ML20081B656

From kanterella
Jump to navigation Jump to search
Cycle 6 Operating Limits Rept
ML20081B656
Person / Time
Site: Byron Constellation icon.png
Issue date: 03/13/1995
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20081B650 List:
References
NUDOCS 9503160290
Download: ML20081B656 (6)


Text

- .. . . . . .. .-_

' . , .; )

.4 l I

ATTACHMENT  :

1 l

i I

i l

l1 i

\

i l

-l BYRON UNIT 2 CYCLE 6 l t

OPERATING LIMITS REPORT ~

l i

f i

i l

I f

  1. f 9503160290 950313 PDR ADOCK 05000455 P PDR v i

n0 BYRON UNIT 2, CYCLE 6 OPERATING LIMIT REPORT - F. PORTION This Radial Peaking Factor Limit Report is provided in accordance with paragraph 6.9.1.9 of the Byron Unl12 Nuclear Plant Technical Specifications.

The Fxy limit for RATED THERMAL POWER within specified core plans for Cycle 6 shall be:

a: For the lower core region from greater than or equal to 0% to less than or equal to 50%:

1) For all core planes containing bank "D" control rods:

FN's2.052 Cycle Burnup 2 0 MWD /MTU

2) For all unrodded core planes:

FN's1.765 0 s Cycle Burnup s 12,000 MWD /MTU FN's1.774 Cycle Bumup > 12,000 MWD /MTU b: For the upper core region from greater than 50% to less than or equal to i 100%:

1) For all core planes containing bank "D" control rods:

FN's1.944 Cycle Burnup 2 0 MWD /MTU

2) For all unrodded core planes:

FN's1.750 0 s Cycle Burnup s 12,000 MWD /MTU FN's1.786 Cycle Burnup > 12,000 MWD /MTU These Fxy(z) limits were used to confirm that the heat flux hot channel factor FQ(z) will be limited to the Technical Specification values of  !

Facz)s ,Y, [K(z)]for P>0.5 and Focz)s[5.00][KrZ)]for P s 0.5 assuming the most limiting axial power distributions expected to result from the insertion and removal of control Banks C and D during operation, including the accompanying variations in the axial xenon and power distributions as described in the

" Power Distribution Control and Load Following Procedures," WCAP-8403, September, 1974. Therefore, these Fxy limits pre"ide assurance that the initial conditions assumed in the LOCA analysis and the ECCS acceptance criteria of 10 CFR 50.46 are met.

See Figures 1 and 2 for the plots of [Fa'*P,.i] Versus Axial Core Height and Tables 1 and 2 for the data plotted in Figures 1 and 2.

4 3.

Figure 1 Byron Unit 2 Cycle 6 "

FQ(Z) x P versus Core Height Burnup Range of 0 to 12K MWD /MTU (6.0,2.50) 2.600 3.  ;

l -

~

_ -- l -

.=

aa a a=- ---= a m

,. ma ae m ,,

(12.0,2.31) 2.400 m  :

a m ., _aa, ,,m  ;

2.200 m ,

2.000  : a

  • b $

1.800

  • z l 5 m . .

5 1.600 O -

(1. .

$ 1.400 P  : a Fxy Limit Analysis Points  :

5 m 1.200 LOCA Limiting Envelope  !

E' *

  • Bottom Surveillance Limit x . . ,

^

N 1.000

- * --Top Surveiliance Limit

  • 6 m  :  :

0.800 e 0.600 [

0.400 - " ," I

  • l l O.200 [

0.000 a e 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 ~ 12.0000 BOROM . TOP CORE HEIGHT (FT) i Revision O i

l l

Figure 2 I Byron Unit 2 Cycle 6 '

FQ(Z) x P versus Core Height ]

Burnup Range of > 12K MWDIMTU to EOC (6.0.2.50) -

2.6000 6 l

_-l ===a a a= a= (12.0.2.31) m-s e 2.4000 m  : m _m_m_m..a =_m

,aa _

, m a a m

ea m  :- m 2.2000 m  : a a 2.0000  : e a  :

1.8000 -

a z  :

  • su .

5 1.6000 f o .:

n.
  • nu . -

> 1.4000

  • E a Fxy Limit Analysis Points  :

5 LOCA Limiting Envelope -

uJ 1.2000

  • m
  • Bottom Surveillance Limit x  : '

- + - Top Surveillance Limit

@ 1.0000

  • O  ;
u. ,  ;

O.8000

.' =

0.6000 _

l  :

a O.4000 - , .

