ML20083J604

From kanterella
Jump to navigation Jump to search
Forwards Responses to Geosciences Branch Requests for Addl Info 230.3,230.6,230.7,230.8 & 230.10 & SER Outstanding Issue 3 Re Seismology/Geology.W/Two Oversize Figures. Aperture Cards Are Available in PDR
ML20083J604
Person / Time
Site: Seabrook  NextEra Energy icon.png
Issue date: 01/05/1984
From: Devincentis J
PUBLIC SERVICE CO. OF NEW HAMPSHIRE, YANKEE ATOMIC ELECTRIC CO.
To: Knighton G
Office of Nuclear Reactor Regulation
References
SBN-609, NUDOCS 8401100207
Download: ML20083J604 (72)


Text

{{#Wiki_filter:- __________ l PLJEBLIC SERVICE SEABM STAM L.,,:..::.' ONice: Companyof New Hempehre 1671 WorcesW Road Framingham, Massachusetts 01701 (617) - 872-8100 January 5, 1984 SBN-609 T.F. B7.1.2 United States Nuclear Regulatory Commission Washington, D. C. 20555 Attention: Mr. Coorge W. Knighton, Chief Licensing Branch No. 3 Division of Licensing

References:

(a) Construction Permits CPPR-135 and CPPR-136, Docket Nos. 50-443 and 50-444 (b) PSNH Letter, dated August 25, 1983, "New Hampshire and New Brunswick 1982 Seismic Events; Seismological and Geological Studies", J. DeVincentis to G. W. Knighton (c) USNRC Letter, dated February 12, 1983, " Request for Additional Information", F. J. Miraglia to W. C. Tallman

Subject:

Response to 230 Series RAIs; (Geosciences Branch)

Dear Sir:

In the referenced letter, we submitted a report prepared by Weston Geophysical Corporation entitled " Seismological and Geological Studies, Miramichi Area, New Brunswick, and Central New Hampshire". It was indicated that the report was responsive to the applicable Requests for Additional Information (230.6, 230.7, 230.8, and 230.10) which were forwarded to PSNH in Reference (c) and the Safety Evaluation Report (Outstanding Issue No. 3). In actuality, the report was only responsive to portions of RAIs 230.7 and 230.8. To complete our response to the 230 Series RAIs and the Safety Evaluation Report Outstanding Issue, we have enclosed three copies of our responses to the following RAIs: 230.3, 230.6, 230.7, 230.8, and 230.10. The respones to RAIs 230.3 and 230.6 make reference to an Appendix F in the Seabrook PRA Study. It is expected that the PRA, which is currently being printed, will be submitted for staf f use not later than January 31, 1984 l l 8401100207 840105 PDR ADOCK 05000443 / PDR pl E /y a \\

United States Nuclear Regulatory Commission January 5,1984 Attention: Mr. George W. Knighton, Chief Page 2 The enclosed responses will be incorporated in a future OL Application Amendment. Please note that under separate cover, we are formally withdrawing the proprietary status which was afforded the Weston Geophysical Report discussed above. Very truly yours, YANKEE ATOMIC ELECTRIC COMPANY p.) !ohnDeVincentis J v Project Manager Enclosure cc: Atomic Safety and Licensing Board Service List l r l r

William S. Jordan, III, Esquire Brentwood Board of Selectmen Harmon & Weiss RED Dalton Road 1725 I Street, N.W. Suite 506 Brentwood, New Hampshire 03833 Washington, DC 20006 Roy P. Lessy, Jr., Esquire Office of the Executive Legal Director Edward F. Peany U.S. Nuclear Regulatory Commission Designated Representative of Washington, DC 20555 the Town of Rye 155 Washington Road Robert A. Backus, Esquire Rye, NH 03870 116 Lowell Street P.O. Box 516 Calvin A. Canney Mancehster, NH 03105 City Manager City Hall Philip-Ahrens, Esquire 126 Daniel Street Assistant Attorney General Portsmouth, NH 03801 Department of the Attorney General -Augusta, ME 04333 Dana Bisbee, Esquire Assistant Attorney General Mr. John B. Tanzer Office of the Attorney Ceneral Designated Representative of 208 State House Annex the Town of Hampton Concord, NH 03842 5 Morningside Drive Hampton, NH 03842 Anne Verge, Chairperson Board of Selectmen 'Roberta C. Pevear Town Hall Designated Representative of South Hampton, NH 03842 the Town of Hampton Falls Drinkwater Road Patrick J. McKeon Hampton Falls, NH 03844 Selectmen's Office 10 Central Road Mrs. Sandra Gavutis Rye, NH 03870 Designated Representative of the Town of Kensington Carole F. Kagan, Esq. RFD 1 Atomic Safety and Licensing Board Panel East Kingston, NH 03827 U.S. Naclear Regulatory Commission " ~ Jo Ann Shotwell, Esquire Assistant Attorney General Mr. Angie Machiros Environmental Protection Bureau-Chairman of the Board of Selectmen Department of the Attorney General Town of Newbury One Ashburton Place, 19th Floor Newbury, MA 01950 Boston, MA 02108 Town Manager's Office Senator Gordon.J. Humphrey Town Hall - Friend Street U.S. Senate Amesbury, Ma. 01913 Washington, DC 20510 (Attn: Tom Burack) Senator Gordon J. Humphrey 1 Pillsbury Street Diana P. Randall Concord, NH 03301 70 Collins Street (Attn: Herb Boynton) SEabrook, NH 03874 Richard E. Sullivan, Mayor Donald E. Chick City Hall Town Manager Newburyport, FUL 01950 Town of Exeter

10. Front Street Exeter, NH 03833

t Question 230.3 The probability of exceeding the OBE during the operating life of the plant should be discussed. Response 230.3 The probability of exceeding the OBE during the operating life of the plant is estimated from the fractile seismic hazard curves (Figure 20) determined in the report on " Seismic Hazard at Seabrook Nuclear Station", (Dames and Moore. 1983, Appendix F to Seabrook PRA Study). The median annual frequency of exceeding the OBE peak ground acceleration (0.125g) is 5.25 x 10-*: this annual frequency is equivalent to a probability of.0259 for exceedance of the OBE acceleration during an assumed 50 year operating life span of the Seabrook plant. Uncertainty on this median estimate is illustrated by levels of the 84th and 16th percentile seismic hazard curves. The 84th percentile annual frequency of exceeding the OBE is 1.45 x 10-8 and the 16th percentile estimate is 2.00 x 10-*. These plus and minus one standard error bounds on the median seismic hazard estimate correspond to probabilities of exceeding the OBE during the plant operating life of.07 and .01, respectively. t Weston Geophysical

~ Ouestion 230.6 Re: Your response to Question 230.3 on the probability of Provide exceeding the OBE during the operating life of the plant. the input parameters chosen for the McGuire (1976) seismic hazard program and discuss the sensitivity of the results upon the uncer-tainties in the parameters. Discuss the effect of the Franklin, New Hampshire event of Jan. 18, 1982 and other recent event supon the calculated probability of exceeding the OBE. Response 230,6 The report entitled " Seismic Hazard at Seabrook Nuclear Station" is included as Appendix F to the Seabrook PRA Study. This hazard study describes all input seismicity and ground motion parameters. Various sensitivities are examined in this referenced study. The New Brunswick and New Hampshire earthquakes of January 1982 were included in tae seismic hazard analysis, therefore, hazard curves accommodate the occurrence of these recent earthquakes. P Weston Geophysical

Question 230.7 Update your historical record of regional earthquakes up to and including, at least, the time of occurrence of the Franklin, New Hampshire event of January 18, 1982. Discuss the correlation of this and other recent events with geologic structure or tectonic provinces and their significance with respect to the OBE and SSE. Discuss the effect of any strong motion data obtained from the New Hampshire event and other recent events upon empirical strong motion relationships used in determining the OBE and SSE. Response 230.7 To answer this

question, the Public Service Company of New Hampshire sponsored with other New England utilities a

substantial program of studies related to the January 1982, New Hampshire seismic activity. The report entitled " Seismological and Geological

Studies, Miramachi
Area, New Brunswick and Central New Hampshire",

prepared by Weston Geophysical Corporation, was filed with the NRC on August 25, 1983, as a proprietary document. Important data and conclusions are abstracted for this condensed response. This question contains three specific requests: (1) an update of the earthquake catalog; (2) a discussion of the correlation of the January 1982 New Hampshire event with geologic structure or tectonic provinces; (3) a discussion of the strong motion data from the same event as affecting the OBE and SSE. 1. Updated and Expanded Earthquake Catalog Table 230.7-1 presents an updated and revised earthquake catalog intended to replace Table 2.5-5 of the SB FSAR. The corresponding Figure 230.7-1 updates and complements Figure 2.5-30 of the FSAR. The present catalog includes as many 1982 events as presently available (September 1, 1983), using preliminary solutions for the most recent years for which final catalogs have not yet been published by the national agencies of the United States and Canada. The update includes data from the last

Bulletin, No.

24, of the Northeastern United States Seismic Network (NEUSSN) covering the third quarter of 1981; from the Monthly Listings of the Preliminary Determination of Epicenters (PDE) of the United States Department of the Interior for 1981 and 1982; abd from the National Summary Bulletins of the Earth Fnysics Branch of Canada up to the end of 1982. The areal coverage of the present catalog and map has been expanded from that of the original FSAR in order to provide a basis for answering Question 230.8 on the New Brunswick Weston Geophysical I. m mu sa

_ _ _ _ _ _ _ _ _ _ _ recent seismic activity. Magnitude and intensity thresholds are the same, i.e., magnitude greater than 3.0 and intensity (MM) greater than III. The catalog format has been improved as to include epicentral distance to the site for all

events, and Mc (c for coda or duration) magnitude values.

Three symbols have been used in Figure 230.7-1 to plot all events of Table 230.7-1. All events have been plotted according to observed or inferred ablg. This is done for sake of consistency with hazard studies for which b-value determination requires that all events be sorted and counted according to

size, magnitude or intensity.

Unrotated squares represent observed

ablg, Mc, and post-1967 ML values.

All 10' rotated squares represent pre-1968 ML values converted to mblg using ablg = -0.68 + 1.03 M ; (1) L 45' rotated squares represent epicentral intensity (MM) converted to ablg using ablg = 0.44 + 0.67 Io, (2) following Klirakiewicz in both

cases, as in a

Weston Geophysical Corporation (1982) study. 2. Correlation With Geologic Structure or Tectonic Provinces 4.7) in the The January 19, 1982 (U.T.) event (ab = central New Hampshire area falls along a pre-existing north-northeast trending alignment of both instrumental and historical seismicity, as shown on Figure 230.7-2. Included within this alignment are the 1940 events (ab = 5.5) which are spatially asssocited with the Mesozoic ossipee intrusive complex. This association is fully discussed in the Boston Edison Co. Pilgrim Unit II Docket, (1976) and the Seabrook FSAR (1982). The Franklin event of January 1982 is approximately 41 km southwest of the relocated 1940 events and approximately 35 km southwest of the Ossipee complex. The immediate area of the January 19, 1982 event is ' underlain by metamorphic rocks of the Devonian Littleton Formation. No large scale through-going structures nor plutons have been recognized in the immediate epicentral

area, on' the basis of the current available 15 minute mapping.
However, some recent bedrock mappinq on a

localized

scale, remote sensing
analysis, and inter-pretation of existing geophysical data in conjunction with graduate studies in the area have added to the data base.

The above data, including the epicentral pattern, reveals a spatial correlation to a north-northeast trending set of Weston Geophysical remote sensing lineaments. Locally, this trend corresponds Jurassic faulting based on the mapped occurrence of to post faulted diabase. Also, the same trend is intersected by either northwest or east-northeast trending magnetic and remote sensing lineaments. This conjunction of structural

elements, geophysical anomalies, and Mesozoic igneous
activity, apparently combine to produce the present day seismic release.

This seismic release seems to occur along the entire length of the lineament zone with the larger earthquakes most likely occurring at the locations of major asperities or fault

barriers, e.g.

the larger 1940 5.5) wcre indeed in close proximity of earthquakes (ab = the Ossipee Pluton. While geologic and geophysical data do not provide a one-to-one correlation of individual epicenters to bedrock structures, a reasonable correlation .of the Franklin and other seismic events exists to a recognizable geologic setting. Within this framework of a tectonic structure association, the occurrence of the smaller magnitude January 1982 event in central New Hampshire does not affect the earthquake potential at the Seabrook site, as assessed for design

VII, purposes.

The Ossipee earthquakes of

1940, Io

= 5.5, were used to evaluate the potential at the site ab = from that structure. 3. Discussion of the strong motion data from the January 19, 1982 (U.T.) event: their effect on the OBE and SSE determination. 47 The New Hampshire event of January 19, 1982, ab triggered some SMA-1 acclerographs owned by the U.S. Army Corps of Engineers. Twelve accelerograms were collected for a total of 36 components. Chang (1983), Table 230.7-2 gives location information and lists the values of -corrected acceleration, velocity and displacement. By examining the acceleration values listed, it is clear that the concern originally manifested about the New Hampshire data set was undoubtedly founded on the apparently high accelerations (0.15 to 0.59) recorded at the three Franklin Falls Dam sites; at the nine other sites acceleration values were all less than.05g. The significance of the Franklin Falls Dam data was investigated carefully. First, it was found that Franklin Falls Dam should be regarded as located in the very near field. The current location of the main shock obtained from only permanent station data carries an uncertainty of 1 2 km. This means that the estimated epicentral distance (5 km) could be as small as 3 km. This becomes a very conservative case to estimate ground motion "at the site". Weston Geophysical --__-------____________a

__ Assuming fault dimensions of about 2 Km by 2 Km, according to Nuttli's (1983) relationship, a shallow depth of 3 Km (Pulli, et a). 1983), and a fault plane orientation N20E (ibid), the Franklin Falls sites could be very close indeed to the rupture. This orientation and this proximity may well explain why the motion on all transverse components at the three sites is so much larger than the longitudinal components. Refraction surveys and geological inspection were carried out at Franklin Falls. In particular, the right abutment

site, where the highest value was
recorded, has been carefully investigated by Weston Geophysical geologists; they concluded that the instrument shelter was not on solid rock, as reported by the U.S.

Army Corps of Engineers, but on loose rock fill emplaced during the dam construction; this is confirmed by the results of a refraction survey immediately adjacent to the shelter. The instrument concrete pad is founded on a lO-foot boulder. The ground motion recorded on such foundation conditions is subject to spurious amplification, not characteristic of the true earthquake ground motion. The second site at the crest of the earth-filled dam may serve a role for engineering study of dam behavior but it is not suitable for defining design ground motion on rock. Finally, seismic refraction surveys conducted at the third

site,

" downstream", have revealed dry alluvial material underlain by water saturated alluvium, down to the bedrock at a depth of 100 feet below ground surface. Again, this is not comparable to the Seabrook rock site. The nine other strong motion sites were located at epicentral distances between 61 and 105 km, and thus not appropriate for consideration "at the Seabrook site". Four of these sites are at the crest of dams, and five others are on dam abutments or d owns t r eata. Regardless of foundation conditions, the observed values at these nine sites are in agreement with values predicted by three current attenuation models, as shown on Figures 230.7-3 for acceleration and 230.7-4 for velocity, particularly if one standard deviation is added. Consequently, the New Hampshire strong motion data set is not applicable, and particularly the data from Franklin Falls, where the foundation conditions differ from those at the Seabrook plant. The last part of Question 230.7 implicitly refers to the Trifunac and Brady (1975) relationship between intensity and acceleration. The relationship was established by " approximating the average trends of the data" available at the time at the Earthquake Engineering Research Laboratory Weston Geophysical

, of the California Institute of Technology (C.I.T.). This data base contained 187 three-component records. The accelerograms were obtained on various soil conditions and at various epicentral distances; this information can be found in Chang (1978). Most of the data (175 records) is distributed between intensities V, VI and VII. A linear regression on the seven means, for intensities III, IV, V, VI, VII, VIII, X, predicts about.25g (horizontal) for an intensity VIII, while a regression on all the data set would predict.236g only. If the New Hampshire data (6 horizontal accelerations at Franklin Falls Dam) is pooled with the C.I.T. data,and Io (epicentral intensity) estimated at V (MM), the acceleration predicted for the SSE, i.e., VIII (MM) is only .221g. Table 230.7-3 gives regression coefficients of various sensitivity tests and the predicted acceleration values for SSE with Io = VIII. These sensitivity tests consist of different conbinations of the New Hampshire data and - New Brunswick data with the original CIT data. The applicant does not propose or support this pooling of the data, because of its heterogeneity. In summary, the strong motion data from the New Hampshire event does not affect the SSE (and OBE) chosen for the Seabrook design. a Weston Geophysical j

_ _ _ _ - _ REFERENCES Boston Edison Company, 1976, Geological investigations: Prepared for the U.S._ Nuclear Regulatory Commission, Pilgrim Unit 2, Plymouth, Massachusetts, N.R.C. Docket no. 50-471, BE-SG 7603. Chang,.F. K., 1978, State of the art for assessing earthquake hazards in the United States - Catalogue of strong motion earthquake records, western United States, 1933-1971: U.S. Army Engineers Waterways Experiment Station, Miscellaneous Paper S-73-1, Report 9, v. 1, 13 p. Chang, F. K., 1983, Analysis of Strong Motion Data from the New Hampshire Earthquake of 18 January 1982; NUREG-CR-3327, prepared for U.S. N.R.C. Hasegawa, H. S., Basham, P. W., and Berry, M. J.,

1981, Attenuation relations for strong seismic ground motion in Canada:

Bulletin of the seismological Society of America,

v. 71, no.

6, p. 1943-1962.

Nuttli, O. W.,

1983, Average seismic source - parameter relations for mid-plate earthquakes: Bulletin-of the Seismological Society of America, v. 73, no. 2, p. 519-535.

Nuttli, O. W.,

Herrmann, R. B., 1981, Consequences of earthquakes in the Mississippi Valley: American Society of Civil Engineers, Preprint 81-519. Public Service Company of New Hampshire, 1982, Seabrook final safety analysis report: Prepared for the U.S. Nuclear Regulatory Commission, Docket no. 50-443. Pulli, J. J.,

Nabelek, J.

L., and Sauber, J. M., 1983, Source parameters of the January 19,

1982, Gaza, New Hampshire earthquake; abstract of the 55th meeting of the Eastern Section of the Seismological Society of America.

Trifunac, M. D., and Brady. A. G., 1975. On the correlation of seismic intensity scales with the peaks of recorded strong ground motion: Bulletin of the Seismological Society of America,'v, 65, no. 1, p. 139-162. Weston Geophysical Corporation, 1982, Estimation of seismicity parameters for New England: Prepared for Yankee Atomic Electric Company, 41 p. Weston Geophysical Corporation, 1983, Seismological and geological studies, Miramichi area, New Brunswick and central New Hampshire: Prepared for Maine Yankee Atomic Power

Company, Public Service Company of New Hampshire, Vermont Nuclear Power Corporation, and Yankee Atomic Electric Company, 233 p.

