ML20080G885
ML20080G885 | |
Person / Time | |
---|---|
Site: | Peach Bottom |
Issue date: | 09/16/1983 |
From: | PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC |
To: | |
Shared Package | |
ML20080G869 | List: |
References | |
NUDOCS 8309200380 | |
Download: ML20080G885 (226) | |
Text
- . . . . _ _ _ _ _ _
t
- o PHIIADELPHIA EIECTRIC CCMPANY PEACH BOPIU4 A'IU4IC PWER STNTICN UNITS 2 & 3 O
nj STRUCIURAL S'IEEL SURVIVABILITY EVAIUNPICN NH 2 - SEPTENBER 16, 1983 e
4 8309200300 830916 PDR ADDCK 05000277 F pm
Peach Bottm Atmic Power Station, Units 2 & 3 Appendix 2 Structural Steel Survivability Evaluation A.
Introduction:
Appendix R Section III G.2.A States:
" Separation of cables and equignent and associated non-safety circuits of redundant trains by a fire barrier having a 3-hour rating. Structural steel forming a part of or supporting such fire barriers shall be protected to provide fire resistance equivalent to that required of the barrier."
'Ibe goal of our evaluation was to verify that unprotected structural steel supporting plant fire barriers is capable of maintaining structural integrity during srst case expected fire conditions thereby providing a " fire resistance equivalent to that required of the barrier."
B.
Description:
The structural slabs at Peach Bottm are typically cmposite construction, i.e. structural steel beams or girdars supporting, and interconnected to, a reinforced concrete slab. 'Ibe structural supports are either 4
partial or total cmposite construction. All W rs are end-restrained.
n v Fire barriers supporting or located above safe shutdown areas were evaluated. Any additional barriers identified during our plant upgrade modifications (re-routing cable etc.) will be evaluated using the same methodology.
The following itans supporting the evaluation are attached:
- 1. Methodology for Evaluation of Fire Resistance of Structural Steel
- 2. Sunmary of Assmptions
- 3. Sunmary of Conservatians
- 4. Palmlatica Sumnary
- 5. Structural Steel Analysis calculations for 31 Plant Areas C. Acceptance Criteria:
i A critical steel tenperature of 1477 F was used in the evaluation.
'Ihis taiperature is based on published test data and is an average of the tarperatures recorded for tests performed.on various beam / slab assenblies. Additional industry standards (AISC, A151) researched refer to the general tatperature acceptance criteria of AS'IM standard E119; pd t , however, the tenperatures derived through actual testing better l
l
,.-r -
~r
_ 2 represent end restraint conditions and ocmposite mnstruction at Peach Bottan. It has been denonstrated that unrestrained lx3aq/ slab assmblies have lower fire endurance than restrained assenblies, and cmposite action will prolong. fire endurance. The beam sizes and slab thicknesses for the assenblies tested are typically analler than those existing at Peach Bott m. Applying the test data is conservative since the larger steel meubers and thicker slabs at
- Feach Bottom have atiriitional heat capacity.
The 1477 F teqperature is applicable to partial conposite construction, but has been used as the acceptance criteria for all structural steel manbors. It is therefore conservative when evaluating full cmposite beany' slab asserblies. .
The critical steel tanperatures were determined by testing beaWalab assenblies that were Irwlarl to approximately 50%-60% of yield stress. The structural m*= hrs at Peach Bottan were designed to an allowable value of 60% of yield stress but include a onecified live load. Ictual stresms will be significantly lower than 60% of yield stress.
D. Summary:
Thirty-one areas have been evaluated, in cases such as the Battery Ro ms and Switchgear Rooms one calculation was run to represent all cases since these roms are very similar. Where Unit 2 was similar to Unit 3 the worst cam <=h_=tible Irwling was used to represent
- both. Gas tanperatures were empated representing consunption of all
' ]- cmbustibles in the defined areas. Teral hot spot heat fluxes were evaluated for areas where particular trays were in close proximity to exposed structural r u +rs. When ocmputed gas tatperatures were j below the acceptance criteria, steel i=myeratures were not ccx:puted.
l Steel tanperatures were canputed for areas where the gas or local tenperatures were above the acceptance criteria.
The elmlations inclurlarl conversatians identified in the methodology as well.as the following:
l I
- 1. Openings defined for ventilation controlled fires were typically based on architectural layout and in many cases electrically supervised fire barrier rinnre or watertight doors were =9==d to be open when a fire starta . Several cases were l
refined to reflect realistic conditions and in such cases gas temperatures representing one or two doors open for a ventilation controlled fire were elemlated.
- 2. She innalharl temperatures which were ocuputed did not take into effect conduction dosn the length of a bean. Generally
- the localized effect was only for a width of 2-3 feet, while i the gas taiperature in the rom was several hundred degrees lower that the hot spot.
l'
,-%,, ',r,. ----.r -v,e. -
-.c.....-...., ,.-.,,,..-.,..-~#.-...-y+. . . , - . , . - - ,,e 3 ., ,,, 3
- 3. h calculation results.were run for fire duration or a mininun of 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />. Credit is warranted for manual suppression by the fire brigade inside a 30 minute timespan.
Calculated gas and local tarperatures for twenty-seven of thirty-one areas met the acceptance criteria. 'Ihe following problan areas were. identified:
- 1. Turbine Building - Elevation 116' - Camon Area-('ninnlation
- 24. 'Ihis area exhibited a gas tatperature of 404 F after 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> however a single tray prr*W localized taiperatures which were above the acceptance criteria in 35-40 minutes. We propose to encapsulate the entire tray in a 3-hour fire resistant material.
- 2. Battery Roons - Calculation #31.
h battery roans presented the most severe fire conditions.
h structural steel acceptance taiperatures were reached verf rapidly. 'Ihe case of one door open prr*M a gas tarperature of 1578 F within 30 minutes. 'Ihis is 100 F above the acceptance criteria. We propcse no modifications for this area for the following reasons:
- a. 'Ihe existing batteries with polystyrene caaaa are being replaced with new batteries having polycarhmate cases.
U.L. testing of polycarbonate sheets yielded a flame spread rating of 10. 'Ihis rep 1-t will significantly reduce the hazard associated with the battery caaan. The Unit 2 battery cases will be changed out during the spring 1984 refueling outage. 'Ihe Unit 3 battery cases will be changed out at the next re*ueling.cutage schnduled for January 1985.
- b. 'Ihe battery roans are provided with autanatic smoke detection,
- c. . Due to fire barrier maintemnce and security the Battery Hoan docrs are maintained closed, therefore the 1 door open fire scenario is extranely conservative.
- d. 'Ihe availability of manual suppression equipnent and rapid fire brigade response will greatly reduce any-possibility of a ser_ious fire.
O .
l 3. Cable Spreading Room - Calculation #23. The Cable Spreading Q
v Ibcm is a critical area and the ceiling is a fire barrier however, due to alternative shutdown it will no longer be a -
safe shutdown barrier. h cable Spreading roca exhibited gas tmperatures of 1100 F with two doore em and 586 F with one door open, neither of which should be the caso due to security l l
control of access, self closing doors and fire barrier maintenance.
Iocalized teriperatures were marginally above the acceptance criteria. One of five cases examined was 10 F above the acceptance tenperature and a second was 22 F above. We propose no modifications since 1) the two door open fire scenario is i extranely conservative, and 2) there are 23 sucke detectors and an autematic carbon dioxide systen that will provide quick detection and suppression to mitigate a problen. I
- 4. Ocuputer Roan - Calculation #25. This area is similar to the l Cable Spreading Ibcm. h gas tanperature only reached 185 F, however one local condition resulted in tarperatures 8 F above the acccptance criteria at the 175 minute mark of the fire.
Isain, the barrier under consideraticm is not a safe shutdown barrier but is in a critical area. We propose no modifications W = m of the existance of smoke detection, a manual carbon dioxide systen and the expected rapid response of the fire brigade.
Conclusion:
l O after ccme1etion of the modificetions es states eeove the structura1 steel of the analyzed fire barriers will provide a fire resistance equivalent to that regaired of the barrier.
7/5 l l
l l
l t
l t .,
b Methodology for Evaluation of Fire Resistance of Structural Steel INTRODUCTION A simple yet reliable procedure for evaluating the fire effects of struc-tural steel is proposed using well established and accepted current method-ology and available fire test data. The problem of evaluating the response to fire exposure of structural steel has two distinct parts: identi fying (quantifying) the fire exposure and assessing the effects on the steel. The apprnach described below successfully treats the problem in a systematic method making use of simple and conservatively realistic fire models and hea'. transfer calculations.
FIRE MODELING Many models of varying complexity have been developed to predict the grnwth, spread, peak temperature and/or time temperature history of a fi re. The more complex models which deal with the fire from ignition to-decay require significant input data about both the fuel and rcom geo-metry. The complexity of these models and the need for making assumptions where test data >is not available make the application and subsequent review of the result difficult for engineers not extremely familiar with the models.
If realistic but conservative assumptions are made and available test data
. O .
are used, simpitfied ennroximetioas of fire behavior cea de made . nica 1
c ,
w
. provide good estimates of peak temperature and/or time temperature history of the~ fire. The first step in this process is to determine the control-ling mode of combustion. Coulbertl identifies five (5) modes which he calls
" energy release criteria'" as follows:
- 1. Flame Spread Rate
.2.. Fuel Surface Area Limit
- 3. Ventilation Limit-
- 4. Enclosure Volume
- 5. Fuel Load For the purposes of the procedure described below, these constraints are used as follows:
- 1. Flame Spread Rate - based on test data on cable fires from Sandia
. Laboratories, FMRC/EPRI, and real cable fires such as Browns Ferry and San Onofre; flame spread rates can be used to estimate the time to a fully developed fire. For the purposes of this pro-cedure, a fully developed fire is assumed to xcur immediately.
- 2. Fuel Surface Area Limit - based on FMRC/EPRI data realistic pre-diction of fuel surface area combustion rates can be applied to ,
e numbers of cable trays involved to establish a -heat release rate for fuel surface controlled fires. The extent (size) of the fire is sele.cted based on the location and amount of fixed combustibles in an area (i.e., cable insulation).
- 3. Ventilation Limit - the ventilation available- through openings can,be determined to assess the heat release rate for ventilation I
i- controlled fires. '
t
, . . - , . , . _ _ _ . - . . , . , _ _ - - _ , . , _ _ - ...,..,.,,,,,,-,__..._.,..,m.-,., ... ., ... .,,,,,,~_,,.._..,_.__ ,9,.
4
. 4. Enclosure Volume - should all natural and forced ventilation be terminated, this limit criteria determines fire duration based on available 02 to support combustion. A relationship between size (heat, release rate) and duration can be calculated for a fixed volume..
- 5. Fuel Load - with ventilation supplied, this criteria determines fire duration.
Fuel Controlled Fire For fuel surface controlled fires, a realistic empirical method has been developed by the National Bureau of Standards (3) for estimating room temperature. This method calculates an upper level gas layer temperature based on correlation' of more than 100 sets of test data to basic plume O i theory. Plume theory relates the ceiling layer temperature rise, T, to ,
the heat release rate Q and the height above the fire H as follows:
~
. AT a Q2/3.g-1/3
- Using the premise that in a developing, fuel controlled fire, the fire behavior was similar to a plume the authors s'ought a power law relationship relating AT to heat released and heat' loss in the followir.g form:
'aT ~ = C Q \N ~
hk Aw M pCp p To Ao dC p Ao[
3 J s
, ,w , y .u-.. .n,. ,_n_..-,.,...,4,,,.. ,,n . ,-,, .,...,-.,~,:.,-,,_n,. ,an,.~.-,,,, .,.,n,,-.,,. .,w,,. , , .,, _m., , , , , ,% , , .
Correlating this form to 112 separate experiments on a variety of fuels, the authors propose the convenient form:
AT = 480 X1 2/3- X2 -1/3 0 hk Aw Where XI= and X2=
vg Cp p To Ao do d po Cp Aodo Q is established by evaluating the number of cable trays involved and related tray surface area. Next hk must be evaluated. The value of hk will be determined by the wall materials and thickness, and the fire development time. For a long slow developing fire in a thin walled enclosure, hk is best approximated by steady' state conduction through the k
wall and ceiling, hk=7 For a fast developing short duration fire -in a thick walled enclosure, hk is best approximated using the thermal inertia (assumption of semi-infinite solid), hk =) P . The semi-. infinite solid approach -is most appropriate for nuclear power plant enclosures because of the massive barriers. Q and hk are inputed with the ventilation opening
-data to calculate XI and X2 and subsequently AT.
Ventilation Controlled Fires ,
For ventilation limited fires, a simplification of the methods proposed by Babrauskas and Williamson4 as modified by Berry 5 will be used. The conser-vative assumption' allowing the simplification are as follows:
t b
- 1. Convective and Radiative loss through openings in the enclosure are negligible (see Berry6 ).
- 2. Heat loss through the walls will be dominated by the thermal inertia ~of the barriers, p Cp k (assumption of semi-infinite slab approximation).
4-
- The heat balance equation can be described as 'follows
- ,
Q' = 1580 Ao/Ho = heat release rate (kW)
Q= cat 4.(Tg 4 - Tw4 ) = radiant heat transferred to boundary Q = /w p Cp k'At (Tw.To) = conductive heat loss through boundary
-- J - g +
g To get Tg as a function of t these equations can be solved to yield the following expression:
4 1/4 Tg= 0
+ To + Q t aAtu AK t -
where Q = 1580 Ao 4 K '= 1/2hu k p C p n = function of emissivity o' fire gases and boundary walls At = total heat loss surface area of boundary _
o .
e
l
' ( .) This relationship is similar in form to that developed by liarmathy6 except the heat' release rate is defined by the ventilation factors. A time tem- j perature history can be calculated for 0<t<r where r = duration.
Fire Duration The fire duration is determined either by the limit of fuel loading or
[ enclosure valume. For a fuel loading limited fire, the duration is calcu-lated taking the amount of combustibles and dividing by the heat release i
rate:
For enclosure volume limited fire, the duration is calculated by taking the
- available oxygen for canbustion and dividing by the heat release rate:
r = Constant (Volume of Enclosure) o o Computer Calculation The steps outlined below describe how the program calculates the control-F ling mode .of combustion .and fire exposure to the steel. These steps are also shown in Figure 1.
Step 1 Input Data-3 Data is developed for input based on the following:
Qas - the. fuel surface area limited heat release rate is estimated taking .the surface area of cable trays involved using natural breaks in continuity of combustibles as the limit on fire cxtent. The free burning heat release rate is applied to this area to calculate Qas-6 t
b
(3 .
v The best available data on free burning cable trays containing neo-prene jacket cables appears in the FMRC/EFRI(2) test reports. For these cables a mass burning rate of 6.7 kg/ min was measured for an array of 12 cable trays, each 8' long and 18" wide. This reduces to a surface controlled burning rate of 0.1 lb/ min ft2 of cable tray or a heat release rate of 1000 BTU / min ft2 (190 KW/m2). These results are realistic and compare favorably with other test data on solid fuels such as wood cribs. This unit heat release will be used in the model-ing method described below.
Aw - The heat loss surface area consists of all wall and ceiling sur-faces. The conservative assumption of negligible heat loss through the floor is applied by excluding the floor area in Aw,
%)
Ao - The area of openings is taken from drawings. Various combinations of door openings or other openings in walls can be applied to determine worst case ventilation conditions.
I Ho - The height of the openings is taken from drawings.
Ve - The volume of the enclosure is calculated using the geometry of the sealed enclosure. In the case of Reactor Buildings, previ-ously established building volumes are used.
' Fuel Load - The duration of the fire based on fuel load in the involved O . canie tray or ' Fuei ioad combustibie per ftz trav
.1 lb per min per fte tray
- =iautes 7
D
- d Step 2 Calculate Q vent = 1580 Aolii$
Step 3 Compare Q vent to Qas if Q vent > Qas the fire is fuel surface controlled: go to Step A4 If Qas > .Qvent the fire is ventilation controlled: go to Step B4 Step A4 Calculate enclosure volume limited duration Tyo1 = 29 Vp(m3) in minutes Qas(kw)
Sten A5 Use lower of ' fuel load orT vol.
Step A6 Calculate AT = 480 (X1)2/3 X2-13 / (*C) and convert to *F Step A7 Compare AT + To to Tc,- for steel if AT + To < Tcr steel passes If AT + To > Tcr steel fails Step B4 Calculate enclosure volume limited duration Tvol = 29 V (m3) in minutes Qvent(kw) .
I Step-B5 Use lower of ' fuel load or T vol 0 4 Step B6 Calculate Tg= + To+Q/t' i wm oAt " AK i t
8 4
O Step B7 Compare Tmax to Tcr for steel if Tmax < Tc r steel passes
~
if Tmax > Tcr calculate time to Tcr using AT = 231 (T-TI ) at per Stanzak O
d l
l O
9 s
i l
1 O
1 - Qas >wA , Ao, 110 , Ve , Tfl r
2 Calc. Q vent = 1580 Ao, Ho V yes 3
Qvent > Qas '=
. A Fuel controlled y a B4 Cal T vol _ using Q vent A4 Calc Tvol using Qas v v B5 Use lowest T A5 Use lowest T y s.
B6~ Cal'c T vs t A6 Calc AT o<t< T if yes ok yes V -
> < A7 B7 Tmax<Tcr AT + To < Tcr 4 + -
B8 Calc unsteady state heat A8 Reevaluate methodology transfer to fire time to and/or protect steel Tcr Figure 1 4
. I 10 0 -
f
I 1
)
RESPONSE OF STEEL The evaluation of the steel is a two part problem. The first part is to establish a Tcr(critical temperature) where the strength of the steel is reduced to the point of failure. This can be determined from references in the literature or can be calculated given the static loading using a pro-cedure outlined by Stanzak 7 . The second part is to compare the fire tera-perature with the Tcr for the steel. In the case of the hot layer temper-4 ature calculated for the fuel controlled fire, the accpetance criteria will be Tg<Tcr. In the case of the ventilation controlled fire, the unsteady state heat transfer calculation outlined by Stanzak7 will be used to determine the steel temperature. This equation is as follows:
ATsteel = 231 S(Tg-Tj)at G
A LJ U
where if is the surface area to mass ratio of the steel i gis the average fire temperature in time interval Tj is steel temperature at the start of interval At is time interval in minutes 8
k I d m
References
. 1. Clif ford D. Coulbert, " Energy Release Criteria for Enclosure Fire
-' Hazards Analysis--Part I," Fire Technology, Volume 13, No. 3., August 1977.
- 2. FMRC, " Categorization of Cable Flammability, Intermediate Scale Fire Tests of . Cable Tray Installations," Electric Power Research Institute, EPRI NP-1881, August 1982.
- 3. B.J. -McCaf frey, et. al. , " Estimating Room Temperature and the Likeli-hood of Flashover Using Fire Test Data Correlations," Fire Technology, Volume 17, No. 2, May 1981.
- 4. V. Babrauskas and R.B. Williamson, Post-Flashover Compartment Fires, University of California, Berkeley, Report No. UCB FRG 75-1, December 1975.
- 5. D.L. Berry, E.E. Minor, " Nuclear Power Plant Fire Protection--Fire Barriers (Subsystem Study Task 3)," Sand 78-1990, NUREG/CR-0468, Sandia National Laboratories, September 1979.
. 6. T.Z. Harmathy, "A New Look at Compartment Fires, Part II," Fire Technolooy, Volume 8, No. 4, November 1972.
- 7. W.W. Stanzak (translator), "The Calculation of 'the Fire Resi:tance of Steel' Construction," National Research Council of Canada, Technical Translation 1425, March 1971.
7_
V s
l 4
0 f%
v i
, ,m - _ _ _ , , _ _ _ _ - , _ _ , ._ - - ._ _, - -- - _ - - _ . -_-.--
Summary of Assumptions
~
O Nas The application of the NBS empirical nethod for hot layer gas temperature l 1
is based on the following assumptions: l
- 1. The correlation holds for upper layer gas temperatures up to approxima'ely 600 *C (1100*F).
- 2. The wall thermal penetration time tp is greater than the characteristic fire growh time, tc. For the large concrete barriers t p is calculated to be 7 to 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />. This verifies the semi-infinite solid heat transfer assumption.
- 3. Heat loss area for the boundries is taken to be the walls and ceiling. Heat loss through the floor is considered negligible.
Ventilation Controlled Method '
O The application of the ventilation controlled fire method is based on the following assumptions:
- 1. Convective or radiative heat lesses through openings in the enclosure are negligible.
- 2. Heat transfer through the boundries is calculated using.the semi-infinite solid assumption.
- 3. Heat loss through the floor is considered r.egligible.
& 0 e
+
General Assumptions for Input Data
() '1. The development of input data requires assumption regarding the size and duration of a fuel surface area controlled fire. The size of the fire Qas, is estimated by evaluating natural breaks in continuity of combustibles. Where these natural breaks exist, a heat release rate .
involving'the number and size of trays.is calculated. The. duration of the fire is basea on the cable loading in the involved trays and the mass burning rate as determined by test.
i
- 2. The heat of combustion of the hypalon jacketed cable is assumed to be 9950 Btu /ft. The literature values for the XLPE/C1.S.PE from the EPRI small scale test (EPP.I NP-1200) range from 6000 to 7500 Btu /ft.
O 9 9 9
6 0
l C:) -
s
- ---+ , ,.- -, - - + + , , * - , - . .-..,y-,, , . - ~- --m-- ----,r,w ,,, -- . . . , y-----,-r ,. - - - w , - - - , - - I
Sunnary of Conservativisms
- 1. No convective heat loss for ventilation controlled fires.
- 2. No radiation heat losses through openings.
- 3. No conductive heat losses through floor.
- 4. Cable heat release rates are based on large scale tests using conservative heat of combustion.
- 5. Fuel surface area controlled fires are taken as conservatively large fi res .
e O
5
?
1 e
4 %
t
c Special cases:
O -
V A special case exists in large open areas with ill defined ventilation openings. For large open areas, the NBS empirical methodology has not been verified. In such cases the heat balance equations used for ventilation controlled fires are applied by redefining the heat release rate, Q, as a fuel surface area limited fire.
Another special case exists where no natural break in combustibles exists and ventilation openings are ill defined. In this case the heat balance equations used for ventilation controlled fires are applied as above with the heat release rate, Q, established by a conservative initial fire, the spread of that fire for the duration or burnout of the initial fire. For example, assuming some spread of a cable fire down a group of trays, (i.e.
7-10 ft/ hour based on tests and fire loss data), the fire will spread from its initial size co a steady state size reached when the initial fire burns out. The time of the initial burnout is the weight of combustibles per unit area of tray divided by the rate of combustion (i.e. if the weight of 2
combustibles is 5 lb/ft2 of tray, and the rate of combustion is 0.1 lb/Mm/ft the initial burnout will occur at about 50 minutes). The steady state. size would be defined based on the cable tray configuration.
The above two special cases will apply to some of the open areas in the Reactor Building. The sample calculation describes a typical example of this approach. ..
O ..
t 6
- O O c , _ ,,,e O calmlatian Numbers Area
( % sc.s Criteria' 1477 F*s Teal Effacts I
1 Radwaste Bldg. El. 88' Unit 2 BCIC Puup Itx2n 769' No i
j 2 Radwaste Bldg. El. 91'6" Standby Gas Treatment Boon 136 No 3 Radwaste Bldg. El. 91'6"-135' Unit 3 BHR Heat Exchanger and 917 No
- . Pung Iban . -
- 4 Unit 2 Reactor Bldg. El. 91' 6" + 116' 'Ihrus Area 94 t No ,
- 5 Unit 2 Beactor Bldg. El. 91'6" + 116' BHR Heat Fvcharv=v- 961 ' .No
, and Pung Iban 6 Unit 2 Beactor MlatJ . El 91'6" + 116' RHR Heat E M - pr 1077 No
, and Pu@ Iban i
! 7 Unit 2 Reactor Bldg. El.116' North Vanuun Breaker Area 715 No 8 Unit 2 Beactor Ritt J. El.116' South Vacuum Breaker Area 723 No
~
j 9 Unit 2 Reactor R1 rig. El.135' North of Beactor Center Line 705 No 1
{ 10 Parha=te Bldg. El.135' 1*rlir al Station and Cbrridor 930 No 11 Barha=te Bldg. El.150' IW=te E&V E? mant ce Liezd. 246 i
No
! 12 Unit 2 Reactor Bldg. El.165' MG Eet Vent Supply Fans No Otxobustibles No i
., 13 Unit 3 Reactor Bldg. El.165' MG Set Vent SuEply Fans No nev*a=tibles
- No 14 Unit 2 Reactor Bldg. El. 195' West of Beactor Center Line 145 No 15 Unit 2 Reactor Bldg. El.195' East of Reactor Center Line 366 No
~
! 16 Unit 2 Reactor Bldg. El. 195' + 214' Ventilating Equip. 625 No
! Area + Fan Iban 17 - Radwaste Bldg. El.116' Unit.3 Cooling Water E? mant Iban 975 i -
No -
1 18 Radwaste Bldg. El.135' Personnel Decantaninatin Staticu 600 Yes, see I
calmlation i
CAICUIATICN SUNRIE O,
raloilation Gas h W a h (Wyu.-e Criteria Numbers Area 1477 F) Iocal Effect_s 19 Radwaste Bldg. El.135' Unit 2 Reactor Becirc Pump MG Set 1200 No Iom 20 Turhi"a Bldg. El.135' Switchgear Rxxn 1438 No 21 Unit 2 Reactor Bldg. El.165' South of Colum Line 10 1027 .
No 22 Radwaste Bldg. El.165' Danote Shutdown Panel Area 802 No 23 'Ibrhine Bldg. El.150' rahla Spreading kxxu 1099 - Yes, see calm 1ation 24 'Ihrbine Bldg. El.116' remmnn Equipnet Area 405 Yes, see 25 Turbine Bldg. El.150' Ccmputer Roan 184 Yes, see calm 1ation 26 Punp Structure El.112' 994 No 27 Diesel Generator Bldg. El.127' Diesel Generator Rxan 1433 No 28 Diesel Generator Bldg. El.127' Ebel Transfer Rxxn 1404 No 29 Radwaste Bldg. El. 88' Unit 2 Reactor Sung Rxxn 1150 No 30 Radwaste Bldg. El. 88' HPCI Pump Rxxn 1278 No 31 'Ibrbine Bldg. El.135 Battery Rxxn 3550 .
No i
\
l
_ PL C +"' ""' '"" c ""' '""
STRUCTURAL STEEL ANALYSIS for f:
PEACH BOTTOM ATOMIC GENERATING STATION f-g Unit 2 Radwaste Building El. 88' RCIC Pump Room
( ) Room 7 Fire Zone 60 September 12, 1983 l I P. O. Box 446
- Uak Ridge, Tennessee 37830 e (615) 482-3541 1-1
. PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Radwaste Building El. 88' RCIC Pump Roan (Room 7, Fire Zone 60)
(see Attachment A for-the area under consideration.) Bounding walls of the area are reinforced concrete with an average thickness of 2.5 ft.
Total surface area of boundary walls and ceiling is 4164 ft2 (387 m2 )
(see Attachment A- for calculation of areas).
- 2. COMBUSTIBLE LOADING The combustible loading used for the calculations in the area consist of 399 lbs of cable insulation and 5 gallons of oil the total . surface area of cable trays is 152 ft2 with an average cable combustible loading of 2.6 lbs/ft 2.
- 3. VENTILATION PARAMETERS Two doors rerve this area each measuring 3' x 7'. One docr is located in the east wall and the other in the west wall. These two openings
/ allow a ventilation opening of 42 ft 2, The total volume of air available in the room for combustion is 2289 m 3, The curve in figure -1 shows the duration of a fire at a given heat out-put with the available air in -the room. The curve indicates that there is only enough air to burn all 'the cable insulation, but not enough .to consume' all the cable and oil without additional ventilation.
- 4. CASES EXAMINE 0 The limiting factor which will determine the combustion of all materials in the rooni is ventilation (see Figure 1). With two doors open the maximum heat release rate fire in the roon is 9008 kW. This size fire is represented when'all the cables in the room are burning simultaneously (2687 kW) and an oil spill fire of 20 ft2 (6321 kW) is-burning at the
, same time. An oil fire of this size consumes 2.5 gpm of oil. At this rate the 5 gallons of oil'would be consumed in 2' minutes, assuming an adequate surface area of oil is exposed. After this time the fire would be limited by the fuel surface area of the cable trays. The maximum heat 1
14
("") release fire would then be 2687 kW until all the cable was consumed.
This would take another 24 minutes'. Tlie overall fire duration would be 26 minutes (see Attachment B).
The second case considers the localized heating of steel members in the centerline of the oil spill fire plume.
- 5. RESULTS The case examined a 9008 kW fire (cable and oil) for 2 minutes and then
- 5
- continued with a 2687 kW fire for another 24 minutes until the remain-ing cable was consumed. The results indicate that the maximum ceiling gas temperature reached during the 26 minute duration of the fire is C6 769*F (see Attachment C). This temperature is not sufficient to fail the structural steel in the area.
There are no cables located within 3 feet of any structural steel, therefore, localized heating from a cable fire is not a factor.
O The second case looked at localized heating of steel members when located in the centerline of the oil fire plume. These calculations show that at a ceiling height of 27 ft, using the oil fire described, the plume centerline temperature would be 514*F. This temperature indicates that the-critical steel temperature will not be exceeded due to localized heating.
A detailed analys' of the steel will not be performed.
k L) 2 1-3
Heat Output Duration for Available Air in P >m
( .... ..i.6. *..l . . . . ...: . .s. . - - ' .----.. .-.-n
. aut :;:
. . . . . = , . . ..
- t : ::' :
ut:: :: : :
.::::.n
. . . l :. .::;2 . .n: !.l.:..
mn . i.: .:. :p:- :nn:t ;
. :i.g :.. :: . .' 2 U :p;i- . :3 n:i:- ? + :
,,n:p:: ; an n::
- p;
. . ::1.:
nl.p. rl:: .a :
4..'
- ."P :-- ...- :..:.- .
i
- .; ::n .,
n"I::;_ ' nh.n : --
- .;- - . !n :
. ;.; iEp . A. .u. n.- .i.;;E.;;i.i.hi.a. . .., Eli. ;: , 1 uu. an. n.. .! c .iU D;.
I
- a.g..li
- 1.!n.
- .!n.
- ,;; a.li[g.
- i.. :n. 4. .. 1:!:
- . y, L.ii'i p;
' . h. . : ;,p.
. pt.
m , i.h" W: p. :... !IN iEi I 5h h Hu i:p:
fN:
hl:ii*
.b ~
hk
.. p:
bi .-
l . , .. . ..1.:
- 5F6- h h!
g ( 1 j
=."1... . . . .
