

I I

I 0I t

L 1

4 S

tuiss IM/tmed Shed FSEVAS CSEFAS CRVIAS IC in:55 ibt put s FtEVAS CREFAS CPIAS CSTIAS SIAS AFAS-1 AFAS-2 8

2 3

4 Output Output out put IDF aun ma R S I A5' AFAS-9 ADA5-2 Outpute A 8 A B A B A A e e A B A e

A e

A B A B A 8 A B A B A B A B AS AB AB A B A 8 A B g 2 l l t

1 2 2 3 i n,

FalVAS Actuated A I I O O O O O

O-0 0 0 0 0 0 0 0 0 0 s

I e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

9 0 t t t 0 0 0 0 0 0 0 0 0 0 0 0 0 2 'CRF.FAS Actueted 3

0 $

'I l

0 I O O O O O O O O O O O O 3. CFI AS Actuated A

0 0 0 0 t t 0 0 0 0 0 0 0 0 0 0 0 0 0

S O O O O 9 3 0 0 0'

O O O O O O O O O 0 CRVI AS Actuated A 0 6 0 0 0 0 t a t 1 0 0 0 0 0 0 0 0 4

B 0 0 0 0 0 0 t

i 1 1 0 0 0 0 0 0 0 0 o I4:$$ '

A 1 0 1 0 1 0 10 g

8 0 1 0 1 O I OI i

'n Imad Shed A

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 g

  • j g )

S 0 0 0 0 0

0*

0 0 0 0 O I O t0 1 0 t

,0 I.aad Se<tuencer A

1 0 1 0 1 0 30 t0 t0 0 0 1 0 e 0 7

. Act 4_

g O l 0 l 0 l 01 01 01 0 t 0 1 0 t IIIFor coeptementary module 3 Impets are true and A impute are false 9

m 6

G 9

9 4

9 9

,~

7.'

INPUT-TO-0UTPUT PROBABILITY RELATIONSNIPS As an aid to developing the input-to-output probability relationships we should start with a block diagram of the system components that are involved. Figure 2 is a suitable block diagram.

A decision tree that "is a model that expresses system reliability in i

terms of component reliability" (Ref. 2) can be used as an aid to computing the probability of success in.the input-to-output logical response of the ESEAS. To arrive at the decision tree, let us redraw the block diagram j

of Fig. 2 as a cascade of elements for which we can compute or assign reliability values. Figure 3 shows this arrangement.

The logical relationship of the elements is probably obvious, but let us review it briefly. The system can operate on the input signal if either power source and power converter are functional, i.e., we have power _ redundancy in the system.

The balance of the elements ih this input-output relationship are in series and the output dependo on all elements being operational.

(There is further redundancy in the system but this is accounted for in the mathematical model by redundant paths from input to output.)

+

The isolator is shown as if it always appeared'in the system. Only half the input-output paths have'the isolator but assuming it is always present is a conservative assumption that simplifies calculation by making the successful input-to-output probabilities equal for A-input to A-output as for A-input to B-outputs.-

i I

l' l;.

1 i

e 4

w

.+-4 4.

7 m

1

~

Counma kw1' e,

misur/A ~

ti^'

D//4A/A d2.'..

. l h.-

- t -

'{*

... g.

.. : 26l'. '.- '.

Q'.,.V.

' g+.

r i

4 j

f

.t g

o i A n,,7,,A i,

\\; :s f,. '....

Qg.g }..

. fgf gy

/ .,v -, 4 ..e.. t, .1 / w&*M. .Zvinsre y', n - y. Co, nim d i d ; n ,L... AukY/2.;bil,. c,,gh2. -. %.. ) s ..'s 1,:,,'. _,.,., ... &. ;. x. e..., -'e ~ .... ' - /, c c. .,,; ' :. y.,, -? .. A M.. j, O U. :, J,.. Co4.N.xdd'-.. .' * {.c. ' ) t ) I...9.;'Ti.;';I'h.'} C d n: l ,.V V. .Q.l.s {p,,n. -: %' Sbse- ?&c. A es.* w a.- ' c,. : l' l:',,i< c 5. '4,i.. '.L i '. 'q. "4 't' 4. ...A.- .r i* 2 ,, 1. i6 1 y ,.?., jg......pf *gt-c.',..- l. m .} f ~' ..!'t, '. f' i . c; ;

,; Pce<e' Wiease

.Guccd'. (,wm .. l. 'O .s- )3 }, i , i-l ,, 4 i;

c.
.g I

3. I JDC~. M *T@ i,~ y&.feg2. JE8:3? h cd Coateseant i i

. w...

........u. 1 Fig. 2. Block diagram of typical input-to-output relationship 6 . S e e

~ E6 ' I. ' . ', 'Ac.far,Zt +. i Vl. +U.,.' i n rd.ve %. :0:Q.ypf

i ; U g "!
.'l
  • 7}) 9 P & ;!

%g' G.y,1.zj.1V' '& H y. Q & v ) $@ _l & D. 4 Q.\\h,Q' V:i l L ; n ?.7 :::.1. t i -f+'$& $'. i.Ta(yya 77}W-Y , y.. ]./ f '!'. j ).. ,'..;Y.dh,nO).,*.N..,I.N,N,,hh, h.. sM.. e..,y.,.!ik.yf,. - h.~.h. y,,.iWf.. d.f [ y y,... 3 x, ^ a .'c !.#.... f. t N,.',. '., 7,. ". rW, @ $- i ANkcd '., i.i.. ).h; !*z # '. :. '?. ' c,. '.b y - b N. 'b i ' O .s O i '.,4 + ..a. a.& u m a _l&q,x.a h,i}li3. p..:.....I... t,N)h,,Y hA.'. s yQ. l0:.::. * [ &cE' Q4est '.3' f,5 ]4,,g].., j $ ',' ,0-1* r..

n.....

w n n.4,...L'... h,..i _M.UC, L.e 2.; ' 'i'.,...... .u. Fig. 3. Cascade model of elements' required to obtain input-to-output response 1 e

o The initiation-channel and the actuation-channel are the elements contained in the logic modules. The relay is directly associated with the modules but is shown separately for clarity. Based on the model of Fig. 3, we can generate a decision tree following the ideas of Lambert (Ref. 2). To simplify our decision tree let us re-arrange the series elements so that the portion with parallel or redundant elements is at the right side of the diagram as shown in Fig. 4. 7.1. DECISION TREE A decision tree for the model of Fig. 4 is shown in Fig. 5. Each branch is labelled by the probability of success P(S) and probability of failure P(f) = P(5) = 1 - P(S). The subsystem reliability or probability of success can be computed for this tree. The equation for the probability of suc^ cess of this tree is: P(S) = P(A)

  • P(B)
  • P(C)
  • P(D)
  • P(E)

+ P(A)

  • P(B)
  • P(C)
  • P(D)
  • P(E)
  • P(F)
  • P(G)

+ P(A)

  • P(B)
  • P(C)
  • P(5) ' P(F)
  • P(G)

Before we can proceed it is necessary to consider how to combine the r probabilities for the redundant one-out-of-two logic. - 7.2. EFFECT OF ONE-0UT-OF-TWO REDUNDANCY ON SYSTEM RELIABILITY The 1-out-of-2 logical combination of actuation signals within the logic is effe:ctively a parallel redundancy. From an overall system view-point there is one source of input, i.e., the physical' input parameter being sensed or measured and (generally) onel ultimate output action, e.g., closing the dampers or starting a motor. Figure 6 depicts the situation in block diagram format. G G

t i t t ..'

  • a - lf g{.'. :,1 r'; *.,, y,.f.., i p} g, }..'..,'.' b4,. :., 3.f." *(,4.,v'; g., 5.

.,s . p

APC, AC-n> ZY.

t s, ..(.- ',,, ). u,. 3 4 g '. . h & ge .i t. .2.c..,.kYq, $$*b..?N:YY(.'NI'h? n.. g.$ Y.N. ; b ;Nl, Y,(. ....-... g. .s ,c h.. .f b ~ ^ I. i s..: . ;. f ,. p...o.. n, ' .,!. ;c. v. 1. q.:'..p; <. n.-e*".. 2:.r.,i- . r.:, w.n

1 c.~..o:< r.~.

. u..... - e :' ;.. . o.. s{..

1,,.

.h.? y.,;;. :. - ..n.o. t , ;, y ' Y;. ; r N;. e c >..'...~.,'l.).,...l.. 0"d Z.v5. m.r r.:.:.,, v '; h l,'i..f- $fW.... :. N.s,7b.9hhs.. f649U;..,S.. roc &a 0'.- s m) z ... w. W ., ; ll>' p" '5 ' ' ' ~ i:$-*-lxi. '.f. a k~QfWAlf5;t:. . d'lsi.gl%;i ..,.)e-. < y V.,k, '(:' : ;, : N ~.' $

  • *l. ! l;.1 '.

~ i ' A ' ', .,. J.. ' c- .r -) i_ .'.* v. y tgt,y. K ' ')., $.'.,. j,. / *. .t .ia .: h ~ < '.. % (" g; '. r t. - ag **_.. c g... g yygt~ . ;...,,,r., ',. &. ;rp ~ $4.r52 ' ~ ' ' : '.+ z,'y' -lc'){.%,.. .,.',;. '. ; l r : l* $)'l 'l N, $D;,.. ' 'g v ..r. gg' ~'- 'd;,<a. i f,..,.*. J j' > ..'t. .? , ; _ ', ;. U., ..,, d.. 4, i,.. e i'i. '+ ggg Qggg l .s ?...... L4..a. Y, L.: a-.'. a.a ~- -.. <.h.1.h. . a..: .L.: -.. u a :... -. ~ I.. u... > Fig. 4. Rearranged cascade model of typical input-to-output subsystem l l L Y M e L

m ~ _ 3: ,} i-J D. .\\. g... ', 8 1 ,. t ;.,*; .r k '.. t - l ..',r. ,,..a< ..,.f- .s, i s,n. .Q -r.., .s g, n. s. g :. v n _'f l 'l. il' I f(f) t. ..s. 4 .,.., ; i. . J,. l. v. C;. ' e -., - sj y r>}.. t, ',,

s j -

s ,.+ j M y ,,p' .i a,; g ~ ,!k, ' + * - 'i. - /

.
;,. ".., e '.

.f')s"3,* ?. . *; j,, t ,,' t

.., w t,...

.. pe) : ;- - i.. i :',...., ,,...w .. 9.9 7,* * ;- d r.'.

r*::.

t, i i ,3.. g i. w. ' 5, )J. .j. t y.' f.

.,l.,.., 7,,.::.:

.,1,:. ;.,. :n, 3.,. e 1 .. ;a 8 (,.t,v....,3.,,*,. ; pre) l,'. 's. - n. . 6,, ..l..

!. *, '. j',, i s.

u , n.,!,,.ls'....f,,....i.it,'. ? v ( a!y c' 7 g e, .s,. w q., ,o ,,s j; '." [ *. ' ',, ;,l. .,j j, .,., [. 4.,... a .i.., > ;., 4 if s.(. 7 r N - 'i. ;. },. *,4. i: I.. I. .a. -i. 3". ' (. ' +', c. -, ', . i i. f.' .,..i s *,. :....,, ~ f s .O 's ., r. ' a g ....4

,...y /

p.

w. m 3

..x -/(d)' , ] c.s.','!;r yg,' s c !,,> - i l,.. ',. q.,.h ;.;. W 4 :., ;,l.. T1 ?,r _l:, Q. A ];{:1 Y.' t . :. ' % :,4';N'M fr) ?. ;' f j i .c. ?. u. s . p e, n...:, - ,o ; ' . 4.. -,., ,J -,n., tc 7 .,t- ',1. q y

  • v

_3 . i

v.. r.

i. ,le. ' ' ' 't . a., t. 6 .C** g-w '+ {^ V G E 271): < V )%) : j ' ', ~- l s

  • )

s . q: N c, ..".t., y 3 t .a .,:5..8 ' e- - ja g > .,, b . 's. 3 v .7, n' t . _....., t : - s I a r.a.. c ..'.c 'L. "4. s,. g.. '* L _ w.~ a e.

.w

...a

  • ..-.u....,..

t I l Fig. 5. Decision tree for typical input-to-output subsystem l e e e

i I e e MDhe N k 1 ,e ..(' ~~.. . q f.. d..:c.

  • h, A

,c f S e".[,'e. I

  • ]

l ~ S j g '~ ~l.-', l S:'.,.. * ". '~ d M it. . - -. ' di 80 l. .:~ :. ~ :p c.4..~'.3 .x

  • i. :=

.,.4 ~a h .=... L. -t n Y.,'k I :*'.'.y a?. 5 Y,. * = \\ 2-.

  • 1 t0
  • '*+

..t. .=..a .... y a .,,g. 0

.. ~ 3
. ?-

v:-'q M - )n.

n..*-

...'.Q~..,.' ; L;s*\\. Q*'* h, * '~ ... 's % wt ~,, 4 bC e.. 4.,.- v .e.- o .s ..C n

  • M ',y 4,,.-.,.

'.; ; b M. ' u.%e.. ';,, 4 e 4,. s. g .v 1.T. - .. - ~ m. 4J rw g.. r . b .4, C g + r.J ~e.;. .a. ; p i.. '- e y* a ,f .~e"N .r. h g -J

  • U

_.-, - ; o.{. .. A....~. W ; N'.,# C .. Q a )Q ' d.. c ......9..; e . %-. s#k. '... i\\ .5 h ts.'i .vs t . %.. g o y.,..*. ~, ?: - N_ : . 1-- 4 3 '.M.: T'. \\ -. ~ 5, :,. ;: -4 . +.,:i.. =

e

) u ' .V,s. Q-7.,. .... M 4. y g .. $y- .g.:. Y.%. ~l_, eu D '...L*. f w u JL. 4l.. y. 3

  • '.,, j

. D.4, 0 . p%;.. ..f,w e v) - ~.. e o w.. ~ ~ ' --n M -g g -,:. m.v.,_ ' a. g , 4,. - V . \\~\\. m-.,.. .. m. o c .. w.- g;...e g,..... .e p. ^^ g .. a m..~..,..s.,,..... .),,,... m, , ~, ; :: -. .m ,y. .m4 to s~;. ~ -,7 ._. : t+ -e -4... 6 7 .~. :h.v.... + %.

.; :.* c ;.*e g.L*!,. m meg- :.s, - ;.. ::.-.1 y

3 r 'S

k. Ei. ~x% ;;. ;.~~' : '%. 9

~^

. vu.*

a .?-~ 9.. m.. u. w n..~.: * :.:M..*,: !. -~...~ -.,, N

f. s w.;;.t;.

cc .'.yq:=wW-c.-:x . 4 e -..Q - : m.,.,: .~ a '....ya2 ' ,e-o L.*.' \\ '. * % :..~. r : r.,5~'.'. e. O. w'*. % i W,. ,hd N ^. ;..W.... 3,, y.. w a....',.. ,- g q.h Wg -.-.m :..r.:, -.s. s ~ ~ y o ,og .Rg .. m.....

q. s.,...

v x m - mn. +;. -. o.....- . } Ar ).{4 Q'$..i Q... T.GQ .) ~..: -~

..s

.. :.. ~.: -.. ~ . ) g.

t. M

,.~.=..~~'..,a. .. ~ 3 1 g.n m.~.,,... -n m:,. n. .a 60 7; Q r...........:9,,.... ::'=..;7X*;*; >; *.-,' r.,~~.J;s ";,;6:> m.- 7.f; ...; A II ..~.,,.;.. /.Vg -/-, " .- _~ vt - w '...s,. We .,.. 4, ,y 'g.?. ' k _*ng. ~ L ~,.S* ~ % '..' '..'. J , - b,1. ";._ ;;;' ?".w*' '.~ sl.' ,

  • 4 7 s;"

)= r : *',;... * - "

t

.&.*~ '..=..u.-',j-

y.
  • w-.-~ --.....-_...L

-. 3.. :. ** ..l . m.-- n,.. >,... ,, ae e,~s .Q v ...,j...., %Z. f. e. ' ~3 1 _v. ,.N ' *40' J ' 4 /. L,. -. ~* .gy.

  • s

+ s r,, 5, = ~..,, ..b ...n .+ .'t~ .r . *\\ T h '  % - VJ t '.s. * ' 3 "ts ;.[ v*' . \\g, %, ,..e,e ./,-. . - i r ., A.e ....~:. -A. .s -. ] / t. r, s 3 y,y 9 O

Figure 7 shows the decision tree for this arrangement. The probability equation for this decision tree is P (Channel Success) = P )(S)

  • P33(S) 3

~ l + (1 - P) 3 (S)). P12(S). P14(3) +Pjj(S) * (1 - P13(8))

  • 16 I8)

+ (1 - Pjj(S)). P12(S) (1 - Pj4(S)) P15(8) This can be factored to i P(CS)=P)3(S){P)3(S)+(1-P13(8) 16(8)k + (1 - P)3 (5) P12( } 14( } + ( 14( )) 15(8) ~ where P(CS) = P(OS )/I ? as P(OS )/I was previously defined. i 7.3. INCLUDING POWER SUPPLY RELIABILITY It is now necessary to include the probability impact of the power ~ supplies and power conversion equipment to comple'te our model for an individual input-to-output channel model. _ Figure 8 shows the logic tree of Fig. 7 with the power system shown -aa block elements. Figure 9 is a-cascade diagram for the power supply systems shown as blocks in Fig. 8. Figure 10 shows the. logic tree for the power-supply subsystem.. I The' probability of a successful output from the power' supply-subsystem can be expressed as follows: P(PS) = P )(S) PS3( )

  • S1(8)

S3( ). PS2(S) Pg4(S) 3 + P ) (5) PS2(S).* PS4-(S) g

I i } h p s 6P wC J i a h L -PN5 e 7.- -+ / 4 e /*'ry Ly y ;6 'gs m*7 na r.um.w %w -- .y ~

q..

y 9. m - g _ v hry y : g ~..q. y e w tY + .s m em. n ar * -j 1 g '"' 7' f"' ir P **7. v "Mr* 'Y '?'*PW i C o . w.... w..n.: .v ~ . + w~ m ..,. C.-+ 'p: *~.,n, :- -l. J. 60 ? ,oe i

;.sc
.-v c.

