ML20079J698

From kanterella
Jump to navigation Jump to search
Field Test of Emergency Diesel Generator 101
ML20079J698
Person / Time
Site: Shoreham File:Long Island Lighting Company icon.png
Issue date: 10/31/1983
From: Bercel E, Hall J
STONE & WEBSTER ENGINEERING CORP.
To:
Shared Package
ML20079J684 List:
References
NUDOCS 8401240393
Download: ML20079J698 (167)


Text

{{#Wiki_filter:m ,_====-m-ma-mummmmzm RFwaGga# n%Ai vese% d Mq s"5p6g M w e> g @0 4=ews.iaaNe[M;CQ$y@$g Q 28s t $2*Ik @ew wynew. t 5k JWBGMBA w am,w w w w e-w

m m m mew.

n n sn e e -,..

gagg#sas #;eksisma ni;e MERGENCY

-assyrs % s ' 3Ed MFIELDTTEST,e:usOF2 sww ,DIESE,L" GENERATOR 101 en "f4 %, q::n.k.' '.:;

=

n+m., v~- -, e: e'y%g s a., f 'Y , ' r%. :~0 7 ..' gn Vi, ?. _.,in,-:;*Lg = y . b.,..,my. ,.m_- ..2 %..,... L ',. ~

> w v.,

.n - - .f. ~ s V,'(f f l% 'f h, : )? [$* vl* n. ? ., &:-c-. s M g,,. jp J bp;p y e p # g:r.,, ;m,.. c -.s. 's 'I % !..i i.9[.M4@n. Q- ,.4 ?"MM, ~ f,f - . w, My r. <. ',h23..e ..;y -f ^ ,b$t 's ,.ya ., + y y 5_, , z ~pp., r,,. .~

.4 9p 7.n

_e+7 4 '(;. _, p :g ' a 'g, ^w; j7,.5 x .g., - :eA.- r e .a. if_/ {( ,. g. 5.yf 4', -g . ~,, 1 Y. -p r SHOREHAM NUCLEAR POWER STATION [^ U N T-1 l h1 l I i l k STONE & WEBSTER ENGINEERING CORPORATION 8401240393 840116 PDR ADGCk 05000722 A PDR

FIELD TEST OF EMERGENCY DIESEL GENERATOR 101 Prepared for SHOREHAM NUCLEAR POWER STATION LONG ISLAND LIGHTING COMPANY by E. BERCEL J. R. HALL !5 l OCTOBER 1983 l l l ~'! Approved by: t Responsible Engineer J,8(hponsible Engineer E. Bercel . R. Hall i I STONE & WEBSTER ENGINEERING CORPORATION l B1-1160041-1 l L

y-w TABLE OF CONTENTS Section Title Page 1 EXECUTIVE

SUMMARY

1-1 2 OBJECTIVES 2-1 -3 INSTRUMENTATION AND METHOD OF INSTALLATION 3-1 3.1 TRANSDUCERS 3-1 3.1.1 Strain 3-1 3.1.2 Torque 3-1 3.1.3 Torsional Vibration 3-1 3.1.4 Cylinder Pressure 3-2 3.1.5 Generator Output, Voltage and Current 3-2 3.1.6 Vibration 3-2 3.1.7 Crank Shaft Position, Rotational Speed 3-2 3.2 SIGNAL CONDITIONING AND RECORDING EQUIPMENT 3-4 3.2.1 Strain and Torque; Radio Telemetry 3-4 3.2.2 Torsional Vibration 3-4 3.2.3 Cylinder Pressure 3-4 3.2.4 Generator Output 3-5 3.2.5 Vibration 3-5 3.2.6 Recording Equipment 3-5 3.2.7 Other Analysis'and Calibration Instrumentation 3-5 4 CALIBRATION PROCEDURES 4-1 4.1 STRAIN 4-1 4.2 TORQUE 4-1 4.3 TORSIONAL VIBRATION 4-1 4.4 CYLINDER PRESSURE 4-2 4.5 VIBRATION 4-2 4.6 MAGNETIC TAPE RECORDER 4-2 5 TEST PROGRAM 5-1 5.1 STATIC TORQUE TESTS 5-1 5.2 TEST SERIES I DYNAMIC TESTS 5-1 5.3 TEST SERIES II DYNAMIC TESTS 5-1 B1-1160041-1 i

TABLE OF CONTENTS (CONT) Section Title Page 6 DATA REDUCTION 6-1 6.1 STATIC TEST 6-1 6.2 TORQUE MEASUREMENTS 6-1 6.3 TORSIONAL VIBRATION 6-1 6.4 STRAIN DATA 6-1 6.5 PRINCIPAL STRESSES 6-2 6.6 TIME DOMAIN RECORDS 6-2 6.7 FREQUENCY DOMAIN RECORDS 6-3 7 DISCUSSION OF RESULTS 7-1 7.1 GENERAL 7-1 7.2-TEST SERIES I 7-1 7.3 TEST SERIES II 7-2 7.3.1 Strain Measurements 7-2 7.3.2 Principal Stresses 7-3 7.3.3 Torque Measurements 7-5 7.3.4 Torsional Vibration Measurements 7-5 7.3.5 Pressure Measurements 7-5 7.3.6 Generator Output Measurements 7-5 7.3.7 Vibration Measurements 7-5 7.3.8 Transient Conditions 7-6 7.3.9 Torsional Natural Frequency and Damping 7-6 4 8 CONCLUSIONS 3-1 APPENDIX A TEXT Pages A-1 to A-4 TABLES Pages A-5 to A-9 FIGURES A-1 to A-16 Pages A-10 to A-25 APPENDIX B TABLES Pages B-1 to B-2 FIGURES B-1 to B-10/. Pages E-3 to B-106 31-1160041-1 ii

LIST OF TABLES Table Title Page 3-1 Summary of Transducer Characteristics 3-3 3-2 Summary.of System Frequency Response Characteristics 3-6 5-1 Test Program, Test Series I 5-2 5-2 Test Description 5-3 5-3 Test Program, Test Series II 5-4 i 7-1 Summary of Maximum and Minimum Strains, Stresses, and Torque at 3500 kW 7-4 i l l l B1-1160041-1 iii i

ACKNOWLEDG?fENTS The efforts of many organizations contributed to the successful completion of the ~ testing of Diesel Generator 101. The volume and quality of the collected data would not have been possible without their close cooperation. The scope of the participation of the various groups in the planning, preparations, and t.esting was as follows: SWEC, FaAA, LILCO, and TDI planned the test and identified the parameters to be measured. Hi-Tec Corporation installed the strain gages and designed the radio telemetry installation for Test Series I with assistance from SWEC and FaAA. FaAA installed the strain gages and the radio transmitters on the crankshaft for Test Series II. LILC0 installed all the remote conaections for the recording of the voltage and current output of the generator. SWEC

planned, supplied, installed, and calibrated all other transducers, instrumentation, and recording and analysis equipment used in the recording and reduction of the data presented in this report.

Also, SWEC performed all the data reduction and signal analysis associated with the evaluation of the test results. Thanks are expressed to the LILCO, SWEC, and TDI field personnel for their assistance in working on the engine and installation of instrumentation. B1-1160041-9 iv

SECTION 1 EXECUTIVE SLTiARY 4 Two extensive field tests were carried out on Diesel Generator 101 at the l Shoreham Nuclear Facility. The objective of the tests was to collect measurements of all the physical phenomena associated with the operation of the generator set that might be related to, or might have contributed to the cause of the structural failure of the crankshaft. Strain in the crank-shaft, torsional vibrations of the crankshaft and output torque were the most critical measurements. The scope of the mandate of the Acoustics and Vibrations group of SWEC (Stone & Webster Engiceering Corporation) within the framework of a much larger ~ investigation was to provide and install the required instrumentation, to carry out the recording of the data during the tests, and finally, to reduce the data to a form readily usable for analysis. All the objectives of the tests have been accomplished. This report contains the experimental results. The analysis of the data is presented in an engineering report

  • prepared by others.

B1-1160041-1 1-1

SECTION 2 OBJECTIVES The objectives of the tests and subsequent data reduction were: To measure and record the strain at critical points on the crank-shaft under various operating conditions. To measure and record the variables that could cause or contribute to the observed strain. To reproduce, reduce, and present the recorded data in a form suitable for review and analysis. e e B1-1160041-1 2-1

SECTION 3 INSTRUMENTATION AND METHOD OF INSTAI,LATION 3.1 TRANSDUCERS 3.1.1 Strain Micro-Measurements Corp. 350-ohm, epoxy-backed, metal foil strain gages were installed on the crankpin and web at cylinder nos. 5 and 7 as shown in Figure A-1. In Test Series I, the strain gages were cemented onto - the crankpin and web with Micro-Measurements M200 contact cement. In Series II, M600, a two part epoxy adhesive was used. Gage 30, four-conductor Teflon insulated flat cable was used. for lead wires. The three-wire connection technique was used on all strcin gage elements to eliminate unwanted lead-wire effects. The lead wires were led along the. shortest route to the nearest web where they were connected to radio-telemetry transmitters. In Test Series I, the lead wires were secured to the crankshaft and protected with a layer of silicon rubber (RTV). In Test Series II, the lead wires were led inside a Teflon sleeve which was secured to the crankshaft with stainless steel straps spot-welded to the shaft. Each strain gage was connected into a Wheatstone bridge using three 350-ohm precision resistors to complete the bridge on the web. The bridge was connected to a radio transmitter also located on the web. The radio telemetry equipment is described in Section .3.2.1. 3.1.2 Torque Two 90-degree two-element strain gages or rosettes were installed on the exposed section of'the crankshaft between the engine casing and the flywheel as shown in Figure A-2..The strain gages (see description in Section 3.1.1) L were oriented at 45-degree angles to the axis of the shaft along the direc-tion. of the principal strains caused by pure torsion, and were connected to form a full bridge configuration that would minimize bridge sensitivity to t strain due to other causes. The resulting 350-ohm bridge was connected to a i radio transmitter - secured to the flywheel. The tradio telemetery equipment l is described in Section 3.2.1. l 3.1.3 Torsional Vibration A transducer based on the seismometer principle was mounted on the free end of the crankshaft concentrically with shaft rotation. The transducer is manufactured by Hottinger Baldwin Messtechnik. The characteristics of the transducer are such that its response is proportional to angular displace-l ment above 3 Hz and to angular acceleration below 3 Hz. The characteristics are pre'sented in Table 3-1. The transducer excitation and output signal were transmitted through a set of slip-rings integral with the transducer. L Figure A-3 is a schematic illustration oi the transducer installation. l B1-1160041-1 3-1

\\ 3.1.4 Cylinder Pressure Two piezoelectric pressure transducers (PCB Model 111A) were installed in the compression test cocks of cylinder nos. 5 and 7 in an attempt to measure and record the time history of the. firing pressure pulse and its relation-ship to the induced shaft torque and strain. The pressure transducers were cooled by running water throughout the tests. The installation of the pressure transducer i,s illustrated in Figure A-4. 3.1.5 Generator Output, Voltage and Current The output voltage from phases A and C and the output current from all three phases were measured using transformers and shunt resistors installed by Long Island Lighting Company (LILCO). The sensitivity of the circuitry was such as to provide 1.0 V for each 4200 V and 2.5 V for each 800 A of gene-rator output. The setup required the isolation of the signals, therefore, differential amplifiers were used as signal conditioners for the tape recorder. A schematic of the circuitry is shown in Figure A-5. 3.1.6 Vibration For reasons of safety, engine vibration at selected locations was recorded and monitored throughout the tests. Piezoelectric accelerometers were used. They were PCB model 302A and 308B. Their locations during the two tests are shown in Figure A-6. 3.1.7 Crankshaft Position, Rotational Speed An exposed section of the generator shaft was painted black over one-half of its circumferedce and white over the other half to serve as a phasor target. A photoelectric pickup mounted adjacent to the painted section provided a one-volt zero-based square wave whose falling edge was coincidental with the top-dead-center position of the piston in cylinder no. 7. B1-1160041-1 3-2 ~

I TABLE 3-1

SUMMARY

OF TRANSDUC1.R CHARACTERISTICS Flat Frequency Natural Temperature Temperature Acceleration or

Response

Frequency Limitation Effect Vibration Transducer (hr) (Hz) (*F) (%FS/*F) Limitation Strain 20,000_ NA 260 0.1(static) NA Torque 20,000 NA 260 NA NA Torsional acc. 0-3 3.0 140 0.001 1200 rad /s2 vibration disp.3-1000 0-1200 rad /sec2 2 Pressure 1-300,000* 400,000 400 0.1 0.01 lb/in /8 0-10,000 10,000 g lb/ina Vibration 1-3000 25',000 250 0.03 50.0 g l l l l NOTE:

  • With appropriate instrumentation B1-1160041-1 3-3

3.2 SIGNAL CONDITIONING AND RECORDING EQUIPMENT 3.2.1 Strain and Torque; Radio Telemetry Strain and torque measurements on the crankshaft were made using FM radio telianetry. Acurex Model 206A static strain transmitters and Acurex 5-channel receivers with 106 S signal conditioning cards were used for this purpose. In Test Series I, one 5-channel receiver was used. In Test Series II, two such receivers were used simultaneously. Each of the three tele-metry installations (strain at crankpin no. 5, strain at crankpin no. 7 and torque) was transmitted and received with separate antennas. Figures A-2 and A-7 show the relevant details. 4 In Test Series I, the strain transmitters and their batteries were mounted on the crankshaft web directly, using clamps secured to the webs with screws. In Test Series II, the transmitters were premounted on a metal plate which war secured to the web with screws. Bridge balance in both tests was controlled with a 100-kilohm potentiometer which formed an inte-gral part of the bridge circuit. The batteries used to power the transmit-ters were Acurex high-temperature, 2000 milliamp-hour batteries. The strain transmitters were used in the lowest sensit_ivity configuration providing a

aeasurement range of 12600 micro-strain (10 e in/in). The torque measuring

-system was set at a higher sensitivity resulting in a useful range of 400 micro-strain in torsion. The receivers were located near the recording instrumentation at the end of 120 ft coaxial antenna cables. One receiver carried a number of strain gages; the other receiver carried the torque signal to avoid interference from two antennas on one receiver. In Test Series I, since only one receiver was available, strain and torque data were recorded in separate runs and not simultaneously. The output from the receivers was connected to a.4-channel Encore Model 502 de amplifier for stepwise gain control. (See Figure A-8).

3.2.2 Torsional

Vibration The transducer described in Section 3.1.3 was connected to a remote carrier amplifier HBM Model KWS 3073. This unit had two built-in low pass filters with 10 'Hz and 1000 Hz cut-off characteristics. The internal filter set-ting, its existence unknown to the users, was left at 10 Hz. The output of the carrier amplifier was - fed into one channel of an Encore Model 502 4-channel de amplifier to provide convenient interfacing with the recording equipment and the potential for stepwise gain control. (See Figure A-8). 3.2.3 Cylinder Pressure The pressure transducers were connected to a charge-to-voltage converter (PCB Model 402) through a 5-ft length of low noise cable. These in turn were connected to a power supply amplifier (PCB Model 480) also adjacent to the transducer. The output from the amplifier was connected to a remote (120 feet away.) Trig-Tek Model 205A 6-channel de amplifier for interfacing and gain control. (See Figure A-8.) 31-1160041-1 3-4

~. _. _ 3.2'.4 Generator Output The output signals from the circuitry described in Section 3.1.4 were connected in the differential mode to a 6-channel Trig-Tek Model 205A ampli-fier. This arrangenent provided the required isolation and convenient gain control. 3.2.5 Vibration All the accelerometers had built-in charge-to-voltage converters. The transducers were connected to a remote power supply / amplifier unit (PCB Model 480). The output signals were fed into a 4-channel Encore Model 502 de amplifier for interfacing and gain control. (See Figure A-8.) 3.2.6 Recording Equipment A 14-channel TEAC SR-50 FM tape recorder was used for recording the data. All of the data were recorded in the FM mode at 9.5 cm/sec. The flat frequ-ency response of the record / reproduce system at that speed is specified to be 0-2500 Hz. The full-scale output voltage of the reproduce amplifiers is 11.0 V for full-scale input settings of 0.2 V to 10 V. The input gain settings on the - tape recorder were also used during the tests for gain control. A summary of - system frequency response characteristics from . transducer to reproduce amplifier output is presented in Table 3-2. 3.2.7 Other Analysis and Calibration Instrumentation For system setup, calibration and static tests a digital multimeter (Beckman Model 3020) was used. For data reduction and analysis, both in the time and frequency domain, a Nicolet 660B 2-channel FFT analyzer was used in conjunc-tion with an HP 7470 digital plotter. In the analysis of the time history of the static component of the strain and torque signals, low-pass filters (Wavetek M.iel 432 and Krohn-Hite Model 3322) were used along with an Incor 6-channel oscillograph. In reading the values of the signals at desired points the digital read-out facility of the Nicolet 6603 analyzer was used. B1-1160041-1 3-5

TABLE 3-2

SUMMARY

OF SYJTEM FREQUENCY RESPONSE CH.M1ACTERISTICS Signal Overall System Conditioning

Response

Measurement (Hz) (Hz) Limited By Strain 0-1000 0-1000 Transmitter Torque 0-1000 0-1000 Transmitter Torsional Vibration 0-1000 0-10 Transducer (0-50 Hz)* Pressure 100,000 1-2500 Tape Recorder Vibration 100,000 1-2500 Tape Recorder Generator Output 100,000 0-2500 ' Tape Recorder NOTE:

  • FFT Corrected signal B1-1160041-1 3-6

1 SECTION 4 CALIBRATION PROCEDLE S 4.1 STRAIN l All strain gage channels were calibrated end-to-end using the shunt resist-ance calibration method. A two-step calibration was employed using shunt resistances of 125 kilohm and 222 kilohm directly in the strain gage bridge on the crank web. The simulated strain was computed according to Equation 4-1. ( } simulated strain in micro-strain = K where: A Rg = bridge resistance in ohms Rc = shunt resistance in ohms K = gage factor 'The gage factors _ varied from gage to gage, within the range of 1.95 to 2.06. The calibration system output (including radio telemetry) was recorded on magnetic tape. In Test Series I, all gages were wired to obtain (+)ve out-put _ for (+)ve strain. In Series II, the convention was reversed (uninten-tionally) and (+)ve output was obtained for (-)ve strain. The calibration-was performed at a system sensitivity of about 0.5 millivolt for each micro-strain. The highest sensitivity used in the tests was 2.5 times the calibration sensitivety. 4.2 TORQUE The same method of calibration as the one' described in Section 4.1 was used.