. .y; i .
.., ,; ,a,-..
- .( . . .
g, ,_ ' . 2; ,
n- ;! ' 1:.
. . : 4. . .: :l :: . o: r F v
nn,j:::
- j u ,'
- .::. ::j r::j::" , . : };. - -
": :.6 .j:
.I
. ; p": "
- . :.j::. n
-.:. r
. ;l- -
- i
- . - :.t:. 1:l- ::::;.:: ! -
- q:n,. :
- 1 '..; -
!.:. u M-
- g:'
- p:.....'.
nIn ",, :..q'l"":
- . .j:: :j:- : . !::
c'
-+"
- r:
- r
- n :. ..: :n,' -
!:! 52' I n !
.I N =ib'7':'
6 -
lHi!-*i-M+b' ' - dEj;E Mg :: Mh OM%n
- ::h:j :::
- ... utn..
ith $9
- h. .n :
H
- 1 H F
- -1;.
i HM i= : -*! % ' M -
- .1::. nS :
==*
*! M ==E:=: . . l tit = =is We WiMit nii=-iH= =it=ie=
iii iimM= =i Wi:.:.: " nlM ==j=
l f::
. . . .:..-- ...! ..! I:i:l -
- T "ifEt=-lh=- 'n '.. ';'.M Min.: :;rI::
- M:: n k :: . . . . . . "
"~n--..
. . . . , . g --
.:.. . . . . :;n. ; . ! :.: :n;l:.. . . . N . .n+ :::j, S . .; . . ; :. . ' .
.N . . g n. . .' .;l::.. .. .:
- Mp i a ::g . Ml. . ::1:n: n ::1:: *
!!5!!" "i"it Jii ,
" jiditi!':E fliiF i" Ti tis iiir M iif diiiir i5F"iGi!iit" iWi- P "i iliii;=i-%::-
e- . g :-
- n m:r: -
5 i
- "-" "* n.::
- l - A * l*: -
- n n t:... . ;:,
j ::*..... ,::!
ta:
...t
- M.
- ' :'.. l - i, r p ::l '.
- ;; .: '::.I: ::n : -: .ln- - l : T~~~***! an
- y: . :' te; <.
tj"!
- .! l:i,! :.. d: u;: : :l::
!;t: ..::}n::, an ::ja!:;;;
- !.. ::I:'- 1'
- lj
- :r: ::.. ': p:;:;
nj :.;: ;d: :!.j!. :j:: ,M.j: j:.13 a;;;:: i. - .:',j I'::
n:' .:.:j.
M.'
? .:;ll .
": i ,In . .n M :s t: :: ,. .i:: n.n!l::'t
.:p: ?
-*-':* i :. .'. . . . . ....' .--'
4::.....Dj:: . :: 1: . . , . . ...! , i n!: , -":
n:: .... . .: .a:; ' .4
'. P! !. . .;; .n. up .:l::
...ni:;
- !- I- *:n "::
...: j
. 'I ll!U "IT .:l';; ;:n
- n
- ;n U; .:n ::; ' . a:
- jh j+M; gj :';. :n '::j :nl.... ...
i:'!
n
- a -. . . . :.. R
- t
- f Z
!.!.!"_!!:1 n
_. :1 l.i..:' l .: w' :n lMl .!r:!.1.:llat:t l' iI I -i -l ! ll !::-- lP'
- M U :,, ;l 1 .:: ll1. :t ,M. . : . . . n: .;a n
.:.! n' 2:
n! ..n.:
_!':: . ' .-' :lu ,. :
h;: ,'t
- a'. :. .u . ,. l1:3"l . . . . . ' _ .!.n i .; .; .. .
. . ,3 i!! pp
- l l ! l l l 1 !; I j:t lllj ! il ;;;; j' 1:!: :!;: n: ;:t:
l j
- l:
- l*! !! : .... :.* n. :M j:. [: '
.ll. ' j .: .!. : 1 !ll ! l! :... !"!li' t!n n.j I;j. ::;:;I .jj: . i-( nt:' *L 1
. !' ! . ..! l; : i y:t u '*tt !
. ;! ! 1
t!
. 1i.
l h,.j;!l o j *T .~ '
IM T-- n* pT*?*!*
!' . ll' ; : ::n !!'!: n In n ::!n :nt
. . . . !7-- U., M*+
p- n';; "::ll (*:*1y!! ,';::;
- :-1.
.n..i ;'n"; .:-;-*! t:: Q:.ii.jlu.j} .:n 'o.. 4.!
- r. 1:: ,ta ;, **J. n ]:L t p:.:.D. : : p; i . d. p"- :::; -
.p. i -
- ;::: a :a:.
ur .la:t
, at
, u:ua : .==: :m. e m "- -
n 5 :;.::
.z .::. - ' - - - -- ~-
a te !!' r" -
- ' '"; ;' :3 !!a. ;;;; ; ;; :rL ;jn j: :';; .... : !: :n ;;;l li: li; ::t: .in :... ;; ; ... :::: "
lu: ul!M !i 5.5. .11 3
- ';!.III!
C5 31 I .E Ii:j;1 !!!! ;j j;;151 11113.Ni.IIj$ !nj..'in "b;; *n
;;n in in : :- ;:: nu ::t;- :p: itu>-; :i un i;;; i;;t. t.r n,j jn: at n: i a pi N: i;j : !!!1 I.!}..1- .11.15 1 l111 ;ii: -
. 2, u :tu up u::p: n;r j:nn :n; - ". ;n n: Q: n. =' nm:n:
- ". :.p:
; n.. :. . .ni u : nc 2- ..n... . . . . nn :: . 1. ::d ::.. m. +n ...: : :: .n tu: :m:.. =
nnu' .=.
** ... ~n* *. . .? *~~ ' ' * . .., . . . ,.
- g. ' .. * ' * - - *
.::t ?. :!a ur ; - .a 2 ... . . ... .. ... .. !p. .i in, ai ip ;m!! :.lij .u' :@ d. a . . :..i a: ::" : ' E. .r::
l llP t 't :8!:. n un :utun :r: ! tui u::n t:p : m; un
- n . ::...n
.i2 :i a u. :. a . i:nt .p : lj ta p :.y n i m.. :.
si iiij n:: i;;; :;;: n.: -i;n.'
.. .nu :qi .' :!a " "" "" "- .: u: un
- g ;;;; ::;- .i;f ;:;u : . 't.n: ni :, n- p; . .i ,g pr n.i : : . n {, n i q.u a :n. ::: ::;: - "" - --.
..:: hd .n u.: :n "- i, n: :.!: ni :.. :n: :.j:. i!"! .n. 'nl :n: ,a i; h. it!. : ;: :,.. -
- " ::n m '" :tn :n nn :
"::!'=n "
- n *, :; - ** i? !;!: jn: jM g ' "
- . ::; : nn ;.n
- ... :! . .t ;:. ?:::
I 1:]Mo' ' ' . :I! .., . ::t: :1
- !g 1. :jp* ::p' ;in j"b' M'j :;i:
* :{:n; ,2 f*:j :
i' ; ....
...I o.. :'" . .. ' :. ! - .::: : l* .i !*:. M*: j j: .::j :;t n:: . . t' '. . . . , . *:!l -- :.., ......: . . . .-----...: ) -..';.n: :" .:F:;- m .:: m 3 . 'r . :{,n " ::q;.r
- i:
n
- p'n:0,:. ..n.. ; .n. . .yiP. :n :..gr!n..;; i7 tt:
at : n y,n.+;,np e. . p - n:nm ;.m :m :- -: - . n--
.:.n. ::: n g;,; .i 23 ,. . .a .: . : i n.o!::li!. . ... . y; t a.j. : .:i:n ... n.:yl .n: . . .; g .; m. i ,.
i .n.i au .; .: . :-
- n. . : n. .
;" :" Un: :n. !:: ;" ::;: un 1 : . :;n ;n: "' - :nj :: : :n; Nn 1 n:: :n; ,!' p;; ...: ""j j .'j;
- !: ]. tir! ! -l.::i' ':: :lj'! !!n r- p!M n!' .t n.!!!: !* :"!:: i :f:: -l'f
!l " I: ;n* '"' ' : : :! nri ;.': . : 'j:: 't:, l : *!:; ;m t;:: ::!!l*;.' ~
- !n !:n: i;n c ::p: :n,[p;
- , n p:{
< .. ; :,n t:!.: . .: -n - - -
- n- -
. D' nn: e ;n. : n.: .:;; . .u. .n. .a. p. ' n. ; .::. p. .!g:n .i - .: p. j: .n.;:.. . n. ; ; .: . n. . n. i ..n . .n i .. .- .n. n. .
n r .:.. :n:: an ap "-na ::p. :;;. ..:.. i nn..,. i . . rr (_5
" . . . n+an. an :l3.;. .n :..: j:nn:.. . . . . . . . . n :!: a:p: .: : :n en U.. :
- p: p,: . :n n.: . . . . . . . .::.. . . : :::=
- . , . nn r +- nn; n., un un -tn .n .y -
nn :m .nlUn
=nn --
n- nnlr'n; V 1
..n .: a.n n!j i:n t. . . . ., . . . .
- p r--
g an ": :
.:: ; :: :n n : :: n : :;. . n.: :p: " ' ..::. in . :an .:
Y:: n O ii i""ijiNif iii*!if
,!!'i M ME" yi-" ="f d i "ij;ii T h ?Tiititiiti itit i i *i:n iii p@; . H".tfili tilii" fi*i? E W;a- == i --
W! S!' 4;;; " iHi sii :ii! != !!!d!!!!W !s Wi =' !- %s N jik ! iUW dii e .
+iin ei-4k= - i in=, ..t".' ::n '\.: ;. ! .:'. i. * .'.i. II:: ::': : ' . :. : n. :::* =.'i!Eu L
d
*..: :; 't'i.'! ; : :. ...':. :::T :;l:l., . . . ' ..s .. ..I . . . ..i .. s... : : n. ; .: n
- i,.'* '
..g;. . . , . . . . . . .
6 , ..t".. .
'*~
- n . '. n pi
^
E *
- '.n 'd.'[ .' u:' a'j::
nn: 4:L R: . " - ":
!M :; ; ." .'. u!1:* ;:'j.,' :l'; '"'j'! * .n!'. :' '.rp:': .'::'.;'. .i . ' ,; ! . . . . . :.n .:. . u:'::::':n: :: r .l'nu " 'nl:: ' '. .'; n' .. : l* ':!:;' b" . . l ? ' . , :!;;
- b': .
p:'
. ;in '" ...:!nn..! .::: !.. * *
- ln :
n'
.'tMIF" : : :
j ti..
- U' - : {'. . { . -
. gi:' --*f." ....
g: ..
.n rn :n' : . . n! ~*-'l:: ....!..n . :: :!; ..: i :;n nja"2
- p.n .
- n: : -
ici ha "m i
- a 2 r inj{, =- Hmui! " =F j
~
2" i"i- j;jjfa mi fjf i:;} -iZ ii'y g- - i au -n != :=inci 35 H4 !Ili tin .- as..h i.b.Ha. ."-i $.4l.i N. .'E. H.ii . D. . oN.doJ 'iM: tildi- "i =i dr nilEd
. iH.i fi.n. .. . . . "it ... ri.r. ;: . .E ; .g .
t 53-s i
~, :jt: ?.. .' '- . i!i' b ,i *: !N .!n ::.:
EU ::ji i*: .
. t; I i, .n' i ::' * * !! f Fifl! .I .4
- . :: 5 :;i.
.. t :.. o I ' .tn. ' ; . . ..n. 1 a.. !.: '. : .t: ' .n. . .. . ..y....'
II , ;: '
.n! :.: - . ;;. ' . :; ;;:t .i..!... ..,.n: .: ?. .. ;. ..f.. 4 ...'. ..s...f . :. . . . . .*p t,,,,, ,; ;,
nj:O 1:!!h'.; ". . ,:.10 " !j;%;u 30 ";n" ' ' f i . i i;603 .!H !i!! !.90 : r1,20 ..!! iui
.t;: la il.50 : J.i. ""n"[i. "":"; "2"-
r::p:, :n :::. ,c' ...: ij;:: :j.
.I q8. 0 " .. :e : %l:: ' ;:l!;n 4:: :. :.
1;:- un :. : ..:: ,;ji
- p:
. 6 , 3 3 ' ' ::: ;l'n:n " :nna "r '
- n!-i. ! :' U: i: T .: :: r ;"
un !
- . ::r . . :. ::n: ,
i ... i ... .i !! ! . . : !'!' .. A
. a.n .
- in pe ...: !':n an
- t in : .t . .:: . "
"nnp:: un !n: i. n "". ,1 ' ,, , " , n!., . . . r: . . : .r
- .:! 4tf: :n! 'dl . : :n. ;!n :st! ':
.n.l.a ' ; ' ;:In :--
3 ; . ::1 : ;'* unnunn.un
- U ' ' ~
:: ;;:' :..: :y:
- =n "" "- ""
;;; "p:;; n == ;:n :. :::: jjj! ':g: 4.=:::li:.
m "c.au .= . . . nu ann =nu..=gunun .n!a;;n;:3;n;a:..
- n l : n: ^ ; t . .
- Mj:: 'ni jil :!. .:t:: ' ' ' - -
- :tn*
un.;ugilyql *
.!En.
M.: Mpluli ?! i:.
!!!!:ljjEj'!! ji:j. iljidhi uji ;j!gi .l.. .' :: ' !Di ;i] :. :, ,
jiihl:!pilli i!!! in *! f iki:1! lif :.j'.'_ !!Uli. =.'!:n_.. :ik' i: u.!;j:ih
.--- i nijEn
- .l::
. . . : 1:!' ! : ::11 ' '! ::
Eii Fi ln Uiff ~,i NE i!*f !i!i Hii!i!Ni"i $!"i~j'fii!"f:t". b::. ::: :: :l': i!$IIi ".$liiiiti *r H i"i ""I-!d dili" i "I*!iiE
.:i Eit$:;t:'!!..i r .!! [l:l j.*: j" :; ', ::l::i: ':':p; - .::n.:
- ji l ; :.
r'p: p' n:p:: :n u' p':j: I:l!
... "n tm :tn n n.: nt: :en :2'!! .: " "+ :, rnli:fl ::t. - .n.:nia n,n :n- . :1... :r.
- n. . : " - !:-
ni:
. a. t.. en : n. :.mg: :. :.,
c.: . .",...t
. . l.:. . n. n. e .e!: n. l n. . 4 r. ... . n. n. ... . . . .
t . . .- - - * * -* ~ . . T* ~ -*.. . . . . , i . . . . . .. ... . . . . .
, .. in .n. ..: : n. . .- ." . . "....t.... ...g..o . . . . ... . . :n. : , .....'t' .. .....l.. :: :: ::t:; ' . . .J. p.: ,
n..n . . . . . . . ;
' ;n. .; .1 .,;. ;. ,,y "n- :: n" ::p::n:
_" . na
' .n !nn" n l'" *
- n u. "r
'n! .
- .:. c. .p:
- jn..
- n
- .* ne:
- t" * : .r..:t.: .c: : :::
- n:
. . . . , . - . . ...&n:: : a p ,:. a n:.. ....,
- nn :;..
- r :, .:nu[r = .,o ~n n!g 3.; ;x i ..-
ap: ::gn;" gg;; g , .;; p ;
- , p:: ni :n
- ggg ;;,3 ;; 7 "-"g
.". nj "m n- nn uh : 1.nt . m t:: :nn ::I::
n.t , :: : . "n un"
. nln nn .' ;:, n. : . ul::;"' : :!: : 'npn' :p' ~'c:ln :;. ::In.:p' r: :n- .d:: ::!nn
- IU ." "" " " ' '
/"
c:.p:;n: nu.tE '2 20 U;A 22 ' l'
- a n: .". n" : ".I"."
(s, n';r';4";- r: . ."; 1 'M
;:.. ;- 3:n "m"" "n! n n ."u n[...!n;.",: "; 7 n . .: "in.. :: n: :n! : n ::t a :n. - 7t r-- .'n,n.. nln ..nttm ! ' ' ! .1 : '
a::tt: *
- P :n .2.
un
-?n . :n 'i ntn ' aj.htr :T: un' ::t". ",,..';".,..*;.r..' . :MlM ..n .t::;. . . ::.n. .: n a. a n.g;. .. .- p. ...
- { n. n. . ?
. n. " ' .: .1 . u. 3. . n. . l. . .n. .. o . . . . .
gg,; ..
.,- ;.g., ;,. ,,;.. ..=...
37 _, .;;; ,., g ;. . . . . .
- n':
e :n: nn :n. ::. :: a l,: ,
- yn
- :n n:: ...;.. *
."j.: e n t i n: . :n::p:
o "h::"n : :.' nj : ; p: . : .: ..a
- 1;: ..
; ;: . . ' t .,.! tu !" - ;r n;:: : ::l:: :* "; . : :: : . j :..hp ::n. ' u.p ..: . '; ". . i. :..1. ' ;. .:::
j n.
.: n. . :;. . . . . . :.. ... g . y _.; .U:n': ? . 'l l- 4 l Figure 1 i
i ~
-t. -
g- . , _ . t . I [ ' . N I" .. l .. A I djh , - i ( E
.t.
Unit 2 RCIC El. 88'
. Surface Area Calculation Walls North wall (27' x 31') 837 ft2 South wall (27' x 31') 837 ft2 East wall (27' x 30') - (3' x 7' door) 789 ft2 West wall (27' x 30') - (3' x 7' door) 789 ft2 3252 ft2 Ceiling (30' x 31') - (l' x 6' wall) - (2' x 6' wall) 912 ft2 Total Surface Area for Heat Transfer 4164 ft2 (387 m2 )
O
. ATTACHMENT A I-5
Cable Trays ()) Cable trays considered to be burning simultaneously: Horizontal Surface Tray No. Length (ft) Width (in) ' Area (ft21 ZA2MA200 14 24 28 - ZA2MA210 24 24 48 ZB2MA020 32 24 64 ZA2MA220 2 24 4 ZA2MA030 2 24 4 Vertical 5" Tray No. fh ZA2MV780 2 24 4 152 m. Heat Release = 152 ft2 _ x 190 kW/m2 = 2687 kW 10.75 ftc/mc _. Fire Duration of Cables = 2.6 lb/ft2 e 0.1 lb = 26 minutes min ft2
~ +
e ( ATTACHMENT B I- C
C ASE liutiLER : 1 BUILDING: R ADWASTE UNIT 2 ELEVATION AND AREA DESCRIPTION: 88' EL. RCIC P utiP R Octi - CASE DESCRIPTION: TWO DOORS CABLE 5 GAL DIL r 1 x x x x x x :, x r- x x * :, < X x x *
- x x
- X x x x x x
- x x x * *
- x x x x x X *.x x x x x x
- x * >::: x x x * * * -x x x x x *
- r
- CEILING /UALL CEIt ING/ WALL Ao Ho Aw Q THICKNESS rial ER I AL (ft) (ft2) (ft) (ft2) (kW)
F % X x; X x x x X X x X X X x X X x > / Y h x
- x X M X X x x > X W X X X X X -X k- x M X X X W W W M X > X XM M M X X x X x % M x X X X M M X X 2.5 . CONCRETE 42 7 4164 9000
~[RE AS VEili_L ATION CONTROLLED r .
FIRE DUR ATION GAS TEMPER ATURE
' <- (min) *
(deg.F) 1 316 2 416
- xx xa*x x X xxxx xxx* x *x xx xx x xxx x xx*x Xxxx x*x xx**x x xx** **Xx x x*********x *x x** x CEILING / WALL CE1 LING / WALL Ao Ho Aw Q THICKNESS MATERIAL.
(ft) (ft2) (ft) (ft2) (kW) 1 K U M X M -X X K X- x X M M -X X -X x x A X 4 X X X X K X- x: M M Y X X X -X X -X X X x X M X- X X X N x X
- M x X X X M M X X X X X X X X X X X X X X 2.5 CONCRETE '42 7 4164 2687
- FIRE IS FUEL CONTROLLED FIRE DURATION GAS TEMPER ATURE (nin) (deg,F) -
3 4G0 4 518 5 541 6 560
.7 577 8 593 9 607 10 620 11 630
- 12 644 13 655 14 666 15 676 16 606 17 695 10 704 1Y 7*3 20 722 21 730 22 738 '
23 746 24 754 25 762 26 769 ATTACHMENT C I-7 a
f(( Professional Loss Control, Inc. O STRUCTURAL STEEL ANALYSIS Y for PEACH BOTTOM ATOMIC GENERATING STATION Units 2, 3 Radwaste Building El. 91'6" Standby Gas Treatment Room 9 September 12, 1983 l I I l l l P. O. Box 446 e Oak Ridge, Tcnnessee 37830 * (615) 482 3541 l R-I
/' PEACH BOTTOM ATOMIC GENERATING STATION d
- 1. AREA DESCRIPTION Units 2, 3 West end of the Radwaste Suilding at the 91'6" elevation
-(Room 33, Fire Zone 70) (see Attachment A for sketch of area). Bounding walls of area are reinforced concrete with an average thickness of 3 ft. Total surface area of the bounding walls and ceiling 11,795 ft2 ,
(See Attachment A for a calculation of heat loss surface area.) k' 2. COMBUSTIBLE LOADING The combustibles in this area consist of cable insulation and filter n:sterial . The filter material has been neglected in this analysis because it will not contribute to the heating of the room since it is encl osed. The heat release of the cable insulation will be the largest source of heating in the room. The total surface area of cables in this area is 98 ft2 with an average O v combustible loading of 1.51 lb/ft2. A listing of the cable trays under consideration is included in Attachment B. There are no significant combastible liquids in this area.
- 3. VENTILATION PARAMETERS -
There are two openings considered in this study. They are both doors with an opening size of J' x 7' for a total ventilation area of 42 ft 2. One door is located at the far northeast corner. The other door leads to a stairway through the east wall of the area. The total volume of aii' available for combustion within the room is 1592 m3 The curve in figure 1 shows the fire duration (min) for a given heat output (kW) given only the volume of air in the room for combustion.
- 4. CASES EXAMINED With the light combustible loading in this area, the assumption that O
V all cables are burning simultaneously presents the worst case fire. With all cables burning, a surface area of 98 ft2 would be involved. 1 2-2
l (]) This corresponds to a heat output of approximately 1732 kW. The dura-tion of such a fire will be 1.51 lbs/ft2 4 0.1 lbs = 15 minutes min ft' Figure 1 shows that the volume of air in the area will not have an effect on the fire duration since there is sufficient air in the room only to support a 3000 kW fire for 15 minutes. The fire will be fuel o.. controlled.
$i,
- 5. RESULTS With the worst case assumption that all the cable trays in the area are burning simultaneously with ventilation openings of 42 2ft , the fire was determined to be fuel controlled. The gas temperature at the '
. ceiling would be 136*F (see Attachment C) which is not sufficient to fail the structural steel in the area.
There are no cables located within 3 feet of any structural steel, (#) therefore, localizea heating is not a factor. Tha critical steel temperature will not be exceeded so a detailed analysis of the steel will not be performed. I e 2 2 -3
. . . _ . . . . - - . . . . . . - . . , . . ~ . . . - ~ .. . . - - - . . - - -
Heat Output Duration for Available Air in Room O r f .s 4 '
.q- : T:
s_ y 4- ' x v m O 3-x O 2-O i-O s i i i i a 30 EO 90 120 150 18 0 t (min) i 4 l
)
i 1 1 i e
- O I
l l Figure 1 A~Y 1
,m o " . _ . . ... . . . . - - - ~ ..-}
b l _. 1 2
! L______ . . . _. -1 i @'~ .- :3
_._ , 4_ {- , II
- l. }& . -
(fp .__.
. s _ z - __ ~ , +-
l' p' ', .h
.+.
i Units 2 & 3 SGT Room El. 91'6" Surface Area Calculation P) U Walls North wall area 1 (23.5' x 5') 117.5 ft2 South wall area 1 (23.5' x 5') 117.5 ft2 East wall area 1 (23.5'x50') ~ 1175.0 ft2 West wall area 1 (23.5' x 56') 1316.0 ft2 North wall area 2 (23.5' x 5') 117.5 ft2 South wall area 2 (23.5' x 14') 329.0 ft2 East wall area 2 (23.5' x 38') 893.0 ft2 West wall area 2 (23.5' x 48') 1128.0 ft2 North wall area 3 (23.5' x 30') - (3' x 7' door) 684.0 ft2 South wall area 3 (23.5' x 12') 282.0 ft2 East wall area 3 (23.5' x 8') 188.0 ft2 West wall area 3 (23.5' x 12') 282.0 ft2 North wall area 4 (23.5' x 6') 141.0 ft2 South wall area 4 (23.5' x 6') 141.0 ft2 East wall area 4 (23.5' x 65') - (3' x 7' door) 1506.5 ft2 West wall area 4 (23.5' x 42') 987.0 ft2 9405.0 ft' Ceiling Area 1 (14' x 55') + (2' x 10') + (l' x 14') + (l' x 5') 809.0 ft2 Area 2 (14' x 55') + (l' x 5') 775.0 ft2 Area 3 (30' x 12') + (10' x l') + (10' x l') 380.0 ft2 Area 4 (6' x 65') + (2' ,x 9') + (2' x 9') 426.0 ft2 2390.0 ft'
) Total Surface Area for Heat Transfer 11,795 ft2 (1097m2) , ATTACHMENT A S*$
L.
Cable Trays Cable trays considered to be burning simultaneously: ( )) Horizontal Surface Tray No. Lencth (ft) Width (in) Area (ft2) ZA2PA30 13 24 66 ZA2PA40 16 24 32 Vertical Tray No. None - 98 ft2 cc. hhN'4 Heat Release = 98 ft2 ' _ x 190 kW/m2 = 1732.1 kW - 10.75 ftc/mc Combustible Loading = 148 lb cable = 1.51 lb/ft 2 98 ftc FL (min) = 1.51 lb/f t2 4 .1 lb/ft2 = 15 minutes min O t I v i ATTACHMENT B 2-G
CA'SE t! UMBER : 1 DUILDING: R ADtJAhTE UNIT 2 ELEVATION AND AREA L)ESCRIPTION: 91.6' EL, STANDBY GAS TREATMFNT R00h
- CASE DECCRIPTION: TWO D00RG OPEN AND ALL CADLES x' ' a x x x o K X x X 1x x x x x r-> x x x x x X X
- x x x X x x x x X x x x x X x *
- X
- x x x x X x x
- g X X X x
- X x x x x x x x X
,s CEILING /W6U. Cr:[LItcG/ WALL A rt lio Aw Q TilICVNESS NATERTAL
( f't ) (ft2) (ft) (ft2) (I:W) X M x W Y X X X X K y y K X X X X t X -v X X X X k W M X Y: X N X X X X X X X ) X M A X X X X X X X X X X X X X X Y X X X X X 'X X X X X X F N M X 3.0 CONCRETE 42 7 11795 1732 FIRE IS FUEL CONfROLLED FIRE DURATZON GAS TEMPERATURE c.
. (Nin) (deg.F) ) g9 2 95 s 3 101 ,
4 105 , 5 109 6 112 7 116 8 118 9 121 10 124 11 126 12 129 L.s s 13 131 15 136
; i , 'q ;t ~1 y ATTACHMENT C t -~)- - , . , - - , . , , - , . _ , - , -
-, l l
(([ Professional Loss Control, Inc. S 1 STRUCTURAL STEEL ANALYSIS tl' fOr PEACH BOTTOM ATOMIC GENERATING STATION Unit 3 Radwaste Building El. 91'6" to 135' RHR Heat Exchanger and Pump Room
$ Room 166 Fire Zone 12A September 12, 1983 l
1 P. O. Box 446 e Oak Ridge, Tennessee 37830 * (615) 482-3541
- 3-l
PEACH BOTTOM ATOMIC CENERATING STATION q q,;
- 1. AREA DESCRIPTION Unit 3 Radwaste Building El. 91'6" to 135' RHR Heat Exchanger and Pump Room (Room 156, Fire Zone 12A) (see Attachment A for sketch of area under consideration). Bounding walls of area are reinforced concrete with an average thickness of 2.5 ft. Total surface area of bounding walls and ceiling is 5330 ft2 (495 m2) (see Attachment A for calcula-tion of areas).
. 2. COMBUSTIBLE LOADING The combustible loading used for the calculations in the area consists of 131 lbs of cable insulation material and 56 gallons of oil. The total surface area of cable trays is 65 ft2 with an average cable combustible loading of 2.0 lbs/ft2.
- 3. VENTILATION PARAMETERS, Two doors serve this area each measuring 3' x 7'. One door is located
) in the east wall leading into the stairway. The other door is in the north wall leading into the RHR corner room of Reactor Building Unit 3.
These two openings allow a ventilation opening of 42 f t2 , The total volume of air available in the room for combustion is 2666.5 m3 The curve in figure 1 shows the duration of a fire at a given heat output with the available air in the room. The curve indi-cates that there is not sufficient air in the room to consume all the combustibic material, therefore, the fire will be ventilation con-trolled.
- 4. CASES EXAMINED The limiting factor for a fire in this area is the ventilaton rate for the room. This is controlled by the 42 f t2 of the ventilation openings available in this area. This corresponds to a maximum fire with a 9008 kW heat release rate. The case that is examined here is a 9008 kW fire.
Assuming all the cables are burning simultaneously, the cable insula-tion would contribute 1149 kW and the oil fire 7859 kW for a period of 20 minutes. An oil fire of this size represents 2.9 gpm of oil burning. 1 3-R
L) At this rate 59.6 gallons of oil would have been consumed, however, only 56 gallons of oil are available. To make this evaluation conserva-tive we assume 59 gallons of oil are available and the fire duration will be 20 minutes involving both cable and oil. The second case to be examined is localized heating of the steel members assuming the steel is in the centerline of the oil fire plume during the above ' mentioned fire scenario. S
!. s
- 5. RESULTS The first case shows that the worst fire will reach a gas temperature of 917 F in the 20 minute fire duration in which all the combustibles are consumed. This temperature is not sufficient to fail the structural steel in the area (see calculations in Attachment C).
There are no cables located within 3 feet of any structural steel, therefore, localized heating is not a factor. The critical steel V temperature will not bc exceeded so a detailed analysis of the steel will not be performed. The second case looked at localized heating of steel members when located in the centerline of an oil fire plume. These calculations show that at heights of 24.5 ft and 43.5 ft, where structural steel is located, the plume centerline temperatures are 704'F and 280'F respec-tively. This represents a steady state pool fire of 7859 kW and 6 ft diameter created by a spill of 3 gpm. These temperatures indicate that the critical steel temperature will not be exceeded due to localized heating. N 2 3-3
Heat Output Duration for Available Air in Room
*i
T *- .