Wes:on Geophysical

TABLE 230.7-1 U2DS7f0 AND R?visio TadLi 2.5-5 08 TME SEA 8403K STA?IGN FSA7 LA7ITUCS 40.0N TG 49.ON L ONGi f u0f 64.0W 10 75.0W Ov! GIN 7tMS M7 PCCE114 A L LOC A 7 TON MAGNITUDF REF 0157 ANCE RFMARKS .TfA2 MO TA HR MN SEC LA7. LONG. Z(KM.) t(MM) MS PN ML MC (K1.3 1534 0 0 0 0 47.600N 70.103W - E SM 525 76 1639 6 11 20 0 47.650N 7).170W IX EP 530.70 1s43 6 11 13 0 42.200N 70.iOOW IV EH 11.70 1061 2 10 12 0 45.510N 73.000W VII EP 336.2T 1663 2 5 17 19 47.6004 70.103W X EP 525.76 1603 2 5 23 0 47.61CN 70.100W V EP 525.76 1563 2 6 15 0 47.eGCN 7 ).'101W VI TP 525.7% 1363 2 F 14 0 47.60CN 70.100W IV cP 525.76 1663 11 16 0 4 47.600N 73.101W IV EP 525.76 1364 0 0 0 J 47.600N 73.100W IV EP 525 76 1365 2 24 0 3 47.d10N 70.301W VIII TP 548.75 1$65 10 15 21 50

  • 6.820N 71.220W IV E7 436.74 166d 4 13 13 1 47.100N 70.503W VI EP 467.67 1s77 12 13 0 3 41.050N 73.530W IV WG 302.56 1545 2 19 0 3 42.7J0N 7J.A01W IV WG 22 47 l

1705 6 2F 0 0 42.350N 71.061W IV WG 63 4J 296037 SC.FN. ) l 1727 11 9 22 40 42.900N 70.600W WII WG 23.14 FA = 112F 11 9 23 35 42.P00N 70.503W IV WG 23 14 172F 11 10 2 15 42.8001 70.60nw IV WG 23.14 1727 11 14 17 3 42.AJON 7J.601h -V WG 23 14 FA = 7096 SC.KM. 112F 11 13 11 21 42.800N 70 601W IV WG 23.14 1F27 12 1 0 0 42.AODN 70.SC0W IV WG 23 14 1727 12 16 0 3 42.80CN 70.500W IV WG 21.14 172F 12 19 10 3 42.410N 73.501W tv WG 23 14 172 F 12 28 22 33 42.8304 70 601W IV 4G 23.14 1729 1 4 23 0 42.8 30 N 70.690W - V WG 23 14 1728 2

  • 21 30 42.800N 70 500W IV WG 23.14 1

1F28 2 8 6 31 42.400N 70.600W IV WG 23.1* 1729 2 11 15 33 42.8301 70.Ac3W WG 23 14 FA = 8495 SC.KM. 1723 ! 16 0 0 42.800N 70 400W IV WG 23.14 l 112. F 3 0 10 3

  • 2.510N 70.609W IV WG 23 1*

l 1728 8 2 3 15 42.810N 70.600W IV WG 23.14 172) 3 30 14 1 42.100N 71.500W IV WG 23.14 l 1 F21 8 6 0 3 41.4001 73.500W IV

f. P 2F5.19 1729 11 25 P O 42.?0CN 70.600W IV WG 23 14 l

1723 12 8 20 0 42.900N 70.600W IV WG 23.14 1F30 3 9 1 45 42.POCN 70.%01W IV WG 23.14 173) 4 21 20 J 42.900N T 3. 5 0 -) W IV WG 23.14 h E aF21 1 ! ? 19 0 42.A0CN FO.500W IV WG 23.14 1F31 1 22 24 3

  • 2.900N 70.640W IV WG 23.14 l

Oo O 'Ok I g O_

to as

  1. v og e

e e e e 4 e E E T E E E E E w as as as as as tg as e e e e e e e e O U O U U U U en tA en en a to to M O O 9e = *

  • 4 9%

O g* we O' O N O O 4 O O P* O O e4 4A O W* to O N nn N PJ ee O Gr e* es gn - N N 'W R R a e L 4 4 4 4 4 el 4 2 E E b E O3 o= O 4& taJ UM 4 M 4 4 M N O e @ @ @ P= O* e EP N se we @ 4 *st e @ N ** N se N M M 4 ee 9= 9= 4 O N @ 23 4 en M e ee ** *e se 4 to en O O O O M art 56 @ US 4 4 e *= g* en O en @ en g* e se ** e in e e M O se e e P= 0 4E e e e *

  • e *
  • e e e *
  • e o e e e e * * * *
  • e e e e * *
  • e e e e e e o e e M M M m O 4 N O O O O 4 P= O N st 4 4 ao @ O P= 0 4 4 ee es e M 8 t es en > tm O a= @ sie c* in as >

> as n Hw N @ N N GA 4 4 to en Wt en @ 4A > N @ M M F5 O O 4

  • 8 4 es P= ee O* @ 4 en 4 @ 4 N ed N P. O'* N O3 he M

M 4 M 4 4 N N en ** MM 4NN to N *e 4 to fr O O s't e ^ s4 D w@ O & O O EL O O O O O O A & Et R.&&&Ot.l*&OOOOOOO4&O&OOO&OOEL& = ta e' 3 w 3 3 us 3 3 3 3 21 w u. w w w we we 3 3 uJ 3 3 3 3 3 3 3 ass W 3 u' 3 3 3 u w 3 w "s M w er C-de O O I3 Q t= e= U ee w IL t.* U2 w g OJ W J DE o. en a se o eO F2 t) N e OE N

  • a wt E

La,J J W1 a si o E et es g et > e > > e.e > *e > > > > > > > e > > w.e e.e > > > > > > > *e.e =* > > > > > > > - e.e r M M""> M-- "-M ->Mmm-M-MM M M M DD-M " "m b 00 E - "me . e F l > 0 1 en O w I f B he 4 >e

  • aJ te*

MC E *** D D

  • C P.

to E F ** e= tg G p= eE w of UN 3333333333333333333333333333333333333333 CJ es u r O n o o e r~ re n a s o

  • =m c o o O r e O c c r= O c e'* *' o t' O O o n O D O e' rJ c o c O a,a e 0

O O O O rl* O N U C 0 O O O e O O O *l= @ O O O ** O O P= c e U O O O O O O O O P= 0 O l er JF ao @ @ +r5 O P f* M *** M M we to O e* to Pa N 4 to na P's (* e O 4 F M =O -O t. as E 8% p er om f* er as t e e e e o e e e e e e o e e e e e e e e e e e e e e e e e e e o e e e e o e e e c as O O ca es e 4 O m em e e O se ** n O 4 *e se N *s O #8 M O se e O M M M ** ** e e' es at* ^# (* M e n av J D P= P* P= P= F* F* P= P= P= P= P= Pm F* =D P= F* k P= F* P= F* P= to F* F* >= P= M F* Pm P= N @ @ Pm t P= 4 P= F= F W W 7 "7 7 2 2 7 F F F 2' F F := R W 7 F 2 2 2 F F F ** 2 F F F 2 7 F F 2 ** F F F F F u O O O O O O O O O O O G O O O O u o O O O O O O t.J O O O O U O O O O O O O D D O O e O > c 7 8'* O C O N *L O O 8"3 to 7 f* O O 9 e te O O O *= O O F* O *i5 O r* c O O O O o O M s':* O > es e to e e & to to k f= ** P= M== M se O *D e 4 en 4 ** O en O 4 O % en to = Cm as er p. en 4 N et @ TJ e * * * *

  • e
  • e e e * * *
  • e * *
  • e *
  • e
  • e * * * * * * * * *
  • e ****

i N tri ce N O ce N N ew N N N M trem se @ @ enseem75 F* N # s M M M en to N @ 4 4 N @== 4 *= Pm l 4444 P4444 44 44 44444 444P 44 444 44 4 44444 44444 U us M t O O O, tnO O 8'** O M O O O.O et O to..=#S O e'n O,O O te es O tre O t'* Pe F O C9r***8'ter C N F* h*P M M e 4 to 4 rE ~ .e -N~-M he P= "r @ N O O O f= 4 te.O. O 4 O O e O O t., in e M O to e. M M ** 0* O O se O P* O @ O O se O O t PS ~ - - - e. N e= ~ .e-- N - - es s.e ~ - ~ .z et es @ M O e 4 4 e e *J e a se o em en N N to @ @ c==to M e om et (* in to me en O M e M *= 0 4 O e.& se e4 ee Pd es se se ee se as se M ee N ee N se N N es es se me me e4 NN se N P= - e N s ee.e.- c ee N M 4 - c - -, e O O m e P= .. c P= o e - e Ne @ @ **e e as ue se ee w en se me se ce es se se .e e o h c1 E er me N 4 e= >= t 4 tre tA 46 *n om me 4 @ M 4 4 O ** se O =* tA ~ em O 4 =t*

  • em e se sat M 4 mm 8'* ee =e

- - ~ ~ ~ ~ P= ~ ~.0. ~@ ~=0.to. to.,ao O* eP. ~@* O O, O,,,O, O e,s. se ** *e== ** N,* N. N.e, N.e N. N M.',t 4 4 en en et GA en = M M M. M M as . = P= P e. e et s' et - P= P w eo se se se se se se se e6 ese ed amo se.as se =* se ame se se ame sue se se se sig ame ese ame se s e ce se se se es se se se me p= Weston Geophysical

l .n aC e e e o e e e e 2 E E E E KF F K en sna ut as as as mi si at at e e e o e e e e e U O O tr UU Le 98 te to en to en en ut to m P= 0 m N =0 te 96 96 O EF6 O* 5* O' O en te e M O O-O* m 0* N O m me 8* 4N em ee to m EK a W n N N W W H 4 en et e3 4 er et e EE et 2 L O3

    • O s-e ua 85 O *= #P >= N *= ch m m 3* e @ en e @ ee 4 >=*stinP=ee.=s 4 4 e si e e m e. 4 O #= cm N f= c **#

4 40 and $9 2 e O P= 4 Q 40 95 W O 4 se O N O en P= ee W W 05 O we O* in C* On O* f* m O em m nu P= 4 m ert M P= 4 s= O eE e e e o e e e e * * * * * *

  • e e o e e e o e e e e o e e o e e e o e e o e o e at p=

> as P= O O to N e US N e't M P===s O # r= N @ m os en 4 es ep ** N N M e* # 4 4 O @ C6 Ft m to== *e 4 O e4 w EP m M 4 o set ce P se 4 P= 4 *M 4 S* O 4 to e O P* ee es me P4 PS P=== O s* A N Ca *= 4 4 'S M th ** O 4.3 ee en en en NfetN mNmNes M N se et m N ee se me se N 4 N 4 N N N 4 es en m N N en ft O O at e O E O EL & & O O & O & & O EL & O & O & O O & S iL O EL & & O O O EL tb & O EL d'" et 4 T w 40 & fL & St an u' es.a w WJ to 30 3 us w w 3 w tsa 3 ins tan 3 w w 3 ans 3 taJ 3 3 w & w 3 ue & us 3 3 3 w us eas 2 w SJ ted C se O O K3 g > = = &J em E w as O W2 w g O O e6 I en me 31 f*** e e= en 2 me C eo 22 M N e OE Cy es as un d E ta,J es e' O E y o' e= es g >>>>>w>>>>w > > > > > w w w > > w > > > > > w> > > >>= m>e > s>e > > we 4 2 m se me we me ee se > me mis w eie > > om M > ese e=a I h OO E re me== ee f w

  • E f

9 nr O tur 1 0 w,e ese tas ' # e .s O 2a 3 O e C e-De E 2 ** > af et pa e5 w 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3.!t 3 4 V ee O c e o f* t' n n e O c 0 a n 0 0 0 :* O t'* O r= m e O O c O *'= c c n r'% O O 9= O O es t' O oJ G e= 0 O o= O t#5 O49 O O O O O O O O O O O O O m O O O O i:' O O O P9 3 O O O ee O O O O + 3 O w .8 e es eJ 2 e se e d n'P *= O ** N irt mp M M ri e **e*ee O n @ 4me et O O O A f* ee em S 4% O N

  • a se e' C' **

O es o e e e o e e e e e o e e e e e e e e e e e e e o e e e o e o e e e e e o e e e e a er eJ 4 cm m O NeP N M #6M M N O O @ #6 O d 4 Pb ** O es O se se e4 8* e m N

    • 'e O O ac N ** O

> > > P= =0 =0 P= P= P= =0 M M M P ** > >= @ @ 4, P= b *= @ W t= ** P= P= *= 3 P= 4 P= *= P= em P. P= > P= es 2 7 F F F 2 2 F F F F F 2 2 2 M 2 F 2 P 2 2 2 2 7 2 2 2 2 P 2 2 2 l* 2 2 F F 2 2* 2 w O O O O O O O O O O O D O O O O 0 0 0 0 0 O O O C 0 0 O O 0 C O O O O O O O ta o u sa P9 Or*Oe'OOPOeM O e C en to #* O C O c O O f* O O o O O O O 'T *^ O O r* O e e o ai O

  • L* @ ee a= O e O 4 en N af' ** to e N P* A 4 ts4 N C F O O O O O to >= m 4 in @ ee e* iA 4 P5 er a S

e= e o e e e e e o e e e e e e e e e o e o e o e o e e e o e e e o e e e o e o e e >4 44 4 en en ee ** E eJ e 9= P= N em Pe se @ 4 e se ei N ne m 4 ee O O 4 ee m N e4 4 4 N @ 4 4 Pt==== 4 4 4 4 4 4 at 4 4 444444444 4'O44444444 4 94 44444 4 444 O nas se em f" O O f* O f* M C* O O 6A O O ($ "9 O at' *#5 t' ' F O O O 7 O F9 O O P* O ** O O t* O O O ep 8'* r* 8"* EE m ee F* 4 s*44 m Nmm 4 m 4 se - - N o. O O 4 N N O Pt O O O N en me 8"1 ee O N m se M N O e C5 O O O M O O em. O O O as O P. 4 O O O.e -NNN- -e N o. D= St ~ s ee e ~N-~N r 2 e O =0 o O in ** Ps e* cm ei m O ** 4 se @ =p @ e ** O #= N n ** m o' *= *= O >=

    • =a O O O em et O ***
  • 0O se es se se N

Pt N N se N N se sue se se se se P1 N N se N r's se or u O n,e - 4 e* => - m - O - en e se ~. e et seer 4 C N - - N N ~ @ ~ m,o ~ ~ ~.a,o 4 0 me OE ee en ee me me me on a.e so we en es N N 4 4 te se i#n in an ten e.e o= *= e= > e ao e O m,m.4 m.*M.4 4,,,m 4 n,en @ @P=P=p.*=sua- **

4.., m,,.4 4 4. 4.,, e,.a.n.a.a

.,n o.,e* n. e o.a.n, a,.a., o N *** est P= em OON se 4 4, e. - - v e' .m.. 3 *..,, ~ * - ea,.= se se se me se se se se ed e4 se we s=0 e4 se se sue se se me se me ce se se se se ee se ee se ese se me we se sue se se se Weston Geophysical 9

TABLE 230.7-1 (Cont'd) USDat!D AND J'V15;D Ti3LE 2.5 ' C: fME SE28403K STA7!ON FSA LftI1UOf 4 0.014 70 49.0N L3NSITUOE 64.0W 70 75.0W 3RIGIN 7:Mi 17POCEN7 PAL LOCATION MAGNITUDE REF DIST ANCE REMARKS VEAR PO DA HR MN SEC LA7. LCNG. 2(KM.) I(MM) Mi MN ML MC (KM.) Idal 10 0 0 0 45.600N 73.701W V EP 376.69 1862 2 2 20 J &l.530N 72.50JW IV EP 236.74 1s63 6 7 21 31 44.5001 71.003W IV WG 240.43 1J64 4 20 18 15 46.90CN 71.20CW VI EP 445.51 1964 10 21 9 10 45.530N 73.000W IV EP 353.13 Id46 11 9 16 13 46.3001 71.20)W IV EP 414.41 146) 10 22 11 0 45.0001 (4.200W V! IP 440.10 1969 12 0 0 0 47.500N 79.500W W EP 512.09 1d7J 2 4 0 0 44.100N 61.303W TV EP 158.12 1370 31711 1 45.5301 6o.500W IV EP 451.99 1d70 10 20 16 33 47.43CN 73.5C1W IX EP 500.93 l 1470 10 26 0 0

47. 03N 70.500W IV EP 500.98 1670 12 24 1R 33 46.R30N 71.200W IV EP 434.41 1871 1 3 0 0 45.600N 74.500W V

EP 423.99 1971 1 9 0 0 47.530N 73.100W Y FP 514.72 lif t 2 16 0 0 47.500N 70.400W IV iP 512.56 lift 5 20 7 0 46.dOCN 71.200W IV EP 434.41 18#1 7 20 0 0 43.200N 71.530W IV WG 64.78 1972 1 1 23 54 47.5PON 70.iO3W VII EP 512.09 IJ72 7 11 5 25 4 0. '7 0 0 N 71.90;W V

  • H 330.52 FA =

259 SQ.KM. Id72 11 I S 14 0 43.200f4 71.500W - V WG 69.73 FA = 6008 SC.KM. 1873 4 25 19 0 44.800N 74.230W V EP 342.33 1d73 4 30 0 3 45.01CN 74.70CW IV EP 397.32 1e7) 9 30 11 50 45.52CN 73.200W IV Er 344.72 1s74 1 6 0 0 43.6309 71.201W IV iP 82.93 I life 1 25 12 1 42.600% !!.351h IV EP 52.79 15539 SC.KM. 1974 2272335 45.130N 67.290W -V WG 342.14 FA = 117, 11 24 0 0 42.7u09 70.90CW IV EP 22.50 te74 12 to 22 25 40.900H 73.401W VI iP 330.52 FA= 12950 SC.KN. 3600 SC.KN. 1s73 7 18 4 11 e l.9 3G;4 73.300W V WG 208.9) FA = 1175 12 1 0 0 42.900N 72.300W IV F2 118.51 1875 9 21 23 30 41.5301 71.290W - V WG 156.13 FA = 6604 SC.KM. 1d77 9 11 9 59 40.100N 74.90CW - V EH 444.20 FA = 777 SQ.KN. 213100 SC.K=. 1977 11 4 1 56 45.2001 71.100W VI EP 353.7) FA = 1873 2 5 11 20 40.030N 71.e00W V CP 405.50 1374 10 4 2 33 43.50C'4 74.0 COW V iP 303.01 FA = 1554 Sr.. K M. IJ7) E 11 0 ) 45.6001 71.s00W IV FP 371.92 g l h Ad77 10 25 22 11 42.9SCN 71.47)W IV WG 51.4d y 19s0 5 12 7 45 42.700N

71. 0'. 0 W

- V WG 25.32 FA = 4610 iC.K M. 3 1983 7 20 19 0 42.930N 71.470h IV WG 31.48 Oo O i U 5{$ l GL

TABLE 230.7-1 (Cont'd) L"C a7 *D AND R ivi5:D T a9LE 2.5-5 C8 7H8 StatJC3R 514711h F S A1 LA7t?UDE 40.0N 7G **.ON L7kGITU3E 64.0W 73 75.0W 041 GIN 11Pc

  • 7DCCEN1?AL LCCATI3N MAGNITUDE REF DI ST AhCE REMalES 75Ad MO 04 33 MN SEC Laf.

LCNG. Z(KM.) I(MM) MS MN ML PC (KM.) i 1883 9 6 5 33 .5.200N 71.800h IV Ep 349.24 1t20 11 28 13 30 47.45CN 73.501W IV EP 506.53 Idt1 11021 41 44.000N 73.30)W IV EP 140.31 FA= 5180 SC.RM. 1981 10 1 6 40 47.600N 70.203W IV IP 524.94 1321 10 6 5 1 43.2JON 71 550W IV !P e6.19 1382 4 17 0 1 43.200N 71.700W IV EP 76.93 19u2 12 19 17 24 +3.2)CN 71.*01W V WG 55.98 FA = 7692 SC.KN. 1982 12 31 21 53 45.UJ0N 67.001W W E' 387.19 FA = 207200 SC.KM. 1583 1 1 7 51 44.6001 67.700W IV

  • P 316.27 1583 2 4 20 5 43.6004 71.201W IV EP 82.93 1sP3 2 27 23 33 41.5004 71 101W W

WG 159.60 FA = 9194 SC.KM. 1%JJ 3 12 0 ) 45.13CN 74.501W IV EP 391.47 1484 1 18 7 0 43.2101 71.700W IV P 76.99 191300 SC.KM. Id34 8 to 19 7 40.60CN 74.000W VII EP 365.87 FA = 1884 8 11 0 9 40.60CN 74.003W - V WG 365.87 1364 11 12 0 1 43.2004 71 553W IV EP 66.17 1184 11 23 12 31 43.2004 71.70CW V WG 76.99 FA = 11007 SC.KM. lose 12 17 0 9 43.700N 71 500W IV EP 103.49 1985 6 0 15 1 45.100N 65 1Gnw IV EP 452.55 lee 6 1 5 19 10 42.900N 71.503W IV WG 53.17 1a86 1 17 17 14 42.770N 71.450W IV WG 51.19 1486 1 25 0 0 41.53GN 73.300W IV WG 244.23 13t6 8 12 0 0 46.000N 7 6. 00 0W IV EP 420.14 1436 9 5 0 0 41.5301 72.500W IV EP 206.74 13o7 3 11 0 0 47.50CN 70.500W IV EP 512.03 1s87 5 27 6 15 47.450N 70.500W W

  • P 506.53 1187 6 33 21 0 43.20C1 71.530W IV WG 64.74 1389 2 1 il 21 44.650N 7 0.10 ') W IV EP 203.69 1d83 4 11 5 31 47.410N 70.500W IV EP 506.53 1981 8 14 20 15 44.300'4 61.1RGW IV WG 170.14 1187 3 8 0 J 43.4501 71.580W IV 4G s$,33 Ild) 8 10 0 0 4 3. 410 N 71.720W IV WG 240.81 1391 3 1 19 10 43.2JON T1 600W v

WG 69.73 FA = 1100 7 50.K M. Id91 5 29 19 0 43 100N 71 300W IV EP 57.59 1972 12 11 11 32 44.330N 71.7C3W IV WG 170.15 1493 3 1 0 33 40.o004 74.003W V EP 365.67 1393 3 14 0 3 42.130N 72.650W IV WG 16C.60 c-k 1393 11 27 16 53 45.!00N 71.300W VII EP 349.14 1 y 1994 4 I2 O 1 41.600N 72.501W IV fP 118.45 a 1394 4 17 le 15 45.6001 73.309W IV !P 358.30 i O $u i O i 9.

ma m. rr r x x rrrr r r r =. =. =. =. <. =. u. w =

ao a o a uaun u u ee e e e e-ee e s .e O. O 4 e .00. 4 .N O O O COMM ee m em.mO @M e 4 e O-e OO M = e~ = 4 .O M MM a m .. a. E r EE E E b EEEE E E C3 M O. Ce.--~mmm.44~-m4--N-ON-e4ee .mm4NO.4--~-~ .c w um

a. x.
e. m.. M. e. @... D.