1.:. ...w w.. z.. ~ m -.; ;, -:s ~.. .'a.. .."r -.t. .g '.n.e... .[,. ;6 u.:- -a) gf'.... b .,a-r ,e. u ~ c ..n.-. ?.n,.,;.: ~; ~..'...., :-W i. _, ; - p ;..,. ; _ ~~y~ .1 .to n:. s q; -...a .} o .7 _ p g ...... %..,.,..Y._..d."c aa. ...=..4 .m v.~..' 'c.* t. < %. .\\. _ -

. < n~ '~f

.-s. :..i ' B' .. ',. ~ . ~ _. .y-,. -. ~. - c r. o m@.. W ... ' >. : : n. 3-},Mvwvn.4se$ p- ~ ~~- we - d' ? Q. Q..~ (A;@<..er- ..,y,b 2 u T J 4 ~ .4 o n L pjay .2 .' "i- -*. -:.. n;.7 s.

. s -w

.... a.. .w a w l:h?.? ? $ s? ?~~:j,i-12. ".. I : ? '.:.' -l-f?'.W... . m : :s.w.a...,.....~...a...- y .n-~..=.. o a ..w......,~..

.. e c -....,,_......

w nc. n.., .- *......s' u s. . <.-G. -G.m':.;: 5.. p .'~.

,.~ p,J. +.a.. : ;.M.

o u., ..._ -~.,.,. .y . a. .s.a. a.e... .. ~,.c.,.., ~..,, , :.. f.,..

m. r 1,

.. - : -w <. o ..e .a..tg:,:.,, o., . w.:'.,'.,).w. R..,. m..rx _.u.:.. e

s. ::.%.: :W. J_...,p-. _.m.

4

  • * >.. %. c*~_...

. ~ ..,1 w . s .._.,.....s. ~,,.. ~~ ., M..V '. '.~.'* f 1, f c o e .=,,. -e.-. .. i.,,_. ,.. s g,. - .y. ....; y.

...n. r,.n..:r.h:.c.

-,. :.. a.. 3.:e c, e..,......... r :;.,;... n.. .m

n..

... ' :g _,.. yv 7_:,..- Q:r..m.: g.k. .,. p. o, 1 e _. 4 ..7 ..3 .l

- z_.
: 5,.~.s.. L +. ^ ' ~ '.-, - nV -

....i. ~ .. ~ .. y.. ,.....i..,. >~~ ..r.. . m, + ..... 4, r. off/W'f.nn,e h7/V ... S A hf & W

j'.7.V.S.d ' <... e.....j,..~ * ?....s.. y... "'...;

,=.?,, ' ?s%.";.,,, ^ s .c,. 7..e., 7 f.r. y~.... _,.!.. y p... J ....--.-m.e,.s.?..*. ro .. *.,,....,....5. .., ') 00 . a, w

.
  • w.

. g'M.,, y : ~. - .f 3* ~ 7. . e,'? -l;^ ;i..s,. e.',Q.

  • ir 6,, :

. Q. 'r;,.n." *.. ~ ' ~.'."". ;:. s :;. .--. s. .t,.,. ~,.;.. L.~,.

1.,,.:. r. ~.

.a..,. w ~ u.M. ~.-;.. q..-~r. .,.. u,,c .a - %i. . g.. =. n..?*. ~. .-:. ~ W .,6..>.... s p.,. A

7.,. v.v %.

.y,.., - ~.. -n. J.. .p.,- ?- y* .,,..x-.

  • ~..v y

, i=* ya 7..". Q%.. "j Y. ',*',..'y'*..',s' e. p." Q ..'*p, . f..

  • m.

_.; *. ;,.*, *w

  • .. e

.... +. >.., 6 a.s.. ees..* w' g, .s .~ -N. E. ,.h .e- .A u .r,,.. .. 1. $ i. .3-u s .-a . t. p -' ~ g^- .1 + + I .+ "m ,*r S 4 s.*. .W ..-.r'.* - =\\ -.. ~ .? 3 g s ,.V m9 1 s

i

  • b Y

.h i }l s i

e.,

4 me rwa 44 g_ .g rg$a" {s> s,,, n I ^gR P/.sg) ? Sa sysrsu = q g$ f am 3 ?]o(S) b5 4 j ]l 5E A2 y, spy (s} k 13ui;e SwlP# y L A:p 3 k "*'-(h1 S~ ff&M fmpys ry u a ..au a AN. i m, i Es5) l = l M i i y 0 1 Fig. 8. Decision tree for one-out-of-two redundant logic system with power supply subsystem shown

i t g .) k.h..-%'v',b Oi .?, 8Cf {v MC .(4,g,2;g ] f*i%.A E // d,ti l}.. ;. / t ,y n .c 1 w y,y .y n.c. .c - pgg - c 4 Aund ',$,;; 3.,3 4...,,.t.c<. s l u.. liS.]q$h.,*,-:

'
..i,d.> r ;
  • @i 9h Ch.v N ie '.i.,*

i.be:S0g,r

i ar.

t,. 8 .,,....o. s .r.. 1 .;*L.,,.,t ~3 2'f.'.d ;... [' ey.. 1 <,5 N, ', 1, :.. : 4 '.E. 'i /*J.. .. e, s 3 .c - r.. '.. c. 's / , t,4... t, ' j" M g.. (-;...q,.. ;..,.,.1 W - s. *. % s..r...?..:.; c. 3..n. *., < c ,1',, : ;!. w.f. 4. - 'c,.. ?.- 4 4- <. s., I. <.s >s ,F1 * .,t-), 5

e. - o

. 1 .d,.,.;.w.. -{i. :,... p,h. y. s~ n,. }+u].!;,.... W< .' t.

  • ,n
s. n n

'r' l. e Asi : ).

3 -. y.y. L-a j...
p..::,:.

<1e.- r-

  • 4 ',.,,-l n... h.v a.t..n.,.., y:.. y n!. 4.lv' e.c; i -
!.
:, + :n *.,:

\\, .o.... n,,,....,.3, e - L.e. w. s ; ...g ,e t * *t Y s.v-. a,, o ;. - .:?.. ')y,rIV,,'g.o - g y? L. T f,.).%.,.,ji p.,g *.'W 0 *' l.. 'e.. 4.l r, #., c s p, ;i.. .", ; g..o. :s. g.V :] ,;..s . j..fij..gIv ~, l .a p. g,. .y..- 'f . ;:..ny Q...::.t ( *s. &.,.:' ?a k' W ?.;* i Q,d T.';W. ';,.g:i r&,....,.4. W...'lk.,i.g,..,h..p.,,.pr..,... W; ' 1 t 3* .s.. m ....{.y.,1.t.c...s.,,,..,5...,;.;.:n.'. .: Q h. S..:.y .r 9 , q c..:,Q.5, . p. .;p w. y,f,.;, y ., : ?. . i. . J. ,.,i p.,. .. o. 'a, ..(. e.., ;.., u o.. :... . y. e., ...r, < - p. ,4.,. o.- .a..,. s. .t... 6. J, .s.. q zg.

set, q 1, k ~ps h h h i:*gN i ' h.

. g gt.g i:l.;.,. .y r. ....j;< f. :.E.,y1 y. y v,.'rt.

3.. e. n. _(?. [. ; y,':

2)C f. q.. iv,.. _ y .v s n' a. - ' ( li.f.u'..3,.$( r. .? - c'E;%

  • && [

s q .v. 4..... ,, ~.,. <. v <.c .N',i...,@t'ih.3 Mo$$eN-#y-. 'h.,l'.'M'...,o. .,'. O ',.., N (/Me71rM iN U ~ i .t e....t.......,.f..+ .a. .a ,, v. -..-..a. .., n 1 Fig. 9.. Cascade diagram of power supply subsystem O h N e 4

l 7 l l l e e e I i i h h .S.Gr'.2s+ ]7 b h .a'2MP'7/Q d 3-1 tA :.. pW ~ YO#. 3' s. ~ ' + %.i f.. . Of.. ' ^ ~. ?.. $ m ~ ' ' ~ .y. .. 1, .t 3. -. cg g g. g . ~..... - ~...,., 0..". :.'., 2 *.'. . i -+; ~. a M .m .j g a . ~,, ( ~. ,e.,....,, %, - ). ..., s.,.. ?,.. m .- q....,..... :,., g., W).. ...4 g .D m ~ .,a. a .m.4. .. - m... e ....m. ~ <. ~. ~ A e, ...=..w_ s , y. , - ~.. a. ~...,: 3 c. y ~ 2,f,.' >;, )Yl . _. l 1' N '){. w l ^ 'l g p .-.,,.s.. .g g r-4,.

~,.

..-. y .f' g, w R. 4 -u -g ~.. - ~ -+ .e ~.. .s. +. o . - n. - n - s g w.- .t .5 .....r+. . ~ ; ,,.s+,..* + y* 7 .7-Wjks??/VO

  • ~~-

g . oc ~...'. /.' * *. ','LT. ;*':Q...~* : ;., ~ -Y^ ^

. c... +. ~.

~. - s..

    • ~ ~f!Wg:/l (, ~~ ** Y

..Y. w. c ? ".L,*.l'. ,.e*. ...._,;..,.A ,m . T ^ ^% - h O 4 .. w...,. 7_ ,*t....hL..* ;..J.... ; = *.s.n, - - W = @,$.* D W. .s , + ;.;.. ..,,.* a..s.;- -..~ ' -- a ' ,4 . '; c. l. u .?,- .. -...c - .,: ~.- _.*(,- .1 ~n. -c.v. ". :.- g ~

  • '.,.. ~..~
  • ; y - -.e*'

-.,..g .m. ,(. e t e. e- . w u. e, Q-t-... <. f

  • q* --J

~ ...?- j.-.l,. * - -.. ~1 5..,.=%::.,.. ,.. e s., r ". " * ~.. * -. .. ^ - 4, .. --,. - = _. r,* .&g + i.- .~ .=, .s .. +.. .s... a,- o. w_

  • y*.#-

. p + e..- , 3.9 4

  • ' s * *

..y .g a g,- j- +; ++ g b

  • ;f.;>

. 9 .e - + ,.i s,,, .r .-m ..-5.. -7.--. ~ n. n.,.c ~,.,a. a a p -*,. u.. 'r. 3, r ,, * { '"* j

E',.*

= ,-s,. o . + - 4 - s. - Tw ,.~ = ..e e f e i 1 l i l I +m n

i P(E3) = PS1( S2( }

  • S1( )

S2( ) S4( } + P )(S).PS3( ) S2( ) + P )(S) PS3( ) S2(S) Pg4(5). g g Now consider Fig. 11 which shows the logic tree of Fig. 7 with the power sup' ply subsystem included. In generating the logic tree, it is necessary to take into account the dependence of the system on the power supplies. We can now write the probability equations for the logic tree of Fig. 11 in terms of the individual decision probabilities shown. As previously defined let P(S0 )/I = probability of a success output of channel 1 given an input j to channel 1. From the decision. tree of Fig. 11 we find that P(S0 )/I =Pjj(S) - PSA( )

  • 13(8) 3 f

+P33(S) PSA( )

  • 13( } '

16(S) PSB(8) +Pg(S). Pgg(S).P12(S) PSB( } 14( } + P )(5) P12(S) PSB( 14( } +Pjj(S) P12(S) PSB 14 ) I) 15(8) *#SA(S) 7.4. MULTIPLE OUTPUTS With the power supply dependence incorporated into the model let us + consider the complication of two or more outputs resulting from a single stimulus as shown in Fig.'12. Th'e followingl analysis of Fig. 12 is predicated on the concept that all output functions resulting from a specified' input function must result to have a successful operation.. Mathematically this means P(S)/C = f P(S0 )/I t P(S0 )/I } P(I )/C ~ 2 i 3

e e .5.r....: 3-f/9 7/ W/ w

  • ~

s M .w.. is 3 ~ o -

  • h. _. 5 e

[*. _. b:. '% A . N. ,,,.'<4 nun Q.. -Q-k.- e- / _. ,,_,.4 ~. A.. u .,.4 3 . J ".c.,. ' -5... ~7- ~ -.* 25 3 e, ;...,. .~.;.. y ~ u n. ...~ ~,, s. .J,. ; ..;

  • im- - - -

U .. _..-e s

  • 4;

.; b, 03 4, h ..[%.. - [. [._I.,'".'. ~D.'. b :.. ?. .. y.... y m u M ,-t- ..,n-- c. ,.s..... s . s ~ eg .. A.=.7..... . ~.... 14 ~

s. ~.."e C

x M ,,N ", '.5*.?. A r.., ' * ^ ..~.,~.f. ' ' 3;. l .']~ ~ g ; s,..... ~:;.... '.v %'*". _c-;, ~-~ - 5 'U ?~ O =. ~;; ..v.- c e., : :. q.., _. s "c cg f% ,.,N].,* *,,w...,'. . (" '. - ,. ' :.j gu S* 'g t* +

...~s.m,.,.- n ~,. e%,. ?.b -.

- ~ * '., - 4 ON ,g r 3 '.~'.. .,. 4* =% a + .e.. 3 ?m, *. -. _., -,,..,. + -s .,, e. "O Q . e - ~ s. G = g.. h( e -..r i *.'....4 .,.:*.e~~.,.~.2..-~~. ~ kw w...d:.'w.).r .j ' s e . '.J'\\. ;f.. '. - :.... . W

-- -g Oy

...J..- rg

  • s J-
7..; " *,

4 3g a. ...... s -r n.., - J - i.= M Q .sr.., ....v -3 ..s '. '. __ s

y.. ns. %...$$, ^- Q~.j.( '.6:

,.-.. v.; ?..,W.. U ' ; }.L.) '~ w g3

4. ' ^. " -

e .e 4. +. - ~ ~ C* a l e,,. c s..

  • 4-u.c 2, &..

.v.. 3. , f.-

  • a

.s ...,4-*. ..+.,4_ -'. 3..*. ".. .c. 4 3 @ ,,-:.p; w.,. ,:. :),. 4 ,. a : , ~. o, 'o ..*. y.*g,- . ' ',. ' ~y., ..,,.,.,,<e.e.-y,**y'.-.~,,,--*. .m t n a ('D.."'***.".,* .y. 4 . a, #i'.i . j s p, - - ~.'e. % w.".4.':W -.,'L 4.i. :, &.M,y*+ e..r,.

  • L WM

.l:' , * :.

  • w -
  • *me C

Q' J - - ~ ~. =- .,-i ss - ~~h ?, - =4 O C

1. g g,- 3.s t*. %.,

s -g .a.r'*fd -( c 1 r - N.-(..c.,.1."#.: : n. : W,.r y p,, ,9., -.. m-r...,r,..- . g i oa 4- .e g .t-.. 9 .:.. 3 ff.,y=... R.s,9.e.,j._ .c. ~ .., = =. z. 9, % e r

a.. ;."..,

Jea... * -.- ,~ ~v ...e . '. ', -,,q.-,... U g g) - 1c....'g..:.~ ~ es ?.$.. - g y "..-'._,,-*p..;"..,, < t y*.*. t < /.* s. ' - e. p gy ~ , 4 p .'t 31 .w. o. .e, _. ~.. . - *L -., * - ~. - .i..,, y,o3 e- "'a.. -;. ~ r.- - _ !. -... - =,,,- .) g g) m,:v i .O n y e. Je r_,. ~'~ 2.s [.$.[."..J..7~ ~ ..L,- i. m-IM E*-$..- 3k.$,- .as M ,.e g, '%_ r.,,; y.. * ~~.,. ( '"^'**.'.k...:[.sj;&},w. ... :. L.,., ;,,,..... )-o; U Ce .n n -. *f. Q,.. z.'. - ~ f *, ' ,a Q U}

  • C ~~
    • ~2 y y

.~g f*==~;3W.,,, g* % m e. w-7. -,. :.. j.; 3 7*. .y.,. c+. g 4 .-? .v.. . L ,,.g 'N.;&... ' _d La 5;g..-

  • 6 *,, 4

{.g. U-; V j. h. :., *.*-'... f 's -"" -. :*~' e + . ' ~% ? ;.,N" > y %.. cM....p.. + J. .w., ., e., i. .;., j w .W*.'"',r** . - = ..,,t, g- ..,.y..p-.,.'.. ) '~ ~ s. ,p... .,m ..e-. .~ -' J. - ~~;. f.~,- Q..l'%,'.:.y.< " R..a..'. Q....s e. ~. ~~. ' .,O.4 v C .u e. u. Er

  • % G ' y d... ;. *T'

+ 4 ,..(. 1. k ~, ( t-."+ Y ..Q-p 4_ E%,- s

  • a.

d 0

~

e- .i 4 4 a

r e e .fSU? ,,D.S/WW b G3o D C* ,C 9 4 ~ s T,

== u \\ a - a =r4 N .~4..,Y .*s,. . r... .y ' . s. e.

n..

E ~ G .l.,. ;;. f., ~.;. . q* %. m;; u r y '.L.,.. ' ; ~' ~' (0 ~ 2' /.',, : h -= 4-. .. ~... .~,.

  • -.c r

(G .p. Y., ; =~:y.. ..e ' ' '.*.:.Q:? ~ ~,. . 2.~.% U -v - $$Q.K. .~ s, 00 and y7 % :,.- .n r O

  • ~*

... s. . n. ..~ J. O.f 2. ; ;..;..

3.. ;

' ', *1 g t.,. ,,c. _. g .s, 3-u .,w -.' c. ,. - l . ~ - ~. C L' ^

  • 'l t-g..

.j (5 s=% e e. f -.s,. _.,,~s, 9 .g g ...c ~.[.'.. .,- M /'.b I ., J..[ ~ ,"f-( - j hy 'O O %,4 G. -.}-T-1-.,.'.,.; ~.V..*. I. .[ l' G wN - u...... r.c *.. 1 ..~ n.,,, ou s. -.-. \\. -m..,..,. e e. x-1 >G s.. s.... 4 1 ~. T..". y

  • .,....~:.ewy'

.. -..- = l .C e a um . w . L.... a.~ ~ I wa p.'.;. a.n p.:.,,...r.- ~1..s..-.- . T w Ow . s. w ..., 1...., .,s ,., v..u.- g . Q Y,m.: t' Q'.... - ' :~ ~ - - '.-.