. ~
n :9I
~. . . h. 5 !. . .. n. T . ., .. ,. n. ;.
- i. .N. . ,ii 1
.! l5 t.i., . ' . '+kk,.. :. .. '9 . . IN ; lj+:] . j .'; W '- I!nln.? I'.o Yet. . ~ ~ - .g*
- o .*
. + * ;; t: ' n. . . . . . . . . . :!. ' n. . . : !;; -
- 3. . . . .
g4,..
'n . . ~ ,v... . .l u, .1. . ..
1.. t,1 : .o.' .. . 3.!'.M!. . ..lt.........s....
."!. t . . .h..! .: :; :., 0. [::t.. 1 1,1, ,
4 , oo
;;j: .3 ~ . . . . . . .
l! .
' .?..l .! . .: t' n. I' l. ,M : fp. . . :,'
- . q . pu.. .t. n ;'. L"' "" . .
***-***'-l .l.:
M;+31, . i : UU. a.- f: g . . U n. .l. . * ! .M i " : .: l'.. : : :,
..7:.......... . f :. .' -*.- ..l.
- t': .: t:. :. .:: ' - .
f *. *i . ' .!***"*4, .. . :q"..*.*,"..:**..*.. . n. *"[ r. .+. A . , .... * *
- m.m. . - i : .J a..;. . .! - .
~. . .. ...... . . . . . .. . ., , . i n . - -. *;..-o- t. ' ". ' . .-' . .' i . .' .' .' L. .Ul 'la3. . l u . - - ->
- n. . u.
ab. '.'..----l.
. .l;. Lu.ll. . . . .L..;;;;a. .j o......u.... .. .... . . . . e s. . . . . ...t,.,,,
[e.w n!: d, . ; .
. ..g- ..c..+ . . . . . . -... ..~ . ....-. ... .t. . .
I' '. '. .' . : .-*. ". . '
- ' t ;'* *I* '..t :3:. :
.. ~
l . M. 4 , ..' '. :.1. ' 'l : :! .t i; ::,
- 5.!aL. , C. .l. :. - .U.: . .101;2.*l ..9;. ;;1. '.. * ;; :.*;;T ;;;;.;. .
p g
., ..-{ -. I . . - .- ... ...1, ..,. , , -"* ' ' . 1.4 * +.. -. :o ** ' . .n...o..... - .g.-21 .. ... .; *.. " . -
s . 7**
.. . . , . . .1l;...
- j !" *
- '1. s * .' ,. : .'+".?.'-
. ; "6.-
s . , . . +
. . . . . ~ .......t... ......... ** '. .' '***. :- : .- ~- :*.". ". P*-*-*~. J . .., kl ':'o.,. .tr.' , . ., . . .. . ... '****.".U. ~ " . ' .. . . . . " . . ~ ******;*** ;**J . ? . . . ' . ..
- 414 ' ' 1. :.l.. !.. ... ... .. .-
4
.I . 1 * ' rg. .' IEU. .- .U. .S MEU* .J . *.T l ' .' g . . . . . ~ .
2j....
. . . ....... ..i ^
- n: n. .:.q:
. : :- .. . ::. .-! n.t. d i . . ' P u ' ' bt T' - d .g .M ~C hil: R.; :q%f u. . . R;' . - ~ ~ nl. 40; *. n. 'M1.; O .rl .. ......m... 'Ul; -.:24.nn;l . "!:~;. n !.".!.:i t cn " +n ;;;;g !r :, . ln. . i.
- . n. . r . :* *. :r. -
.. :. *. :; :.inq:: ~ . . . . . , -: r;P,:! .
LM n:t=
- n ;': :: :n.u. s'...;11::
nn "nt:r:
- ~w a.n:n- : = n%.:., nn- A
....l...... t*** .; *. I: * * ::' ~ ~ : ~:n.:+. . . . .! ...:
- . ,+ ..:*.M. * - .
. . .- .;.,.. .., - -;++- li:. ....... , . ...,g. ....,!. .l...rt.p .**~.*+.-+~..!.:~:. - ... MM+ *.++
- r.!..M
.,.l: .'{..', ~*\ * * . - o. * ' };g: ~= ..-.v. .. u . ..n.J . 3.. ... .;.,,..; .
e
.,; , ..g. l1! l* 3 l:{; ,'. - .;.. ..., 1.' 1,..o ,
b.at*{.a . . . . ' *l; l. i:ii. l;.;olll g o-+ ;!.= 1 :, ;ltt.;;, t, ;l. +
; ;; .- g ; ,; ,.. ,. .. .l.. .. . - .i.., . .l.
t:- *
- t. n '..- .* . *v.-
" * * * . * * * .**~. ..n **.n*
j,t.* ; t. ..l... : {.l. ... .. .n . .' ... n -++* g...,..m
..... + . . . , . .
l. 4
.1. l . . .....t., . .... . ' ..a .n.1: .: . , ;.
t . ' . ".
' ~-* "" . '4 * +- + .' =**. . e. ....n. .t. . . * . . . . r+o- .... . . .. . e . - . " - . .ne. .. .+ .. .s..-*..-*. . ..~. ." - - e" . -.-- * ~ + .
O" . ". "3 ".. ~ . .t
.-+
Y"2' S"EU I,.: ep up' * "n, 'r. " M.E,E+12.' *U. :. n,' u.
""; **..** T"*n. n ***7.T****'.,....*".*i.,.. .. .. ..;. .. : :: .g; ., , ~ !'F-.W " '"
n, . . : .1. . . .
...[.. .
- o. ..- ... . ...- .
.. m ,..n. ..
- n. . n. .n . , .
o , : : n,T',::*M-'
.....i.,g, %. :n :' : n. , n, , . :
n,,,,,
*n:t:.* . ..! .+
- !. n. t . . . ~.--
I'p!
- i .:::;. !. '. ! ". . .... ". . p... .... . . . .... .1 m. . . 11 , . , . ....
- n. n nt'
.n 4
p:*r !!:: ". .. . ,'o.., ,
..."n. ' ".1 "o - .~ b. +d. . .. .. . . .* ~ , . ~. o. . .m .,p.o... ~.4.. . * .+..e.~....g, + .. . ~. . _" n. l!.* :. . ma.... ~ . . ~ . .
t.. ... ~ . . . .:
. . . ... .. . -n: t..:n : . n. . . ...:..n. . . .. .. o. .. n : t :,I,.,i: ~~ ..t .- .n. -.n. .nn.,. ..:. :.:,
u, ,: .- _. n. . n.: n. :
...,!.__ . n.
- : .nn . ...r:. :n: :n.m,: n" n t. .
nn -
- n n_.... _ .
r p ;m.,:. i .- ~tu:pt - n:
. :n. .p,j;.: . ;n t- ep :1;:..T-j:c uth:;n ." : o ;l ;: v:
in
- n; :n..: :
. ::f :.n n:.. ....r.:t::::. :-
- e,.
n ~:n. :t m
. . . .a.... n. ... .,...n., , . , . . . ,. r. p. : .: .- - + +::t .t w! +
- n n ...n.4m, :7.!.nu . , . :...
. : .. .... ... -n.. . .n. . . . .. n. n..- .n. ... :-,..
n ,m., n. . n. ;y..:
..!.:.: n . . ;.q
- p . .n c. 4.. t.: ...
... ;. ., n, . * .. .. .. ,. .:. . . s. ...... .. n. . . a. n.:. ... .n. . . .: . ........
- ..). n , en .;:. !.,. : a E., , . i n. ... m. . , . . , , , , < , ., . ,. .n, ::
..:: q ... . , ..., . . ...,.,n. _n. _....,_. .: .. . r...
_.t..
.:g,.. . n, .n......., . . _ _ . . ,....
- , n. e_,. : .1.
...- .r.. . . . . .. . ...... .. .. ,. . ....
n.. :.:n n:.
, .., ,.. ,,, m g ,. , . , ... . , . .... . .... ...... .- ._ . . _ , .. . .. ... .. . . . ... ,u: . n. , .
t .n. . , ... .ni un .
.in:.3. : .n. n.r....:.. . 3. . -- . .n .; n n. : :: n. .n -1 . - ., nn ::a :m. ru '.p : ~. . _. = . itti h:.: n. ;tli ,i:3.8 ,p i -4. n .- . ,- .n_it. en f.1.:n:
s:, ,. r m..ig ti.u. . *: t'i ] r' t ( ;, ll1_ .' t p. .~ n. .. _l. :t:. 11 ,.M. *
- 3. ,h.1_9_ .,.a.,.1.,
c.,.,h. -
.n.,:. g _ ._ II. .. .e p ns:
- t. L. .pn.. .i.
.. . .. t. . . . . . -} :'n. t ..t.m..
- 01: rt j q
!.n."i P'- .t.: 141. !. 2 ji 't :
i:p w
- aj in ;t:1 in:
ijt: :h.
; 2 . i.P.t.i . *.. . . . .. . r. .:..
t_ii'l. ). n. i. ag :.i.. :n - _t..pi ....:
. .t..t i.ll: . ..... i4i. .h.. ,: J.:n.:. t., . . i.i .2,1;.u
- : i :: , ypt
........ . .q.. .t..p:.: :
- i
- o
- rg 'in 1 n..!. : ...:
4; : r..:... :: ..n .un .n.: ru.n.. ..n.
.: ;n:
- tr:: . . _.:ne.n n;t:n.
.._... . ..n . . . .. . . , .. ..n .' otij.: pi ",: ":;";;.."M. .}::. n. p:t, . . .n.
W ,- : ... ...: . . . a ': . . . j jjj;_- ':: o.,h.":,-r.n :, ., no t.n . . . . .... gg 4. nn n . . . . . . . .
;;f - * ;;." g:p.:J.,..j;;;j-"; . . . . . n ....:n n, .:n: nr n:In.
o; ._ 1.:." *m $y.* .- . . p .;.; : , ' . ~""
&4 jtn :: 't;. . t n. .;. I, :: t. ..t }! .':,1 ; ; - . ~ . " - . . ~ . -
- m. .
ng. .. e .5 .o
. ! . !. *. n.g
- . . . d. .g..
u i;n.';! g ....!. ;; . . () . 3 .:[.. 1, , . *; tt } ; ! i, 1" 11 P! t dj
- -* : .:: "'; ;*. u.p .. ;i :, ,.7. ; =. . .
m:
- t. 3 o . .. ..
.o. . . . , ;1 . .
- e. ..
1 .. l l. ,, .. .1j, .$'. .. 1 . l ,
.. .t.a[*!...l.
no:i.'t.;;!.
... t .,j :.'} n.P..!. .
o ."
- h. .... ..4p , . .,. . ...
.. :... . L. . .. . . . .
e . . . . ,,i. ., .1.. . . .
. .l. . . . .. t . ... .... ..
_. .::f-... . . .o. g.... t .t.,. , .t ,.. ,1
.i.1 ,
U . . . . . . . ..,t
..., . . .}., . t n. . , ... .. .. ... . . .i. .1 ...t.
n,. , . . .
.. .r. ,.. .. . . . . . .
U. n.... ::t';. c: t.u, u. . r;i,
- t i;. l t t.. _
"'. n. , f. .1"i t,; :,::
g..
* : l l. .;r:: ;,'; ; h ! ;3!
- t't :;;.o tu
...... . . ...u n. u. . .
W
.. t... . .
o .1 m . ,. t. t .n. :
! :t h, n.; . . : t' n., ! , n,;i., . .::;. . 1'. .: ._. : '"' "" ;:ntn .g g;i. ';4.; 3.:...7 . ,t..
- n. . m ; . ;;;;. .o14;
- n.n. . ..;.,. "l
- .:.n.n.
&. g M. . ,..L., . n. l.u.; ..
3 2. gt -"
- 3
- .I.n. .:. g;t. :., t.:.,g::nt -
...". a. g .1:..n + . L. .1 . .:". ...p......n.. .,,,..'. .t."..i..' ",... .,. . .n .". "!. . .n.:.. *..... '. n.. .r. .4 .. . ..., . :d.:.:. . ....,.3.i., ,1 t .... . . . I .. .. ,...i . . ,,l.
w .:t
, . . n... . . . %.,.,. .. . . . . . . I.. ., .. . .. ..
4 I . 1
,. t, .. t. ,,
o... ... i.I ..
.....t . .. . . ..... g. ..g,.. ..... . . . o. ..g . . . . . . . . . . . . . . . ...
o... .... . ... .. a...,......
; o .
q.g..... . .o . . . ..i,
.g. .., . , , ..
1M; .1% g', i.,v. .g
- 11.1; . i.[ .- . M !'
'.3 o... ..
- .g .R a. ; . .g
- ' Ijp: n;j: 0". ::::.;..:- p::-.u: n.
g
.u. .. ~ .
i.n:g: g!' ';., . . . , . . . . pt.a 1:n..un a uli d*. .n " " ' ' ""*. f'
*.. .ql . *: ~,;: pi: 1.n ;"
- p;t n :- IIU .n. :, i j:!}:; - +-
t::: :* , . . ':::
+ . in" :"j;i :; - : :r i n: = " 'r "::. ' :~n--
- pl MI: lIl li:, . - j. IN *:f!:! !;!! 1;l' 1:!*
l?!. :t* f $ * .' .jM ;"*t. I. : ::d'3 ;n a :.t. .;..:![nn .::: ::: *: n:! :-"7.' n :n:: ::*. .&..
!,t ;: ~
n_
't;j lI:: ::';; 'j!! j;i: lyi .i'l ljtj ;Ij: ljl: 11 ;y ; j :l 14 it:
lin - _
...l li .... :1:: n!: .*:: ;;; . . .! M!!
- . lt :: .d. . X :'t..
..:' . :j :t '.; jy: ;
I..n.!. '..:'. .h. .: '..: ;; u.t.;.
.; .:. t.I' . . .. .M. .M..t.j 1:j;:.
n :: ' ' .' ? ;: { :. ': j :n ".
..._t.' ! I t i... .g . . ;:... . . . ...i. .t.. a .l .l ! ., 't.o. . , t t . . . . 11 '. ' . n.;.';.n..*.*. :' ; .....: . p: : n..
- i n. :. . . . i
. : t . :.
- n. . :' * ! '.' :i .n' '. u*.*..:'..t*". :'.. .. .r.n.
.n. .q. .a. . . - w. '. m.:*:: '.i. ; n' ....e '.*...:.. '. a.':'
- I.n' .' :
' 1'.l. . N' ' n' ' *l *n.' ' m'. 'n.l ' .:' '. 'n.' . :' ' .:':u'..:. .' .n'.'a. n: :.a' ' e" n':=:2._n. u* * *n.
- n.. . =.."..
A IIIfin: ymn niti:I :...ag ah!n- :...t.rt.: . . . .na nj!- n::p:
- i H :...; i .~h;:e .nj-i*i; nl .aena ja : 'l . ....:id:1 ... ..n
- : nin.
.nn ::j! .n.. i n..: :. .:n:n. .!@.iii' - t .n. nt:. : : . al::.. :n e.nl:n: nh. : : .n. . .::n : n . : .:n.:
- .'14 ... . M ... t. ......~.. ...
'.._.o.. 'n,..... . ' .m...
e@..
.. t; .n. ....::.!.h ... . . , . .... .. . .e..
i
....r . ... . . , . . . . . . , . , . . . . . _ . .....n.
- ".m a. .. .. . _ . . .. . . . '
. . . . . ....a... #.
im !* j . * :: ' ..+-
~ " .
- "I 3 ~ ]::; {F. " * 'm un. !* . . . . . .:.* :n.t 'n: ! *: ' !!* * :' .'
n . *P"'
!!!:4!:., q' W :: * ' ' ** h.. . " y:. .. .
n e.r.n. . u. :" a .: ;.n : ~: ., :::: -
- n. . .:t ,r.u, '
p r; ~
....a.. : ". u. . . n. .. . u. .u.". :. n..:. i..n ,.: n.. :n.: '.: ' . n.t.
_..._..ta..
. .a. i . . .
n.
... .t:{ ......i.,. , . . . . . . .. . .. . :. . . . .. . . .
_. . . . . . . . '..iH .n.n.:. t.:.n u
.. . n.. . . ... n..n. . = . ... . :n..d. an. :.=.tu..n.. . . . . .- . .... . . . . . , ......,o . . , ... . . _.._....o. . .... . _ . . ...
a , . . . _ . . . . . . .
.o.,. ,...r...... . . . , ...r . . . .....,n.. .. , .. ,: .:p: . . . .. . . . . ... . .. :: . . . ... ... . . . . . .u.. ... . . . . .. . . . .1. . .j n: ....
1., n:p w -:.. .. n . . :' _s ,.n..~n g,...u n , n : . . . n,jh. 3. n ..,
-n un n, m. :.n .u n. .h i- . :u .3:.3:. . . - n n e n,_. :n%e n. :...-w . nu :m :n nn n n.,..,' ;nt. '.n. .l : .n... ,'-';.' . .W .
4 ; '1;.l.n.: *::; t :;*:
';;.; :;.;t ..;' :1": 1';.II ':!n, . I' j f.':.:.. ... . 'n ,.
in,4. n.: , .. '1'.
*: - ':;. ' l.,
1.".: ' l.. i n. . ;i ' '
. . . . ..... .4 . . ..!! . _. . . . _ . . . . ....l t ..o.. . . . . . . ...o.!....
- o. . . . . .
.. .T. . .. !.11. . . ! !. . . ..; "I.l .f ! .... 1 .t ..!.:.l1 o...- .. , . . .
6
. .t. .o....! . ..- o. ...~ . ...... .t.. ...,
o
.. 1. .. o . ..l . . . . . o. m.. ..
II. I .i ., , , ..l .... . . .. . . . . ,. ..- ...
. o" ...o.. .., . . .. o. . . , . . . .l...... . .e.. .......
g .l .t....
.o. . .. .. ,( .ga...-
l.. .
. . .. Ii .. ,. . . !... ...
11 .I.. .i .4 . . o.. e ..o.w . l .., . . ,
. .. - . _. o..- .. . . . . . . . . ,... ,..t.., . . . . . ... .~ . ~ . . . .. ... o+. . . . .. . .. . . ......-..l ..o..... f.. .d .3!,... .} .. .. i .. ... . ..... ... . .. *. . +. . .. .o. . ...~.o.....7.n..- . . . .. ...++~.~..l .,. ,..o.. . . .!.. .. . . . ,.. . . . ,.... . . . . .... ... .o.
g .... ,-
, . .t ondg. I.. . ., . . t ..o.. .. t....g.q i,.
4.,J.... L. L... . . . . . . . .+ .. . u.. mo
- n. ,1 o
. . , , .. . +... .n:g.o ~. m.:;":n n .. . . . . . ~
m:. zr gg: s : e n . e o. .
.. . . - ..u.o-nn n.= --. . . . . .no. e .+.. .-n.3 x ..'n..~.-. .rt n;. ne a ..
ne r.
..........=n~..nana=.:.nn; wu :m.. . . . ... r. H: . ,.=. nr.o - .-n uI . . .. ....-..t.. . .. .a ...i.i..... p. . . . . a. ....t......... ..... . . . . . . . . . .. . . . .. . . . ,..... -- .F.q.
t m .n. -. . .: :
. un .a. . . l.,. . - i . . .:.n.: ,. .. . . .. .. .. > . ..2.-
w :W u
. . . s . .:., n.-r . .n. . .. .. ..e.n . . . . . D. .n. .n. n .. h . ... .u..., ..n :: a:: : : :- na .r:m uts:::
, r .,
- u. .,
..4.
n,. .
. . ..n. . n... .: ... .....r. . . . . .,.,r. ....
- i
...[ .n . . "u. ., . . .n.
_2n u,.n.=t=n-rn-r n..".u.n.
. . .~ . .:=. _.. :.- .-.. _ = . _- y.. - . . -- ......,x,...m n :: yn.,m.u.- . - man .m 2.n .mmu h.an m . n.,...a . i .t.uh .nn .... . . . ._.. .= *. .. = ..t... ..
o2 upn,.n. . ;;g;g . .,,ng m===: . . .
. . , ,;a n y,., 7 p n ;.. .
a ...t... .. .
. . . . . , . . ... .. . = , . . .=. 7; .;n.a. . . _ . , , ...n . . , . .
g .; . . . . ,~..,. .... 3. t7. ;.;...... ...,q.. .a.n. . . ..g =, n.n. . g a. n.n.~.;. = gun. _ 33n.,,,,,__.,_,,,,,_,. _ . . .r . _. ...........7.n.. .a. . .,..-.... .. .... y......p . . . _ . ... ~ . ... ~
. . ..... . ., ... ...i.......... . . . . . . . . . . . . . . . . . ... . .a. .- . _ . . . .. .....a. . . . .
- x. . . . . . . . ~ . . .. .. .. ... .~.. . . . . .. .,. .... .... .. .~ .. .o+. ".
...i...2.o......... , .o. . . . . . . .
- n. . ....:..
..i .. . .i . . . . .g. e n. .. . . , . . . . . .m........ ...
_ ...~ . . . ..... .. . -.. ... .".- o,
. . n. .. .. . - .- .. .. ...- . .. . . . . .. . . . . o.. ~-. . .r n .l,. .... e. . i . n. . l. .- r. ..l .- n. . . .. l ... ...
n.. . ,.. ...;,...1. . .I !,.... ...
"qo.. . . -. . a....,- .o.I,.--......~~..~.. ....,.i ...s.. .. .-. ..s , . , . ,1. .. ..,.. +
o o" ..o ""o.
. . .. .. ,. I ,. .... . .." .' "*.". **' . . . -~.~ . . I. .o... *.'..o d 0. . :oU.'1 '. !"..', :M:
g ...:. M.....
. i n . m. . . . . .. .1 1.,,. ***".,1.,,- .. ... -
i i
.. ,.t'.. .u. " h. ., ., m,: -. ,. i. n. ," ' .;. ...;"..M.... ' U. .:-..1~^...M.M...@...3...' . ". I.o~ ' ~. . .. . - .c'*~"..". **L ;*n. g
- 1
'n~u r .. - , . ~ - ..p*."--+.+" .=.'.m"*.m"*=. .- - . .. ...- .. . ... .....l....~.', . . . . . "....t.*.:..... . .
l i .o. ..,i... ..
..,. ..f., ... ..... 3..o . ..i.. . . . .ll. ......9 l... . .... l ., ..t , .. , ..! ,..a ... .... . L. . . " I e. i . e i.s. .. .-.. ..i .s ...o .e... ... 1] 1. . . . . , . ..,.e, . .. ..l,...
1., *
. . . . . , ... ... .n. .. - .*n. '.e. .... '. .Mi, *,. l M .y'g............. .. .. ... ..o o.
- ! .l.
. ... . . . . ~~ . . . . . . +-
i .!. :.l.M
.1:!.:lU.,.6.L....: .3:;. . . . n' ' ..... : ; .h.). .t l 1. ' . .l l 1 , . . b.M.
3
- l
* ! .' 1 .: . g : :. .
p' u . .:!
. . i .. W . ?
UI' l1. *.l;l I. .' !.: . . . M lU" . . " -IMI.-- -":- M
...!.J...... --. : . , , .. i; .. . . i . .'. . . ! 'i ,. . . . . . ! 1. .. , . . . 1.... --..": ... . . . , . . .. ." . . . ...l.
4
.~ . -"-..+g~""..) . . . . ...f. ...l... ...o... ..-. .. .. . . . , . . . . ,...I.... ..o..o". .. ."...~ . ' .. nm "w- . -' t .. ! - " "-- .4...3..v....o.. ... ...o.. . . 1.. .,.. -. .*..* .".... ... .. . "p.."...,g ..t. .... . , . , ,..... i. .l .,.. , . . , t o, .~ . . + . .M!;. " ,. ;-. . ,.1 .1. . -..., .t.l.....g.... . . . . . ...o .. ,, ,
on.
..o M t. .*M , o! * " .. . i.,.
p . 1, ... .... . .
. . o. M I .M. . M. ) M. ., . *{ M. M" .;;*2 ; . :!'::~. . . . ***T.l.... .p* M * :*M * **: " *Z ** **M .2"I^
Lq.
....,m. 1". .~.. . . g 4. , ."M., .r..,,.... , ..,,Li.. ,. , ...u. ;t. !.+~M- l u, g"$.":,
g lt hn g ,.. .'. .. M. . .;. :** :
... . . . . . .. ..g.~. ,3....l .n.**;;g .u :o.~. -o.. ..";.-.;;-~ ,,g.",...;n- I**!.t* -
o g,,, g .- -gt~ O" "* t* =
..i . . .. ,. .~. .... * *..* .* ' * ..*. - . .. . ... .+.. " - - + . . " " - ~ ~ ~ - ".--- ..-* .t. g....... . . . ...., . ..I.... . ~ - ~ .""++4 . . . . . . ...e2.. . . . .. . .. .. .!T. . t .. .,[ .- u.... o, ,1 .....)n..... . . ..i.i.. k..1 o..!.... *.. . o.... . .. ., .. . ... ... . .
o... . . o........ ... . !! . , ....o.l.... . .. . . ....."I. .."..t.w"-- " . * .""n"-.-..-
"-* "" *: -+;"" "+". ."+;" ; ;+ - .. 1 "o " .. :. " :m. q*n. . .' t.n . !. . :.:.m. . . ". . . : . .;; M. . al". ,. tb. . .-- ;1.!.. =~.. ;-* t i .. ,. .Mim*1 C~ *- 1** . . =~ 1C l*'! ** . ~. C
- . ' M. $n}M" . M.nM' e :n. Me M m. .
.a.- _n um: +. . g". .doMMu=r . . M. . *I nnn . .. .r.".*.M. .~M. .t'.unnt,p"n +. ".+. l . p tt. ==4= .--s -~ ~r="-i'"i~I.;n -t=~ t=t * --= wn.- - - + ==== -e--
s.M M"'M M ,* ** g .... j M. . . . ....M. . I M. .,.lo... .... . . . 11 .: :
- M. . M.. . .M.. ; ; . . . l : . : ; * : M. .;
*: 1; , ,1 ; f ; * : U I t ".: ...o "'7.
_ ... .. - .. . ....g f.r;; . !". , l .g ;M .M.*!. ...'!"j.e ..I.M M : tM :NM;M.y MM.;IM .:"liM. : . t .: :M t_ IN~'
-. . . . ........o.. .:... . . , . . . . .g .3.. . .. .... ,"o l :. M* ......p... . . . .. - . . .g.. ..g.. . .3.... .~.~.o.;-,-o... .. . . . .... . - . . . . . . . .e" . . . , ,.,.. y ...i......n....-. -..o \ . . . . . . . . n. , n . M.y.. M"M --.g -_.,.,_ .. ..t_.. . . . . . "-M....m=..a.=.. ,. .. . n... e. : ur. tMnn ~.n- - g M. . .t. "n- M m .M n-. ==
a
...---+ ...M..=. . 2: , . . . . . .nM s=-
e
;I.oI { : ;;M;;1M. M.} *1'::. , . . h. .o =..M - s:n u n nsn". 3 -. . * .... . I .
V f * .
- . . 1:-
%,.,/ . ;;p: u .. : u. ..j,4. 4 ua. .m. . .u. :.. .. u..u. .u. u. . , g u. . .. t '. i .::1*
- u ,. 1.n.:. .,; . i..g
.! . ::h'.:.!i,l
- g. ..o.!
- ..3..g u. .,..p M. ., . . . . ! ". l. *, ' M I : !' M.
- =.l:..g
. . g . M.u..Iu.' :j... -lt .." .n. . l f.. =;.u. tu. .uu= *M. i :.M*M:. o t; .;
a ;_ M
...h.................
l M !;t.;, M"o ;; M"", * + .
;M':- n' M"t.n" M M"M: . * * ,M.- . . . ... .......p .. .a.. u.u. .u. -~. . . . ....,u..... +. . ..g . . . . . .. . .e..... ...-3 .".ng= . ., ., M,+=,,:2, __ :.:.: =. .m. .. .u .MlM{; !q.* !!' '. M *. *n"pg ,. . . . . . .u. . . -o.~ ~r. _.-_~'t_*. ~... ..~. .. ". . . , . . t+ +-* ***UU^" U m M7p, a . b,.;;3 +
t'i . ...
.";... .M *;11m*. m M ** ' "-- g- '". ..+-++++;+- . .MM . . .. ..J + . .. M. ;! M.p. ,L "..: :,, .: -t.+3... . ...p.. ..t. . . . L.1 . " . . ".M" !:M + .r. ~. 4 .u!:3... . . .m.
- p. .t { Io, a, th !. ! ! :M; H+:
.o. i . . .... .L. ....y
- .tv M. 1"t .!,!.!.t f p* .
.i8. **1 "M 1: .!".*"U .. ~. ...
g*
- n . M ;,..o
. ; .+ . , M ,
m .+ l . .- . l . o- . .-
- n. . . ;n. : Mn;nn
. . . . . n" 4.. . " . . ...m_...........o...m-.