~ 4. m. m. O. ~. M. m. e. O. 4 4.. M. e ~ c. ~. c. c. e. N. e. m. c. e. e. e.. m. e n O@ OchPNem4CO 4eeNNammem04eNO40e4CebeeNMNO g> kg n ee w ( Seehkee>OcefE40@Nh 4NdeCheheWOremeTf4-9 Chm N 4 m st m M m m N m N N m m W N M mm nan N e c444 M44m 03 w O W O. .4 saan. c a s a u s a a s t o o n s o o o m a o o w o a o a o a o a a a s e a. w ds a. u m e we a. 3 sea w w 3 we w w w es W 3 w us 3 3 3 w p' 3 3 e 3 w 3 w 3 u* 2 w w ue *e 3 u = e u u w = c mn O E2 v y w r u.3 ua w a DJ I We.J DE 8 r w

e. O.

o 11

e. r m

~ m we 1 w J e to E y g > >> >>w> > w > > > > w > w > > > > > > > >w w> w> w> > w> > w> > w> > w> > > > > w> w w w - > > - 4 1 ar wp wmm.ew>ww www w w w n b

0. 0 r

i eO w we ,,, a r m. ao O o Op ME >w .r w .w u~ 333333333333333333333333333N333333333333 OJ O nocononnoornnrOOCLonceo~cnc cOconncoccDOr O C O O M e O J O O O.O O O d O O O O O O O O O C 3 O f u.C O O c c h T t c Q O w J.o .J r . e. e t. e e. @. w. w. m m. ae c. e. c. N O. h N. e v. e. O. e. m O. n e w c e c. N. e, 4 0. m M. eTN h O e n e m m m m es e 4 4 N N e w h C O N m N n e c o - O s* 9her4 4ec O M4p a wJ 4NNhNkkW >>@@h@bhkhk@MWMM@heMMMMMMNkkhk@M 3 >r rirrrrrrrrrrezrerrrrrrrrrrrrrrrr-rrrrrer w OOOOGOOOOOOOOOOOOOOwoOOOOOOOa4COOC00u000 u O e

  1. MCeemerOST NOOOeceOMOS7b'm-m@e>9MOOOMPOOO*eM. e. e. e. 4 0. m. *. W. e. b. O. s. 3 5 De am
4. N. N. O. P. e. c. c. e. >. 4 M. a.

. O. N. M. P. e. e. w k. rs N O e 4 4 d e e t m

  • 4 e 4 N - m N e= 4 m 4 m m m N m > N m_ d e e m e @ @ m e N 444 4 444 44444444444444444444 4444 44 4 94 4444 v

N O w e e n e n n e ~ 4 e e c e O e - e O n 4 C e m n e n e n n o n e n e e e n.e - e e wr rr M -N 4-MM me mm M 4-44 NNNr 4 O@c.me= WON 40m@emO@NeeOOOmOwONDO40NmmaswOm M . ~ N. ~ ~ m m ~-m ~ m x = weONoe*4eeeOdeem**emom > - ed e rd m e h w e e k w m e e d.N W M N N w. JO w NmNNNNN N Mmm f mNN mWM m N .w N N e m e O M m 9 e M e e a m 4 e O 4 m M e O m e O m e e O m e 4 m m N e 4 m ed e NO Oz .... e m t e c c e.c o - ~ ~ ~.... e - - - o c o e e,e e. e.e.e.e r e,,~e..e e. e e,e a,a O O O,O O O O O O O O O O O O O e - m m 4c.. ~~~~~~ c - ---e-------~~e--- M MHMM NHmMHmmn*@ MAHHHHMMAmmmmnnmmunnemmAnd w Weston Geophysical

e w g e e e e E E E E EE E E E Wm M g m. M. w u u e O e e W e e U U U UU U U u e e e ed e e e o P o ~o ~ e e o e N ~N ~ o o e F ~ M. m o m N O o e Pes e w N N e N 4e N N N 5 W M N e 4 W W WW 4 4 W X EE E E c3 w o. WWe W P e m e ~ 4 + N 4 P pf m W - P @ M c N m 4 P e d m m m o P a m - m e 4 ~ ~ m * @ ~~ um P. M P M - N e @ m. N o. m. N 9 e e m m o M o d o e84. P. O. ~. e o m m. m 4 4. m o n P. ~. e E e o e e e e e e e e e e e e e o e o e e e e e 6 e e e o e Q WE We >W e-P4@PNNN~@em@eNkMm44c4ckm@@~ Nom 4 P a rd - o E A e3 4A v en r 3 N 4 N en e

  • W > 9 m es e as 4 egg m p3 sa e N o 4 4 m o N e 8-sr= N m ~ ~ es J m m e s 03 w

mNe m4NWmWWN N4NNWmNNeN4-MNe ( *s t N m ece c ~o o e e ^ me &&&O&&ECOEEOGE&EERE.&&u&&&Oh&&&&nn&&&n.aEOS T w@ E 3 3 W W e* ue see u Wu s u us 3 ese as' w w a us % unee aeu e a E 3 es e us us us 3 to u* w 3 3 w u = ee w M W W 'r C "13 O >~ U y w E u *S UE w o. e nd e I ed on e ~ N e ~ e eZ w Em O e o. e m e4 OE C N e m

  • a d E

Q d W alr e J K g O4 7 m >>>>>>>>>w>> >>>>>>>>>>>>w>>> >>>>>>>w>w>m E ww wwwwwww www ww w ww>wwww w wmm> w w H u o. t v. f m I w o w I we w us se au ze o n. op wE FM ~w WM GW 4 uw 23333333333333333333333333333331333333J3 oJ O e - o.o o e c o c e m e c o n o n o O c c o c c o n c e c a c n o n e c, o c o a us J. ooo.oooomooooooowooococco-coom, cooe

coo, O

en .J r m

  • P e. o. 4 0. T. N. ce 4.'e m d. e. ~. o.m e ~ 4. e 4. m e
  • F. f. o. e d.. O - o. d. e N ~

e e e e e. e . e O o N,. 4-~emommem rN-oe en~~o .em,4#~.*~~e*~~~~e*,ee-mN~~~~~~~~ Nmwmmem~m a Wa ~~~~~~~o-m~o*~ a ~ 2w u s r r r e u r z z r z r z z e r n e r u z e s r i r r.. e 7.~ r e 2 r r = = u ocooooooooooooooonoooooODopococcooococo. u e 7

d. m. &. N. u. e. o. e. m. o e. o m - o. ~. o s. o m. e. m... c, e eJ ~ e o m. N. e. 4. m.

. o. e c - ~ < w >e o m o e o Gr*'e.5 n e c o o m: coNSoSeccOOooonoo &~ e e e. e e e e e...... Es ~~N> mw~mecome44eNdemmemmmem44mm-memomdes 44 4444 4444 0 44444444444444 44444 4444 4 44 4 9 4 ... e e o m o unoo e e o w e o c400 e m P8 - v e - e e e n e m e - d e-F m e + c e e r. e c o m e c e m m e - e m e r. w., a. ~ n X E F e M F. w m m M M Fa m @ meNmWM M M 4 N N 4 4 P. p t w ~ - e m, o @ e < =.. c o N m e m. c - N e ~ e h e m o c e r e m o n e, N e. M,. = m ~m-N a m-~ m,.w-m E -~ z o c e N m e o m m o d e4 = m ~ c m a e N N e e m m w m e e m.* Juo-Neo-m we Q MNN m M -wwNNNN N NwNNamNed m m te m M .. u ro ecomNommmNNNNN~mN,4m~-N~.~.oemm-noe~meme or mm m -m m m oeo NmMM4 4 4 4 e e e 4 4 4 @ d @ ~ > * * * *

  • e3 F9.* ** as * *e *J 9 7 ' 9 **

ct

m. m. o m, m, m m m m m.. m m, m m M m m, m m m m. m m e m, m n N.. N N N, N r M. N. N. N.. N. 94

[ 4, 1 -nn n > -~ enn en~ -~ se - 7 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmme I Weston Geophysical i d T MTw s W

TABLE 230.7-1 (Cont'd) UPDATED AND R8 VISED 74PLE 2.5-5 OP THE SEAP4C3R 57AT11N FSAR LATITUDF 40.04 'O 49.ON L1kSITU3E 64.0W 70 75.0W I GRIGIN TIME MV70 CENT 4AL LOCATION MSGNITU3E R9F 0117ANCE 4EMA4K5 72AR 40 C A Nd MN SE C LA7. LONG. Z(KM.) f(NM) Mt MN PL PC (KM.) i 1 A25 3 1 4 31 42. 47.tJCN 70.130W VI EP 525.76 1925 3 1 5 25 21. 47.610N 70.100W - V EP 525.76 1925 3 1 7 25 10. 47 000N 70.10ew - V EP 525.76 a925 3 1 13 21 30. 47.000N 73 103W IV tr 525.74 1125 3 7 7 33 00. 47.6009 70.160W W EP 525.76 1925 3 9 0 0 42.910N 71.470W IV EP 50.83 J 1925 3 14 10 11 00. 47.600N 70.1 COW IV CP $25.76 1925 3 17 to ei 20. 47.60C4 70.100W IV EP 525.76 1725 3 18 13 15 22. 47.6009 70.h03W IV FP 525.76 1925 3 21 15 22 04 47.6109 70 103W VI EP 525.76 8598 SC.KM. 1625 4 26 7 56 41.7104 71 501W - V WG 133.25 FA = 1925 4 26 4 53 00. 47.6009 73.101W IV EP 525.76 i 1925 7 6 1 !) 04 47.60C4 70.103W IV SP 525.76 1925 7 27 2 20 00. 47.63CN 7 3.1C1W

  • IV EP 5Z5.76 1125 10 9 5 0 46.8204 71.220W IV EP 436.74 1925 10 91355 43.7309 71 100W v1 WG 91.29 FA =

17689 SC.KM. 1925 10 19 12 5 17. 47.0J09 71.001W V EP 4A6.30 1925 10 29 0 1 41.500N 72 451W IV EP 204.04 3211 SC.KM. 1725 11 to 13 4

  • 1.73DN 72.41JW W

WG 194.65 FA = 1725 11 15 6 23 OC 41.770N 72.703W IV EP 197.48 1925 1 4 0 0. 41.6304 71.903W IV EP 164.26 1926 1 26 23 40 40.000M fi.003W V EP 473.17 1926 1 27 0 1 44.130N 74.120W IV EP 308.20 1926 2 19 20 23 47.700N 78.JJ0W IV EP 533.72 1 192e 2 21 21 55 47.6004 73.100W IV EP 522.49 { 1s26 3 IS 21 1 42.8004 71.600W V WG 78.51 FA = 4791 SC.KM. 192o 5 12 3 30 40.9J09 73 903W V EP 336.71 FA= 389 SC.K4 112e 7 18 6 0 47.000M 71 501W IV EP 458.64 1926 8 23 0 0 45.2204 71.110W IV f? 325.26 4 1s26 4 25 21 ?1 44.910N 70.40JW IV SP 214.29 FA = 7769 SC.KM. 1326 9 21 11 31 48.0 JG 1 71.500W IV EP 567.60 1326 11 24 19 30 45.000M 67.500W IV EP 356.01 & #2 7 3 9 4 3 43.130N 71.400W - V WG 03.22 FA = 4791 SC.KM. 1927 3 30 0 0 41.s704 72.780W IV EP 209.77 1927 6 1 12 23 40.3004 74.000W VII EP 390.25 FA = 7769 SC.KN. 1s27 7 25 0 55 47.3J01 71.0C0W W EP 499.2s q: 1727 8 13 0 0 42.'909 71.100W IV FP 67.69 j k 1727 10 24 11 0 00. 44.730N 71.750W IV EP 309.59 1929 1 13 19 51 41.23CN 71.503W IV EP 139.70 o3 1924 1 21 5 31 45.330:4 61.301W IV EP 335.10 i G) 1 4O 4 U? O. i O i

TABLE 230.7-1 (Cont'd) UPDelfD AND o: VISED TA1Le 2.5-5 Oz 1HE staBRC0K S TA f!3N F 5at LATITUGE 40.01 TO 49.ON LON3ITUDE f4.0W 10 75.cW 3 RICIN T!MC 1TP0 CENTRAL LOCATION MAGNITUDE REF DISTANCE RE4 ARKS TEAR 710 D A HR M1 SEC LAT. LONG. 2(KM.) I(MM) 99 MN PL MC (KM.) 1923 1 27 0 3 48.000N 70.200W IV EP 561.21 1d28 2 8 9 1 4!.2004 67.00)W VI WG 305.10 FA = 1605 iC.KM. 31019 SC.aM. 1928 3 18 15 25 44.5004 74.330W - VI 4.1 EP 330.16 FA = & #23 3 22 13 31 45.39CN 69.009W IV EP 305 10 172d 3 21 0 0 45.30CN 69.000W IV FP 305.10 1923 4 25 23 33 44.5304 71.200h V WG 180.12 FA = 15410 SC.RM. 1828 4 21 22 f 43.200N 71.501W IV EP S2.70 1723 11 20 2 39 45.0004 67.2)JW IV EP 374.51 j 1929 2 5 19 1 44.000N 70.300W IV EP 130.15 1921 5 11 9 39 45.400N 71.900W IV EP 290.34 1930 1 4 14 3J 38. 46.730N 65 930W 4.5 fP 541.90 1130 2 to 6 15 43.40CN 71.701W IV EP 88.83 1930 3 19 0 15 43.300N 71.603W IV EP 75.65 1830 6 17 12 4 56. 45.7304 71.220W ?.6 EP 315.97 173J 7 13 4 52 39.3 47.510N 64.333W 3.1 EP 517.57 1930 12 13 23 11 23.7 47.650N 70.170W 3.5 EP 530.70 l r 1930 12 25 22

  • 34 47.630N 70.170W 4.5 EP 528.41 1731 1 9 0 11 36.5 47.6304 70.170W 5.4 EP 528.49 1931 1 2% 12 21 11.9 4 7.4 5CN 73.500W 1.4 EP 506.53 155400 SC.KM.

1831 4 20 19 54 43.470N 73.70?W WII 4.7 5.0 EP 238.49 FA = 1131 7 1 2 45 41.60C4 7?.400W IV EP 255.22 1931 8 7 0 0 .4.620N 65.770W IV EP 451.41 1931 11 t o 14 2 29.5 47.330N 71.170W 3.4 EP 495.34 1732 3 1 5 23 38.8 46.4FON 74.S70W 3.8 EP 499.12 1732 12 7 3 15 44.400N 74 100W IV EP 310.79 1433 1 17 5 39 41.6304 73.930W IV WG 141 12 1 33 1 21 16 4 39.5 45.340% 74.650W 3.9 EP 404.66 1933 1 25 2 0 40.2001 74.7G)W W EP 439.35 FA. 1554 SC.KM. 1333 2 25 9 43 32.7 47.4304 69.930W 3.4 8P 508.72 1933 10 23 0 0 43.01CN 7*.701W IV Em 314.45 1')34 1 30 10 10 41.2004 72.a00W IV EP 118.99 1934 3 17 0 0 43.500N 65.500W - IV EP 439.19 1936 4 15 2 59 13. 44.6T01 73.80)W - VI 6.5 EP 338.43 FA = 20720 SC.KM. 1734 8 2 14 59 42.6004 70.701W IV FP 35.39 I J34 8 2 to $1 42.7104 73.3 COW IV EP 99 52 1936 8 3 2 33 43 7101 70.300W IV EP 99.52 1935 1 28 6 1 44.ROO4 74.101W IV FP 3*8 69 1433 1 is 9 1 ?2. 44.P)01 7. 300W III 1.2 FP 348.69 hf E 1135 4 24 1 24 42.1FGN 70.220W IV EP 96.07 3 1936 3 27 0 41 23.4 47.3304 70.253W 4.S EP 474.70 o o !? i 1 O Q

TABLE 230.7-1(Cont'd) U#D475D AND R:VI5-C 74=LE 2.5-! C8 THE SEAB400K ST AT11N F S AJ L AT ITUP 40.44 71 44.ON LONG17U3E 64.0W 10 75.0W i 3RIGIN 7tPC HYDOCtNTPAL LOCATION MACNITUDE aEF 3157 AhCE REMARES 7 EAR MC 0 % HR MN SEC LA1. LCNG. ICEM.) I(NM) Mi MN ML MC (KM.) l 1502 50.E4. 1736 11 13 2 45 4 3. ! 5 0 ri 71.430W V WG 86.37 FA = 1736 !! 10 4 2 44.650N 71.673W IV EP 205.4s 1937 7 11 3 51 40.720N 73.710W IV iP 339.23 1937 7 27 9 10 41.630N 72.430W IV E* 176.25 1937 9 5 11 3 15. 41.5004 66.001W ?.5 EP 429.51 1937 9 30 7 Si 10. 45.470N 65.830W 5.0 EP 412.47 1927 11 12 14 43 44.3 45.920N 74.130h 3.5 EP 435.22 1937 11 12 16 57 32.5 45.970N 74.331W 3.7 EP 435.32 193J 6 15 5 7 43. 46.5001 65.800W - IV EP 512.82 1933 6 23 3 57 56. 42.620N 71.420W IV EP $6.09 1835 6 2 9 ! 30. 41.04074 71.70J% - IV EP !!0.84 9065 5 0.R M. 1933 8 22 7 43 44.7004 ti.300W - V 6.1 WG 259.28 FA = 12950 SC.KM. M3 = 2.4E21 37-CM. Is?3 8 23 3 3$ 34 40.10C1 74.530W W 3.9 4.6 EH 435.33 FA = 193$ 8 23 5 4 55. 40.250N 7=.250W 4.0 4.9 EP 408.02 MO = 2.6E21 07-CM. 1935 8 23 7 3 29. 40.250N 74.250W 3.7 4.6 EP 408.62 M3 = 2.8521 DT-CM. 1938 9 72319 18.9 45.87CN 74.100W 3.4 EP 461.63 1939 6 24 17 23 21. 47.d30N 73.333W 4.4 EP 549.05 1739 1J 1) 11 %) 58. 47.uGCN 73 000W VI 5.6 EP 548.75 1939 10 11 14e 12 16. 47.idON 73.900W ?.4 Ep 548.75 1929 10 11 18 37 22. 47.500N

71. 'f 0 0 W 3.5 EP 511.27 1 73) 10 21 8 7 13.d 47.500N 7J.123W 4.0 EP 511.39 133) 13 27 1 33 16.3 47.900N 73 001W 4.5
8. P 548.75 1939 11 7 2 41 32.

47.4u01 70.510W 4.1 EP 545.33 1 73 ) 12 8 1 17 47. 47.97CN 71.400W 3.5 EP 555.25 193# 12 25 to 23 13.4 6P.0301 7).50?W 4.1 EP $67.60 1740 1 23 23 11 51 41.630N 70.000W V 2.6 4.3 WG 141.02 FA = 6190 SC.KM. MJ= 1.3E23 DY-CM. 1343 3 2 4 15 36. 41.51CN 72.500W IV TP 206.74 184J 3 13 1 2i 41.50C4 72.503W IV EP 206.74 1940 3 28 11 4? 34.5 44.faCN f.9.90iw 1.4 NF 214.17 l ie f 4 13 2 11 34. 47.7104 73.73JW 1.9 EP 517.01 1 +40 5 16 to 0 17.1 45.80r1 73.?J1W ?.6 'P 3T2.87 1360 8 4 16 20 52. 66.2 ION 76.790W 3.1 8P 495.84 1940 9 11 1 4 55.4 47.000N 71.131W 3.5 EP 456.3J 796000 SC.KM. M3 = 9.C523 DY-CM. 114u 12 20 7 27 26 43.P72N 71 370W WII 5.5 DW 116.05 FA = I 1 #4 J 12 24 13 43 44 43.9081 71 20'W WII 5.5 1W 117.49 1.4521 01-04 ) 1940 12 23 5 ? 43. 43.1084 71.?33W 1.7 4.0 9W 117.4) M1 = l 840 12 27 19 55 19 4?.11*N

71. 2 31W 3.4
1. )

Ok 117.41 m.1 = 1.6E21 Jt-CM. q o 1)*1 4 4 e 11 4?.7 44.7 30N 73.923h 1.1 EP 320.03 l h 1141 9 33 to 21 25. .6.190N 67.1C3W 3.7 EP 426.01 i 3 1841 9 6 17 6 56.? 67.430N 70.500W 3.9 (P 504.23 O I n l O Ih I s l 5 9.