The shunt resistances. were 222 kilohms and 353 kilohms.

In Test Series I, i ~ the calibration was performed at a system sensitivity of 1.0 millivolt for each full bridge _ micro-strain (0.25 micro-strain per arm). In Test Series II, the system sensitivity during calibration was 0.'762 millivolts for each full br. age micro-strain. In both tests, the torque measurements were carried out at the calibration sensitivity. In Test Series I, the calibra-tion was performed prior to the test. In Test Series II, it was done after the test. 4.3 TORSIONAL VIBRATION The HBM transducer was calibrated statically by displacing the internal seismic mass 13.0 degrees relative to the transducer casing using an exter-nal permanent magnet. The resulting system output was recorded on magnetic tape. Most tests were performed at the calibration sensitivity. Because of the presence of a 10 Hz low pass filter in the system during the tests, all recorded data were later corrected during data - reduction using the Nicolet .660B FFT analyzer and the experimentally determined frequency domain trans-fer function. B1-1160041-1. 4-1

4.4 CYLINDER PRESSURE The system check-out of the pressure channels was perfor=ed by replacing the pressure transducer with a compatible accelerometer of known calibration ~and then applying a known acceleration level to the transducer using an accel-erometer calibrator (B&K Model 4291). The system sensitivity was adjusted to the level required for the calibration of the pressure transducer speci-fled on the manufacturer's data sheet. After the tests, the manufacturer's calibration data were verified using tuo strain gage type pressure transducers and dynamic pressure input of similar waveform to that of the firing pressure pulse observed in the tests. The 2 pressure peak of the calibration pulse was 90 lb/in. The frequency of the pulse was 3.75 Hz. 4.5 VIBRA 2' ION The calibration of all accelerometers was verified by exciting them with the calibrator described above. A 10-m/sec2 peak acceleration, 79.6 Hz sinu-soidal acceleration input was applied and the resulting system output was recorded on magnetic tape. The calibration system sensitivities were used during the tests. 4.6 MAGNETIC TAPE RECORDER A calibration signal of 1.0 V peak-to peak at 196 Hz was recorded on all channels of the SR-50 recorder. This represented merely a functional check of the reproduce amplifiers since all calibr4tions as described above were performed end to end. BI-1160041-1 4-2

SECTION 5 TEST PROGRAM 5.1 STATIC TORQUE TESTS Prior to the dynamic tests, static torque tests were carried out as part of both Test Series I and II. Torque was applied by blocking the crank throw at cylinder no. 2 and applying a tangential force to the flywheel. For this purpose, a 1 -in. dia radial pin was installed in one of the peripheral holes on the flywheel, and a tangential force was applied to the pin with a hydraulic ran actuated by a handpump. A maximum of 29,113 lb-ft was applied (based on a pressure gage reading and manufacturer-specified piston area of 2.236 square inches) in three steps. Torque and strain readings were taken from the appropriate telemetry channels for both increasing and decreasing torque. 5.2 TEST SERIES I DYNAMIC TESTS The tests of this series were run on September 19 1983. Strain measurements were attempted from both cylinders Nos. 5 and 7. Cylinder 5 was instrument-ed as a secondary or backup installation. Table 5-1 sumanarizes the tests carried out and the data taken in each test. The pressure transducer signal at cylinder No. 7 ceased during the 100 kW test run. The radio telemetry installations on most strain gage signals progressively ceased during the early part of the test. All other systems worked satisfactorily until a decision was made to stop the test because of the loss of nearly all strain-measuring channels. Note that there were more variables to be recorded than available data channels. Therefore, the I five generator output variables (Ea, Ec, Ia, Ib, and Ic) and the six mechan-l ical variables (torsional vibration, or pressure and four-strain channels) were recorded in a time sharing mode (i.e., not simultaneously). I 5.3 TEST SERIES II, DYNAMIC TESTS These tests were carried out on September 28, 1983, after reinstalling strain gages and the associated radio telemetry systems. The installations were improved on the basis of experience gained in the first test. The tests are described in Table 5-2. The data taken are tabulated in Table 5-3. Note that two radio receivers were used and, therefore, torque and strain were recorded simultaneously. As in Test Series I, the generator output variables and five mechanical variables (four strain channels and pressure PS) were recorded in a time sharing mode. All data channels worked satisfactorily throughout the test. The battery supply to the torque transmitter weakened and was exhausted following the main test program. The strain data from the backup installation on cylinder No. 7 were marginal, but some data were obtained from 7-2 after the main test program had been completed. I t B1-1160041-1 5-1

..x.-. -. ~ = I TABLE 5-l' TEST SERIES I September 19, 1983 DATA AND TEST DESCRIPTION TEST Trial Trial 100 kW 1750 kW Variable Speed Start Start On E.B. On E.B. No-Load 7.1.1* 7.1.2 7.1.3 7.1.5 420-474-RPM MEASURED VARIABLES DATA TAKEN Strain 7-1 No No No No No 7-2 Yes Yes Yes Yes Yes 7-3 Yes Yes Yes No No 7-4 No No No No No 7-5 Yes Yer Yes Yes Yes Output Torque Yes Yes Yes Yes Yes Torsional Vibration Yes Yes Yes Yes Yes Pressure P5 Yes Yes Yes Yes Yes Pressure P7 Yes Yes Yes No No Generator Output Yes Yes Yes Yes Yes Engine Vibration Yes Yes Yes Yes Yes Strain 5-1 No No No No No 5-2 No No No Yes No 5-3 No No Yes No No 5-4 No No No No No 5-5 No No Yes No No NOTE: Gages 7-4 and 5-4 were not installed due to bearing interference.

  • Test designation assigned in LILC0/S'EC/FaAA/TDI approved test plan B1-1160041-1 5-2

TABLE 5-2 TEST SERIES II SEPTEMBER 28, 1983 TEST DESCRIPTION Test No. Designation Test Conditions 1 7.1.1 Startup,.100 kW on external grid 2 7.1.2 Load increased to 1750 kW on grid, separation from grid, 1695 kW on emerg-ency bus 3 7.1.3 Switch back to external grid, unload and stop 4 7.2.1 Startup on grid 5 7.2.2 Load to 1706 kW 6 7.2.4.1 1750 kW 7 7.2.4.2 3500 kW 8 7.2.5 2550 kW at 0.8, 0.9 and 1.0 Power Factor (P.F.) { 9 7.2.6 Stop (TDI torsional response transducer installed) 10 7.3.2 Startup on grid, 100 kW, 875 kW l 7.3.3 1750 kW, 2600 kW, 3500 kW, unload and stop (TDI torsiograph tests). 11 7.3.4 Start on emergency bus, step change in plant load l 12 7.3.5 Load to approximately 2550 kW, unload, i stop B1-1160041-1 5-3

'v TABLE 5-3 IEST SERIES II SEPTEMBER 28, 1983 Record Logs Test No. 1 2 3 4 5 6 7 8 9 10 11 12 Hessured Variable Data Taken Strain 5-1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 5-2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 5-3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 5-4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Output Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Torque Torsional Yes Yes Yes' Yes Yes Yes Yes Yes Yes Yes Yes Yes Vibration Pressure P5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Pressure P7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Generator Yes Yes No. No No Yes Yes Yes No No No No Output Engine Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Vibration ( Strain 7-1 No No No No No No No No No No No No l 7-2 No No No No No No No No No Yes Yes Yes 7-3 No No ; No No No No No No No No No No 7-4 No No No No No No No No No No No No l l L I - l-l B1-1160041-1 5-4

SECTION 6 DATA REDUCTION 6.1 STATIC TESTS-The static strain and torque readings are given in Tables A-1 through A-4 (see Appendix A). The torque values have been calibrated for the stress concentration effect os the strain gages. The rationale of the calibration method is explained in Section 6.2 and Appendix A. The torque values measured in the static test of the Test Series II have been plotted against the applied torque calculated from the pressure readings, ram geometry, and lever distance. The plots are given in Figures A-10 and A-11. 6.2 TORQUE MEASUREME.IS V Torque was measured indirectly by measuring the torsional strain at one sec-tion of the output shaft between the engine casing and the flywheel. The geometry of the shaft at that section is such that a slight stress concen-tration effect can be expected there. The torque values calculated from the measured strain, when compared to the torque required to produce the ob-served output power, indicated that the effective stress concentration was 1.21. Theoretical considerations predicted a stress concentration factor of similar magnitude. The torque telemetry equipment produced a d.c. off-set at startup and was subject to additional gradual drift during the test. For these reasons, it was a convenient and effective method of data reduction to utilize the known linear relationship between output torque and generator output to determine the effective calibration and the static component of l the torque measurments. The relationship was established as 51.4 kW/lb-f t, l and all torque recordings were interpreted and scaled using that numerical j relationship. The reference zero level for all static torque dat.a is the speed-no-load condition of the diesel generator. The calculations and the supporting data for the scaling described above are presented in Appendix A. 6.3 TORSIONAL VIBRATION As explained in Section 3.2.2, the torsional vibration recording was cor-rected for the low cut-off characteristics of the carrier amplifier. The following procedure was used. Random noise was applied at the filter input in the carrier amplifier and from the resulting output, the transfer func-tion of the filter was computed in the Nicolet 660B analyzer for the 0-50 Hz frequency range. Using the various Fourier transform capabilities of the Nicolet 660B and the computed transfer function, the torsional vibration data were then corrected. The procedure has also been documented in Appendix A. 6.4 STRAIN DATA I The strain telemetry channels functioned very well in Test Serin II, and dynamic-data of excellent quality were recorded throughout the test. The static component of the strain signal was sdbject to the same d.c. offset B1-1160041-1 6-1

~ i and gradual drift observed in the case of the torque signal. In order to determine the static strain, the static component of the strain in the crankshaft was considered linearly proportional to the mean torque being { transmitted through the crankshaft. There are several points in the test where, over a short period of time, the engine load (hence the output torque) was changed significantly. Over a brief period of time the very gradual d.c. shift has no effect, and the strain versus torque relationship can be determined reliably. Three such records were evaluated for each strain channel to determine the strain-torque relationship. The entire magnetic record was played back through 1.0 Hz low pass filters to remove almost all the dynamic signal components and to identify the parts of the record to be used for the analysis. The strain and torque signals were digitized over the period of torque change, and a straight line curve fit was performed between strain and torque. A schentsie illustration of the method is shown in Figure A-9. Using the relationsnip established between torque and generator output, the static strain component was then related to output power. The procedures and results are documented in Appendix A. 6.5 PRINCIPAL STRESSES The strain data labeled 5-1, 5-2, and 5-3 obtained in Test Series II were measured at one location with a three-element rectangular rosette for the purpose of calculating principal stresses and their directions in the biaxial stress field on the crankpin. The transformation from three strain measurements to principal stress was performed for crankpin no. 5 at 3500 kW in the second test series. A pulse recorded on a redundant channel of the tape recorder was used to trigger the Nicolet 660B analyzer to perform a i synchronized capture of a 0.4-second-long strain record from -each of the three strain channels. That record represented three revolutions of the crankshaft and 1.5 strain cycles. The analyzer digitized each record into 1024 data points. The digitized magnitude and time data were then read by an HP 9826 computer,'and from the three simultaneous strain data the princi-pal stresses, their directions, and the maximum shear stress were computed. The ' computed 1024 values were then plotted against the corresponding time points to obtain the 1024 point time history of the principal stresses for the for the 0.4-second time window. 6.6 TIME DOMAIN All variables recorded under significant operating conditions were repro-duced in the time domain to facilitate the study of magnitudes, waveforms, and phase relationships amongst the measured variables. Two variables were captured simultaneously in the Nicolet 660B analyzer and plotted on a digital plotter. The once per-revolution square wave was captured with strain no. I and then the other strain data, torque, and pressure were captured simultaneously with S-1. All captures were done within the same 10 seconds of the tape. The highly repeatable nature of the waveform alleviated the need for more precise synchronization. Only a few time records of the generator output variables were made as they contained little information of significance. 4 B1-1160041-1 6-2

6.7 FREQUENCY DOMAIN RECORDS All the mechanical variables were analyzed in the frequency domain using the Nicolet 660B two-channel FFT analyzer. The frequency range used was 0-50 Hz - and 0-100 Hz. Two channels were analyzed simultaneously. Although the very periodic nature of the waveform made averaging practically superfluous, four spectra were averaged. For the same reason, there was no need for record synchronization; however; as in the case of. the time records, all spectrum averaging was initiated within the same 10 seconds on the tape. i E l-B1-1160041-1 6-3 r,----- , ~ .,,e y a m-, -,, - .,r., -e y wr-e--

SECTION 7 DISCUSSION OF RESULTS -7.1 GENERAL The reduced data in the form of time and fre.quency-domain plots are pre-sented in Appendix B. The various plots are annotated in detail for review. In Test Series I, data were recorded from all e hannels except the strain i gage telemetry systems. Since Series II was a more complete test and the i strain data are of primary interest, only a relatively few results from Series I are presented in this report. One important test, the variable speed no-load test, was carried out only in Series I and, therefore, its results are reported here. In Test Series II, data were obtained from all of the data channels. On the plots in Appendix B the following convention has been used. up is always (+)ve VLN means linear vertical scale -VIG designates logarithmic vertical scale C under VLG or VLN means continuous data (Hanning weighting) T under VIG or VLN means transient data (Flat weighting) AR means channel A real compona t AT means averaged time record SU 4 means averager set for four samples Tape 2:318 means recerd from tape 2 at counter 318 l RS means real spectrum l FS means full scale l AM means magnitude of variable A was plotted Results of the tests are described briefly and commented on to assist the reader. The analysis of the data is presented in an engineering report prepared by others. 7.2 TEST SERIES I Figures B-1 to B-12. in Appendix B contain the results of the first test. Strain 5-2, no. 5 cylinder pressure, torsional vibration, and torque measured at 1750 kW are presented. Strain and torque are shown in both the i j time and frequency domain. ae torque measurements and strain measurements 1 at location 5-2 verify those obtained in Test Series II. l l Figures B-6 to B-12 show the results of the variable speed-no-load tests in terms of the frequency spectra of the recorded torsional vibrations. l 1 l l l l l B1-1160041-1 7-1 . - - ~ - _ -., -,

x 3 *g N 7.3 TEST SERIES II The results of these tests are presented in Figures B-13 to B-104 and make up most of the data in this report. All the mechanical variables are pre-sented at speed-no-load,1706 kW, 2550 kW at various power factors and full load on the external grid. Also, torque and torsional vibration data recorded at 1695 kW on the emergency bus have been included for comparison purposes. The generator output Va and Ia is given for 1695 kW on the emergency bus and for 1706 kW on the, grid. The time and frequency plots are chganized in ascending order of generated s power. The principal stresses calculated from the strain measurements are presented in Figures B-96 to B-99. 7.3.1 Strain Measurements In comparison to the dynamic component of the strain, the static components (also indicated on the plots) are small. The total measurement range had to a be large enough to accommodate the full-load dynamic strain. In the case of 7 SS-1 for example, the static component is less than 10 percent of the full load peak-to peak strain. Nevertheless, the procedure described in Appendix A permitted the measurement of the static strain components to an accuracy of about 3-4 percent of the peak dynamic strain and, therefore, represents the limit of the total measurement accuracy achievable in this type of a test. The dynamic straid is largeshforS5-1 ands 5-2. The peak-to peak values ~ In the case of strain SS-1, the vary almost' linearly with output power. peak-to peak value varies from about 560 ' micro-strain at speed-no-load to about 1800 micro-strain at 3500 kW. The magnitude of SS-2 has been found to be on the same order as S5.1 and the measurements have been verified in the static and dynamic tests of both test series. A comparison el SS-2 and S7-2 in Figure B-104, measurements made 'in two separate tests, also verifies the measurements.~ The waveforms of the strain, especially SS-1, are extremely steady and periodic. They repeat every two revolutions of the crankshaft. The predominant frequency is the cylinder firing frequency. Due to some apparent thermal effects on components of the strain sage tele-metry channels, there were shifts in the reference zero of the strain sigar.ls. To demonstrate that even a zero shift does not affect the calibra-tion or the frequency response, of the measurement, Figure A-12 is included in this report. It shows that even after a d.c. shift, the amplitude and waveform of the signal remains unchanged. For the purpose of facilitating comparison, all strain records have been 4' plotted'with a zero average. Thus, the smaller static component related to power output must be added to values scaled from the figures. The static + strain values may be computed using the following relationships: ~ ~ s. \\ ,s A 5 B1-1160041-1 7-2 2 ~...