  • : -- h a.g

. Mc -l. * %,; n.**..'s.. 2 G .m..,. O *G u a..,.,. m +. 4. _. s :.? 's......s.;.*.,,- g g -...-:.m...m. 1 - Ta GH ..~.; x # ,.., e. n Y-n s.%... . ;g - -.. --,.4..;--.- 6 cU

w..

, s - + -.a,.,.a r_~g .~u _. 2. L 1,.,... .-t O c 3. s. ar4 ....m sd. =. e

v. e,.,.

c --6,s*--, ..4 9 u . ; p. s. .. -..~a.. -v ..,es,,.g,.. .;; rq q.,

3..,., r.

'3 7 O B

  • s.,; ~-

% G . - a,g . :..h.* ,w.._. u .s e o. 5.. ... %q ;.,..-.,

  • s,. :%-

,,z.. .o Ga v p~- J:; '.',. G > .f..L.','. - s, a. W m ~.,e. 3 - -- e.,. N t/M.f p'2' 8., ~. s. u,a .,'..;.. - + .N.4 --... s --l ',. : O.% .e,. m.5-e.4. i"..11- ..,1, ce 3 1. ? 2 . w p,..: - .e o ( -e.

  • <....;.e..,,.

y-

- -....c....n._..-

,-.J .e a,, t ac4 h ~.., r. 3 .-. y .. - -.. f.s .* s.. a c,.e t..w.. ....l+*.., and c. - t; ;. -. :a ... ~.. l g. q..... : ; .r...,'%.,,. O C. a , - - ~.. 3: ,;~ < ~ .,7,,.;;...... Qg .s,.- g g lr.u .n

  • y n.y y,,, 3*9.a :

q 4 i..C... '.., -, ;, r y s s.

...y.

.' N.; A.. . 1 >,,f.. e,, .,s = r ,f 1 .x.., . n.,.....,,.c w

s..:..... m.

s ,p- ~ .s p

g..,........
    • '*g.*

D'. 6%.." pNO 8 y'**... t _- ~

  • q 9,*-

[.

  • i.

s .. '. Je - A..c'S.- * %.- . e.....l. ~ .m. sm M ' s ^

  • - ;Wra -. d ard y

m. -a=*3. g. -*e m. -;. ~ ,.g' ..,..,,l %.*%. *. -l=}.,. *. et - l*f e .~ ...,.,. ~.,... - s.<-.,, .n-.,,.,,.,., :. .u._.,a.. ...c. *". '} g a-o.c. + aM. t ..f,. .,.g'..< . /*.,,; w,.g,.,,.. y ;* m g. *.

  • - g 3 -

4 e* . *'*g~--$ '., g d ' 0 e.*

  • . a

.,,3- ,..'8*P*, ,.W88 * . p a ;,... .. a -y. 4 - ^ g 9 p 9

  • g+

g h I y e.e.,, Y - \\

.a

,.g l 1. i r

O s fh kh g F. O u ~, kh I i w i g I i! !- ig (3 ) i l, E/ d( 'J @ 's B ?R AR 1.- 1 I l I 1 s )R $ w; .I l.M$ I I m$ I I 3 I I i 9' I l 'j i t3g I 3) { l Et ( g..N' 9N N^ I

== i i 1-s = i .Ns ,i j } ,n, ~. [ 's ' r L g d ?> l h W g a I M ft a 3js g 40 4d E O V i l

I P(S0 )/I, the probability P(S0 )/I) was defined in the previous paragraph. 2 1 3 of output 2 given input I), is somewhat simpler and is based on the argument that the power supply dependence has been accounted for in P(S0 )/I). 3 A simplified but conservative approximation to P(SO )/I is 2 3 P(50 )/I =P13(S) + P 3(S) P16( } 2 1 In general terms this implies that the probability of success for two outputs is the. probability of success for a single output multiplied by the probability that Actua' tion Logic A or B and Actuator Relays A or B function in the output 2 train. With the defining equations for P(S0 )/I; and P(S0 )/I1 we have the 3 2 basis for defining the probability equations for the FBEVAS, CREFAS, CPIAS and the CRVIAS channels. In general terms these are: P(So )/I = P(S0 )/I for i = j g 3 3 P(S0) /I = P(S0 )/I) for i / j 2 7.5. DIESEL GENERATOR START SIGNAL (DGSS) SUBSYSTEM r. The DGSS module has three. direct external input signals and a fourth signal which is an output of the LOP module. ~ Basically,the DGSS module is a logical OR gate that produces an output if any input is present. Figure 13 is a block diagram for the decision tree representation for the DGSS subsystem. The decision tree is elementary as shown in Fig. 14 whe$e PDA(S) and PDB(S) are the probability of success SB( -are as previously defined. for the DGSS modules and PSA( 4 P

  • A
  • e b

(,,,ff - U j,, DASS f 4,w. i

f. f,e

' '[ i. p)dia, 1:my.rrmif. ).1

  • i.,,

d e-1. -s. -g. , n'. g s

  • V.,

,e + 4 t, e, \\ r ', p i, , '. h,,

  • Q b.4 /,,

'A, ) 8

  • e e
  • } ',,

.l. l' ' ' i, f.,' e* ' j l- ,,t.,,,- [i l. i .i* .3,. t i, j ;,, (,; g.. g y' [,.. e en n.., s,. s .s e, IT A#',. ~ *);\\ i

  • s;I.\\

- 9 L,, [. s;' i f I ,T; t. 5.'. ,'[ ,1 , C [* ".,,'.. *,.', 4 .'a' ',..(' l'. s., *., > 4) , f.,I ' l.' k. ( 1. 1 *- t., g lf *.* 3 l.

  • g *
  • i '. p g

,i ,I [. [.. -.4,#$f .t ' * " * [.,*# s '.t j. *,l,'.- j (.** A +.'g b.,.,.. ', ".e. g ",r **J

f.,,.1* * - ~. ' ' ',.

t*.5

  • .t ',. 7 4. - t. - L a.*
  • 1'.

.;g. .c .m. .- i ~ m,. ,1 t D.

r 9..,' '.. ' l'. I.

i.' j '[, i, I hggj2;Q)- 8 6 *$.. i.' k ). 4,-.0 A ,~ g 8,7-* ,I ,'[ i *.

  • [,.

) ,j g g, f .t 4 { s 'd'. (, J., Y., a 6 ,. 3 ,4' <, f, .( 1J [ h,., ' ' :(..f f,'U ,q ' 7,.C.

  • t ' ' 5

-.- [. s e/[ [/'f 6.'.* l'* 4,. ' l * . v '.,e., 8,hf {e j [ .. I T :' ' t '. i,I '[, 4," 2. ' a ',t. ', j. ', 'i ', ! b e (* ' j i. t I . :n '.' 8 i f ; 'g

  • *(

.f* 1g . i - ,*

  • i?

.i a ' *'j; t, ? 's t ** " s; J e g# g, D sh

  • fl f. 's f

l s5 ' ) ?t9 -e, _s .,r. {,, j ?e 6 ]. Ll l )* i /,. l. ,,ei {) [,r e s s. e e .,d*, ,g ,,c c'. .e t t I-t. j.* ., t' pl ;.,, i ' . p.t. .'t j. ' 8, ' p L,.., .s

o s

..., j, i 4

' 4, f.

,6 -i.,'.. >s 'g.. 8 8 1 e ei a i ~7 8, ,.,1,, e '. . ' +, 4. 1 ( i,,.- e

  • , =

,, ',,,3, t. ,. i.i. t.. ,8,, 5 e, e. 1* ..g ' 8 e e t j 1 l a i i > .6 v. i 'l + e t i I ^ .s.... s '...I i ;. L.s.a,. i .s,

s., s.'. s.e s

.*e... 4 J * * '. e i. .c e 1 = m s.* ei . Id i a... .t..4 .**C.-

  • s-t Fig. 13.

Block diagram of diesel generator start signal (DGSS) subsystem 4 9 e .F g 8

4 SY $$$Y e ) Ak .'.'55/W U & ~ E d o il um hm Q D t/J e% 9 - M r Q %... D. - 8 A. N} 1 s W.7.25ACp7f t ~ . n.,. - ~ ~ i y .in.wy A-y 00 ..s, e4 j .,~,+;- w m ..>.3.s... .. - ~, ~~ .1 ~,...,-. .x. M . - =,

_
*,.--a...

i ~ b 'f,h *.. ^.c...'.I_,. '.. -. ~

  • 1,g.. '.

{*] ;.. 'k. .j .g r, '. .g n.. U . av. -.,.....- ~,. g --t .......,4

  • .r.

. v..... .s-.. ~.,. b C -~..-?,.. t .. J M 4 ~r L 6.. ~*%' . ~ ~. - -- k .e. :. ..^. s y q g '

  • rq:

y g l .r..--.. . u1 3 00 .f----

y
  • T.. *

,~~s. ., r ',6 e4 s-s.: - ...a,~

  • .O e-~

g -.'/s,., ..,ve. .s. \\,). .G g s -.- ~. ,..7 .;y. Q .6 .e4 o c . -..~, -.-. < -s. 2 ,,,,A...- -. q*, s, -,.1.~ . a .t O ..s. y ..w- ,u..,,.o,,.%,'~.-=-. - *' Q.. ,<..z,,_.- .-,-,(~. e U ~ s N 3 f nl$ f { y s .~a.'.*~g.'. ~. 1 C. ~ ~- .c ,e.. ~ - A ,4 th. , - '/. ..s.- - s a, r ,a ..e s. 'e, .?.

'.-..m',...

'-a.,4'..,**,. '. fif 1..... .,m .gf, ... 1 .U 7 a's - k} g

M'. ;.i

-&l ln. .L..,2.. .? e. ; M.. ~ ,~ e ,4 -2....... y g

  • %.* ?.J. --'

g .4 .g ', s. 3,,

  • ., 3 x

.~ z ? o:'".',.,.*. ; '.+., - _-

  • c. r-.m ;- ~,..ge..,,.,.c.3. n, y

-. ys ..g._. :..:=..- - -_',c.,...s 3 U n.t .- - -~ Q t ,, :..u.-..-. ,o. ..t.. O ..t %.e .~~L,. ne..;,... g^ f- ',

  • 7. 3 0 -,,,, ..~y
.; f'.',,,., ; e.: -

?. . ~. ....e. O e -s.. g' '..g g q,, ... ].,, - W

  • . s u

.-a . f. g. , _ 3, g m .. -..... 4 .,"*".,y+. ~^ .o e4 m .m -+ -. r.

'=..,,.

u - "Q ,4 - E..... g..S. ..a. J.s.. ;.. w.m.... :. :. -., u n. ~.. p]*(. J7* [ .w -s - - T-4 - 4*.* / a s -s ,,.e,',q g og

  • m e.b J j.

r, o, ' .3 . T y ,,e.- g -* v 4 r" ,g y h' hf -.;.. g - .s -N' I 00 -. ~ -.,. ~ g +.. e. 4 S. h w

The subsystem probability of success can be written as PDSS(S)/I = PDA( } SA( +P SA( }

  • SB(

DA +PDA(S) DB SB( substituting PDA( DB( and Pg (S) = PSB( } we obtain PDSS( } DA( }

  • SA( }

+PDA(S) - (1 - PSA(S)) PSA(S) + (1 - PDA(S)). PDA(S). PSA(S) 7.6. LOSS-OF-POWER (LOP) LOAD SHED SUBSYSTEM ~ ~ The Loss-of-Power Load Shed (LOP) subsystem is somewhat different from the subsystems discussed thus far and will require a separate though less detailed analysis. Figure 15 shows a simplified block diagram similar to Fig. 6, but for the LOP subsystem. The significant difference is the four redundant r initiation blocks and the lack of cross connection in the initiation section (see Fig. 6). Before generating a decision tree for the LOP subsystem we will determine the probability of success for the two-out-of-four (2/4) initiation i Figure 16 is the 2/4 decision tree. The multiple success paths section. are analogous to the logical success paths in the two-out-of-four logic. If A, B, C and D represent the input paths, then an output can be generated-W i

m pa C1 x. w.z w & Ai I. ,i L. t l-p y, i c'.; s;.,.,. g,,, ;,, L j.. ., j.. pi .,t. t, t, .... ~, l,\\, s.,

h *

.j,,, f, l' .,.. y. Q.yy ',{. g g 1, .. e lty g-ag ,l - g,, y;p. g - e. y;.; %& Y.,. r.,.%a p.g:@~[ Gal1 h ,e. .?, . t-r t.- c;;.' ; k.; *.. i.. ' J

  • k (,. *
        • )

d.1 - 3 / i I r ..,. l'.. ' f' 5' ; ..'c- .64 o .p. .s,.'- ,i ',s? p, 5.t s.,,. i p,.,. t. s. -; Q ;.l t, !. f: .'l.3.*.s. gz.., ' ,-,I-4, t; u..;. S. ./ Q .,,. g. d ' i.,. 4. u ' .; i, ~' %. -, :e f,i ,,i. : 6 T,

  • ,v f.,

5, l,, f .t. ; ', 4,. .' = "S Q. :*, *. - .,.'y-v :' Q'. jf,'; ' '. f. g i, c .'I e. n ' t. F; ^ e., 1 p.f. ' i D r '..'y

n...

,..i + ,... p.. ! ;., ..,s; ,r., ,'{[.i. ... [,)S.^. h'# 'l s ..v rw ,k .].

J

,}, { t; 3. f, *. ' *^ i .q l :e..' q; v... f.. - .,,<. y : - a- 'y.'t',{,.,.,',,. J S.,,, ' '(c',},.l'. P;l;.Jj., ;v s.., '.;',. ;, b,, .t.'

;t ;

.e s , ;. b,,.-.j -; -7..'- lf/h'l l 8 Mer722) "'# M. ..1 Gwasts :l _. J -9. ~: $,?; 'd..;.g..;t. ',f,t.trg.yG;j'

, i. O fn_y; s ;;,, ::--.y y..y_l. 7..; 7...

3.q.,.. 'e. ' - fysreins .,:;.p.y. 3: o . f i; a u.. ' s- ~ t ,..... w....., ;. .'v- .:.r 1

e....

a;lf: r

r.sa..,. - ;,,

1 . a .r g,. a , l:..,9 r;...... - *. 4 c o - .\\. L en + J. l ) g .s..... i... <..... s. .s, .I., . p...;.> a..,. n .. c. t e ,.. q, .gi s'.1 i ..t t. g -e'. _I 1 i l. l l.' ..'I s, t i,{ r' '. l .. L...... ... :..... ~a. h -- " .......a

I,gi I,
.j I

y (,. l .. a Fig. 15. Block diagram of loss-of-power (LOP) load shed subsystem

e t .C""P N_,5* A A a 3 p n o M#W ) h L ^ m.. c 3 f. .O s. e e4 ~ u U mg .....( 3 . s. 4 c 4 /. ~.,; -- =, .,O ur ,..L. 4 < a. ......s ...,3 u _6... .w .....m..,..,-. *. 4 w 4-ss ..V-4 'm 1 y.

- e,

. -;., ' m.~.,. +-..s.,y,,. ..... ~.... w a .~ ...:p.- c ~ ..~ n. y.- 4 ..... ~.. ..,.-,.d....,.;... s..

s.........

,.,,m :...%.. r. y s ~~?.. .. ~ ' :.;. y ... -.. ~ s w O e_ ....... v.: r 9 ~.._ u, ,f g ..n... p a._.- -. - u ...a......,.*a.-,.... a. 3 q;. ~. 3.,.,.. -~... y. .s .. -. -,c.~ s. e ,. ~ .....e. p ,...S

:,,. - g-p

. m-....- ~. l . ~......' --.. m.#, h e.. -.. -... ~.... - ~. O ' ? ...,..s,.s.." .r .. ~,..s.,; s. .= .s - ~ .....n u. a ... %m. .a ~ ,7. o. s, e.. s 9 g .s O .r 16., .,.#';;t.- ! @~Q r -. *} '. 4". *,,,, 1. s g4 ~. .-s.. . n.n y -,=. r e .-,a , f a:, y,%$ c-a. L ,s.- Q* - Q L. u *n, %. l* - b n ..?:.5. *, e =. L, 7.,.3n.= n ,w.. w .F. a. xs. g 4' a 3 : L - :,+,..,,,.#" r. M L..

  • <a.a.,....

.,.3 .+2,*.. -v -. r... y ..c - . M;t.' F,. . ; ;.,...v. . f.;..,.!s. g.s ;r.. c v r.,.> :,..r.,..... ey 4 ~ - - .. w 4 - ++. y.., .=e,... ~....- m.: g

  • s. 5.=. g

. <,. i.,,q,s.y,-%,t.. 1 ec ,;-% 7,g.v.>. , e. e.r e .s .m .C' s r. ""s d..*.:. pq ...T. ..a. -' t e-- W.......,7... ;a 7.,,. *.s y=,.., .e' 4 8 >~ - ,.n.- s.,.,.,;-.--...t. 4.,. s.m s ~ U .2.,.

a. - -

- -o v /. ..,?.._.,&... w .e -t '. -. y T........ .. ;.. % ;, n. a,.,4..y:., *. C'll1 s,. s

;..c

..e; *.- e"..L e' .,,4. + 1. e- =~.,..:.v, ..a _,,.. o . L p.u.-. .a_. e ... -..... _. a.m..c c nn. 00 .'; d-y '.s. s.~..,,.......,,4..<s. g p......... .,. v.7,. n s..-.... s. s ..s , ; e,,,,.T,,. s, .,,,..o,, m .,.7. w'.,.. .~-g .* w..,,. .a.... ,.e ,fw...g.. .7

  • ,-~

. gg ~@. .*~.=t + c ?'- N "- 4...*,.,,.; p, a, s 't..h .r . s, .w

n.....+.

