ML20082G721
| ML20082G721 | |
| Person / Time | |
|---|---|
| Site: | LaSalle |
| Issue date: | 07/24/1980 |
| From: | SARGENT & LUNDY, INC. |
| To: | |
| Shared Package | |
| ML20082G653 | List: |
| References | |
| CQD-000835, CQD-000835-R0, CQD-835, CQD-835-R, NUDOCS 8311300311 | |
| Download: ML20082G721 (21) | |
Text
.
s L
g,,,'
i
' F, n Rnp F LA SALLE NUCLEAR STATIONS ca:c. scy n.0llTPMEiji l
. u. c.
(-
(l ReV:
.r.--
Data:
l 1
UNIT 1
Prof. ib: covgpq; i Pa2e..7.g.
01__
T-QUENCHER JOB NO:
REQUALIFICATION CERTIFICATION FOR l
EQUIPMENT AFFECTED BY POOL DYNAMIC LOADS p
l EQUIPMENT NAME:
LVP Electric Penetration SPEC. NO:
L 2.5 5 2 Ra.m h c.eul..
l Sez List o.ita.c ba cL mcLe.,
s l
EQUIPMENT NO:
Containment Elevation 755'-0" fo 775 C" LOCATI0N:
EQUIPMENT CLASSIFICATION:
L] ACTIVE 3 PASSIVE l
SEISMIC QUALIFICATION REPORT
REFERENCE:
7 k
1.
Conax Corp. Report Nos. IPS-331A Dated 9,'29/78 l
,2.
3.
l
'. LOAD COMBINATIONS CONSIDERED:
l q
1.
Normal Operating Loads + OBE + SRVASY-TQ +
ALL-TQ N
OP 2.
Normal Operating Ioads + SSE + COEVY-2+ SRVg y_,fg+SRV ENVELO?g 3.
Normal Operating Loads + SSE+ Chugging + SRVASY-TQ+
ALL-TQ
)
4.
Normal Operating Loads + SSE + AP 5.
Normal Operating Loads + SSE + CO Lgyy_y Prepared by:
[r'nnahD ats Date:
7 Ol)
Reviewed by:
7
([
p Date:
7 -2 3 -&C
/d v 7,/--
f.4 v
Date:
7-Z2/- 70 Approved by:
g
]
1 SARGEijTMUNDY !
0311300311 831128
- nuo uannaa DR ADOCK 05000
,c-
^
REQUALIFICATION
SUMMARY
(
ORIGINAL SEISMIC QUALIFICATION METHOD:
q Calc. No: C Rev:..cc Q.-.D _.s:r.cE;;:.5 Date:
Analysis:
@ Static Proj. No: q;jgj;ygg,,q Page..J. 5..... 0f..
Dynamic Equivalent Static OTest:
Single Axis Single-rrequency 1wsting OBiaxial O niaxial aanaam action Testing OOther (Explain)
'IHauencher Reaualification Method:
A)
By Analysis O namsheaa envelops T-Quencher naS (Curves attachea)
@ Original Qualification g-levels' greater than new g-levels h2 V
I hl Original 1.6g 1.6g 1.6g New 1 lg 1.lg O.6g Duewaynamicanalysis One-analysistoRequircanewg-levels hi h2 V
Nozzle loads used are PIPSYS END File NA Other explain OOperating loaas consiaerca oyes Ono ONA
(
Explain Procedure.
\\-
SARGEjTEtLUuirl
. aua,~....
s Calc. !!0: CQD. a.rp;) (,
Rev: C--.DMe-Prof.tio:,g.,gggg,g,jr.f~g Stresses Page...M4. 0f.. '
t Iocation Actual Allowable Conditicn i 8-QA 0 7n6 k w' lotfeufa.bjery3 (NlEi4 $
DeflectiSn B) By Testing OTRS envelops RRS (attach curves)
Required g-levels Test g-levels (attach curves) hl h2 V_
CRequiredLevels OTest 9-levels OTest duration Frequency range Hz.