Gage Micro-Strain /MW SS-1 47.1 SS-2 31.9 S5-3 -17.2 S5-4 -3.9 The above values have only been computed for the results of Test Series II. 7.3.2 Principal Stresses The principal stresses' were calculated at the rosette location on crankpin no. 5 for the 3500 kW load condition as explained in Section 6.4. The three strain values required for the computation were captured one-by-one using a synchronization pulse. The accuracy of the synchronization determines the reliability of the computed values. Figure B-95 shows two captures of SS-1 strain plotted over one another. The two plots are indistinguishable indicating accurate synchronization. The principal stresses and their directions have been plotted in Figures B-96 to B-99. The major principal stress peak is 35,500 lb/ina in a direc-tion of 15 degrees counter-clockwise from of the direction of Strain 5-1. The direction of the major principal stress plotted in Figure B-99 is expressed in degrees measured from Strain 5-1 counter-clockwise. The principal stresses are plotted against ' time through about one and a half strain cycles or about" three revolutions of the crankshaft. The plane of the major principal stress rotates as the shaft rotates. This is evident in Figure 3-99. It is also possible to look at the stress in one plane and plot that against time as the shaft rotates. This was done in Figure B-100 where the stress in the axial direction is plotted against time through one and a half strain cycles. Since stress in that direction is caused mainly by bending, Figure B-100 is' titled Bending Stress. The corresponding shear stress is plotted against time in Figure B-101 and titled Torque Stress since it is caused mainly by torsion. The cylinder pressure and the cylinder no. 7 T.D.C. phasor in Figures B-102 and B-103 care also captured synchronusly with the three strain records to assist the reader in relating the principal stress peaks to other events in that time window. The results appear to be very consistent. The bending stress is almost proportional to S5-2 which was measured in the axial plane. Its peak does not coincide with the no. 5 cylinder pressure peak. Strain 5-1 is similiar to the torque stress in waveform and opposite in sign to Strain 5-3. The maximum values for strain, stress, and torque at 3500 kW are tabulated in Table.7-1. The time values are with respect to an arbitrary pulse. The top dead center for the firing of cylinder no. 5 is equal to 0.1881 seconds. One revolution at 450 rpm is equal to 0.1333 seconds. B1-1160041-1 7-3

Table 7-1 SQ0!AP.Y OF MAXIMUM AND MINIMUM STRAINS, STRESSES, AND TORQUE AT 3500 kW PEAK MICRO-STRAIN VALUES Strain Gage SS-1 SS-2 SS-3 Location Max Min Max Min Max Min Time (sec)* 0.23555 0.28047 0.23594 0.28008 0.28008 0.23437 S5-1 1118 -707 1118 -705 -705 1088 SS-2 764 -459 773 -465 -465 773 S5-3 -391 266 -389 272 272 -419 PEAK STRESS VALVES Time (sec) 0.23594 0.28047 2 Maj. Principal Stress (lb/in )** 35,500 3,080 Deg. CCW from S5-l' 14.2 -76.8 2 Min. Principal Stress (Ib/in ) 4,120 -22,000 a Max. Shear Stress (1b/in ) 19,800 12,500 a Bending Stress (lb/in ) 25,100 -15,000 2 Torque Shear Stress (lb/in ) 17,400 -11,200 Torque (lb-f t) @ 0.24961 see -122,000 Torque (lb-ft) @ 0.26484 sec 225,000

  • Top dead center (firing) for cylinder 5 is at 0.1881 sec.
    • Computed using E = 30 x 10s ib/in, p = 0.30 2

B1-1160041-1 7-4

7.3.3 Torque Measurements The waveforms of the time-domain torque records are also very steady and periodic, dominated by the cylinder firing frequency (30 Hz). As in the case of the strain data, the dynamic torque oscillations are several times greater than the static torque delivered to the generator. The torque plots were scaled in Ib-ft. The scaling was derived, as explain-ed in Section 6.2 and in Appendix A, from the known relationship between output power, generator efficiency and static torque. Estimates of stress concentration effects on torsional strain agree with the derived scale. 7.3.4 Torsional Vibration Measurements These measurements are most important in connection with the speed-no-load tests carried out in Test Series I. The frequency-domain torsional vibra-tion records are presented in Figures B-6 to B-12. To facilitate analysis, the values of the peaks of the frequency spectra at or near the half orders up to about twelve half orders have been tabulated in Table B-1. The peak values from the torsional vibration frequency spectra measured at 1695 kW on the Emergency Bus and at 1706, 1750, 3500 kW loads on the external bus are presented in Table B-2. 7.3.5 Pressure Measurements The cylinder pressure measurements indicate a triangular pressure pulse. Calculations have shown that the area under the observed pressure pulse is not sufficient to generate the recorded output torque. Both the low and high frequency response and the calibration of the pressure transducers used have been verified and the three different transducers used in the test all measured the same size and shape for the pulse. It has, therefore, been concluded that the dynamic measurements were affected by the gaseous column and flow path geometry associated with the pressure test cock. 7.3.6 Generator Output Measurements The voltage and current output of the generator were very smooth throughout the tests with only a small modulation of the signals at the rotational speed of the crankshaft. Figures B-26, 33, 58, and B-69, 74, 91 show the time and frequency-domain records of one voltage and one current output at 1695 kW on the emergency bus and at 1750 and 3500 kW load on the grid. 7.3.7 Vibration Measurements The vibration measurements were carried out for reasons of safety only. The tape recorded data, therefore, have not been reduced and are not presenteo I in this report. t B1-1160041-1 7-5 l L

..__.= 7.3.8 Transient Conditions During the performance of the test, observations of torque transients were made ~ during such conditions as engine start, closing of breakers, switching from the external grid to the emergency bus, and load changes while on the emergency bus. In all cases the torque showed no sudden spikes. The transitions were smooth from one condition to the next. 4 7.3.9 Torsional Natural Frequency and Damping The torsional natural frequency may be observed from the spectrum of output torque shown in Figure A-15. The system natural frequency results in a peak in the lower level random noise spectra observed between the harmonic peaks. From this figure, the torsional natural frequency is observed to be 36.5 Hz. The damping associated with the natural frequency may be estimated from the magnitude of the peak in comparison to the magnitude at one half the natural frequency (18.25 Hz). The estimate is 2.5 percent. B1-1160041-1 7-6

SECTION 8 CONCLUSIONS The following conclusions are based upon the results presented in this report: All the measurement objectives of the field test program have been achieved. Reliable data were ret erded at all test points. A careful examination of the presented data has indicated that the test results are consistent and accurate. l B1-1160041-1 8-1

-. _ _. _ =- APPENDIX A ILLUSTRATIONS AND SUPPORT DATA B1-1160041-1

APPENDIX A TABLE OF CONTENTS Section Title Pm A.1 STATIC TESTS A-1 A.2 ZERO REFERENCE AND CALIBRATION FOR TORQUE MEASUREMENTS A-1 A.2.1 Zero Reference A-1 - A.2.2 Calibration of the Measurements A-1 A.3 ZERO REFERENCE FOR STATIC STRAIN MEASUREMENTS A-2 A.4 CALIBRATION OF TORSIONAL VIBRATION DATA A-4 1 B1-1160041-1 A-i y --e

LIST OF TABLES Table Title Pm A-1 Test Series I, Static Torque Test - Cylinder No. 5 A-5 A-2 Test Series II, Static Torque Test - Cylinder No. 5 A-6 A-3 Test Series I, Static Torque Test - Cylinder No. 7 A-7 A-4 Test Series II, Static Torque Test - Cylinder No. 7 A-8 A-5 Demonstration of Capability to Reconstruct Original A-9 Data from Filtered Data B1-1160041-1 A-ii

LIST OF FIGGIS Fieure Title A-1 Location and Orientation of Strain Gages A-2 Torque Measuring Instrumentation Schematic A-3 Torsional Vibration Transducer Installation A-4 Pressure Transducer Installation A-5 Generator Output Voltage and Current Measurements 'A-6 Location of Accelerometers A-7 Antenna Installation for Strain Transmitters A-8 Instrumentation System Block Diagrams A-9 Correlation of Static Strain and Static' Torque A-10 Static Torque Test Cylinder No. 5, Test Series II A-11 Static Torque Test Cylinder No. 7, Test Series II A-12 Zero Shift Illustration ,A-13 Frequency Response of 10 Hz L.P. Filter A-14 lllustration of Effect of 10 Hz L.P. Filter A-15 Frequency Spectrum of Unfiltered Signal A-16 Frequency Spectrum of Reconstructed Signal B1-1160041-1 A-iii

.-. - ---..~ APPENDIX A ILLUSTRATIONS AND SUPPORT DATA A.1 STATIC TESTS The static tests were an impcrtant part of the total test program. They served as a means of testing the strain and torque telemetry systems. The hydraulic rams - used to exert the tangential force on the flywheel were ENERPAK models RC106 and JSS102. Both had an effective piston area of 2.236 square inches. The former was used in the first test the latter in the second test. The tangential force on the flywheel acted at a measured radius of 37.2 inches. The results of the tests have been tabulated in Tables A-1 to A-4. As a result of experimental limitation, such as weight effects and audible stick-slip action in the generator bearing indicating friction, considerable hysteresis was observed. The applied (calculated from applied pressure and geometry) and measured torque values recorded in the first and second tests have been plotted in Figures A-10 and A-11. The effect of stress concentration was not taken into account in the plots. The measured torque seems to be most consistent in the region of low torque input. The slope of the curve in that region is about 1.21. A.2 ZERO REFERENCE AND CALIBRATION FOR TORQUE MEASUREMENTS A.2.1 Zero Reference Due to environmental effects on the strain circuit, the true zero of the torque measurement was shifted as the engine came up to speed..Under no-load conditions, the average torque output is that required to overcome friction and windage in the generator. An estimate of that value is 2 percent of full-load torque. For field testing of the type carried out in these tests, 2 percent is less than the expected 15 percent accuracy and repeatibility of the full-scale measurements. Thus, the average torque at no-load conditions was assumed to be zero and all zero reference levela in l the time-domain data presented in this report are with respect to the i speed-no-load condition. A.2.2 Calibration of the Measurements The torque was measured in terms of torsional strain. The measurements interpreted from the accepted strain-torque relationship for long, circular shafts produced a result of about 7.0 percent higher than the torque required to generate the known generator output which is consistent with the predicted stress concentration factor for the flange geometry. The torque. measurement was, therefore, calibrated against the most reliable reference available, i.e., the output and efficiency of the driven generator. The following will explain and document the procedure. At the manufacturer-specified 96.0 percent efficiency of the generator, the torque output required from the engine at 3500 kW is 57,039 lb-ft. On that basis, 61.4 kW are generated per 1000 lb-ft of output torque. Referred to B1-1160041-1 A-1

jm m..- speed-no-load conditions, the following uncorrected torque measurements were made. Generated Measured I Power Normalized Torque

  • Normalized Measured *

(kW) Power (1b-ft) Torque (kW/1000 lb-ft) 0 0.00 0 0.00 0 1750 0.50 33,420 0.49 52.36 2250 0.64 47,700 0.73 47.17 3500 1.00 67,800 1.00 51.62

  • Computed on the basis of strain in a cylindrical shaft The above data shows that the measured torque is linearly proportional to the measured output power.

Linear regression analysis of the above data gives 50.7 kW/1000 lb-ft. The ratio of the actual to the measured value is: 61 A R= = 1.21 50.7 This figure represents primarily the strain concentration in the shaft and is in good agreement with the stress concentration factor estimated using the shaft geometry. All torque measurements have, therefore, been scaled using the above factor. A.3 ZERO REFERENCE FOR STATIC STRAIN MEASUREMENTS The strain gage telemetry systems were also affected by the environment and the reference zero shifted. During the test the signals were subject to additional drift of the reference zero. The overall calibration and frequency response of the systems were not affected by this zero shift. This is demonstrated in Figure A-12 where the low pass filtered strain signal (average strain) has been superimposed on the total signal at an instant when the zero reference shifted 150 micro-strain. It is evident in Figure A-12 that the waveform and the peak-to peak amplitude, i.e., dynamic portion of the strain signal, remain unaffected. In order to obtain a good quantitative estimate of the magnitude of the static component of the strain signal under various steady load conditions the following procedure was used. It was observed that the static component of the strain increased with i increasing torque, i.e., power cutput. It was also observed that the . peak-to-peak dynamic strain increased linearly with those variables. Therefore, the static component of the strain was also linearly related to torque and, hence, to the power output. Three areas were found in the recorded data where a large change in engine output took place in a short time period free of zero shift. The torque change and the associated strain . change were captured at those instances for all four strain gages. The signals were digitized and the relationship between each strain and the output torque was calculated using linear regression analysis. Figure A-9 illustrates schematically the method used. The analysis verified the linear B1-1160041-1 A-2

relationship between static strain and torque. The following results were obtained: Static ' train vs. Torque Relationship Tape S Count (micro-strain /1000 lb-ft) S5-1 S5-2 SS-3 SS-4 2:260 3.26 2.00 No data No data 2:279 2.95 1.45 -1.37 -0.258 2:424 2.46 2.43 -0.76 -0.240 Ave. 2.89 1.96 -1.06 -0.240 Spread % 15 26 29 7.5 (+/-) Using the value of 61.4 kW/1000 lb-ft and the above results, the static strain estimate can be put into perspective as follows: Static Strain Related Estimates Quantities Units S5-1 SS-2 SS-3 SS-4 Static strain ge 47.1 31.9 -17.2 -3.9 per MW NW Static strain pe 165 112 -60 -14 at full load Max. strain pe 1118 773 -419 120 at full load Overall error 2.2 3.8 4.2 1.0 due to static strain The " goodness" of the fit from the linear regression analysis on which the above results are based ranged from 0.91 to 1.0, the average being 0.98. The conclusion is that the accuracy of the estimate of the static strain values at full load has a negligible effect on the accuracy of the total strain measurements

and, therefore, on the principal stress calculations.

Furthermots, it represents the limits of the measurement precision that can be reasonably expected using radio telemetry under field test conditions. B1-1160041-1 A-3

1 A.4 CALIBRATION OF TORSIONAL VIBRATION DATA As explained in Section 6.3, the presence of a 10 Hz, low pass filter attenuated the torsional vibration data above 10 Hz. Since the output from the instrumentation was relatively high level, it was possible to determine the frequency response of the low pass filter and to calibrate the torsional vibration data. The following method was used: The filter frequency response shown in Figure A-13 was obtained by exciting the low pass filter with a random noise signal and computing the output to input transfer function using a Nicolet 660B FFT analyzer. Using the same analyzer, the frequency spectrum of each record of torsional vibration data was calibrated for the roll-off characteristics of the low pass filter. The validity of the results was verified as follows. The torque signal was passed through the same low-pass filter and then using the procedure described above the frequency spectrum affected by the low pass filter was reconstructed with satisfactory results, as shown in Figures A-14 to A-16 and in Table A-5. B1-1160045-1 A-4

~, - -. - - =. ,m l TABEE A-1 TEST SERIES I STATIC TORQUE TEST - CYLINDER No. 5 Apolied Measured Ram Torque Torquew Torque Strain Strain Strain Strain Press 1 2 3 4 (lb/in') (lb-ft) 1 (1b-ft) (Micro-strain) 0 0 0 0 0 0 0 1500 10,397 8,259 39 14 5 -8 0 3000-20,795 15,247 72 48 24 -25 -2 4200-29,113 22,448 106 81 35 -51 -2 3000 20,795 18,212 86 74 33 -45 -2 1500 10,397 9,318 44 45 24 -25 -2 0 0 -1,058 -5 -5 -2 3 0 .1500 10,397 7,835 37 10 4 -6 0 3000 20,795 15,247 72 48 24 -25 -2 4200 29,113 22,024 104 81 35 -48 -2 3000 20.,795 18,212 86 74 33 -45 -2 1500 10,397 9,529 45 48 24 -25 -2 0 0 - 423 -2 -2 0 -3 0' i l

  • The torque data expressed in lb-ft have been calculated from the corre-sponding micro-strain measurements and have been correrted for stress concentration.

B1-1160041-1 A-5 l-

l IABLE A-2 TEST SERIES II STATIC TORQ'JE TEST - CYI.INDER No. 5 Applied ll Heasured Ram Torque Torque

  • Torque Strain Strain Strain Strain Press 1

2-3 4 (1b/in ) (lo-ft) d (1b-ft) Li (Micro-strain) 0 0 0 0 0 0 0 0 1500 10,397 9,741 46 -20 -7 9 -22 3000 20,795 16,942 80 -56 -30 24 -20 4200 29,113 22,872 108 -88 -43 41 -19 3000 20,795 20,330 96 -81 -42 36 -18 1500 10,397 11,012 52 -58 -33 24 -20 0 0 211 1 -2 -2 0 -22 1500 10,397 10,165 48 -21 -11 10 -20 3000 20,795 16,730 79 -56 -3 22 -19 4200 29,113 22,659 107 -88 -43 40 -16 3000 20,795 20,542 97 -84 -44 37 -17 1500 10,397 12,494 59 -65 -37 26 -20 0 0 635 3 -6 -5 0 -24

  • The torque data expressed in Ib-ft have been calculated from the corre-sponding micro-strain measurements and have been corrected for stress concentration.

B1-1160041-1 A-6

' ~ TABLE A-3 TEST SERIES I STATIC TORQUE TEST - CYEINDER NO. 7 Applied l Measured l Ram Torque Torque

  • Torque Strain Strain Strain Strain Press 1

2 3 4 (1b/in ) (1b-ft)li (1b-ft) (Micre-strain) a 0 0 0 0 0 0 0 0 1500 10,397 9,741 46 14 -10 -20 -6 3000 20,795 17,153 81 30 -26 -50 -10 4200 29,113 24,142 114 50 -40 -88 -16 3000 20,795 20,118 95 40 -36 -72 -16 1500 10,397 11,224 53 24 -24 -42 -10 0 0 3,811 18 8 -10 -14 -4 1S00 10,397 9,953 47 14 -16 -26 -6 3000 20,795 16,941 80 30 -26 -54 -12 4200 29,113 23,930 113 54 -36 -84 -16 3000 20,795 19,906 94 40 -38 -72 -14 1500 10,397 11,724 53 24 -26 -44 -8 0 0 1,058 5 0 -46 -6 -2 ( I. l l-

  • The torque data expressed in Ib-ft have been calculated from the corre-sponding micro-strain measurements and have been corrected for stress concentration.

i B1-1160041-1 A-7 i

TABEE A-4 TEST SERIES II STATIC TORQliE TEST - CYI.INDER NO. 7 Aeplied ll Measured l Ram Iorque Torquew ' Torque Strain Strain Strain Strain Press 1 2 3 4 (Ib/in')u (le-ft) (lb-ft) (Micro-strain) 0 0 0 0 No No 0 0 1500 10,397 9,529 45 Data Data -74 - 63 3000 20,795 16,306 77 -60 -101 4200 29,113 22,024 104 -44 -111 3000 20,795 19,483 92 -50 -109 1500 10,397 11,859 56 -60 - 93 0 0 212 1 -89 - 76 1500 10,397 9,953 47 -74 - 87 3000 20,795 16,094 76 -62 - 97 4200 29,113 22,448 106 -46 -111 3000 20,795 19,695 93 -48 -109 1500 10,397 12,282 58 -58 - 93 0 0 -211 -1 -93 - 74 l l l

  • The torque measurements expressed in Ib-ft h. ave been calculated from the corresponding micro-strain measurements and have been corrected for stress concentration.