,a, ,,A.-'...

v. 2 ? *...*
  • ... L J.=.., e,. s

.f.;, ;.....,. * =.. 1 .e. ',**..- r -,-. .J..,.c,,.s.. .'W *a.r..'~y,. g. --a y-.c.. r

    • "--*'.'.,....I

.,.7 '. -- Cc,. ? *m*., Z g .,m ..,..e 9,' p .'..,,c ""*/.t.. .q ...,...,. ~. ",.'g* .s ,. L... c. i - *. ,g s ~ L, ....e.. 4 7,. v-G' J. . -. {

  1. *.fa *Y e e 9

y 'ev N .". a* .t, 7'. .a. A., .e -9... 1 p' . ~,,. m 4 e + g o

  • f.

s.v e ..W 6 l sn

o by AB + AC + AD + BC + BD + CD. The probability of success is the same for any path and is defined as P (S). Therefore the probability of success A l for the 2/4 initiation network is: l' I P (S) = P (S) *P(} 7 A B +P(S) P C( ) A B + P (S)

  • P ( )

C( } (} A B + P ( ) P (S)

  • P ( )

A 3 C +P()* B(S)

  • C(

D( ) A + P (S)

  • P ( }
  • C(}' D(

A B , A(S) = P ( } " *** D( Based on P B P (S) = (P (S)) 7 + (1 - P ( } A( A + (1 - P (S)) P (S) + (1 - P (S)) P (S) A A + (1 - P (S)} P (S) A A + (1 - P (S)) P (S) A A = P (S) + 2(1 - P (S)) P (S) + 3(1 - P (S)) P (S) A A A P (S) = P (S) (1 + 2 (1 - P (S)) + 3(1 - P (S)) ) 7 A We can now write the probability expression for the LOP subsystem from the decuion tree of Fig.17. rLgp (S) = P (S)

  • P24(S)

Pg (S) PSA(S) 7 +{1-(P(S) P3 (S) P 7 g (S) PSA(

  • P (S)
  • P'24( }

AD(S)_* PSA(S) 7

{ ~ j APm fy pyAS:pn gyO O ,,,WOUWW hj){ $$A f J a A a .s ~ s ) Jl Q O b a. q G R h 9 3 = .~ m f ^ . 3 -}.. ~ s.'. 7 ~ v 3 AO*N ~

_.~;
  • * *.;l

=y' Ml ['_* ~ ' g. ~; .t m ... - w - e ? ,j. g g w ..%._ :.,., -... a .. 4. _--r..-- e 4 g ~." s. .1md'..L.,,,,..,..' -e,*. ..%.L -+,a. ....=,.?,. '?.. p.,- R._..., 4 g

  • :. v~.

,.?.-**= w-... g .~--s.< s.m s's. y...,.. ,,. y &..g .r; ~ C.. '..J' v. .m. m %-~. , q ~_ i -~....~,..' #. w a .7,. e. ag g;., ,. -.~ e s. y. v .c - - g ,.,..M,.*:. a : p. t a .. s .s...w w.c s.. .n..,,.. ~, ~. ~... s. s,. p. ,,.~;. m .~ -,i.. g %v. m. 3 t o .4.-.. ., u;'.u a ' ~. .t s.,,

~.
.,;...a.

c.-

9.,..A. :.nh.g

,f Q ATM'f6 ~- ~ -~,.. ,,.3 i. a y - ', ) J.'. ~~~ . /. '. 3 f .[ * ' U"' ([ ' 'j, O h.y o Y. '... '. - _.'

  1. ~-

~ { Q. l a,.~..... ...u., ~., ...*<?*-*" * -- u,,, s 1 O .. ~. : '. ..6. . %.,.. s. ;.u.. '. 6 .S -

s.

1 1 8 2 'S T :c.. V.".l..~ w. g

1'.

~,; as.--.., M ~ ~, ' %q ;,"*.... ,v t.'. ,O.A . :.~y y: 7 q-. ~,..:,3 -g a.,,y: -vv. -s.~ .:^-C.'.. : s. c. .c ges; g 9 ..... 2. *.H :.,. ~ i ~*, Q., . ~~ ;. q

  • s, t

e.se s r .m s, ... r 9+ .c.> y e .. -n. . c -,. w-o n .-,s.-...:.,% ,.>.L:..e g.. ..v...: -.e.0.p s., y ,e. a .o. ~ - -, ....t r-< 4 ~-- a.a... =..-. :c. - < T..,...;,.... r- -..y. a. 1.,. , y. [- ,3. gll WWS. ~- ~. _.......L.. -[* V ...' d - .o.4 - '.)

-(Q

.e. ? '... J. ".y.*y,.A.s%..,2 s,..e....... ..~~ 3., s.. 4 e. .;r.d:.f:.~%'\\ n. u j'{ s n..n. 2: 3 '.'.= _.,,.,;;.g J9.a p\\ - y .,. Ag.~.y; . n. y;. 4...,...

.g

.?

., ~,.

., ;:. - ;.,.,. : 3... p 7. .... w. ~... - o. .~

,es.s.--

.. ; ;..n .m>. .g

n.a-

. :. v.. a.. u.G.. y.. ,.n v ,.u. .. m.. -~~~c.~g....,. :.;. a .a; ; ~.; .s... ..mwr>w2m c ,.r~.;,_,..r_......... ..__ :.. ~ ... s. .a,c V; M.i,-6.2. f.d#M. T......-by y.?-. .. s..a - c.4. x. ' '-(M. .._n..,(H.Cs -- P.4c-,e .] m .r. .,..,. c ...:..c,",.~.... 7. .m..

w..

4 ,r.-.. .. m.v_ V. s,.. n. 1;p;.; s.w.,?

n.

.:.~ a.... n..~ .;m.. a.,... ,..w.

w..

.A.

.1 t,

~. f ?. ~.....>.x..,.. g+f.. ~.. s. n - n, ...a. rs,. 2,- 1 . ~ w. . >.:pc,k. --e. ~. y c; : ce, n.

s. y. ~%...;,:.g..

. _,,r' -...... -, - g .....,y.._ _, p.: - p: s . m.. - - n.-.: - .n m.... ,...]. *.e ~ '.-,y. - .a s.. e .. ;_.. ~.-.... A '.e. (-

  • 'I**

.7.. Q4 -7 'yk ,,..y. y. O .b -*"**P* S g. y 2 .6 h g g 6

Let P (S) = P (S) *P24(S) PAD ( SA( 7 PLOP ( L( L( L + ~ where P (S) = Probability of successful operation of the 2/4 7 redundant initiation section P24(S) = Probability of successful operation of the 2/4 combining network P = Probability of successful operation of the actuation AD and time delay circuits PSA( ) " SB(S) = Probability of successful operation of the power supply subsystem. 7.7. LOAD SEQUENCER AND AUTO TEST The load sequencer has 10 possible input signals, 8 of which are generated within the ESFAS and two, DG RUN and DG BKR, are generated externally from LOP module output signals. See drawing ELE 342-0100 for details. v To determine the probability of subsystem success it is necessary to , determine how much of the supporting subsystems must be functional. Examination of the ESF Load Sequencer State Diagram of Ref. 1 (see Fig. 18) reveals that three input signal sections must function to go from the normal state, Mode 0, to one of the active states, Mode 1, Mode 2, Mode'3, or Mode 4. SIAS and LOP signals appear in all 4. The. third signal varies with mode. For analysis we.will use DG BKR because it is involved in the greatest number of modes. The decision tree block diagram is shown in Fig. 19. l

I Me I 1 s h5IAS t lop th D0 Sr* CLOSED h h SI AS

  • LY
  • h DG BrR Closed l

(';;4 g h SIAS + LOP (skeet &) + (@ ATAS-l + @ AFAS-2 + Cgg RAS (sheet 5) + CNTAS h STAS

  • LOP h DG Sgf CLosta (Swet 4) + F8E VA5(shee+ 2) + @ tra Ruw )

(Shee t b) r/ ZMode\\ } Mode Mode p ) j%/ E 4 h SIA5

  • 9(sheet 6) * (h AFAS-l +

h SI AS + lop + h DG StR CLoSE D (sheet 'I @ AFAS-2 t C tEFA S (sheet 5) t-i C P VI AS (sheet 4)

  • FSEV A S (shee+ 2) t h 5IAS
  • LOP
  • h DG Sk# CLoSE D

@ 00 ruN ) (3 h SIAS+ Lo P + DG BCR CLobE D r N Mode 3 Yorts: I. Srsre DAGRA& CHOWM for Sussrsren A oxir,. sane ik Suas rsrrn 8.^

2. Mocc h Jud-scqutxec ourpurs ARE DrectoPco ar icat: Atir AND anrise ruc rixto oureurs carrH TME^ ACCibrNY.5/GMAL S A3 Curl tWrb /M ATTACH. l-2, h

raser 9. Fig.,18. State diagram of ESF v

r o e T h.VE2 WS l 00

  • OC $4.

c'QuGNc(2 fypy 7 N 4/ O/ [ , / (7 k ', AI f( i t -i . a, s* t: 'j' a!'g, '.s j j ,6 4 it g e ',, t. = i b ,'y,,',,, -' '. ((/. . (. -'.i.,, ' t ' . i,.. .C - F .A..,. - .g ' } *. 3. s. .e.*J 1 '. 8 .,e',.3....,s. ,,,. e t, ..4. n4,.-.! 3... /p....,ts t i s d

g't,,..

,,gi. . M '.s's (*. * ' ;g ' ' 's t.,,, i .'Js,. , l.[,. i t'- ~ ' T. p*-l.c r. '. . ls, i !.1, A,.. ); ' i ,s.',',. .' s.. (

r j e.

,t..,1 u':, + 0.. .?. .d ..e .e e,. . + .? , ; ' a,. r. 6,t JN,,.. L' ..ti' .... f,.:,.. t. ;. 3.n f... f.. J..,,

  • \\,. t.,1,... ' e.

J..; e

  • ..s..,6,-

,. v. I. ..,..a. Ig g, .i.

  • >vf.

. l.i ; f. y- - y..f a t,' w'. olv. ..e i E. g... Sn:t:Sif g ;. b. A '.. e,. l '.~., % :*!. . Y

  • ].

_,., v.. i.w' t '.h.;! \\,*... 's. l :,l1.. t .c ( i y. r: : t. s $. Wg., ', J O (,awa n f.1,...$ 4 'J5' MI?. #r'.f $...2'.W. t.l 4, ','. Mord) 7 .. t 's 't... s J. 3., . , K..,.,..jM., ' 7?. "3.'.M. M..,'If.7,. .sTa 6u s '. i M_.. ", *..t.<, 6' i . l.,.,. ,. e. I.s g .....e', ,."4 t .1 4 ,. !. a. s . v p.:,. s. ,. i, l..,,,. 4. ts ..,.t.,.,. m c. .,...ev.4 ,,f,,, e. .n. s 1. ......a . s.- .~ ..5 .,i-s e I '..* y. ' x + /..'. f. .1 -.. y g,. <t ..? . s /.',. - '.s - .t ,2.- i i..; e v. t. . g' . ) s t, r o J' -'.s W J'. ,b.. ', *;r,?]1l.$./9,/hs l 'e l a i .. o. r. . ~. ** l s," .g > i..i,.... 1.*M,. y*/ S:. a '. t; ,.3.e....- ( .a. a .s. ,'y i i g t ., ;.,,/ t i

  • i.

2

  • f s

3 ...-..+.-....-...c,...... .L

a.

M Fig. 19. Block diagram of load sequencer and auto test e

~ Figure 20 shows the load sequencer decision tree from which the' probability of su6 cess for the sequencer can be written by inspection. To simplify'vriting the probability of success for'the tree, let c P g (S) = Pg7(S) P LOP BKR Q SA Then P g(S) = Probability of successful operation of the load sequencer 95 Ptg(S) = P S (S) + (1 - P g (S)) Pgg (S) A A A l ( ~ 3 t e e 6 + w w e-w -

s. J.".CP'D W )7 h N RY/77/8/ [ J d } ) ^ 4 9 powg* ~ ~ pg z. .:.~..v. ..1 U ~ ..~ ~ .w .....w go . ~' ~, u -~ e e -t-y. ,e a .m 2.. ~ ( 9 p y o b.. -w s _....::, _"."'.'u. '. ' .V .'~t..,.- . - ~ ~ '.n - - '.r ,a u a s, JMP/EF/7@ ~~ ^' h ) '.Ih *;.h's '..- m -..,.1 ., ~.,(, .~ .j 'e . ~.. .v...... - e. C ...-,c.....%:... . r. 1 m .c.-. e. .a. ., ~..

s. n. ; +.

3 s o -~. ~.t w ...:e +... .s u .\\( - h.' 1 h.. ? g k k. .g q:."'* [ ". - - ^ ~ .: [ l 8 , N,3 c ( ~-,. f, f. g.' '.' - s ', (f " f j.. p: .i { r,, co .u. ~_ s c _.. 9 , c

.--- a.

no .c. o T ....s ,v.. e m. ..^o.,...>= F ~.,,,i.,,_.*.'. ~ 8 e ~ ,g O g 9 .y . s,. .m ;"- - - .1 .O .,, ~ .m,- >y

c... Q. s.,,.

g

  • q,'

g

m. e f"..

~.4d D** '{*.[, ;

  • f. y q 5,
  • A,

- (.Y..5,k, E 7 y I @W

y... -... _ -

g ...v.'.. ..r, 7.. r

n

.(....,..-, ...,.e:- O .sy C ' +. . a 'W- + g .s '.Q. 'h ; y... e. ') ~. .';31..r.f( Q' ~ \\ ey4 ,r-.. -, y .,.m .-t;s.. 'i "[ '. *. *-'... - -, ,..y _.s., .e ,f _g

. ~..

.s'. . M ~i' -.". ^ i ,. ?.~- K U a~ ~ .,.e- .si s '. e-- .".J',.'.w., -.,.s..W...-- 'z..-s..-.;;....... Z %g* Q . w b ,.-e... .4^, ..6 ,* ~* ' ' * *...*%;

    • 9

,A/ S 5 . an. ~ ,..~-.. - +-- y.., e. 4 m + o erf. a. . ~ v~ s. n r. ~

  1. ..".e4

.s., r. A. ..s- . m., _s,.,i,, s y, we. * - ~ ^ h.~~,di ..?..:' +-. N e ~ ' -v

s. f,, g
,^f. ',*u

. * *"~ .] . ~ 4 +';,,- *,,,..,. . g* .,.2 ~,m....,;.... ..- v (d ' ..g,b.[..'..]*.e.=...

  • /

.,6""~.' .e e.- m. . *;x. : =..~ . -.m..et %....~";.* ..w..* - + s ws.. ^^ ..W Q,.. e,. e. ..y . s ; ~. -;Q.'.,. ?* t .t.....-...- y e g .g..re <o.a %' *,* *.,. '. " - * ..,. 'e.. e s *- = s *.. r q e. *

  • -.**e.y'.,y'**-.

. L. a%.. &.

  • r~.

w. r .s n... g. v b. .3 ....%.,.,. e t : g .e

  • .**.9

,.-g F .e

  • .. =
  • g,-

..,, = b [.. g. -4 au-gT;... f*g: . es

    • T**

.OS.- .,,'."...'.1;.. g* a... '!.f, %.,i.",' ,,s ; e y ' '., % s,. !

m..n'...,5...

. e e** s. .e

a. h; l',,e.

., ~., .,d'O =, W ... ;c %.;......,T-u. e Y .,p ~~.b a y 1 s*. e .9e t ,4. .*4 g '-*'s, ..c, .". l g .e. } s j Dg "s.. g Q 8 g q g g.* I m. l

l f 1 i:.

[

8. EQUATIONS FOR COMPOSITE SYSTEM RELIABILITY ( .In the preceding sections the system model was established and a generalized set of probability' equations were derived. Following.the generalizatlon, equations were presented for the individual subsy'tems. s { This section ties the generalized approach to the individual subsystem l equations and permits computation of the system reliability for any mission 1 l, time. i Table 2' summarizes the subsystem component failure rate values that j will be substituted in the model equations to compute the system reliability. P(S)/C = P(I )/C - { P(S0 )/I)

  • P(SO )/I P(S0 }

j 3 2 I 3 1 (S0 (0/I)} P(SO )I P(S0 4 3 5 1 6 1 7 + P(I )/C * { P(S0 )/I P(SO )/I P(SO ) I 2 3 g 2. 3 2 P(SO /1 P(SO ) (0)I (S0)/Ik 4 2 S. 2 6 2 7 2 j + P(I )/C e h(S0)/I (S0 )II (S0 )II 3 3 3 2 3 3 3 P(SO )/I P(SO ) 1 P(S0 )lI P(S0 )II 4 3 S 3 6 3 7 3 l + P(1 )/C - {P(S0 )/I i P(SO )! (50 ) I 4 3 4 2 4 3 4 l P_(SO )/I P(SO ) I

  • P(S0 }

( 7} 4 4 4 S 4 6 4 t + P(I )/C - {P(S0 )/I ( 0 )/1 (SO )II S 3 5 2 5 3 5 P(SO )!I 4 5 5 5 P(S0 )/IS 7 5 (S0 )II + P(S0 )/I 6 + P(I ) ( 1)! 6 (8 2) I6 3 6~ (0) 6. P(SO )/I l 4 6-(0)16 P(S0 )II6 7 6 - ( 0 )I1 5 6 [ + P(1 )/C ,{P(S0 )/I7 P(SO )/I7 3 7 P(S0 ) 7 3 2 (S0)/I} P(SO )/I P(S0 ) 17 P(S0 )!I7 7 7 4 7 5 6 i

TABLE 2 SUBSYSTEM COMPONENT FAILURE RATE VALUES Failure Subsystem Rate Reliability . Prob Source of Failure Component x10-6 for 720 hr Symbol Rate Data Calculated by MIL-l'IBK'217A Initiating Ch'annel for 12.5 0.9910 Pjj, P12 FBEVAS, CREFAS, CPIAS Actuating Channel and 7.17 0.9948 P13, P34, Calculated by MIL-ilBK 217A R> slays for FBEVAS, P15' #16 CREFAS, CPIAS Ac P'ower Source 40 0.9716