1 I TABLE 230.7-1 (Cont'd) UPCSTED ANC RivtsiD T49LE 2.5-5 05 THE SEABROOK STATION FSA% LATITUCE 40.04 TO 49.ON LONGITUDE 64.0W TO 75.0W 1 GRIGIN TIMi HY70 CENT 4AL LOCATION M4G4ItUDE REP DISTANCE REMARKS TEA 4 itC C4 HR M1 SE C LAT. LONG. Z(KP.) !(4M) M3 M4 PL PC (KM.) 1941 10 6 16.44 27.6 47.6301 73.7?OW 4.0 EP 525.89 1741 10 21 5 10 41. 44.770N 74.900W 3.3 EP 379.69 1#41 to 24 14 13 59.3 45.7C04 76.101W 1.6 EP 415.52 1742 2 15 7 55 12. 46.8304 74.770W 3.1 EP 535.46 1742 3 9 23 37 58. 44.130N 73.391W IV EP 147.93 1 A42 5 20 12 11 22.8 45.7704 74.570W 4.4 EP 441.10 1942 5 24 11 31 57. 44.73C4 73.111W 1.9 EP 314.47 1742 9 5 14 31 24.1 46.9704 71.500W 3.1 EP 455.33 1941 1 14 21 3? 38 45.3304 61.60"W V 4.3 WG 284.91 FA = 131002 50.K4 M3 = 9.4E21 GT-Cg. 1843 3 14 to 2 27.5 43.7101 71 571W 3.9 fP 106.50 1943 5 9 11 1 12.5

44. 7 7C N 73.333W

?.2 EP 317.31 1943 7 6 22 10 14.8 4 4. 9 2 0 r. 71.130W 4.1 EP 289.81 1743 9 25 5 5? 36.1 47.55CN 7J.65JW

1. 3 Ep 517.15 j

1943 92916 31 25.2 47.270N 73.4C1W 3.9 EP 487.06 1943 11 6 0 5 40.5 .7.3404 70.On0W 3.9 EP 501.66 i 1843 12 6 7 il 40. 47.6304 74.?70W 3.2 EP 617.74 1 A4 3 12 19 9 3 44. 44.60C1 69.50JW - IV EP 214.10 17*4 2 5 12 37 52.5 47.4301 71.40JW 4.0 EP 530.9d 1 34. 6 11518 OP.7 47.3JCN 70.281W 3.7 E8 491.16 1s44 6242341 36.5 46.0301 74.253W 3.7 EP 438.13 453250 SC.KM. M9 = 2.3E24 07-C4. 1944 9 5 4 21 45. 44.970N 74.901W VIII 5.9 9.9 EP 396.37 F4 = 1744 9 5 9 33 49. 4 4. 910 N 74.700W 3.* EP 398.99 1144 9 5 e 51 16. 44.9901 74.101W 4.6 EP 39P.99 I J44 9 5 10 f 4 51. 44.940N 76.103W 3.3 EP 318.98 1#44 9 9 21 ?4 4P. 44.930N 74.1c3W 4.1 EP 398.94 17 4 10 31 84225. 44.1104 7 4. 9 C '1W 4.9 FP 398.91 1744 12 14 3 11 41.6004 72.300W IV EP 216.20 1*45 6 11 11 24 06.9 47.130N 71.120W 4.7 EP 476.25 134 G 7 15 in 44 59. 44.9001 67.000W IV EP 390.81 ! )4 3 4 21 5 i it.! 44.7101 71.4*CW 1.5 iP 375.9* l it i 9 1 4 %) 41. 47.?30N 71.471W 31 EP 414.84 1 )* 6 9 1) 0 91 2P.e 47.7?JN 75.001W 1.2 EP 626.73 1946 9 26 21 1) P.2 46.41CN 72.150W 3.4 KP 405.72 1946 11 24 10 2) 47.2 65.1FON 74.%d1W 1.1 EP 317.41 194s 12 25 4 42 12 7 44.930N 74.901W 1.3 FP 314.09 1s47 1 4 le 51 14 41.0119 71.%#1W IV EP 307.14 g 1747 2 2 le !1 I?.3 .7.s7CM 71.i?1W 4.2 E8 530.d4 1 4 1347 3 29 12 2i 52.4 47.170% 71.?33W 4.0 EP 419.27 h 1947 10 22 9 3.

    • .?

47.5501

7) 72)W 3.1 t' P

$17.01 11'?4 ; C. F '. 3 1 A41 12 23 17 '4 20 4 ',. 2 0 0 N A1.2C1W W 4.1 hG 2f7.83 (1 = O v7I5' 9.

TABLE 230.7-1 (Cont'd) UP047fD AND PiVISEC Ta8LE 2.5-! 0F TME Sf48RC0K ST ATION F SAR L 4717'J C E 40.0% TO 49.ON L3NGT703E 64.0W 70 75.0W OPILIN flMt NYPCCEN74AL LOCATI3N MAGNITUSE RFF DI17AhCE REMARKS 7 tad 40 Da MR M1 SEC LAT. L O :4G. Z(KM.) f(MM) MS NN ML MC (KM.3 f 1745 1 1 18 il 45.3 47.110N 7 0. 4.s o w 4,9 Sp 493,5$ 1943 1 1 le 44 40. 47.3304 70.433W 3.2 SP 491.55 1745 1 6 20 45 51. 45.4004 51.280W IV 4.0 EP 304.93 l ie d 5 4 2 21 25. 41.399N 11.439W IV EP 157.21 l ie d 5 7 12 ! 26. 45.7501 71 130W 4.0 fP 386.70 1141 6 1 3 4 12.2 45.2304 73.373W 3.7 EP 354.46 1 14 J 7 7 7 39 01.4 65.110N 73.103h 3.5 EP 352.15 1944 11 13 16 49 16.6 40.70LN 70.300W 3.5 EP 424.64 1845 11 24 4 SS 47. 45.200N 69.20]W IV EP 237.83 1747 4 17 0 15 41.530N 71.500W IV TP 153.97 2.2527 OT-CM. 1349 10 3 2 23 47 64.dOON 70.5C1W V 4.5 4.0 WG 213.09 FA = 4519 5 SC.K M. M3 = 1 84 ) 10 16 21 31 42.3 6!.330H 74.130W W 4.2 FP 415.60 1s49 10 30 20 51 13.7 46.470N 72.120W 3.4 EP 409.42 1953 3.6 16 14 11.8 46.03C4 74.500W 4.3 EP 450.68 1850 3 29 to 43 02. 41.0501 73.50JW IV EP 306.85 175J 8 4 6 45 21. 47.330N 70.251W 3.2 EP 494.70 1153 8 4 14 2 '8 28.7 45.200N 74.720W 4.0 iP 401.93 1950 8 5 23 51 17.0 45.0F0N 74.750W 3.5 EP 395.09 1451 1 24 32' 41.510N 72.501W IV ?P 206.74 1951 3 31 3 53 37. 42.2001 72.200W IV EP 135.46 1951 6 10 17 20 17.9 41.5004 73.500d IV EP 164.44 !)51 7 25 0 22 51.5 47.200N

71. TOW 3.3 EP 479.75 1951 8 d 9 15 24.1 45.9404 74.67eW 3.3 EP 453.84 1 'v 51 9 3 21 24 24.5 41.2501 74.250W V

3.9 4.4 rP 335.77 FA = 14245 SC.KM. M1 = 1.4E21 DV-C4. I'#51 BC 25 7 F 52.e

  • S.2TG1 F4.731W 3.9 Ep 407.39 20720 50.KM.

1951 11 5 17 54 41.5 45.0904 7 3. 60 3W IV 3.7 US 321.32 F4 = 129 SC.KM. 1752 1 30 4 1 44.50c1 73.?03W VI WG 259.91 FA = 1,52 2 13 20 55 07 4(.3304 69.1BJW 3.3 EP 398.09 l 1952 2 26 0 55 SP. 46.s30N 71.203W 3.7 EP 436.55 l 1752 3 31 13 11 37. 47.R30N 61.? ROW 4.1 Ep 553.2% 1 1852 4 19 2 50 52.h 47.4704 70.3P1W 3.8 FP 508.45 l'#12 4 21 19 5 01.3 47.5004 73.683W 1.% EP 511.52 1852 8 25 o 7 63.000M 74.500W V iP 294.15 1752 10 9 21 40 61.T1CN 7. 010W V f* 211.96 l 1853 3 27 9 53 41.1001 72.50)W V WG 216.92 F4 = 1151 SC.rM. 7203 52.KM. I ! )S 3 3 31 12 51 14.3 4?.F001 76.ICOW W 4.0 WC 195.92 F4 = 1#53 4 26 1 71 44.7201 T !. 6f 'W IV '.7 CP 291.01 j$ 185 J S 11 6 13 17. 43.1461 ft.13)b IV 122.24 l o 1-85 3 h IT 4 2' 50. 41.000N 7*.300W IV 50 335.75 3 1 35, 2 T 20 24 16.

  • T.6J04 7J.250W 3.9 EP 5?4.58 O

oud R 9-

TABLE 230.7-1 (Cont'd) UDOA7fD AND 4:V!5ED 7AOLE 2.5-5 0F THE 1E48403E $7A713N F$At LATITUS? 40.0N TO 6 3.0N L3NG!7UDE.54.0h 10 75.0W ORIGIN 7!Mi 47PCCfN7DAL LOCATION MAGNITUO? REF DISTANCE REMA%K$ TfAR MO CA HP F:4 Sf C LA7. LCNG. ZCKM.) I C.4 R ) M5 MN PL MC (KM.) 1954 2 21 9 0 37. 47.67CN 70.520W 3.5 EP 530.56 A dS4 3 31 21 29 40.250N 74.001W IV EP 394.44 1754 4 21 15 45 44.720N 73.473W IV EP 292.23 1954 5 20 22 1 18. 44.970H 7*.200W IV 2.7 EP 354.00 11h4 6 33 7 41 17. 47.000% 70.123W 3.7 FP 459.37 a954 7 29 la 57 C6 42.7101 70.70)W V 4.0 WG 25.25 FA a 4092 SC.K4. 1954 12 13 3 53 52. 44.600t4 74.403W IV 3.6 SP 356.32 1955 1 21 8 40 42.970N 73.790W V EP 239.39 1955 2 1 12 41 27. 47.67CN 70.500W 4.0 EP 530.96 1955 2 1 20 49 46. 47.670N 70.50!W 1.2 EP 530.96 1355 2 3 2 30 44.5J01 73.2C)W V dG 259.91 1353 10 7 18 1 52. 45.2?CN 73.900W 3.5 EP 355.31 1756 1 33 9 43 13. 47.O s0 4 71.170W 3.T EP 462.01 1956 2 2 19 24 16. 45.430N 74.820W 3.1 EP 425.51 1956 7 27 1 34 44. 44.7901 75 740W 3.4 EP 30*.30 1957 2 20 15 45 44.9304 74.dG0W IV EP 374.60 1757 32319 2 40.730N 74.333W VI EP 415.91 802 $0.RM. 1757 4 24 0 41 59 44.40CN 72.009W V WG 110.88 FA a 1957 4 26 11 40 16 43.63C1 61.400W VI 4.7 WG 115.43 F4 s 82491 $C.EM. MO = 4.1E22 DV-C4 1937 8 4 12 41 SP. 46.5304 67.000W 1.7 EP 506.28 1757 8 6 21 Sn 16. 47.4300 70.420W 4.0 EP 510.24 1757 8 17 1 30 07. 46.73CN 70.120W 3.3 EP 429.63 1957 11 30 6 27 51. 45.02CN 74.770W IV 2.5 EP 3)3.10 1959 1 11 16 34 44.930N 74.dPSW IV CP 374.60 1956 3 23 22 4 17.

  • 5.5 5C4 67.129W 3.4 EP 418.91 1853 5 6 19 0

.2.6504 73 423W IV EP 244.71 175J 7 19 21 56 27. 46.700N 71 403W 1.2 EP 424.65 1753 C C 22 1% 03. 47.9301 73.181W 3.4 EP 550.36 1 A53 9 11 17 49 43.6004 73.2C1W V WG 94.04 1954 9 33 0 13 59. 45.licN 71.731W 1.7 iP 342.84 1154 11 21 23 39 43.970N 71 580W IV SP 136.70 l 1a53 12 23 23 14 16. 46.91CN e9.?21W ?.i rP 460.74 1957 4 13 21 23 19. 41.v20N 73.?74W 4."

P 227.01 1 75 )

4 I S 16 35 25. 4 7.12 G *4 73.130W 3.9 EP 470.89 1 85 ) a 22 3 52 10. 46.1501 70.7b3W ?.2 IP 45e.26 14eJ 2 5 0 44 02. 47.4104

70. te 3W 1.3
P 545.94 116J 4 23 11 47 12.

47.5301 71.10JW 4.J 'P 516 44 l @( s iel 1 Zi 9 41 39 66.210N f t.13 )W 3.9

P 410.13 O

1451 4 20 13 15 00. 4!.0 )0 N 7. 7 ROW V 2.0 8W 312.4% D 1 A61 8 22 19 5 's it. 6 7. 91C N 7J.509W 1.4 2P 493.21 Oo l O 'OE n-9_

TABLE 230.7-1 (Cont'd) U7047fp aNo RtVI5fD 748LE 2.5-5 C= THE SEAS 4C3R $fATI3N FSAA LA117999 40.CN 73 49.0N toWG17UDE 64.0W 10 75.0W 3RIGIN 71MI NTp0 CENTRAL L9C47104 MAGNI?U3f PEF O!$TANCE REMAPES '7tAA M0 CA HR MN SEC LA7. LCMG. Z(KM.) I(MM) M1 MN ML MC (KM.) 1 fel 9 27 1 30 44.9304 74.1!0W IV US 334.60 1901 12 to 1 43 35. 43.810N 67.920W 3.9 EP 266.41 1961 12 27 17 6 40.500N 74.759W W 4.3 ?P 419.93 1162 1 27 12 11 17. 45.920N 74.d51W 3.8 EP 462.77 1s62 1 31 14 31 38. 47.500N f7.130W 3.5 EP 518.71 1962 3 23 2 2 ?!. 47.1s0N 69.473W 3.1 EP 496.00 1962 3 25 5 15 05. 47.570N 65.J21W 4.0 EP 642.60 1762 4 10 14 30 48.1 44.1004 73.403W V 4.3 WG 245.70 FA = 52395 SC.KM. 1962 5 21 2 5 48. 45.170N 72.700W V 3.9 EP 311.96 1762 7 27 17 54 57. 47.250N 70.573W 3.9 EP 493.76 1762 6 11 3 5 16. 47.530N 71.05)W 3.6 fP 518.49 1962 10 2 18 45 52. 44.1004 74.300W IV PM 348.67 1162 12 29 6 11 to .2.9004 71.700W V 4.3 WG 70.43 1763 7 1 19 51 12. 42.5704 73.7!0W 3.3 iP 240.36 1363 8 26 16 29 15. 45.110N 73.959W 3.5 EP 354.95 1163 10 15 15 31 01.8 42.5J0N 73.dOOW W 3.9 4.2 WG 44.51 FA = 17793 $C.KN. M3 = 1.5E21 DV-CM. 1963 10 3J 17 15 57.9 42.700N 73.300W - V 2.4 5.0 WG 22.47 FA = 5905 5C.KM. M3 = 8.9E19 07-CM. 1"s63 12 4 21 32 34.9 43.600N 71.600W - V 3.7 WG 98.92 F4 = 2305 59.2M. 1#64 1 2J 18 57 55. 46.93CN 71.330W 4.0 EP 438.51 1764 3 29 4 15 4 4. 9 'J 0 4 74.90CW V 4.3 EP 394.09 1s64 4 1 11 21 34 43.AOCN 71.500W IV t.R US 94.13 1v64 6 16 13 1 44 45.0J0N 76.230W IV 2.7 EP 357.95 1964 6 26 11 4 46 43.300N 71.900W Y ?.6 3.6 WG 96.47 FA = 14996 $Q.M M. 1 A64 7 12 0 9 41. 46.720N 71.41CW 3.6 EP 426 94 1164 10 17 14 11 17. 47.670N 67.250W 3.1 ?P 6J0.59 1964 11 17 17 1 41.200N 73.700W V 4.3 EP 302.17 1805 3 1 2 22 08. 47.500N 71.250W 3.1 EP 112.32 1165 8 31 8 35 44. 46.000N 65.290W 1.2 CP 561.25 1 #n s 9 29 15 57 39.5 41.400N 7=.403W IV 3M 337.42 1965 to 24 17 45 41.3004 70.100W V 4.1 WG 198.11 a s6I 12 3 3 3 41.73GN 71.4G1h - V 4.1 WG 140.72 Fa= 1010 SC.KM. 186s 12 16 13 53 19. 47.410N 70.501W 4.1 En $49.39 196o 5 20 0 3 42. 44.2504 46.500W 1.1 EP 391.99 1960 6 25 0 1 51. 45.160N ?t.R30W 1.4 EP 346.70 li6s 7 40 20 4 29. 47.7504 70.000w 3.2 SP 5 3.23 j 1 )e $ 7 24 1 51 S P.. 44.5001 6 7. %t 0W W ?.5 U! 310.57 1765 9 23 20 11 15. 46.9?08 6%.2!0W 1.2 E9 628.34 l' hf 1964 10 23 23 1 34 43.0#0N 71.10?W - V t.1 WG 78.42 FA = 1505 SC.R M. 1701 "C.kM. y 1 #67 2 21341 39 41.4909 71.40"W V ?.4 WG 172.62 rA = i l 3 1767 4 24 12 ?! 32. 46.70CN 67.103W 14 IV ?.5 US 444.52 i o Uar o. l O

j/ s' q u TABLE 230.7-1 (Cont'd) Up047ED AND PEWISED TaaLE 2+5-5 08 fHE SEaga0ca 57Aff0N FSAR LA717ULE 40.04 10 41.04 L3NGITUDE 64.0W 70 75.9W l ORIGIN 3IMi HTPCCENT#AL LCCATION MAGNITUDE RfF DIS 74kCE GEMAtNS TEAR MO L A NR "1 SE C LA7. LCNG. Z(RM.) 1(NM) MS PN PL PC (AM.) 1767 5 15 22 4F f2. 42.33CN 67.#0?W ?.2 EP 102.44 ~ 176F 7 1 14 9 97 44.400N 69.900W IV 2.9 3.2 WE 163.51 MO = ?.3E20 D7-CM. 116F 7 1 15 33 12 44.4004 69.900W 3.2 WE 133.51 ~ 196F 7 15 55 59.2 44.310N 69.843W 3.3 WE 182.89 ~ 1 s6 F 7 1 16 i 40. 44.3 3C N 67.971W W 3.4 3.1 iP 142.51 M1 = 1.0E21 07-CM. 115 F F 1 16 11 1R.9 44.310N 64.=61W 1.5 WE 192.89 1967 9231627 55. 46.9304 70.701W 3.4 57 448.13 1036 SC.EM. 1867 11 22 22 11 41 230N 71.90)W y eM 318.65 FA = 1763 3301529 59. 47.940N 70.490W 19 S.1 cP 560.99 1968 4 11 9 19 33. 47.6n0N 70.*43W 19 3.5 EP 523.45 l 1968 5 27 19 21 56. 46.93c1 66 660W 13 1.1 EP 554.07 i 146d 7 24 23 to 37. 47.On0N 71.30)W 14 11 EP 438.26 1964 9231531 50. 4 5.1 F0 4 69.4?0W 19 3.3 EP 276.13 1968 1C 19 10 3 F 18. 45.300N 74.129W 18 y 1.2 EP 373.51 1964 10 20 2 36 58. 47.47CN 70.570W 19 3.6 EP 508.49 1800 SC.RM. 19ed 11 3 8 33 52.5 41.400N 72.500W V WG 215.28 FA = 1967 5 10 18 43 29. 4F.4704 71.651W 19 3.6 EP 508.26 170 J $ 10 20 1 55. 47.470N 70 634W 13 3.6 FP SJ8.26 1767 7 14 3 4 55. 47.830N 70 093W 19 1.9 EP $51.25 ti61 8 6 16 3 43 90C4 71 400W V WG 109.62 116) 8 31 7 21 27. 47.4104 70 0FLW 14 1.2 EP $13.89 1961 10 5 0 3 41.0JON 74 600W IV NJ 375.75 1973 8 3 0 19 ?0. 45.8001 66.120W 19 3.3 EP 495.94 19F0 9 7 21 31 27. 47.120N 73.300W 15 3.2 EP 559.70 1873 9 19 13 35 09.4 42.9501 71 971W IV US 83.55 1771 5 to 6 20 39. 45.110N 71.370W 19 3.2 EP 317.33 1771 23 6 24 27. 43.820N 74.540W 1 37 EP 316.20 1771 5 23 9 21 59. 43.94C4 74.550W 3.6 EP 321.24 i l71 6 21 2 43 34. 43.9304 74.5?OW 1 3.3 E8 321.67 1771 7 19 9 15 02. 43.9704 74.530W 1 3.4 EP 319.35 1871 9 12 9 31 43. 47.550N 77 240W 13 3.2 EP 520.22 1171 10 21 0 54 46.2 42.700N 71 150W V WG 33.07 FA = 1191 SC.EM. 1971 12 18 15 35 24. 46.19CN 74.423W 19 3.9 IP 471.86 1172 1 2 J 13 7 50. 4 7.910 N 71.304W 10 31 EP 5e8.61 1873 6 15 1 1 05 45.370N 71.030W 13 4.9 =P 277.17 FA = 248639 it.KM. 1173 7 15 8 20 11. 43.970N 74.499W 13 3.4 EP 217.86 1173 7 15 10 3? It. 43.9504 74.431W 11 3.2 EP 312.93 ge 1773 7 14 2 41 89 43.7604 74.4F3W 1 f.1 E' 308.85 (( 1773 11 16 1 15 34 47.550N

71. '14 W 11 1.1

!P 518.77 3 1774 6 7 19 43 37. 41.570N 73.140W 5 31 LD 294.76 M1 = 2.3E20 DV-CM. OeO 1.o O_

t TABLE 230.7-1 (Cont'd) Up04TED AND REW15CC T4SLE 2.5-5 CF THE SEARRCOE STATION F5aa LAT!100f 40.CN to 49.ON L14G1703E 6.0W 70 75.OW 3P!G!N TIMi MYPCCENT4AL LOCatIqn P4GNITU3E RSF 3I5fahCE 4Ema*R$ YEad M0 CA HR 44 SE C Lat. LONG. 2(KM.) !(MM) pa pg mL MC (gg.) 13F4 6 30 14 55 10. 47.9401 73.0E9W 15 31 EP 552.44 1975 1 17 0 11 19. 44.9101 65.110W 13 3.1 EP 397.32 1'# F 5 4 2 19 3 17. 45.7109 74.24)W 5 11 EP 414.84 13001 SC.RM. M3 = 1.0E21 DT-CM. 1971 6 9 19 33 22. 44.9404 71.65)W 19 3.5 SP 319.40 F4 = 1 77) 8 21 4 23 37. 47.440N F3.tp0W 5 1.1 iP 507.41 17 F 3 10 10 4 54 27.3 44.0304 70.170W - IV WE 142.25 1#Fi 10 15 3 25 17. 45.110N ei.393W 14 3.1 EP 467.35 1175 11 3 20 54 55.9 43.8304 74.441W 3.9 LO 126.25 MO = 4.0E21 DT-CM. 1775 11 3 21 o 40.8 4 J. 810 4 74.450W 4.0 LC 327.01 1775 3 11 P 28 12.2 41.560N 71.210W 35 PC 151.69 MO = 1 5E19 DT-CM. 1#76 4 13 15 33 12.9 4 0. 910N 74.330W 3.1 PD 352.30 1575 4 24 10 22 22.1 41.4504 72.490W IV 2.2 PD 209.59 1#75 5 10 t 34 20.5 41.1404 71.01)W V 2.7 PD 151.54 IV 29 SD 152.85 1775 7 13 3 51 14.0 45.179N 74.096W 1A76 10 23 20 54 18.0 47.820M 61.790W 18 Y 4.2

  • D 553.1F 197s t o 2 3 21 23 06.1 47.9904 61.783W 1.1 CE 559.88 l

1774 10 24 10 41 45. 47.8209

61. 9 4 -) W 3.6 LO 552.61 197F 2 14 0 35 04.1 47.5401 73.420W 3.1 CE 516.90 197F & 20 5 5 53.