OCrossCoupling-considered Dcplain:
Ibde Participation Explain:
Functiorul Verification performed.
Explain:
(.
T-Quencher Requalification Pbview Procedure:
i SARGEUTELUDDY l
'ENQtNE E RE.
O ca.nac@ f ~_,
. 0c s c c;;;;. it.. lac 6,WF7 "' ' i LA SALLE NUCLEAR STATIONS 1
UNIT -l
/2A td 6H E A.D
~
JOB N0:
REQUALIFICATION CERTIFICATION FOR EQUIPMENT AFFECTED BY POOL DYNAMIC LOADS EQUIPMENT NAME: LVP Electric Penetrations SPEC. NO: J-2552-1 I
EQUIPMENT NO:
See Attached Sheet LOCATION: Containment Elevation 754 '-0" to 775 '-0" Various Locations-EQUIPMENT CLASSIFICATION:
[] ACTIVE
@ PASSIVE SEISMIC QUALIFICATION REPORT
REFERENCE:
1 Conax Corp. Report Nos. IPS-331A Dated 9/29/78 The above seismic qualification report (s) have been reevaluated and requalified where necessary to show that the above-mentioned component is capable of performing its intended safety function un' der all the applicable loading combinations including the pool dynamic loads.
Prepared:
Approved:
i Date:
l SARGEilT k LUi10Y T!'_"'_""_"_1 v---
m
x Calc. NO: CQO. c cr.,:>: :
i37.0 C...
.03 Pr0j. It's.'t 1blo)I':
d 7 ##' ~ ~'
F::ae 2-6 Ot.
QUALIFICATION
SUMMARY
Seismic Qualification Method:
Seismic qualification is by a combined analysis and testing method.
Method is per IEEE 344 Std. & S&L form 350 A.
In the analysis, the SSE Seismic loads are applied and the OBE Material allowables'are used in determination of Seismic adequacy.
Therefore, both OBE end SSE conditions are satisfied.
A dynamic test is performed on a representative piece of I
the Specimen.
See attached sheets for details of test.
SRV Requalification Method:
The original report considered SRV effect by taking SRSS of OBE/SSE + SRV and not the absolute Sum of OBE/SSE + SRV loading.
To qualify the equipment for the latter case, additional details calculations are made for stresses using l
absolute Sum loading.
Based upon these additional calcula-l tions, the subject penetrations are qualified for the l
absolute Sum of Seismic + SRV loading.
l l
l l
l i
l 1
i l
SARGENT t LUfjDY l '
Ref: EMD File No.
016058 l (g3.;fg6 25 cNamsunab 1
l M_ ^ '*Sd
(
Qualification Summry of Equipmnt
- 0 6dh' -
I
.c o
lA 66/J74 I
N$j.llo.
/
hae 2-7 I.
Plant Nam:
LaSalle County 1 Type; 1.
Utility:
CECO M
f 2.
NSSS; G.E.
N X
3.
A-E; S&L LVP Electric Penetration II.
Conponent Name i
1.
bbdel Number Quantity; 18
'I 2.
Vendor Conax Corporation f
3.
If the component is a cabinet or panel, nane and nodel No. of the devices included:
M Asggglgu2bibgeagypfgg}
4.
Physical Description a.
Appearance connectors.
b.
Dinensions 132" X 12" Dia.
c.
Weight 167.07 lb 4
5.
Iocation: Building:
Reactor Containment Elevation; 754 '-0" to 775 '-0" Various locations 6.
Field bbunting Conditions [ ]
Bolt (No.
, Size
)
Wall penetration
[ ]
Weld (Length
)
[ ]
7.
Natural Frequencies in Each Direction: See Attached Sheet hl:
h2:
V:
h J
l 8.
a.
Functional
Description:
See Attached Sheet f
s b.
Is the equipnent required for[ ] Hot Standby { ] Cold Shutdom
[X]Both & POST LOCA
?
9.