- M .mtunM:n"+=
+ + . +..t-. . +*
M- nn'~u:.. 4
..e... .-
HiiiFr,., '. * *- . .-. - . '* . . . .1:: ~'*
- p**-* -nu ii" it! 3. . . . . . . . .
ii!l3...h....:!H il !!!!i!!!i !g..g. 1m ;it@th.... _t.;j._..ijiWF n;; Hi i!!ihiih....q"Hi iiiily d ?"iluh; .4.iiH i, in!. iHiiHliHiliiii n; Ficure 1
,. .g--. - ~ - - ' ' -
y -.-.--.. .. .- . _ __ , ! W >
'4 ,/ / \ /,/
I
~
j
~ ; w .-,
rn 4fl g -+- ' Unit 3 Radwaste Building El. 91'6" RHR Exchanger and Pump Room Fire Zone 12A Surface Area Calculation Walls North wall (37' x 42'6") - (3' x 7' door) 1551 ft2 East wall (18'3" x 42'6") - (3' x 7' door) 755 ft2 South wall (37' x 42'6") 1573 ft2 West wall (18'3" x 42'6") 775 ft2 4655 ft2 [ Wall height = 135' E1.-91'6" El . - (l' floor slab) = 42'6"] Ceiling Area 1 (18'3"x37') 675 ft2 t Total Surface Area for Heat Transfer 5330 ft2 (495 m2) ATTACHMENT A 4 3-5
Cable Trays ( ) Cable trays considered to be burning simultaneously: Horizontal Surface Tray _No. Length (ft) Width (in) Area (ft2) ZA3GC02 15 12 15 ZA3GC03 10 12 10 Vertical Tray No. ZA3GV01 20 24 40 Total Surface Area for Heat Release 65 ft2 t, 65 f t2 x 190 kW/m? = 1149 kW 10.75 ft 2/m2 Fire Duration of Cabling = 2.0 lb/ft2 + 0.1 lb = 20 minutes min ft2 v
,o ATTACHMENT B \_,)
3-6 A - D
l CASE NUMBER: 1 l' BUILDINC: RADWASTE UNIT 3 ' ELEV AT IUte AND AREA DESCRIPTION: 91.L' EL, RilR HEAT EXCllANGER AND PUMP RO ( P SE DESCRIPTION: IWO DOORS ) x e ,s x x x x x x x x x x x x x x x x x x x x
- x x x x n x x x x x x x x x x x x x x x x x x x x x x x x x x
- x x-x-x -x x x x x x x x x x x x CEIL)NG/ WALL CEJLING/ UALL Ao Ho Aw Q THICKNESS MATERIAL (ft) (ft2) (ft) (ft2) (kW) xx xxxx x x xx xx xxxx x xx u xxv xx x xxxx u xx y xxxx x xxxxxxx xxxx xxxxxx xxxxxx xxx x xxx xxx 2.5 CONCRETE 42 7 5330 9000 FIRE IS VENTILATION CONTROLLED
$1 '
FIRE DURATION GAS TEMPERATURE (Min) (deg F) 1 26Z i i. 2 341 [' 3 401 4 451 5 495 6 536 7 573 8 607 9 639' r'" 10 670 C;/ 11 699 12 727 13 754 14 779 15 804 16 028 17 851 18 874 19 896 20 917 7
/
ATTACHMENT C 3-7
E
~
y(( Professional Loss Control, Inc. STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION I Unit 2 Reactor Building El. 91'6" & 116' Torus Area l I September 9,1983 l l P. O. Box 446
- Oak Ridge, Tennessee 37830 * (615) 482-3541 N -I
PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El. 91'6" & 116' Torus Area (see Attachment A for sketch of area under construction). Bounding walls of area are reinforced concrete with an average thickness of 3.5 ft. Total surface area of bounding walls are ceiling is 43,306 ft 2 (4024 m2 ) (see Attach-ment A for calculation of areas).
L h '
- 2. COMCUSTIBLE LOADING Combustible loading in this area consists of the cable trays listed in 1 Attachment B. The total surface area of cable trays is 111 ft2 with an average combustible loading of 2 lbs/ft2. There are no combustible liquids in this area.
, 3. VENTILATION PARAMETERS There are four doors each measuring 3' wide by 7' high entering the O torus area. One door entering from each of the corner rooms. A possible limiting factor from the fire duration will be the total volume of air in the Reactor Building available for combustion which is 1 x 10 5 m, 3
The curve on the following page shows the duration of a fire at a given heat output.
- 4. CASES EXAMINED With the light combustible loading in this area the assumption that all cable trays are burning simultaneously would present the worst case.
With all cable trays burning a surface area of 111 ft 2 would be involved. This corresponds to a heat output of 1960 kW. With all cables in the area assumed to be burning simultaneously, the duration of the fire would be 3 lb/ft2 + .1 lbs = 20 minutes. min ft2 From the graph on the following page, the volume of air in the Reactor Building will not have an effect on the fire duration. O 1 I{ ol
_ - - _ . savamme.,.- - ..-w . . . . -- -. . - . -
. . .. . ~ . . . . . . . . . . ....u... . . . . ' .....L........ .--4-~..;-- ,.2...q . . : t . - .=.. .=:.l~ ....=---.n.. :n. :..:-. :.=. =. ~...n. u....unn u. .n..n.t, ._.. . :o.n. . =. . .n. : .. . . ~ . . ., . .. .. . . -.t.. .
- .t.: -t :
. . .. j a .; ; ; . . . . . .. ,
b :n ='= 22,*.:n =:n. - . ~.:~tnn ?..--- "~ [ "]" '"L ,]. .*~~..:';- --*-*'~--*~--- , n:.,j=:
- j=--*;"
3 Z :t= -.; 2::*-' =* .n. .=gnn t- ; - =
'- n ;- r r--- : -- ;- ---
- -n .- , . .; ;
,..-.; ;I d , - ' {: {i!- * == nn--+n..ju = = := m=:== t -
- nn =; : ~P
.==ur un:::t==n=. =n 7n .. un =t n:!n;:
n-2:z;n =, =:_-- : . . .. m n;: . _ . n.1-.:pH
. .*.l... : . : .a. . .
i j
= r n - *.. g4---.t=.. =. ......~:. . .n.. t.m.. . ._:.:.::._=.3:. ! . :. . . n. .i, .:. n. . . _- - - - - - 2:
- u. n.. ' n. n .: : . n.g::::
. . .: . _j . . . .nn : -
- - - . : p-: - . - :-- t.-
__...-...-..n..n.. .-' l' g ,
-~41mi iSI.*.-HiM....C'- 2.5339 "i - . 'i d '! .
5.._f. [... . .... - . 2in":
. . . . . . . . . . . . .. E2$. 3itiiE:5'.....I... iC[~. . . . . . -e . ...
n ;
. . .i.
- . :!.* ,t . :. .::. :.. . " * *n. . . M.... ::n
. .M. ...I".. ....l.. ..- . 3. .l. ... . i lQ .. . ::jn ::gn ~ --
9
. g. =g....n. n:. :.-.- - . : = ]g-.;, . , -
nn:nq
- .n:n
- ==
- .:n:: **! nnp!::: " :tn g .--]--
.n. nura
- 2. . . . _4.. g .
- r. n ,--
.. . . ~' T.
l... Fn.l r ~+in ri. ----pg..
- n: - .: :-
.. :.tn n 'n i:'*: ..:.... n*
nt::
.=in =
nnnnpr n
- .: n .
., r; . ..
7-i . , { .{.
..* t--~h':-
{; unp- ann =in:= . = ;.n} :: n:= .. , n;n- .n = :n
. l.: . . . g . . .i ..-.., ..g. ......4.. ......... m..-- . ...
l..,.. . . -
- a. . . .=. . u. . =. .. a.
. .- .. ..- .. - . . i i, . - 3 ~': . l n-8 nn. 3 =. . .+. - .._n.. . . :...: = =. . :... .=. ..j n. . : =. . . t. . , j , _ -.a. . n. =,
I , .n, : . ---: .1, .
. +-1:m ,7 ; _ 3.. ..nn. . . *= inn in* n ;; ;~g:, : 3. ^-
nnlnn n . : un:un un . ::f un: n.:t:: em an m g, . . ; -
. .- n-:= *n-- --.!u; .. n .ns= :. n s n. ni:= , , 4 , ., , ;[. ; , ...L.,.,.}
- ...:.. . ,i.j.. 3 : : g
. !. .p. ~. . - . . . . . . . .. .J.--. .,
- i .: E ".:i HElE .:ti 7 --iihii: 5NE. m.~ .: l n =. . . .h.=.n. . . . :. * . n. ..ln..~.. R : Fi
[ ' .i et n. 5. . . :.
" i ~ i" . . . . . . . . . . . . . . :n;- ~- - ..j e. . j.. ..... -. .". "~ .:.. . . ...,n. .m = t.E:. :
- l.: : =._. :' "~' =
.- : ~nl"---~= '
un
"" -. . . - - n...
n =- =1:.
..i.: . - n..: xp: :::.-
3 ..
..g.. - ~ .mn- : =. : na- =la - .. "." i . IE "F i::E "~:... slII ~'M ' ~~ ' '"as 6 -
- mt .. an 2- ::::::nn.IET. . . - . - .
. fili! .. "g.
i-
- .--4 --.l '
a n::._= n:uk.:
- y. _ g . ; .- --t.=- =:. nE ra.~ ~jg. . . .n=._ 4.=.m...,..". . . . _ . . . . . . . . . . . . . . ." ..:....
x .,*. . . .": .
- - :..p. :
' .4 - Q -. . .,' Tun.*:n* ::: ::- :':~ - * - - -- ~~-~ ---. ..e.. o .!' : . :"
$ ~n n ". -.- . .*. .***.ni5 ,
- *r tn*- I*-!*;*r=*U. = . .-U'..<C. ~~%_,....
.. ..C. M. .%. C.' .C.. 2. l. -.. .' 'm :- . !..':. :: .l'.. 'n.- *, ~M. :.. . . . . . n. . I "
X ii" fin u-== : k_..li!r E . . . .i.idi!. . . . . . .R: 1.rI.i.i.i_.E..I..ii._i. . ...: . . . iiE._!! E. l. : n. . ,
..... . i E. ::. l . r. .l .'. .. .: ' . .: >
O *!In'un*.n
..n =}~:.. n. -'"*;- ;;nt:.r - :n~ --- - - - - - - ~ ~ -- . ~ . . . . . . . .-*
4 _ m amn n--L'"!EEi[iii' IHijEi.:i":t-.-.:. rn3anjp ' -
.:ih. i!P"!! . I . . .. .lii... .F.. ...jij ;i i;jii .i;5. .. i.i.i.i..n. .i.L. =..:. . !!.C. r.i UE nr ..h : mP ni!'"; .n L = = ,: . . :. . . . . . tu m ...n. . .. . .n :- ..n..,,..n .n l .n....in n :..: ::
n,. . . : r. . . .
- m. i-. .!
.f n. :. . "::,... "::: .:* I. n u.. k"...I l.. .n. :: . .l.::; 'FIF " 'j::~ ': ' ~.t:: a. .. . j:: n. .;. ; .1:. : :
2. 3 am=: . s. . :" -- n.n .. :,j :
- n{.:
. . . . . .m;.: :. .
- t= = men .. m - -..
min: ruhn: n.. i ..pt - . . .h. . . ~. un + . n:t m : = un m- : :nn. . . . .H;t;..ji! hi.!.. a ur: - , , , , g
- t: s=2 :nnt:n n"l::n = f :: : - +- ;ne:
- =tn3 -
. ;n;un =: :
- t.:
,. .g.. -- *-- t. . . i . : ... . . . . . . . .'nt" . ...=n-- m r ;. .a~ ne:i !!:P .:... M r;.F MI ::fl.
un'n.. . nr.n: :.nt:::: . n4:n: n t.. n: :: :: . . .
- n un :.:: Inn
~...n.
- .. m, . :. . . .
- rntn" " * ~ ~
r... ,.. t. .:.:1. ... a. p. :.
..: =: ;d:p nai;:: ....t.... ..n jn - iT, N.
- = ' - -
- l: . 4: . . . . .:) '-.
l m']n rm .. . . . - . lL. . ._.._.. ,n rn i!r . , ..f,
.i "
- !P:.
. . . . ,F- -
1MI u .n !! b. . . ii! . .". . F: $!]P' i
----~--r.
- i IF."augi!! Hid... -- n ..
nfin niilii. . . .. .* !' ' iij21! n!: y. ..'iiiijini .. .. -
- b I:
.;.o _ ..in.. "":r" " *E-f:ne= ""I n- "nnn. -. . :p:: n t- - :.9;itila .... n..,h=: :r.n
( ~, -;:bM: n .
. u. in. "1" . i"+2 .. :."P:
- : . : . f : : =~ . . . . .
O 10 30 60 90 12 0 150 180 210 240 270 300 330 360
, (min)
- 5. RESULTS The worst case examined is with all cables in the area burning simul.
taneously with one door open. The gas temperature at the ceiling would be 94*F (see Attachment C). This will not fail the structural steel in the area. The cable trays in this area were positioned such that they did not present a localized haating exposure to structural steel. 7
/
2 N-3
h . j O _ _ M .. h
~ / =4 $ g h ..' _f- ~w A> W -4, Unit 2 Reactor Building Elevation 92'6" & 116' Torus Area Surface Area Calculation Walls Outer North wall (64' + 58.5' + 64')40' 7460 ft2 East wall (61' x 40') 2440 ft2 South wall (64' + 58.5' + 64')40' 7460 ft2 West wall (61' x 40') 2440 ft2 Inner North ( 15 ' + 14 ' + 15 ' + 13 ' + 16 ' ) 40 ' 2920 ft2 East (15' + 14' + 15')40' 1760 ft2 South ( 15 ' + 14 ' + 16 ' + 13 ' + 15 ' ) 40 ' 2920 ft2 West (13' + 15' + 14')40' 1680 ft2 29,080 ftc
(~ Ceiling (151' x 148') - 4[1/2(45' x 45')3 -7r(36)2 14,226 ft2
~
Total Surface Area for Heat Transfer 43,306 ft2 (4023 m2) ATTACHMENT A 4-i i
Cable Trays O The folinwing cable trays are located in the area and are assumed to be burning simultaneously: Surface Tray No. Length (ft) Width (in) 2 Area (ft )_ 2B2MH-210 19 12 19 . 2B2MH-220 23 12 23 282MH-230 15 12 15 2B2MH-240 23 12 33 2B2MH-250 21 12 21 } 111 ft2
; Calculation of heat release:
i 111 ft2 x 190 kw = 1960 kw I 10.76 ft /m2 2 F - 1 O ATTACHMENT B O If-5 I
~. - . . . . -- _ - . ~ . - . . . . - . . _ _ . . . . - . - - . . - . - -
1 CASE NUMBER: 1
' BUILDING: UNIT-2 REACTOR BUILDING '
rLEVATION AND' AREA DESCRIPTION: 91'6 & 116' TORUS AREA l OASEDESCRIPTION: ONE DOOR OPEN ALL CABLES DURNING
**xx******xx*********x*********xxx*****xx*****xx**xxx**xxxx**xa**x****xx LCEILING/ WALL CEILING /: WALL Ao Ho Aw 0 '
THICKNESS M ATER I AL '-
. (ft) (ft2) -(ft) (ft2) (kW) u M * * *
- x x x * * * * * * * * *
- x * *
- x * * * * * *
- x x x x
- x * *
- x * *
- x x * *
- x * * * * * *
- x x x * * * *
- x7x x x x- *
- 3.5 CONCRETE '21 7 4 33 0 t, . 1960 FIRE IS FUEL CONTROLLED
' FIRE DURATION GAS TEMPER ATURE (min) ' '(deg.F) 5 83 l -
10 88 15 91 20 94
-O .
t e P a i 1 b O . ATTACM ENT C y.g
, , r --.a ,--n.,v- ,n- - n. ---,, ,.-- ,. - _-. .. ,,.-------. , ~-. ., _ - ,. .~.- . , _ , _n ..
(([ Professional Loss Control, Inc. STRUCTURAL STEEL ANALYSIS for ! PEACH BOTTOM ATOMIC GENERATING STATION f: Unit 2 Reactor Building El. 91'6" & 116' RHR Heat Exchanger and Pump Room { } (Rooms 2 & 101) September 9, 1983 l I P. O. Box 44G e Oak Ridge, Tertnessee 37830 * (615) 482-3541 5-I
PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El. 91'6" & 116' RHR and lleat Exchanger and Pump Room (Rooms 2 & 101) (see Attachment A for sketch of area under consideration). Bounding walls of area are reinforced concrete with an average thickness of 3 ft. Total surface area of bounding walls and ceiling is 5066 ft 2 (470 m2 ) (see Attachment A for calculation of areas).
- 2. COMBUSTIBLE LOADING.
Combustible loading in the area consists of the cable trays having a
.surfac'e area of 79 ft2 with an average combustible loading of 2 lbs/ft 2, A quantity of 28 gallons of combustible lubricating oil is contained in the RHR pump. An additional 28 gallons of. lube oil is assumed to be in the area to account for possible maintenance activities.
- 3. VENTILATION PARAMETERS There are two doors which enter this both measuring 3' wide by 7' high.
One door enters on the 9186" elevation, the other enters fron the 116' elevation. A possible limiting factor for the fire duration will be the total volume of air in the Reactor' Building available for combustion which is 1 x 105 m3 . The curve on the following page shows the duration of a fire at a given heat output.
- 4. CASES EXAMINED The limiting factor for a fire in this area is the ventilation rate for the room. With both 3' wide by 7' high doors ' entering the area con-sidered to be open, the maximum heat output that can occur is given by the equation Qv = 1580 Ao @where:
Ao = total opening area of 42-ft2 _ = 3.90m2 10.76 ft/m' and () - l110 = height - of opening 7 ft x .3048 m/f t = 2.13m 1 I-A
- Hi n4i . .:.*i.i.
1 n:f:: --
- u. ."
. nu: . . .I iili!' :.;n Fil . y! _.
S 4 ; 2"i i! t:il-.:r
;isii- Hiii 4 diu-- < -
- i- : - -
- l-I .I:
9F !:- 8" h., r, c. : . n.l .: .
?!R .
- e. . t. . .
iii:i
, ' r, -"
I -
. .. i t ~ r-- l-J- :-+i u; 2"I' ri;ijiU- - iij%.. - 9,- - ! m ) , d.f..j,jf... . . . . , .. . . . . .. 9. . . . . ,:.;;;u .;; a ~::in :c ; p. , . . . p .,.
n ::. . . . ; g
; " si Qiii: :-;[.
10
- .SiF snh::-
"iF u ; Hu i -
i:;g; & ['
- .g .
. ti.. :p. as.: -
l ii
,J - -i:!!! :i!P: " ..: ~ : n: 8c - -
1:::7
- .:c; -
- r- !n ! I 9
q+ xi - HF ii-" a:Fi i- : "r - :3 . , j- !' - +
~
iiRf ti:-!
-- - iniiii;i ri RF n;:7: niiii:ih[29u-
- ....: :m:
Njn
~ ; v1 r -l r j '
8
- r. *. -?
i
-i --.322 .:.. "id .' . . .. ,,.. . ~+-- -
8-
, -l- . i. - - - - - .Z i . +
- h. b.i!ll5.. . " '~ari."~. . : :. . . . :3+ I:* -
"' =
l .- i ,' I lEn : "3. .H:- - ! liin :+ - i - '.i-7 l:.:n - ::!;.H a;. - ' ;:: - ni: .
- i j - j : " :,, ,' L:p. . ;' . . . . . - .j j $ 6a.::j..i:!::..
3 ,
. ..,.. , . . . . ..i.. . , ..a+:-..;:;..; . , :i y '.!;a:.
l . . . . .. i :yj% - ::.:
,,. : J:l_:.
I-
. .l .
a::~ . i. . . U :! . . . "' n . ' :g! ! O i-i . 8
-5 -- -
s..- - - a .:2.
"'I" .! ' . c' X * 'I ' h .. . .
j O , i:: .
' l. . . . . . . . -cl . . l.. . '!! . i:j:i i . i . - .1 : . -! ' .. . !ii..l.
4.....a:
-- ,..t..
u g:- T .it , .,
- .r
- l .1 :
I i!- -
- . ..!: . j i
- SF. : :j.,
e 3 :- : --u: Eiii: -
- e- . :!.. - . . . . . t.
..j. ..!. . . . . . ..i.. ..c 8 !" -. I: . !di iii.i. 5 IE it! D '
- k.1: .
"". ~i' ! I- l
- g. t :. .... ..: n . c n: *
- e J, , ,,g i
."3...
- i. ,,
i:i"
- .:,:i . :..i a,.i: n.
iii . .. . . -
- -i-! :: - ! -i .
a t:. . .:c.n r. .in r- :. i g ~. : . c :p!ikbNi' !!kN! INN
- i *N:ii'* $ $ F i I. ih-t * *-h-
"n..:....- .is (u::!;:: -t: :i:.. .s u : . - :-
- a;!n. , i g
. . . . . . j .r :.j.. .: . . ', . ! .
n.. .::l . .......1.:...
.:a:: :
3... . -. . . . . . . . n... . _g . .... .
. ... .,. . . , i.
O 10 30 60 90 12 0 150 180 210 240 270 300 330 360 t (*I"I
.giving a maximum heat output, Qv, of Qv = 1580 x 3.90 /2.13 l Qv = 9008 kW Assuming that all cable trays in the area are burning simultaneously, e the resulting heat output is 1400 kW. This leaves 9008 kW - 1400 kW =
7608 kW for the' heat output of the lube oil fire. This heat output corresponds to a lube oil burn rate of 2.9 gallons per minute. The duration of the.oll fire at this consumption rate will be 20 minutes, totally consuming the 56 gallons of lube oil present. The duration of the cable tray fire would be 2'1bs/ft2 + .1 lbs_= 20 minutes, min ftd From the graph above, the total volume of air in the Reactor Building 1 O witi not arrect the rire duratioa. I i 2 ( 5-3
- 5. RESULTS The case described above with a constant heat output of 9008 kW for a duration of 20 minutes with two open doors results in a gas temperature of 961*F (see Attachment B) which is below the critical temperature for the structural steel.
The ventilation controlled burning rate of 9008 kW is equivalent to the heat output from a pool fire with an area of 27.9 ft2 (pooi diameter of approximately 6 ft). In order to assess the effect of the plume of heated gases above the pool fire on the structural steel located on the 116' elevation direct-ly above the fire lieskested's (1) relations will be used: n Virtual point source determination: n.% Zo = -1.020 + .083 Q4 = 1.3m Plume temperature at bottom of steel on 116' elevation: A To = 9.1 (Tp / (gCp 2 fp )).333Qc,667(z_zo)-1.67 2 A To = 466*K temperature rise T = 907'F temperature of fire plume
~
This temperature is below the critical temperature for the structural i steel. For the structura*. steel on the 135' elevation: 4 To 148'K temperature rise T = 335 F temperature of fire plume This temprature is below the critical temperature for the structural steel. , It can be concluded that there is no problem due to localized heating of the structural steel as a result of the maximum pool fire that can be supported by the available air flow into the room, pD
' The cable trays in this area were positioned such that they did not present a localized heating exposure to structural steel.
3 b4
r~ l 'O ! Y l i
) .
b.
'. ' e' h,
RHR Heat Exchanger & Pump Room, Surface Area Calculation Walls North wall (37' x 40') 1480 ft2 East wall (18' x 40') 720 ft2 South wall (37' x 40') 1480 ft2 West wall (18' x 40') 720 ft2 4400 ft2 Ceiling (37' x 18') 666 ft2 Total Surface Area for Heat Transfer 5066 ft2 1 ATTACHMENT A 5-5
m
~
e
,m <J C ASE fillMBER : 1 j BUI LDItJG : UNIT 2 RE6CTOR T:UILDING ELEVATION AND AREA DESCRIPTION: 91'6 & 116' RttR HT EXCH kOOMS 2 6 101 CASE DESCRIPTION: TWO DOORS OPEN CADLE AND DIL FIRE X X X X $ X M M X X X X X M-X X X X N
- X X X X M T K X X M X-X X X X ) X X X X X X 7 M 6X X M X % A F X X X X X X X X X X X X X X: M k M X X 'A CEILIl4G/ WALL CEILING / WALL Ao He Aw Q
. THICKNESS MATERIAL (ft) (ft2) (ft) (ft2) (kW)
- X M M M X X X M W X X X X X X X X X K N M X X-X X X X M M X X X X M X X W X- X X X X X X X X Y W M X X Y X Y X % X X X X X X X X X M X X M K X X 3.0 CONCRETE 42 7 5066 9008 FIRE IS VENTILATION CONTROLLED FIRE DURATION GAS TEMPER ATURE l5; (nin) (deg.F)
S 517 10 701 i 15 842 20 961 i
'% s' f
r"- q ,J ATTACHMENT B
$- 6
l l (([ Professional Loss Control, Inc. l I I gS STRUCTURAL STEEL ANALYSIS for i PEACH BOTTOM ATOMIC GENERATING STATION t Unit 2 Reactor Building El. 91'6" & 116' RHR Heat Exchanger and Pump Room j l (Rooms 4 & 103) September 9, 1983 I I P. O. Box 446
- Oak Ridge Tennessec 37830 * (G15) 482-3541 G~I
i PEACH BOTTOM ATOMIC GENERATING STATION O
- 1. AREA DESCRIPTION Unit 2 Reactor Building El. 91'6" & 116' RiiR and lleat Exchanger and Pump Room (Rooms 4 & 103) (see Attachment A for sketch of area under consideration). Bounding walls of area are reinforced concrete with an average thickness of 3.5 ft. Total surface area of bounding walls and ceiling is 5489 ft 2 (510 m 2
) (see Attachment A for calculation of areas).
- 2. COMBUSTIBLE LOADING Combustible loading in the area consists of the cable trays in Attach-ment B. The total surface area of cable trays is 92 ft2 with an average combustible loading of 3.0 lbs/ft2 . A quantity of 28 gallons of com-bustible lubricating oil is contained in the RHR pump. An additional 28 gallons of lube oil is assumed to be in the area to account for possible maintenance activities.
d 3. VENTILATION PARAMETERS Two doors serve this area each measuring 3' wide by 7' high. One door enters fran the north west corner of the torus area, the other enters from the Raddaste Building. A possible limiting factor for the fire duration will be the total volume of air in the Reactor Building avail-able for combustion which is 1 x 105 m3 . The curve on the following page shows the duration of a fire at a given heat output.
- 4. CASES EXAMINED
! The limiting factor for a fire in this area is the ventilation rate for the room. Sith both 3' wide by 7' high doors entering the area con- ! sidered to be open, the maximum heat output that can occur is given by the equation Qv = 1580 Ao / Ho ,where: I Ao a total opening area of 42 ft2 . = 3.90m2
.10.76 ft/m' and Ho = height of opening 7 ft x .3048 m/ft = 2.13m l
fs given a maximum heat output, Qv, of j Qv = 1580 x 3.90 % l Qv = 9008 kW 6- 1
n l :: . -* :Hi' M n'di: . ", Np: : 1th! "!:: i
.[ f
- nn. e. nn: Mlc"a*
.: i:- i" t. q. .:sn - ..a
- na ' gl : .
.:. na.!::. ...: -
np: , o::.E[n
. i. :
- n :: n ;su h:.: '*!. r.: . :p::
.nl.; :n . ..nn.. :h m : : ". ..o :. : nt "*p-n 9' :. . -!: 'd. " : ' "l':g.' : ' y* :.. .- s
- n. n ~ - - : n' nr
.."U.
s" m r - -
- g .
.n r.n.. {n: m.. . . . .
g.
...n-b. .- .. h. '. . ,- . .; . .- n"h:: .a "j :-
- i n~ ' . . . . "I.- '
l F (
.ntr nln , ..
iM5i: U$ ist h i 9 4 n .: ih" !" ir. j -l
. lI l l .. :.l.!
m'
+ 'l g. ;a,; .[:.j . '.l.
j.s". t ; : unn. n
.-L. . ..: . . . >c. -
ja::
.,. np. ~ .:n n i. 'l - 'c! '!"
[f l ':'.:
..:.:i' fif* ;j;:; - , ; ,li! : ' " -M , f"' ' '
1 .: .
- nf , . lp: .- l f , 3 3
.r .a :in :p: :.s n i ..
9 qljb "jhH H Mi ;mi- i ".'i! iiH Hii "j, ;.. "E an E "i" r:n ,..:i . -
- - ni "q "nj-, , - ; ". . nin.. ... . :nn .'..
4
. . nln n ...
up: c. - m: r: - nj.. ..:L. . . .
- m ." an: :n : : " m . v. : : . .F
,; ; ;;; n' " "
6 .: -
- .p. '
.....,'.m.i' ~:
- n. ...:.f. .; . ;.
..; ;d;r, .: n.; . . . ;q . .j. ... ^p * * :.p! * : 1:n ':!n 4 .:7- - (a n.n nn ..n ::n " r ::
m' *
- . ::p. .:!' :!.: n:'. ,
':.. ..g.
4
+j . =
7 r!n
- n
. a -- - ,. n:
- P:
!! e :
iiii
- : ". !H --
i "in rj - a. +- t e ,4. c f. : ;
- n: :.... ..
p .n: .: a n -
, : : .1 66 ::.g,a ny si; .; . . , -i . njgn 9 -iii E .iii :- ajp!:;j]
i lij;! .
.p dh , i;in n :. q... n. ", :..
nnn u ". a: na c: .a". ...
, : j!n . . :1. ..'..
q- nf + gn :. 4; r r .
"l.."-
V "U J - M *U ' " 'i" # "t"" F O "" '" "'
'" -" " 'l' d " -"m!'; "m"h" -5 u n+ nr- e n" m" "-- "- : " T " r- = &'n : ? "" - "m' n: :-~ m: :- :.. "t n " n pr "r ", ~n ;:jr '
n: X .
- r. ... .:.
n!n M '
. . ' . n %' t "a".." lin ::ii
- M
. :. n ii .- " - :U. . ::l ~ ":"r la - ". n - -. :i-c: "
- n' a.; u; W '
%n; O ". "
- l"
- c":
;"m:
l i. ' ' * '
..:n . '. l;-. . h: ::iU i "n ".;-p- i. .,
4 : nn :: p- : q*u
- ni u 4 en '
. an - .. nn . ." : p": -
ijl "3 p- : tp; . n1 : 3: *
.: :l :
nu n;; ni:; ' "" u:. ..:.. ,n ': -
-un np: ,"n i ;p::: ..cr- ""
un . p:: :n ; ::j :. . J a h.: :a! : . .tn . v , : n. .
- n. "
-n in .a .; n-- m: "-
- n ..
or - 3 .: . .
- :n m n}a:p -
nu n; :- :n; an :... up ;.: ni:::n u ;pn . :- g
. n o;- "h n ' . : :. m p
n . .
,:h: >. : p":n nu :" n ,. . . : ; l;; u.: a.:
1.:h"ha :
- ::L .: i o
- mi n i :ce n; u. i.:n .. n- : jn
- :na, j;!i :p;j.. p~: 4 .;..
- . I:: . .n m. . " .rh a : in: :p::
3 nr: .e ne
-u r ;a h:n :.:... ...r ' u. . : .- ...;r ! :tr
- ' n. nn 2 b, aj.:
n:a..: ::p . .an ... .... n " r. ., . ....
..i
- ':.- un ::l ! ::i.. .:..
r
.h
- n i... n. I n. . .uh ,* :n. nu. . . . no n. -
"g- ..l.: "n n . ' n :e:
an.n n.: n:;c+;:
.n . ;.. ,a n "
r n. l : n c!:: ;.m a : ...-: ln. inon "n un i n: np: a....'n 4. . m'en,""'9 .in (;p ': I nu u a p: .;:-
..:r"!h in: i . .- :in :al., . .n n,.!!! l Pnn M" he b:. :: nI- Hr ...r. ==gan.g, - n . .q n -F g.nn jn:.h.' n;:mn .... . . .e .j ne . .nm : u jn -
g;;n n; ..., a:. "agumme=,,,li.,n. .. 4 == = un : ..n " 4 r"% jnnju
.nn,n p; m;pu: . : .n..: s.. ma al ...: p: : rnl73.n "n.. n;, :" .