O.2000 O.0000 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000 BOTTOM TOP CORE HEIGHT (FT)-

Revision 0

r w ,, - ...- , R:; vision 0 g ; ,v . .

?

, "q I

Table 1 j

  • i

- Maximum Fo *. P vs. Axial Core Height During Normal Operation - ,

' O < Cycle Bumup :s 12,000 MWD /MTU '- I J

CORE HEIGHT ' MAXIMUM (FEET)- Fo

  • P .

80TTOM 1 0.1252. 0.42448  !

2 0.3756 ' O.85152' i 3 -0.6259 1.90810 g t. 4 0.8763 '2.19180 >

5 1.1267 2.40480 t 6 1.3771 2.48700 -

j

'7 1.6274 2.49890 .

'8 1.8778 2.48990 .

9 2.1282 2.31040

'{

10 2.3786 2.40800' .,

11 2.6290 2.41430 {

-12 2.8793 2.44370 13 -3.1297 2.46640 14 3.3801 2.47950 ' l 15 3.6305 2.49450 <!

16 3.8808 2.30440 17 4.1312 2.49700 -

18 4.3816 2.49910 l 19 4.6320 2.49230

  • 20 4.8823- 2.47810 .

21 5.1327 2.46140 6 22 5.3831 2.43450 23 5.6335 2.22670. 't 24 5.8839 2.40410~

25 6.1342 2.41940  ;

26 6.3846. 2.41900'  ;

27 6.6350- -

2.43700 .  !

28- 6.8854 2.44510  !

29 7.1357 2.43540  ;

30 7.3861 2.28290 ,

31 7.6365-- 2.41880 ,

32 7.8869 2.39840 33 8.1372 2.37590 ~ r 34 8.3876 2.34390 ,

35 8.6380 2.33360 [

36 8.8884 2.28940 37 9.1388 2.21650- j 38 9.3891 2.29550  ;

39 9.6395 2.29550  :

40 9.8899 2.32680 -}

41 10.140 2.35840 f 42 10.391 2.36080  !

43 10.641 ,2.24010 '[

44 10.891 2.17070 j 45 11.142 1.99350 l 46 11.392 1.73480 I 47 11.643 0.80685 ,

TOP 48 11.893 0.43607 e t

l

r -

a .

. Revision 0 -

fy,

, ' ' +,.

, Table 2 ;

- I , . . Maximum Fo

  • P vs. Axial Core Height During Normal Operation

~

. Cycle Bumup > 12,000 MWD /MTU i

^

CORE HEIGHT - MAXIMUM' i (FEET) Fo

  • P '

p r r

~

f 80TTOM 1 0.1252 1 0.4253, i c

-2 = 0.3756 -0.8531 'I 3 ~ 0.6259 1.9117'

  • 4- 0.8763' 2.1960 ' t 5 -1.1267. 2.4069 6- 1.3771 2.4892 7'. .1.6274- 2.4987' l 8 1.8778 : ' 2.4896 - '

9 2.1282 2.3079  !

~

10 2.3786 - 2.4054 i 11 2.6290 2.4093 -  ;

12 2.8793 2.4386-  :;

13- 3.1297 2.4588 $

14 3.3801 2.4718 i e

15 3.6305 2.4844 16 3.8808 2.2950 - f 17- 4.1312 2.4844' 18 4.3816. 2.4865 l 19 4.6320 - 2.4773- '

20 .4.8823. 2.4631 i 21 5.1327- 2.4441 ,

22 5.3831' 2.4174 i 23 5.6335 2.2045

-24 5.8839 2.3802 25 6.1342 2.4067 26 6.3846- 2.4063 '

27 .6.6350 - 2.4219 28- 6.8854 2.4299 .

29' 7.1357 ' 2.4228' 30 -7.3861 2.2710 ~  !

31 7.6365- 2.4224 j 32 7.8869 -2.4019 33 8.1372 2.3772 5 34 8.3876'- 2.3451 .I 35 8.6380 - 2.3373 '

36 8.8884. . 2.2930 i 37 9.1388 -2.2179 i 38 9.3891 2.2970 39 9.6395 2.2950 I 40 9.8899 2.3262 '!

41 10.140 . 2.3580 42 10.391 2.3604 .

43 10.641 2.2398 44 10.891 2.1860 45 11.142 2.0071 46 11.392 1.7428 47 11.643 0.7844 I TOP 48 11.893 0.4229

)

I i

I

, . . ,