Pertinent Reference Design Specifications:
J-2552-1 Revised CA, 04-18-79 i nntm -
x ih' i SARGENT h LUNDY R
Feference: E4D File No. 016058
,_g j
( :i, r _
,s
... c e, c
,._,,u-.:r..
r
_---a me.r: n 2 P~C121
III. Is Equiptent Available for Inspection in the Plant:
[X] Yes
[ ] No
(
Com e ts-
.e Joossb i
i O~A.
',': /
r. n. WJ.. U.o$ h h f f / " S*'/'S IV.
Equigtent Qualification Method:
'Ibst:
F3.ne q-2f G
- i Analysis:
Combination of Test and Analysis: X 1
Test and/or Analysis by Conax Corn. Recort No.
TPS-111A (name of Conpany or Laboratory & Report No.)
V.
Vibration Input:
1.
Ioads considered 1.[X] Seismic only 2.[ ] Hydrodynamic cnly 3.[] Explosive only 4.[ ] Other (Specify) 5.[ ] Conbination of
[
2.
Required Response Spectra (attach the graphs):
Graphs are attached.
2 3.
Required Acceleration in Each Direction: Zpa s from enyelop of above response Spectra.
(.
hl =
1.6 g h2 =
1.6 g V=
1.6 o f
l VI.
If Qualification by Test, then Ccoplete: N.A.
l 1.
[ ] Single Frequency
[ ] Multi-Frequency 2.
[ ] Single Axis
[ ] Multi-Axis 3.
Frequency Rarge:
l 4.
TRS enveloping RRS using Multi-Frequency Test { ] Yes (Attach TRS graphr I J tb 5.
g-level Test at hl =
h2 =
V=
6.
Laboratory Mounting:
1 1.
[ ] Dolt (ib.
Size
)
[ ] Weld (Iength
)[ ]
t 1
l 7.
Functional operability verified:
[ ] Yes
[ ] Ib [ ] Not Applicable 8.
Other tests perforned (such as fragility test, including results) l
(
n SARGEriT t LUilDY l:'
P i
Reference:
EMD File Ib. 016058
-4~
( G9. oog g 3 5
- eumumenac 4
e. c m_ :
N --
-m: n -
n : a2 T_. _ _..,, _ x x_;.
_w =
,_,,_y__yy_,m=___,
l
1Calcj[0: CQD ~~-~~~--..
T 1
~
Rey.---
Jafe:.
Pro.no; y
. -~..
If Otulification by Analysis or by the Conbinaf-f%ni.heECIES Mialysis,thd.
VII.
('~
_j Conplete:
1.
Description of Test including Results:
See Attached Sheets.
2.
Method of Analysis:
[ X] Static Analysis
[ ] Equivalent Static Analysis [ ] Dynamic Y
[ ] Response Spectrum [ ] Time-History 3.
fedel Type:
[ ] 3D
[ ] 2D
[ ]lD
[ ] Finite Element [ X] Beam
[ ] Closed Fonn Solution 4.
[ ] Conputer Codes:
N.A.
Freqm.ncy Range and No. of nodes considered: 0-352 Hz.
1 Mode.
[ X).lfand Calculations 1% OBE, 2% DBE 5.
Danping:_
6.
Support Considerations in the model: Considered as rigid i
7.
Critical Structural Elements: Governing Seismic Total Stress A.
Identification Incation Fesponse Canbination Stress Stress Allcuable.
b,
- UD' See Attached Sheet
' (._.'fl. -
L:, dx 4 L 66,' 7, cts /3
^
Fai.. A 7. Cf.
Effect Upon Functional B.
Max. Deflection Incation Operability Pcference; DD File No. 016058.mumNemanu (Gp.oasE W c...c ~, z i
mm,---
,?.wgem l
(~I:
- a. Gi..Too??$.35 k'~O I.[.[:'_ h -9._.C Me:
r;;j, ti.3/.26 h/57-<T//4 l g
.9 ?. /0...Cf.. '..--. -
j, s
. Equipment No.