- n: ,n q:.ql::;m n...;l n n:;.;
h:- m: un:
. ; p- ,al.. : '===in n aln :: " . .n " ":.!n- : ;pt n..
- . n .nup: .a ne ;" p: "pn :- p":
. y. n;:- : . h" e: :"n p., n.n pml:: r. . :. urn' . ..v - . . . .n u O 10 30 60 90 12 0 150 180 210 240 270 300 33 36b t (*I"I Assuming that all cable trays in the area are burning simultaneously, the resulting heat output is 1625 kW. This leaves 9008 kW - 1625 kW =
7283 kW for the heat output of the lube oil fire. Th4 heat output corresponds to a lube oil burn rate of 2.8 gallons per minute. The - duration of the oil fire at this consumption rate will be 20 minutes, totally consuming the 56 gallons of lube oil present. The duration of the cable tray fire would be 3 lbs/ft2 + .1 lbs = 30 minutes. min ft2 At the twenty minutes point, the fire would decrease to 1625 kW in heat output. To make this evaluation conservative, the heat output of 9003 kW was used throughout the 30 minute fire duration. From the graph above, the total volume of air in the Reactor Building will not have an effect on the fire duration, m (U 2 6-3
- 5. RESULTS The case described above with a constant heat output of 9008 kW for a duration of 20 minutes with two open doors results in a gas temperature of 1077*F (see Attachment C) which is below the critical temperature
' for the structural steel.
The ventilation controlled burning rate of 9008 kW is equivalent to g'g the heat output from a pool fire with an' area of 27.9 ft2 (pool dia-meter of approximately 6 ft). In order to assess the effect of the plume of heated gases at ne the pool fire on the structural steel located on the 116' elevation directly above the fire, Heskested's (1) relations will he used: Virtual point source determination: Zo = -1.020 + .083 Q4 = 1.3m i-L Plume temperature at bottom of steel on 116' elevation: f To = 9.1 (T., / (gtp2 f,2)).333ge.667(Z-Zo)-1.67
/'m 4 To = 466*K temperature rise U T = 907'F temperatura of fire plume This temperature is below the critical temperature for the structural steel.
For the structural steel on the 135' elevation: A To 148'X temperature rise T = 335'F te...perature of fire plume This temperature is below the critical temperature for the structural steel, i l It can be concluded that there is no problem due to localized heating
' of the structural steel as a result of the maximum pool fire that can be supported by the available air flow into the room, pJ The cable trays in this area were positioned such that they did not present a localized heating exposure to structural steel.
3 G-4
6 o se .
. .. s, u
1 2 4 J k ',, .
* ~. b ~ .y
\ . , De 4
.f. .
Unit 2 Reactor Building h'2. RHR Heat Exchanger & Pumo Room 4 & Room 103 Surface Area Calculation
. Walls North wall (27' x 40') 1080 ft2 East wall (14' x 40') 560 ft2 South wall (38' x 40') 1520 ft2 West wall (40' x 40') 1600 ft2 4760 ft2 Ceiling Area 1 [(27' x 26') + 2] 351 ft2 Area 2 (14' x 27') 378 ft2 729 ft2 Total Surface Area for Heat Transfer 5489 ft2 \
l l C-5 ATTACHMENT A
~ _ _ _ _ . . . . _ . . . _ 9 Cable Trays l O . The following cable trays are located in the area and are assumed to be l burning simultaneously: Room 4 Surface Tray No. Length (ft) Width (in) Area (ft2) ZB-2KA050 15 12 15 ZB-2KA040 36' 12 36 ZB-2KV020 12 24 24 y 75 ft2 Room 103 ZB-2KG040 17 12 17 i 92 ft2 .
;;y c Heat release rate calculated as follows:
92 ft2 x 190 kw = 1625 kW O to 76 rt 2/=2
- ATTACHMENT B C-G
y-- (,, HSE Nut 1 DER: 1 Bul LDItJG : UNIT 2 REACTOR DUILDING ELEVATION AtlD ARCA DESCRIPTIOf1: 91'6 A 116' RllP nND HEAT ER: HANGER R 00liS CASE DESCRIPTION: fWO DOO1S OPEN CAULE AND LUPE DJL FIRE
- x- x x x x x x x x+x x x x x x-x *x x x x xxx x x x x x x x xx x x x **x x xxx x x x x x x x x rx x x x x x x x xxx x xn x xxx CE1 LING / WALL CEILING / WALL Ao Ho Aw 0 THICKNESS M A~l ER I AL (ft) (ft2) (ft) (ft2) (kW)
![ K MKMM X K R K-X K WW K X XM K K X X R-X XK XWXM X XX X MK X X MM-X MMK X WX M X-MX x WKXXX X X 7 KK W-X X MM MMW X M M 3.5 CONCRETE 42 7 5489 9000 FIRE 18 VENTILATION CD!1TR OL' ED I
FIRE DUR ATION GAS TEPPERATURE (nin) (deg F) I 10 653 20 C93 30 1077 g, LJ
~
s ' 4 V,c\ '
)
l
~ '
ATTACHMENT-C l j
f(( Professional Loss Control, Inc.
~
STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM 4TOMIC GENERATING STATION jj , s UNIT 2 Reactor Building El.116'
' North Vacuum Breaker Area ,l l s
m + J i September 8, 1983
?
P. O. Box 446 e Oak Ridge, Tennessee 37330 * (615) 482-3541 t _-- 7-l
\
4 o p
,gt .
t -- t n . PEACH BOTTOM ATOMIC GENERATING STATION kjf * *.
, 1. AREA DESCRIPTION e . Unit 2 Reactor Building E1.115' Narth Vacuum Breaker Roon (see Attach-ment A for sketch of area'under construction).
Bounding walls are of reinf orced coficrete with an average thickness of kk 4 " 3 ft. T Nbe s Total surface . area of bounding walls and ceiling is 2S13'ft2 (261 m2) (see Attachment A for calculation of areas). 2.- COMBUSTIBLE LOADING Cochustible loading in this area consists of the cable trays listed in (b k 'Nf 1h Attachment B. The total surface area of cable trays is 108 ft2 with an average combustible loading of 3 lb/ft 2. There are no combustible 11iquids in this area. (3 3. VENTILATION PAP.AMETERS There are two doors leading into this area. Both doors measure 3' wide by 7' hich with one door entering from the Turbine Building and the other entering from the stairwell. A possible limiting factor for the fire duration will be the. total volume of air in the Reactor Building
; availabl'e for combustion which is 1 x 105m. 3 The curve on the following page shows the ddration of a' fire at a given heat output.
r J. , );l4 4. - CASES EX/. MINED - . z With the 'lighf combustib1E ' loading in this area, the assumption that
, -all cables are burning simultaneously would present the worst case.
With all cable tiays burning a surface area of 108 ft2 would be in-volved. This corresponds;to a heat output of approximately 1910 kW. With all cables assumed to be burning simultaneously the duration of the fire would be , 3 lb/ft2+ .1 lb_ = 30 minutes. min ft' v- From the chart above, the volume of air in the Reactor Building will not have an ef fect on the fire duration. 1 7-L
e . 4
-l=n-i . 5 55' . -
iI
. -'! -.-u.- . l ' -
i'21 ,5: nii,i!.
5!$i
- . n ' 4 iif$$ . kiiIl l '$*ii !
':: ="" "" -i :
i: i2in: :- :---- nnHa == n - n?.ii . n;. . . . i= Fi; ', 7i 'F*
=T:' "'f" ij=i l: - M =r !il"ii "!j i1 nin un:r un: arn l .: i ..
n\
. . . . . . . -:=nn; ."... ..e.. .. .. . . ..
{ (( - nn ..i...........g.-;ijtin: r nn*nn unn; (/ .jij . ig;;g * ,
, n;:: ..:.. .n *::. !}: . =- ":"- .E. -_{. . .g l
g ;
. 3:: ..
t ::.:: :tn
... : 1. l l u " . p*:: . . .. . . ;::: In ! .: . . . .; [ . .....: :: ; {. ', .,,,1 _ j . { 3,, _ , ,. -] . . . . . . = = - nm. ::n . 2_. .. .. ... n.p.. . . . ~. . . .. i.n . n,: . i m a, . : .,=m . .a .- - ., ". . i< . " gn . .. , n. nnn .
9 *"
. . . ..kk .i .. bkk h ... .) hi!. . . . .k!'s... . ! {::. ~ * ~ ~~
g ii." .i.i. ji.i.;
.. Ri!. . .
hi:. . .. ]. i.l.i!!H ' ' H. .l:l. ii!H
. . ,n .p .
b n := : i i n "n. c - i: i *
. mi: .p.
b"" H" EI EP i # . ! 7 *n in -nun nin '. m- .:t: o p: .... np::
- n{::
nn ut:: :=. : nnm*_ nn : .:t.:. ::,n - . :t :. . n... ....r.
- e , nt:: :
u n. . i..n.M..= : ....:r Y' g- ...4... . . . .
..g.. . . .
n.n ) 4.. . i ..
.g g - n. . u. n .- . . ..:.-+=....l
- utn r u. n. .a.n.- ::!. :r n_ n.. . . .
. .. 2.:. n.n. . . n i. n.. . . . u. n . . . !;l a ?
s
.j.:.3:. ~}.:'..' . . . . .. .
lilli7. :: un litii iiiiii l:- O Q:i ' as -. _ .;%
- 5 p". . n t u. . . .nbu!iin - -- - - - .. .~ =)_;n. ..
Y, i m MW X 4
. . i:.if. i. - !!,!i i:Hi :
4 ..a. ..
~: ... i . . . . i . i . !. ' : : i - ....!-. - -
6 . i!!!iH. ji.n 'li.[iy:: :iiii O n :il.i.f.i.li..: i. l. l.i.t.. ii.@".:.iji.iE i-i.ijii. ; ~ i.i.ji.i. " . .. . 4 . ..it.i.i..in.
...g.. .
f..d!EIlli}!fiiE!!!n3113;_:..
;EEhfS i E2ii I q1.Egnnjg 9 p. . ..g m. .;:{. .. ..n' h. ,gQ, '
D:':Ei' iClii
" ~ '
iiili iilii iR!!! :Ti id:- - !!: f , n n na : ::: : in w-
- b ni:n:
m.. n..":nu
.. ::in . ..n tu - ..
ndn':: :: *
- tn.. .
. ':n* ..nin . . . .nijn ...... ...... 'T , :t :- utjp4 : In m:: -
- j.:" -
.;d.: -"*: I +: "
n:j:n: nl.:. ~~. !n 3 . . ". t u a i, . .. . . . .. n. 1.. ut.. :
...I.,., . g. ..::t:: . .t...... ..t... . . . .3 . Q- . . . . . ....j.....j.' t ~
I
. .{g . ; .u. g .i.f,.:..i,.
N b. bbE :: I I p..m. ... ... , .f. f_f..:.. . ..k :.. .I. [i.i. . . ,n...n.. g . u. . t, m. .g: t. a.. . k. ;, .f.
.. i.
n.:1.: . ~::.j n: : . . :I . f.- lii"N'i}n:: .::I:;.. n-n . ::t;; ......::. -*"
;;; :.n!""j[jgp ' nl.:n m:n . .. . ::::. . ...!........:.....:.J.*. .: -.l... . .T n ~~ tin = ~1:ri2. . . . . :: . . . , . . . . . . . . . . . UM (A) 1:i!Wi * . Hi" ' ' " !i:!i!l?"r'*t....
- ii li: ...l..!! H * . . . . . . . . . . ."!H 8 :E : .:
01030 60 90 12 0 150 180 210 240 270 300 330 360 t I*I"I
- 5. RESULTS The worst case examined is with all cable trays in the area burning simultaneously with one door open measuring 3' wide by 7' high. The National Bureau of Standards method was used for this area because of the relataively small roora size. The gas temperature at the ceiling would be 715 F (see Attachment C).
This temperature is not high enough to fail the structural steel in the area. There are no horizontal cable trays within three feet of the ceiling structural steel nembers. l.ocalized heating of the structural steel to its critical temperature will not occur so a detailed analysis of the steel will not be performed, g N .. / 2 , 1 l 7-3 l 1 1
n- ! O
.y.
4 u
\
p: N , J
! +
O *~ Unit 2 Reactor Building Elevation 116' Vacuum Breaker Area (North) Surface Area Calculation Walls North wall (21' x 18') 378 ft2 4
' East wall (22' x 18') 396 ft2 SW wall (53' x_18') 954 ft2 -Stairwell (17' x 18') + (18' x 18') 630 ft2 2358 ft2 Ceiling [(39' x 39') i 2]~- (17' x 18') 455 ft2 Total Surface Area for Heat Transfer 2813 ft2 1
O ATTACHMENT A , g., 4 v - - - ~ ~ ' ' ' ' ' " * ' ' ~ _ _ _ _ _ .
i V Cable Trays O The roiio 4#9 c 81e tr xs re prese#t 4# the ere eeri#eo ror the so#rce fire and all of the trays are assumed to be burning simultaneously. Surface Tray No. Length (ft) Width (in) Area (ft2) ZA2MV230 16 24 32 ZA2MF100 '16 12 16 ZC2MH300 12 12 12 ' ZC2MH310 16 12 16 ZC2MV220 16 24 32 < i- 108 ft2 Heat release rate calculated as follows: 108 ft2 _ x 190 kW/m2 = 1910 kW 10.76 ft'/m' [ , o ATTACHMENT B 7-5
y __ _ . -- 8 ASE NUr1 DEN : 1 DUILDING: UNIT 2 REALTOR DUILDING CLEVATION AND AREA 15GCRIPTION: 116' NORTH V AC U U t'. DHl;AKER M i.A CASE DESCRIPTION: ONE DOOR OPEN 3'X 7' ALL CABLF._5 BURNINC
- x x x x x x = x x x x x x *
- x
- x e x x x x * * * *
- x x v. x
- x
- y x x x x * * *
- x
- u. x x n t
- x
- x x x x x x x ,:. x x x x x x x x CEILING / WALL CEILING / WALL Ao Ho Aw Q THICKNECS MATERIAL (ft) (ft2) (ft) (ft2) (kW)
M WM M M X K K X M X M X X XMM X W X K X X X XM K M X-X MM X-X WW M X M K WK X X M X X MsF-4MM-X X % M M X X XK MX X X X X XX XM 3.0 CONCRETE 21 7 2813 1'71 0 FIRE IS FUEL C014TRO LED FIRE DURATION GAS TEMPERATURE (min) (deg,F) 30 715 l Os ATTACHMENT C
]-6
f[ Professional Loss Control, hic. l I h- STRUCTURAL STEEL ANALYSIS for h.: PEACH BOTTOM ATOMIC GENERATING STATION hn i UNIT 2 i Reactor Building El.116' South Vacuum Breaker Area I I September 8, 1983 I I ; P. O. Box 44G e Oak Itidge, Termessee 37830 e (615)482-3541
--. _ _ _ . 3-I
o _._.__.______.m____. . . . . _ . . . . . . _ _ . . PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El.116' South Vacuum Breaker Roan (see Attach-ment A for sketch of area under construction).
Bounding walls of area are reinforced concrete with an average thick-ness of 3 ft. Total surface area of bounding walls and ceiling is 2975 ft2 (276 m2 ) p- (see Attachment A for calculation of areas).
- 2. COMBUSTIBLE LOADING
- g. ; Combustible loading in this 'rea consists of the cable trays listed in
'~
Attachment B. The total surfaa area of cable trays is 109 ft2 with an average combustible loading of 3.7 lb/ft .2 There are no combustible
- liquids in this area.
O L.)
- 3. VENTILATION PARAMETERS There is one door which measures 3' wide by 7' high leading into this area and is located at the stairwell. A possible limiting factor for the fire duration will be the total volume of air in the Reactor Build-ing available for combustion,.which is 1 x 105m. 3 The curve on the i following page shows the duration of a fire at a given heat output.
- 4. CASES EXAMINED With the light combustible loading in this area, the assumption that all cables are burning simultaneously would present the worst case.
j With all cable trays burning a surface area of 109 ft2 would be in-volved. This corresponds to a heat output of approximately 1925 kW. With all cables assumed to be burning simultaneously the duration of the fire will be 3.5 lb/ft2+ .1 lb_ i 35 minutes, min ft' From the chart on the following page, the volume of air in the Reactor l Building will not have an effect on the fire duration. 1
- 3-1
a
.... ,. . . . . . . . . . . . . . . . . . . -*!**"*'"*-*~**I*"b*---** 4 ~n !..nn :.. ::n .:n:}n . t . . .; n_. p . . h. ig..;;...... i.,,,.. . . , , , _ ,,f.,_j.,,
- m. _il..e.m._i.m.
. _- . =..u,_m..
_ .=.. i. i.=.,=. . um=. i.r.m...m_.tm. .u. . =...=.
=-" = p. r - + x- .
4
; j; q on.a r. nnj:.g:nn t::. . n"..arn_=__r...... .. . p= ...;n:.
- n n }. . . .._ _. . . . . . n. . . e. .n. .: ...rl...
r.. 1-
. ._ . tu n . : . . ...a. . . . . . . - .4..i......... ~- 1 -- ! . .-- -- ;---- i ..--- !E!i!;i'U.iiiilliE!!EfiliiiE:-.
O EP ii{.iE!!"~. .. . . .mi . . unii...= . .d nifi.i , . . I -i _) li!. E li" f..-F.j.. . . . .if.C.i. 2
. . . .. ii.5.i.. -E. .
Z~
. .i.h....n.{'jj .hf.l.i.!.. . . .. i.=. i. :i. '".. .. ' " ~'
J ,
. j, , , , j- :-i... ..) , ,
nj::" n:n" :a::nt:::::: nj*- :- -
"n " -
- ]. - j !., . t - t ! .
- = ". .:=. ..j :~: =". ' ............'-""'..:"'."..
. -t. =. ~
10 . .
- - - -- : i .f I: . . . .: 1 .. . ::1 : n :I: . - . : . . :n. . : "~ . : d i i r . l . . . . . . . I ^. ' . . . . I~ _:!K I
g........ 9
. . . . , . .. . . . . . .. .. .. n. . _ . , - . . . . . 3 = T. .r. ; =. . . . m. . n;: .. ".:1, . - .j - ..g. ;..g . ""::1..".g. :~~
- =j..n..::.s.: 6 n t ::. .. . . f*~I j
..:n'. .::n . . . .i.gju . . : --t n.jn ng ;lf:n t u i .: I' .q.Ml !.... ... f; * -r------- -- ----!---I------ . . ..j.. .. n. =. .n.. ;.n.il.. _i.. .i i. . . . - - ' t,
- n. .: ..: n.n. . " ' ..j..
8 . =..n.. . .. r nn ::}n *
- {.: nt:: . . . .
- . . }.; i ,
- k C jjn* 2_b ~i * - -- -- I**"'
h -- I-
' *. ;.lj jj{ *' " ~Ja M . .n's:* .. .!! .~n "*J.} j "j" - - "! . -
_ j. j:. :q L .f: ; j : . --
*-~'--- -
n j:- nj:: ..... np .1x : . ~~ jT 3
~
g t.
-l- . N 5bibE g- - jy b ;:i or.
n.
._.hl . . ' .
7 , _ h . ih - : s
- . ln. . . . . = . . .; -a. .n. ..: p. . n. .a n. . .n, :
i -'~- ; Y Cifliil fiNMi9-iNbNi:g . .iH kiNEN9* .i+2j5i% --i . - ~ idi - !J l O F = 1 :an "pn d r. ,in 4
.j ..
[$ 5: n
!!* 'h :
2.;;;;j
- n. . . .
nrn
't**
l' ;; * , .* n.* : .. ntn id ~ ' . . . ! . .~1-- !N-
- ,; . :j.~ h.:. . I.---" , . , , , , , ,;,3 ; ; , : . ,
t- o n aina =
- n.=
j= . *
=pn :nn nutiin
- " "nl .. n t u - nrn - n.. "" "
. :.i n:in::l:.;a.:: n r ;;;;- n.
4 i :.!:" f_n::t:n:t:- al:-
=J. = x.u - : t" : .nin ::t::
n= nt=: = njn n :- : . n;:: .:g.: , : - . .r : . n q.i I:Nh
-";-~-
- .b
--- n lii:. ;- t" .
i h;- N,:: [i'. l..
- li. .['
!'h *iiiii*: = E=! iiii! i IS .!!!i . { *
# n: I* iii! iiiii ?!Njn 4:iii jilll~ lii ![ ! . ... .. .t..
n r-l=" " " '
" t al
- tu:: ::In nj.:
- ~
='n
- an r ":.;: ' :Y T i:
2 i : :'"
! ... ..!!f!! !!N! l ![ !* **
h.! - f 5I}i.... ..!!!M hi!h iifi:.7.:!:l: !
. I. :. -.+. . . . . ! -,
l.. . . . . .
..g.. . .. ....s.... ... '--"*:'-]..... . . . . . . . .. ... . , . . .
I , =. ~. 3_._. . .a. . ..
.w. . . . .... ... ... .. .. in
- i.j ;i. f i. j.
. . . . , . . , . . . . , . . . . . . :i;;;;g : :,.,
g-.
. . p. .
p;inii.. ': ' miii :i!!wiimii- * .
- ilmii!i . .
, .==.. ....c.....-- : .' u ;.
h.ue
.o.... . F !i @. n. '." . S. : . . . .12. .. ..
- n. i. n.
n.n. !.=._:n .L.
.1. : - ,
n. IL.1.. :.. .n_u..
. : i. . i .iiE. . ;, - .
O 10 30 60 90 12 0 150 180 210 240 270 300 330 360 t D"I
- 5. RESULTS The worst case examined is with all cable tra.ys in the area burning simultaneously with a ventilation opening measuring 3 ft wide by 7 ft high. The National Bureau of Standards methoc was used for this area because of the relatalvely small room size. The gas temperature at the ceiling would be 723*F (see Attachment C).
This temperature is not high enough to fail the structural steel in the area. There are no cable trays within six feet of the ceiling struc-tural steel members. Localized heating of the structural steel to its critical temperature will not occur so a detailed analysis of the steel will not be performed. n x 2 F3 l
-t- .
E.c
\ --4 y i
U DN I,
- g. ., ,, g
,4 M '
l f' Unit 2 Reactor Building. Elevation 116' Vacuum Breaker Area (South) Surface Area Calculation Walls
~
East wall (21' x 18') 378 ft2 South wall (31' x 18') 558 ft2 NW wall (53' x 18') 954 ft2 Stairwell (18' x 18') + (8' x 18') 468 ft2 2358 ft2 Ceiling [(39' x 39') + 2] - (8' x 18') 617 ft2 Total Surface Area for Heat Trantier 2975 ft2 ATTACHMENT A e
- . . - - ~ . . - - .. -- _ - . . . *l '
Cable Trays (]) The following cable trays are located in the area under consideration and ! are assumed to be burning simultaneously. Surface Tray No. Length (ft) Width (in) Area (ft2) ZB2MH190 10 24 20 ZB2MH200 5 24 5 ZB2MV180 8 24 16 ZB2MV210 10 24 20 ZD2MF010 18 24 18 ZD2MF020 6 24 12
" ZD2MV200 9 24 18 109 ft2 f -- Heat release rate calculated as follows: -Et 109 ft2 _ x 190 kW/m2 = 1925 kW X
10.76 ft'/m' O ATTACHMENT B u 9-5.
-,aw- -- s -m-- - -.- www- - - - - - - - - - - -
- ~ . ~ . . - . - - . . . . - - . . . - . . . - . . ... - --..-....:. .. . 1 i
i tASE NUMBER: 1 Bu[LDING: UNIT 2 RLACTut! DUILb f1G t.LEVAT10N AND AREA DESCRIPTION:
~
l i t, ' -' !81)TH 4 At UM DR.d id.i: i.i: E t , CASE DESCRIt'110N : ONE DOOR O P E N 3 ' X '/ - ALL C AD ES Btt,HD t?
- y. t:- x x x x x .x x x x x x x x .x. x x x x x x. x :< x x x x / v x x x *
- x * -x > ~- a * *
- x u m mt ). x x r x ? ; s
- x ->: x a :-: 4 x CEILING / WALL- CEILING / WALL Ao Ho Aw 0 THICKNESG MAT ER I AL (ft) (ft2) (Ot) (ft2) (kW1 tx x x x x x x x x ** * *
- x x x x x x x x x x *
- x x n x x x x x x.* .< x x *
- n x x -x- x x x x *-4 x x x x .x
- x x x * -x x * * * * * -x x x 3.O CONCRETE 21 "
207'- 1925 FIRE IS FUEL CGN1 ROLLED b FIRE DURATION GAS TEliPER ATURE (Min) , (deg.F) 35 723 O ATTACHMENT C cg g
(([ Professional Loss Control, Inc. I I l l STRUCTURAL STEEL ANALYSIS for . PEACH BOTTOM ATOMIC GENERATING STATION f-
.- UNIT 2 Reactor Building El. 135' North of Reactor Center Line l l September 7, 1983 l I P. O. Box 446
- Oak Ridge, Tennessee 37830 * (615) 482-3541 9-I
-y._ . _ _ _ _ _ _ _ . _ . _ _ - _ __ - _ . . . 1 4
O U PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El.135', area north of Reactor Center Line column lines 13 to 18 (see Attachment A for sketch of area under con-sideration).
Bounding walls of area are reinforced concrete with an average thick-ness of 3 ft. w Total surface area of bounding walls and ceiling is 18,437 ft2 (1713 m2 ) (see Attachment A for calculation of areas). j ( ^
- 2. COMBUSTIBLE LOADING The heaviest concentration of cabling in this area is located in the far northwest corner. Total surface area of cable tray to be considered involved in a fire is 309 ft2 with an average combustible loading of fl the cable trays being 4 lbs/ft2 (see Attachment B for calculation of a
cable tray area). There are no combustible liquids in the area.
- 3. VENTILATION PARANETERS Two ventilation openings serve this area. The corridor on the west side of the Reactor is 5' wide x 29' high. The east side corridor opening measures 10' wide x 10' high. The total volume of air in the Reactor Building available for combustion is 1 x 105 m3 The curve on the following page shows the duration of a fire at a given heat output.
- 4. CASES EXAMINED -
A spreading cable fire was assumed in the area of heaviest cable con-centration which is in the northwest corner. The fire is assumed to start at a point source and spread horizontally in each direction at a rate of 10 feet per hour. A constant burning rate is assumed throughout the duration of the fire. The fire is assumed to extend down the tray stacks along the north and west walls a distance of 10 feet before the
) original source of the fire dies out. An area of 309 ft2 of cable trays (see Attachment B for a list of cable trays initially burning) will have a heat output of approximately 5500 kW, which is used throughout 1
T-1
[.... M-iM.ih
-- ,r - . , =hikl!!jd " '- lii'ii:- .d. 8. . -it I6!-;-i--+ . .j..~l - ; CC: i . . I ,! . j. -!!9i nh j I 2{-- :-Ifii .
np. *
! . e j .
[ ..p~.... ~ O-! E
! .. il:! 3!M ::p:. $$h - ?ii hil!92 :-;=" =:" p H"-iL- G -p -
n - - - - -. _ . . p li a ' = 2f"ii..!!!!j::"ii-:
*=: .-'t=9.- ; ::[:! ., ; '
- -- a- - :-. ..:. _ : _ . . _
\/ , . Oi[:. !!!;H i:::;!i... .!iT;aa!jiji: ..ii --i -- - - - - - - . 4 :. . .i.....
Fi e
-+l! -F2""E 10 =a ~ ain ^"
ni---
'" '" y r - '.!r: 7 , -*lr ! b x .=: : . p - . . "-, . " " T :-h:- -
- r. .u.:-.. .
- m n.iii!!!!Ei: .
. . n l :;: . ,! ; . . p . l. - .- M.iii . !!! ' ; Ej::ME , T:: j i , "FT:
I:i ;
.h-~ j aj. . .
["~~" " - ' ' 7 "- "- h - -- -- - -- - - b" OI '""i * -i - 2" :!MF-
-h-
- =i"IhiiSli " . n{:-i]ii -- - -
(b{i J j. -
- [
l I
--[iii-h.: . l . "--
- in ni.:..n:::in f' .. . Hi-bf 8
---m + -- --- b- + - !g . ,. .- ..-i' ... ,. !-!j[ !!!:: - !M .y ;:[. .. j..
i i, , 7I ED EEU29E- + E b I' I E
~. iiht.:. - .i.l'm F l':
u " i - " ' -"i " "l"
~
l: i. E
.. ..: :!iT' ..... ; i'i "i"
R ..: .,: n : t
.w g:
u u 1 ._:r. l ~ni:
. u . 1:- ! . : .1.. _4 . _ . -
- .i.
,x a ; ,
i n i ul: i ut:
.. 1-. .- . .. - - , . - . . . . . _ . . a . : .a._ . t.
r* :=:an ama=jl:.'
<r u tn u."'' .. - . . a ;i]. , .l.. "; '
O
'''' "M'M S --t... EI' h.~:- -." M:
u-- - a "- : f-
^, -~- -,M 'l:.' :. l' ' ' '
I
.i..-3 '
l x -
. , . . . . .=. -r - --t---
n:
' ' e-t .,
O
.: . p:c. . . . ::la r c:3:. .. u n. n: . ,:.i.nu nn.
Mi.n .a :. nix.. . . :n i,:r: . . . . . 4 . ::{;,;;f*a:n _g;;u[., i
]""t- 9 -]. : - l- .: n; ~ - , ,
- r. ..:u.... :
r :: SiiEN 5-E I 9 j"H!2I3INi r. I- r;"9 ' "2 ' -
!. .i. I . .i . ':l.'! ":iijriiln n'j: '.i :
3...JilNSi"5 ....i.. F :! .!; E 3-
.'! : I -- :a t .. ' .: _io _. :
I:i !Hi ii q. E i
-:!. . . .+n . 5. - . . . .[.g . ..L. . . h.{ . . i!h!E$ '"hlh. *! !: I@3:iilbi$ .aa. . .. .5!
-(f i g'... !:H! ":i]iH::!: ' N: ni:; -
.: [
im n---. . ; -i , g".... . . an. . .
. : .. l .' . . . . . . . a. ._ . :
I
!=d".:Mp . . . ,i
_n.
.-isil:i jr= :=i"ik. n,' iia. .
- !Mu-. - - - . . .ii.tP, . ." "!En ,- . a= li.i . , ', :
- p. : . i -
j.: a: y;iifN"E * :di: Ngman a..il:ii-if "--li "8;i r = " , - c r -i "" " L - !-.-- A - fi:.isj": Mi:lls !![iNi@isii:;!. :!h": -. :!