21-1160041-1 A-8

.=._ ....o TABLE A-5 DEMONSTRATION OF CAPABILITY TO RECONSTRUCT ORIGINAL DATA FROM FILTERED DATA IME Frequency original Reconstructed

  • Hz 2000 lb-ft RMS 7.5 1.57 1.60 11.25 1.29 1.32 15.00 1.93 1.96 18.75 5.18 5.21 22.50 0.475 0.47S 26.25 5.09 5.28 30.00 82.9 90.0 33.75 16.9 18.4 4

37.50 6.49 7.16 i

  • From data filtered with 10 Hz low pass filter B1-1160041-1 A-9

ROTATION GENERATOR [ REF. N + 10' y l N [D ) A E 5.5" 1.5 \\ } j

  1. T
  2. 5 SEE DETAIL BELOW FOR LOCATION OF ROSETTE A-B-C n~

h THE CIRCUMFERENTIAL MEASUREMENT AROUND SURFACE OF CRANK PIN FROM REF.TO LOCATION OF GAGES A, B, C AND E WAS : My : 14.4 " CCW M5 13.5" CW GAGE u O.M NUMBERS USED CRANK A BCDE TEST SERIES I i CYLINDER 5 1 2354 ROSETTE CYLINDER 7 1 2 354 A-B-C TEST SERIES 1I WEB CYLINDER 5 1 234-CYLINDER 7 1 2 34-l NOTE: G AGES AT LOCATION "E" WERE FIGURE A-l PLANNED BUT NOT INSTALLED LOCATION AND ORIENTATION OF CUE TO INTERFERENCE WITH BEARING STRAIN GAGES DG 101 l

LEAD WIRES CONNECTING [ FULL BRIDGE TO TRANSMITTER RADIC TRANSMITTER AND BATTERY INSIDE CAVITY IN FLANGE TWO-ELEMENT RECTANGULAR g 'I ROSETTES- $W bl I D=l4" l \\ I GENERATOR ENGINE j g ) l _O __1 V) ( I V l r 7 g I WIRING l CONNECTING l 'q FLANGE TWO ROSETTES ,J s d l TRANSMITTING ANTENNA WIRE COAXIAL f RECEIVER ANTENNA )45' 1 l' 3/ [ d4 _ %z _Q 3 __0 4 ROSETTE l-2 DlAMETRICALLY OPPOSITE TO 2 2' FIGURE A-2 TORQUE MEASURING INSTRUMENTATION SCHEMATIC DG 101

n . -... - ~. SLIPRING, TRANSDUCER HBM BD = i ENGINE = l d- ~ 6777 7 q EXCITATION AND SIGNAL CABLE ADAPTOR PLATE CRANKSHAFT \\ FIGURE A-3 TORSIONAL VIBRATION TRANSDUCER INSTALLATION DG 101 l l

COMPRESSION TEST COCK r >S COMPRESSION TEST COCK ADAPTOR p COOLING WATER IN n= I l V##A a m k. ll/ - PRESSURE (OgiNG ^" g g OUT FIGURE A-4 PRESSURE TRANSDUCER INSTALLATION DG 101 .~- ,w,. ,e. v.n,-. .ne., m. --+. e.

3 GENERATOR OUTPUT PHASE W A ~r e C eu < i <= 1111_1111. TITITOTI' si si si u l s u ( V V c A p I.o v/4200 v I ( IC I B I A 2.5 V / 800 AMPS l l l 1 FIGURE A-5 l GENERATOR OUTPUT VOLTAGE AND l CURRENT. MEASUREMENTS DG101 l l .. ~. . =

SENSITIVE AXIS l HORIZONTAL At TESTS VERTICAL A2 gg yg3 AXIAL A3 ] >/ i I ChELEROMETER WSTALLATCN f I 'M' DENTAL EMENT A6 m Mt. CHINE SURFACE

  1. 5 TEST I AT TEST E A5 TO A9 ON

/ / SENSITIVE AXIS OF r BEARING

  1. 6 S'

r A5 A5 E. A7 IN HOUSINGS WITH VERTICAL DIRECTION SENSITIVE AXIS 30* TO A8 VERTICAL

  1. 7 A9
  2. 8 A7 4

Al, A2, A3 ALL TESTS L.x:=>l n GENERATOR to FIGURE A-6 LOCATION OF ACCELEROMETERS DG 101

F l TRANSMITTING ~~ ANTENNA ENGINE COVER k@ @ @ @ C=3 l mC 'V I GENERATOR U

  1. ~~

STEEL TUBING +- COAXI AL RECEIVER ANTENNA --TRANSMITTERS ( ) I

-]* I e

TACK WELDED TO WEB a 60 - 100 ohms RESISTORS INSULATED ANTENNA WIRE HELD ON SY SHIM STOCK. STRAPS l TACK WELDED TO WEB l l l I FIGURE A-7 ANTENNA INSTALLATION FOR STRAIN TRANSMITTERS DG 101 l I

I 1 STRAIN AND TORCUE MEASUREMENTS e I k hNS. T AcuREx FM ENCORE - To SRs0 MITTER RECEIVER 502 I 12O BRIDGE EXCITATION, DISCRIMINATICN, D.C. SIGNAL COCITIONING L DEMODULATION & AMPLIFICATION RADIO TRANSMISS!CN AMPLIFICATION TORSIONAL VIBRATION I TRANSDUCER HSM BD SR50 KWS 3073 502 120' CARRIER D.C. m AMPL!FIER L AMPLIFICATION ID H2 L-P FILTER CYLINDER PRESSURE POWER SUPPLY / TRANSDUCER CHAPGE TO TRIG.TEK TO SR *O VOLTAGE i 120 PCB lilA CONVERTER D. C. PCB 402 PCB 480 AMPLIFICATION VIBRATICN POWER SUPPLY / AMPLIFIER ACCELEROMETERS I ENCORE ~ TO SR*O l 12 0' D. C. PCs 308 a 302 A PCB 480 AMPLtFICATION FIGURE A-8 INSTRUMENTATION SYSTEM ELOCK DIAGRAMS DG 101

CIGITAL TAPE RECORDER OSCILLOSCCPE DIGITIZED M, r ^ OUTPUT Lj... LO - ASS r u ERS . o INPUT OUTPUT oo oo H n90 9l 0 9"o n p 7 I T O R R A Q l U N E OSClLLOGRAPH COMPUTER FILTERED T 3 ((ff OUTPUT B = = 7 = oooooo q>n<e. .ooooo LINEAR REGRESSION / '/ / ANALYSIS S = c + bT OUTPUT SLOPE INTERCEPT GOODNESS OF FIT r FIGURE A-9 CORRELATION OF STATIC STRAIN AND STATIC TORQUE DG101

i

  1. 4

~ 30,000 V e .x / / / / / I .. / / ~ r / / / / \\ l ._~ W / / ,1 s5 /' / / w 8 / 8 / / l // H 8 l /x / ~ / l .//,/ //,,f / / I ,// N.EASURED TOROUE CALCULATED FROM STRAIN s / l UNCORRECTED FOR STRESS CONCENTRATION 1I I i 1 30'000 3 INPUT TORGUE LB-FT LEGEND FIRST CYCLE --X-- SECOND CYCLE 45' LINE q FIGURE A-10 STATIC TORQUE TEST (CYL #5) DG101 9-28-83

~... ~ / 30,000 8 / /, / / / / / / l N / 0 / / 8 / / O / / l/ / O / x/ m 0 / l E / l/ / l / / MEASURED TORQUE CALCULATED FROM STRAIN i l UNCORRECTED FOR STRESS CONCENTRATION l INPUT TORQUE LB-FT 30'000 l LEGEND 0 FIRST CYCLE --X-- SECOND CYCLE 45' LINE l FIGURE A-ll l STATIC TORQUE TEST l (CYL #7) DG101 9-28-83

.-..f f 8 ..I t..... i. I p. I L,.mf..i _;..mA.- t 7 . -}__, ~ ~ ~ g f Z - -, s ea On JU -- m. q /.Mm.,,. .s M G z,. ---T s u L H 2" { Q L-g,,,,,j ( - ~ ~-A=?....IT-;_7m',~ ZH w.-----.._;._ OM 1 Z (/) _ m-~__ I"' Ef -'e-- H r-ip q L _t W _ u......_;_. u u _L g0 ,J, ,J, i t, i.- _ g - $_ [a 2 z ar <=.- I f LL, p (0 (0 (g)) ! O1 .a I > LJ. - - - - - -. - - -.. = - - - z*=- io 3

gc

~.3 yp -= a 00 ii 5= -, w _..._: 40 2 r.._ _ _. 9.O )_i. ut 0.H ,,, a. 2 sL w . -,..ms;;G._ FH U O '01>I) Z.0 Ba 09 - i. -e== a' u. W . ],e ."'. N! ---~ H2 gn ~~ / 3 e 2

x._. _

Y Y 'u & p _ _ - M o v *** n. _ =, s d d 2 _- - e i' (D Z Wc O We

  • W9 - - -

H = 40: p a: i _m s (f) g _i_ ',s H s_.,f b - '6 _L M < g

0. cO

..,, C -c. w-Q (n I.D,,w i s. ,i: i.L s, O. . :._;=.1. - = = __a>-- g o >x> f ;,{ t -WU OO: s ,2m U 3.g 'e J E. 2 O 0 in.. - - = -men. __ c3 69 0 0 2.;. _ e -m y. OJ gj J O O(i e_. vr - en... .___ 1 g; H g

I'**

-~5L -- ' Il i l W 0

  • Wi<

- - r c- =~+* -- t W I n" < Z 0 CD IU 1 > 1# ~~' ~ - ='* - = - - ' - O a. ' ~ ~ - ~ O< 0O i O .] OiF a F. tr a ___4-(D I: (03 ~ T 9-.f~-" 9 - CD. c] g E-. (D I i _. y.._. 7._ q - q _ 2,...., - - - 3 Gi < 1 J0 F G1 .~ (D H H .. ~.,.

i STONE S WEBSTER ENGINEERING C O RI?. l Acouotios a ncJ Vibrations Lab. -2 AUXO 180.O DG VLG 3. 16+00 E C i SHOREHAM D. G. 101 9-28-83 l i l l ___.l l l l _l P

PHASE, DEGREES l

i SU TRANS. FUNCT. OF H8M L. P. FILTER 124 i TF - i i 1 M--NORMALIZED AMPLI'TUDE _ _ _ _.. _._ p__ _ l - - _.- - l j --- -l l l - _ _l .y 1.00

2. OO A/8 HZ 50

) l~ i cj u r o A --- 1 3

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations L a b.- 3.60-06 V/EA 1 0 0. -*- O S E VLG 3.60-06 V/E8 100.+O8 E C i SHOREHAM O. G. 101 j j } l __4 [ __l }__.._ _. _. A__ M_ _ TORQUE FROM TAPE f I i_ I i i SU_[, t -W( ~~ v w W \\ u

~

s RS I ~~ T O R O L.lE THRU H8M 10 HZ L. P. FILTER ~ ~ 3 10 cl8 / D I V 8__ f M_I f f MV I N h ________l l _ _. [__ __l

  1. lW l-I
1. O D O.50 8/8 HZ 50 i

Figure A-14

~. i i I i I t i a ,. r. 1 g 1'/ i P O r. C. a ..J0 'm s Ug> J' J M-l N O _j 04-1 7 I! W ,s 24 f G i 0. N i Z [. g i.i- !T F T g i As W 4m ZgO h 1-L i H On i I

p. :

[i.3 j m.gW>j f. ], a W E g-Wc O. 1 i g i__ U !N h O <0 !m ~ CD g W W 'U 1 l_d n NN > #d N 0 ~ i3 4 g' s 3 0 1 lO G h hIl d 0 3 <l U X \\ ~ WG I J 0 i l 0- 0 40gg' G O B C W O <- D -- Q' O TO F- $" d O ! O ID 0 j g m I F m a L l, W i i i i i i i l i I I i 4 CD' <I J0 W W-Q' [ m p-n- ,,-g --v-,, - - v-g ,-m ,, - ~ ~ r ,-e r

i 1 STONE WEBSTER ENGINEERIblG CORP Acoustice and Vibrations Lab. i 1 00+00 V/EC 316.+03 VLG C SHOREHAM O. G. 101 l __. l l _p .l _l -- }_ .__ l____ _.. _ l_ _.... M TORQUE THROUGH H8M. CORRECTED 3500 'KW TAPE 2: 318 4 i SU 16 20 d8/DIV. l CX-1 l l l wVwnwla r O n _ _ l __. __.... l l .l __. _.__ l _. __ __ l .___l .___p_.___.....l--._-.. l

1. O O O. 50 B/8 HZ 50 13 i g u r e A-16 s

we , emme he - ee + NM ^ -w e-h = + = E APPENDIX B TEST RESULTS 1 I l ( l [ B1-1160041-1 l

.. ~... LIST OF TABLES Table Title Pace B-1 Torsional Vibration at Speed-No-Load B-1 B-2 Torsional Vibration Measurements B-2 4 l l l l i B1-1160041-1 B-i l

LIST OF FIGURES Test Condition Figure Number Test Series II 1750 kW B-1 to B-5 Varia~ ole Speed Tests B-6 to B-12 Test Series II 200 kW on E.B. Time Domain B-13 to B-18 Frequency Domain B-59 to B-62 100 kW on E.G. Time Domain B-19 to B-24 Frequency Domain B-63 to B-66 1695 kW on E.G. Time Domain B-25 to B-26 Frequency Domain B-67 to B-69 1706 kW on E.G. Time Domain B-27 to B-32 Frequency Domain B-70 to B-73 1750 kW on E.G. Generator Output B-33 and B-74 2550 kW on E.G. Time Domain B-34 to B-39 0.8 P.F. Frequency Domain B-75 to B-78 2250 kW on E.G.- Time Domain B-40 to B-45 0.9 P.F. Frequency Domain B-79 to B-82 2250 kW on E.G. Time Domain B-46 to B-51 1.0 P.F. Frequency Domain B-83 to B-86 3500 kW on E.G. Time Domain B-52 to B-58 Frequency Domain B-87 to B-91 Data Related to Principal Stress Calculations B-92 to B-103 Time Domain Comparison of Strain Data B-104 From Gages 5-2 and 7-2 i Note: Refer to Section 7.1 for a description of the annotation on the above Figures B1-1160041-1 B-ii e- -w-. g----

- ~ ~ TABLE B-1 TORSIONAL VIBRATION AT SPEED-NO-LOAD RPM 420 430.5 439.5 450 453 465 474 Order Torsional Vibration Amplitude (Degrees Peak) 1 0.5 0.0419 0.0446 0.0410 0.0417 0.0394 0.0394 0.0408 1.0 0.0021 0.0015 0.0038 0.0029 0.0011 0.0014 0.0020 1.5 0.0457 0.0450 0.0449 0.0446 0.0429 0.0449 0.0435 2.0 0.0020 0.0022 0.0029 0.0033 0.0033 0.0037 0.0039 2.5 0.0387 0.0377 0.0368 0.0400 0.0408 0.0404 0.0415 3.0 0.0011 0.0016 0.0018 0.0020 0.0019 0.0020 0.0023 3.5 0.0178 0.0178 0.0193 0.0200 0.0188 0.0211 0.0225 4.0 0.0944 0.1000 0.1040 0.1220 0.1230 0.1360 0.1450 4.5 0.0215 0.0255 0.0280 0.0381 0.0418 0.0593 0.1070 5.0 0.0096 0.0124 0.0086 0.0063 0.0062 0.0064 0.0055 5.5 0.0404 0.0301 0.0209 0.0163 0.0156 0.0118 0.0141 6.0 0.0061 0.0049 0.0055 0.0110 0.0098 0.0133 0.0116 6.5 0.0058 0.0169 0.0106 0.0174 0.0177

  • Frequency range of 0 to 50 Hz.

l BI-1160041-1 B-1

i TABLE B-2 TORSIONAL VIBRATION ffEASURE.T.NTS Power (kW) 1695* 1706 1750 3500 Order Vibration Amplitude (Degrees Peak) 0.5 0.1320 0.2010 0.2000 0.1450 1.0 0.0120 0.0068 0.0071 0.0033 1.5 0.0989 0.1010 0.1020 0.1800 2.0 0.0038 0.0021 0.0021 0.0021 2.5 0.0861 0.0806 0.0818 0.1410 3.0 0.0019 0.0011 0.0007 0.0026 3.5 0.0425 0.0381 0.0390 0.0681 4.0 0.2880 0.2620 0.2660 0.4570 4.5 0.0720 0.0662 0.0639 0.1240 5.0 0.0153 0.0131 0.0132 0.0390 5.5 0.0360 0.0233 0.0235 0.0421 6.0 0.0696 0.0243 0.0150 0.0673 6.5 0.0634 0.0383 0.0687 0.1490 1

  • 1695 kW or Emergency Bus
    • Freqgency range of 0 to 50 Hz.

i B1-1160041-1 B-2

i'? f ~ P j. $_ 3.- ~ O R.N O b LC 7._ p 8 __ O CaV V d 2 l__ _pI E \\ L D G G p / D 1 Ns N E I n E p_ I RoEE l f L A G P. Ei 8 R N A E tS0 8_ T I T __ NaO0 p_ S Y L _p r+5+9_ L S_C I 5 G U_E 1 O A pI b Ni 22 R F B_S E V 9_ C 1 1 pI N .l i 1__. M O G. R d R.8 En 0 __. . Y E _. / 0 1 Ta if S AB p5 C Mp E8 2 B s E E. __ D G e Ec// 2 f ND Wi VV. D T O C t p5 l l 60 as M 7 W_1 00 N K _. A u 9 1 y Eo.0 H _- I Ep A 0 p. Nc e0 O A5 .R_ R Y L 5.A B 75 O_ T Y yf T 51 a S H_ S C 1 _. O r S _ - !L.i! U g AR U1 T gR i S A ~ l 5 j

STONE WEBSTER ENGINEERING CORP-Acoustics and Vibrations Lab. 1.26-03 V/EA 1.25+03 E VLN l 4.79-06 V/E8 250.+03 E C i-i S H O__R_ E. H A M, D. G., 1 O 1___, 9 - 1 G - 8 3 L A t R SU CYL.

  1. 5 PRESSURE.

UNCALIBRATED l 1 l AT OUTPUT TORQUE 50.000 L8-FT/DIV. {_ - ) $fA Jt f A 0: V V b VVb b b-h h h KW ON EMERG. BUS TAPE 1: 253 ___1750 ..._____g-- -l p l ___ __. j_.__ _ _.... __. l i -2 0D

1. O A 8/8 SEC O. 8 Irigure B-2 l

STONE WEBSTER ENGINEERING CORP Acoustics and Vibrations Lab. 316.4-00 E VLG-228.-O6 V/E8 C SHOREHAM D. G. 101 9-28--83 --. _ _...l __l p_ l _._ __ l __ _ _. p __.- l _.. _.... p _...p.._....... 1750 KW ON EMERG. BUS-TAPE 1: 237 y S5-1 316 MICRO-STRAI'N RMS F. S. ~~ 1O d8/OIV. gu 16 1 l _L RS - i i a i l i f I 1 i i p__l__ l j;i 5l -[ } _ _ w L.[ u t 1.00 -O.2A A/8 HZ 100 Figure B-3

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 3 1 6. -+- 0 3 E VLG 4.79-06 V/E8 C SHOREHAM D. G. 101 G-- 19-83 -__ __ l l __l __ __ [ - -- l -l =- l _ __..l _ [__ _... _. 8 1750 KW ON EMERG. BUS TAPE 1 253 M OUTPUT TORQUE 316.000 L8-FT RMS F. S. SU

RMS, 10 d8/DIV.