Functional Description LAP 96E LAP 97E Miscellaneous low voltage power service LAP 98E LAP 99E lLV96E E
Miscellaneous low voltage control service E
lLV99E
<r g, ;'.
lLV94E Miscellaneous low voltage shielded G
lLV95E instrumentation service 1C51-S301 1C51-S302 Neutron monitoring service 1C51-S303 1C51-S304 1Cll-S301 1
C Control rod position indication
.lCll-S304 e
-=%
e
4 4
~
Calc. fio: CQD.<r&2.f..
Rev: cc
_CP: ;
Proj. 110: p g
.M j/4 Pa;.e 2,4.
0...
('
1 t
.T-QUENCHER LOADING COMBINATION RESPONSE SPECTRUM CURVES FOR N
LVP ELECTRIC PENETRATIONS 9
IOCATED IN CONTAINMENT BUILDING EL.:
765'0" k
\\
o 9
5*
i i
e
,/
'3 y.
9 '
e e-v y-w-
w--
e y
=w
,w-- - - -
-*--+---y g<w,.g
--+n-.-
yw,
.-.-r
- =M 9--t-
--N y-m?-
y
CUENT ca.v..9evw c w so c v, e.o n e a rm uy J03 IM. L 1,:~/,a o
1.'
$((Nb$2'N 02S:GN DY ER L a.y ur73 7-zs - 20 J
yr
_' r-~~,gg"go CH2CKED BYtA.khis trr23.n g 1EMIFET CF
' Calc. lio: CQD. c.c-as <-
Rev:. c Date-e,,,
Proj. flo: a.g a, g..r._ c, o Page..R.:.sf..o1..~.
rreency, crs 200 100 50 33 20 10 2.0 1.0 20.0
- "i ie i
sisi iis i un an u n no 'u n i
i i
i iiii un un nu un i n:
'"i i
i
'. 20.0 15.0
~
15.0 10.0 10.0 8.0
~
8.0 6.0 6.0
~
4.0 4.0 3.0 3.0 2.0 N
2.0
.s 3
\\
v.
1.5 1.5
/
\\
/
~
1.0-
/
/
1.0
\\
n 0.8
~
\\
08 g
/
t, i
=
0.6
/
0.6
.g""
j/
y v
4 0.4 i
4 0.4 0.3
. 0.3 0.2 0.2 0.15
~
0.15 a
0.10 ~ -. -
J t
0.10 0.08
~
l l
0.08 l--
__ _ l.:
7J f
l t
i
"""r'
" u na.J
.d2. - 2 l ' ' ' ' " L2u uu _w2
. u1Lu u.2.
a A.
2 a.05 0.05 42
\\
.005
.01
.02
.04
.06
.1
.2
.3
.f
.6 3
PrM 5n.
coum s,"S.. - BUILDING-ELEVATION : wr VERTICAL - UALL/SLT.'3 EMt'ELCP ol c) 3.5. -i Coin y-t IIOnIZONTAL - N-S/E-U
[] SSE + Coa v.
.E,,y.',.,)(spt'm sScy,.sy) s
&) S S E-! cHus -! Eivic Icp.l g/:C6,a -/ si::'s:>-)
CU2nT C0An'D.'HCA LTH ED/wt CDMs.: *!y
""J'""
" 3 "
4
' ' ' ~ ~ '
~
~
O!aQSW1TGUf"'EV DES!GN DY Mhta/
CATE 7-23 -#o T
C=muna CHEd(ED BY t.t.kkn car?.7.w-u SMIET OF Calc. No: CQD. ::JJ Z ::. E -
nov. No.
Date:
one Rev.
Proj. No:'t.M/SZrM/l.C mmus Pap.e a /4 -. Of.. --
Trequency, CPS 200 100 50 33 20 10 2.0 1.0 nounnoinijiui 20.0 20.0 2"
i i
i i
iisi iiii nu un no nu un i
i i
i
..i ou i
i i
15.0
~
15.0 10.0 10.0 8.0 8.0 6.0 6.0 4.0 4.0 3.0 3.0
~
~
r-2.0 2.0 b('"
2 2
1.5 1.5
~
E A
/
\\
1.0 y-f.