.J.. 7 . . .' . . l-( . ) r: ::i- - i. . r..Em[:rs._.--
n I ~!:i. n..
.1.__
E, ; .
. 1 .. . !, - !
i. 01030 60 90 12 0 150 180 210 240 270 300 330 360
, (min) the fire duration. The actual heat output as the fire spreads out of the area originally involved would be less because the concentrations of cabling that would become involved at any one time would be less.
From the chart above, the volume of air in the Reactor Building would support combustion for approximately 9 hours.
- 5. RESULTS For the above case with two openings having a total area of 245 ft2 and a constant heat output of 5500 kW, the fire duration was assumed to last 6 hours with no action taken by plant personnel to extinguish the fire. The gas temperature at three hours was 519*F and 705 F at six hours (see Attachment C). These temperatures do not exceed the critical temperature of the steel framing members.
n () The cable trays in this area were positioned such that they did not present a localized heating exposure to structural steel. 2 9 -3
F 4[~ i
.h '-
6
, 17 .'l 7 g *e . \8/9 go . t .
g ll U 13 E ~ up
}
( l4 mb 15 h I I O b Unit 2 Reactor Building 135' Elevation Surface Area Calculation Walls West wall (76' x 29') 2204 ft2 North wall (118' x 29') 3422 ft2 East wall (76' x 29') 2204 ft2 Area around vessel (7' + 16' + 19')29' 1218 ft2 Outside Area of Rm 204 (west) (19' x 29') 551 ft2 Outside Area of Rm 204 (north) (45' x 29') 1305 ft2 Outside Area of Rm 204 (east) (17' x 29') 493 ft2 Outside Area of Rm 207 (NW) (15' x 29') 435 ft2
-Outside Area of Rm 207 (NE) (20' x 29') 580 ft2 Outside Area of Rm 207 (east) (9' x 29') 261 ft2 Outside Area of Rm 208 (north) (19' x 29') 551 ft2 Outside Area of Rm 208 (east) (26' x 29') 754 ft2 13,978 ft2 A
N) ATTACHMENT A 9-4
. . . .- : a .+ a = . - -
i Ceiling I Area 1 26' x 4.5' 117 ft2 ( }) Area 2 1/2(10' x 18') 90 ft2 Area 3 1/2(6' x 7') 21 ft2 Area 4 12* x 7' 84 ft2 Area 5 50' x 17' 850 ft2 Area 6 22x 45' 990 ft2 I Area 7 38' x 3' 114 ft2 Area 8 1/2(11' x 12') 66 ft2 Area 9 1/2(6' x 9') 27 ft2 Area 10 23.5' x 9' 212 ft2 Area 11 1/2(15' x 15') 113 ft2 Area 12 29.5' x 15' 443 ft2 4459 ft2 M Total Surface Area for Heat Transfer 18,437 ft2 (1713 m2) q i
- O 4
I 1 h i i i e ATTACHMENT A 4 O
-5
Cable Trays O The following cable trays are present in the area defined for the source fire and all of the trays are assumed to burn simultaneously. Surface Tray No. Length (ft) Width (in) Area (ft 2)_ 2KN-024- 4 24 8 2KN-026 8 24 16 2KL-024 4 24 8 2KL-026 8 24 16 2KW-024 4 24 8 - 2KW-026 6 24 12 ZB-2KM-024 4 24 8 )d~ IB-2KM-026 8 24 16 2KP-026 8 24 16 2KV-064 14 18 21 2KN-030 10 24 20 ff- 2KN-035 2 24 4 2KL-030 10 24 20 L T 2KL-035 2 24 4 2KW-030 8 24 16 2KW-035 2 24 4 ZB-2KM-030 10 24 20 ZB-2KM-035 2 24 4 2KP-030 10 24 20 2KP-035 2 24 4 i O V 2KV-292 2KV-062 7 9 24 18 14 14 2KV-260 16 18 24 2KV-110 12 12 12 309 ft2 For a fuel surface area controlled fire involving all of these cable trays, the heat release rate can be calculated as follows: 309 ft2/10.76 ft 2/m2 x 190 kW/m2 = 5456 kW I ATTACHMENT B l l 9-6 _ _ _ . _ - _ _ . ____ ____ _ ___ _ _a
A CASE NUMitER: 1 DUILDING: UNIT 2 REACTOR BUILDING ALEVATION AND AREA DESCRlPTI0tl: 135' NORTH OF R E AC T Of! CEt;~t CR LINE fiGE DESCRIPTION: lWO OPENINGS SPREADING C(IDLE Fli?C X U X X -X- X X X i X h X X X X -X X X X X X X ) X X X X X X Y X X X X X X X Y M h X X X Y X X X X k X X X t X K X X X X X U t- X X X X X X 7: N X X CEILING /kALL CEILIt4G/ WALL Ao Ho Aw 0 Ti1CKNESS ti ATElt l AL (ft) (ft?) (ft) (ft2) 'kW) v; X X X X X X- X X X X- X X X X X X X X X X X F X X X X X Y h X X X -X X X X X X X X K X X X X X X 4 X ? < K X X X -X X X X X X X X X X X X K . - X X 3,O CONCRETE 245 19 18437 S300 FIRE IS FUEL CONTROLLED . FIRE DURATION GAS TEMP ER AT UR E (min) (deg.F) l: - 170 10 20 221 . fN- 30 i 255' 40 283 I 50 308 60 330 70 351 30 370 90 380
~ /^ 100 406 - 110 422 120 437 130 452 140 467 150 400 160 4Y4 170 5 0 '/
100 S19 190 S32 200 , S44 210 SS5 220 567 230 t.78 240 589 260 599 260 610 270 620 200 630 290 640 300 6SO 310 659 320 669 330 670 340 687 m 350 696 360 70S l ATTACHMENT C 97 t
. ..,..a. . . . .. . _ . . . . - -
(([ Professional Loss Control, Inc. l I D STRUCTURAL STEEL ANALYSIS 1 for i PEACH BOTTOM ATOMIC GENERATING STATION h: COMMON AREA
! Radwaste Building El. 135' Medical Station and Corridor l l l
1 l September 9, 1983 1 l I l t i P. O. Box 44G
- Oak Ridge, Tennessec 37830 * (615) 482 3541 i lo -l
, m . .: _ _m . _ . .
PEACH BOTTOM ATOMIC GENERATING STATION v
- 1. AREA DESCRIPTION Medical Station (Room 237) and adjacent Corridor (Room 240) on the 135' ,
elevation of the Radwaste Building. See Attachment A for a sketch of I the area under consideration. Bounding walls of the area are reinforced concrete construction with an average thickness of 1 ft. Total surface l area of the bounding walls and ceiling is 1237 ft2 (see Attachment A [ for a calculation of heat loss surface area).
- 2. COMBUSTIBLE LOADING Fixed combustible loading in this area consists of horizontal and ver-
{ f. tical cable trays located in the enclosec' space above the ceiling. Total surface area of the cable trays is 96 ft2 with an average cm-bustible loading in the trays being 5.2 lbs/ft2 of tray surface area. f I All other cabling in this area is routed in conduit and is not included in the combustible loading. 1 O
- 3. VENTILATION PARAMETERS This area is served by two personnel doors, each being 3 ft wide by 7 ft high.
- 4. CASES EXAMINED The assumption was made that all of the cabling in this area was burn-ing simultaneously in order to present the worst case. Total surface of the trays is-96 ft2 which corresponds to a heat output of approxi-mately 1700 kW. With all cables burning at once the duration of the fire will be 5.2 lbs/ft2 + 0.1 lb_ = 52 minutes.
min ftc
- 5. RESULTS The only case examined was with cables burning simultaneously with one door open. Since the fire was fuel controlled under this set of circum-stances there is no need to examine the case with the second door open.
The peak fire temperature reached was 930'F which is belod the critical temperature of the structural steel (see Attachment B for results). The cable trays were located far enough below the steel members to prevent localized heating effects. I 10 - 1
. . . . . . ~ . - . - . . . , .. .- . .- - . - . .~ ,
O . 1 y+ 19' RMS# 237 8 240 [f , Y
= 15' =
Medical Station Corridor Surface Area Calculation Walls North wall (19' x 14') 266 ft2 South wall (19' x 14') 266 ft2 East wall (15' x 14') 210 ft2 West wall (15' x 14'.) 210 ft2 952 ft2 Ceiling (19' x 15') 285 ft2 Total Surface Area for Heat Transfer 1237 ft2 O . ATTACHMENT A 10-3
J
~- / CE NO. : 1 \_ JLDING: RADWASTE BUILDING ELEVATION AND AREA DESCRIPTION: MEDICAL STN. & CORRIDOR, 135' ELEV.
CASE DESCRIPTION: ONE DOOR OPEN. ALL CABLES BURNING
******************************************n:*************************************
CEILING / WALL THICKNESS CEILING / WALL MATERIAL AO HD AW Q (FT.) SQ. FT. FT. 50. FT. KW
********++*++++******4:*++************++******+****++*******++*+************+++**
1 CONCRETE 21 7 1237 1700 FIRE IS FUEL CONTROLLED II FIRE DURA. TION GAS TEMPERATURE (MIN.) (DEG. F) 52 930.231 m
-) ,o 'u ,)
ATTACHMENT B ; 10 - 4
.c . . . . -
l l (([ Professional Loss Control, Inc. l l l 1 STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION COMMON AREA Radwaste Building El. 150' Radwaste H & V Equipment Compartment l I I September 9, 1983 l I P. O. nox t IG e Gal: RicIge, Termessee :t 7s:10 e (GIS) .182 :ts11 II-l
.~ _ _ . . _ _ . _ _ . . . _ . . _ ~ .-. . _ _ . _ _ _ . . . ..
i PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Radwaste Building H & V Equipment Compartment on the 150' elevation.
See Attachment A for a sketch of the area under consideration.' Bounding walls of the area are reinforced concrete construction with an average thickness of 2 ft. Total surface area of the bounding walls and ceiling j is 13,886 ft2 (see Attachme'nt A for a calculation of heat loss surface area). h 2. COMBUSTIBLE LCADING Fixed combustible loading in this area consists of horizontal and ver- % tical cable trays. Total surface area of the cable trays is 194 ft2 [ with an average combustible loading in the trays being 3.3 lbs/ft2 of l tray surface area. All other cabling in this area is routed in conduit i and is not included in the combustible loading. O 3. VENTILATION PARAMETERS
\' ,/
There is a 8'3" wide by 12' high opening in to the room located at the south end of the west wall.
- 4. CASES EXAMINED With the light combustible loading in this area, the assumption that all cables were burning simultaneously would present the worst case.
Total surface area of the cable trays is 194 ft2 which corresponds to a
. heat output of 3425 kW. With all cables burning at once the duration of the fire will be 3.3 lbs/ft2 + 0.1 lb_ = 33 minutes.
min ftc 5., RESULTS Since there is only one opening into this area the ventilation rate is fixed, however, with all cables burning simultaneously the fire is still fuel surfa.e controlled. As can be seen frov the results (see Attachment B) the room temperature is well below the critical tempera-ture of the structural steel. The cable trays were located far enough below structural steel members to prevent localized heating ef fects. I ll 'l-
j O - e7' - A
. RM*292 38
- p. .
O h
'O . Y Radwaste H & V Equipment Compartment Surface Area Calculation Walls North wall (38' x 14') 4732 ft2 South wall (38' x 14') 4732 ft2 East wall (67' x 14') 938 ft2 West wall (67'x.14') 938 ft2 11,340 ft2 Ceiling (67' x 38') 2546 ft2 * ~
Total Surface Area for Heat Transfer 13,886 ft2 0 ATTACHMENT A 11 - 3
m, . - . . . . _ . __.
. I l
CASE NO.I 1 jLDING: RADWASTE BUILDING {2VATIONANDAREADESCRIPTION: u RADWASTE H&V EQMT. CMPT., 150' ELEV. CASE DESCRIPTION: ALL CABLES BURNING , l
***c********>k*******************************************************************
CEILING / WALL THICKNESS CEILING / WALL MATERIAL AO HO AW Q (FT.) SQ. FT. FT. SQ. FT. KW
.e**o*++++++++*******++++++++*******************************++***+++++**+******+*
2 CONCRETE 98 12 13885 3425 FIRE IS FUEL CONTROLLED f6 FIRE DURATION GAS TEMPERATURE y._ (MIN.) (DEG. F) g 10 159.415 20 195.452 30 223.134 , l
- 40 245,458 y
9: 1
+
O attacusen1 8 11 - 4
m -- _.
}(( Profmional Loss Control, Inc.
l I
/
e STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING' STATION Unit'2 Reactor Building El .-165'. b MG Set Vent Supply Fans l I , l l 1 September 9, 1983 l 1 1 l l I P. O. Box 44G e Oak Ridge. Te':nessee 37800 e (615) 482-3541 ll* l
, s
. . se.
+
- 7 . '
y - q , % I g
- s b[\ . - PEACH BOTTOM ATOMIC GENERATlHG STATION
- .~ .. , - .
7 , .1. AREA DESCRIPTION } Radwaste Building El.165' MG Set Vent Sypply Fans Unit 2 (see Attach-c ment A f or sketch of area under consideration). Bounding walls of area
- o' are reinforced concrete with an average thickness of 2.5 ft. Total sur-face area of. bounding walls and ceiling is 8164 ft2 (758 m2 ) (see
- i. Attachment A for calculation of areas).
5 kt
- 4. 2. COMBUSTIBLE LOADING i '
Y' /dl cabling in this area is routed in conduit, there' are no cable
- trays. There are no..significant quantities of combustible liquids in this area. ' ~
b 9 3. VENTILATION PARAMETERS
%. There is one 3' wide by 7' high door serving this area. Alang the west wali are i uvers measuring appr ximately 20' square.
l ' d 2Y A. . CASES EXAMINED
~
With. no exposed combustible cabling and no combustible liquids in the area, there is no fuel in the area to support a fire, d 5. RESULTS The structuril st' eel in this area will not fail due to a fire as there is no fuel in the ' area to support ~a f' ire.
- k. s s
[ f. 1 -._ A e 4 . _,
-s
- k s
, s w.
o- -
~ ' 1 =
11- 1.
- - N . . . . . . . --- .- - ..r - . - _ _ - , . _,..-
..,.,.,n. - . . . . . . . :.=x - ia. . . - , . - - - - - - _ . - - . . .
- s i, ,- ,.
;(
t' . j .-
~
- rm y , , , ,
.-Q_ .f- (- .V -
L
., , 3 p ysu - -
4 hi i . .
- s:. .- .
5-Radwaste Building El. 165' MG Set Vent Supply Fans Unit #2 Surface Area Calculation Walls North wall (73' x 29') 2117 ft2 East wall (30' x 29') 870 ft2
~Scuth wall (73' x 29') 2117 ft2 West wall '(30',x 29') 870 ft2 s 5974 ft2 Ceiling (73'x35') 2190 ft2 , s Total Surface Area for Heat Transfer 8164 ft2 ATTACHMENT A 11 - 3 !
l t
-u s (([ Professional Loss Control, Inc.
l I 1 STRUCTURAL STEEL ANALYSIS for k PEACH BOTTOM ATOMIC GENERATING STATION h Unit 3 F Reactor Building El. 165' MG Set Vent Supply Fans l l l l l l September 9, 1983 i l 4 > P. O. Box 446
- Oak Ridge, Te*snesscc 37830 * (615) 48S3541 13- l
- -
Z:i . . = **
;;;; .n ' :: M t :--- : :.- : .: {....... .:.... . :: n. . .n i::;: . . . . :: . -
- -:tn.. .. n t :: . . . . nl: n. . . . h: r. : :-8. . . . l !.-8:: .
** *
- n
*+y- ;; . :l-- . . . ... . . . .. . !. :. l :.: '.I, t*... ... . . . .
9 . . " * " ~ *~~M. ' ~ ~i. *.::f.. ~ *
. . . ; . . . . :n.' . .n. . r n. . .. .. . lQ,3 7,. . . . . . 1 ;;t, y -_
- i. r . . . . ......,,,,
. u. =.i. s.E.id.i .. - . i.{.... . ,g . . , , . , .
E. n. !.!. *" u-i.i.t =. 5. - { . h.!. .. . , . . . . . .
; .
- j u~ * = : [: : .T . -
. 7 7 .; ; .n:..::, ;; . ' * - -n'! ~~
nl::*:
- -~ . r :.
.I: . ' I t -*
nn
- !~.* ) :-* :1 +
n , ..ni . na -
- 4 :n'
- t : -
- - - - - - . ,4.. : ,.. .
- .in m:;,n ::{;g;Jn.
n .. . .n: rnal~nr . :n :
- n r---t .. ::..h :,.. .--- . , : . : ,; n. 7 --~~'--.q,-n.-
a
..q.iyi=... a :: - . . . . ---~..!.- . . . , . . . .
- : _ :. =.
=_.q.=.. ...l.. ..-n .:=.:_ g=. ..4 . . =.- . . :. . . ..f. .; n...: .n; n.., .n . .:
7 F. . . . ..n. .= . . =...=:... 9 pn. .
.. :.~r .n . .; n.: . nn
- .....; n; r... ..;n
;:!:.:r . r!::n . n. s.
mm apa .a: * : h:t =;:- . sn:An. r . . . . .nn :n
.-. _ .n: . : ;- :: .33:.. .:
c n : :1. n. 7 Ls. g .. ... nn :-{. . . . . _ = _...- :-- :-- . f.:n; . i .~. , . . . . 9.,. :. , g . . . ,!
. . . ~
- . n.. ....:
.:r {~. . ~ , - ....{::= . .. . .) ._. {. . .n .
- =. -. n . . . un :n .. ..; _r =:gn .
ci:: nj#:: 4 eup nJ:n. t n ..- : . * :: .: .: lj;:y=< ' d =?jpgjn "7": "
==uil! . =1=
T - -p. d4f" " " " i+ . 9 i 95 7
%i +- E i'!nt +V - . H.- .- b :-i. . i
- :~ r:N .r .n.-I. . q: n, . .. .i:::::
..... ..o.
X - :tn ;-.n = : 3.:.:. ..n: :
..nin .T. ... .. . . .
7 n: .g -
.. 7 i
CF ; i . p. := n. . .i njgju!! . .: ;jipjp -jg:jn : iiig g;g j -- g;::npj:; :gg -- - - 7 k2 - ~ ""
- n::::*
E:il
- = t-
..MI rt:
n9. . .nr -
! .=!"
tb E b bs'- Hb M"=h
,J i .n. . n !".
- 1.:
3 n . 4. .
~ ;. :: ;l :: . . . . . :' n:t:: - n: , , , , - g;; ,-l;. ,.g,
[ . . :l.:: lm::::.: ]n: ::n 31.;.ip:: nt::
-:..-- --".a:.. .~i:- :-.n *:::In f.~. ;-- n ? ;-- --A--" :-- { . - e ..M* ..s. ....g.. ....g"....'
- M. 1.':. . 'g" '
.fl 2l "it' UI!! iHi'il ii*g*: Hi!!' ~ -
- 2:: 'di .
l^ 51. . . ..iIi!!. ..!!li! !!@ ..iii $ .9.. ijil: ' .I
~!liiG!!!!!!Mh. !!idj"" pijj.i;k T;; V Siiis ini!E liti!! !!!!!!!
Hi:
"=c=pHe, i # i .
[ j.iijil =n ...: . . :.. imi n --~ 4'
=m=m - ==s;n n=v== wi= - .-d: =. .. .n . . . . . . =I' h. n I
t
.i ln k:.= i:h .* e ; .:.l:qn;: w=:l=H:q=::,=4.--
t ,
- n. . . . . .u l n.
t-
. g ...l. .. 1 .. . .
O 10 30 60 90 12 0 150 180 210 240 270 300 330 360 I N"I assumed to be burning simultaneously the duration of the fire will be . 4 lbs/ft2 + 0.1 lb_ = 40 minutes. min ft' From the chart above the volume of air in the Reactor Building will not have an ef fect on the fire duration.
- 5. RESULTS The worst case examined is with all cable trays in the area burning simultaneously with a ventilation opening measuring 27 ft wide by 10ft high. The gas temperature at the ceiling would be 145*F (see Attachment B) which will not fail the structural steel in the area. The cable trays in this area were positioned such that they did not present a localized heating exposure to structural steel.
o
?
w/ 2 W -3
bJ k --__ up 3
<s__. D( % I /,,
- 2 I $.~~* .
./
- , *, u 2 -
- . ~, .
])
s,, . . . . .. l l,> ,t l , Surface Area Calculation t Walls West wall (134' x 38') 5092 ft2 South wall (35' x 38') 1330 ft2 North wall (18' x 38') 684 ft2 East wall (140' x 38') + (24' x 10') 5560 ft2 O st ir eii (19' x 38-) + (8' x 3er) to26 <t2 13,692 ft2 Ceiling Area 1 [36' x 52' - (19' x 8')] 1720 ft2 Area 2 1/2 (11' x 18') 99 ft2
-Area 3 (101' x 18') - 11' x 29' 1499 ft2 3318 ft2 f
I
. Total Surface Area for Heat Transfer 17,010 ft2 -(1581 m2) l O' ATTACHMENT A IM A
e CASE NUMBER: 1 DUILDING: UtJIT 2 REACTOR BUILDING
.EVATION AND AREA DESCRIl> LION: 195' GREA WEH1 0 .~ RL AC 10.? CEt4TER L:l NE 4BE DESCRIPTIOrl: OfJE OPENING ALL CABLES DURtJJ tJG - X X " X X X X X t X X X X A X -X X M M A X X X X X X M M M X M X X X X X X M A X A X W X X F M P:1: s M X X X X -)t > , , 4 3
- X X X X U v.- , P M CEILINC/ WALL CEILING / WALL Ao t i r, fiw Q lHICKrlESS tr t 't I AL (ft) (f12) ( 'l' t ) 'ft') d (kW) 0 M A K X X X X t. N A X X X X X X M M bk f: M M -X X X F X K h
- X X X X Y ). 'A R Y ,. X v. X X X P A .J X X X K Y M s. X X X .1 X X X X X X M X A X 2.S CONCl!ETE 2 70 10 170i8, 1770 s- FIRE IS FUEL CONTROLLED l'IR E Dull A 110N Gn3 I Era.I',_R A rt il:E (nin) (deg .F )
la 10 1 0 '. ' L '- 20 124 30 136> 40 1 45 O
~
4 O ATTACHMENT B ly -5
f(( Professional fins Centrol, Inc. , STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION UNIT 2 Reactor Building El .195' East of Reactor Center Line q g Excluding Heating Equipment Area September 7, 1983 l i l l I P. O. Box 446
- Oak Ridge, Terinessee 37830 e (615)482-3541 l5-I
7,
\
PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El.195', area east of reactor centerlire excluding Reactor Building Ventilating Equipment Area (Rooms 506, 510, and 511) (see Attachment A for sketch of area).
Q];n;4 Bounding walls of area are reinforced concrete with an average V thickness 2.5 ft. Total surface area of bounding walls and ceiling is 18',741 ft2 (see
@ Attachment A for calculation of areas).
- 2. COMBUSTIBLE LOADING The area of heaviest cable concentration is located in the corridor l
which separates the Reactor containment wall and the Ventilation Equip-f ment Area. The total surface area of cables in this area is 441 ft2 with an average combustible loading of the cable trays being 4 lb/ft2 , A listing of the cable trays under consideration is included in Attach-ment B. There are no combustible liquids in this area.
- 3. VENTILATION PARAMETERS
- The opening at the south end of the corridor separating the ventilating equipment and containment wall will serve as the ventilation opening f or 'a fire in this area. The opening measures 9 ft wide by 38 ft high.
! A possible limiting factor will be the total volume of air in the Reactor Building available for combustion which is 1 x 105m. 3 The curve below shows the duration of a fire at a given heat output. l 4. CASES EXAMINED i With the light combustible loading in this area the assumption that all cables are burning simultaneously would present the worst case. With all cables burning a surface area of 441 ft2 would be involved. This
.)
1 15- 1
..y e ar. . sew.e + em . ..s -- d= e *e- ' h - t " y
- j * :- : .
...f..... ....{...l.. . . . . . !... ***:l:;.:.... . . . ~'T.
- l;:.. ** ..' . '
- l
.l g . - * - - ! : . :. ,l:.,,,.. . . . . . . . ..' :,.;]r. ' :-{ -. --6 - +- : g n;::. . . .
- :: . . ., . . . . ..: t n. ::,.: . ? . - "l. - r ;
- ;,,: , , I.
nj......... 1.. : , i :;' N - -- " f E2 "-h 22iG+f[i;M-- f
,-mg l:
ul ; n . :: ::u: ::P:""- . :; :.;.. ..-
. . . H .. . .. , .- .
p 4 .s.. . j ;. : . l. . . .
^ .
V i= j u. ~:2- M i kt N-y'g.. -%i,i+:-+H!-i7[4 f -[ ! = - j- W .: 10 @=%==Ni'i@ll: :h - ':~ '!a:: - - :
- l ' ~
2'
~
W:
- . sn.: -+-
.:n:j;; ;; ii~ : ,
b 5 9 bili'-k ; bhNNiN"hH:
':; Rb , -!: '-*: ;- !
ri [p l. 9 r"=
- n::Ir::l:: .!
" n}:r ' ,. .r. - * ; u: --[ - +- L- - i-+ -jtain ;..
if +2- a"H+is t-- : 2-
"'1""
J 92L :
..::i" R hi-if]. : n, - 2j- n ;-h-f[ "[ l ,
g .:: M g:
- p. :.j n
----'T... ' "-
nn
- j:. *
- j:- +
r 1
---+ - - - ~ ~ ~ -
I { 2." :.... I 52 .!!CM ii2 MiC!9F"-f'nri. + Wl: .- i- 8 " : l "I i -
"N.. it M !? 'iii! ..d b. .. [
7I?l~ ~. p .i !"
...... iihMlii!!l L - -!~ "; " I" - !? ..t....... . . . . . . . g.
g..,..
.-. .!P:. . . . . . . .... .S. [!i !! i b.., !![ . ..i:.. . . . . . . .
R n ;- - - "- -
- .n "-
ng : ::: ,]1;p(in n- " " n g:: - *.. .,- .
";;i::-
nn ni n: m n.
. . . 3 .
~ d 6 g mi.i..i. n*-
==* M n:= u " ... -* ~ r "- r . ; ~ -" --""E..>'. . t-1 - r:ul!!:! ..
a - . . g i g. .
- .,.e
- c . [;- : o .t * -e d- - -- - - !n ..~. - l i
o -- "" i
.;5;;
A, ;:j ;;.l, j i
-5 "--- - - -., -- -" . : i 'iil!! :lii i' :.:i i ~~*
X D. !;: .. . ..:.. ! . . l}F . . .. . .. ! I...
- a t.n. mn; .n: "i .
;n -
- .... . . . . . . .i r O ' : ..i .n.. - M. . in. . " "i n. .
- ' :. : : ... . a.:... . : . :
8
. {::
s.; ';,;.
~ * !n 2 1 .iti 7. 7
- h. . . . ; "ii : t p: m4 i.. g. E. -
..aln:: :-@e:- nin .!.ii nj;h,n:.lu ..: ;
- .8:i . .:-.
l!!!![u.. u.. .;: ..r .: t e- :
.-~:.= =j . . i n -- ..t.. . . . . .
p n,"- n,n
- 4. ..
+==4 =aiu + ju=-s a-i. : ..
3 ,= n : . . ". ==t
- y: . . . .
k;:{:: -:ii=rl::
.ta:* i Pit. :$'n5 "%. ::s =+ iM:.
- e 6;;i"Wi:
" . . .~ .P.R:..::li;
- I:: ..:.. . ::IM l-ir- n-+ - di
. 'l-. . . . ' , . . ...,-l: {. .:
- :t : .. .
g"..':1-- L...... . .. .. , .. .. . . . . . . . . . , ,
,. ..... ..,=.. . . . . , .., , .. .,, ,. .l.....', .. ,f, . : I I (_. !"l . .:: -..t.. . . . ...g.. . . 7. . . p. 3 l n. . : : P, . . , g.: 7. . f, . .* . . , . .t.: . . g
- ::: 5. . . ..f. .. . . . . . . . . . . . . . , . . g ..
- n: ...:.:..,.? n..lj;;:p-. ! . .. :. ::
. . . . " . : l ; . . : 1. .: ", ; ". .
I.
.l.... . . . . t .: . . . . . . . . . . ..y 7m . . . . . . . /
g j j
- ? ... . .. :.l*:!. .!.' : :'T' g
e
.. * . 'I. .. .
v 01030 60 90 12 0 150 180 210 240 270 300 330 360
, (min) corresponds to a heat output of approximately 7787 kw. With all cables assumed to be burning simultaneously the duration of the fire will be 4 lbs/ft2 4 0.1 lb_ = 40 minutes.
min ft' From the chart above, the volume of air in the Reactor Building will not have an effect on the fire duration.
- 5. RESULTS The worst case examined is with all cable trays located in the corridor burning simultaneously with a ventilation opening measuring 9 ft wide by 38 ft high. The gas temperature at the ceiling would be 366*F (see Attachment C) which will not fail the structural steel in the area.
The cable trays in this area were positioned such that they did not prasent a localized heating exposure to structural steel. a 2 15-3
G . 4 's i i 1 1
! I
(- )~T:. m.
\ . - g- , . , . + .