8~ ~ 4 ~ ~ RS -- t i' 9 I ~ ~ l j p l A J i__ _ /._.i_;. __ _ )'l Al1 y { i -- 2. O D

1. O A 8/8 1-i z 100 Figure B-4 i

STONE WEBSTER ENGINEERING C O R P.- Acoustics and Vibrations Lab. 2 AUXO 1.00+00 V L.G VERIFIED C ___.V 8 / D M M D. G. 101 9-28-83 ..l _ p ___ ___ _l _._ p_.. .p._ _ _ __.) .j _ _.. p_. _..._. p_. _. _. C 1750 KW ON EMERG. BUS TAPE 1: 253 M TORSIONAL. VIBRATION [

1. O DEGREE P K.

F. S. 20 c!B / D I V. SU l j 1 16 j I CX-l 7Q ~ s v ( i i i ~ ~ l l ~ ~ L..-_.._..p....._.._p__ % % g i _...._ p._.... _ __ p....._.. p_._.. _ ..._. p.. _._... _ p _. _ _ _. p __ _..) t

1. O D O. 5 A A/8 l-1Z 50 I~igure B-5

9 STONE WEBSTER ENGINEERING CORP 'i Acoustios and Vibratione Lab. 2 AUXO 1.00+00 VLG C SHOREHAM O. G.

101, 9/19/83 l

l l l l l l C TORSIONAL VIB..

1. O DEG.

PK. F. S. M TEST

7. 2. 3 NO-LOAD.

420 RPM. 20 d8/DIV. TAPE 1 315-480 SU 4 l I I ( t i i i i [ [ CX - V4I@l i r 3 g l j dN 6 i l l __}llI_@j l l l_ l -l 1.00

1. O O A/4 HZ 50 l 7 i g u r ca FJ - 6

STONE B WEBSTER ENG I NEER I t !G CORP. Acoustics and Vibrations Lab. 2 AUXO 1.00-s00 VLG C t SHOREHAM O. G.

101, 9/19/83 l

l l l l l l 1 i C TORSIONAL VIB..

1. O DEG.

P K. Ir. S. TEST

7. 2. 3 NO-LOAD.

480. 5 RPM. 20 d8/DIV. TAPE 1: 315-480 SU 4 I i l l I I I I CX - } Mf k \\ ~ ~ d ~~ [y lh 9 l-hL l l I I

1. O D
1. O D A/4 HZ 50 i

Figura B-7

STONE S WEBSTER ENGINEERING C O R P.- Acouotios and Vibrationo L. a b. 2 AUXO

1. 0 0 -+- 0 0 VLG C

S H O R El-1A M D. G. 101. 9/19/83 l l l F-- +- l l l -.l C TORSIONAL VIB.. 1 0 DEG. P K. F. S. M TEST

7. 2. 3 NO-LOAD.

439.5 RPM. 20 d8/DIV. TAPE 1: 315-480 \\ SU i 4 1 l 1 i a W 4, g h %__.}_uu}J _ 1 p _ _. p p - - p _ _.....l p__

1. 00
1. O O A/4 HZ 50 l'~ i g u r e B-8

9 ~ f. STONE S WEBSTliR ENGINEERING CORP. Acouetias anci Vibrations L.a b. l 2 AUXO 1.00+00 VLG C SHOREHAM D. G. 101. 9/19/83 l l l -- l l l l l l C TORSIONAL VIB.,

1. 0 DEG.

PK. F.S. M 20 d8/DIV. TAPE 1: 315-480 TEST

7. 2. 3 N O -- L O A D.

450 RPM. SU 4 1 I t A CX -l i J d M " 1 gdh r 6 A g %ju_dt_h } j _.}_._.....

1. 0 D
1. O O A/4 HZ 50 12 i rjt..i r a B -- O

STONE WEBSTER ENGINEERING C O R P.- Acoustios o n cl \\/ i la r a t i o n s L. a !a. 2 AUXO

1. 00-900 VLG C

SHOREHAM D. G.

101, 9/19/83 l

l l b-l l l l -l i C TORSIONAL VIB..

1. 0 DEG.

P K. F. S. M TEST 7.2.3 NO-LOAD. 453 RPM. 20 clB / D I V. TAPE 1: 3.1 5.- 4 8 0 SU 4 ( l !( i \\ l N l 5 + M ._. l l 4; .ll_l _ p ___ l l _l_.__..___. -l 1.00

1. O O A/4 HZ 50 l ~ i g u r ca B -- 1 O

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 1.00+00 VLG [j c SHOREHAM O. G.

101, 9/19/83 l

l

==: _ __._ i _p C TORSIONAL VI8.,

1. 0 DEG.

PK. F. S. M TEST

7. 2. 3 NO-LOAD.

465 RPM. 20 d8/DIV. TAPE 1: 315-480 SU i t 4 1 i CX- + y, fS,b\\R

  • l i

1 h 'I t \\ r [k g d__h__...l h l }- l___ j.__._ __. _ -. i

1. O D
1. OO A/4 HZ SO Figure E3 -- 1 1

STONE WEBSTER ENGINEERING CORP. Acoustios anc! Vibrations L.al. 2 AuxO 1.00+00 vLo c SHOREHAM O. G. 101. 9/19/83 l l l l l l l 1 i C TORSIONAL VIB.,

1. 0 DEG.

PK. F. S. M TEST

7. 2. 3 NO-LOAD.

474 RPM. 20 d8/DIV. TAPE 1: 315-480 i SU 4 1 1 i l CX - ){ N R 9/ p r$ h gN, 3 ___ l l _l { j __i _ _. l l

1. O O
1. O O A/4 HZ 50 I

i g t.i r a B-12

l?' P ~__ . 8 RO.N b LC O CaV V Ep 8p I } L G D G 7 D 2 / Ns n N E I I 2l RoEE A G } Ei 3 R N E._ E tS0 8 T I P Na00-S L A r+5+8l L T }_. I C 5 2 O A G b E N 22-R F g i _. S E V 9 C 1 1 I N p l M O r Ri 1 __ c En 0 __ _ 8 Ta 1 __ 0 . / S A8 p 5 C D }__ O8 1 A. 2 BsEE. G D Eo// L W V V.- 1 O i O T O 5 O} t l 3O a s M_ 7p N.1 3 uO A N 0 1 D __ i Eo6O H-I E j_. A Nc2O Ep A w 3 E O A R_ R L E_O P. T O. T Y S c. 2 1 1l S C p S 1 r I S u I_ j r AR U1 T BR i S A T l

i STONE WEBSTER ENGINEERING CORP.- Acoustics and Vibrations Lab. 1.26-03 V/EA

1. 2 5 -+- 0 3 E

VLN 503.-O6 V/EB 1.25+03 E C S H O R El-iA M D. G. 101 9-28-83 l-l l }_ ___ l ___ l l A__ R--STRAIN 5-1 250 MICRO-STRAIN /DIV. _ g SU __ 1 - - STR A I N 5--2 250 MICRO-STRAIN /DIV. AT B ~~ ~ ')/ ) gy h I l\\/)\\j gh R s j _ _ SPEED-NO-LOAO TAPE 2: 278 __ l _-l ._____l ____ l l ___._..j____.___l___..._ -O. 5 A -1.OA 8/8 SEC O. 8 Figura B-14

4li' } P 7_ RO.N ..8 b LC CaV V V _O 8p I I L l G D D 7 Ns / / 2 __ N N I n 2 p_ I I RoEE l A A E i 3 R R E _. E t33 8 T T P Na00-S S A r+5+8l T ;_. I C b 5 2 O O _E G N 22-R R i 9 C C S E V 1 1 I I i_ l 1 M M R d En 0 1 0 0 8 Ta ./ 5 5 D p_ S A8 2 2 A8 l O BsEE. G O _. Ec// 3 L_A 1 W VV. i D &s 33 l 5 5 OpO t M N 5 u0 A N N 0 1 1 Eo63 H I I D Nc22 El A A E p-A B O A R R R E.5 T O T T P. e 1 1 _ J _.. _ S _ S H S S . 0 r S u g AR U1 T BR i S A F j i

w STONE WEBSTER ENGINEERING CORP. Acoustice an ci Vibratione L. a b. 1.26-03 y/EA

1. 2 5 -+- 0 3 E

VLN Il i i 1.23-03 V/E8 1.25+03 E C SHOREHAM D. G. 101 9-28-83 l ll-A_ R-STRAIN 5-1 250 MICRO-STRAIN /DIV. ~ SU _

i 1 ---

i AT STRAIN 5-4 250 MICRO-STRAIN /DIV. B ~ ~ R _- _ SPEED-NO-LOAD TAPE 2: 278 ,_.____.__p__ __p ._l _F -- _. [__ l _- - } - l -0. 5 A - 1. O A 8/8 SEC O. 8 t irigure B-16

o p 3, ~a STONE WEBSTER ENGINEERING CORP. Acoustice and Vibrations Lab. I k* 1.26-03 V/EA 1.25+03 E VLN 3.~!e O - O e v2E8 250.-903 E '< C + / SHOREHAM D. G.. t101 9-28-83 l l 4 g. 7 p_ _ ___ s i A__ R-STRA$N-571 250 MICRO-STRAIN /DIV. l i i; l su __ 1 1 l AT 3 - INPUT TORQUE 50.000 LB-FT/DIV. s 4 R_ i / ~~ TAPE 2: 278 SPEED-NO-LOAD l --.l_--._ _. j -- _. __ l l --- --. l -0. 5 A O. 5 A 8/8 SEC O8 l Irigure B-17 i 1 l

I, I S' TONE. WEBSTER ENGINEERING CORP. Acoustios and Vibratione Lab. 1.26-03 V/EA 1.254-03 E VLN i 1 .26-03 V/E8

1. 25-*-03 E

C SH'7REH AM D. G. 101 9-28-83 l l l l ? A_ _ R-STRAIN 5-1 250 MICRO-STRAIN /DIV. SU _ I 1 - j 3 3-UNCALIBRATED - - C YL.

  1. 5 PRESSURE.

R TAPE 2: 278 _ _ SPEED-NO-LOAD -_p _ p_. =. __. ! l l -O. 5 A - 1. O D 8/8 SEC O. 8 t Figure 8-18

-. ~... a g g i T T7 T 7T J--l -l r-t T-s g g g g 9 g O_ i i i i i 0 E Z OnJU ^ O

_ O Og>

i., a s O b C, N O v,.. se f.; r " 'c.) N H i ,d.,Y Z0WW Y 2 0 l' a tg ' g "L-0- W p G Ob; p [ Z g 0 0;b a J, ,r + me ,m I a i t-6 W. Us L9 n LO LO N. O u. (i

W ZZ N U I E

'G' O i 7' W. 2 d d i s c a H I C O Em ig Wc 0 Fg di O O l '- 'h J 4$ U M <0 W 0 W Wd' d Wg\\\\ l O g Z jO 3.g >>jj 10 a m p m01 O 33 O H '~ 0) s' O O '<- : Z

1

.- e W) g 4 7 g

,5 i

I: s -_ D <.n U id "i i e w

e. 0 (u O

<b re- . F < e, , E ', f J l 0 Z i 0 O r e-(!) 1,; U 'O Y a Ii:h iiiij M.iiii i i i__a i ii iiiiii s i iiiiiiii d F 0% O,9 < Z ,\\ e, U

. ii 2i i, ,,,,,iii. 4 i ". I '(* a i I ~ L l I I I I : I 8 E,Z J G i D_ - 0 1 H H d g J 0 O O N g O Z Z p"; sC 1 s s i J,

i. T E,1 O W W il s

ai g y 3 W.p (O C0 (g ! p p 0, 40 00] m m 5j t-f ig! i i 7 H C {_ 0 DO N .O O 3 !W Z.D NN: ! g g ~ j !.1] ), '. 'Gi O O / l@ .s e .L s s a Ey e!. I I O wg 0 : *. e' O 0 J $,'( ~ F D fj f _1 m M <T "i m e ww-Lil N ] O t 3:.0 > N>g y I. J Z i < s w O o) # m 0 4 0 LO L O l i O O, -l / s

a O O 'I !

E 1 OJ 2 3 i I l x l woe 1! s s y i< m )) i# 40 gdW1 Ti E E O< 'Soi F F F c W L; G G J o ( !!Ill!!ll li-i ih-j ; ; 5 m < E Oe F G1 W J,,

I I iI l 8 f I 8 I I I i8 ? I ! 1 TT)I b I I I I i i i a i l i I I i ! C E Z Of J U i lO Og> O1 2 y g h! O l C O \\ \\ z0 ? g m H H 1 $.0 W W i , u. Js gi g g E. '1 4 M M m ' F F 2 0 00g g g f-l L fTm. 1 [ r+ H 00 N I O O ' U, O L i Z.s N 01 I i g 1 ! !L U U i t"' W> a'*'Q! 1 l 1 H H 1 *Q 2 I O d D; .g WFC i e O O O l O 0 0 J L d. W <m! N N i Q g W Wf W N l O i 3O>\\>d' 7 7 Z i< s -4 N in m c.) p MG O i g OO i H '. O t t y c-3 l I W0 0M H H O, I 1 <5 4 0 0*' oj WI m T T T Og.j jo l @::d f F F F-i m Il m a G 1 i iii ! i i i i i i i i i i ii; I i i l i I il i I i l i i i I I ii J U' < 2 3-F O2 .(0 ,Y a.

l e i.., 1l? r l ' i i i 6' ___d_ _- _ = __ _ ___~ P L - O R.N O b LC O CaV V V 0 l I p I 8 L D D 2 A=E G / / Ne N N a 2 I n p I I } RoEE A A Ei 3 R R P I E t33 8 _. T T A N a 0 0 p. S S ~- T }_ r+5i8 I C 5 2 O O G b 22 R R E - S Ni E V 0_ C C = p I 1 1 p I %D Ri 1 _. M M c A 9 0 En 1 __ 0 0 v 'O .- / Ta 5 5 Lp8 S O8 2 2 l BsXE._ O G E o U /. _. 4 N A 1 Wi AV D. _ 2 5 3 D } .t } 23 M __ -- O 2 2s I 0 u A N N 2 1 wR I I G Eo 3 H _- Ep A A A B } Nc 2 R_ R R N . 5 O A T .O. T T a O S H _. S S O r __~ _ S u ~_. g Ap U1 T 3 R i 1 S A l l i! ,3

STONE a WEBSTER ENGINEERING CORP. Acoustics and Vibr.ations Lab. 1.26-03 V/EA 1.25+03 E VLN i' 3.60-06 .V / E B - 250.'+03 E C SHOREHAM D. G. 101 9-28-83 _l -- - j j } -j -j .._._.j__._._... A_ ~ ~ R-STRAIN 5-1 250 MICRO-STRAIN /DIV. i l g Su 1 -- ) i ~~ AT r OUTPUT TORQUE 50.000 LB-FT/DIV. 8 - 2 R_ I _ _ON GRID NO LOAD TAPE 2: 280 5 .... _... p_ - __l - p_. .p.. ___p__._____. -- O. 5 A O. 2 A 8/8 SEC O. 8 Figure B-23 j

STONE 2. WEBSTER ENGINEERING CORP. Acoustics and Vibrations L. a b. i 1.26--03 V/EA 1.25+03 E VLN' 1.26--03 V/E8 1.25+03 E C l. SHOREHAM D. G. 101 9--28-83 [ ,_._..____. p._ __....p.-- __ p....._.-. p_.. -.. _. p_ _..._ _ _ p_... _ _... p_. _. A-S R-- - STR A I N 5-1 250 MICRO-STRAIN /DIV. l 1 l a i Su _ I I. 1 I AT ~~ g - - C YL. /.2 5 PRESSURE. UNCALIBRATED R -. 'k ^ ~~ O N. GRID NO LOAD TAPE 2: 280 l . p.... _.. p_... . p_ _.._ _.. p .. p.._. - - t ~. --. F... -- D. 5 A -1.CD 8/e SEC O. 8 i Figuro B-24 l i

liI t P _~__._____2 _~__ R.N _8 8O O b LC b 3-CaV V ^P _pI V 2l L G D I . Ns / D 2.__ _ N / I n T I RoEE } l A F Ei 3= R S_ E t33 8 T B U Na00-S L B.F 9 I r +8l_ G b 5 2 O 0 YC 5 R 0 C.E Ni 20 C 0 NS E V 1 2 9_ E l. 4 I 1 M 0 G __ R d En 0 5 R Ta 1 __ 0 E __ 8 p5 E M_/ S AB 2 U E __ 8 j BsEE. Q G Ec// R N 1 _ A Wi VV.D O O_5 5 T t } l 8s 3e W 5 M u0 A N T K.O 2 0 I U Eo60 H __ Nc26 E4 A P 5p O A .R R T 9 _. A 8 6.O T O T U a 1 3 S H S O 1. _ 1 r S u d __ _____.~_~_ g AR U1 T 8R i S A F l!

i j; 1l

STONE WEBSTER ENGINEERING CORP. 4 Acoustics and Vibrations Lab. 119.-O6 V/EA 1 . O-903 E V L. N i, I 7e1.-OS V/Ee 1.50+03 E C SHOREHAM D. G. 101 9-28-e3 l ._ _ j l _l -..j p ^-- GE N. VOLT. < PHASE A> 2 RV/DIV. ll l \\1\\ (\\ llll\\ l ll l ll ll l\\\\ l ( SU _ ~ ~ ~ lJlJ Jl ) ) ) i ( AT - - GEN. CURR. < PHASE A> 300 A/DIV. ~ B ~~ - 1}I}'j'1A4R II}R}f5fIfIIj' % I I I 5 I 5 5 5 I 5 I I l $ I } I I I l' _- _ik8kikikik)kikIkikik a k kIk k VI s k ik ik ik iiI k i k I k Ii -f_- d _ _1695 KW ON EMERG. BUS TAPE 2: 232 d_ --_.....-.._.p._. _.l . l._ _- -l _.._.-l_.-- -F-.-- F _.. _ --.. l 1 OA O. 5 A e/e SEC O. e l Irigura 8-26

STONE WEBSTER ENGINEERING CORP. 1 Acoustics and Vibrations L.ab. l f 1.26-03 V/EA 1.25+03 E VLN 1.00+00 V/E8 1.25+00 E C i j l SHOREHAM D. G. 101 9-28-83 - p. = = -- - - -l l _l -._l . )__..... ; A_ STRAIN 5-1 250 MICRO-STRAIN /DIV. i R-p p _0 } 0 f ) l_ SU __ 1 -- AT

  1. 7 T. D. C.