  • P Provided in Ref. 1 SI MTBF =.2.85 yr or 25,966 hr

~ De Power Source 4 0.9971 P Estimated S2 Ac to de power 25 0.9822 P P Wer 8uPP y mfg data; see Appendix B l S3 supply De to de power 25 0.9822 P Power supply mfg data; see Appendix B S4 supply Initiating Channel 15.8 P ,P Calculated by MIL-ilBK 217A 2A for CRVIAS Actuating Channel 7.87 P13A, P 4, g Calculated by MIL-ilBK 217A for CRVIAS P 15A' 16A LOP /LS Module a. -Trip Section 5.77 P (S) Calculated by MIL-ilBK 217A' A b. 2/4 and output 11.78 P24(S) Calculated by MIL-HBK 217A actuation p gg)

l ll lll .) 1 11lll e w ~ ^ A 7 e 1 r 2 u ~ l K i a IB at I F a ~ D L f I

o. t M

e ea I y cR b ru d o e S t a luc l a C l bo ) ob ) d rm S e Py D ( u S A q n P P i tnoc yr ( th i 2 l0 i2 E b7 L a B i r A l o T ef R er e6 ut-6 7 l a0 1 0 iR1 a x 1 2 F re ~ cn e mt u en q t e e e sn l S yo u sp d d bm o a uo M o SC L S S F G S D E ffl 1I

+P(1)/C*{P(SO)/I MS0 }!I P(S0 )/I ~ 8 g 2 8 3 8 (S0 ) I ( 0 )/I P(SO )/I P(SO ) 4 8 S 8 6 8 7 8 The variables for the preceding equations are summarized below. As previously defined P(I))/C = P(I )/C =... P(I )/C = 1/n = 1/8 2 8 = 0.1. Now consider the outputs dependent on input I), FBEVAS =Pg (S).P3 (S) P13(8) P(SO )/I) 3 +Pjj(S) PSA(S) P )P16( SB(S) 15 + P )(S) PSA( ) 12( )

  • SB(8) 14(. )

3 g (3) P12(S) PSB(S) P14(8) +P 11 12(8)

  • SB(8)
  • 14(

1bi(8)'#SA(S) + ) P(SO )/I =P13(8) + (I ~ #13(8)) '. P16(8) 2 1 3 4 3 S I 1 = P(S0 )/I) =.1 P(S0 )/I) = P(SO )/1 = P(SO )II =P(S96)! 7 P = See Table 2 ~ gj = See Table 2 13 = See Table'2 15 P 16 " Now consider outputs dependent on input I, CREFAS-g P(S0 )/I2"1 3 because output 0.is independent.of input 1 ' 3 2 t

P(SO )/I = P(S0 )/I) 2 2 3 because the same relationship holds'true P(S0 )/I = P(S0 )/I) 3 2 3 because this subsystem is the same as the preceding FBEVAS subsystem ( 6}! 2 I 7) 2 P(SO )/I = P(S0 )/I ~ ~ 4 2 3 2 because these outputs are independent of the 1, CREEAS, input. 2 The power supply subsystem was defined by the following equation: PPSA(- } " PSB( } " S1(S) Pg3(S) g3(3). PS2( )

  • S4( }

+Pg3(S) P +PS1( ) PS2(S) PS4(8) r-where Pg3(S), PS2( S3( and pg4(S) are defined in Table 2. i Now consider outputs dependent on input, 1, CPIAS. 3 7 P(S0 )/I = P(SO )/I3"I 3 3 2 because outputs are independent of input I

  • 3 P(SO )/I = P(S0 )/I 3

3 3 3 because the same 1-out-of-2 configuration as.the FBEVAS subsystem. +., P(SO )/I = P(SO } (S0 )/I 4 3 S 3" (0) 6 3 7 3"l = ~ u because outputs are indepe,ndent,of' input. s% e e t .h

.a g), y' Noyfconsider outputs dependent on input I, CRVIAS (SMCROA). 4 P(S0 )/I,; = P(S0 )/I4 P(50 )/I =1 = 3 4 2 3 because these outputs are independent of input I. 4

l P(SO )/I 4

4 is almost equal to P(S0 )/I). 3 Examination of Table 2 reveals that the failure rates for the CRVIAS channel components are somewhat greater than for the PBEVAS channel ~ v / components. Therefore, j ,,1 i g-( ,.o., P(SO )/I =P11A( SA 13A( }' I 4 4 1 t )P16A( )

  • SB( ) '

+PMA(S). PSA( )

  • 151

+P11A(S). PSA(I). Pg (S). PSB(8}

  • 14A( }

I 11A(T) P12A(S)

  • PSB(8) '

14A( } +P 1tA(S). P12A(S). PSB( )

  • 14A

) *' 15A(S) +P PSA(8} r P(SO ) I (S0 } I P(S0 )/I =1 = = S 4 6 4 7 4 '~, e because these outputs are independent of input 1, CRVIAS (SMCROA). 4 t,1 i I Now consider outputs dependent oil input I, ROA). 5 P(SO )/I5" 4)!I4-4 s r r r;'i +.y because of the same 1-out-of-1 relationship. c' \\ 7 e a

P(S0 )/I (S0 )II - P(S0 )/I = P(50 ) I 3 5 2 5 3 S 5 5" = P(50 ) 5 = P(50 )/I5"I 6 7 .because these outputs arc independent of input I, - (H OA). S Now consider outputs dependent'on input 1 DGSS. 0, the DGSS output, 6 3 is the. only output dependent o6 I, the DGSS input. From a previous 6 section we have P(SO I6"# DSS (8)/I S =PDA( } SA( + Ppg (S) (1 - PSA(S)) PSA( + (1 - PDA(S)) PDA( SA( and d a P(S0 )/I6" (' 2} 6 3 6 = P(SO )/I6 (S0 )/I = 3 4 = P(S0 } 6'"- ( 7} I6" 6 because of the independence of these outputs. PDA(S) is defined by Table 2. PSA(S) is the power system reliability as previously defined. Now consider outputs dependent.on input 1, the LOP subsystem. Output 7 0 is the only dependent output. The previously established relationship is 6 P(S0 } 7" L( } + (' ~ L( }} L( } 6 where P (S) = P (S) P24( }

  • AD(S)

PSA(S) 7 l-P (S) = P (S)2 { 1 + 2(1 - P (S)) + 3(1 - P (S)) ( and 7 g A A

o and P(S0 )/I = P(SO )/I7 = P(S0 ) 17 = P(S0 )/I7 3 7 2 3 3 = P(SO ) 1 = P(S0 )/17=1 S 7 7 because of independence. P (S) is defined in Table 2. A P24(S) PAD (S) is defined in Table 2. 3g(S) is the. power system reliability as previously defined. P The output dependent on 1, the load sequencer inputs, is similar to 8 those already done. As previously explained, the output is a function of the input state defined by several input signals defined by the input challenge I. The equation for the probability of success for the Load 8 Sequencer was derived earlier as: P(S0 )/I =P g (S) + (1 - P g (S)) P 3 (S) 7 8 where Pgg (S) = Pg7(S) P OP(S) PBKR( Q( } ' SA( r Pg7(S) = 1 (direct external signal from field contacts) P OP(S) = P(S0 } 7 (probability of sucetssful operation of 6 LOP subsystem) PBKR( ( *** I"*

  • d **"*****)

P (S) = Value sta:ed in Table 2 ' g PSA(3) = Power system' reliability as previously defined. +

9. COMPUTATION OF RELIABILITY A computer program was employed to compute the system reliability - for various mission times. Appendix C contains the results of the computer - calculations. The module, subsystem, and system reliability results are presented for several operation or mission times ranging from 0 to 960 hrs. The mission time correspondias to 30 days is 720 hours. The computer program used to perfona the calculations was written in the BASIC language. A complete listing of the program is contained in Appendix D. The program computations parallel the equations stated in Section B. I e 9 4 4 e 9 I e D F 4 L

- =. .. = -..- t i. I 8 ( 10. REFERENCES 1. "Section 4, Technical Requirements for-Balance of Plant Engineering Saf,ety Features Actuation System for,the Arizona Public Service Company Palo Verde Nuclear Generating Station, Units 1, 2, and 3," Specification

  • 13-JM-104, Rev. No. I', September 14, 1976.

j 2. Lambert, H. E., " System Safety Analysis and Fault Tree Analysis," l, Lawrence Livermore Laboratory Report, March 14, 1973. 5 er V 1 i e i' s 4 4 4 4 4 'l t 9 e i c S 4. w v- %..=,

APPENDIX A GENERAL ATOMIC COMPONENT RELIABILITY CALCULATIONS (Component failure rates based on MIL-HBK 217A, Table IV-IX, pg. 4-32~.) O e t T e G =

~ NOTE Failure rates chosen from Table IV-IX are either minimum or. average values dependent on stress levels calculated for each part: Stress s0.25 chose min fig. Stress >0.25 chose avg. fig. FBEVAS, CREFAS, CPIAS MODULE FAILURE RATE - INITIATING CHANNEL Failure Rate Total Failure Rate Component Quantity (x10-6 hr) (Failures /106 hr) Semiconductors Diodes 15 0.1 1.5 ~ Varistors 7 0.2 1.4 Resistors A. MIL-R-10509 fixed film (including R packs) 1. 24 0.07 1.68 2. 4 1.5 6.0 B. MIL-R-2'6 fixed power wire-wound 4 0.07 0.28 r Capacitors A. MIL-C-26655 solid tantalum 4 0.058 0.232 B. MIL-C-11015 general purpose ceramic 10 0.02 0.2 Connectors 5 0.01 0.05 Relays 3 0.01 0.03 Switches 7 0.02 0.14 Integrated Circuits 20 0.4 8.0 Low Population Parts (Table VII-XXV, pp 7.12-3; 217A) Incandescent lamps 5 1.0 5.0' 24.5 gog,y/ initiating channel = A t ~ = 1'2.5 neglecting lamps and associated components =! -v y

t 4 FBEVAS, CREFAS, CPIAS MODULE FAILURF. RATE - ACTUATING CHANNEL Failure (x10ge Tot.a1 Failurg Rate Ra hr) (Failures /10 hr) ~ ~ Component Quantity Semiconductors Diodes 8 0.1 0.8 Varistors 3 0.2 0.6 Resistors A. MIL-R-10509 fixed film (including R-packs) ~ 1. 9 0.07 0.63 2. 3 1.5 4.5 .B. MIL-R-26 fixed power wire-wound 4 0.07 0.28, Capacitors A. MIL-C-26655 solid tantalum 2 0.058 0.116 B. MIL-C-11015 general purpose ceramic 4 0.02 0.08 e Connectors 3 0.01 0.03 Relays 5 'O.0f 0.05 Switches 1 .0.02 0.02 integratedCircuits 13 0.04.I 5.2 Low Population Parts (Table VII-XXVI, pp. 7.12-3; 217A) 3 1.0 3.0 15.306 A = = 7.17 neglecting lamps and associated circuits e 4 e k ,.m 2

I CRVIAS MODULE FAILURE RATE - INITIATING CHANNELS (2 EA) Failure ~ (x10~ge TctalFailurgRate Ra hr) (Failures /10 hr) Component Quantity Semiconductors ~ Diodes 26 0.1 2.6 Varistors 8 0.2 1.6 Resistors A. MIL-R-10509 fixed film (including R-packs) 1. 32 0.07 2.24 ~ 2. 8 1.5 12.0 B. MIL-R-26 fixed power wire-wound 8 0.07 0.56 Capacitors A. MIL-C-26655 solid tantalum 5 0."058 0.29 B. MIL-C-11015 general purpose ceramic 14 0.02 0,28 Connectors 6 0.01 0.06 Relays 4 0.0I 0.04 Switches 10 0.02 0.2 Integrated Circuits 25 0.4 10 Low Population Parrs (Table VII-XXVI, pp. 7.12-3; 217A) 8 1.0' 8 Atotal " 15.83 neglecting lamps and associdi.ed = components and annimciator relay A. Y 4 7

i i CRVIAS MODULE FAILURE RATE - ACTUATING CHANNEL Failure (x10ge TotalFailurgRate Ra hr) (Failures /10 hr) Component Quantity ~ Semiconductors Diodes 11 0.1 1.1 Varistors 4 0.2 0.8 Resistors A. MIL-R-10509 fixed film (including R-packs) 1. 12 0.07 0.84 2. 4 1.5 6.0 B. MIL-R-26 fixed power wire-wound 4 0.07 0.28 Capacitors A. MIL-C-26655 solid tantalum '4 0.058 0.232 B. MIL-C-11015 general purpose ceramic 3 0.02 0.p6 ' Connectors '4 0.01 0.04 Relays 4 0.01 0.04 Switches 1 0.02 0.02 Int'egrated Circuits '13 0.04 5.2 Low Population Parts (Table VII-XXVI, pp._7.12-3; 217A) 4 1.0 4 l A,g,y = 18.612 g = 7.812-neglected lamps and associated' components and annunciator relays i e l l i I 9 4

1 DGSS MODULE FAILURE RATE Failure Ra Total Failure Rate (x10~ge , Component Quantity _ hr) (Failures /106 hr) . Semiconductors Diodes 29 0.1 2.9 Varistors 3 0.2 0.6 Resistors A. MIL-R-10509 fixed film (including R-packs) 1. (RN60, C,D) 24 0.07 1.68 2. (Corning C5) 6 1.5 9.0 'B. MIL-R-26 fixed power wire-wound 3 0.07 0.21 Capacitors A. MIL-C-26655 solid tantalum 5 0.058 0.29 B. MIL-C-11015 general 0.02 0.f 4 purpose ceramic 12 Connectors 6 0.01 0.06 Relays 3 0.01-0.03 Switches 9 0.02' O.18 Integrated Circuits 21 0.4 8.4 Lamps Incandescent (Low population parts Table VII-XXVI, pp. 7.12-3, 217A) 10 1.0 10.0 A ,,,1 33.57 = g = 11.57 neglecting lamps, annunciators, relays and associated components f

LOP /LS MODULE FAILURE RATE Failure Ra Total Failure Rate (x10ge ~ hr) (Failures /106 hr) , Component Quantity Semiconductors Diodes 38 0.1 3.8 Varistors 12 0.2 2.4 Resistors A. MIL-R-10509 fixed film (including R-packs) 1. 55 0.07 3.85 2. 14 1.5 21.00 B. MIL-R-26 fixed power wire-wound 16 0.07 1.12 - Capacitors A. MIL-C-26655 solid tantalum 10 0.058 0.58 B. MIL-C-11015 general purpose ceramic 24 0.02 Oa48 Connectors 13 . 0. 01, 0.13 R'eiays 18 0.01 0.18 Switches 9 'O.02 0.18 Integrated Circuits 69 0.4 27.6 ~ Lamps, Incandescent (Low Population Parts Table VII-XXVI, pp. 7.12-3; 217A) 14 1.0 14.0 -76.44 A = g,y = 35.51 neglecting lamps, annunciators,' and associated components e s

.=_ l hRIP 1; I ITRIP 2 g i OUT [2/4 i jACT TR I P 3---l ,, lTRIPk FAILURE RATE FOR EACH TRIP SECTION Failure Ra Total Tailure Rate (x10-gehr) (Failures /106 hr) Component Quantity Semiconductors Diodes 2 0.1 0.2 Varistors 3 0.2 0.6 Resistors A. MIL-R-10509 fixed film 7 0.07 0.49 B. MIL-R-26 fixed power wire-wound 3 0.07 0.21 Capacitors A. MIL-C-26655 solid tantalum. 2 0.058 0.116 r B. MIL-C-11015 general purpose ceramic 4 - 0.02 0.08 Connectors 3 0.01 0.03 Relays 0 Switches 2 0.02 0.04 Integrated Circuits 10 0.4 4.0

5.766 x 4

23.064 total / trip section 9 9 e p O v

- 1 TRIP 1 t TR I P 2:- i OUT t 2/4 I TRIP 3 TRIP FAILURE RATE FOR 2/4 LOGIC AND OUTPUT ACTUATION (Discounting lamps, annunciator outputs and associated components) Failure Rate Total Failurg Rate Component Quantity (x10-6 hr) (Failures /10 hr) Semiconductors Diodes 0 Varlstors 0 Resistors A. MIL-R-10509 fixed film 35 0.07 2.45 B. MIL-R-26 fixed power wire-wound 2 0.07 0.14 Capacitors A. MIL-C-26655 antid tantalum 2 0.058 0.116 B. MIL-C-11015 general purpose ceramic 8 0.02 0.16 Connectors 4 0.01 0.04 Relays 5 0.01 0.05 l Switches 1 0.02 0.02 Integrated Circuits 22 0.4 8.8 A,g,y/2x4 and Out Act = 1'1.776 g 5 k e a

m . __ m __ - _.. _. U ESF LOAD SEQUENCER / AUTO TEST MODULE FAILURE RATE i Failure Ra Total Failure Rate (x10gehr) (Failures /106 hr)- . Component Quantity. Semiconductors Diodes 19 0.01 0.19 Varistors 3 0.02 0.06 Resistors A. MIL-R-10509 fixed film 1. 74 0.07 5.18 2. 39-1.5 50.5 B. MIL-R-26 fixed power wire-wound 6 0.07 0.42 7 -. Capacitors 5 A. -MIL-C-26655 solid tantalum 7 0.058 0.406 B. MIL-C-11015 general purpose ceramic 15 - 0.02 0.3 Connectors

  • 13 0.01 0.13 Relays 21 0.01, 0.21 Switches 24 0.02 0.48

' Integrated Circui's-37 0.4 14.8 Lamps, Incandescent (Low Population Parts Table VII-XXVI, pp. 7.12-3; 217A) 39-1.0 39 A,g,y = 119.7 g = 20.7 neglecting lamps, annunciators, and associated components a e 4 0 9 8 4

a N Sh I S e APPENDIX B SUPPLIER COMPONENT RELIABILITY CALCULATIONS e 6 S s e e 7* S 4 0 9 9 D

DionGGr macjnGtic) July 19, 1978 Mr. Robert C. Weddle (SP251') General Atomics Company P. O. Box 81608 San Diego, California 92138

Subject:

MTBF Calculations

Dear Mr. Weddle:

Pursuant to our conversations enclosed are MTBF calculations l per MIL-HDBK-217A for the Model PM2497 power supply. The i PM2722 is very similar in construction except that it has fewer components. l Very truly yours, 3 L,. & +W / Arnold Hagiwara i Director of AdministiaQvef)perations AH:mtt . Enclosure cc: M. MacKrell B-1