N. ~ . , . , N - A N -
- p 3 ._ m - m. q .
i-5 2 y e
'N / y me aHL / ~
5 7 r
-h UNIT 2 Reactor Luilding El. 195' Surface Area Calculation, Walls West wall (139' x 38') 5282 ft2 North wall (30' x 38') + (24' x 10' south wall of Room 500 & 509) 1380 ft2 South wall (74' x 38') 2812 ft2 i- East wall (153' x 38') 5814 ft2 15,288 ft2 Ceiling Area 1 -(28' x 25') 700 ft2 l Area 2 ~(30' x 50') - (21' x 17' open hatch) 1143 ft2 972 ft2 Area 3 (108' x 9')
Area 4 1/2 (15' x 17') 127.5 ft2 Area 5 (17' x 30') 510 ft2 3453 ft2 18,741 ft 2 (1741m) 2 , Total Surface Area for Heat Transfer i i fm ATTACHMENT A e
. IS 4
Cable Trays A V Cable Trays considered to be burning simultaneously: Horizontal Surface Tray No._ Length (ft) Width (in) Area (ft 2). 7.5 24 15 2NA010 2NA020 41.5 24 83 2NB020 60 24 120 2NB030 41 24 82 2NB040 19 24 38 2NE010 20 24 40 3.? Vertical Tray No. 4 12 4 2NV010 4 12 4 2NV020 4 12 4 2NV030 4 12 4 IDi* " - 2NV040 4 2NV120 4 12 4 12 4 2NV130 2NV050 3 12 3 3 12 3 2NV060 j := . 12 3 2NV070 3 3 12 3 2NV080 2NV090 3 12 3 2MV460 12 24 24
' T4T ft2 l 441 ft2 x.190 kw = 7787 kw 10.75 ft 2/m2 ist l
ATTACHMENT B 15-5
i
/~^tSE NUMBER: 1 kJILDING: UNIT 2 REACTOR DUILDING ELEVATION AND AREA DEE Cl? IP TIUN : 195' EAST OF REACTOR CEtHER LINE CASE DESCRIPTION: DNE OPENING ALL CABLES BURNItJG X X X X X X X X X X X X X-X X X X K X X X X X X X X X X X X X U X M X X X X M X X X M X X X X 4 X X X X X X X X X X X X X 7:M X X X X X >: X -)- X CEILING / WALL. CEILING / WALL Ao He Aw Q THICKtlESS 11ATER ] AL (ft) (ft2) (01) (ft2) (kW)
T X X X X X X X X X :. X Y X X X X X .t X X X X X X Y ): X X X X X X X X X X X X M W X M X X X M X X-X X X X- X M X M X X X X )c M X X X X X X X X X (g 2.5 CONCRETE 342. 30 18741 */707 N
.'1RE IS FUEL CON TROL LED FIRE DURATION GAS TEMPERATURE (nin) (deg.F) 10 2:1 Y 20 200 30 327 40 366 1
? p d I ( i n) l l ATTACHMENT C [$-6
(([ Professional Loss Control, Inc. KY STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION , UNIT 2 Reactor Building El. 195' & 214' Reactor Building Ventilating Equipment Area ( ) and Reactor Building Fan Room l l l September 7, 1983 l l l t i I P. O. Box 446
- Oak Ridge Tennessee 37830 * (G15) 482-3541
\ l lG -I
y - _ _ _. e d pv PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El. 195', Reactor Building Ventilating Equipment Area (Room 506) and Reactor Building Fan Room El. 214' (Room 529) (see Attachment A for sketch of area under consideration).
i Bounding walls of area are reinforced concreta with an average thickness.of 2.5 ft. Tne area for heat transfer is considered only to be the walls and ceil-ing of the Reactor Building Fan Room El. 214' (Room 529). This was assumed because of the open grating in the Reactor Building Ventilating Equipment Area ceiling and the open stairway in the northwest corner i
- > which will allow the passage of heated gases to the Fan Room El. 214'.
1 The total surface area of bounding walls and ceiling is 9334 ft (see Attachment A for calculation of areas). ,
- 2. COMBUSTIBLE LOADING The heaviest combustible loading is in the Reactor Building Ventilating Equipment ltrea. The total surface area of cable trays in the area is 413 ft2 with an average combustible Icading of 4 lbs/ft2 . There are no combustible liquids in this area.
I l 3. VENTILATION PARAMEIERS There are two doors located on the 195' elevation which can provide air for combustion. A set of double doors at the south end of the Ventilat-l ing Equipment Area and a single door into the stairwell. A limiting f actor for the duration of the fire will be the total volume of air in the Reactor Building which is 1 x 10 5 m.3 The curve on the following page shows the duration of a fire at a given heat output. I
- 4. CASES EXAMINED With the light combustible loading in this area the assumption that all I cables are burning simultaneously would present the worst case. With all cables burning a surface area of 413 ft2 would be involved. With all cables assumed to be burning sin;ultaneously, the duration of the l 1 l
l l s M-1
~N
.-r----- m ----* , , :. n , ni:: 4 . ::.c .
bbi$ $. h
' 'N S; b . , , , - a - '[ - ,,I*',, 'iil:i iili- J!n .y , th!! - ~ ~ ~ ~.-+.~.~g.-.
- _ t
!J i"5F!b l-g:: - ::g N.9 5r";M : ih.hh.-..
f - ab.. ...h$n ii=..
;; :_ : . . . i. ..
6 . . f .I
.....I...{, . .j.; T- . '"~~ ~~*"-*-k*" ; -
Q ."
. . . . . . . nin . . . :n n... . .: .= L . . . . . . . . . ....y , . ;"l:.
- j::: ' " :: - ' -:: pt:: :!l ;- *~I
$^' 'l l' :
t""
,+.I gQ , :t:: :
l "*l" . !
. l: ' . . . . . . T' . :: .. ..... ..g.. - - ;- ~.g + *~-'"-~~A*-~--
9fi- Mi2"*
= b':i :Cli;" Elh i I!!N - . i3F" im. ..:- I 2 "!
8
! ! .[:...k.' 'h g -. . . .-- E!!:. 1.. :HH" . +
i t , ... : p: 9fW . p- 2: -- i lL 4.. pl 2. .
..: :j-.:i. iiiihi ..iinii .. . ..... ;d:! . ' P:!:!.J ..; . i - ," I-in
- i .
u.:. m.: i.!!!!!f,nn::njic au:Hi.:5II ;- i ...a:.!.: i: -T ' - ~ " '-j.j ".:".
.... 3i:;(jj.3n d::n.l.: .
7 - 7 ; :: j. - +- . : -o
-l . - .. .". l' . .. .. . . I":-
- s. c E ; u.
.;.;l. .;
l .n:1-.
. . :.:-j!:Hiln;... . ::11. ..n ...r.. ........t.... . Ei.- urj] [i: lm" l .. . l l - mn:- ,lE ..m- ..a 3 . . . .
a-i. . j .
- .l .
= H!H i:lii !P- . ::lH i:!? il . . i: .. - *6!- ..- ^ N -"* ~ ;~-i-"-~ ~i- + - F .+a--
- .fu :.'-
.eo n. . . .=! " ~ !!i!!
n2n niii
- t.
...n!:. 'I -
t i I-
- 5 .. "!n .;;i.;ga_ . :.t .
g . _ ;.. . . .._ .;g . . l._ [ t :
.i i
X , . ...- t. . - i O 4 ,_N.. Nn.n : Nk i.:;;:;. ";" Hiii ..r ... Idi' . ik n!!n
- 1:x.
"i g;:g:(; .: .
l'i : . .
.b . l:
- j.- i . i. c .
'l =! .i.ii.iij m: .. nr::.. ..:
nl*:a:.pi[~""!
- ; :=l.... :
; :: a i.!.- r . - ,.:: r m". -t..~;t- i + . i" i.
t.-l.p[.l;;.!J..:..a r":.g . . .".. ni :.; ...3p. . n y3- y[. p .gg s
";" - . .ta ' ;- ..;- ,. . q
- b. :. ~4 "-h..;.i - '
- 3. . . .i. i . N.8
.a U.!Iii'1
n..n. . ..i.;.~. .1.' bin.:r
=:.u. . = ."-!!. . La. I : n.
cus=..t ,y ~" . .n. . . . mtr un . . i
- [.
nin- ":a n . . nnI:nn:::.T=. u..:n:.,_;!.!..:i;:
; in, 1
2 ;. '. '.. .:en
*: d::.:
n'm: : Il--- .M III ll:: - ii ! : : .l . n i:. ' r- . li ^ ' , : m n . ' .:1. . . . . +i-- h: rs== unisii =i" liv ==i== nl:: :=sh_. '".Vi =;=: Hi!! .-: a _ - .. '.i .
! .:i,,,..,.l.'";~
g:w p nin" -- I!Ih. .. :. . . i"
.q:.:.in .c...;N :ii:!';i -t" -i-"
p,
.eu -
pp;;:; m : " ."
~ .::;..
b,U. hI. . . . ..
..l .9. 3 . ! p. .
i;!
- . .i :
.p-i.
V t- " " " " ' - " - =- ' '-- O 10 30 60 90 12 0 150 210 240 270 300 330 360 t @,180 "I fire will be 4 lbs/ft2 + 0.1 lb_ = 40 minutes. min ft' Cases were evaluated using one or more of the doors leading into the room as being open. From the chart above, the volume of air in the Reactor Building will not have an effect on the fire duration.
- 5. RESULTS Two cases were examined each having different ventilation parameters.
Case Number 1 had one 3' wide x 7' high door open. The fire is ventila-tion controlled and the resultant heat output of the fire would be 4504 kW which produces a gas temperature of 413*F (see Attachment C). Case Number 2 had the double doors measuring 6' wide x 7' high open. This produces a fuel controlled fire with a maximum gas temperature of 625*F (seeAttachmentD). These temperatures will not fail the structural N steel in the area. The cable trays in this area were psitioned such (D that they did not present a localized heating exposure to structural steel. 2 g.3
. N n
- i. . ,]. . ,i? .] I m- ,-
f~ V)
. 7 e r hi ; w d
- W
.7 ' .., T,. , . . . . - n ,.2s. .;.. .. 'I *. -
Unit 2 Reactor Building Fan Room El. 195'. Surface Area Calculation G
'V Walls North wall (37' x 20) 740 ft2 East wall (102' x 20') 2040 ft2 South wall (37' x 20') 740 ft2 West wall (102' x 20') 2040 ft2 5560 ft2 l Ceiling (37' x 102') 3774 ft2 l-Total Surface Area for Heat Transfer 9334 ft2 l
[ l O ATTACHMENT A lf -#
. =-
Cable Trays Cable Trays considered to be burning simultaneously: Horizontal Surface Tray No. Length (ft) Width (in) Area (ft2 ) 2NA020 10 24 20 2NC010 11 24 22 2N0010 20 24 40 2ND020 22 24 44 2ND030 7 24 14 2NF010 28 24 56 - g..
" 2NF020 28 24 - 56 Vertical Fi Tray No.
2MV420 16 24 32
.. 2NV100 24 4 8 2NV101 12 3 3 "s . 2NV110 24 4 8 2NV140 24 16 32 2NV160 24 16 32 2NV161 24 2 4 2NV150 21' 24 42 g () 413 ft2 ,
413 ft2 x 190 kw = 7293 kw 2 10.76 ft /m2 nUE ATTACHMENT B
/c-fi
-e- .. . . . . . . . .
o CASE NUMBER: 1 BUILDING: UNIT 2 REACTOR DUILDING CLEVATION AND AREA DESCRIPTION: 195' VENTILATINC EQUll'MEi4T AREA SE DESCRIPTION: GNE ')OOR OPEN 3'X 7' ALL CABLES DURNINC A X F X X X X X X K K X X X X X X K k X X X X X X X X X- X X X X X M K X X X X X X X X % X L X X X X X X ): r. X X X K A F X X X X X K-X A M M M CEILING / WALL CEILING / WALL Ao Ho Au Q lHICXtsESS MATERIAL (ft) (ft2) (fs) (ft2) (kW) x X X X-(! X X X X X K X -X X X X X W K X X R M X X W Y X X X X M M X X X X X K K X K X- X X X X M MX X X X X W W X X M A X M M X X X M K K X M M 2.5 CONCRETE 21 7 V334 4504 FIRE IG VENTILATION CON 1 ROLLED FIRE DURATION GAS TEMPERATU?E ( riin ) ( ci e g . F ) 10 243
^~
20 314 30 3M3 40 413 i
-a 9
) N. I
~-'
ATTACHMENT C JC- G
s CASE NUMBER: 2
- BUILDING: UNIT 2 REACTOR BUILDING '
ELEVATION AND AREA DESCRIPTION: 195' VENTlt.ATING EQUlPhlNT AREA DOUBLE DOORS OPEN 6'X 7' ALL CADLES BUNrut4G
!. O.SE DESCRIPTION: ' X X X X X X X X X N X X X X -X X X X X X X X X X X X M X X X K X X X -X X X X E X
- X * )< X- X X N X X X X X X X N X X y X t M X X X- X K X N X X
'lEILI NG/W ALL CEILINC/ WALL Ao Ho Au Q THlCKNESS M AT ER I AL , (ft) (ft2) (ft) (ft2) (LW)
X X X X X X -X X X X X X X X X X X X X X X X X X-X X X X X X X X X X X X X X X X t X X X X X X h X X X X X X X X X X X X X X K X X X X X-X X X X 2.5 CONCRETE 42 7 9334 7293 FIRE IS FUEL CONTROLLED FIRE DURATION GAS TEMPER ATURE (nin) (deg.F) 10 349 jV 20 463 30 551 i- 40 625 t p .
./
i t . f k # v l l ATTACHMENT D
/C 7 i.
.o
_ PL C ~'"! ""' '"" '"""' '"'- 9
)
STRUCTURAL STEEL ANALYSIS f for PEACH BOTTOM ATOMIC GENERATING STATION kr-- Unit 3 Cooling Water Equipment Room No.162 Fire Zone 12B e i i l September 12, 1983 l 9 P. O. Box 446 e Oak Ridge, Tennessec 37830 * (615) 482-3541
/7-/
1
g PEACH BOTTOM ATOMIC GENERATING STATION LJ
- 1. AREA DESCRIPTION Cooling Water Equipment Room in the Radwaste Building El.116' Unit 3, 4.; Room 162, Fire Zone 12B (see Attachment A for sketch of area). Bounding walls of the area are reinforced concrete with an average thickness of 2.5 ft. Total surface area of bounding walls and ceiling is 9,852 ft2 (see Attachment A for calculation of areas).
'2. COMBUSTIBLE LOADING g The area combustible loading consists of cable insulation. The cable trays containing these cables run along the perimeter of the room. The total cable t.ay surface area is 728 ft2 with an average combustible
[- ) loading af 5.5 lbs/ft 2. A listing of the cable trays under considera-J< tion is included in Attachment B. There are no combustible liquids in I l this area. l
.n i
- 3. VENTILATION PARAMETERS There are two door openings 3' x 7' considered in this analysis. This represents a total of 42 ft2 of ventilation openings.
The total volume of air available for combustion in the roon is 1759 m3 The curve in figure 1 shows the fire duration (min) for a given heat output (kW) given the volume of air in the room. Due to the large amount of combustible cabling in the roon in compari-son to the air available, the fire in this area will be ventilation controllied.
- 4. CASES EXAMINED With the high combustible loading compared to air availability, the worst case fire would involve all the cables burning simultaneously with the maximum ventilation openings available. However, since the fire is ventilation controlled by openings of 42 ft 2 the maximum heat
/' release is 9008 kW. The calculations in Attachment B show a 12,867 kW fire with all the cables burning across a cable tray surface area of 728 ft 2 .
1
/ 7 .
This indicates that only 70% of the cable tray surface area could be burning simultaneously. Therefore, the worst case fire we can assume is one in which 70% of the cable trays burn for a duration of: 5.5 lb/ft2 + 0.1 lb_ = 55 minutes min ftd . f , under ventilation controlled conditions. To include the remaining 30% of cable insulation we assume enough surface area is involved to main-tain the fire at 9008 kW until the remaining cable is consumed. Since 70% of the 4.2 x 107 kj of heat energy available from cable insulation is generated in the first 55 minutes, this leaves 1.3 x 107 kJ of heat energy remaining to be released. Assuming surface exposure, conditions are correct to continue the fire at 9008 kW, the fire would then con-
),
tinue for an additional 23 minutes before all the combustible material had beeen consumed.
- 5. RESULTS Even with this hypothetical worst case fire scenario, the gas tempera-
's ture at the ceiling would only reach 975'F (see the calculations in Attachment C) which is not sufficient to fail the structural steel in the area.
There are no cables located within 3 feet of any structural steel, l therefore, localized heating is not a factor. The critical steel temperature will not be exceeded so a detailed analysis of the steel will not be performed.
-/T 2
17-3
Heat Output Duration for Available Air in Room p!.r:mi"..c ,,
. - .l.e un :.n .n ipn: :;p: p: ... .:r : ;:. ;n- -. [. ." .. ,, .... .m ;:n :r: r .l., . :n el oni .: !.a r.J. q.m. .n .." - + - ' .: ! :. ;r: ;t; ;:l c. : U .
w n h: +:j;
. ", o: 9: . .: ... :, " .:,e .:h o ph ' . "a . . : au , t .a . ., .u ;un: .n: :h: ..:
- n: ..:
l:n
., pr :.n n.. .n: .:j; n.
m ... 1:n p n
.m .tl..n. . .: ..n.. . ; .:n. .... ..... .. .;.q ,.n..n. . e!.n:L:.: .m. n. . ::. E. .n. .o._n.m_. ~a..s .e._ t r. .- : ._J . _M. . ..; :_. ;.... _ L: . .. l.u . n. l .: - ;.g ;;.g .;. ;i .t. i. :.. . u. . . _. .; -,;.; ;p... .:.. ; . .. ., g. g;. g.. . .. ..0: 3;; . .,g;,
- m
. . n. :. ,i n. . .t..: .o: n.....n e .n. : . n. , . 1. - . ,: t. . . . n. h . . . . . ..i . ~ e- n. , l -.
l n. ,. ... v. 4 :. . : . v. . 4. . . . . : m. . . . m.
.n. k' : .
i ":. . p:; m- -
..l..
n :. n. x:
@+y. ib :.;.
g ni ,.c . . -.; n n V l i h. "y
- -8 ii @ : - Yi *. M ;. r ; e ,@q.; hjs nr-E :ii : - O" :d,id J :- :O"
.:In . n -
- n: .t.: t di; ! .n j.: y:.a" i n2: t im I :.1.% .- " :". . . - ,9,
- . u":db :W: :
r;.. . : . .*. : t.n :. .: . . :.a 'r F'
. u n... . . . . .n. !.u: :. . . . _ . .:..y: a.r q ..::Un: . i .: nt. . .u. ; - "*.::fMr . J. . : n .: ". . - ~fn: : :g::y::.!:: P. - ;::.: : 1::::
- .3
- b:!" M.. f:. . ' l~. : i. . .. . : .
-?' '";
- I:r- ..;.......:I
- t:: ..!.... ..n.-
...:', .;:.i . . . :lf; . :-~i~P n *- : : -- - ..:.. *r r ..
nl:; f .j::
" p". .: .m :j n! ' .: . . . -". : lp-~ a ' . : i : ...:g . ;*n .%. *: *::- p"*:. - - -::I .:: n*~. . : .- .---* n" 3.
- t. u n. L::!. = :;n ;m :t."
4m ': .:l: :tu:
- .3 , .! np n,: . a"jna .it j;: ;
.n u:.
9.:.
! : ::: 1:q:j :'n *n t : . :::: -:tj pp: :. ;;I 2P! .p:
I1tj ljft n: hj :; ..n
- jlt .
i% . , t i
- p
g .
.N:4.: ::
- 1 - : n. :- :.i . . -, ,t " ' !! ... !! it!! .." ..:. M. i.t l11:
n . ., jj :- un
.. : ;. l ' I 3.1 : ... .::. : !:
- ;. . j ,
- .l.:.: '
." 5-.- ptm:18 v . .' .w ;! .-m g .' .; ,. ...; .,k. ,'.. ,- . .t . ". . . . ' ' . . .rj :.hy]. .:n. .' .
i;; tb 4 .". I .
.I : ji: t;:f t;:": .L.3, jv!; ...,
- a :p2 2n u. }'2.;. nu =: t=s fl j. r"h lg I ph:l- : :n: U :*1! d.: "n ':3
- 4. 3i: u;.lQ'. ,[PI L y! !ll{ 1'4.;
.a.j [. i !l .. !!
- l{
-. 11 I! L:. s m- ua ;::: -
ut: uh u_- t: .. 2 p:I:. M:p! nn %:n. an ::r :p:.t- r ; 8
.li, D.n UI".u - m "" 'P- ~
- n $. . :in n' nr . n. .: .- ":.I.:'
i 3! n'...P:"
.n._n:m ;n; :. n. ;,,, :: ; ;n:
g:: .._.ji.1 lli goI:
- h. .:+ :.,il. : t.i..
,r -
- ti_.
jn: g; ;n; j.jjlt . 1,1 2 -- 4.! -I . !, t. ii :n li. I '.:la
- in ; : :;I:
- r .' h:p n inh.:
mf n-4 1
- .. .F:
- , n' -
- n.
": n.: 8 P .: u.n
- l. '.l."_".
.u" :
(4, !-:.: :j:: n"n.! " " j: : .nnl ::jj: un : d'!:I .: ..: te :. .j ph n, i ! - - - n! nt :n:r! ::::: .:. nn: :H ::!::;fp :':n - n hl: e :": ;- th: "in:)
- i. .
.a ..... .a nn - .r un n;: -
hn* .I: n. . n. . j M :n: ' . ' n. g: . ..n .. : .
!. ! !. .l ::p, . !! n. ! . n* i n. ! .' inj j :q: . " '*
- q ,: .!M ...
np::
- n. g . :.
,; . . < o n .t o . - -
_ _! ::t.. . . . .
...a
- ... :..: un
- im....
.:n m " - ;i;:
- n :p- U i;.: n.:
n .rn :,,; . . . . :n: ...: un : o .: .n. in; p:;:; in.
- n.: .u up :
i p". ,, ui
.ti; ni. n.: :::
- ..: op . ::;7 .
a.
- n.. ".
nm.: : n--+n :r: y.n. .pr nt: nr; it w - ..e :- --t rn r an p .. ~.t - u :lp - tre --
.r F.M.. :".:. . 8 y % :.t.. . i .". n!" . . , ,":u:i _ . I:. ' , , -
t I. P ."nl" m 4 *, l!
.. li c!l: li U_l. .- . U. I. n N.
8- :h.;h i. t ". . ."' : V 1:im _-
" h. " ' U. : . ;:q n nu ai :p a!- - ; , j i :gj i .in ! : n: : e : an ;p . n; ; t pi,.;:i.;;:.ht i.i : i ... 4: .-: .l 2.p:-:- : I,-l nr 4++: : h' r;l"!l rn
- . u* ..-- " 1!p: . . .n: :... ..a ....
..n u::.=
_.n. _n,.H" e'n-- i . .:
~ .a ,
i --@nu-
*+-- - - - -- - C",2"n op t ;t lI h". i .: .1 i in i.i"n ITl li'v !!pr i r i "' : ;""i : "
i :'
;ilT! l D.: e "! "n-I' : ..P: :"l h4. "" " u n- d u- n!
1, s8 4 : rr! .i H"H h d:n - u 1:; a.. "e t.I1l ! -., !"il .i::I F:u"n-- -"n"! n ": M. ..:: u:: :j':
': j - .
t,; d - :P :n:pc 1 nt ' U:: i p 11 [ l ap qu !! rp: ;jt; ,nl dr -. . . - . mj-
; i ut ;; n 1 p: 8n -cn:r^:j m r..,:: un :jlt .: iln nl. : : n:. i n il d[j n t.n :.n ..:: 3:1 n. :nl n u. er n - . ?
- n nh: y!lp:
,.n .. ..nn.. .t. ? np"-t nn t.
du. :h: m nn ~h::. mr tr mr : .t et rh:
- np nr dn n.. = . . . . . . .nt :- -
- h. . . ;;j:: n 3
1.n 3:-: :q : .:n u" p- ini :.n aq a.. :j;; n. hun n e! am. p~n .... x ; p". m: "m:ip: ; :uj;; "a p-I::~m sua un c: . - - ua.q.;.p = yp: ut qn ..
- a
- .fna :a.a :P1gl plL[(:qpln.
['N ge p:
= !nthu.
pn. nn 11 :11 h :ijj! iH .[lj ! j jj M l l- i{jl Lpj nlj ini :l I p': unl in: ipt ;;i: ,
;'- :j::~ ---n.j Hj. nn li;; ' ~
up: Ip: i a q h-l l' l' ~ :;lplld1 u :p. : Il d; h; nj; n n un nj
- ,n :::,j;p
.. . . . m :
hl
- n. .n :n : .p; :. j l, n : nn q.; m:
. n . r;- :" ...j . : p' : .: ;;' . . h; . I;;;. ; a ny :.n ;lp ;m .:; j:a. .: e 1;- n .n :,n 9 -
r "--
- e. e -
up:
; un -
n . :; n; o i:;a: n"n .: ;" '+ n.
. es. w. an ; 34 2,,- +" . -
p'p":
' '" "" i : ~
n"p
^* -a n-p:r r:8 .:.;:: n: n h":@.:h:
ur ni n
.: : rn n.- :"! "r : @;,1
- lj h:. :p
!. 2;p: ":: l .
- m :( in il . :.il;t ju
.n : . p: .,: n i-h.: p.i ni 1g: :p. : .;; np n:: r. ;:t.n :jn i;u.:
i.e p n.- u: p: :"; :;n c: ....
- p:
n :t:. I .n. " . . n i .i i! t; l p .jp - n; +
- - .n h: ':
o t
- i. _n. g 4 g;;
;n oh ' ., . . ' .u. t . .. ;p.: . . :: :... .. p. .y 1 :. g.n j j;. h: .,
4:g;t : @i. t h!g
,. .lIl". .. " n. 3,h t . . :. i ij.p .p :. g:. : .n n: .! i::: ad n 02 l'" ; :Pi :1; ,. - *:y + - ; ,tn til! : U ;!l! ,; ;' .- p!f:j 4 :t a.
g..
.n '; i .n. ,j n.!'! l .n. : h' 't.n. . . .- .:p.l.: ....
n:
- 1. . ;
- .n nr .:n :n. .i :
u:n i ;
... . n. . t. .: .:..M ::1 n. .i. .n.
7 , . , +;
.J :!! . 1.: .I- . ! !..!! .: ...: f.l.:.'.:... .1 n- :. -
4
- .n pn n:,
- . h. . . . . l . h..::: ;:u.~
.... 1.d'.n !n:
n-n:.
.:jn.:
- p- : .. M :; "; - "
- b:1 !. t ::h. nn: .; . . . . .
he n: .nl n:: m: -- b :n:t : n. .u- un :- . . . . . . . i m un
+ ,*nt :*7- -4 . . "...;. .. . - .n. * -.. :!n ...- ;- , i h.
- t. ' i.n "
g l
. . . '. t n. . .. . ::. n. :. , . . . .:'l... . t ..1:..! n. . .i..-. !:m . .1 -l l, :. !. !'; lt. I :i-. h.: !.. .n : . ...: n. "li ;, ; ...o L ., . "1 gf:
i . . .n. it!' .; pl ..!
. . t... .:;l ...
w)
'nj :: !!g:' f
- - : 11 ! ,,; .!h .j !"'- - ..- ' ;
l,j : I ...- p: e' n: :' ";..: y: . n. .' .......
- m. u. . ' ' ;"tI :. . g*: . . . . . . n. n.7.
"! n. - ,..... ..... . l .n. n. r n. . !
m > -
. . n. . ! u. . .. .. n. !. . n. . . .f -
- g.
...: : n in. . ;p:
- : :i.:: it:... :r
- h.- @.j
. . ut:.... . g ,:
g*... . . . . na 77 : n np ;u % n,, *%.
**. *1 : . . . ,.3 .
o n lih.r a:l d.p':
**T Uj" n * .. * * + - " ~~+'"*73 n .l "j::un un n . a.:. :p; a!.. n ." : ;i ;utun d% ,PM.p:I; n . 1 o n :.m = ."..c..._...,l.., an un un -:.;.:= n [":7 . : 3 -"- :@": "n' . :: 0 : tr -;n 39 nn up : i.n. ;p: n. n:!:: un :in .:p - -
- a un n+nn
,r n H. -.h : . .
u n . M :ni. : -
~ : . :.
i:n ' l4.i.4 r ::!: : :"' ::h i::;: n i!nine * ;n: na tlh': 1.i.l.I . :i llun n: ntu.r un :.:: n..
. ...:tnu nln : .i . . .': ....i .;i... . .i ...l..,... . . . 4 . . : .1 .... .... . ...l... - . ... .l... ..l.. .. . - :..: :: ': an L .. !=D !!!! qd:. ii 119 0:1 LiWO! !!!1 n. : u!! !!W.....O! " ll . . E. .80 . 4f0 " """" - ~ . ' . . "l$0~
l:i"!!
.!!Z240 i"m t;i. :""U :'n i n:3 - : P" 'n n"'. ~
n- ::' r, P 'F ': :n-
~~ "~ "' .ht- "if n- & un
- tin :n; !cHl:' :n - , ' ~
n :1e: ...! -
- t. n F. n: : : in .n n -
_hen n.y:::n
.o.n
,s t - .:d::. i i m . -
.:q : n :... np :::p; : : 7. : : : n ... ... :n;
- ... . . .n. _q nn.. n;i ::; :
..: p n.n. ". .n.. l L, u, :p: :;g.
u :: :;i.a.:
.- . .pI.I.
8
. . .: . . . . :v!.n;; u: r ,:
u l,2.n, 3, - . . . -. in : , ... it;l ne jn:m.
. . . .t...:,.. . . . . . . : . a. . . .:.. ..
ri ....
. .. n. .t aj, ', : ,r : . . . ,1 ..
w ':" , ;;:1 ;ti- l : h.. : n :n- - 11!, 1:11 lin l ut'
..n Mj ;' " - : ' :,. ; ':.' "
i c *n :!d .!Q*in : :::! h' [: "- * :: .
;p;;:
- 1. :. !n: *--* 1. : l. ' '0 nnt ::f! .l!n at; ji!
i: .": 11l. et !l. :nl y .D !!!! !n !j:: n :n .!:t "' : : 'n; n. t h'::: ! !!n ' i du , . .p. i.... g j*n. .-
*t *
- -**?* .; i*t* ~
2.' ..lf!jn og ::*~! :-****
' -!*3 . . .ll.l; Tn -
i, N'P!! j jh- .j "n-7 32 ! !!n "'] l ;; i n ! ;! : h. p "O : l ' -lJ :h ::t r i!n : h' M:;jij In: n ldl ,, u t; , j3 :.pl iiiij:i"!ii!iiii lif O"!!{ti? ![N Ihl3:. 4l fri j;q jj(( $; ;..) p:j jNj ij;;! pll ji'jn i.!jj jhj ;jj !! ::;: ; !E iin F P 51 Gi! id! !
- . : . :;n :" i "1 -: f;.: n o -:!; n.: ::t; l:lt n, un -nl; .n. :i!! :.! :!d l.: :.,6 i:O( : 1" ;:.! . 4... .:.: :
>s.. e - - +- . +- .. . . . . . . . .
nn... .- ;
n :n:
- f. . e:. . ! :.n. .! .n
. . . . p+v... -IV:: n:! u 9:! :. lu. .n. . n.
- n. n ; .: ,
;.nr m : r" 3 n .,: ,:p . *---t---=
- a i.n- '
q:!il!!ij !!j! IN! !!!i i!
. 's"@. '
3
- I 51li"
- nn d 5! .Ii; '
m:. 'itir.iiO"r . llh in iy.t.$.! Y:p ni}!