ON FALLING EDGE _ _CYL. y -. _.. y B ~ ~ n_ r R__ u ~~ 1706 KW ON GRID TAPE 2: 2G7 ~ I_... __ _ _ p___ _._ _p_. __ _ __. _ p__ _ _...... p... _..... p._ F._.----F -1.OA

1. O D 8/8 SEC O. G ligura B-27

l' j.!i

il*

, !i I P - 8 R O. N.C bL . O CaV V V 7p p I I L G D D 8 / / 2 Ns N N n y 2 p_. I . I I RoEE A A l s Ei 3 R R E E t33 8 T T P Na00-S S 7 T A p. r+5+8l I b 5 2 O O _ C GNi 22-R R . E . S E V 9 C C 1 1 I I ( l 1-M M D R d En 0 I 1 0 0 R . 8 Ta 5 5 G p. / S AB 8 l 2 2 l BeEE. G N Ec// 2 O . A 1 W VV. i D 5 5 5 t l l &s 3S W 0O O 8 M u A N N K 2 Eo .H I I e Nc23 El A A 6 }_ A B R R R 0 O A 0 _. O O T T 7 T a 1 5 S H S S 1 . 1 r S __t u ,1-4_ jc AR U1 T GR i S A 1

l i
i 1

j,jijl il i:!1 j:I

i Il'g I iiI i 1 iii f i I e t ; a 4 i W l ! ! l l1 I I I/l i 5 s

  • (D E.Z l

CnJU U T, > iO bd s s J O i O O C i Z 0 h h N L m[ i s s N i yoWW T< T g 'd mi W E. M M M Ql F F E I 4000 1i cn e <d y d-l p HO {n D LO g! ol ! U N o W ZO N N; j y g j @ '0)! O O 'ij > 4 --1s s Ey al I Z O F. $ O*! 0 l@ s Wc 0 1 (D <g i iD D C __ g N N i C r) W W,' A 'JJ h \\ \\ b: i a (0 0 i 1 ,s //. -~ O I 1 l _ _ iD l .o g g l 00 c) M Mvl '2' O ,,3 0 0 '< Z Z X j ; c.j l l l l i i s s j 1 o fj fj y 5 01 < Q Z O <O Zi E I O O l l F- ""O! F F b i fi m I' m Q a Hii iiiiliiii.! i ii! i ] (D i i7 i iiii i i i i i i ii fj '? < T Ja F 0% .g (D m l

p, ' 8_ l il i I iI i iI iI t i i iL 'I I i l i I I I i j i i i l I i i l i. L

O

&,JU I Cr> b -l 0 Og y >H H g 0 C O Q l zO \\ \\ N i 4 4 sg 1 H H N i OWW T 'M i E E 'A i' W 4MM F F p_ 40 00 I g g l Y Y [ g_ $ O{ U U. gh j H IU f N! O O ,W Zs NN Ii E E iW 'G; O O W ). = 1 d

  • 1 H

H a I I O l Ty s Wg O c a O O E i-g 0 C U d$ W <D N ,i T O W Wdi o! W O \\\\ a g' ~$.,.i > > d U + W W k b 3. d O s i I i

I m

^ 8 H H [ W 0 01< g Zok$y< O< E' O. I O

O l--

'O! F F b i O. m I W b i i i i l i liiii WI ii i i. i i i ii i i iTi i i i i i i i i i ii J O < E Da t-QE M .7 i L

I STONE WEBSTER ENGINEERING CORP. I Accustics and Vibratirns Lab. 1.2e-03 V/EA 1'.25+03 E V t.N l 3.60-06 V/EB 250.+03 E C I SHOREHAM D. G. 101 9-28-83 l l l _. l l l A- ~ ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. I R f h h i SU _ 1 __ i -~ ~ AT 4 l OUTPUT TORQUE 50.000 L8-FT/DIV. l )f Df f ~ B ~ R__ f ~ ~ h ~ ~ ~ a _ _ 1706 KW ON GRID 2s287 j .__. _ l -l .l ---l l_.._.-_... l -1.OA O. 5 A 8/8 SEC O. 8 i lrigura 13 - 3 1 1 4

STONE WEBSTER ENGINEERING CORP. J Acoustice anc1 Vibrationo L_ a b. 1.26-03 V/EA 1.25+03 E V L.N e 1.26-03 V/E8 1.25+03 E C SHOREHAM D. G. 101 G-28-83 i ___.._.._...p.. l F __. _ l _l .. __. p- -__ _._ p _. _ _ __. A__ STRAIN 5-1 250 MICRO-STRAIN /DIV. R-q 0 ~ l SU 1 - / AT -- CYL.

  1. 5 PRESSURE.

UNCALIBRATED L3 R j _._ 1706 KW ON GRID TAPE 2: 287 . p... ___. p. _.. _... F.. _ _ -.. _ F-... _. -. F. --- F_ -.. -_ -- F--. - -- L_ _.... O. 8 -- 1. O A -- 1. O D 8/G SEC ) i f7igura 8--32

STONE WEBSTER ENGINEERING CORP. 1 Acoustics and Vibrations Lab. 119.-06 V/EA 10.O+0S E VLN i-781.-06 V/E8 1.50+OS E C 'SHOREHAM D. G. 101 9--28-83 __=; ^-- GEN. VOLT. < PHASE A> 2 kV/DIV. R~ l T\\\\\\\\ \\1\\\\\\111\\li1\\ 1\\ 1\\ \\1\\\\\\l [1 ll \\ l ~ ~ l SU _ 1 - \\1 [ \\ l I" _1 I AT l __ GEN. CURR. < PHASE A> SOO A/DIV. 1 I I IIIII l -F3f313$$ jif IIIii8383iM'I85iI i8jRMijfIiI ] l 310 6 0 h k ( k g i f ( v ( i W k k k k k V k 6 i i d i k iI k k V k i k i h 1 k 1i j k-i-l _ _1750 KW ON GRID TAPE 2: 293 . -_ p _ - p __l __ p_._ - _ _-;

1. O A O. 5 A 8/8 SEC O. 8 l

Irigure B -- 3 3 l l

STONE E WEBSTER ENGINEERING CORP. Acoustics and Vibrations l_ab. 50s.-OS V/EA 1.25+OS E VLN i l 1.00+00 V/E8 1.25+00 E C SHOREHAM D. G. 101 9-28-83 -l l l STRAIN 5-1 250 MICRO-STRAIN /DIV. A-R- - p p q } } ) c Su I Vj U I ( (0 1

== W p6 1' _CYL.

  1. 7 T. D. C.

ON FALLING EDGE AT y__ i 4 1 t_ r r I 1 r 1 i B _- l _ _p ,L _ o 7- .g k_ m ( r l _ 2ssO Kw P. F. O.80 TAPE 2: 356

~

_.. _. g. ._ s -i -i- ---- I -1.OA 1.00 8/8 SEC O8 i j Figure 8-34 i 4

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 503.-OS V/EA 1.25+OS E VLN ,l 509.-OS V/EB 1.25-909 E C l i SHOREHAM O. G. 101 9-28-83 -- - I i STRAIN 5-1 250 MICRO-STRAIN /DIV. A-i l p p R- \\ ) i i 1 p hI l.. l' SU _ hO 1 -- ( AT STRAIN 5-2 250 MICRO-STRAIN /DIV. ~ ~ b [ h[ b ^pi ~ R 2350 KW P. F. O.80 TAPE 2: 356 u._ 1 -0. 5 A -0.5A B/8 SEC O. 8 Figure B-35

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 503.-O6 V/EA-

1. 2 5 O S E

VLN 491.-b6 V/E8

1. 254-03 E

C l SHOREHAM D. G. 101 9-28-83 I l l l l l l STRAIN 5-1 250 MICRO-STRAIN /DIV. A~ R-p p q ) ) l f h, u SU U ( (d (0 1 AT 5-3 250 MICRO-STRAIN /DIV. __ STRAIN g -- R__ _2550 KW P. F. O.80 TAPE 2: 356 -)_ l l-----.- l -0.5A -0.2A 8/8 SEC O. 8 ligure 8-36

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibratione Lab. j i 2 AUXO 1.25+03 E VLN j, 490.-06 V/EB 1.25+0S E C [ S H O R El-IA M D. G. 101 9-28-83 _-l l -l l _-l ____p A-MICRO-STRAIN /DIV. STRAIN 5-1 250 n p R-p )- /) 5 ) 7 } [ 11 0 U SU _. (0 d ( 1 - AT ~ $ STRAIN 5-4 250 MICRO-STRAIN /DIV. 8 - R_ E 2550 KW P. F. O.80 TAPE 2 SSS -p_....._.. ._. __ t -F _ F._----I -0. 5 A -0.2A 8/8 'SEC O. 8 j iligura B -- 3 7 4 1 l l

M STONE S WEBSTER ENGINEERING CORP. Acoustics and V i b r-a t i o n o Lab. 503.-06 V/EA 1.25+0S E VLN S.60-06 V/EB 250.+OS E C i ~ SHOREHAM D. G. 101 9-28-83 i F ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. 'l A~ R-- q j q ~~ 0 )0 1) ^ Su _ f d 1 - 0 ( h b __ AT __ OUTPUT TORQUE 50.000 LB-FT/OIV. -) I h0 9 1 f) ) I] ~ 8 ~ ~ R_ l ( g y h k-_ (hb ( hb l k 6 -2550 KW P. F. O.80 TAPE 2: 356 l _._ _ p.__.. -4_ ._ _. l l -l _ _ J-- -.. -__ -O. 5 A

1. O A 8/8 SEC O. 8 l

f 17 i g u r-e B-38 i

STONE WEBSTER ENGINEERING CORP. Acoustice

a. n d V i b i-a t i o n s Lab.

503.-OS V/EA 1.25+03 E VLN-i 504.-O6 V/EB 1.25+03 E C SHOREHAM D. G. 101.9-28-83 -l i -_.l i i i i A~ ~~ ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. R-n q p i $qj_ $p ) ~- I 0 ~f' { SU __ )J 0- ) 1 AT CYL.

  1. 5 PRESSURE.

UNCALIBRATED ~ ~ 8 ~_ ~_ R_ l ~_ ~ - 2550 KW P. F. O.80 TAPE 2: 356 _ _.-.j__ _ .l ._ _. _ l l - __ _ l -- _l -0. 5 A -0. SD 8/8 SEC O. 8 F i g t.> r e B-39

1 STONE WEBSTER ENGINEERING CORP. l Acoustics and Vibratione Lab. 503.-OS V/EA 1.25+03 E VLN 1.00+0C v/EB 1.25+00 E C SHOREHAM O. G. 101 9-28-83 l , l _l -- l ___ l _l l ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. ~ A~ i R-q p ) f) ) ) SU __ d hV h h 1 -- a j. ~ ~ ~~ l AT - CYL.

  1. 7 T. D. C.

ON FALLING EDGE i i u L_ i m I' 1 r-r P r r' 8 - ~ R-p._ _ p s_ p s_ W i. \\ _2550 KW O.90 P. F. TAPE 2: 380 ] _ __. j_ l l _.___l____.._.._}___ ._ l - - j _ -..-.- _. -1.OA

1. OD 8/8 SEC O. 8 12 i gu r o B-40 i

i' t STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 503.-06 V/EA 1.25+03 E VLN 503.-06 V/EB 1.25+03 E C SHOREHAM D. G. 101 9-28-83 l l l F-- -l l 1 . A-STRAIN 5-1 250 MICRO-STRAIN /DIV. R-q n q-- i F l 0} d( 0} 0 1 1 J SU _ 1 --( J g ~ ~ STRAIN 5-2 250 MICRO-STRAIN /DIV. AT q R_ ( e '$2550 KW O.90 P. F. TAPE 2: 380 l p l . - -- = --- ! i -1.OA - 0. 5 A 8/8 SEC O. 8 t 1rigure B-41 l

STONE WEBSTER ENGINEERING CORP. Accuetics and Vibrations Lab. 503.-06 V/EA 1.25+03 E VLN 491.-OS V/E8 1.25+03 E C 8 j SHOREHAM D. G. 101 9-28-83 }._ l i I ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. l A-l 4 p_ _ S g )f n ~ i SU __ } [,f ~~~ l dl U 1 -- g i l AT MICRO-STRAIN /DIV. -- STR A I N 5-3 250 g __ R_ __2550 KW O.90 P. F. TAPE 2 380 l -- } _ __.__._ __ ; ___ }__. [ q 2 -1.OA -- O. 5 A 8/8 SEC O. 8 \\ l Ir i gur e B-42 i

l

i

-l l l; j!I f \\ j I ~ P ~ - 8 RO.N q 0O b LC 8-CaV V V I I 3 +_ p 1 L G D D / / 2 _- Ns - N N I n I Et I RoEE A A P 1 Ei 3 R R A E t33 8 T T T Na00-S} S gv t r+5+ 8 l-I ( C 5 2' O O G b E Ni 22-Ra[ R S 9 C C E V I I F )_ 1 1 R d , M M 1 P En 0 8 1 0 0 5 5 0;/ Ta 2 2 9 8 S A8 l BsEE.G Ec// 4 O_A 1 Wi VV.D _. 5 5 5 l t l &s 6S W 3 M np K_0 OO u A N N 4 Eo..H I I Nc30 El A A 0 ;_ B 5 __ A R R R 5.O O A09 T O T e T 54 S H S S 2_1 r S u ~_ ~ _ _ ~ ~ ~ j c AR u1 T 8 i S A F 1 ,: i

)

i j

i STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. i I 503.-06 V/EA 1.25+03 E VLN -j 3.60-06 V/E8 250.+OS E C l SHOREHAM D. G. 101 9-28-83 __} l _____ _. __. ; I i 1 STRAIN 5-1 250 MICRO-STRAIN /DIV. - ~ A-9 R "- } } } j p i SU I L Ll ~ 1 -- h j l I i 9 l AT - ~ OUTPUT TORQUE 50.000 L8-FT/DIV. ~ ~ B - - h h9 ) h@@ } F R_.. k_'_ gh b ( ( h ( i k i t i _ _2550 KW P. F. O.90 TAPE 2n380 -_____...p...__. _ __l - _ J___ - -__)_. - p.__.. ___ [__ _... __. O. 8 - O. 5 A

1. O A 8/8 SEC i

Figure B -- 4 4 1 l

W. STONE a WEBSTER ENGINEERING CORP. l Acoustice and Vibrations L. a b. I 503.-06 V/EA 1.25+0S E VLN 504.-06 V/EB 1.25+OS E C i SHOREHAM D. G. 1:01 9-28-83 - __ _ p ._ p_ - _}., =l _ p __ __ _ _. h ~ ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. A~ R-- g -} ) ) 1 l .pg U ,: g l< i t SU f 1 --V CYL.

  1. 5 PRESSURE.

UNCALIBRATED AT g R_._ 2550 KW O.90 P. F. TAPE 2: 380 .1 i c _..._... _ _.. _. p. _. _._... _ }____ _ _ _ _ }... _._. ! . _._ -. l -._. - }__.-.. _ - j -1. OA -- O. S D 8/8 SEC O. 8 IIigUra B --- 4 5 i 3

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations L_ a b. 1 503.-06 V/EA 1.25+03 E VLN l I

1. 00-*O0 V/E8 1.25+00 E

C ? SHOREHAM O. G. 101 9-28-83 l l --l l l _.l ___ _. l _____._l_ --___l_______.... A~ ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. R-- p g 7 f 5 0 7 l }_ ~ 4 SU _ Uj l 1 -- ( AT - - C Y L.

  1. 7 T. D. C.

ON FALLING EDGE g g-r_ _ _ g __ R_ _ g $ ~2550 KW

1. 0 P. F.

TAPE 2 401 . _ __ _ l _ __ _ l .. _ _ l l __ _... _ l_ l .... _ l -0. 5 A

1. OD 8/8 SEC O. 8 irigure D-46

1 STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 503.-OS V/EA 1.25+03 E VLN 503.-OS V/EB 1.25+03 E C SHOREHAM D. G. 101 9-29-83 __ _ _ i ---____}_.__ l______... ; .__ j l =l ~~ ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. A~ l n q l R- ) ^ L su _ L b h (- 1 AT STRAIN 5-2 250 MICRO-STRAIN /DIV. g g _ l I -s. I R_ _ _ _2550 KW

1. 0 P. F.

TAPE 2 401 ~ ~ ._l ____.j____ .._}____..

__ __ _...+

O. G -O. 5 A -1.OA 8/8 SEC ligure D-47

STONE WEBSTER ENGINEERING C O R P., Acouetios anci Vibrations L.a b. I 1 503.-06 V/EA 1.25+03 E VLN 491.-06 V/EB 1.25+03 E C SHOREHAM D. G. 101 9-28-83 l ..l -l __[___ - p __ _ _. _. _ ~~ l STRAIN 5-1 250 MICRO-STRAIN /DIV. A-R- q q q \\ ). J l I [ U b V l S tJ _. ( 1 -)- i AT ~~ MICRO-STRAIN /DIV. ~~~ STRAIN 5-3 250 ~ ~ 8_~ ~ R_ _e emusi 2550 KW

1. O P. F.

TAPE 2 401 .. _.. p. _.. _. _ _ l _._ _ _... l__.. _ __ _. _ p_ __._ _ __ p_ _ _ -. _ __ p_ _ _.. _ _.. l _ _ O. 8 -0.5A -0.2A 8/8 SEC 17 i gu r a B-48

STONE a WEBSTER ENGINEERING CORP. Acoustice anci Vibratione L.a b. 1 503.-06 V/EA

1. 2 5 -+- 0 3 E

VLN l 490.-OS V/E8 1. 2 5 -+- 0 3 E C SHOREHAM D. G. 101 9-28-83 l_ l p._ _, __.._ l }._ ._____l i, e' ~~ STRAIN *5-1 250 MICRO-STRAIN /DIV. n q R-q l } } q SU _. h ( 1 -- AT g - - STR AI N 5-4 250 M I C R O --S T R A I N / D I V v R 2550 KW

1. O P. F.

TAPE 2s 401 _____._.....p_....._..l___.....__..F._ _... l.. __ --- _.l .._.. _ _.l -..-- - [-. -- .- l -O.5A --- O. 1A 8/8 SEC O. 8 ITigUro 8-49

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibr atione Lab. 1 503.-Oe V/EA 1.25+03 E VLN' 3.eO-Oe v/EB 250.+03 E C I i SHOREHAM D. G. 101 9-28-83 i j -l l _ _ _..). _ -l ._..__[__...___._.._ A~ l ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. q q q R- )9 i 1 g 1! -l_ SU _ U U 1 - h h (- _- i l AT ~ TORQUE 50.000 L B -Ir T / D I V. ] OUTPUT s - q q f'fpn qh f'fpnfq f'Zf ~~ (V (Vu {v u R_ l - L Ou c ) QNu y -ko a i k KW P.F.