1.0 n
0.8
~
\\
l 08 6
I
/
L-\\#
V
)
I /
j 0.6 0.6
'f p
i l
J d
0.4 2
0.4 l
0.3
}
0.3 l
0.2-_
0.2 l
0.15 1
0.15
~
1 0.10<_
0.10
~
0.08
~
0.08 l____
r l
rii 0.05
' ' ' "w' 0.05 5"'
'L"'-
'.' 1
.2
.3 4
.6
.' 8 ).
.005
.01
.02
.04
.06 v
twN, 5 x.
CcANi-lv.: >T BUILDlMG-ELEVATION: 74~5' VERTICAT. - UALL/SI.AB Envc4f, o n).CE 4 (Ce n.v-f
^
HORIZONTAL - H-S/E-U
[UV;sy) l) ME' C0:c vy -;.t Envcibj3 a.! ('s*EV;,gi 4 i
d E C E -l C 'rM../.%wdy e.,! (.* 12 L',;; t -p $ ;.7,qy)
6
^
CU2NT WiGicvhdAGY SLY cd c:uw.svV '
N'OOUE3Yb0.UEJSY
~
D2CGN DY RR4/4 C.qE 7-n-20 C%CW3CDiO -
CHECKED GYM-(&m '
D,'E 7.n.a o C-EET CF Calc. H0: CQD. c:::1.55._
r e v. uo.
Rev:
a_ Date:............
eus Proj. No: e.24//.!1- %zd sumus l
Page.2.z.Z 0f..
rr% W. CPS 200 100 50 33 20 10 2.0 1.0 g 20.0 20.0 2"
i i
i i
iiii siii nu un no i
i i
i
>>>i ini uu nn sin im ini i
i 4
~
15.0
~
15.0 10.0 10.0 }
8.0 8.0
~
6.0
~
^
6.0 4.0 4.0 3.0 3.0
~
2.0 2.0 b(c
\\
1.5 1.5 s
%___/
/
}
- 1. 0 1.0
\\
/
I t
n 0.8
\\
-f
\\ /
\\
0.8
,3 a
~
\\
/
e E
- /
v 06 g
O.6
.ti 0.4 5
0.4 0.3
}
0.3 0*2
(
0.2 0.15 O. l c, 0.10
_, 0.10 0.08 0.08
~
_t 1
~
'"2 0.05 5 "
" '. '0 2" "
' ' '. 0 4" "
"". 0 6
.1
.2
.3 4
.6
.8 1.
0*05
.005
.01 s
res. Ste.
C04'di/4'nSN7' BUILDING-ELEVATION: 765-VERTICAL - WALL / SLAB f,vystep o.c cr) SEE + Co tyy- /
llonIZONTAL - N-S/E-Il s
S)SSE + Co gyy.a EMY let of (MVpgg 4.SCL;yy }
=
s l
C) SSE 4 CliUG a BYVEloPc} (SQL
, $ pgt,,y,y}
.. ;.-, j' j
j 19 U.
Ipe.~ p ; ~
uunnn
.7 ej Calc. No: CQD-K.L.:i
- C _
^
Rev:..va..... _ Date:
*; e
. /
conAiconPonATION praj, N3 g,Q;g/gg,gg.
]#
. c r.,...u a A.- s.now mte 3-y.
Page J Q Of
/
Vi k,,' '
DYJIAMIC TEST!!!G 0F MULTI-C0ilDUCTOR FEEDllP.4.
r THE C0flDUCTORS AT 50ftE CASES ARE ALLOWED TO RE50flATE INSIDE OF THE FEEDTilRU TUBillGS.
IHE f1ATHE.'1AT ICAL-MODELING OF THE ABOVE CONDIT10fi IS OUTLliiED If1 SECT!0ft I
~
IN DETAILS.