!!i "t nh u: nl: O...f:.!
itbll !!i-I
!j;ql si ' !n$ i F*i i:Hf 9 iii* E t* Olj Fiillih t
a
- a- - "- "" ne nu m: - t :. : :'- un - - -
. n. n:nnn
- an
! t . n n;.
;.. r- n: "n , . .... n :n :.a . .::* n c n :p: q;j :; : n.. c up ...; ..mn :: :n ..: - i -
n: .... . . . . tilj n: a: m: 3
,,i!
n 1 nn e uninn Im. :,n :,.. :. to-
; n'h: :... n.r an ...: gn . . ..n ::. . .ut - : m: m: = : p::t:.: ::h nt: :r
- n.: ::i,;n r;: :r: en vi: :.n -
e,t- n+* :- :: :...--- :- : un n- r i.n ;,p*:
!. .' , . .; '. ;. p h. P :!.;. th: !jj' =!
g::9 ::. :Iq. .:.t. t:.:rl n:.
- p. : :. ;.n. .- :p: .n.,.. n.:j ;: n. . . ' ...::lnn
+
- i. . .. .... .... M. . ;. .' ....
_. . . . .. . n. . .
!!n n!' at l:: , :li n:
- t jln;l. [. n :';- :;n 1::' - :: ;!;g
- ll; * .
;; :; t.,. lin 1::: liti 'j': .:n ':M ' nj.: -;- :::l::1 n " n h. .**h * : Q. M. , .i '****tn*; * ': *f ?.- ; -* ;*'-* n rd: '*:*:*n* "n: : : ,, : - -M l';::l *: . :: t :..' ';;' :; . : . !. !: !!n !M1 :!:.d: *;h.
M q:.:n . . . . . . . . . . ;:!::-
. n ' n'J :..' gn*.h:N:.l:: *tj*~ : *;*"*:*r !* ***"? !ji- ::Qt f m . : ; . *** dn:**- ..
- n* j T -' **"+**n -* **
..*ny n. nn ....L ' D '. 1** n M . '; ;n 1. n n: ., t..; 1.. ;n in '5!i :*-' *! . " uw'. . T. d: ..n. )- g . . n '. : . " .:.t m!'. n: .n'L;in
,{ ,: nun n:an._ an.nu ..d e a Im'. c!un s an':m:.an_i nn.u:.: an y nn ,hn pl n :;n
- n.: .m.: :m :n. : = un =:,= . "'n 2
. nn **::;::;;;;nt :n. un un t'!. .! .:.. . o. l;; . '
- IL! In' c :ll:l
%x:Jln:t -l
- ! e l7.!!
- 3'
'.n an 'll: !!:- ::I: :;b ut; d!! IM*-
4 :- hj :.n :e!:n ! ni ; : n-m: i,c ; n e"
!.l' l'fl :! :!!! '
nn
- M
- m':.' l' : .:n:
-* n "
y- t.n L, :a:: .- an . r u- *u* n :n: h-- ;n -i ;- : 'n' ip. : '. un m*-- n; n ;-
-~
r
- . n. nn na: nt.:a: en-**!.
i..: ",n'ja';h:n; :r - 1 e n n ..n :p: "
.n ::H !.h ..; :u n r! - :yn .n ~-
- .n "
un r ::. m. :. :: un en :;.
~ .g. :.;n n , M**TJ !***" '*-
q **-** ...
.g j;. ,,g. g... ..
- T , ". j ;
*"**d--*-' . t*~l . n.:.. l..:; nn n :,d a :.. :n; nr !n-
- n n. *d u n!en . . H ...!
.Un. . .:n..; n.
- n; :.. m: ,m a.**p*:*"! .u a ,. :;! u- .n; nn n]n
! ; : , ,- n
. . h. . - +
an 4.; 2. : . t.n..j r2.... .tnn ; nula: .. : . . un ap: ::n ::inp n, cd :n; m; :esan n.. o "" 4
' ;;. . qu ;;;; un -
- .i;n er
- in :;:n ;lp rpn. .: .-
an ""
". a:
- ..: !...:*' ::! n .lla ;I!: . n!! *:!.. i :' . ! aL_;n * :!; : ' lr: : :;p;:
h-g
!!. ain.- , 's ..I n :1:: n!,
l: ll *M.:
... . . . In ... p; :t:: .:!j :.., -
n;; .: ::
- j : :m: :: n np n "-::r. r ::e o .n ;p:: n. :. i.: . ::':n; j!
. . . . . . 'jt! .n.:: m ra . - ~ :. : Mp: "n :pyn.: r: r."l:: ..m an o[' . . . .
n: :h ; - : ,:
- m. ., *
+ n. . t. ";nt . .. . n. n. : to . . . pn!- .. . e. l . - .- . , ., : n. . ... ... n.
n, :
.. m. . . .; n..g. . i e. :,.o. . n::!n. .
n : -
' .: :;1: ~~. . . . . ..:- ".' ' . . .. ;t*: ..:] ...: nt: :: . ::1! : .1 : :1:! i:I : n . : '. .'. -l:: -
- In.' .'
. ' . . -. '* * ' ' ";I' - ~ ~ * * * *
- I*~
.'::P.:nf;; e' l ' ' '::' '1.- . ..g., nn; *- - ~ *~*J. n *: - '* n.t:r: .t. ..i :;1. W' ut.u: n:r.j!*i n:na::n: ; :n 'd'u * ": .- ;!*: ;r: an ~'n ' l "' n, . . " n' . . , . .m': :... "p . .- .I' : u p' *";";;I*n '
nuan.:
"U !j:n;' a:::.; nt! un jnr I;': :n:p:
- n., '; :;' "n"..jrnp:::h:
an.2.. r - it;: ! 'i ! lp; ty:
. n n .g . mu :n. mi[- .;' . . ".,;' , n N.n-n!n' - nn ";n j :. ; ;n .u- nh ae + m et : ia:; n n:; r"h ::g: :.n :.: :n: :nlul in:
- .gn' ::y n-m ..an.. :nin:*:;
MjM:. t :.
- n- .... ".n
[ r '. n" n. lu: .m.~.:..; un : . pp ;;p
.... .. :a:
n h::..
;ln up?
s.
. t .;; :,. : 3 ;; . . i . . :is: .... ,
- Mn ..'....
j t
- t n!*'
un ,' : n.* jt. ln :: a t k' nt *.
.': : "nilij n ,..
i:f: nu un : {jh :n :k t .
.... 'M* p
- r :t" Tn:" ng n....'
".j. - !. p. !, p* , n. . ' n. . ,t., j:.
- .: m "h.. ; n.'*. g. . . l ... ;. ,. . : .: ' :g . '": :. ! : : j : :.
' M. tj f..g'n.:. :. t. ;. d. . . .:.'H': . .yn n:g.:.:. .: n. . 't: ::p .!!. l..n.
,. 3. 4
.. l. ::'*:'*M. . . . i ,I n. . g '. . j . . ..g . . .
1 g . ., ; ,
;i.: -
g .,; .u
' n.
e Figure 1
~ ' v
- s. , y ,
,- t, V
m k.
.-a. ., . (~) / /
V i -
/- + , I ..(' /
N,\ i [1 f.f3Ik33 s Q.> , _ 1-
.r: - \n' k' 'b '. ' , \<
N e
\
t '- c ',
? I i l l 4 * . ~ '
U _ Unit 3 Cooling Water Equipment Room El.116' ' Surface Area Calculation Walls - North wall zone 1 (18' x 98') ~ 1764 ft2 South wall zone 1 (13' x 98') s . 1764 ft2 y. East wall zone 1 -(18' x 30')4 s(3' xr7' door) 519 ft2 -< West wall zone 1 (18' x 20')1 . 360 ft2 North wall zone 2 (18' x 51') -(3,' xl 7' door) 897 ft2 South wall zone 2 (18' x. 51) j
- 918 ft2 ,
s West wall zone 2 (18' x 10') 180 ftt
,. s, s 6402 ft2 , 'n' Ceiling a Area 1 (98' x 30') .. 2940 ft2 ,
j Area 2 (51' x 10') 510 ft2 t 3450 ft2 i Total Surface Area for Heat Transfer 9852 ft2 (916 m2)
- O ATTACHMENT A l
- ~
17-5 i _
;- , .w- - - .~ l q.- , .. ~ .-
s p Cable Trays Hori zontal Surface Tray No. Length (ft) Width (in) Area (ft2)
'4 ZB3GB03 8 24 16 ZA3GB01 36 24 72 ZA3GB02 4 24 8 ZA3GB03 5 24 10 J-ZA3GB04- 4 24 8 s -
ZA3GB05 11 24 22
~ - ZB3GB04 4 24 8 ZA3GA02 3 24 6 <9 ZA3GA03 3 24 6 ZA3GA04 4 24 8 ZA3GA05 14 24. 28 K*' 2B3GB03 16 24 32 ZA3GD04 32 24 64 ZA3GD05 26 24 52 ZA3GB05 5 ,) 24 10 @ ZA3GB06 5, ,.
24 10 ZA3GB07- 5 ., y 24 10 ZA3GB08 5 '1 24 10 ZA3GB09 18 . 24 36 R ZA3GB10 28 24 56 ZA3GA05 5 24 10 ZA3GA06 5 24 10 ZA3GA07 5 24 10 (\ -
-ZA3GA08 ZA3GA09 5
15 24 24 10 30 ZA3GA10 28 24 56 Vertical Tray No. ZA3GV05 4 12 4 ZA3GV06 4 '12 4 ZA3GV07 4 12 4 ! ZA3GV08 4 12 4 ZA3GV09 4 12 4 ZA3GV10 4 12 4 ZA3GV11 4 ' 12 4 ( ZA3GV12 4 12 4 ! . ZA3GV32 3 24 6
"" 24 6 ZA3GV43 3 ZA3GV21 4 24 8 ZA3GV22 8 24 16 ZB3GV01 6 24 12
% i ZA3GV31 7 24 14 4 6 24 12 L _ ZA3GV42 L' . , ZA3GV01 12 24 24 w, i N '
-;y, Total Surface Area for Heat Release 728 ft2 L . s
[ p 728 ft? _ x 190 kW/m2 = 12,867 kW assuming all cable involved
%) 10.75 ft'/m' simultaneously 'k ATTACHMENT B l]-l I -
- g. ~
CASE NutiDER:' 11-DUILDIrJG : RADWASTE LNIT 3 7 FLEVATION AND AREA DESCRIPTION: 116' EL. COOLING. WATER EQUIPMENT ROOM C6SElDESCRIPTIDH: TWO DOORS AND CABLEG [; Wy
- b. . .
A-X- X X M K eh X WM X MW X M X MX M X X X *X X X X W XX X X XW X XK XX XM M M-X X MW X M X M M M MM M X XX XMMM X X X X M CEILING /UALL .CEYLING/ WALL Ao Ho Aw Q sTHICKNESS NATERIAL 4 . (ft)' - (ft2) -(ft) (ft2) (kW)
- comunwc*********************************x*******************************
y
.5 CONCRETE 42. 7 9852 9008 c, q .
ll+ .jM l' . , j - FIRE IS VENTILATION' CONTROLLED y!
,t. .- h ' ' ' FIRC ' DUR ATION. ; GAS TEMPERATURE:
(min) (deg.F) 4 277 d- 0 362-g?N -- 12 427 . i 16' 481
.. 20- 530 .j 24 .- 573 16 ."
s 28 613 y ' 32 .651
;t' 36 686, '
fg[ - 140 719
'T 44- 750 40 700-(- 52 809 56 837 60 864 64 090.
68 915 !- , 72 940 76' 963-80 -987 l~
.[ '
, ol r -
+ ' ., s: , - . , . . . p i
!"' m 7 r, !/: s.s ,
'}{'}: ,
[Qj , ... i ,a .x, sp['
^
i .
/ 7- 7
, ,,. ATTACm ENT C i
(([ Professional Loss Control, Inc. STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION COMMON AREA Radwaste Building El.135' Personnel Decontamination Station l l l 1 l l l l September 9, 1983 l i l I l I l P. O. Box 44G e Oak Ridge Tennessee 37830 * (615) 482-3641
/F-/
.~. m PEACH BOTTOM ATOMIC GENERATING STATION U
- 1. AREA DESCRIPTION Personnel Decontamination Station (Room 239) in the 135' elevation of the Radwaste Building. (See Attachment A for a sketch of the' area under consideration.) Bounding walls of the area are reinforced concrete con-struction with an average thickness of 1 ft. Total surface area of the bounding walls and ceiling is 1848 ft2 (see Attachment A for a calcula-tion of heat loss surface area).
N
- 2. COMBUSTIBLE LOADING Fixed combustible loading in this area consists of horizontal and ver-k tical cable trays located above the suspended ceiling. Total surface area of the cable trays is 56 ft2 with an average combustible loading in the trays being 5.2 lbs/ft2 of tray surface area. All other cabling in this area is routed in conduit and is not included in the combusti-ble loading.
O
- 3. VENTILATION PARAMETERS This area is served by two personnel doors, each being 3 ft wide by 7 ft high.
- 4. CASES EXAMINED With the light combustible loading in this area, the assumption that all cables were burning simultaneously would present the worst case. A surface area of 56 ft2 would be involved if all trays were burning at once. This corresponds to a heat output of 990 kW. With all cables
! burning simultaneously the duration of the fire would be 5.2 lbs/ft2 + 0.1 lb_ = 52 minutes. min ft'
- 5. RESULTS The only case examined was with all cables burning simultaneously with l one door open (see Attachment B for results of analysis). Since the L
fire was fuel controlled under this set of circumstances there is no p) need to examine the case with additional doors open. The peak fire temperature reached was less than 600 F. This is well below the criti-cal temperature of the structural steel. 1
/Tr t 0
O as e n be seen en the sxet e incieded in atte a meet C. 2 8ie trey 2RU010(I) passes below two structural members and is located within 1 ft of the bottom of the beams. Attachment C includes the results of calculations performed to determine the response of the structural . members. - The beam temperatures approach but do not reach their critical temperatures. These results are very conservative because they are based on the entire member being exposed to a temperature of 1500*F rather than just the short sections (approximately 2 ft long) which are actually exposed. ; O
/Tr-3 1 _ __. ,_ .. . _ _ _ _ ,_ ._ _ _ . _ _ . _ _ . . _ . _
. . . , ..~ ,...- - - . - ~ . , . . . . . . . . . - . . . . ~ _ _ - . .
O - 28' - L y , 9' RM.#239 9 1 CL PLANT O Personnel Decontamination Station Surface Area Calculation
- Walls North wall (19' x 14') 266 ft2 South wall (19' x 14') 266 ft2 392 ft2
~
East wall '(28' x 14') West wall (28' x 14') 392 ft2 1316 ft2 Ceiling (28' x 19') 532 ft2 Total Surface Area. for Heat Transfer 1848 ft2 O ! ATTACHMENT A L 16-V l
. . _ . _ _ . . _ _ _ ._.m. -m _. ._
l f""E NO. I 1 (,,lLDING: RADWASTE BUILDING ELEVATION AND AREA DESCRIPTION: PERSONNEL DECONTAMINATION STN., 135' ELEV. CASE DESCRIPTION: ONE DOOR OPEN. ALL CABLES BURNING ) l
**+++++++++++++++++++++++4*+++++++++++**+********************++++++++++++++++++* . CEILING / WALL THICKNESS CEILING / WALL MATERIAL AO HD -AW Q (FT.) SQ. FT. FT. SQ. FT. ' KW ***+4:++++++++++++++++******+++++++++++++++++++++++++++++++++++++++++4:+++++++++++
1 CONCRETE 21 7 1848 990 FIRE IS FUEL CONTROLLED i N:s
~~
FIRE DURATION GAS TEMPERATURE (MIN.) (DEG. F) 52 593.981 , l O
~
i { h l l 1 ATTACHMENT B l If 4
- 1 - . -
. . , . . . . . . . . - ! i l
d .' ~ ; c/4 j c/# 3O
'y [G 16b d .
[ ~ 6'E d _ _ y , l g l. t . p . Y 'l % r - /E l' ~~ \ ."GL :s I.'Is' ( I Y5. ,l ' T Z la, s
+
O i
. su cowi..w l.scanali l
l
't .
wI ON LIWG. 3-/O' *
,5 b
I xl w' l t D I q
. OO OO I Oc \ l N,'l ,.
7 . I m .l q l M F3 .E
~ l. 7F s -l: s s4 b C ., .. I L :.
r" - - - - w"
- 9 v e
. t s (b i
_. . ; * ,~ Jh .. . . ... . --- -5 !! ,
,y_ _ 4. _. . . . . .,*' l p
y 7R0010(I) , l t , R . l-i:c- . .o - - c '-
..=.-
c :o- 3:o* uc '&.o* -- c :ct , a :o--- , 5:r 1; l Eln:SSl' -f; 24 sh',b l . 2ty;s z.' ' e - e.
. ei LT l -)
a . s -
!. s) . . m. o N
x, . i i .. 2s
+ u _
x
~ ', ! 4 v
s q . :. -
- Nort's l . ;
1y I tu 3 . m, ;
.'i. n. .m.,,*. . , . r y {
- A !s e m L V}} s
r- n . .. D -
--A u
- u. j
- 6. .
, e .- es y_ l y-$. . 3..//. - ' L
- v, .
ri -: /2 0. .l -
= ,eA ' - M s.i.a mi FRAM/A/G l/4/V .
7 .iL. is 0 L O ', A\ wors : AU .=>EA 3:ALL Q '= /
- 0" s-toz l
/
ME 6 n ~ 20 u N C ..,''..e '
. f6 - ./
- 7. .. #.. . . -- . .
s' p
- ytr ,) e
( .z. . ,*. A,u. .e - ~.,,e c. _ .-
- ,. . I e ,
- 1. u ; e . g i. ' ~. . , .
L, i
].
j m ; . I \
\ _/ ATTACHMENT C i i
i I b - . . R.* G ' .. . 6 l , .
4 . . - - - . _
. . = - z. _.=..a. . - - _ - - - _ . - - . . . - , . . - . - - - . . .
d CASE NO.: 1 FMLDING: RADWASTE BUILDING
\m.2VATION AND AREA DESCRIPTION: PERSONNEL DECONTAMINATION STN., 135' ELEV.
CASE DESCRIPTION: LOCALIZED HEATING OF MEMBER TYPE 24WF76 EFFECTS 07 LOCAL HEATING ON STRUCTURAL STEEL
" FIRE TEMPERATURE (DEF. F): 1500 WEIGHT OF STEEL MEMBER (LBS.'/FT.): 75 SURFACE OF STEEL MEMBER HEATED (SO. FT./FT): 5.34 TIME STEEL TEMPERATURE (MIN.) (DEG. F) u $dwg 5 4E5.777323 10 753.051073 15 950.54387 .. 20 1110.392523 P' 25 1218.61677 30 1295.778588 35 1353.228987 40 1393.998565 45 1423.443444 50 1444.709129 55 1450.0G7584 O %.)
3 l l l I i l l l 1 t A V ATTACHMENT C
/f-7 1 - __
CASE NO.: 2 7"ILDING: RADWASTE BUILDING (.,IVATION AND AREA DESCRIPTION: PERSONNEL DECONTAMINATION STN., 135' ELEV. CASE DESCRIPTION: LOCALIZED HEATING OF MEMBER TYPE 24WrGS EFFECTS OF LOCAL HEATING ON STRUCTURAL STEEL FIRE TEMPERATURE (DEF. F): 1500
-WEIOHT OF STEEL MEMBER (LBS./FT.): 68 SURFACE OF STEEL MEMBER HEATED (SO. FT./FT): 5.31 TIME STEEL TEMPERATURE (MIN.) (DEG. F) 5 510.077044- '
10 815.579149 - 15 102G.937904 20 1172.978331 25 1273.934177 30 1343.723G39 35 1391.968185 40 1425.319012 45 1448.374004 50 1464.31152 ! 55 1475.329087 (~D s> l l l ATTACHMENT C l%-$ I __
c, . . . . . . _-_ _ _. . (([ Professional Loss Control, Inc. l I f[ STRUCTURAL STEEL ANALYSIS
,. for 2u- ..
PEACH BOTTOM ATOMIC GENERATING STATION UNIT 2 Radwaste Building El. 135' Reactor Recirculation Pump MG Set Room l I l l September 9, 1983 l l I P. O. Box 44G e Oak Ridge, Termessee 37830 e (GIS) 482-3541
/7 /
(L
e PEACH BOTTOM ATOMIC GENERATING STATION (^J L
- 1. AREA DESCRIPTION Unit 2 Reactor Recirculation Pump MG Set Roan (Rm 206) on the 135' elevation of the Radwaste Building. (See Attachment A for a sketch of the area under consideration.) Bounding walls of the area are rein-forced concrete construction with an average thickness of 2 f t. Total surface area of the bounding walls and ceiling is 12,124 ft2 (see Attachment A for a calculation of heat loss surface area).
b ' / 2. COMBUSTIBLE LOADING Fixed combustible loading in this area consists of cable trays and lubricating oil for the MG sets. Total surface area of the cable trays is 971 ft2 with an average combustible loading in the trays of 5.9 lbs/ft2 of tray surface area. The lube oil systems for the MG sets contain 2200 gallons of oil. Fires involving burning pools of flammable or combustible liquids reach an equilibrium size when the rate at which (~'; liquid is spilled or leaked into the pool equals th rate at which it is
~
being burned off. Attachment C is a graph that reflects equilibrium pool fire burning rates and duration for the complete combustion of 2200 gallons of lube oil.
- 3. VENTILATION PARAMETERS This area is served by two personnel doors, one of which is located in the east wall and the other at the stairwell on the west side of the room.
4 CASES EXAMINED Two cases were examined for this area and both were ventilation con-trolled. The first case was for one of the doors being open which sup-ported a burning rate of approximately 4500 kW. The second case was for both doors open which supported a burning rate of approximately 9000 kW. In both cases the fire duration was assumed to be 3 hours. 1 19-1
- 5. RESULTS The case with both doors open turned out to be the worst case (see Attachment B for results of analyses). The fire temperature reached at 180 minutes was approximately 1200 F which is below the critical temperature for the structural steel.
The ventilation controlled burning rate of 9008 kW is equivalent to the heat output from a pool fire with an area of 27.9 ft2 (pool diameter of i approximately 6 ft). In order to assess the effect of the plume of . __ , l G heated gases above the pool fire on the structural steel located at ' ' ' ceiling level directly above the fire, Heskested's (1) relations will be used: Virtual point source determination: 4 Zo = -1.020 + 0.083Q = 1.3m Plume temperature at bottom of steel: ATo=9.1[To/(gCpfJ)].3330c.667(Z 2 - Zo)-1.67 U ATo = 344 K temperature rise T = 687'F This temperature is well below the critical temperature for the struc-tural steel. It is concluded that there is no problem due to localized heating of the structural steel as a result of the maximum pool fire that can be supported by the available air flow into the room. s The cable trays in this area were positioned such that they did not l present a localized heating exposure to structural steel. l
~
l us i 2 j9 3
n v
@s ,; l18' RM#206 ,
1 ( L g)
'v 30' =
Unit 2 RCP MG Set Room Surface Area Calculation i l Walls North wall (118' x 29') 3422 ft2 South wall (118' x 29') 3422 ft2 East wall (30' x 29') 870 ft2 West wall (30' x 29') 870 ft2 8584 ft2 l Ceiling (118' x 30') 3540 ft2 i Total Surface Area for Heat Transfer 12,124 ft2 1
)
ATTACHMENT A
/9 #
,w. .. .-~.~ ~
l SE NO.: 1 9UILDING: RADWASTE BUILDING ELEVATION AND AREA DESCRIPTION: UNIT 2 R,X RECIRC PMP MG SET ROOM, 135' ELEV CASE DESCRIPTION: ONE DOOR OPEN
**********+*********************************************************************
LCEILING/ WALL THICKNESS CEILING / WALL MATERIAL AO HO AW G (FT.) SQ. FT. FT. SQ. FT. KW
++****************+*******++++++++++********************************************
2 CONCRETE 21 7 12124 4504.23 ( FIRE IS VENTILATION CONTROLLED
.l.
FIRE DURATION GAS TEMPERATURE ( (MIN.) (DEG. F) i 10 203.709 20 257.990 30 299.558 l 40 334.818 50 365.794 GO 393.804
- 70 419.555 i
80 443.545 (~)/ N- 90 456.071 100 ~' 487.378 110 507.545 120 527.011 130 545.587 140 553.461 150 580.708 150 597.390 170 513.559 180 629.250 l \ l . l i ATTACHMENT B
}9-5
, _ _ _ _ . ~ ~ . . . - . . -. .-. -
CASE NO.: 2 LDING: RADWASTE BUILDING
. EVATION AND AREA DESCRIPTION: UNIT 2 RX RECIRC PMP MG SET ROOM, 135' ELEV.
CASE DESCRIPTION: BOTH DOORS OPEN
*oo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
CEILING / WALL THICKNESS CEILING / WALL MATERIAL AO HO AW Q (FT.) SQ. FT. FT. SQ. FT. KW
***o*****+******+++++++++++++++++*****++++++++++++++++4:++++++++++++++++++++*4:+++
2 CONCRETE 42 7 12124 9008.45 FIRE IS VENTILATION CONTROLLED [ FIRE DURATION GAS TEMPERATURE (MIN.) (DEG. F) 10 335.228 20 443.825 30 527.225 40 597.555 50 659.550 GO 715.599 70 757.148 80 815.132 r~1 90 850.203 ( _.) 100 902.835 110 943.385 120 - 982.131 130 1019.29 140 1055.05 150 1089.55 150 1122.93 l 170 1155.28 180 1185.59
~
() t/ ATTACHMENT B /3- h i
4 500-400-300-HEAT OUTPUT H ,,;. (MW) '- 200-2200001. LUBE OIL 100-O O I I I I ' 10 20 30 40 50 FIRE DURATION (MIN.) EOUILIBRIUM POOL FIRE HEAT OUTPUT vs DURATION CURVE O ATTACHMENT C jg,7 lj!
~ -_
PL C 'w"! ""! '"" cc"'~'. !"<- l l l
'4..
STRUCTURAL STEEL ANALYSIF for c
,Q '
PEACH BOTTOM ATOMIC GENERATING STATION COMMON AREA Turbine Building El.135' Switchgear Room #231 l I l l September 9, 1983 l l l l 1 l'. O. Box 44G e Oak Ridge, Tennessee 37830 e (615)482-3541 l 20 I
s pv PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Switchgear Room #231 on the 135' elevation of the Turbine. (See Attachment A-for a sketch of the area under consideration.) Bounding walls of the ' area are constructed primarily of 8" concrete block.
Total surface area of the bounding walls and ceiling is 1813 ft2 (see
.. Attachment A for a calculation of heat loss surface area).
p
' 2. COMBUSTIBLE LOADING ,
l*4 Exposed combustible loading consists of cable trays. Total surface i area of the cable trays is 138 ft2 with an average combustible loading 2 tray surface area. Enclosed combusti-in the trays being 7 lbs/ft of p:;.; bles are not included in the combustible loading. n
- 3. VENTILATION PARAMETERS This area is served by two personnel doors. Each door is 3 ft wide by p 7 ft high.
%J
- 4. CASES EXAMINED The assumption was made that all of the cabling in the area would burn simultaneously in order to present the worst case. Total surface area of the trays is 138 ft2 which corresponds to a heat output of 2440 kW.
With all cables burning at once the duration of the fire will be l 7 lbs/ft2 4 0.1 lb_ = 70 minutes. min ft' l S. RESULTS The only case examined was with all cables burning simultaneously with one door open (see Attachment B for results). Since the fire was fuel l controlled under this set of circumstances there is no need to examine the case with the second door open. The peak fire temperature reached was approximatley 1440*F which is below the critical temperature of the structural steel. The cable trays were located far enough below the steel members tc, prevent localized heating ef fects. p) (. ' I 1 20-1
be O
, RM 231 Y^ SWITCHGEAR ROOM
- a. .
g; . - o
, z,. =
1 PLANT Heat loss Area Determination h Bounding Area (Excluding Floor) Ceiling (25' x 21') 525 ft2 North wall (25' x 14') 350 ft2 South wall (25' x 14') 350 ft2 East wall (21'x14') 294 ft2 West wall (21' x 14') 294 ft2 , l Total Surface Area for Heat Transfer 1813 ft2 l l s ATTACHMENT A l O i !- 20-3 l . - _. , . _ - ~ . _ _ . . _ . . . -. . _ _ _ _ _ _ . ._ _ _ _ . . _ _ _ _ .
a CASE NO.: 1. f"t TURBINE BUILDING (j,LDING:VATION AND AREA DESCRIPTION: SWITCHGEOR ROOM 44 231, 135' ELEV. CASE DESCRIPTION: ALL-CABLES BURNING. ONE DOOR OPEN
* * * * + + + + + + + + + + + + + + + + + + + + + + + + + 4 + + + + + + + + + + + + + 4 * + + + + + + + + + + + + + + + + + + + + + + + + + 4.+ + + +
- 4.+ + +
. CEILING / WALL THICKNESS CdILING/ WALL MATERIAL AO HO AW Q (FT.) SQ. FT. FT. 50. FT. KW g omo*****************************************************************************
0.67 CONCRETE BLOCK 21 7 1813 2437 [ FIRE IS FUEL CONTROLLED s FIRE DURATION GAS TEMPERATURE - , {i:- , . ~ (DEG. F)' (MIN.)
@ 10 588.939 p' 20 802.583 30 955.794 40 1105.18 h'- 50 1227.11 ; 50 1337.35
- 70 1438.74 i
O i n. ATTACHMENT B ao-4
})(( Profissional Loss Control, Inc.
l I l-
' STRUCTURAL STEEL ANALYSIS for PEACH BOTTOM ATOMIC GENERATING STATION UNIT 2 Reactor Building El. 165' South of Column Line 10 l I l
l September 8, 1983 l l l P. O. Box 446 e Oak Ridge, Tennessee 3 7830 * (G15) 482-3541 ! 9I- I l
PEACH BOTTOM ATOMIC GENERATING STATION
- 1. AREA DESCRIPTION Unit 2 Reactor Building El.165' south of column line 10 (see Attach-ment A for sketch of area).
Bounding walls of area are reinforced concrete with an average thick-ness of 3 ft. Total surface area of bounding walls and ceiling is 10,218 ft2 (949 m2 (see Attachment A for calculation of areas).
- 2. COMBUSTIBLE LOADING The heaviest combustible loading in this area is located along the south wall where six horizontal cable trays are present. Total surface
- area of cable trays to be considered involved in a fire is 260 ft2 with an average combustible loading of the cable trays being 3 lbs/ft2 (see Attachment B for calculation of cable tray ar}}