1. O TAPE 2n 401 l

___2550 l _____l j -- - _ _ __ _ l ._ _ _ l .l - _-__}____... -1.OA

1. O A 8/8 SEC O. 8 Figur'e B -- 5 0 i

8 STONE'E WEBSTER ENGINEERING CORP. Acoustios. a n ci Vibratione L.a b. 303.-06 V/EA 1.25+03 E VLN 504.-06 V/EB 1.25+03 E C [ SHOREHAM D. G. 101 9-28-89 l _l l p l ___l________.}___..__.... A- ~ STRAIN 5-1 250 MICRO-STRAIN /DIV. q g p R- ) h- } d i SU _l_ 1 - h ( AT -CYL.

  1. 5 PRESSURE.

UNCALIBRATED t g _ R__ 2550 KW

1. 0 P. F.

TAPE 2 401 j l L_... .] }___ - j ___._... _.__l - .l l .___..._-l___... -O. 5 A -- 1. 00 e/s SEC O. e i Figure B -- 5 1 )

STONE-WEBSTER ENGIblEERING CORP. Acoustias a n ci Vibrations L_ a b. 2 AUXO 1.25+0S E VLN l-l 1.00+00 V/E8 1.25+00 E C S H O R El-IA M D. G. 101 9-28-83 p. j p _. --j p- .[ A__ 5 0 R- )) ) l R O I T i f Su l.(I (' ( 1 - - h( ( I t ) _ _ STRAIN 5-1 250 MICRO-STRAIN /DIV. ,i e ) AT i W p h-i I g _ j R_ t 7 j p _CYL.

  1. 7 T. D. C.

ON FALLING EDGE TAPE 2 318 f 3500 KW __.....__l ___. _ }_..-- _l -. __ _ l -. -.._ l --l ._. _. F. - - - _. O. 8 -- 2. O A

2. OD 8/16 SEC i g u r c!

l.~: - 5 2 f.

[l ,l

I l'

-]p P - G R N. C V V Oi L I I 8 O l C a. V D D 1l L / / 3-G N N s - ( Ne 2-I I I n A A } RoEE [ R R E_ 3 S Ei 8 T T P. Et 33 S S A_ T __ Na00. 8_ } r+5- + 2 [_ O O . C I b 5 R R G E Ni 22 9 C C S I I E V 1 1 M M } l ( _ 6 R d 1_ En 0_, 0 0 ) 1 1_ 5 5 / Ta 2 2 _ 8 } S O8 j f SsXE. G EoU/ 1 2 A Wi AV. O D 5 5 t j 2S W 3 &s M 1 O u A N N K 5 Eo H I I El A A 0;A 3 Nc 3 R R 1 0 _. 1 R 5 __ O OA 0 T T a T O S H S S 3 ___ 1 5 r u S ( Ap U1 T gR i S A I 5 f! 4 -ll l! 1 l

i J STONE a WEBSTER ENGINEERING CORP. Acoustico and Vibrations Lab. 2 AUXO 1.25+03 E VLN 491.-O6 V/E8 1.25+03 E C SHOREH A 1 D. G. 101 9-28-83 i I l l l l l-A_ 1 i R-1 5 f, f i } V V i -( g Su _ l V ( (G (g ( 1 l j 4 STRAIN 5 --1 250 MICRO-STRAIN /OIV. ~ ~ ~ ~ AT o STRAIN 5-3 250 MICRO-STRAIN /DIV. -- l [3 ~ ~ R_ TAPE 2: 318 i 3500 KW _ _ _ __.. F - - p_ __.___ _.; - =.._ __ p. i l -- 1. O A -0.5A 8/16 SEC O., G l~ i rJt.Ji ci B - S et f

~ _ ~ - - - _ - - _ we M-- -- ~..-.._. ~ G. i,, s. ' > 1. ,8 g w s O c _J U T Og> M s D n ~- \\ y m, O. e 7 t C Z,1 "-'i + v N s, i ^ g0'Q: 1 W

  • W

~ W.g h 0' $4MM i M F Uhhi b b s h $w 9, 5N~ 0] h q' O g "H ~ ~_ U># o e 2 y ~ l w' e 1] N O O rd !,1 n uf !D L j~ O N ~ i 'l El O <g U LTig w\\ Ng., O W O>>Oi e: I ~ >i 3.s I

l)

,a) i 'D D M0 00 5 3 7-e o a O0 Z z i C ' '4 ! 3 c $0 I 4 0 m',O'WI c-o - < me %s g Z v L,' e y' O <( OG a m r 0 r f-G p to 4 VI r ~ u ,l,,,, Nie 8 ? ,,c. } e

  • I I i l

'I I I I I l i, U) y y (7 8 ~ F G k 'H Y) e

r 4 l STONE WEBSTER ENGINEERING CORP. Acoustios anci Vibratione L. a b. 503.--06 V/EA

1. 25-'03 E

V L_ N 3.60-06 V/EB 250.+03 E C i S H O R El-IA M D. G. 101 9-28-83 _ _.._. _ _ p.. _. _. __.. ; }_....__- ... p_.... _. p.. . p. _. _.. _.. }... h f .A _ _ ) I R-l i ) I -~ 0 l a h l SU _ h g I Y ( f 1 y y MICRO-STRAIN /DIV._[ ~ ~ ~ STRAIN 5-1 250 l l - -OUTPUT TORQUE 50.000 L G -- F T / D 1 V. l AT 1 ~ ~ ) 3 _ 20l$q1 0 )OplAi n)0 1. '3 l I j H-( ( { { TAPE 2n318 ~ - 3'd 0 0 KW m. l _......__.. p_._ __ _._. _ p _. _.. p........... p _..._. _._ F _ . _ F. O. O l

1. O A
1. O A B/16 SEC F i cjura B -56 1

4

1 i iii. . i

...iq.iii c

i: i . i i C 1,I i OnJU i C C U n., > c sn O" 5 0 Q Z 'iI 7 [. f-N- u mb N <g i m Mi 0 W W (n-g g H d i-i 0 0.. S 4 9 @ CD m 4 0 O O g! i g, r,

  • L i + N+

0 U O n O 'O I a E U U Z 'S ZZ N N G ^ u. 3 a i ~> ~~ z W O !. Zg 0 1, ! d e-u i.g ~i 0 a .s O OQ 1 U c @Im <J X Wji 0 i g t J. \\ g >O _n

i. O

.$.s 4 i r Lu p s in' ND e 03 0 ID 3 ' "' s I! I 2 / I' Yl [G i,; 3 i 0 1 m O-< n"s C <0 s'W.L ^ 4 l' 1 C'r O }-. 7' 0 i i-0 O I' W U $l' iliiiiilii E C ii ii, . i i , iii i i, i i. i, ii r. <E ~ r I1 .j' O .me.m

iiiiiii.i ii,iie iii s I I I 'I ij 1 I i. 1 C) E'Z t 0, JU miO 03> - m -!- w - M! j r. O 7g jO O \\ N ~C iN W[ %0WW T y m .Y - O

D. I rf 4 R M e O-40 OO i g

g pj I-4 t T g-- ~ jU U [n O O n . if) N i ni< lW Z3 i i O w.O 0)1 W 1 ~ W i i -d W _ Eg - l- @ Wc O j: $ - ig 1 ( Fo 47 h- ~ j ,- g -h U) <0 Q (0 W Wf 1 O>\\ \\ W 8 >O F-T l< = --. 0 3d g. .3-y ,I ~3' m 0O 03 0. OO<'o-w I l ,. 3 1 I-U._ Xi q E CA< h l O<bN O n~ T.Z-t - J ID ~g 0!W-W O- -G'j r F ~3 y) IjO-l i i ii _i i, mi! 4 l l l l 8 l l l iiiiiil i i <T Q-F 0E .[ W ..a.

STONE & ' WEBSTER ENGINEERING CORP. Acoustice and Vibratione Lab. 1.26-03 V/EA 1.00+03 E VLG l[ 503.-06 V/E8

1. O O -i- 0 3 E

C SHOREHAM O. G. 101 9-28-83 l -l p_ j _.) l l ._ _ _ _ ) l A M SS-1 1000 MICRO-STRAIN RMS F. S. I ~ ~ l SU f f I ( l 7 4~~ l ( \\ \\ \\ \\ RS TAPE 2 278 _ _ SPEED-NO-LOAD S5-2 1000 MICRO-STRAIN RMS F. S. g_ I I M_ _ { I I l l I I ( I I l j ( ( I I lbj1. Q_J4_J j 6_A_a m j u.h I;_& _.l-_L.Lj . L4.L. L_ lj J 100 l l -O 5A -1.OD 8/8 HZ l ' i gur a B-59 i

1 STONE a WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 1.23-03 V/EA

1. 0 0 -+- 0 3 E

VLG j'. 1.23-03 V/E8 1.00+03 E C SHOREHAM D. G. 101 9-28-83 __._..__.l- _._ l _ __.}_________ l._.. _.}___ - -l _}.__.__.__.}__.___._.g.._..._. A 1 M ~~ 1000 MICRO-STRAIN RMS F. S. S5-3 l i I I SU ~ ~ I I [ t I _4 - i I U'"'b -U RS ' TAPE 2s 278 __ SPEED-NO-LOAD g_ _ SS-4 1000 MrCRO-STRars RMS i=. S. M__ } I I [ r L._ 4.L L_ p j' l l= { j { l l A A 100 -O. 5 A -- O. 5 A 8/8 l-lz l-igura L3-60

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations L.a b. j 3.60-06 V/EA 316.+03 E VLG 1.23-03 V/EB C SHOREHAM O. G. 101 9-28-83 j j l l-l -l _p __l A M SPEED-NO-LOAD TAPE 2 278 f OUTPUT TORQUE' 316.000 LS-FT F. S. i su 4-- RMS 10 d8/DIV RS -- i i n h 1 I h..h )_; b Y M .M i O. 5 A -O.5A 8/8 HZ 100 li l !igura B -- 61

. llfi!, i' ,l e 0 \\ - _ 5 P 8 fi R.G 7 O b LC 2 C a. V 2 L G ) E Ne P I n 3.- A Ro F T l 8 Ei E ts 8 Na0 2 V l r+ -l I I G b 0 9 D l .. Z Ni 0 N / f _ H E V O 8 } l 1 I d 1 T O I R d En 0 A 2 l 8 1l R Ta / B D A S O I A Bsx G V O p EoU S L l Wi AD. ._ A D L _ 1 E t A F O Bs 2I F - O 2 Ml N N u A O K 6 I Eo H I P D 1 R Nc E D 8 E S E O A V R l_ R O E l O O. O P; T e S H T 1 S __ 1 r S u j c cy U4 X i S C 7 1

l

^ ll

STONE E WEBSTER ENGINEERING CORP. Acoustics and Vibratione L.ab. 1 1.26-03 V/EA 316.+00 E VLG 503.-O6 V/E8 316.+00 E C SHOREHAM D. G. 101 9-28-83 10 d8/DIV l l l l . _ __ __ p__ j . p__..; ^ STRAIN 5-1 316 MICRO-STRAIN RMS F. S. i. g__ l ON GRIO NO LOAD. TAPE 2: 280 _ l l .l I \\ \\ l \\ l \\_ i SU l I j [ l \\ ) J L_-__u_ _J'_ u d u !bL A. mA RS ~- RMS F. S. l ~ STRAIN 5-2;316' MICRO-STRAIN ~ l l ) g_ _ I M_ l I I J l f l i ~ ~ h((Oy@k h k M - _ _ _. l - _ _j J. ___ __.. _. l _p. - p_____.. p __ _.__ ; j 100 1 OA O. 5 A 8/16 HZ l 1 l l ' i g t J r C! 13 - 6 3 i I

j i STONE B WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. I 1.23-03 V/EA 316.+00 E VLG 1.23-03 V/E8 316.+00 E C I SHOREHAM D. G. 1O1 9-28-83 1O cf 8 / D I V I l __ l - ___. l l - _ __ l -__l p_.... [_ ___.__ _. _, ^ STRAIN 5-3 31e M'ICRO-STRAIN RMS F. S. ,l .l l -~ ~ M~ s l ( I \\ l SU I i l 4~ - r l j d A__) Llt l i L u u m t __t__ u t. STRAIN 5-4 316 MICRO-STRAIN RMS F. S. RS ON GRID NO LOAD. TAPE 2: 280 g_ M__ l i l i i r I I h L_ . L. Q _i L_ L_ p_. i l j a L._Ap L l l 100

1. O A O. 5 A 8/16 HZ l'igure B-64

I STONE E WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 316.+03 E VLG C j l s.60-06 V/E8 'l SHOREHAM D. G. 101 9-28-83 i l l l l p _ _ __ l - p _....._, 8 ON GRID NO LOAD TAPE 23 280 i M l l SU OUTPUT TORQUE 316.000 LB-FT RMS. 4-- RMS. 10 dB/DIV. i, RS -- A _.s _ i_.__ -: iL_ p 100 O. 5 A O. S A 8/8 HZ l 1~igura 8-65

STONE WEBSTER ENG I NEE.R I NG CORP. Acoustics and Vibrations Lab. 2 Auxo 1.00+0C vLo VERIFIED C SHOREHAM D. G. 101 9-28-83 l l-C TORSIONAL VIBRATION TAPE 2: 280 l l g

1. O DEGREE PK.

F. S. 20 dB/DIV. !i i ) 1 't i SU 4 n I l l f l I i CX-- N# b I l i lt A l \\M; 1 SPEED-NO-LOAD. O.80 ON GRID __l l _} __ l 7-_}_ l -- l l l - -}-- -- --

l C. SO O. 1A A/8 HZ 50 l~ i cju r e B-66

STONE 2. WEBSTER ENGINEERING CORP Acoustics and Vibrations Lab. 2 AUXO 316.+0S E VLG { C S.60-06 V/EB SHOREHAM D. G. 101 9--28-83 l -j j .___ - l l -_-l l ._.....__l l 1695 KW ON EMERGENCY BUS 2: 238 .1 8 M OUTPUT TORQUE 316.000 LB-FT RMS. SU 16 ~~ RMS. 10 cf 8 / D I V. i l pg _._ l I \\ 3 1 _L_ q_L_L_.pL_._.p _..Q a w.h }- lA l l 100 O. 5 A O. 5 A 8/8 HZ l'~i g u r e B --- 6 7

STONE WEBSTER ENGINEERING CORP. Acousties and Vibrations L.ub 2 AUXO 1.00+00 VLG VERIFIED C 1 SHOREHAM D G. 101 9-28-83 l - -- l l l l l - -- _ l _l . [__ __. _. C TORSIONAL VIBRATION 1 M i

1. 0 DEGREE F. S.

20 dB/DIV. i s l 1 l SU 16 / n l ~ ~ CX -_ I I 4 1695 KW ON EMERGENCY BUS TAPE 2: 238 __ l l _p. _4___ l l --__-}-_---- I O. 50 O. 2D A/8 HZ 50 l i ! 'i [Ju r a LT-- S S l

i t l STONE S WEBSTER ENGINEERING C O R P., I Acoustios anci Vibra.tione Lab. l 119.-06 V/EA 1 0. O -+- O S E V L. G I 781.-06 V/E8

1. 0 0 -+- 0 3 E

C SHOREHAM D. G. 101 9-28-83 _.p____.; p _... _l _l ... __ p - ^ GEN. VOLT. < PHAGE A> 1O kV RMS F. S. \\ M~~ I SU 16 - ! i ~ ~ I i .b b f f GEN. CURR. (PHASE A> 1000 A RMS F. S. l RS i l t B-- _ e 1695 ON EMERG. BUS TAPE 2: 232 -] 1 ~~ opu a 100

1. C A O. 5 A

, 8/8 HZ IV i gu r a B-69 l

i 6 ~e STONE WEBSTER ENGINEERING CORP. Acoustico and Vibratione Lab. f i

1. 26--03 V/EA 316.+00 E

VLG 503.-06 V/E8 3 1 6. -+- 0 0 E C SHOREHAM D. G. 101 9-28-83 10 d8/DIV --- l _.l l l l l l .._ }__. _.._ l l b! ^ STRAIN 5 - 11 316 ' MICRO-STRAIN RMS F. S. I y-4 l ON GRID 1706 KW. TAPE 2e287 j 1 l l SU 1 4: { A ^A" A" d ^ RS ~ ~ ~~ STRAIN; S-2 316 MICRO-STRAIN RMS F. S. I l I 8-- I l l l l l l M _j I l l l l ) ']gW/jf\\p[(pp $bNUhY [ k %J .____l _j- }__ l l - )- --l 100

1. O A O. S A 8/16 HZ li i gure 8-70

1 STONE WEBSTER ENGINEERING CORP. i Acoustics and Vibrations Lab. l 1.23-03 V/EA 316.-900 E VLG 1.23-03 V/E8 316.+0D E C t SHOREHAM D. G. 101 9-28-83 10 d8/OIV l l _ -- l _) __l .j j =l ____l .....}-_.....__, i 'l i ^ STRAIN 5-3 316 'NICRO-STRAIN RMS F. ' S. y-- l \\ I l i \\ l 1 l SU ) 1 f-l l l ( ( \\ ( -"L-LL" RS STRAIN 5-4 316 MICRO-STRAIN RMS F. S. ON GRID 1706 KW, TAPE 2 287 ( 8- ) I I I M-- I I i I 1 l I I i I l l l i L_ lu i; _.L . q _ _ . u._ }_. L; _ L } __ _ u - Q w _L._ :l l J 100