47.8404 70.16JW 31 3.1 LO 551.E0 1977 7 to 7 39 3C.0 45.0504 74.400W 10 34 PD 448.14 177 F 10 16 21 29 19. 46.510N 73.F3JW 3.= LC 461.62 177 F 12 2 0 I F 44 24.9 41.d224 71.759W 5 IV 3.1 WG 119.87 197 F 12 25 15 35 53.4 43.20C1 71.641W 2 IV 32 WG 72.68 19F4 1 4 19 21 10.8 44.0704 70.500W 32 LC 133.13 IV 1.0 WG 111.87 1975 1 4 19 24 10.F 44.066N 71.55?W 9 1171 2 14 to 41 !?.0 46.3501 74.110W 4.1 CE 462.56 1773 2 23 5 24 33.n 46.3504 74.110W 3.4 CE 464.36 1979 5 26 2 31 40.0 47.T204 65.490W 32 CE 540.02 1371 7 30 10 54 4E.0 45.5504 74.43)W 3.9 LC 410.59 197s 8 IJ 21 12 11.6 40.46CN 71.130W 1.5 WE 271.91 l'174 8 21 4 47 10.9 44.520N 74.513W 1.1 t.9 LO 3 5.65 1 37) 13016 10 52.1 40.32CN 74.261W FELT 3.5 M5 403.54 197) 3 10 4 48 39.4 40.7161 74.49tW 1 1.1 PC 3ds.26 2v7A 323?251 15.0 47.66C1 70.t?OW FILT 3.1 1.6 15 531.9F 1AFs 4 13 2 34 14.4 =3.950M 69.751W W .1 US 146.82 1771 4 20 10 3? 49.2 45.24CN 65.043W FILT 3.2 N5 455.40 1973 4 23 0 5 41.7 43.0*GN 71.241W - IV 31 N5 35.5 g 4 A #7 s 6 7 13 45 53.3 4 4.41C N 73.959W 1.1 N5 296.49 (( 197# F 2d 23 21 12.3 43.Il01 F3.%40W 11 FILT 3.5 1.7 NS 54.73 3 17 F 1 8 li 22 47 31.0 47.5F04 61.10 3 W 1) FsLT 5.3 4.5 NS 525.4 OeO Vk O_

TABLE 230.7-1 (Cont'd) USD47FD AND vfv!SiD 7 TELE 2.5-? CP TME SEASROOK STATION FSAR LAf!TUDE 40.0N TO 4J.JN LONGITU3F 64.0W 70 75.0W JRICIN TIM

  • MVPCOSMTRAL LOCATION MAG 4ffuaE REF DI574hCE REMAGES TdA4 MD L A "R M1 IE C L A).

LCNG. Z(EM.) f(1M) MS MN ML MC (KM.) 1380 2 29 5 ?) 16.1 42.5404 76.200W 12 3.1 2.2 MS 276.67 1713 3 11 4 15 55.0 46.7404 71.?71W IS V

3. 7 EP 439.87 l

11dJ 7 1 3 5 30.0 47.5604 70.750W 10 - IV 1.4 8P 518.08 39s3 7 2 7 50 33.C 47.310's 71.??)W 11 FfLT 3.1 EP 410.82 1780 9 4 4 3J 56.0 41.1101 71.740W 13 3.2 LD 313.76 1780 9 8 5 57 55.0 66.6104 69.010W ') FiLT 32 1.2 45 247.63 1 APO 10 24 17 27 36.0 41.32C1 72.170W 7 IV 2.9 M5 242.29 l 1880 10 25 0 41 29.0 61.330N 72.981W 6 IV 2.7 N5 262.04 l 1981 2 19 7 7 BC.0 45.950N 74.121W 19 3.3 EP 470.33 l 1#21 4 13 17 31 18.0 45.920N 65.690W 19 3.7 iP 530.44 l l 1761 6161755 04.0 47.47CN 70.013W 9 3.7 EP 512.37 i l 1981 6 25 22 42 35.1 43.5704 71.550W 3.1 1.0 NS 13.81 1861 7 4 23 tv 33.0 45.leCN 76.640W 13 3.7 EP 314.24 1961 7 5 21 47 23.0 45.1501 76.641W 13 1.4 EP 393.55 1861 10 21 16 49 06.7 41.1501 72.583W 6 V 3.8 PD 241.43 1981 11 28 5 12 03.0 47.010N 65.610W 5 3.7 EP 567.81 1981 12 6 16 11 27.0 65.3301 72.643E 3 1.3 FP 310.49 i 1782 1 91255 52.0 47.000N 65.600W 5 V 5.7 5.8 FP 565.66 M1 =5.2 1142 1 9 13 1 38.0 47.C0C4 65.500W 5 1.5 EP 565.64 1962 1 9 13 44 17.0 47.0001 66 600W 5 3.3 EP 505.64 1#82 1 91341 16.0 47.0304 66.509W 5 3.3 EP 565.64 1 *d2 1 9 13 52 21.0 47.0J01 65.6cJW 5 3.9 EP 56!.66 1182 1 9 15 2 49.0 47.0001 64.5C9W 5 3.2 !P 5s5.64 1102 1 1 16 35 45.c 47.000N 65 600W 5 - IV 5.1 EP 565.66 MS =?.9 l 1892 1 9 17 27 54.0 67.03ON 66.40CW 5 3.9 EP 565.64 J 1982 1 9 17 37 1E.0 47.0304 65.6L3W 5 3.2 EP 565.66 1982 1 92245 10.0 47.0's0:4 65.603W 5 3.7 EP 555.66 1982 1 1 23 I? 39.0 47.000N E5.6C0W 5 3.1 !? 555.64 1882 1 11 21 41 1E.0 47.0004 c5.5C3W 5 - IV 5.4 EP 565.64 13d2 1 11 il 51 !!.0 47.03CN 66.500W 4 1.1 EP 565 64 1 1,62 1 11 21 51 51.C 47.0001 66 5CGW 5 3.3 ?P 565.64 j 1182 1 11 22 2 44.C 47.0001 06.500W 5 3.1 EP 565.66 1962 1 11 22 35 33.0 47.0004 66.6CCw 5 3.4 EP 555.64 1142 1 12 1 51 01.0 47.01CN 65.500W 5 3.5 !P 565.64 1962 1 12 2 1 19.0 47.0CCN E4.s01h 4 1.2 ?P 565.66 3742 1 12 2 3 65.0 47.0GC4 As.sC1W 5 3.1 'O So5.64 l eb2 1 12 5 27 11.0 47.01C1 55.5Coh 1.1 ?P 565.64 h 1162 1 12 13 31 13.0 47.G104 65.4CnW 5 1.3 EP 555.64 y 1882 1 13 17 5 19.C 47.0101 6s.4C1W i 1.1 EP 5 5.64 3 1 782 1 13 17 55 -3.0 67.030's 65.60nw 5 4.3 SP 545.64 9e O V3 O-Q

TABLE 230.7-1 (Cont'd) UPDATED AND 2!v!!!C TA*LE 2.5-5 0F THE StABRC3K STAf!ON F54R L4TITUDE 40.04 TD 49.ON LohGITU3E 64.0W 13 75.0W OaICfh TIP8 HTP0 CENTRAL LOCATION MAGN!?U3E REF DISTANCE REMARKS VSAJ MD Ca MR M1 SEC LAT. LONG. 2(KM.) 1(NM) MS MN PL PC (KM.) 1962 1 13 17 53 44.0 47.0304 65.401W 5 1.7 EP 565.64 1782 1 15 12 37 42.0 47.000N 65.609W 5 3.9 EP 505.64 1982 1 15 14 36 37.0

  • 7.000N 66.600W 5

3.2 EP 565.64 1982 1 17 13 31 St.0 47.0304 66.501W 5 3.4 EP $65.64 1 del 1 19 0 14 42.0 4 3. 510 *a 71.50)W 4 V 4.4 4.5 4.7 EP 14.47 1762 1 23 8 $4 47.0 47.0J0N 66.613W 5 1.2 EP 565.64 1962 1 26 5 3 30.0 47.030N 6 6. 6 0 ',U S 3.3 EP 565.64 i l 1982 1 27 1 35 56.0 47.4504 70.420W 10 FiLT 3.3 EP 506.91 1982 2 27 17 34 58.0 47.0004 65.503W 5 FILt 1.4 EP 5$5.64 1A82 3 1 9 33 57.0 47.000N 66.50iw 5 FELT 3.4 EP $55.64 18 A 2 2 16 11 14 31.C 47.000N 66.600W 5 3.5 EP 565.64 1982 3 19 3 27 20.0 47.0001 66.600W 5 3.2 EP 565.64 1182 3 31 21 ? 20.0 47.0104 66.570W 5 IV 5.0 EP 567.04 19d2 4 2 13 50 12.0 47.0004 66.e00W 5 IV 4.3 EP $65.64 1982 4 2 19 47 45.0 47.0004 66.503W 5 3.1 FP 565.64 1982 4 8 4 54 34.0 47.03CN 66.500W 5 III 3.4 EP 565.64 1182 4 11 18 3 53.0 47.0004 e6.600W 5 IV 4.1 FP 565.64 1182 4 11 18 27 19.0 47.0J09 66.501W 5 3.2 EP 565.64 1782 4 Il 22 47 21.0 47.0004 es.$01W 5 III 4.1 FP 565.64 1782 4 28 6 36 02.0 47.000N 66.6 COW 5 1.4 EP 565.64 1782 5 61621 07.0 47.000N 65.607W 5 3.9 PD 565.64 1782 6 to 11 4) :10.0 47.C10N 65.17)W 7 4.6 EP 549.73 1182 7 13 2 11 49.0 46.0604 74.5!GW 37 IV 3.8 EP 458.25 1782 7 29 5 35 37.0 47.0004 65.500W 5 3.7 Ep 555.64 1782 8 12 20 41 18.0 47.030N 64.501W 5 1.3 EP 565.6. 1922 8 21 2 7 11.0 47.370N 70.380W 20 3.4 EP 498.26 1782 9 11 1 37 17.0 47.0JON 66.601W 5 3.1 EP 555.64 1#82 to 26 15 31 33.0 47.000N 65.409W 5 3.5 EP 5s5.64 1882 12 4 16 9 12.0 47.54CN 71.220W 15 ?.) EP 518.15 l l THIS C AT ALOG LI57 5

70) 8 4R1 HCUAKf 5 EPICENTRAL DISTANCES ARE COMPUTFC FOR SITE LOCATEJ AT 42.891N 70 849W SIE FOLLOWING PAG? FC4 CATALCS fMPLANATION Io Oa O

on3I O O,.,_

llll E t D K t U R 0 O S. W T I W T G. E N T N G E S. h A N M ETM RN H U. P AEE 7 P A MV 7 A 5 T TOA 5 R R G 0 LMW 1 5 E 3 8 E D T M 9 FCE R M N)i 1 IC C S ENI N LMA / EI COE 8 O ASF GTLE IIS 2 I tit E8 IS PT 9 T S OEU RVF EA. 1 A E TSS 0T CV s FII C h U A S. R ST ONN S P A

=

) M E 0) AU UU E R A3S C 71LD NM I O R FMM c 99A T OMS R C 0 19CES I3I E 0 ( 1IKA TCU SYL 5 5CGAE A O RA RLOUH NLL)5OC A ELL 27 IA 6ETI T V!0H9 MN.6KA5 A M4ET3 R379A VV URM 4 ) E 5 5 1,3 E 7 C PGE 3 A 6T8 NDTE.7EF.2H50 .S9OJS6T3E ANE N1 ( N9RCG AS .VI1A N R A. I (TIM 0T(ENN S. I IE EH OO U E. A L J A. E L I 4 N I LT LT LELT .TT O P k W O. L T E m L I S. S s I EIiI CT T LM I CUE UUR0U4 Ei A ML tI NNNNBNP7B5UW W ) d UAGf V N 't A MCNG F L IRl N-E MSJOSUCMLM5EG n S XY0A R HMNNNNJ 3 SS v W d. o I A MAPI C S M t W ( ) OLA S G M ES E 1 C M RIASS C L ( tF EE N A I ! I T I E 7 S0 SAL R S A E0ECP E 0 C T I mII M F 3 T T TDI E 2 I t LI N R 8 5 A. S I K S 4 N ) E 4 N 1 5 N E fTE L U. d 7 9 B T T NT A M N NEN1 9 C K T T I ICI5 - 1, L R R 3 TA ) A 5. 3 C W E 9NAI T 1 A MG N .CM1 Y ( UL E ,S0 H ) V ) L. A 5 P 3 t N 7 u OUWLG A 9 ) S I AA R 1 ) 1 T' TCf 3 ,E 57 C AH1 I e ) 0 ID 4) I CT 0Gt74 LU8 E 9I T I OE25 N , LM) ! U'OH OC tf T T3 C 1( E fTI U R ( R )C 3 J' NT U Tf 3O CMDfI uNGI O 1P 7E MTNS - f f ( aN S 5 S 7G OI 4!T i. 1, C N R T. CC2 f t MG NC T45OF 1# A A NH GDLM T f 9N L5 M C I. 4dA A 3O 6A) A:iLA0 MTCH D N) ? 0NHCALGM I OT SA0lT11 ! N E NLG N e(S95E! O .C e VG N A J9RA1t KTI3M; AARE f1iC(EAHTNAN WMEL T"(3CLD U* A! I A 5 N' NiRT .A(CHH4EEi 5 1 E i V GHA LI 4I LT 0 GLCD 0L0L5FET1 ELHL LT L U 33IO 4L3L .CdiRT OEAA NUA U T $MRC R0RG I 4 1i1UD72EI11i N

  • = = =

I F A PNLC E 9HKOG0WHp5 OAT 1 MM4 M R 9a ?SC3O8 E1 L' M s&~OD O oBsnO_ l'1l 1

TABLE 230.7-2 NLW MAWPsMIk! JANUART 19e 1992 9 aC%G M311cN 3ATA FR3M tai U.S. ARMY C3R85 08 thGINECP's TAP! (P.CMANG) STATION SITA LOCATI34 COMP 3N!NT C3sRfCT[D P!At ACCEL VELO DISP (CM/St;/IEC) (CM/51C) (CM) Pa4NKLIN *ALL5 3AM 3:wNiT4 TAM L-225 16C.TO 2 03 0.16 t?1. DIST. = 3 Ke. US 271.03 1.73 0.38 T-135 377.86 2.47 1.17 P4 A%KLIN P ALL5 3 4 EIGHT ASUT* +3 L-65 217.70 2.67 0.25 = 5 th. EPI. DIST. U8 172.81 1.85 0.61 T-315 539.96 5.59 0.62 P4ANELIN PALL 5 J64 CREST L-65 123.96 2.67 0.36 EPI. 315T. = 3 KP. UP 114.31 2.89 0.47 T-315 306.83 6.36 0.33 UN13h VILL 43! Dah CR!5T L-265 22.66 0.66 0.36 = 3; EM. EPI. DIST. US 23 17 0.62 0.36 T-151 25.07 0.50 0.05 Ut413h VILLAGE Cat LIFT A1UTM8NT L-235 9.69 0.15 0.13 62 EM. EPI. 3117. = UP 6.21 0.17 0.05 T-155 6.71 0.23 0.36 UN!3N v!LLAGE CAP OCwh1T4EAM L-265 37.01 0.82 0.08 EPI. 3I27. =42 16 US 28.90 0.65 0.07 T-155 22.59 0.67 0.05 h3RTH MARTLAND O&M ASUTMENT L-15 11 03 0.19 0.35 EPI. DIif. = 62.3 RM. UP 3.75 0.14 0.06 T-285 4.r6 5.22 0.06 h3RTM M ARTL AN3 3&M Ca!57 L-15 37.36 0.76 0.12 = 62.6 EM. EPI. DIST. Up 16.73 0 66 0.09 T-285 38.19 0.97 0 13 Weston. Geophysical

TABLE 230.7-2(Cont'd) ET& TION SIT! LocaT23a COMPJN!NT C;REECT!D P!as ACCEL V!LO CISP (C9/5EC/5EC) (CM/5EC) (CM) N3RTH SPR!h0FIELL DSM CR!5T L.275 24.38 0.56 0.06 . 77.3 gm. E7I. JIST. Up 22.45 0.34 0.06 T-185 21.54 0.41 0 09 h0RTH SPRINGFIELL 04M 30mN514EAM L.275 31.08 0.41 0.07 E81. 3157. = 77.3 A4 U8 13 66 0.21 0.*$ T-185 22.51 0.29 0 06 BALL 43uNTAIN Cab CR55T L-30 8.30 0.37 0.08 E#I. 3137.. 105 an. US 11.97 0.34 0.07 T-300 10.03 0.37 0.07 wMITE alv!R JUNC1104 5451MYNT L-270 15.20 3 33 0.06 IVA 905P1TaL) EPI. DI3T.

  • 61 Em.

US 21.81 0.98 0.08 T 100 31.03 0.57 0.12 f Weston Geophysical

TABLE 230.~l-3 RELATIONSHIPS OF INTENSITY (M ) TO PEAK HORIZONTAL ACCELERATION (A ) H Log AH = a + bI(g ) AH f0f Io " VIII DATA ski a b cm /sec8 c. Trifunac and Brady (1975)* 0.014 0.300 259.4 0.265 Proposed Relatior. ship IV S Io f X Regression on Seven Mean Values ** 0.205 0.273 244.9 0.250 III. IV. V. VI. VII. VIII X Regression on six Mean Values ** 0.117 0.284 244.9 0.250 IV. V. VI, VII. VIII X Regressions on C.I.T i (3*16 Data Points) -0.172 0.311 231.2 0.236 C.I.T. + N.H.it at V -0.016 0.294 216.8 0.221 C.I.T. + N.B.tii at IV# 0.272 0.250 187.1 0.191 C.I.T. + N.B. at v# 0.044 0.286 214.8 0.219 C.I.T. + N.H. at V + N.B. at IV 0.392 0.233 180.3 0.184 j C.I.T. + N.H. at V + N.B. at V 0.182 0.266 204.2 0.208 i C.I.T. (376 Peak horizontal acceleration values from California Institute of Technology Data Base from Chang (1978)) ii W.H. (5 Peak horizontal acceleration values for January 19, 1982 at Franklin Falls Dam only) tii N.B. (8 Peak horizontal acceleration values for March 31. 1982) Trifunac and Brady (1975) Easults based on 374 data points Mean Values taken from Table 3 of Trifunac and Brady Due to uncertainty on epicentral intensity. Io. for the N.B. earthquake, regression models are derived for different Io values Weston Geophysical

bOCUMENT ~ PAGE ~ ~' PU _ LED ~ ANO.sueer NO. OF PAGES / REASON O PAGE ILLEGIB2 O MA4D CCW FLED A1. PDR CF owr - 3 3 D BETTER COP (REQUESTED ON _ E 10 FILM. FEED AT: PDR OTHER _ b 7 D FEMED ON #MR10RE CARD NO l l

g i... j c8...,, ,,,,,,, e e... i.,.. u,,,.e, ,n.n .. n - 8,,, 3 2 n..,....,. n a,.,, n ....n,. ....,,i. c..... e....,, ..... i. 43.75 + i.. a. i. h h888*I3II ,,2 1. Ce . n.i.... :: in. ..ana s .......= C ", ! I. I.$'s i [ Geo ;., j i a.,, =,,.ac::n. - c........ ..n. :. eni.iii. .... o c c o..... .n. in enn. a. C 3..a, a 1, in,: g o.n i a + - 43 50* ins a na i...n i...n no o;;;;;i nu. i. .... n ... i.e e noi, i. g,,,,,, a n n.,.,. ciu i.., c ' ll, 3 i,

,,, a a

' 4,,,, 2 @!.l l '. @in, s Cl}j.,sg a; nua.c MAGNITUDE lhtENSitV c 2 e 111 o D 3 O V o S 8 ~ d V1 g T s m vii v HISTORICAL EPICENTR AL D ATA PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE SEABROOK STATION - UNITS 1 & 2 ARGUND OSSIPEE. NEW HAMPSHIRE FINAL SAFETY ANALYSIS REPORT l FIGURE 230.7-2

l I 6I I I i 1 I i i i i 1 JANUARY 19, 1982 g 4.7mb '- HASEGAWA et al (1981) f \\ ~ N NUTTLI and HERRMANN ~ g (1981) U NEUS o D-v z 100 Q

q,'%

m w w' \\ g U %'g '.\\ 'N '.N~ F= o '.,\\ O O [ m \\\\ o -,\\ x '\\ \\ C g l l w '. g l '\\ \\ O \\,\\ 'g \\.s's '., g 4 10 g c.y g g l I f f I I ! I I I I I ri I !l I 10 100 l EPICENTRAL DISTANCE (KM.) PEAK HORIZONTAL ACCELER ATION FOR j PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE THE JANUARY 19.1982 EADTHQUAKE l SEABROOK STATION - UNITS 1 & 2 l FINAL SAFETY ANALYSIS REPORT l FIGURE 230.7-3 l

i i i i i i eii i i i i i 1 I ii JANUARY 19, 1982 10 4.7mb Z g O 0 n E O m N E v s 1 s 3 's Z r Z s = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.......... '.,, - s o N O O s w* N O es g .s..'- q -z .N. g o s N 's HASEGAWA et a.1 O (1981) 'N.o E o s z s.