IN'ADDITI0ft TO THE Af1ALYSIS, WERE TESTED UNDER SIMULATED SEISMIC CONDITION S
6 METHOD OF TESTIfiG IS OUTLIfiED Oft'THE FOLLOWIyG y GES.
' a j CCO V3'i*
p.c MP_l\\RATIOjl 0F IEST SPECIMENS :
L;G, iihhb/D U
HE CAPACITY OF.0UR Lif4G VIBRATOR IS LIMITED TO 13'~L h. -
"HISWEIGHTLIMITAT.10flFORCEDUSTOBy,lLD ll PIECES, D INCH L0f1G TEST f10DULES SHOWN Off PAGE.u.
WITH THE EXCEPT10f! 0F THE OVERALL LEf!GTH OF TUBINGS, THE TEST SPECIMEfiS ARE IDEf1TICAL TO THE CORRESPONDirlG FEEDTHRU MODULES OF LASALLE PENETRATIONS.
IHE UNSUPPORTED LENGTH OF C0flDUCTORS IflS!bE OF THE O-TEST ft0DutES WeRE SeteCTeD TO Att0W THEti TO ReS0f,Are, WHEN. EXCITED AT OR BELOW 100 CPS.
THE' ABOVE CONDIT10f1 INSURES DYNAMIC SIMILARITY BETWEEN THE TEST SPECIMEllS Af!D THE CORRESP0f1Dif1G FEEDTHRU MODULES 0F LASALLE PEllETRAT10f1S.
THE SPA!! 0F PIGTAILS OF TEST SPECIMEf;S WERE ALSO SELECTED TO IllSURE RESOf! ANT C0f1DITIOrlS, THEREFORE, MAKlflG THE TESTit1G MORE CoflSERVATIVE.
THE FEEDTHRUS AND THE TEST SETUP ARE SHOWil Oil PAGE 5:i.
IIE TEST SPECIMENS WERE EXCITED Off OUR LillG VIERATOR AT 20 CPS FC
.b filflOTES AT DG ACCELERAT!0fl, FOLLOWED BY A 3 MINUTE DURATION OF 100 CPS At SG ACCELERAT!0fl.
UPON C0f1PLET10N OF VIBRATI0fl TEST, THE MODULES WERE CHECKED e
FOR LEAKAGE, DIELECTRIC STREllGTH, C0flTitlulTY AND INSULATIOff RESISTAtlCE.
ALL FOUR SPEC!f1 ENS MET OR EXCEEDED THE FOLLOWING TEST REQU I REMEi1T S :-
(
l. )'
LEAKAGE:
1 X 10 6 SCC /SEC llELIUit AT 50 Ps!G.
-s 8
1 O
vvi.,i.,
ir.s n 2~ a~
i Calc. No: CQD.
t-N0Y:
_ Dg. '~~+'
coted conPoRATIOr4
' ' ~ ~ ~ -
Ptoj. Na:
,.,e m ens.e tun nrwa...uas P2Ra na
~ ~ - - - -
r
..., j
[
VI (CONTINUED)
~..
2.)
DIELECTRIC STREllGTH:- 2.2 KVAC FOR 10 SEC0!1DS.
t
.I 3.)
INSULATION RESISTANCE:
108 OHf4S AT 500 voc, i
4.)
MINT'AIN C0!1TINUITY.
~~ ' ~; 7 -~ ?~ -.,...
M8 rI 3,['
- -o
- O/t/47-cO!c[
~
. e-tj -
..... =. =.
e e
e e
1
-),s t
1 e
e I
e I
o e
G.
h I
8 S
9 A
8 I
O -
~
CONAX COnFV8ATION
,,,,..,....~....~...~<m Ts. n cp cocan !
<L g
='.${l.$~IN$strmaj 24.5 V
P ene 2.a. ot..
..a 1
,_. u _. _,
.. ~ 1. <. s =., ir
.,xw
,,n 5
s 3.3.0 -
p rlG. A i
PIGTAIL SUPP. ORT US. <
FEEDTHRU MOD _ULE n
2 o
_a
~
2 n
er
=
O PIGTAIL f
ll Fl.XT URE LING VIBRATO'R G. 3
. TABLE XII MAX 1 HUM NO'!