Septsmber 25, 1974, .? V7 7 MTBF Calculation for 6VDC, 100 Amp. Power Supply Model PM24-89 i COMP. i QTY. TYPE RATING STRESS Aea Atot. l 43 RC20 .021 .903 8* RN60C .003 .024 3 Res. Var. .25W 1.000 3.000 '3 RC20 .52 .021 .063 2 RC30 .55 .021 .042 2 RC20 .60 .021 .042 1 RC30 .021 .021 f 2 Res. WW 10N .25 .100 .200 1 Res. WW 20W .80 .590 .590 1 Res. WW SW .067 .067 1 RC20 .38 .021 .021 ^ 2 Res. CC 2W .54 .021 .042 1 Cap. Alum. 7.5 V .80 .039 .039 1 Cap. Alum. 50 V .70 .032 ... 032 1 Cap. Alum. 400 V .80 .039 [039 r 4 Cap. Mica 500 V .0003 .0012 2 Cap. Mylar 200 V .002 .004 8 Cap. M'yla$' 100 V .002 ,016 2 Cap. Mylar 600 V .54 .003 .006 2 Cap. Mylar 200 V .90 .020 .040 1 Cap. Mylar 1600 V .20 .002 .002 1 Cap. Mylar 400 V .002 .002 'l-Cap. Tant. 10 V .50- .102 . 102 ~ 1 Cap.. Tant. .10 V .018 .018 i 1 Cap. Tant. '50 V ,.70 .039* .039 a m._

MTBF Calculation for 6VDC, 100 Amp. Power supply Model PM2489 COMP. Tjn or QTY. TYPE RATING TEMP. Aea ltot. 8 NPN Sil. > 1W .200 1.600 1. SCR > 1W .200 .200 1 NPN Sil. '< 1W .33 .432 .432 7 NPN Sil. < lW .150 1.050

  • 1 Triac

< 1W .200 .200 1 SCR < 1W - .200 .200 1 SCR > lW .20 .390 .390 15 Diode Sil. < lW .150 2.250 2 Diode Zener < lW .300 .600 2 Diode Zener < lW .17 .495 .990 24 diodeSil. > 1W .100 2.400 .400 1.20'O 3 I.C. 2 Transf. A 50' C .350 .700 2 Transf. A 60* C .350 .700 2 Transf. B 70 C .350 v.700 1 Transf. B 90* C* .350 .350 1 Transf. B 95' C .350 .350 1 Fan 50* C 1.850 1.8'50 2 Therm, Sw. .,200 .200 l 1 Fuse. .100 .100 2 PNP Sil. < lW .300 .600 ,ITOTAL 22.5192 MTBF 44,406 hrs. l r-B-3 PIONE*R' MAGNETICS, INC. ,ue ,. e m.. l

~" S;ptember 25, 1974-MTBF Calculation for 17VDC, 45 Amp. Powcr Supply Modal PM24 90 COMP. QTY. TYPE RATING STRESS Aea Atot. .021 .903 43 RC20 8 RN 60C .003 .024 3.000 1.000 3 Res. Var. .25W 4 RC20 .52 .021 .084 ,2 RC30 .55 .021 .042 1 RC20 .60 .021 .021 .021 .021 1 RC30 2 Res. WW 10W .25 .100 .200 1 Res. WM 20W .80 .590 .590 .067 .067 1 Res. WW SW 1 RC20 .38 .021 .021 2 Res. CC 2W .54 .021 .042 1 Cap. Alum. 25 V .70 .032 .032 1 Cap. Alum. 50 V .70 .032 .032 1 Cap. Alum 400 V .80 .039 .039 .0003 .0012 4 Cap. Mica 500 V .002 .004 '2 Cap. Mylar 200 V .002 .016 Ca'. Mylar 100 V 8 p 2 ~ Cap. Mylar 600 V .54 .003 .006 2 Cap. Mylar 200 V .90 .020 .040 1 Cap. Mylar 1600 V .20 .002 .002 .002 .002 1 Cap. Mylar 400 V 1 Cap. Tant. 10 V .50 .102 .102 .018 0'18 1 Cap. Tant. 10 V 1 Cap. Tant. 50 V .70 .039* .039 1 Cap. Tant. 25 V .50 .102 .102

  • series i-.pedance greater than 2 ohns

M'TBF Calculation for 17VDC, 45 Amp., Power-Supply Model PM24 90 r COMP. Tjn or QTY. TYPE RATING TEMP. Aea Atot. 8 NPN Sil. > lW .200 1.600 1l > lW SCR .200 - .200 1 NPN Sil. < lW .33 .432 .432 7 NPN Sil. < lW .150 1.050 2 PNP Sil. < lW .300 .600 1 Triac < lW .200 .200 1 SCR < lW .200 .200 1 SCR > lW .20 .390 .390 15 Diode Sil. < lW .150 2.250 2 Diode Zener < lW .300 .600 D'iode Zener,< lW .17 .495 .990 2 22 Diode Sil. > lW .100 2.200 3 I.C. .400 1.200 2 Transf. A 50' C .350 .700 2 Transf. A 60 C .350 w700 2 Transf. B 70' C .350 .700 'l Transf. B 90' C .350 .350 1 Transf. B 95' C .350 .350 1 Fan 50' C 1.,850 1.850 2 Therm. Sw. .200 .200 1 Fuse .100 .100 1 TOTAL 22.3122 MTBF 44,819' hrs. PIONEER MAGNETICS, INC. I 1745 Berkeley Santa Monica, California 90404 l

.e Basis For Reliability Analysis The reliability analyses were performed in accordance with the following guidelines: The stress ratio vs. failure rate data is a. per MIL-HDBK-217A. .i l ~ b. Ground K factors were used throughout. All stress ratios and normalized junction l-c. temperatures were calculated for a 25' C ambient. i d. When the manufacturer of a semiconductor did not state the temperature at which derating i i was to begin, 25' C was assumed. t For SCR and Triac devices, the failure rates e. for NPN silicon transistors were used. i .f. For devices which operate only in a fault i

mode, e.g., the OVP SCR, the normal operating stresses and normalized junction temperatures F

were used., A dash in the stress or normalized, junction g. temperature column indicates a value of less than 0.1. r ~ ] + 4 i b 4 - PIONEER' MAGNETICS, INC. 1745 Berkeley Santa Monica,'Californ'ia 90404 'N a ~. , + -. y

g me 8 e a APPENDIX C COMPUTER CALCULATIONS 9 O m 6 4 e + o e 6 e e D s e f*

APPENDIX C COMPUTER RELIABILITY. COMPUTATION FOR \\ PALO VERDE NUCLEAR GENERATING STATION BALANCE OF PLANT ENGINEERED SAFETY FEATURES ACTUATION SYSTEM BECHTEL JOB 10407 ~ PURCHASE ORDER 10407-13-JM-104 4 SEPTEMBER 22 1978 PROJECT NO. 2192 GENERAL ATOMIC COMPANY ELECTRONIC SYSTEMS DIVISION P O BOX 81608 SAN DIEGOr CALIFORNIA 92138 w s

MISSION TIME:0 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 0 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 1 4 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL 1 RELAYS 7.17 1 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE. 40 1 9 DC POWER SOURCE 4 1 AC TO DC POWER SUPPLY 25 1 DC TO DC POWER SUPPLY 25 1 INITIATING CHANNEL FOR CREVIAS 15.8 1 ACTUATING CHANNEL FOR CREVIAS-7.87 1 LOP /LS MODULE A. TRIP SECTION 5.77 1 B. 2/4 AND OUTPUT 0 1 r ' DGSS O 1 ESF LOAD SEQUENCER 20.7 1 RELIABILITY BY SUBSYSTEM l SUBSYSTEM RELIABILITY i POWER SUPPLY 1 FBEVAS 1 CREFAS 1 CPIAS 1 CREVIAS(SMCROA) 1 i CREVIAS(HGCROA) 1 DGSS 1 LOSS OF POWER 1 LOAD SEQUENCER 1 TOTAL SYSTEM RELIABILITY FOR 0 HOUR MISSION TIME: 1 I

L a MISSION TIME:48 COMPONENT RELIABILITY DATA TABLE e===========,======================================================== FAILURE RELIABILITY u SUBSYSTEM COMPONENT RATE PER FOR 48 HRS MILLION HRS INITIATING CHANNEL FOR- ~ 12.5 .9994 FBEVAS, CREFAS, CPIAS ACTOATING CHANNEL 1 RELAYS 7.17 .999656 FOR FBEVAS, CREVASr CPIAS i AC POWER SOURCE 40 .998082 DC POWER SOURCE 4 .999808 AC TO DC POWER SUPPLY 25 .998801 DC TO DC POWER SUPPLY 25 .998801 INITIATING CHANNEL FOR CREVIAS 15.8 .999242-ACTUATING CHANNEL FOR CREVIAS 7.87 .999622 LOP /LS MODULE i A. TRIP SECTION-5.77 .999723 B. 2/4 AND OUTPUT 0 .999434 DGSS,, b .999443 ESF LOAD. SEQUENCER 20.7 .999007 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999996 FBEVAS .999999 CREFAS ~ .999999 CPIAS .999999 I CREVIAS(SMCROA) .999999 CREVIAS(HGCROA) .999999 .DGSS 1 LOSS OF POWER 1 LOAD SEQUENCER .999999 l TOTAL SYSTEM RELIABILITY FOR 48 HOUR MISSION TIME:.999999 l e

MISSION TIME 96 o COMPONENT RELIABILITY DATA TABLE zm=nm=ammm=nsammmmmmmmmn=anumazmm===

====

FAILURE RELIABILITY SUBSYSTEM COM'PONENT RATE PER FOR 96 HRS MILLION HRS ZNITIATING CHANNEL FOR-12.5 .998801 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL 1 RELAYS 7.17 .999312 FOR FBEVAS, CREVASr CPIAS AC POWER SOURCE 40 .996167 DC POWER SOURCE 4 .999616 AC TO DC POWER SUPPLY 25 .997603 DC TO DC POWER SUPPLY 25 .997603 INITIATING CHANNEL FOR CREVIAS 15.8 .998484 ACTUATING CHANNEL FOR CREVIAS 7.87 .999245 LOP /LS MODULR A. TRIP SECTION. 5 77 .999446. B. 2/4 AND OUTPUT 0 .998868 DGSS 0 .998887 ESF LOAD SEQUENCER 20.7 .998015 n. RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999983 FBEVAS .999997 CREFAS .999997 CPIAS 3999998 CREVIAS(SMCROA) .999997 CREVIAS(HGCROA) .999997' ~ DGSS .999999 LOSS OF POWER .9.9999? LOAD SEQUENCER .999996 ~ TOTAL SYSTEM RELIABILITY FOR 96 HDL%Y. MISSION TIME:.999997 [-\\ s %\\ 4 i 2 f' .c

MISSION TIME:144 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 144 HRG MILLION HRS INITIATING CHANNEL FOR 12 5 .998201 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL 8 RELAYS' ~ 7.17 .998968 FOR FBEVAS', CREVAS, CPIAS AC POWER SOURCE 40 .994257 DC POWER SOURCE 4 .999424 AC TO DC POWER SUPPLY 25 .996406 DC TO DC POWER SUPPLY 25, .996406 INITIATING CHANNEL FOR CREVIAS 15.8 .997727 ACTUATING CHANNEL FOR CREVIAS 7 87 .99886'7 LOP /LS MODULE A. TRIP SECTION 5.77 .999169 B. 2/4 AND OUTPUT 0 .998302 DGSS 0 .998331 ESF LOAD. SEQUENCER 20.7' .997023 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999961 FBEVAS- .999994 ( CREFAS .999994 CPIAS .999995 s l CREVIAS(SMCROA) .999993 CREVIAS(HGCROA) . 999993 .DGSS .999997-LOSS OF POWER .999997 LOAD SEQUENCER .999991 1. TOTAL SYSTEM RELIABILITY FOR 144 HOUR MISSION TIME:.999995

~ MISSION TIME *192 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 192 HRS MILLION HRS INIT.IATING CHANNEL FOR 12.5 .997603 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL 8 RELAYS 7.17 .998624 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .992349 DC POWER SOURCE 4 .999232 ' ~ 25 .995211 AC TO DC POWER SUPPLY DC TO DC POWER SUPPLY 25 .995211 INITIATING CHANNEL FOR CREVIAS 15.8 .996971 ACTUATING CHANNEL FOR CREVIAS 7.87 .99849 LOP /LS MODULE A. TRIP SECTION 5.77 .998893 B. 2/4 AND OUTPUT 0 .997737 DGSS-0 .997775 ESF LOAD. SEQUENCER 20'. 7 ' .996033 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY ~ _ POWER SUPPLY .999931' FBEVAS .99999 CREFAS .99999 CPIAS .999992-CREVIAS(SMCROA) .999988 l CREVIAS(HGCROA) .999988 DGSS .999995' LOSS OF POWER .'999995 ' LOAD SEQUENCER .999984 TOTAL SYSTEM RELIABILITY FOR 192 HOUR MISSION TIME:.99999 [ l +. l

s MISSION TIME:240 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 240 HRS MILLION HRS INIT-IATING CHANNEL FOR- ~ 12.5 .997004 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL & RELAYS 7.17 .998281 FOR FBEVAS'r CREVAS, CPIAS AC POWER SOURCE 40 .990446 DC POWER SOURCE 4 .99904 AC TO DC POWER SUPPLY 25 .9940,18 DC TO DC POWER SUPPLY 25 .994018 INITIATING CHANNEL FOR CREVIAS 15.8 .996215 ACTUATING CHANNEL FOR CREVIAS 7.87 .998113 LOP /LS MODULE A. TRIP SECTION. 5.77 .998616 B. 2/4 AND OUTPUT 0 .997172 DGSS 6 .9%722 ESF LOAD SEGUENCER 20.7 .995044 RELIABILITY BY' SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999893 FBEVAS .999984 CREFAS .999984 CPIAS .999987 CREVIAS(SMCROA) .999981 CREVIAS(HGCROA) .999981 DGSS .999992 LOSS OF POWER .999991 LOAD SEQUENCER .999974 TOTAL SYSTEM RELIABILITY FOR 240 HOUR MISSION TIME:.999984

MISSION TIME:288 COMPONENT RELIABILITY DATA TABLE i=================================================================== a FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 288 HRS MILLION HRS INITIATING CHANNEL FOR' 12.5 .996406 FBEVAS, CREFAS, CPIAS ACTUATING. CHANNEL & RELAYS 7 17 .997937 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE ' 40 .988546 DC POWER SOURCE 4 .998849 AC TO DC POWER SUPPLY 25 .992826 DC TO DC POWER SUPPLY 25 .992826 - ' INITIATING CHANNEL FOR CREVIAS 15.8 .99546 ACTUATING CHANNEL FOR CREVIAS 7.87 .997736 LOP /LS MODULE A. TRIP SECTION 5.77 .99834 B. 2/4 AND OUTPUT 0 .996607 DGSS 0 .99'6665 ESF LOAD SEGUENCER 20.7 .994056 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999846 FBEVAS .999977 CREFAS .999977 CPIAS .999981 CREVIAS(SMCROA) .999972. CREVIAS(HGCROA) .999972 DGSS .999988 LOSS OF POWER .999987 LOAD SEQUENCER .999963 TOTAL SYSTEM RELIABILITY FOR 288 HOUR MISSION TIME:.999977

MISSION TIME:336 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITV SUBSYSTEM COMPONENT RATE PER FOR 336 MILLION HRS ___________________-_____________________-______________-_____..e.cs,. INIT.IA_ TING CHANNEL FOR 12.5 .995809 FBEVAGr CHEFAS, CPIAS ACTUATING CHANNE'L 1 RELAYS 7.17 .997594 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .98665 DC POWER SOURCE 4 .998657 AC TO DC POWER SUPPLY 25 .991635 DC TO DC POWER SUPPLY 25 _ .991635 INITIATING CHANNEL FOR CREVIAS 15.8 ~ .994705 ACTUATING CHANNEL FOR CREVIAS 7.87 .997359 LOP /LS MODULE A. TRIP SECTION 5.77 .998063 B. 2/4 AND OUTPUT O .996043 DGSS 0 .99,411 ESF LOAD SEGUENCER 20.7 .993069 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY I 1 POWER SUPPLY -.999791 FBEVAS .999968 CREFAS .979968 CPIAS .999974 .I s CREVIAS(SMCROA) .999962 CREVIAS(HGCROA) .999962 DGSS .999964 ~ LOSS OF POWER .999983 l i [ LOAD SEQUENCER .999949 i TOTAL SYSTEM RELIABILITY FOR 336 HOUR. MISSION TIME:. 999969 e

MISSION TIME:384 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 384 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .995211 FBEVASr CREFAS, CPIAS ACTUATING. CHANNEL 1 RELAYS 7.17 .99725 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .984757 DC POWER SOURCE 4 .998465 AC TO DC POWER SUPPLY 25 .990446 DC TO DC POWER SUPPLY 25 .990446 INITIATING CHANNEL FOR CREVIAS 15.8 .993951 ACTUATING CHANNEL FOR CREVIAS 7.87 .996982 LOP /LS MODULE A. TRIP SECTION 5.77 .997787 B. 2/4 AND OUTPUT O .995479 DGSS-O .995556 ESF LOAD SEGUENCER 20.7' .992083- ~ ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999727 FPEVAS .999958 CREFAS .999958 CPIAS .999965 i CREVIAS(SMCROA) .999949 CREVIAS(HGCROA) .999949 -DGSS .999979 LOSS OF POWER .999977 LOAD SEQUENCER .999933 TOTAL SYSTEM RELIABILITY FOR 384 HOUR MISSION TIME:.999959 ( i e