  • NUTTLI and HERRMANN N

-\\ 5 0.1 (1981) s. NEUS 0.01 ' ii1 I I I I I I I III t 1 I I I I 1 10 100 EPICENTRAL DISTANCE (KM.) PEAK HORIZONTAL VELOCITY FOR PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE THE JANUARY 19,1982 EARTHOUAKE SEABROOK STATION - UNITS 1 & 2 FINAL SAFETY ANALYSIS REPORT l FIGURE 230.7-4 l

Question 230.8 Discuss the correlation of the Central New Brunswick sequence of events beginning January 9, 1982 with geologic structure or tectonic provinces and the significance of these events with respect to the OBE and SSE. Present all available information for these events on locations, depths, focal mechanisms, and correlation with past seismicity. Discuns the effect of any strong motion data resulting from these events upon empirical strong motion relationships used in determining the OBE and SSE. Response 230.8 In order to answer this question, the Public Service Company of New Hampshire (PSCNH) has sponsored jointly with other New England utilities a substantial program of seismological and geological studies related to the 1982 New Brunswick earthquakes. These studies were carried out by Weston Geophysical Corporation, from September 1982 to July 1983. A detailed report of these investigations entitled " Seismological and Geological Studies, Miramachi Area, New Brunswick, and Central New Hampshire" was filed with the NRC on August 25, 1983, by PSCNH as a proprietary document. The question has *.hree distinct parts (1) the correlation of the earthquake sequence with geologic structure or tectonic provinces; (2) the parameters of recent 1982 events, and relation to past seismicity; (3) on the New Brunswick strong motion data as affecting relationships used in determining the OBE and SSE. 1. Earthquake Correlation With Geologic Structure or Tectonic Provinces l A convergence of evidence from geological, geophysical and l seismological studies reveals the existence of a seismogenic structure in the immediate epicentral areas of the January and June 1982 earthquake sequences. From geological observations, major faults are known, either bounding and/or cutting the Miramichi Massif and the included North Pole pluton. The Miramichi Massif is comprised of a complex sequence of multiply folded and metamorphosed Cambro-Ordovician sedimentary, volcanic, and igneous rocks intruded by Devonian igneous rocks. The widespread Devonian intrusive event is in part responsible for the low gravity geophysical signature of the Miramichi Massif, which indicates the body is widespread and likely interconnected at depth. Weston Geophysical

The rocks in the immediate epicentral area are all representative of the Miramichi Massif described above. The area is underlain by a Devonian granitic body; the North Pole pluton. Faults forming the boundaries of the major lithic and structural terranes as well as intrazonal faulting often show a multiple history of deformation. This is not an unusual observation as faulted rock is weak and will tend to fail repeatedly as stress fields vary. Mylonitic fault zones forming the boundaries of and traversing the Miramichi Massif show evidence of subsequent brittle failure resulting in a multiply fractured and silicified nylonite breccia zone. Such is the case with the Catamaran Fault which cuts east-west access the Miramichi Massif just south of the epicentral area. Thia deformed zone cuts the Massif into northern and southern blocks and may influence stress concentrations along structural and/or lithologic discontinuities in the northern block, resulting in the observed stress release. From gaophysical measurements, significant grsvity and magnetic anomalies are found in spatial coincidence with the geological structures. Location, amplitude and gradient of the gravity anomalies have been used to model crustal blocks in the epicentral region. Taking into account the complex structural and lithological associations at the surface with the geophysical and seismological evidence, it is possible to hypothesize significant stress accumulation along lithologic / structural discontinuities at focal depths corresponding to modeled geophysical anomalies and potentially associated seismic events. The Trousers Lake event (June 16, 1982) is probably related to boundary faults and lithologic variations associated with the northwestern margin of the Miramichi Massif. The larger January, 1982 events in the central Miramichi Massif may be associated at depth with the boundary of the North Pole pluton in the surrounding metasediments. Frcm seismological analysis, observed focal depths and faulting mechanism of some larger 1982 events are compatible with gravity modeling results. A review of the past seismicity in the lfJ2 epicentral area and its vicinity (next subsection) suggests that the tectonic structure considered responsible for the 1982 sequences has indeed been seismically active before. During early Fall 1983, the New Brunswick Department of Natural Resources - Geological Survey Branch in conjunction with the Canadian Atomic Energy Control Board excavated two areas-in the immediate vicinity of the Miramichi epicentral Weston Geophysical

_ In the first area, a previously identified post zone. glacial bedrock offset (crack in road) was examined. Exposure of a large section of rock indicates that the crack is of limited extent and therefore non-tectonic. In the second ares, (Figure 230.8-A), an east-west trench approximately 70 meters long and 5 meters wide was made to intersect a N40*W trending EM and VLF anomaly identified by the New Brunswick Survey. The aeromagnetic data immediately south of the North Pole pluton and the interpretation of black and white aerial imagery (Figurc 4.3, Weston Geophysical, 1983) indicate a similar northwest trend. A N40*W 65'SW (apparent) dipping fault zone comprised of gouge, breccia, flinty crush rock andBased on pervasive fracturing was exposed in the trench. observed structural elements and detailed mapping, the fault zone has a complex and multiple brittle tectonic history of which at least one motion was clearly right lateral strike-slip. The overlying till (Wisconsin) at this fault location has been broken and is separated by weathered granitic rock, breccia and gouge plastically emplaced into the till (Figure 230.8-B). This injected material extends to just below the existing ground surface. It is clear that part of this disruption, horizontal shearing of the breccia and is glacial (non-tectonic) in nature. The mechanism

gouge, of the injection and raised elements of the breccia and weathered granite are related to tectonic and/or glacial contemporaneous with or subsequent to Wisconsin processes, ice loading.

Detailed mapping documents the long history of tectonic deformation along this fault. This fault, particularly in view of its conformance with the larger structural fabric, supports a " tectonic structure" earthquake relationship. Since these 1982 earthquakes are associated with a localized structure in Central New Brunswick, 565 km from the Seabrook site, these events have no significance on the Seabrook OBE and the SSE. The New Brunswick events did not exceed the intensity VIII assumed "at the site" for Seabrook. The observed epicentral intensity and magnitude of the New Brunswick main shock are not greater than those usually assigned to the nearest large earthquake, the Cape Ann 1755 event used for determining the SSE. Weston Geophysico! L-

______-____ In summary, the applicant considers the 1982 New Brunswick activity related to a local tectonic structure. The horizontal acceleration level (0.25g) of the present SSE, based on an assumed intensity VIII at the site, is more than adequate to accommodate the ground motion from such a distant source. In fact, it can accommodate the earthquake potential of the New Brunswick event simply associated with the site province. 2. Parameters of Recent 1982 Events and Correlation with Past seismicity The report on the New Brunswick studies presents in detail the parametric information currently available on the 1982 sequence, and a review of the historical seismicity. A summary of important data and conclusions is now abstracted for a formal response. The New Brunswick sequence began on January 9, 1982 with a main shock of magnitude mb = 5.7 at 12:53 U.T. Three of the larger aftershocks, equal to or greater than mb = 5.0, occurred on January 9 at 16:36 U.T. (mb = 5.1), on January 11 at 21:21 U.T. (ab = 5.4), and on March 31, at 21:02 U.T. (mb = 5.0). Figure 230.8-1 shows the relative spatial location of these four ruptures, as inferred from fault plane data and microearthquake distributions. More than 50 aftershocks larger than mb = 3.0 occurred up to the end of 1982, and thousands of smaller shocks were also recorded by sensitive instruments temporarily deployed in the immediate epicentral area, and by permanent regional stations of the Canadian and American networks. Wetmiller et al. (1982) and Adams and Wetmiller (1983) have discussed this earthquake sequence at professional meetings: Wetmiller et al. (1983) have just submitted for publication a detailed study of the aftershock activity. Table 230.7-1 gives the origin times, locations, depths, ani magnitudes of all events with mb greater than 3.0, as currently available for the year 1982. This sequence of events is the best ever recorded for the northeast; for this reason, the number of located smaller events is larger than that of any other important sequences. Yet the New Brunswick sequence appears to be normal and consistent with other known sequences, such as that of 1925 La Malbaie, the l 1935 Timiskaming and the 1944 Cornwall-Massena earthquakes, I considering the respective magnitudes and the distribution of larger aftershocks. I l Weston Geophysical

_ At present, only the main shock has been the object of in-depth analyses. Nabelek et al. (1982), and Hasegawa (1983) have presented an abstract of their research, while Choy et al. (1983) have published their study. There is a general good agreement between most of the source parameter estimates: location, depth, faulting mechanism and moment. The epicentral coordinates of the main shock are 47.00*N and 66.60*W, 3 km. They are at the center of a 6 km north-south by 6 km east-west area which contains most of the located aftershocks. The seismic ruptures have occurred predominantly on two conjugate planes, shown on Figure 230.8-1, roughly trending north (Adams and Westmiller, 1983). Micro-activity is distributed from depth rangir.g from almost 0 to 7 km, in a V-shape pattern, with each limb about 2 km thick. The focal depth for the main shock is estimated at 'i km, 1 3 km. The prevalent faulting mechanism for the four larger events and ;he deeper microearthquakes is thrust under compressional force in the east-west direction. The source parameters of Nabelek et al. (1982) and Hasegawa (1983) are shown on Table 230.8-1 and those from Choy et al. (1983) on Table 230.8-2. The only significant descrepancy between the source parameter estimates is the inferred stress drop. Nabelek et al. (1982), in an abstract for an oral presentation, have considered as a favored option a higher stress drop. This controversy is still unresolved. Conceptually one associates smaller dimensions, higher frequency spectral content, and the possibility of a new rupture with higher stress drop. Reactivation of an older zone of weakness is more common for a lower stress drop. A second important event occurred on June 16, 1982 near Trousers Lake, about 30 km west of the January 9 epicenter. The focal depth was estimated to be about 7 km, and the mblg equal to 4.8. The significance of this event is that its location coincides well with the sharp gravity gradient on the west side of an inferred crustal block, while the larger January sequence locates approximately on the oppoaite eastern side, as shown on Figure 230.8-2. l l The January and June 1982 seismic activity is consistent with the past regional seismicity. Figure 230.8-3 is a regional epicentral map, 2* x 3* around the January 1982 sequence. All known events with M greater than or equal to 2.0, or Io greater than or equal to II are included and identified by date for reference to Table 230.8-3. Considering the sparse population within a 75 km radius of l Weston Geophysical

i ! the 1982 epicentral area and the lack of a regional New Brunswick station until 1971, when one was installed in Fredericton, it can be assumed that most of the non-instrumental epicenters are subject to a 1srge location uncertainty, possibly many tens of kilometers. The instrumental locations from the last decade are subject to a smaller uncertainty, in the order of 5 to 10 km.

Thus, the possibility exists that some of these historical epicenters are mislocated and did occur in the same epicentral area as those of 1982.

The existence of a seismogenic structure capable of generating earthquakes as large as that of January 9, 1982, witn an ab = 5.7, is supported by the past seismicity. In particular, the occurrence of recent events with ab = 3.7 on November 28, 1981, ab = 2.5 on September 7, 1981 and ab = 2.6 on January 4, 1977, in the epicentral area, confirms the inference of a seismogenic structure, continuously active, and somewhat similar to others kt _ in the northeast. 3. New Brunswick strong motion data and their effect on relationships used for the OBE and SSE determination. In January 1983, the Earth Physics Branch of E.M.R. Canada made available in digital form five accelerograms from two New Brunswick aftershocks.(March 31, and May 6, 1982), in February 1983, it published the open-file report 82-31, " Strong motion records from Miramichi, New Brunswick, 1982 Aftershocks," by Weichert, D. W. et al. Table 230.8-4, abstracted from that report, identifies the five records that were of sufficiently good quality among fifteen to be digitally processed. i Table 230.8-5, from the same report, lists the site and instrument characteristics. The foundation conditions at Holmes Lake and Loggie Lodge are described as " massive concrete fireplace hearth on 5 m alluvium" and " major granite boulder on 5 m alluvium", respectively. The Indian Brook site is on " granite boulder on gravel", while the Mitchell Lake Road site is said to be " bedrock". Seismic refraction surveys and a geological inspection were conducted in October 1982 by Weston Geophysical at the Holmen Lake, Loggie Lodge and Mitchell Lake Road sites. Some location uncertainty resulted from the fact that .eertain original sites had been closed or relocated during the Summer. Considering this uncertainty, the results of these surveys are in general agreement with those foundation conditions cited on Table 230.8-5. Except for Mitchell Lake Road, site conditions are not comparable to the Seabrook rock foundations. Weston Geophysical

___ As shown on Table 230.8-4, the frequencies associated with the peak accelerations of the March 31 event (ab = 4.8 to 5.0), are notably high, 18 to 47 Hz, often higher than the average natural frequency (25 Hz) of the SMA-1 listed in Table 230.8-5. In these cases, D. H. Weichert et al. (1982) have recommended caution in accepting tl'e validity of the instrumental correction for accelerations. D. H. Weichert (1983), in his oral communicatios to the Seismological Society in Salt Lake City, has fi.:mly stated that the SMA-1 gradually becomes a displacement meter beyond its natural frequency, with a magnification cf about fifty. Thus, the high acceleration values obtained when standard correction routines are applied to the recorded high frequency oscillations are most likely invalid. This problem was also discussed with P. N. Mork of the U.S. Geological Survey, who pointed out in the same vein that all response spectra of SMA-1 records are rottinely cut off at 25 Hz by the U.S.G.S. to avoid presenting unreliably corrected data. For these two reasons, foundation particularities and partly invalid instrumental correction, taken separately or jointly, the strong motion acceleration data set from the New Brunswick aftershocks is not, at the present time, a sufficien* basis for questioning the validity of the Seabrook design spectrum at high frequencies. In should be clear that the applicant does not deny the presence of high frequency accelerations of very short duration in the near field. This could well be a characteristic of near field observations for some of the seismic sources in the northeast. The applicant is only stating, with others, that the SMA-1 accelerograph, because of its narrow response curve, may not be a suitable instrument for high frequencies. Figure 230.8-4 shows the amplitude response curve of the SMA-1 accelerograph. It can be seen that beyond the natural frequency of the transducer, the correction factor gets to be very large, due to fast roll off of the curve. It seems that a broad band digital accelerometer is indeed needed for assuring the correct recovery of ground motion amplitudes over the entire source spectrum. It is interesting to note that recordings of a magnitude ab = 3.5 New Brunswick aftershock made in January 1982 by the U.S.G.S. with a broad band digital system (Cranswick et al. 1982) did not show anomalously high horizontal acceletation values associated with frequencies higher than 25 Hz. Another finding by Cranswick et al. (1982) was the great difference in signatures at two stations relatively Weston Geophysical m

_ _ _ _ _ _ _ _ _ _ _ _ _ close to an epicenter and at similar dictances, but along l different azimuths and with diverse topography, stressing the importance of site conditions. In the case of the Mitchell Lake Road recording for the March 31, 1982 event, a site reported as firm rock, the high frequency motion observed could well be attributed to some special effects associated with the near field. The estimated epicentral distance is 4 km, and the focal depth is inferred to be quite shallow, i.e. about 4 km on the basis of aftershock distribution (0 to 4 km). Assuming a fault length of 3 to 3-1/2 km, using Nuttli's relationship (1983) for mid-plate events, one sees that Mitchell Lake Road site was very close to, almost above, the end point of the rupture. This is confirmed by the relatively large vslue of the vertical component recorded. This is an unusual case; as a singular data point, it does not impact the design spectra for Seabrook. With regard to the confirmatory issue described in Section 2.5.2.6.3 of the S.E.R., not explicitly mentioned in the RAI 230.8, the applicant is compelled to respond that neither the New Hampshire or the New Brunswick strong motion data sets offer a sufficient and reliable basis to study the appropriateness of the vertical / horizontal ratio beycnd 33 Hz. As stated by Chang (1983), the peak frequencies of the acceleration from the New Hampshire event range from 11 to 21 Hz. In the case of the New Brunswick data, the range is from 18 to 44 Hz for the hori-zontal and 37 to 47 Hz for the vertical acceleration. Thus this last data is beyond the 25 Hz natural frequency of the instrument, in the range of unreliable correction. In this centext, the applicant concurs with the NRC's staff which " sees no reason not to accept the applicant's variance" from RG 1.60 used for the vertical component of the design spectra at high frequencies, as stated in the SER. It should be noted that peak velocit.es of the March 31, i 1982 event, in general associated with a lower frequency, e.g., 15 Hz, appear to be in agreement with some of the curreat models extrapolated to near field distances, as shown on Figure 230.8-5. Weichert (1983) had noted the same, and found the values compatible with an inferred intensity Io = V (IV was observed at 50 km), and the absence of damage. If, aside from their validity, the New Brunswick recorded acceleraticns (8 horizontal data point for the March 31, 1982 event) are pooled with the CIT data, with an Io Weston Geophysical

t _9 assumed equal to V(MM), then the new relationship predicts 0.2199 for an intensity VIII, if the Io is assumed to be IV(MM), the regression gives 0.189g for an intensity VIII. If both sets of new datn (N,H. and N.B.) are pooled with the CIT data, the resulting values for an intensity VIII are 0.184g or 0.208g (see Table 230.7-3). On the basis of this review of site conditions, near field effects, and instrumental correction validity, it is concluded that the New Brunswick data set, as currer.tly available, does not affect the OBE and SS3 at Seabrook. Weston Geophysicol (

y REFERENCES

Adams, J. and Wetmiller, R.

J., 1983. Conjugate thrust faulting during the Miramichi, New Brunswick sequence of 1982: Its geometry, geological control, surface expression, and mechanism: Earthquake Notes, v. 54, no. 1, p. 84. Chang, F. K., 1983, Analysis of Strong Motion Data from the New Hampshire Earthquake of 18 January 1982: NUREG-CR-3327, prepared for U.S. N.R.C. Choy, G. L., Boatwright, John, Dewey, J. W., and Sipkin, S. A., 1983, A teleseismic analysis of the New Brunswick earthquake of January 9, 1982: Journal of Geophysical Research, v. 88, no. B3, p. 2199-2212. Cranswick, E.,

Mueller, C.,

Wetmiller, R. J., Sembera E.,

1982, Local multi-station digital recordings of aftershocks of the January 9, 1982 New Brunswick earthquake:

U.S. Geological Survey Open-File Report 82-777, 263 p. Hasegawa, H. S., 1983, Surface wave analysis of the magnitude 5.7 Miramichi, New Brunswick earthquake of 09 January 1982: Earthquake Notes, v. 54, no. 1, p. 84. Haswegawa, H. S., Basham, P. W., and Berry, M. J.,

1981, Attenuation relations for strong seismic ground motion in Canada:

Bulletin of the Seismological Society of America,

v. 71, no.

6, p. 1943-1962.

Nabelek, J.,
Suarez, G.,

and Toksoz, M. N., 1982, Source parameters of the New Brunswick earthquake of January 9, 1982 from inversion of teleseismic body and surface waves: Earthquake Notes, v. 53, no. 3,

p. 28.
Nuttli, O. W.,

1983, Average seismic source - parameter relations for mid-plate earthquakes: Bulletin of the Seismological Society of America, v. 73, no. 2, p. 519-535.

Nuttli, O. W.,
Herrmann, R.

B., 1981, Consequences of earthquakes in the Mississippi Valley: American Society of Civil Engineers, Preprint 81-519. Weichert, D. H., 1983, Was Miramichi - 1982 a Typical eastern Canadian earthquake?: Earthquake notes, v. 54, no. 1, p. 6. Weichert. D. H.,

Pomeroy, P. W.,
Munro, P.

S., and Mork, P. N., 1982, Strong motion records from Miramichi, New Brunswick, 1982 aftershocks: Dept. of Energy, Mines and Resources, Canada, Earth Physics Branch Open-File Report 82-31, 95 p. a Weston GeopNaical

_ _ _ _ _ - _ _ _ Weston Geophysical Corporation, 1983, Seismological and geological studies, Miramichi area. New Brunswick and central New Hampshire: Prepared for Maine Yankee Atomic Power Company, Public Service Company of New Hampshire, Vermont Nuclear Power Corporation, and Yankee Atomic Electric Company, 233 p. Wetailler, R. J.,

Adams, J.,
Anglin, F.