TEST MODULES L
L PT US
..RES0!!AtlT. LEh6 3 CONDUCTOR #2 AWG 23 22.0 18.03 19 CoNoucToa #10 AWG l
17 15.1 11.26 36.ConoucToa #16 AWG 13 12.0 7.89-42 ConoucToa #18 AUG 13 11.0 7.01 m
8 l
- u s
[
.55-
[i I.
,b
.O'
._T.N 'U[
GUNAA I
Calc. No: CQD _._
si a ss Rev: m C.Date:
conAx conronAnoi; Proj. No-
, yo ws.v x i 4.. n. n-o.'r>
Page....
I'di.....I [.l...
.f i
('
EW! DEMI A_LBEB..E!K.I.ES_OF _QUIS 1.D E_ _C0!!J A UM0 lI.S.,
U
.}
I F.E.EDiliRU IUBlilG C0'1DUCTOR AllGULAR FREQUEllCY FUI1DAtiEllTAL FREQUEi!CY SIZE G)= R@-
ja
= c.y C t e_s.
SEC SEC 350liCil 920.6 146.51 250 fiCli 1520.71 242.02
//2 AWG 878.7 139.85
- 10 AWG 1501.2 233.92
.=
,C1
- 16 AWG 1969.5 313.45
- 13 AWG 2212.3 352.10 75 TRIAX 1621.2 258.02 130 TRIAX 1313.4 209.03 ccory?~~
C-O 11,] /. l/ 77Ms /0
- 2. C c, S'
p
[.
s
COf1AX
}
N o. [ps_331A TABLE IX CCtJ AX COT 1POil ATIOPJ
.-r..,..,......,.~,
. c...c s i
iflSJDEC.0 RIAL llMEllTS MAXlnutLSIEES.S_ LEVELS _0E.3_REPRESERTAUVE GROUP _S._.0E.EEEDI.H8lL.
STRESS LEVELS 350 MCM
- 10 AWG 130 0!iM TRIAX ALLOWAELE r
l.LB/In STRESS 81UBE-674.2 1143.1 338.2 11700 j(TUBE 72.2 66.9 26.3 7359
! [ BEARING.
24.4 6.4 6.4 2000 a
150CF j
lh0NDUCTOR 51.1 94.0 66.5 5500 l
i 1
.y.
- l
' IA e
'. 6 f
x y
e.
4 f.]
. c
.r 3l
- q.i 3
3
-7
-4ll-
.dONAx
-].
No.
yog_;; n couxx c " "^" "
., a,,,m.
...,"s,..rm o u m s TABLE IV.
4 STRESS _LEEELS-0VLSIDE_CDRTMNflEDI CONDUCTOR SllEARiflG STRESS BEARiflG STRESS BE!!Dl!!G STRESS SHEAR ST -
0F SEAL OF IUBlii 0F TUi :',
SIZE OFCOI1DUCTg8 3BRG(LBpl1T) 37 (ta/irig) gr (ts, i:,
2 T6(LB/lfi1
!!J 350 MCM ll4.7 21.0 2369.6 121.3 250.MCM 42.1
-15.8 1599.9 32.3
.//2.AWG 27.4 5.3 1171.1 117['
t_ _
- 10 AWG 28.6 1.9 1200.4 121.0
//16 AWG 30.4 1.1 735.3 69.5
- 18 AWG 30.8 0.8 603.6 54.5 f
~
75 TRIAX 89.~ 5 9.8
-806.9 66.9 i
130 TRIAX 98.5 9.4 1277.1 72.i
. t OUTER COPPER SillELD
~
i.
-,6
CONAX 0*
TPS-331A t
CONAX CORPORATION
'-1 py<> v,a<1 n A.e 44'tw
'4'** "'k 14 225 MXIliVli_BEMLrird10HElllSmSilEMLMLSJRES.S_ LEVELS IUS.lDE_qF_ffEDJl@LS.