5 ~ MISSION TIME:432 COMPONENT RELIABILITY DATA TABLE ~

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 432 HRS MILLION HRS


___====---------------------------------------------------

~ INIT.IATING CHANNEL FOR' 12.5 .994614 FBEVAS, CREFAS, CPIAS ACTUA. TING, CHANNEL & RELAYS 7.17 .996907 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .982868 ~ DC POWER SOURCE 4 .998273 AC TO DC POWER SUPPLY 25 .989258 DC TO DC POWER SUPPLY 25 .989258 INITIATING CHANNEL FOR CREVIAS 15.8 .993198 ACTUATING CHANNEL FOR CREVIAS 7.87 .996606 LOP /LS MODULE A. TRIP SECTION 5.77 .99751 B. 2/4 AND OUTPUT 0 .994915 DGSS, 0 .995001 ESF LOAD SEQUENCER 20.7 .991097 ~ RELIABILITY BY SUBSYSTEM di SUBSYSTEM RELIABILITY POWER SUPPLY .999655 FBEVAS' .999946 CREFAS .999946 CPIAS .999956 CREVIAS(SMCROA) .999935. CREVIAS(HGCROA) .999935 DGSS .999973' LOSS OF POWER -.999971 LOAD SEQUENCER .999914 TOTAL SYSTEM RELIABILITY FOR 432' HOUR MISSION TIME:.999947 ..,__.-_---_.---._..---a--.a

MISSION TIME:480 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 480 HRS MILLION HRS --___===-- INITIATING CHANNEL FOR 12.5 .994018 FBEVAS, CREFAS, CPIAS ACTUA. TING CHANNEL 1 RELAYS FOR FBEVAS, CREVAS, CPIAS 7.17 .996564 5 AC POWER SOURCE 40 .980983 DC' POWER SOURCE 4 .998082 AC TO DC POWER SUPPLY 25 .988072 DC TO DC POWER SUPPLY 25 .988072 INITIATING CHANNEL FOR CREVIAS 15.8 .992445 ACTUATING CHANNEL FOR CREVIAS 7.87 .996229 LOP /LS MODULE A. TRIP SECTION 5.77 .997234 B. 2/4 AND OUTPUT 0 .994352 DGSS. 0 .994447 ESF LOAD. SEQUENCER 20.7' .990113 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999575' FBEVAS .999933 CREFAS .999933 CPIAS .999944 CREVIAS(SMCROA) .999919 CREVIAS(HGCROA) .999919 DGSS .999967' LOSS OF POWER .999963 l l LOAD SEQUENCER .999893 TOTAL SYSTEM RELIABILITY FOR 480 HOUR MISSION TIME:.999934

MISSION TIME:528 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 528 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .993422 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL 1 RELAYS 7.17 .996221 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .979101 ~ DC' POWER SOURCE 4 .99789 l AC TO DC POWER SUPPLY 25 .986887 DC TO DC POWER SUPPLY 25 .986887 l INITIATING CHANNEL FOR CREVIAS 15.8 .991692 ACTUATING CHANNEL FOR CREVIAS 7.87 .995853 LOP /LS MODULE A. TRIP SECTION 5.77 .996958 B. 2/4 AND OUTPUT 0 .993789 DGSS-0 .993894 ESF LOAD. SEQUENCER 20.7' .98913 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY 'l POWER SUPPLY .999487' FBEVAS .999917 CREFAS .999917 CPIAS .999932 CREVIAS(SMCROA) .999901 I CREVIAS(HGCROA) .999901 DGSS .999959' \\ LOSS-OF POWER .999955 LOAD SEQUENCER .99987 I i TOTAL SYST.EM RELIABILITY FOR 528 HOUR MISSION TIME:.999919 r s i

MISSION TIME:576 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 576 HRS MILLION HRS INITIATING CHANNEL FOR' .992826 12.5 FBEVAS, CREFAS, CPIAS ACTUATING. CHANNEL 1 RELAYS 7.17 .995879 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .977223 DC POWER SOURCE 4 .997699 AC TO DC POWER SUPPLY 25 .985703 DC TO DC POWER SUPPLY 25 .985703 INITIATING CHANNEL FOR CREVIAS .15.8 .99094 ACTUATING CHANNEL FOR CREVIAS 7.87 .995477 LOP /LS MODULE A. TRIP SECTION-5.77 .996682 B. 2/4 AND OUTPUT 0 .993226 DGSS O .993341 s ESF LOAD SEQUENCER 20.7 .988148 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999391 l FBEVAS .999901 CREFAS .999901 l CPIAS .999918 CREVIAS(SMCROA) .999881 CREVIAS(HGCROA) .999881 DGSS .999951 LOSS OF POWER .999946 LOAD SEQUENCER -.999643 TOTAL SYSTEM RELIABILITY FOR 576 HOUR MISSION TIME:.999903 l l ~

a MISSION TIME:624 COMPONENT RELIABILITY DATA TABLE

========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 624. HRS MILLION HRS INITIATING CHANNEL FOR-12.5 .99223 FBEVAS, CREFAS, CPIAS ACTOATING CHANNk'L 1 RELAYS 7.17 .995536 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .975349 DC POWER SOURCE 4 .997507 AC TO DC POWER SUPPLY 25 .984521 DC TO DC POWER SUPPLY 25 .984521 INITIATING CHANNEL FOR CREVIAS 15.8 .990189 ACTUATING CHANNEL FOR CREVIAS 7.87 .995101 LOP /LS MODULE A. TRIP SECTION. 5.77 .996406 B. 2/4 AND OUTPUT O .992664 1 DGSS 0 .992788 ESF LOAD SEGUENCER 20.7 .987166 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999287 FBEVAS .999882 ? CREFAS .999882 CPIAS .999902 CREVIAS(SMCROA) .999858 CREVIAS(HGCROA) .999858 DGSS .999942 j LOSS OF POWER .999935 LOAD SEGUENCER .999815 ' TOTAL SYSTEM RELIABILITY FOR 624 HOUR MISSION TIME:.999884

~ MISSION TIME 672 - i COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 672 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .991635 FBEVAS, CREFAS, CPIAS ACTUATING, CHANNEL 1 RELAYS 7.17 .995193 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .973478 DC POWER SOURCE 4- .997315 i AC TO DC POWER SUPPLY 25 .98334 DC TO DC POWER SUPPLY 25 .98334 INITIATING CHANNEL FOR CREVIAS 15.8 .989438-s ACTUATING CHANNEL FOR CREVIAS__ 7.87 _.994725 LOP /LS MODULE A. TRIP SECTION 5.77 .99613 B. 2/4 AND OUTPUT 0 .992102 DGSS-0 .992235 ESF LOAD. SEQUENCER 20'7" .986186 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999175 FBEVAS .999862 CREFAS .999862~ CPIAS .999885 CREVIAS(SMCROA) .999834 l CREVIAS(HGCROA) .999834 l DGSS .999933 i LOSS OF POWER .999924 LOAD SEQUENCER .999784 TOTAL SYSTEM RELIABILITY FOR.672 HOUR MISSION TIME:.999865 1 L l .~.

a ~ MISSION TIME:720 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 720 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .99104 FBEVAS, CREFAS., CPIAS ACTUATING CHANNEL & RELAYS 7.17 .994551 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE 40 .971611 DC POWER SOURCE 4 .997124 AC TO DC POWER SUPPLY 25 .982161 DC TO DC POWER SUPPLY 25 .982161.* INITIATING CHANNEL FOR CREVIAS 15.8 .988688 ACTUATING CHANNEL FOR CREVIAS 7.87 .99435 LOP /LS MODULE A. TRIP SECTION 5.77 .995854 B. 2/4 AND OUTPUT 0 .99154 DGSS-O .991683 ESF LOAD SEQUENCER 20.7' .985206 - - = = = = = - _ = - - _. ____----_______=_ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .999055 FBEVAS .999839 CREFAS .999839 CPIAS .999866 CREVIAS(SMCROA) .999808 CREVIAS(HGCROA) .999808 DGSS .999922 LOSS OF POWER .999912 LOAD SEQUENCER .99975 TOTAL SYSTEM RELIABILITY FOR 720 HOUR MISSION TIME:.999843

MISSION TIME:768 COMPONENT RELIABILITY DATA TABLE ~ ~

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 768 HRS MILLION HRS ---_--___---_----___-------________-__-------_-_---______---==_______ INIT.IATING CHANNEL FOR' 12.5 .990446 FBEVASr CREFAS, CPIAS ACTUATING. CHANNEL & RELAYS 7.17 .994509 FOR FBEVASr CREVAS, CPIAS ACPOWERSOURCE} 40 '.969747 DC POWER SOURCE 4 .996933 AC TO DC POWER SUPPLY 25 .980983 DC TO DC POWER SUPPLY 25 .980983 INITIATING CHANNEL FOR CREVIAS 15.8 .987939 ACTUATING CHANNEL FOR CREV,IAS 7.87 .993974 LOP /LS MODULE A. TRIP SECTION 5.77 .995578 B. 2/4 AND OUTPUT 0 .990979 DGSS O .9f1131 ESF LOAD SEQUENCER 20.7 .984228 _________--____== RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY t POWER SUPPLY .998927 FBEVAS .999815 CREFAS .999815 CPIAS .999845 CREVIAS(SMCROA) .999779 CREVIASCHGCROA) .999779 DGSS .999911 l LOSS OF POWER .999898 LOAD SEQUENCER .999713 ) TOTAL SYSTEM RELIABILITY FOR 768 HOUR MISSION TIME:.99982

= I ~ MISSION TIME:816 COMPONENT RELIABILITY DATA TABLE RELIABILITY FAILURE SUBSYSTEM COMPONENT RATE PER FOR 816 HRS MILLION HRS INITIATING CHANNEL FOR' 12.5 .989852 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL & RELAYS 7 17 .994166 FOR FBEVAS, CREVAS, CPIAS AC POWER SOURCE, 40 .967887 DC POWER SOURCE 4 .996741 AC 70 DC POWER SUPPLY 25 .979807 DC TO DC POWER SUPPLY 25 .979807 INITIATING CHANNEL FOR CREVIAS 15.8 .98719 ACTUATING CHANNEL FOR CREVIAS 7.87 .993599 LOP /LS MODULE A. TRIP SECTION' 5.77 .995303 B. 2/4 AND OUTPUT 0 .990417 DGSS O .9f0579 ESF LOAD SEQUENCER 20.7 .983251 = - -. = - - - - - - - - - RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .998792 / FBEVAS .999789 CREFAS .999789 CPIAS .999823 CREVIAS(SMCROA) .999748 CREVIAS(HGCROA) .999748 DGSS .999899 LOSS OF POWER ~.999884 LOAD SEQUENCER ~ .999674 TOTAL SYSTEM RELIABILITY FOR 816 HOUR MISSION TIME:.999794

MISSION TIME:864 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 864 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .989258 FBEVAS, CREFAS, CPIAS ACTUATING CHANNEL & RELAYS 7.17 .993824 FOR FBEVAS, CREVASr CPIAS AC POWER SOURCE 40 .96603 DC' POWER SOURCE 4 .99655 AC TO DC POWER SUPPLY 25 .978632 DC TO DC POWER SUPPLY 25 .978632 INITIATING CHANNEL FOR CREVIAS 15.8 .986441 ACTUATING CHANNEL FOR CREVIAS 7.87 .993223 LOP /LS MODULE A. TRIP SECTION 5.77- .995027 B. 2/4 AND OUTPUT 0 .989857 DGSS. 0 .990028 ESF LOAD SEQUENCER 20.7- .982274 RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .998649 FBEVAS .999761 CREFAS '999761' CPIAS .9998 ~ CREVIAS(SMCROA) .999714~ CREVIAS(HGCROA) ,.999714 i DGSS .999885-LOSS OF POWER .999868 LOAD SEQUENCER .999632 I TOTAL SYSTEM RELIABILITY FOR 864 HOUR MISSION TIME:.999767 w

J MISSION TIME:912 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 912 HRS MILLION HRS INITIATING CHANNEL FOR 12.5 .988665 FBEVAS, CREFAS, CPIAS ACTUATING. CHANNEL & RELAYS 7.17 .993482 FOR FBEVASr CREVAS, CPIAS AC POWER SOURCE 40 .964177 N DC POWER SOURCE 4 .996359 AC TO DC POWER SUPPLY 25 .977458 DC TO DC POWER SUPPLY 25 .977458 INITIATING CHANNEL FOR CREVIAS 15.8 .985694 ACTUATING CHANNEL FOR CREVIAS 7.87 .992848 LOP /LS MODULE A. TRIP SECTION 5.77 .994752 B. 2/4 AND OUTPUT 0 .989296 DGSS-0 .969477 ESF LOAD SEQUENCER 20.7 .981299 RELIABILITY BY SUBSYSTEM j SUBSYSTEM RELIABILITY l POWER SUPPLY .998498 FBEVAS .999731 CREFAS .999731 CPIAS .999774 CREVIAS(SMCROA) .999679 CREVIAS(HGCROA) .999679 l DGSS .999871 LOSS OF POWER -.'999851 LOAD SEGUENCE'R .999587 TOTAL SYSTEM RELIABILITY FOR-912 HOUR MISSION TIME:.999738 l

MISSION TIME:960 COMPONENT RELIABILITY DATA TABLE

=========================================================

FAILURE RELIABILITY SUBSYSTEM COMPONENT RATE PER FOR 960 HRS MILLION HRS INITIATING CHANNEL FOR' 12.5 .988072 FBEVAS, CREFAS, CPIAS ACTUATING. CHANNEL & RELAYS 7.17 .99314-FOR FBEVASr CREVAS, CPIAS AC POWER SOURCE 40 .962328 DC POWER SOURCE 4 .996167 AC TO DC POWER SUPPLY 25 .976286 DC TO DC POWER SUPPLY 25 .976286 INITIATING CHANNEL FOR CREVIAS' 15.8 .984947 ACTUATING CHANNEL FOR CREVIAS 7.87 .992473 LOP /LS MODULE A. TRIP SECTION' 5.77 .994476 B. 2/4 AND OUTPUT 0 .988736 DGSS 0 .998926 .980324 ESF LOAD. SEQUENCER 20.7 ~ RELIABILITY BY SUBSYSTEM SUBSYSTEM RELIABILITY POWER SUPPLY .998339 FBEVAS g .999699 CREFAS .999699 CPIAS .999746 CREVIAS(SMCROA) .99964 CREVIAS(HGCROA) .99964 DGSS .999856 LOSS OF POWER .999833 LOAD SEQUENCER .999539 TOTAL SYSTEM RELIABILITY FOR 960 HOUR MISSION TIME'.999707 4

9 5 99 e g 6 2 1 APPENDIX D COMPUTER RELIABILITY COMPUTATION PROGRAM m e h 9 e = 9 4 4 e O 9 4 6 e 9 d a

J s APPENDIX D \\ COMPUTER RELIABILITY COMPUTATION PROGRAM I FOR-PALO VERDE NUCLEAR GENERATING STATION BALANCE OF PLANT ENGINEERED SAFETY FEATURES ACTUATION SYSTEM BECHTEL JOB 10407 PURCHASE ORDER 10407-13-JM-104 / i SEPTEMBER 22,1978 i f, l i PROJECT ND. 2192 GENERAL. ATOMIC. COMPANY ELECTRONIC SYSTEMS DIVISION i { P O. BOX 81608 SAN-'DIEG0r CALIFORNIA 92138 1 ~ D-1 ). 'T v-

i 111: DIM SUB.SYS$(IN.NUM) 112: 113: 114: REM EQUATES 115: l 116: SUB.SYS$(1)="FBEVAS" 117: SUB.SYS$(2)="CREFAS' l 118* SUB.SYS$(3)='CPIAS" 119:.SUB.SYS$(4)='CREVIAS(SMCROA)' 120: SUB.SYS$(5)='CREVIAS(HGCROA)* 121: SUB.SYS$(6)='DGSS' 122: SUB.SYS$(7)=' LOSS OF POWER' 123: SUB.SYS$(8)=' LOAD SEQUENCER

  • 124: '

125:. 126: REM THIS PROGRAM WILL CALCULATE THE RELIABILITY OVER .1273-REM AN INTERVAL OF. TIME IN STEPS OF INTEGER HOUT.G. 128: REM THE STARTING TIME, THE ENDING TIME AND THE 129: REM NUMBER OF HOURS IN EACH TIME STEP MUST BE 130: REM SPECIFIED. 131: 132: INPUT ' STARTING TIME'i START. TIME 133: INPUT 'ENDING TIME'i STOP. TIME 134: INPUT " TIME STEP IN HOURS'; TIME. STEP 135: ( 136: 137: REM DEFINE FUNCTIONS 138: 139; DEF FNRELIABILITY(N,T)=1/EXP(N*(1E-6)*T) 140' 141: 142: RETURN 143: 144: 145: ' REM 4444444444444444444444444444444444444444444444444444 146:. 147: 2000 REM SUBROUTINE: PRINT FRONT PAGE OF APPENDIX 148: REM . LIST TITLE LINES TO BE USED 149: 150: TITLE 1$=" APPENDIX C' 151: TITLE 2$=" COMPUTER RELIABILITY COMPUTATION" 152: TITLE 2A$='FOR' 153: TITLE 3S='PALO VERDE NUCLEAR GENERATING STATION' 154: TITLE 4$=" BALANCE OF PLANT ENGINEERED SAFETY" 155: TITLES $=" FEATURES ACTUATION SYSTEM' 156: TITLE 6$="BECHTEL JOB 10407' 157: TITLE 7$=" PURCHASE ORDER 10407-13-JM-104' 158: TITLE 8$=" PROJECT NO. 2192' 159: 160: REM INPUT TITLE SPACING DATA 161: 162: READ NirN2rN3rN4rN5rN6 163: DATA 5, 6, 3, 8, 8, 0 164: . l 165: REM START NEW PAGE 166: 6

.c.~

3...