M., Hasegawa, H. S., Stevens A. E., 1983, Aftershock sequences of tne 1982 Miramichi. New Brunswick earthquakes: Preliminary manuscript submitted to the Bulletin of the seismological Society of America. Wetmiller, R. J,,

Adams, J.,

Stevens, A. E.,

Anglin, F.

M., Hasegawa, H. S., and Berube, J., 1982, Aftershock sequences for the New Brunswick earthquakes of January 9th and lith, March 31st and June 16th, 1982: Earthquake Notes, v. 53, no. 3,

p. 41.

Weston Geophysical _____---_________--_____-___-___-____J

TA6LE 230.8-1 SOURCE PAR AMFTEPS OF THE JANUARY 9, 1982 (5.7 MB) EARTHQUAKE MASEGAWA (1993) NA3ELEK ET AL. (1932) S.P.S. AND S.W. 5.P.S. L.P.S. S.W. 205* 3' 4' d' 185 \\ STRIKE 6[ 33' 35' 40' 35 DIP 10KM. 6 7 9 RM. DEPTH s 118 78 98* 9' 93 RAKE 1.5 X 10**24 DYNE-CM. MOMENT 1.5 X 10**24 DYNE-CM. 120 BARS. 40 STRESS 60-120 BARS. 900 BARS. (T 0.6) (T 1.0) 0A0p 32 53 KM. 22 25 50 KM. FAULT l AR6A l S.P.B. - F20M SHORT PETI 30 81DT WAVES L.P.S. - FROM LONG PE0!CD 5007 wav55 FROM SURFACE WAV?S S.W. 5 05 ? l 0 m j O l U 5[ R i i E

TABLE 230.8-2 A Summary of the Rupture Charactenstics inferred Fromthe Broadband Analysisof the Ns* Brunsmuk Eanhqu.ke of January 9.1982 (U.S.C.E.) Value Parameter 9011.3 km Depth 195' Strike

  • 45' Dip 70*

Rahe Rupture directent 30* 2 30' clockwise from updip directen Rupture length 5.5 2 ID km Rupture wWth 3 8 2 ID km Percent undeteral rupture 40*,. 4.7 21.1 m 108* dyne cm Moment ID a 108' dyne can Redmed energy 10 bars Apparent stress Dyname oiress drop 65 2 35 bars Static stress drop di 120 bars OT 1253:51.1;NE15 location 46 984'N.66 656'W. ei 51

  • However.see Figure 5e for bounds on the fault planes.

t Aasusung a rupture velooty of 0.75$. m / / / / //... t * /4 /.e= / f / \\ l % i ~ \\ The sange of focal u==ia== that Et tbg observed ampli. tude date are represented by plotting the two estreme solutions of type I and type 11 solutions listed in Table 1. (a) For type 1. the strike, esp. and rake for the sohd knes are 195*.65*.and 70' For the dashed lines, they are 205*,65'.and 50'. Triangles are takeoff angles of f and pr from GDSN stations used in the brosdband anciysis. The squares tre sP takeoff angles. All taksoff angles are plotted on a lower W-M ; pro 3ection. Osov av at:Tn semW ANALVs4 or New lawswies Earmaan sot;awat or ctorMysscat atstanCM YOL as NO O'.PaCis tow.::t; senacM ee test Weston Geophysica! ~ - - - - - - - - - _ _ ~ - - - - - - ~ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

eWe. Ew. e> Ew>w. N. . e. em.D Ww Wm. 3 &&&&&&&&&&&&&&&&&&&&&&&he&&&&w.wOweeeQce c. w w w w w w w w w w w w w w w we w w w us w w w w D w w w w w w w w u r R W w E r 5 S w Ow .O 2 3> u wm M r. w h.

h. e.e... O.N. m. e N.N.
e. m.d. e..

m.

d. e. d..

= 3 3 w g wp .J mmme m Ed DE memdmmmMNmNNNmNNmmN d m < e.. h. h... h. e. p O WW mWNNNmNNN N WE 3D e W E u. e J o M M4 E 4

  • D MW w

h w w b u,m m w m www DM mm w m 3 w E w U S. 4 m w re w ed M 4...e E m. UW n mmmmm enD ME se >d em .w 3333333 3333333333333333 up WM 33333.333333333333..c.e................... w. C .N-me..Ne.m cNmNmede .mm.......mm~.e....

e. d. e.....

dm s s. e.dede-Ndm ce w m .... e. e... e... c. m.. c. N. N...... .a.

s. e e..**

de..........-~ .o ....s...... ~ s ~

  • r erzerar===rmwar===rrrrurr W

.r z e.r.n.e r.r r r y = = = r............................e.......NN -..~e...e..-Ne.~~due.. v. .e.....m.......

o..

... m. e. N. *. e. e. m.. e. m. e. e..... e. e.. N. a. m. e.. a.......

  • ss

~............. 44444444dd4deddededdedde ddededd4ddededdd . m.. N.. m. m. e. G.. e. N ee u. e. m.do.ce NewmN=.e.....dcem.memNN Ne dmNmemd ~ me e e e a WN ema. ........ e

  • m. e. e N e d m.,.. m.d e m. m.... m N e c. e.d d. m e.m.

N 4 d.n m. m. m. d. . m d.. 4d. d we g4 .mNmMNNd. .#,.4ced.mm.cmNew.Ned.eemmeNeN E NNNmN m a m m m NN mm mN m m N W =. eNme.Ned. ..demem>m>d.ed.h..m..mme.e med m M Mmm NmN mm NNNmNNmNNmM N mN mmN w GG

  • .de.*Nm.....mmm...**emedemN.mM.NammNNN~

m m m m ~ d N m. . N.... m d

  • m. M. N. m. d e.... * *
  • d e..... = ~ ~ ~ ~ ~~ ~

.......-~~~~~~~~~~~ e. ....eceeeeeeeeeeeeeeeeee-eee N.... N N. m. m. m..e d.. mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm e .ee w> Weston Geophysical

e W W g Eww e 9E N. e. w> m w e c 5 e N.* e H ed E E - o do W-. 3. owwwwmoew&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&WWWWWWWE3wwwu*www e m. R 3 W.

a. w m

o g D L 3> W w-E C E@ O s w LJ Wo e.J N.

4. m.

e. w Ed DE N N e o er

e. o.
e. e. n. m.. m. e. s. s... e. m. o. m m. e. o. n. m.. ~ o. m.- o.
m.. d. e. ~..

M mmmmmmm -eNmmmmmmmmmmmmmm O. E r NN m-NNm NNNm Do O U.e E. h. d. O

m. 4 E

e m N >o e W m m M M E E i 8 m W o. a w p Ee ed ... e m. m e e m e m e m m e m e m e e m m e c e m e m e w. ww En ec c. m-m D -E ww .J > 33333333333333333333333333333*13333333333cooooooneoooooo .w WP W-conoooooooooooc oooooooooo -= a monacc.oo

c. o... o. e. =. #.. n e m o -. o. o. o. o. o. o. o. o. o o. o. o. o. o. o ae m e m. c-e

. e. e.. e.. > ..... e...... e. e. e. e. d. e. coe a W

s. e

.d.4@eed@eedd .o

b. e. c.
  • > e. d. e. e. d. h. e.

. e. d. e d.. d..e @ d. e. d d. e. e... <....... M a I zerrrazanarrearrrrrrrrearrrrrrrrrrrrrrrr w mooooooooooooooooo.o.ooooooooooooooooooooo W ocoooooooooooooo o.. o.e M e d m o - e ~ e m ~ o m - o. o. o. o. o. o o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. E

e. ~. m. d. o. o. o... o. m. e. n. e. e..>>>ehm>>>>>>>>>>h>>>>>>

== ra ..d>>d@4dem >>>>>ddddeddddddddddddddddddd d44444d4 4 #dddddd ..>..................................................o. u . d. e.. - = .mbe-deed...e~.e-da-ce W dood-e~>em~.m.e.c==ccumm m~-4dem--muo-cdm md a.~ w .ddu~-m =m.. =ede.., ~emm.de eeue,~ >km.e==-mm=e..-e 4 .=n e d - m e.g. m d d.i. 3...$. d . d.i. m wr g4 .ce-.eeckm---e..~mmmmmmde.>>~~m----~~~~~ N-------------NNNNNNNNN >= -m N-N K ee.-deemndmem... .ecemeceeeece.o-----~~~ a -= -m

-

m--

== oo d>= ~~>.a.ee-=---------------m------m-- -.o m-m oE ~~~~~~~~~~~~~~~~~~~~~~ =~~~~~~...o.o....~.~.~....w.................. eeeeeeeeeeeemecee-eee .ei.eeeeee = >>~~~~~>~e. = m--mm-----------m---*---m-mm--------- emee-eke w> o Weston Geophysical

-~ e Mw = Ewe e>rwew a. N Om Pe - o WW u - o. &&&&&&&&&&&&&&&&&&&&&&&S&&&&&&&&&&&&&&&&w w w w w w w 3We Ed 3 w aW 5 m

  • O T

g 3* u M w. E C re O a w Q us a o of 1W DE

m. e. c. e. e. t. e. c. e. m. e. m. e. N. e. e. e. p e. n. e.

- e. m. p e. s. o. m. e. w. o. o.m. m. e. o. m. m.M N m N N m m m 4 p.m m m m m m m m N N m N = M o rr NmNNN e g e OE De e o. 3 O se e et E no m da W J m a ww a u m. M w Ee y e4 a n. mececemecemecemeceemececemeceecceceeceen ww n eo2 WE WP Ww 23333333333333n4333333333333333333333333 4-ew o ooooconococoonococoooooooooooocoroacon up uw oooooooooooooooooooeoooooooooooomeonoooo me o.

e. e. d. e. d. e. e e. e. d. e. e. e. e. e. d. d. e. e. t. e. c. e. d. e. e. e. e. e. e. e ed w

a o ve ...eeeeeeeeee*eeeee.eee Jr .. e4 e ao .... ee....e........e**eeeeeeeeee

e. e e. d...

~ as z rrrrrrrrrrrrrrrrr=rrererrrrerrrrrrrrrrre r emeooooooooooooooooooooooooooooooooooooo w o o o o o o o o o o o o o o o o o. o o e o. o o o o o o o o o n o c o m o u

o. m. e. o. o. o. o. o. o. o. o. o.o. o. o.... o. e.. o. o. o. o oe

> > > > > >4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4>> we as e4444

e. o. e. o. e. e. e. e. e. o. o. m. e. w. o. o. o. o. o. o. o. o.

eco ->->mo emme-to-4 men * -me-em-=*N m- -Neemecem N-eeemmmecomoN-me--#4 u -moeveem4 = ee=>ece.eeeewome ekeememeem>Nem-meeNeeme e e4 4 m W.9 =W ee

  • 4 9 A m e9 m 4

A 4 o *9 4 e9 4 e9 se 4 e4 e9 4 e9 e9 +9 M we c-m-eN>r*>e=N.4m.e.ne.ooekeo .mm. em-N-meNe &4 -Nm--- N --N >= --N eooo-e r NNNNammeemmmeccheme e*4>=mtemeeeemmmem--m-mmWNNNN 3 -NN we ---magam--m-m-mmMNN e en-mmmm-~~~~~ mmm--NNNNemmmmmmmmmmmmmmm Go -ma NNNN + oE N N. N. N. N. N. N. N. N N. N. N. N. N. N. N. N. N. N N. N. N. N. N. N. N. N. erem.+ece...eeece n w m-e. n--------un-M---m-nn--mm--mme.--m-n-m-u> Weston Geophysicat

1 5 e. 3 w= eeRw D=. ~.e. - o

== u. 3 e e. massmaassassmassos n w w es w w w tu w w ue w w w w w w & w S w. =. w o = .a 3-u w-a C eo o a w u we os as ma e m ~ . e. e e. e... ~. e... e. e.. w

e. m e

n my e. c = .a m. m~~m~.~m~ ~mm se ~ e o. a. m a w j

== W m e. - e n a a E u. w z r $9 E a. ..e. .c... .m* ww en -E r .s 3 o up uw 333.333333333333333 e. p U. on.....

e. s s

m ....#..........................e. m. .s e ws

== .s

== z 3. = .so ........z.r x.e.r z w a.r r.e

=

o..

wo ........n....................... .s

a..

w. rs MkkhhMMMMMM>>>>>M.k. eu ee.. m. s u. ..eue.--mee.e -e==. <= enc -cum... ww ~-- e. .~e..e. ~4..==.....a we o .. e n e.4 e 44 ~ s m - - m..e. n. n.... ~ ~.. n of .=~. ---~%. o-a. .--~~....n---.....

s. 3

-ou =mm nnann-~~ = .s O. s -no name.............. we os b N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. -w z. eeeeeeeeeee.ce...e w nnnn-nnnnnMnnmannn vm p Weston Geophysical

= w w = a E J. E = o. w r m u = m.

=.=. a. f. w*x z a

m

r* m . = o o wo. o W e m

s. E 3 o
  • a e

= z =am muw u a wz-a -u s w-vow e e ss. o*sw ~~M N een ww-e => e *

  • Mw

=.

=

w.. -

a== on um w

    • e

. o = = = =. B ~a ~z e a = a w ea==

= w

= een u

  • -so

== - o a = anx = eem

  • asm = u 3

-euwd -o- = a w--=W

  • WD m*J e ewo. = =

== sons assamow-a r.d w -e a wasp > ...e

  • -az.

a Enw*o nowes** s o.m m a w r e. = = =**=.*awa u a zeo mo*w.ww en meose -ew

=

. ee-oo r. w --. = -w*-mo*wwre ,w e c. o .ss-=wz.ae w as z - sw sms o a m. s. u - z o. s

  • w a s - m. e m w---

aomons ww Wswa====mamem== ~ sz - w = ts ~~ a w=ow* = auro a ES9FeDoEsEeWo u

==-K$ w

=

=ce

s g =wo. = a o

====- = y = w * = e a = se w a o a m o n =~eem u e s w==== z Q e ~~*- w momes = o a wowva = m u -E--r a -o-w N -s-E = ww e mem-a y = =

==r a e we 3-d 3 w www e o* E o e o z = =wn- = -u-es s = o m.

  • w.

= m. =

== em.-

==to w worn a a m. =. a s w co z a x a = m D m33Jo e a w -== = e

===ve o a-em u ezw-wan -o ee u*oo=*a .owNe s2= w e-sre= E_ mazoo-=

  • >o o

-w w w ~m = we ao ns=~ m

  • w mo e vrown sm u====

a*==e*

  • w.o-=

c wa eo om.-*=. - zo wo vonwr=* r-a a sz .o

  • emos.

oosa

  • =

er sm mo-de a4 - MJ.e o. 4De W So omzu sos e.ae m a vz o -**o -r -o* wasI =. n. w e. e n. w o. u. m -ere m. . e. w o w w. z w a = =

  • o

= = =..w

  • o w s-o s = = = = = = =

zz s E* s-=-.ewu=*zz=www WEeX m w wore ososewweemszs a osuo esoJ W3m=*s>s 3 m.e - o nume.o======e= mamu mesesco-w-em

  • =a aaea

'9 E erwoommza-o== = orsW eemewooww-sus = zat = z Weston Geophysical

TABLE 230.8-4 $14CNG M31104 RECCtD$ PROH TME h?W 84U45d!CE AFTEROM3CES C8 match 31. 1992 ANC Mt1 6, 1932 Ca85e4CTE3 FR3M W!!CMIRT ET AL. 1182) (VENT SITE L3C A11CN C3MPCNENT CC3RfCTES PEAK EPICENTR&L ACCEL ACC "tEl vtL9 DISP CISTa4Cf (CM/5/1) (MI) (CM/5) (CM) (EM) L.018 178.00 18 1.31 0.03 6 31 MARCH 1982 MCLPf 5 Latt UP 151.0) 37 0 53 0.02 6 T-238 340.00 41 1.37 0.05 6 31 MatCM 1)B2 MITCHELL LAW! RCAD L-118 149.D0 18/25 1.81 0 05 4 UP 571.00 37/61 2.90 0.c7 4 T.028 241.00 22 1 91 0.05 4 31 MARCH 1982 LOGGIE L303E L-249 292.00 22 1.80 0.C0 6 UP 332.01 47 1.82 0.11 6 l 1 099 544.00 28/35 4.11 0.19 L.321 417.00 24 2.72 0.06 3 l 31 M&ECM 1982 1%3!4N 6tC3R UP 144.03 25/40 0.90 0.03 3 T-231 405.r0 24 3 11 0 12 3 06 M1T 1962 LOGGI! L1C3E L-139 115.03 10/25 1.36 0.C3 7 US 66 09 19 0.71 0.01 7 T.099 146.00 13 1.76 0.CS 7 p 'Nesion Geophysical

l l 1 TABLE 230.8-5 l Site and SM Instrumentation Infor1 nation l I i Site Name location Installation Foundation /Subnoff Sensitivity Nat. Freq. Direction l sen/G Hz o f 1, (Lat N, long %f) (1982) and l Kinemetrics [ Scrist No. 1 Holmes I.ske 46' 56.73' 03 Feb. 20:00 massive concrete t. 18.8 25.5 18' h 66* 35.67' 4935 Iiveplace hearth on V 19.8 26.0 ,.3 5 m alluvium T 19.3 25.0 7= 2 Mitchell Road 47' 02.05' 04 Feb. 16:30 bedrock 18.6 26.0 118* 20.3 24.9 1I 66* 36.62' 4934 17.6 26.4 0 ;.3 O'

5.

same .Ij.) 47' 02.05' 04 June 18:20 66* 36.70' p'- 3 toggle todge 46' 58.15' 04 Feb. 20:45 major granite boulder 19.0 25.5 189* II .I * (; f 66* 31.74' 4936 on 5 m alluvium 20.0 24.9 19.2 25.7 g g *". 3,, ! 05 June 16:33 site closed j. 4 Indian Brook 46' 58.73' 05 Feb. 20:00 granite boulder 19.1 25.5 321* k 18.7 26.1 66* 34.85' 4937 on gravel ={ 18.3 25.7 ~r 05 June 15:00 site closed I 7 Bear t.akes 46* 55.71' 07 Feb. 18:30 concrete pad on 38.0 18.8 170* 33.6 17.6 66* 29.08' 1064 gravel 36.2 19.1 07 June 13:38 site closed 0* same as 12 indian Brook 11 46* 59.6' 06 June 15:47 hedrock sItc 4 66* 35.8' 4937 g 3 0 831o9

DOCUMENT ~ PAGE ~ PU _ LED ~ ANO.swar 1 NO. OF PAGES J-REASON O PAGE ELEGIB2 O HARD COPV FEED A1. PDR CF OTHER J__ 3_ D BETTER COP (REQUESTED ON _ E 10 FEM. COP (FEED A1: FOR OTHER _ M 207 Q D FEMED ON APERTURE CARD NO ~~~~'~~~ ""

NORTH WALL M' 7 0800wo su, Face / / / s ,/ / TILL ,- g ____________----c' ,,,L "',,e goc6 E g3SE g Y LATHERED ROCK ff FRESH ROCK TRENCH FLOOR NOTE: 14rt equals approximately 2 ft. PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE GENERALIZED SKETCH SEABROOK STATION - UNITS 1 & 2 NORTH WALL OF TRENCH FINAL SAFETY ANALYSIS REPORT l FIGURE 230.8-B

l ev us.n.c.w.y a g $s m'.s.p".z.;p.y r = f p. g.a i% . w;y n.,t'E'5Y.:.plf.!=kp {$ I f.$$ m';.\\w.t..+;4;.1f :. s w:. n'b.v v. w: w'

P'tl4h.

'?21:!.%!M.';?,yM; iy.: .:h;. zy k .T *. e .'.j)?ji' [$n.t n-

j dtt

-{1 '"h ;.. ' jif l'5$*.,;$b'd.3/bN AI*

.3. QN.+.c'i.'n.j'.Or:

-;st a.. " 63i d \\ r:i;rg: t ,w i:.c m' hwg !!!m & :ui%@$f.W) h 9 f 192 lJ E u%ili',W".:.- m.i .w.4 > 9... 9 wn 8 .u,3. p:, :. m:9.cs....: s-l

  1. j

.:..qr:7 jpr.a<:qcy x; .ut..y%g

  1. .t.ybh"s?'bh.

y a h. $h..bi h n qqlf{$ ai uu mp!I!k!!fh s kkf h h$kkifhIkkE$ j E W <'n gg.y.:k.r~;p*hy s t 3 LQ %f,..s.W' 3 GYM. \\ v >y

r

.z. ~" +.vb L n - gg W yh" .iC4.$ S. N h '; -2 6%-

%W,ydigf' K.

i i f'$?# ( -s Wgg v3!' ~ sw THREE-DIMENSION AL VIEW OF PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE NEW BRUNSWICK F AULT PL ANES SEABROOK STATION - UNITS 1 & 2 FINAL SAFETY ANALYSIS REPORT l FIGUR E 230.5-1

e e / r %s { \\

ll;a taa a

\\ y 2Fs'v. h nf 8 l l I l .j = / Y 'L";;gs- ;/ h S==n= =re+

^::^":t,^:= =....

FINAL SAFETY ANALYSIS REPORT

~ 0 t o o e 3

  • 'S

+ + ..na.. se o sa O st+.,, 4 e..e. tsease a, g,w. s,s ,e,,, - ]seesasa e to,, e a y A Det 4 H gew, a as g x r ,,a... .-.. e7 g;.a=... g..u ag.. > g . a " ....i. 3 aus e, yas, a.,,,,, ,,,, 3,, g m,,,,,,, T'***

g..,.......

m m "" a "

e.......