C0!1DUCTOR MfiAX VliAX
[COND GJ'
$BRG SIZE (in LB)
(LB)
LB/lfi LB/lf1 LB/'N q
- (350MCM 13.964 ',
5.690 18.4 8.79
!}
250 MCM 12.214 3.664 9959 37.2 7.06 i
- 2 AWG 6.464 0.1C?
[
1.1 0.61 l#10AWG 3.985 0.193 1237 1.2 0.09 f
+ -...
[
- 16 D-TB 2.883 0.083 818 1.1 0.03
.,' f ~D-12*
N t
'#18-2.907 0.106 1337 2.0 0,06 x
-I
- 18 TD 2.907 0.106 1337 2.0 0.06
[
7
- 18 TPK 2.907 0.106
'1337 2.0 0.06
- 18 TPE 2.907 0$16 1337 2.0 0.b6 75RTRIAX 5.156 1.543 1071 31.9 3.45 130nTRIAX-10.681 3.206 1127 60.9 4.96 A
- Tile # 18 D12 CONFIGl!RAll0B YlELDS lilE !!IG!!EST M0rE'lT, SilEAR Al'!D STR!.'
LEVELS.
IllE ANALYSIS OF !!18 AWG C0i! FIGURATIONS WERE 1 ASED 0118 D-1 l!J ADDI TIOil 10 T11E f1AlllEf1AT IC AL A'lALYSI S, lHE Ilo. 2, 10, lo, 18 At!G 8
C0flDUCIORS WERE TESTED O!J V I B R A T ! f1G fiA C tl l!! E.
lilE TEST RESULTS ARE Y
DISCUSSED If1 SECT 10fl VI.
i
-2,
x 7,,
r#
~
~
3 o om
+
f9XIFUi UNSUPPORitD CONDUCTOR ESTFi FOR IUl-RESCM'CE
. ACRIAL,l
~
INSULATION INSULATION CRPOSITE -
COTOSIF E70C a
i I
'CCP"3i II"TETOR-COPPER
?UI FREff STIFFNESS (IllTARIGili NON UNSUPP.
52
?g SE oc,in Ic, ut' or,In II, ttf4 '
zei,ts-it2 zw,Ls/in ~
B0))),
EgTfl sh ig!
o i=
_ m ar K
58 I z!
l j
43
>j.
50 iUI L l.625 7.490Er3,
.C47 1.112 E-3.
1.277 E3 9.946 E-2' 28.17 20 Y
- i. i_
~
?O FUU
.500 3.CE8E-3
.520.
5.211 E-4 5.229 E4 6.306 E-2 25.15 20 Y
i3 r
7 2.175E-4 1274?s!
5.918 E-5 3.712 E5 1'.721 E-2 >
-18.03 l 107 Ns 3*
2 AhG
.258 c.
w 10 ASE
.102 J.313E-6
~".118 4.204 E-6 9.184E15 2.8'02>E-3 11.26 107
'N' k.051 3.321-E-7
~;069 7.806GE-7 5.937'E0) 7.515 E-4 '
7.89
'107' N
l 1
1 s
1hDIF
.040 1.257 E-7
.058 4.298 E-7 2.297 EO 4.653 E-4 7.01-107
>N
-3 hPTG L
j 13 TP i.040 l1.257E-7l
.0584 4.298 E-7 2.297 EO 4.653E-4 7.01 107 0
[
I
~
~~'
@qSTED IN GROUP '
+
4.653 E-4 7.01 107 N
Ela D-12
.040 1.257'E-7
.058 4.298 E 2.297.E0
^
^
- DliSTD
'13 TP-K -
.0 43 1.257 E-7.-
053 4.298 E-7 2.297 EO 4.653 E-4 7.01 10~
N 2
bORl fdl,u
,.375 E690 E-4
.450 1.002.E-3 1.804 E4 2.705 E-2 23.91 20 Y
o 30 Osi i
RPX j.645 3.130 E-3
.479 2.534 E-3 7.448 E4 5.En2 E-2 28.41 20 Y
,g w
64 1*
?"
______________._________;