.' 167: PRINT-NEW.PAGES 168: FOR I=1 TO N1 169: PRINT 170 NEXT I 171: 172: REM PRINT APPENDIX HEADING .173: 174: Q=LEN(TITLE 1$) 175: R=(80-0)/2 176: PRINT TAB (R); TITLE 1$ 177: 178: FOR I=1 TO N2 179: PRINT 180: _ NEXT I 161 182:- Q=LEN(TITLE 2$) 183: PRINT TAB ((80-0)/2); TITLE 2$ 184:' 185: FOR I=1 TO N3 186: PRINT 187: NEXT I ~ 188: PRINT TAB ((80-LEN(TITLE 2A$))/2)iTITLE2A$ 189: FOR I = 1 TO N3 190: PRINT 191: NEXT I 192: Q=LEN(TITLE 3$) 193 PRINT TAB ((80-0)/2); TITLE 3$ --)- 194: Q=LEN(TITLE 4$) 195: PRINT TAB ((80-0)/2); TITLE 4$ 196: Q=LEN(TITLES $) 197: PRINT TAB ((80-Q)/2); TITLES $ 198: FOR I=1 TO N3 199* PRINT 200: NEXT I 201: PRINT TAB ((80-LEN(TITLE 6$))/2)iTITLE6$ 202; PRINT TAB ((80-LEN(TITLE 7$))/2); TITLE 7s v 203: FOR I = 1 TO N4 s 204: PRINT 205: NEXT I 206: Q=LEN(DATE$) 207: PRINT TAB ((80-Q)/2); DATES 208: FOR I=1 TO N5 209: PRINT 210: NEXT I 211: PRINT TAB ((80-LEN(TITLE 8$))/2)iTITLE8$ 212: PRINT: PRINT 213: 214: REM WRITE COMPANY ADDRESS. BLOCK 215:' l 216: -GOSUB 2500 217: - 218: REM GO TO THE NEXT PAGE, 219: ~ 220: PRINT NEW.PAGE$- 221: 222: RETURN R A a

223: 224: 1 225* REM 4444444444444444444444444444444444444444444444444444 226: 227: 2500 REM SUBROUTINE TO PRINT GENERAL ATOMIC 228: REM ADDRESS BLOCK 229: '230: LINE1$=' GENERAL ATOMIC C0i1PANY' ~ 231: _LINE2$=' ELECTRONIC SYSTEMS DIVISION' 232: LINE3$="P O BOX 81608' 233: LINE45=" SAN DIEGO, CALIFORNIA 92138' 234: 235: PRINT TAB ((80-LEN(LINE15))/2);LINEl$ 234:' PRINT TAB ((80-LEN(LINE2$))/2);LINE2$ 237. PRINT TAB ((80-LEN(LINE3$))/2);LINE3$- 238: PRINT TAB ((80-LEN(LINE4$))/2);LINE4$ .2392 240: RETURN 241 242: 243: REM 4444444444444444444444444444444444444444444444444444 244: N 245: 3000 REM SUBROUTINE FOR DATA INPUT 246: 247: REM INPUT THE FAILURE RATE DATA 248 249: READ L.11, L.13, L. Sir L.S2r L.S3, L'.~S4r L.11A ~ 250: READ L.13Ar L.Ar L.24.PLUS.L.ADr L.DA, L.Q 251: 252: DATA 12.5, 7.17r 40 0, 4.00, 25.0, 25.0, 15.8 253: DATA 7.87, 5.77, 11.8, 11.6, 20.7 254 255: RETURN 256: 257: 2583. 259: REM 444444444444444444444444444444444444t444444444444444 260: 261: 4000 ' REM SUBROUTINE TO CALCULATE COM'PONENT 262: REM RELIABILITY 263: 264: T= TIME 265: P.11=FNRELIABILITYCL.11rT) 266: P.13=FNRELIABILITY(L.13rT) t l 267: P.Si=FNRELIABILITY(L.SirT) l 268: P.S2=FNRELIABILITYCL.S2rT) 269: P.S3=FNRELIABILITY(L.S3rT) 270: P.S4=FNRELIABILITY(L.S4rT) 271: P.11A =FNRELIABILITYCL.11A rT) 272: P.13A =FNRELIABILITY(L.13A rT) 273: P.A =FNRELIABILITY(L.A rT) 274: P.24XP.AD=FNRELIABILITY(L.24.PLUS.L.ADrT) 275: P.DA=FNRELIABILITY(L. DART) 276: P.0 =FNRELIABILITY(L.Q rT) 277: ") 278: RETURN i I

I .e j'279' ~ i280: 281: 282: REMt#################t4t####tt######4444###4441944#t,444 283: 284: 5000 REM SUBROUTINE TO CALCULATE THE SUBSYSTEM 285: REM RELIABILITIES '286: 287: REM THE FOLLOWING EQUALITIES WERE. ESTABLISHED 288: ' REM IN THE REPORT. 289: 290: P.12=P.11 291: P.'14=P.13 292: P.15=P.13 ~ 293: P.16=P.13 294: P.12A=P.11A 295: P.14A=P.13A '296' P.15A=P.13A 297: P.16A=P.13A-298 299: REM THE COMPUTER DOES NOT ALLOW COMPLETE FLEXIBILITY 300: REM IN CHOOSING SYMBOLS IN.THE COMPUTATIONAL SECTION 301: REM THEREFOREr THE FOLLOWING CHANGE OF SYMBOLS 302: REM WILL BE EMPLOYED. 303: REM SYMBOLS IN THIS SECTION 304: REM SYMBOLS USE IN REPORT ~- 305: ' ~ 306: REM P(S01)/I1 P.GI1.SO(1) 307: 308: REM EITHER IS READ AS 'THE PROBABILITY OF SUCCESS 309: REM AT GUTPUT ONE GIVEN INPUT ONE. 310: 311: 312: 313: REM 314: REM FOR THE POWER SUPPLY SUBSiSTEM r 315:' 316: A=P.S1*P.S3 317: B=P.S1*(1-P.S3)*P.S2*P.S4 318: C=(1-P.S1)*P.S2*P.S4 319: P.SA=A+B+C 320: P.SB=P.SA 321: 322: 323: s 324: 325: REM 326: REM FOR OUTPUTS RELATED TO INPUT II.(FBVAS), ~ 327: REM CALCULATE THE FOLLOWING: 328: 329: REM FOR S(S01)/II: 330: 331: A=P.11*P.SA*P.13 332: B=P.11*P.SA*(1-P.15)*P.16*P.SB. 333: C=P.11*(1-P.SA)*P.12*P.SB*P.14 334: D=(1-P.11)*P.12*P.SB*P.14 t o

7-335: E=(1-P.11)*P.12*P.SB*(1-P.14)*P.15*P.SA 336: 337* P.GI1.SO(1)=A+B+C+D+E 338: 339: 340: REM FOR P(S02)/I1 341: 342: P.GII.SO('2).=P.13+(1-P.13)*P.16 343: 344: FOR K = 3 TO OUT.NUM 345: P.GI1.SO(K)=1 346: NEXT K 347: 348 ~ P.'SO.GI(1)=1 3493-FOR K = 1 TO OUT.NUM 350: P.SO.GI(1)=P.SO.GI(1)*P.GI1.SO(K) 3511-NEXT K 352: 353: 354: 355: REN 356: REM FOR OUTPUTS RELATED TO INPUT I2 (CREFAS), 357: REM CALCULATE THE FOLLOWING: 358: 359: P.GI2.SO(1)=1 '360: - t 361: REM FOR P(S02)/I2 362: ~ 363: P.GI2.SO(2)=P.GI1.SO(1) 364: 365: REM FOR P(S03)/I2 366: 367: P.GI2.SO(3)=P.GI1.SO(2) 368: 369: FOR K = 4 TO OUT.NUM 370: P.GI2.SO(K)=1 371: NEXT K I '372: 373: P.SO.GI(2)=1 374: EOR K = 1 TO OUT.NUM 375: P.SO.,GI(2)=P.SO.GI(2)*P.GI2.SO(K) 376: NEXT K 377: 378: 379: .380: REM 381: REM FOR OUTPUTS RELATED TO INPUT I3 (CPIAS),- 382. REM CALCULATE.THE FOLLOWING: 383: 384: FOR K= 1 TO 2 385: P.GI3.SO(K)=1 386: NEXT K ~ 387: 388: REM FOR P(S03)/I3 389: 390: P.GI3.SO(3)=P.GI1.SO(1)

.- ~.. = 391 392: FOR K = 4 TO OUT.NUM 393: P.GI3. SOCK)=1 ~ 394: NEXT K 395: 396: P.SO.GI(3)=1 397: FOR K = 1 TO OUT.NUM 399: P.SO.GI(3)=P.SO.GI(3)*P.GI3.SO(K) 399: NEXT K 400: 401: 402: 403: REM 404: - REM FOR OUTPUTS RELATED TO INPUT I4 (CREVIAS-SMCROA), 405: " REM - CALCULATE THE FOLLOWING: ~ ~ 406: 407: FOR K =-1 TO 3 408: P.GI4.SO(K)=L ' 409: NEXT K 410: 411: REM FOR P(SO4)/I4 412: 413: AA=P.11A*P.SA*P.13A 414: BA=P.11A*P.SA*(1-P.15A)*P.16A*P.SB 415: CA=P.11A*(1-P.SA)*P.12A*P.SB*P.14A 416* DA=(1;P.11A)*P.12A*P.SB*P.14A C 417: ' EA=(1-P.11A)*P.12A*P.SB*(1-P.14A)*P.1dA*P.SA 418: 419: P.GI4.SO(4)=AA+BA+CA+DA+EA 420: 421: FOR K = 5 TO OUT.NUM 422: P.GI4. SOCK)=1 422: NEXT K 424: 425: P.SO.GI(4)=1 '26: FOR K = 1 TO OUT.NUM r 427: P.SO.GI(4)=P.SO.GI(4)*P.GI4.SO(K) NE,T K 428: X 429: 430: 431: 432: REM 433: REM FOR OUTPUTS RELATED TO INPUT I5 (CREVIAS-HGCROA), 434: REM CALCULATE THE FOLLOWING: 435: 436: FOR'K = 1 TO 3 '437 P.GI5.SO(K)=1 -i I 438: NEXT K i 439: l 440: REM FOR P(SO4)/I5' 441: 442: P.GI5.SO(4)=P.GI4.SO(4) 443: 444: FOR K = 5 TO OUT.NUM 445: P.GI5. SOCK)=1 446: NEX.T K t

.,s-447: 448: P.SO.GI(5)=1 449: FOR K = 1 TO OUT.NUM 450: P.SO.GI(5)=P.SO.GI(5)*P.GI5.SO(K) 451: NEXT K 452: 453: 454: 455: REM 456: REN FOR OUTPUTS RELATED TO INPUT I6 (DGSS), 457: REM CALCULATE THE FOLLOWING: 458: 459: _ FOR K = 1 TO 4 460: 461 - -P.GI6.SO(K)=1 462: NEXT K 463: 464: 465: REM FOR P(SOS)/I6 466: 467: F= P. D A

  • P'. S A 468:

G=P.DA*(1-P.SA)*P.SA-469: H=(1-P.DA)*P.DA*P.SA 470* 471: P.GI6cSO(5)=Ff)+H 472:' J5' 473: FOR K = 6 TO OUT.NUM 474: P.GI6.SO(K)=1 ~ 475: NEXT K 476: 477: P.SO.GI(6')=1 478: FOR K = 1 TO OUT.NUM 479: P.SO.GI(6)=P.SO.GI(6)*P.GI6. SOCK) 480: NEXT K 481: y 482-483: 484: REM 485: REN FOR OUTPUTS RELATED TO INPUT I7 (LOSS OF POWER), 486: REM CALCULATE THE FOLLOWING: 487: 488: 489: FOR K = 1 TO 5 490: P.GI7.SO(K)=1 491: NEXT K 492: 493: P.I=(P.A"2)*(1+2*(1-P.A)+3*(1-P.A)"2) 494: 495: P.L=P.I*P.24XP.AD*P.SA 496 497: P.GI7.SO(6)=P.L+(1-P.L)*P.L 498: 499: FOR K = 7 TO OUT.NUM 500: P.GI7.SO(K)=1 501: NEXT K 502:

l-l 503: P.SO.GI(7)=1 1504: FOR K = 1 TO OUT.NUM ~ 505: P.SO.GI(7)=P.SO.GI(7)*P.GI7.SO(K) 506: NEXT K 507: 508: ( 509: 510: REM l 511:. REM FOR OUTPUTS RELALATED TO INPUT I8 (LOAD.SEGUENCER), 512: REM CALCULATE THE FOLLOWING: 513: 514: 515: FOR K = 1 TO 6 516: - P.GI8.SO(K)=1 517:. NEXT K_ 518: 519. P.L,0P=P.GI7.SO(6) 520: 521: P.SI=1 522: P.BKR=1 523: 524' P.LS.A=P.SI*P. LOP *P.BKR*P.G*P.SA 525: 526: P.GI8.SO(7)=P.LS.A+(1-P.LS.A)*P.LS.A 527: 528:. P.SO.51(8)=1 529: FOR K = 1 TO OUT.NUM ^ ^ ~=_. ~ 530: P.SO.GI(8)=P.SO.GI(8)*P.GI8.SO(K) 531: NEXT K 532: 533: RETURN 534: 535: 536: REM 4444444444444444444444444444444444444444444444444444 537: 538:, 6000 REM SUBROUTINE TO CALCULATE TOTAL SYSTEM' RELIABILITY 539: 540: 541: P. SYSTEM =0 542: FOR K = 1 TO IN.NUM 543: P. SYSTEM =P. SYSTEM +(1/IN.NUM)*P.SO.GI(K) 544: NEXT K 545: 546: RETURN 547: 548: 549: 550: REM 4444444444444444444444444444444444444444444444444444 551: 552: 7000 REM , SUBROUTINE TO PRINT THE RELIABILITY 553: REM RESULTS FOR ONE TIME STEP 554: 555: REM PRINT THE HEADING ON THE PAGE 556: 557: l 558: PRINT TAB (55),' MISSION TIME:'; TIME

559: 560: REM PRINT FAILURE RATE & RELIABILITY COMPONENT DATA 561: 562: GOSUB 7020 563: .564: 565: 566: REM PRINT SUBSYSTEM RELIABILITY DATA 567: 568: GOSUB 7030 569: 570: REM PRINT SYSTEM RELIABILITY 57.1: - 572 573:- GOSUB 7040 574: 575: FOR I = 1 TO 4 s' 576: PRINT 577: NEXT I 578: 579: PRINT DATE2$ 580: PRINT NEW.PAGES 581: 582: 583: RETURR 584: 585: 586* REM 4444444444444444444444444444444444444444444444444444 587: ~ 588: 7020 REM SUBROUTINE TO PRINT THE COMPONENT' RELIABILITY DATA 589: 590: PRINT 591: PRINT TAB (20);" COMPONENT RELIABILITY DATA TABLE' 592: PRINT: PRINT 593. 7 594: PRINT '================================================';- 595: PRINT "=====================* 596: PRINT TAB (T3);" FAILURE'iTAB(T4);' RELIABILITY' 597: PRINT TAB (10);" SUBSYSTEM COMPONENT'iTAB(T3);' RATE PER"; 598: PRINT TAB (T4);'FOR *; TIME;* HRS' 599: PRINT TAB (T3);'MILLION HRS' 600: PRINT "--==-- - =-------------------- 601: PRINT "---- --------- ,602: PRINT 603: PRINT ' INITIATING CHANNEL FOR*; TAB (T3);L.11; TAB (T4);P.11 '604: PRINT 'FBEVAS, CREFAS, CPIAS' 605: PRINT 606: PRINT ' ACTUATING CHANNEL & RELAYS *; 607: PRINT TAB (T3);L.13; TAB (T4);P.13 608: PRINT 'FOR PBEVAS, CREVAS, CPIAS' 609: PRINT 610: PRINT "AC POWER SOURCE"; TAB (T3);L.S1; TAB (T4);P.S1 611: PRINT 612: PRINT "DC POWER SOURCE *; TAB (T3);L.S2iTAB(T4);P.S2 613: PRINT l 614: PRINT "AC TO DC POWER SUPPLY"iTAB(T3);L.S3; TAB (T4);P.S3 l l l 7

l ~ \\- 3, -- ", ' ~ 615: PRINT 616: PRINT 'DC TO DC POWER SUPPLY'iTAB(T3);L.S4; TAB (T4);P.S4 617: PRINT 618* PRINT ' INITIATING CHANNEL FOR CREVIAS'i 619: PRINT TAB (T3);L.11A; TAB (T4);P.11A 620: PRINT 621: PRINT ' ACTUATING CHANNEL FOR CREVIAS'; 622: PRINT TAB (T3);L.13AiTAB(T4);P.13A 623: PRINT 624: PRINT ' LOP /LS MODULE' 625: PRINT A. TRIP SECTION'; TAB (T3);L.A; TAB (T4);P.A 626: PRINT B. 2/4 AND OUTPUT'; TAB (T3);L.24; TAB (T4);P.24XP.AD 627: PRINT 6283 PRINT 'DGSS'; TAB (T3);L.ADiTAB(T4);P.DA 629: PRINT 630:' PRINT 'ESF LOAD SEQUENCER'7 TAB (T3f;L.QiTAB(T4);P.Q ^ 631: PRINT "----------------------------------------------- "; 632:~ PRINT "---------- 633: 634: 635: RETURN 636: 637 ~ 638: 639: REM 4444444444444444444444444444444444444444444444444444

640, 641: ~ 7030 REM SUBROUTINE TO PRINT THf' SUBSYSTEM RELIABILfTY DATA

'642: 643: PRINT ~ 644: PRINT TAB (15);' RELIABILITY BY SUBSYSTEM

  • 645:

PRINT TAB (15);*----------- 646: PRINT 647: PRINT TAB (T1),' SUBSYSTEM'; TAB (T2);" RELIA'BILITY' 648: PRINT 649: PRINT TAB (T1);' POWER SUPPLY"; TAB (T2);P.SA 650: FOR I = 1 TO IN.NUM r 651: PRINT TAB (T1);SUB.SYS$(I)iTAB(T2);P.SO.GI(I) 652: NEXT I 653: 654: RETURN 655: 656: ~~ 657 REM 4444444444444444444444444444444444444444944444444444 658: 659: 7040 REM SUBROUTINE TO PRINT THE SYSTEM RELIABILITY FOR 660: REM THE CURRENT MISSION TIME '661: 662: PRINT 663: PRINT " TOTAL SYSTEM RELIABILITY FOR *iTIME; 664: PRINT ' HOUR MISSION TIME: 665: RETURN ~ 'iP. SYSTEM 666: 667: 668: REMt#44444444444t#4444444444444444444444444444444444444-669: 670:

- s 671: END 0 ERRORS DETECTED 4 1 e -6 O 4 e m 9 6" .j h ,e9 e [ p D O g. i I t .-}}