O' ses, e

  • g gas,essas y

,,,,.. e....s &,.,=,,.,.,,., O na ' ' I ..n seen a as g,,,s a as e aa a a,.. g... 1 O sues i as asee, a se stas e se C " "88 ** amia s [ j se,e a s. C o,eo e se g aus e st + 460 M 4 gasse s is 4 flAONITUDE IhiENSITY m 2 e 333 LEGEND monituot aucts reca o.o to r.s 8 3 g y intrusit, austs rnon i to a 4 flit win 30W 9ttlus 1800 Emes 1982 yg T g y3, 3 m 6 y;;j \\ / SMRIC AL D AT A AROUND ME PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE NEW BRUNSWICK 1082 EVENT S i SEABROOK STATION - UN'TS 1 & 2 FINAL SAFETY ANALYSIS REPORT l FIGUR E 230.8-3 t t

1 g w g 2 n E g W E O.5- \\ z \\ e >4 E w JWO N W> l-4 !O WE v .\\. O.1 10 50 Hz 100 FREQUENCY (Welchert et al.1982) AMPLITUDE RESPONSE CURVE PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE OF THE SMA-1 ACCELEROGR APH SEABROOK STATION - UNITS 14 2 FINAL SAFETY ANALYSIS REPORT l FIGURE 230.8-4

I i i i iiiii i I i I i l i 1i MARCH 31, 1982 4.8mb 10 - m m C nu o _ _ _ __ _ _ _ _ _ _E. _ __e_ _ _ _ _ _ _, =y N g u s 1 'N g g N g s s s's, w s, 's, m s =: n: e x NEUS -a: A O NUTTLI and HERRMANN s 50.1 (1981) w Z '- HASEGAWA et al Z (1981) I I I I I I I ' ' ' I' 0.01 1 10 100 EPICENTRAL DISTANCE (KM.) PE AK HORIZONT AL VELOCITY FOR PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE THE M ARCH S t.1982 E ARTHQUAKE !sEABROOK STATION - UNITS 1 & 2 FINAL SAFETY ANALYSIS REPORT l FIGURE 230.8-6

Ouestion 230.10 Considerable geological and seismological research has been carried out in New England during the past few years by state geological surveys, universities, consulting firms and the USGS. Many of the publications reporting the results of this research have been published after docketing of the FSAR. Many of these publications are referenced in the NRC, 1981, NUREG/CR-2131, New England Seismotectonic Study, FY 1979. Others appear in various earth science publications. Update the FSAR to include an assessment of the most recent earth sciences research as to their significance to the geologic and seismic safety of the site. Response 230.10 The applicant and its consultants have reviewed the summaries of "The New England Seismotectonic Study activities during FY 1979" (NUREG/CR-0939), by P.J. Barosh and others. Similar reports for the Fiscal Year 1980 (NUREG/CR-2131) and the Fiscal Year 1981 (NUREG/CR-3253) have also been reviewed. This study program was a six year effort, to be concluded at the end of Fiscal Year 1982. The report for FY 1982, not yet available, is nticipated as a final report for the six year program, and as such should be more synthetic than analytic in its content. This present review has been selective of those research summaries that in topic or areal coverage could have some impact on the geologic and seismic safety of the Seabrook site. Each annual report contains from 25 to 30 summaries describing work in' progress and, sometimes, preliminary findings. Selectivity is in order since in the author's words: "Each year the study consists of a wide variety of scattered investigations, each of which is systematically providing needed information on a particular region or area of higher seismicity (NUREG/CR-0939)." In the introduction to each annual report, Barosh summarizes the key findings of the year. Our assessment of these reports confirms our preliminary response (March, 1982) to the above Question that none of the more recent publications bear significantly or adversely on the safety of the Seabrook site. Among Barosh's important findings and repeated themes: 1. A very uneven distribution of earthquakes exists throughout New England, with concentrations in a few areas only. 2. The population and seismograph distributions do not appear to have greatly biased the results (i.e. the earthquake distribution). Weston Geophysical d

- _ _ - _ - _ There is a poor correlation of seismic activity with 3. Paleozoic structures but a closer relationship of earthquakes with Mesozoic features, particularly those related to Cretaceous Continental Margins, can be found, High angle extensional faults are known or predictable in 4. most activo areas. Active areas are generally located in lowlands, with 5. altitudes below 300 M. The exceptions are the White Mountains in New England, and the Adirondack Mountains in New York. Seismically active lowland areas are presently subsiding. 6. Passanaquoddy Bay and some part of the southern Maine coast are good examples of subsidence, while the Adirondack area r and central New Brunswick, also active, are regions of crustal uplift. Seismicity is thus associated with vertical crustal movements. The epicentral patterns parallel the general trend of 7. geologic structures, thus implying that old faults are currently reactivated. These summary statements have no direct implication on the seismic safety of the Seabrook site, since they do not question the adequacy of the 1755 Cape Ann earthquake as the Safe Shutdown Although Barosh explicitly rejects the correlation Earthquake. of seismicity with Mafic Plutons, and specifically considers the Cape Ann area one of many examples where earthquakes occur in embayments because Cretaceous continental margins are sagging, his hypothetical tectonic model does not imply at this time any need to modify the present S.S.E. Besides the investigations carried out under the New England Seismotectonic Study Program, abundant research on seismological topics and tectonic models related to New England has been sections 2.5.1 and undertaken since the preparation of F.S.A.R. 2.5.2. A selective list of relevant references that were reviewed is attached. For the purpose of assessing their significance to the seismic safety of the site, these contributions can be sorted in two first, seismotectonics and COCORP studies; second, groups: studies of specific earthquakes and seismic parameters. 1. Seismotectonics and COCORP studies The recent availability of data from expanded local seismographic networks, both in Eastern United States and l

- - - __-_- Canada, has made possible the study of earthquake distribution, both spatial and temporal, earthquake inferred stress regime, correlation of seismicity mechanism, with known geological structures and preliminary definition of seismic zones. Sykes (1978), Yang and Aggarwal (1981), Barosh (1982), Pulli (1983) have reviewed older and recent information and, on that basis, formulated their own conclusions on the causes of current earthquakes. Although there is a general agreement between these authors on most of their observations and some of their interpretations, they nevertheless show differences in the emphasis given to the significance of these interpretations. If the concept of reactivation is common to Sykes (1978), (1981), and Barosh (1983), in the Yang and Aggarwal generation of earthquakes, differences exist with respect to For Sykes, the which structures are reactivated. are reactivated are pre-existing zones of weakness that identified in "the Appalachians as pre-existing faults that trend nearly parallel to present-day continental margins as well as along features transverse to the margins." continental extensions of old transform faults are In the considered potential locales of higher seismicity. case of large historic shocks in Massachusetts coincident with a northwest trending linesment, Sykes still wonders if it is possible that they could be associated with northeast striking Triassic structures. On this point of earthquake association with structures. Yang and Aggarwal are more restrictive and do not support a seismic trend in New England transverse to the Appalachians. They also propose that earthquakes on the eastern margin of the Appalachians occur along existing faults, in response to stresses generated by the thermally induced horizontal gravity They see variations in the oceanic lithosphere offshore. the two distinct seismogenic provinces in the northeast: Adirondack - Western Quebec Province and the Appalachian Uniformity of horizontal compressive stress Province. orientation within each of these provinces is one of their major conclusions. This position is in agreement with Zoback and Zoback (1980, 1981). The consistency of stress orientations as deduced from fault plane solution of local earthquakes is not fully accepted by Pulli and Toksoz (1981) and Pulli (1983), for the They recognize the existence of a Appalachian Province. i.e. consistency between many of the solutions, but

trend, They wisely point out that the admit clear differences.

current data were obtained from relatively small to moderate in such cases the earthquakes, with shallow foci, and that compressive stress distribution is more likely to be influenced by local features. Grainam and Chiburis (1980) had reached a similar conclusion. Weston Geophysical The general agreement among all researchers that seismicity instrumental data are remarkably patterns based on recent similar to those obtained from the historical record is in support of FSAR section 2.5.2.1. This observed spatial in the selection stationarity is a fundamental elementCurrent divergence of opinions on the process of the S.S.E. temporal stationarity of earthquake rates of occurrence is indicative of both the relatively short observation time and the need for better data. Data generated by the current COCORP program (Brown et al, 1983, Ando et al, 1983, Oliver et al, 1983) confirm that the and this applies to New England, is more intraplate crust, structurally and lithologically complex than was thought. There is evidence of large-scale thructing with considerable of off-shelf metasediments over coeval, horizontal transport undeformed lower Paleozoic rocks. Vertical complexity is also supported by the presence of metasedimentary rocks under zones of igneous rocks, even at great depths, The COCORP emphasizing the importance of the Wilson cycle. northeast traverse in New York, Vermont and New Hampshire reveals the existence of numerous east-and west-dipping reflectors, of arched reflections possibly representing folds, and of Moho-reflections. The eastern boundary of the Green Mountains seems to be defined by a major east-dipping crustal thrust zone or fold line that reaches Although more profiles, It2st 9 Km. to depths of at and parallel to these already acquired extended to the east are needed to map the entire substructure of New England, indicate that as the the first COCORP data for the northeast the association of current hypocentral accuracy increases, seismicity to specific fault and geologic structures may become a reality. In this sense, these recent findings can since the be seen as aignificant to the site safety, causative structures will gradually be identified. Studies of__ Specific Earthquakes & Seismic Parameters. 2. Responses 230.7 and 230.8 have incorporated or referred to studies of the New Hampshire and New Brunswick earthquakes Other less important earthquakes have been of January 1982. for the purpose analyzed individually (see reference list) intensity attenuation of obtaining fault plane solutions, Three data, and possible correlation to geologic featuros. sets of fault plane aolutions are found in Graham and Yang and Aggarwal (1981), and Pulli and Chiburis (1380), With respect to events from Ne's England and Toksoz (1981). closer to the Seabrook site, there is a sufficient number of Weston Geophysical

- - _ _ - _ similar solutions to support the predominance of thrust faulting mechanism. However, the orientation of P axes varies too much to yield a prevalent unequivocal azimuth. The association of recent hypocenters with individual faults been attempted in New England as in New Jersey and has not New York (Ramapo Fault). Ebel (1982, 1983), studying the has aftershocks of the 1979 Bath, Maine earthquake, suggested a possible correlation of the seismic activity Although his data set is with the Cape Elizabeth fault. a correlation is possible. In a similar way, Pulli

limited, have noticed that the probable fault plane of et al (1983) the Gaza, New Hampshire event (h20*E) is aparallel to the local structural grain of the area and the trend of instrumentally located earthquakes."

In the Seismological and Geological Studies, Miramichi Area New Brunswick and Central New Hampshire" (Weston Geophysical, 1983), the same trending earthquake had been associated with a northeast seismic lineament which also includes the 1940 earthquakes. is parrallel to or coincident with remote The lineament sensing lineations (N10E-N20E) which correlate in the field with mapped faults and joints. These studies of recent earthquakes have no impact on the selection and adequacy of the S.S.E. for Seabrook. They do however add more reliable information toOards the elaboration and selection of those tectonic models which will explain the region's larger earthquakes. The study of source-parameter relations for mid-plate (1983) constitutes a significant step earthquakes by Nuttli in earth science research with potential applications to in that it seismic hazard and determination of S.S.E., reduces the dimensions of fault structures previously Clearly these new associated with given magnitudes. relations will become more important as observed seismicity is associated with identified structures and the earthonake potential of these structures is integrated in the selection of the S.S.E. With respect to the prediction of seismic ground motion estimates for the New England region, two significant and contributions were made by Klimkiewicz (1982) (1982). In the first study, the Klimkiewicz et al uncertainty of calculated rates of occurrence is traced down to various sources, e.g. choice of particular ab-Io OC mb-ML correlations, definition of complete intervals, In the second study selection of cell-widths, etc. thousands of intensity data points, from earthquakes with Weston Geoohysical

~ well defined magnitudes, including some from the New are combined IIampshire and New Brunswick 1982 earthquakes, to derive, using the multiple regression technique, an intensity attenuation model which defines median estimates as a function of Io (and associated standard deviation)These studies have contribu of magnitudo and distance. the definition of seismic hazard and associated uncertainty. In summary, neither the seismological and geological data or research of the last three years have produced results which for Seabrook. would change the selection of the S.S.E. Weston Geophysical

REFERENCES:

Alexander, S.S., and Lavin, P.M., 1982, Further evidence on the block-tectonic structural fabric of the eastern United States and its present significance (abs.): Earthquake Notes, v. 53, no. 3, p, 11.

Ando, C.J.,
Cook, F.A.,
Oliver, J.E.,
Brown, L.D.,

and Kaufman, Sidney, 1983. Crustal geometry of the Appalachian orogen from seismic reflecticn studies, jIt Hatcher, R.D., Jr., and others, eds., Contributions to the tectonics and geophysics of mountain chains: Geological Society of America, Memoir 158, p. 83-101.

Barosh, P.J.,

1982. Seismotectonic zonation of New England: Third international earthquake microzonation conference, Proceedings, National Science Foundation and others, sponsors, University of Washington, Seattle, June 28 - July 1, 1982, v. 3, p. 1239-1250.

Brown, E.J.,

and Ebel, J.E., 1982 A study of selected aftershocks of the January, 1982, earthquake near Laconia, New Hampshire [ abs.]: Earthquake Notes, v. 53, no. 3, p. 14.

Brown, L.D.,
Ando, C.J.,

Klemperer, S.,

Oliver, J.E.,
Kaufman, Sidney, Czuchra, B.,
Walsh, T.,

and Isachsen Y.W.,

1983, Adirondack-Appalachian crustal structure:

The COCORP Northeast traverse: Geological Society of America Bulletin,

v. 94, no. 10, p.

1173-1184.

Cook, F.A.,

and Oliver, J.E., 1981 The early Paleozoic conti-nentalledge in the Appalachian orogen: American Journal of l Science, v. 281, no. 8, p. 993-1008.

Curtin, P.L.,
Pulli, J.J.,

and Godkin, C.B., 1983, A new crustal model for central New England - Implications for hypocentral calculations and fault plane solutions [ abs.]: Program and Abstracts of the 55th annual meeting of the Eastern section of the Seismological Society of America.

Doherty, J.T.,

and Lyons, J.B., 1980 Mesozoic erosion rates in northern New England: Geological Society of America Bulletin, Part 1, v. 91, no. 1, p. 16-20.

Ebel, J.E.,

1982 A reevaluation of the aftershocks of the 1979 Mc=4.0 earthquake near Bath, Maine: Earthquake Notes, v. 53, no. 3, p. 16.

Ebel, J.E.,

1983, A detailed study of the aftershochs of the 1979 earthquake near Bath, Maine (submitted to Earthquake Notes, 1983, no. 4). Weston Gzophysical

. Ebel, J.E., and McCaffrey, J.P., 1983 The 1983 Mc=4.4 earth-quake near Dftfield, Maine (abs.): Program and Abstracts of the 55th annual meeting of the Eastern section of the Seismological Society of America. 1981 An intense

Ebel, J.E.,

Vudler, Vladimir, and Celata, M.A., microearthquake swara near Moodus, Connecticut (abs.]: Earth-quake Notes, v. 52, no. 3, p. 13-14.

Sbar, M.L.,

and Sykes, L.R., 1978, Seismic trends

Fletcher, J.B.,

and travel time residuals in eastern North America and their tectonic implications: Geological Society of America Bulletin,

v. 89, no. 11, p. 1656-1676.

Graham. T., and Chiburis, E.F., 1980, Fault plane solutions and the state of stress in New England: Earthquake Notes, v. 5, no. 2, p. 3-12. and Bayer, K.C., 1979, Sequential development of

Harris, L.D.,

the Appalachian orogen above a master decollement - A hypo-thesis: Geology, v. 7, no. 12, p. 568-572. 1983. Earthquake hazard studies in New York State

Kafka, A.L.,

and adjacent areas. Final Report April 1976 - June 1982, NUREG/CR-3079RA.

Kafka, A.L.,

Schlesinger-Miller, E.A., and Barstow. N.L.,

1982, 1979:

an The Cheesequake, New Jersey earthquake of January 30, inquiry into seismic activity in the Atlantic coastal plain Earthquake Notes, v. 53, no. 3, province of New Jersey [ abs.]:

p. 21-22.

Klinkiewicz, G.C., 1982, Estimation of seismicity parameters for the Northeast [ abs.): Earthquake Notes, v. 53, no. 3, p. 22-23. Leblanc, Gabriel, and Johnston, J.C.,

1982, Klinkiewicz, G.C.,

Reassessment of ground motion attenuation models for the Northeast (abs.): Earthquake Notes, v. 53, no. 3,

p. 23-24.

and Thomas, M.D., 1981, Gravity Kumarapeli, P.S.,

Goodacre, A.K.,

and magnetic anomalies of the Sutton Mountains region, Qu4bec Expressions of rift volcanics related to the and Vernent: Canadian Journal of Earth Sciences, v. 18, opening al Iapetus: no. 4, p. 680-692. 1983, Average seismic source - parameter relations

Nuttli, O.W.,

for mid-plate earthquakes: Bulletin of the Seismological Society of America, v. 73, no. 2, p. 519-535. Weston Geophysical ___________y

l f and Brown, L.D., 1983, COCORP and the

Oliver, J.E.,
Cook, F.A.,

88, Journal of Geophysical Research, v. continental crust: no. B4, p. 3329-3347.

Parrish, J.B.,

and Lavin, P.M., 1982. Tectonic model for kimber-lite emplacement in the Appalachian Plateau of Pennsylvania: Geology, v. 10, no. 7, p. 344-347. earthquake mechanisms, and seismic 1983, Seismicity, wave attenuation in the Northeastern United States, Ph.D

Fulli, J.J.,

thesis, Massachusetts Institute of Technology, 390 p.

Pulli, J.J.,

and Guenette, M.J., 1981, Letter to the editor, The Chelmsford-Lowell, Massachusetts, earthquake of 23 November Bulletin of the Depth control and fault plane solution: no. 4, p. 1369-1372. 1980: Seismological Society of America, v. 71,

Pulli, J.J.,
Nabelek, J.L.,

and Sauber, J.M., 1983, Source 1982 Gaza, New Hampshire earth-parameters of the January 19, Program and Abstracts of the 55th annual meeting quake [ abs.]:of the Eastern section of the Seismological Society of America. and R.R.,

Johnston, J.C.,
Tubman, K.M.,

Field investigation and fault plane solution

Pulli, J.J.,
Stewart, 1980 1979:

Earthquake

Michaels, A.,

of the Bath, Maine earthquake of April 18, Notes, v. 51, no. 4, p. 39-46. 1981, Fault plane solutions for and Toks52, M.N., Bulletin of the

Pulli, J.J.,

Northeastern United States earthquakes:v. 71, no. 6, p. 1875-1882. seismological Society of America, 1963. Attenuation of strong motion

Pulli, J.J.,

and Toks52, M.N., no. 3, p. 32. in New England [ abs.): Earthquake Nates, v. 53, Stratigraphic relationships

Rowley, D.B.,

and Kidd, W.S.F., 1981 and detrital composition of the Medial Ordovician flysch ofimplications western New England: Journal of Geology, v. 89, no. 2, p. of the Taconic orogeny: 199-218. 1982 Geophysics of the Qu6bec Appalachians:

Seguin, M.K.,

Tectonophysics, v. 81, no. 1, p. 1-50. and Houlday, M., 1982, Contem-

Statton, C.T.,

Quittmeyer, R.C., porary stress as inferred from recent seismicity in New York and New Jersey [ abs.]: E3rthquake Notes, v. 53, no. 3, p. 36. Intraplate seismicity, reactivation of pr6-1978.

Sykes, L.R., existing zones of weakness, alkaline magmatism, and other Reviews of tectonism postdating continental fragmentation:

no. 4, p. 621-688. Geophysics and Space Physics, v. 16, Weston Geophysical

. Taylor, S.R., and Toks52, M.N., 1979, Three dimensional crust and upper mantle structure of the northeastern United States: Journal of Geophysical Research, v. 84, no. B13, p. 7627-7644.

Taylor, S.R.,

and Toks5z, M.N., 1980. Crustal structure of the northeastern United States: Contrasts between Grenville and Appalachian provinces: Science, v. 208, no. 4444, p. 595-597. W?ston Geophysical Corporation, 1983 Seismological and geological studies, Miramichi Area, New Brunswick and Central New Hampshire: Prepared for Maine Yankee Atomic Power Co., Public Service Co. of New Hampshire, Vermont Nuclear Power Corporation, and Yankee Atoric Electric Co., 233 p. Wetailler, R.J.,

Adams, J.,
Stevens, A.E.,
Anglin, F.M.,

Hasegawa H.S., and Berube, J., 1982, Aftershock sequences for the New Brunswick earthquakes of January 9th and lith, March 31st and June 16th, 1982 (abs.): Earthquake Notes,

v. 53, no.

3, p. 41. Yang, J., and Aggarwal, Y.P., 1981. Seismotectonics of north eastern United States and adjacent Canada: Journal of Geophysical Research, v. 86, no. BG, p. 4981-4998.

Zoback, M.D.,

and Zoback, M.L., 1981, State of stress and intraplate earthquakes in the United States: Science, v. 213, no. 4503, p. 96-104.

Zoback, M.L.,

and Zoback M.D., 1980. Stats of stress in the conterminous United States: Journal of Geophysical Research,

v. 85, no. Bil, p. 6113-6156.

R-264-1283 Weston Geop%5ical ___-.___J}}