1. O A O. 5 A 8/16 HZ j

i Figure B-71

STONE WEBSTER ENGINEERING CORP. i Acoustics and Vibrations Lab. 4 2 AUXO 3 1 6. -+- 0 3 E VLG C i 3.60-06 V/E8 3 SHOREHAM D. G. 101 9-28-83 j __ l l l F._. 2 287 8 1706 KW ON GRID M l l OUTPUT TORQUE. 316.000 LB-FT RMS. SU 1 1g_ RMS. 10 dB/OIV. m_ RS-- l l l \\ \\ lk;a = u L _ 4_. . q __ _ a._. q _ - 100 O. 5 A O. 5 A 8/8 HZ l- ' i g U r e B - *.7 2

STONE a WEBSTER ENGINEERING CORP. Acoustice and V i b r-a t i one Lab. 2 AUXO

1. 0 0 -+- 0 0 VLG c

R C L.'. 2 4 S H O R E H A M D. G. 101 9-28-83 5 i I l-- 'l 2 C 1706 KW ON EXTERNAL GRID TAPE 2n286 M i ?.O DEGREE F. S. 20 dB/DIV. ~~ f SU I 16 t cx-e [ ) i $ b 1 l TORSIONAL VIBRATION ) t__ i I l---- -i i 50 j

1. OD O. 2D A/8 HZ I

igure B-73 1

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. f 119.-06 V/EA 10.C+03 E VLG h, 781.-O6 V/EB 1.00+03 E C SHOREHAM D. G. 101 9-28-83 l l l l l l l }._ _ __ _ _ l A GEN. VOLT. < PHASE A> 10 kV RMS F. S. M~~ j l

  • i

.s SU 16 - J u pg GEN. CURR. < PHASE A> 1000 A RMS F. S. 8-M- 1750 KW ON GRID. TAPE 2 293 \\ \\

1. O A O. 5 A 8/9 HZ 100 Figure 8-74 t

STONE WEBSTER ENGINEERING CORP. Acoustice and Vibratione L. c b. 503.-OS V/EA 1.00+03 E VLG 503. -06 v/EB 1.00+03 E C SHOREHAM D. G. 101 9-28-83 TAPE 2 356 i -l l - l- - A M_ _ 2550 KW P. F. O.80 10 dB/DIV. S5-1 J 100C MICRO-STRAIN RMS F. S. I I l 1 1 l SU I I I ~ 16 ~ l I L---- "U' RS -- S5-2 1000 MICRO-STRAIN RMS F. S. 1 8- - i l 1 M--l l 1 l l T \\ \\ l l l l t l l l .L L I A-_ L .f..k l __[__[__q P__ p __% _ d l Lu l l l i 100 -0. 5 A -O. 5 A 8/8 HZ 1igure B-75

STONE WEBSTER ENGINEERING CORP. Acoustice and Vibrations Lab. 491.-OS V/EA 1.00+03 E VLG I 490.-O6 V/EB 1.00+03 E C l SHOREHAM O. G. 101 9-28-83 TAPE as35G l -l -l i _2550 KW P. F. O.80 10 d8/OIV. A t l M_ MICRO-STRAIN RMS F. S. l S5-3 1000 4 I -~ Su I r r ~~ \\ I I \\ 16 ~~ \\ b l, f LL LLuL_JLib RS - - SS-4 1000 MICRO-STRAIN RMS F. S. B-- i id _ r 1 l l I I } } bh l\\ . u .L t_ . l; uiu.u L; t 100 u -O.2A -O. 1 A 8/8 HZ B-76 i~ igure -._s.

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 503.-OS V/EA 3 1 6. -+- 0 3 E VLG C 3.60-06 V/E8 SHOREHAM D. G. 101 9-28-83 - = l 2550 KW P. F. U. 80 TAPE 2 35G 8 M __ OUTPUT TORQUE 316.000 L8-FT F. S. SU RMS. 10 d8/DIV. 16 -~ J RS - I t i I l l k j . t_ u _ _ l -- l L_. j (J j 100 l -O. 5 A

1. O A 8/8 HZ trigure B-77

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 1. 0 0 +- 0 0 VLG-t r VERIFIED C SHOREHAM D. G. 101 9-28-83 -- l - - l l l --}_. l l p p_ _ _..._ _ C TORSIONAL VIBRATION TAPE 2m356 y

1. 0 DEGREE PK.

F. S. 20 dB/DIV. SU l l 16 I {l/ Y V l d i CX -- v/ \\ \\h 2550 KW P. F. O. 80 %W I __ ___ l j }__ -l l ._ p _____l i O. SO O. 2 A A/8 HZ 50 j Irigure B-78 4 1

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 50s.-De V/EA 1.00+03 E VLG sos.-De V/E8 1.00+03 E C SHOREHAM D. G. 101 9-28-83 TAPE 2s380 l l A _2550 KW P. F. O.90 10 cl8 / D I V. M_ __ SS-1 l100C MICRO-STRAIN RMS F. S. \\ l l s l l l i Su l l g__ 1 1 l l J a i a j '---'U u y tj y y 4_ __J i RS - - S5-2 1000 MICRO-STRAIN RMS F. S. l 8-- I I M_ l l i i I l l l 1 l l ~~ \\ l l l l j dL -[b l 'l! aj Lt l $_ w} l L_.)__ q f 100 -0. 5 A -0. 5 A 8/8 HZ 12igure B-79

STONE WEBSTER ENGINEERING CORP. Acoustice and Vibrations Lab. 491.-06 V/EA 1.00+03 E VLG 490.-OS V/EB 1.004-03 E C SHOREHAM D. G. 101 9-28-83 TAPE 2: 380 j l l l 1 M__ 2550 KW P. F. O.90 .1 0 d8/DIV. A j ] __ SS-3 1000 MICRO-STRAIN RMS F. S. I. Su i I l l 10~ I j l l l l ~ l __ f L_ 1 L u y U LJ u O a L a L_ u L pg i -- S5-4 1000 MICRO-STRAIN RMS F. S. g__ M__ j l l l l ~ - g I J l l u~Q u . tl L_.j b _ L Q W l 100 -0.2A -0. 1A 8/8 HZ Figure B -- 8 0

e STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 316.+03 E VLG 1 l C 3.60-06 V/EB SHOREHAM D. G. 101 9-28-83 I f f f I B t t .t 2550 KW P. F. O. 9 TAPE 24 380 8 l M _ _ OUTPUT TORQUE 316.000 LB-FT RMS. RMS. 10 dB/DIV. SU 16 -- r i 1 R S -- f l u p L._, 4._.ud A 11:i W _m 100 -0. 5 A

1. O A B/8 l-1Z Ficjure 8-81

STONE a WEBSTER ENGINEERING CORP. Acoustice and Vibraticns L. a b. VLG 1.00+00 V/EC 1.00+00 C r VERIFIED SHOREHAM D. G. 101 9-28-83 -l l l -I-TAPE 2: 380 j C TORSIONAL VIBRATION y

1. 0 DEGREE PK.

F. S. 20 dB/DIV. f l I I I i 1O I I t \\4) CX - 1 1 2550 KW P. F. O.90 u _ _ _ _. l__.._ l -l l l -- _ l l --. - { -- 50 O. 5D O. 2 A A/8 HZ 4 Figure B -- 8 2 1 e

STONE a WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. e i 50s.-06 V/EA 1.00+03 E VLG l 503.-06 V/E8 1.00+0S E C SHOREHAM D. G. 101 9-28-83 TAPE 2n 401 A 2550 KW P. F.

1. 'O 10 dB/DIV.

M_ __ S5-1 1 100C MICRO-STRAIN RMS F. S. [ 1 I I l 1. 1 l l SU l I 16 -- l l I ~~ l l 1 s i

  1. " d U

^- J 'j A RS 3 - - SS-2 1000 MICRO-STRAIN RMS F. S. I 8-l l M_ i 1 I \\ \\ l 1 l l l l i l _ _) i j < L.1 o aid 4_A_A m t l i l-. -0.5A -0.2A 8/8 HZ 100 Figure B-83

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 491.-OS V/EA 1.00908 E VLG 490.-06 V/EB 1.00+03 E C (( 1 SHOREHAM D. G. 101 9-2.8-83 TAPE 2s 401 l l i i A 2550 KW P. F.

1. O 10 dB/DIV.

M_ i i __S5-3 1000 MICRO-STRAIN RMS F. S. [ r SU 1 I J t ~ ~ I l [ l i ~ 16~ I [ \\ s L 'U" RS S5-4 1000 MICRO-STRAIN RMS F. S. D-i M-l J I I [ j l ) l u u.L} _L._ L_..l u j _ _L_ l ! h l l l 100 -O.2A -O. 1A 8/8 HZ l ligure 8-84 l 1 e

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 2 AUXO 316.+03 E VLG 3.60-06 V/EB C SHOREHAM D. G. 101 9-28-83 i .}_ _______l _l l l l l l _ _) E3 2550 KW P. Fr.

1. O TAPE 2: 401

+ ) i M l _ OUTPUT TORQUE 316.000 L.8-FT RMS. t l 1 RMS. 10 dB/DIV. SU l 16 - l 1 RS - f \\ l \\ l l' l {l l [ _ _ I ___ q . u 4_ __ { { 100 C. 5 A

1. O A 8/8 Hz Figure 8--85

STONE WEBSTER ENGINEERING CORP. Acoustics and Vibrations Lab. 1.00+00 V/EC 1.00+00 VLG C l VERIFIED SHOREHAM O. G. 101 9-28-83 l -l 1 { TORSIONAL VIBRATION TAPE 2: 401 I l C y If 1 1. 0 DEGREE PK. F. S. 20 d8/DIV. l l 1 I SU ipf i 16 CX -- p I )l ( W l + 2550 KW P. F.

1. O NN

__ j___. - - - l - .) -l 50 O. 5D O. 2 A A/8 HZ l~igure 8-86

STONE WE8 STER ENGINEERING CORP. Acoustics Vibrations Lob. 4 t 2 AUXO 1.00+03 E VLG 503.-OS V/E8

1. 00-+-03 E

C SHOREHAM D. G. 101 9-28-83 TAPE 2: 318 l l l F- ---l l l l i ^ S5-1 1000 MICRO-STRAIN RMS F. S. M~ ~ l 3500 KW, 10 d8/DIV. i I I .I l i l l, I SU l l ~ I 16 -- 1 l I I l I u u h u u u uMi i u2 __wu_^ gg S5-2 1000 MICRO-STRAIN RMS F. S. I g_ l M_ [ l I I ~ ~ I j l t l l l l l- - ~ ~ l [ \\ l l ( 1 }_ d w_ (l _2_ a [b _____L; b C $_ujL_L_I

> t _ a_u> } I l

L j! L l_l 100

1. OD
1. OO A/4 I-lZ l ~ 1 Elu r c!

B -- 8 7'

STONE WEBSTER ENGINEERING CORP. Acoustics Vibr otions Lab. 6 2 AUXO 1.00+03 E VLG j 's 50.00000 HZ 1.00+03 E C SHOREHAM D. G. 101 9-28-83 TAPE as 318 l l l l l l i ^ S5-3 1000 MICRO-STRAIN RMS F. S. !j 1 I 3500 KW. .1 0 d8/DIV. --\\ l l SU 1 16 ~ ~ 1 1 ~- I l j i l l l 1 RS - -SS-4 1000 MICRO-STRAIN RMS F. S. 9_ M _. _ l l i l I r ~~ l 1 1 [ j 4 J l k M -! I l l l L_., t 1.00

1. OO A/4 HZ 100 i

figure 8-88

llffl\\

-I l' l~

Il

,i l ji ! ..j ~ 0 ~ 0 1 P R.LC SV G O b .I CaV FD L / 8 1 G 8 Ne Td 3 F I n O 2 roe 81 Ei 3 L E E t3 8 P Na0 0S A r+ 8l 0M T I G b 2 0R Z Ni 6 H E V 9l 6 1 3 1 Ri 1 3 c En 0 8 Ta / 1l E 8 S O8 U BeXE. G Q EcU/.F R A Wi AV D O O t T &s 23 W 9 Ml 1 0 e u A T K 8 Eo H U 3 E P 0 O A R T 0 m A B Nc 2 O l T O U 5 a 1 S H O 3 1 r S u m a w g ^ M Ug i S1 F ( lIlI llllL 1 \\'

STONE 2. WEl3 STER ENGINEERING CORP. Acousties anci Vibrationo L. a b. i 2 AUXO

1. C' O -+- O O VLG C

i SHOREHAM D. G. 101. 9/28/83 l l l l 1 Ti C TORSIONAL VIBRA' TION

1. O DEGREE F. S.

20 d8/DIV { M I l-I I ) i SU r li ( f 16 CX -' Ah f ' y W^ gg TAPE 2 s 318 3500 KW e -p-p. l -j l-1 50

1. O A O. 2 A A/4 HZ I

.i t.j u r o. E.: --- 9 0 4 m

STONE WEBSTER ENGINEERING

CORP, Acoustios and Vibratione Lab.

119.-OS V/EA 1 0. O -'- O S E VLG 781.-06 V/E8 1. 0 0 -+- 0 3 E C SHOREHAM D. G. 101 9-28-83 l l l l l-l l ^ GEN. VOLT. < PHASE' A) 10 kV RMS F. S. I M-~ l, ~ ~ i 6 SU 1. I 4~~ i RS GEN. CURR. (PHASE A> 11000 A RMS F. S g_ M-- SSOO KW 10 d8/DIV. TAPE 2: SSS I I l I gik A; _ _ji _{ l$ 10 g k; a l }, a l 100

1. O A
1. O A 8/8 HZ l

Figure B-91 J l

STONE WEBSTER EllG I N E E R IlslG CORP. Acoustios a n c_1 Vibrations L.. a b. i 2 AUXO 1.50+03 E VLN I T i SHOREHAM O. G. 101 9-28-83 I l l l i ^ STRAIN SS-1 TAPE 2 325 R-i h SU __ / 16 J. f. IT--{ i-1 i l g __ SYNC. TRIGGERED ~ 3500 KW l l -1 l-I- O. 4 -2.00

2. OD 8/16 SEC 1" i g u r c1 B-92

STONE S WEBSTER ENGINEERItlG CORP Acoustico anc! Vibrationo L.ab. 2 AUXO 1.50+OS E V L.N j T l i SHOREHAM D. G. 101 9-28-83 i F I l ^ STRAIN S5-2 TAPE 2: 325 R-- i TRIGGERED SU__ SYNC. lI n le 1 y7__ I b I ( b I i 6 - -e 3500 KW ...._l __l O. 4 -2.00

2. 0D 8/1G SEC 1 cjur ta 13 - 9 3

STONE S WEBSTER ENGINEERING CORP Acoustios and Vibratione Lab. 2 AUXO

1. 50-903 E

VLN [ T SHOREHAM D. G. 101 9-28-83 l -- -l-- l l l ll}. A STRAIN SS-3 TAPE 2: 325 R-- i a am SU __. 't. i 16 l l IT-l __ SYNC. TRIGGERED 3500 KW g_ _ -l ___] }_ - O. 4 -2.00

2. OD 8/16 SEC Ii.gure B --- 9 4

t STONE a WEBSTER ENGINEERING CORP. Acouotico and Vibrations Lab. 2 AUXO 1.50+03 E VLN l T 503.-O6 V/EB SHOREHAM D. G. 101 9-28-83 -F -l A STRAIN S 5 -- 1 TAPE 2: 325 i, i R-- h ,j 1 1 S~Jw_ ' l a 1 g i f} IT-i 1 j _ _ SYNC. CAPTURED AND PLOTTED TWICE 3500 KW _.p - O. 4 -- 2. C D

2. OD 8/1G SEC l

17 i gure E3 --- 9 5 i i

STONE WEBSTER-ENGINEERING CORP. Acoustios anci Vibrations Lab. 2 AUXO 50.O+03 E VLN 6 T 250.0000 HZ SHOREHAM D. G. 101 9-28-83 } i. i. i. i. i. I. A MAJOR PRINCIPAL STRESS: PIN 5 j R-1 j SU _ 1 i 16 I l i i IT-- t t j j 3500 KW 10.000 PSI PER DIV. l SYNC. TRIGGERED TAPE 2: 325 l 1 ___.__.}_. _{________._}_.- - _ _ _l l -2.OD

2. OD 8/16 SEC O. 4

\\ i l-i c1ura B-96 l

STONE T3 WEBSTER ENGINEERING CORP. Acoustico anci Vibrations Lab. 2 AUXO 50.O+03 E VLN T -l' ~i SHOREHAM D. G. 101 9-28-83 l l l ^ MINOR PRINCIPAL STRESS: PIN 5 4 p_ i i 3 + SU _ 16 ~~ IT-( l '1 g }) 1 3500 KW 10.000 PSI PER O I V. SYNC. TRIGGERED TAPE 2: 325 -+ -2.OD

2. OD 8/16 SEC O. 4 I ~ i ciur ci B- -97 L

a

STONE a WEBSTER ENGINEERING CORP. Acoustico and Vibratiens Lab. 2 AUXO 50.C+OS E VLN 4 T i SHOREHAM O. G. 101 9-28-83 l li ^ MAX. SHEAR STRESS: PIN 5 ll l l; i. R-6 1 SU _ i 16 I I, IT-l l r 10.000 PSI PER DIV. l 3500 KW i l SYNC. TRIGGEREO TAPE 2: 325 l l 1 l l -2.00 2.00 8/16 SEC O. 4 !'i g u r e B -- 9 8

STONE S WEBSTER ENGINEERING CORP. Acoustico anci Vibrationo L.ab. 2 AUXO 15 0. d-O O E V L_ N T j SHOREHAM D. G. 101 9-28-83 i i ^ DEG. CC FROM GAGE 1

PIN 5

R-- l' i SU _ 4 l ) h IT-I .i ( N_ _ N 3500 KW 30 DEG. PER DIV. SYNC. TRIGGERED TAPE 2: 325 I l- -2.OD

2. O D 8/16 SEC O. 4 I

L, 4

~ i!l 8 l .,t P 4 O.N R b L3 O C a. V H L 5 G V 2 Ns I 3 I n D roe 2 3 Ei 8 R Et3 E E Na0 8 P P I + 2! 5 A I .T C r G b 0 E 9 N S Ni S 0 P E V F T. 5 P' 0 R d 1 6 En 0 0 D 1 1 S 0 E / Ta R S 8 S O E 0 E box 1 G G R EcU T G D Wi A I D S O R! 0 .t 2 2s M G W T 2 0 u A N K 1 Eo H I Nc E G 0 C D 3 l l O A R N 0 N C T O E 5 Y a S H B 3 S 2 m y S tg ^R U6 T i S1 T i 1; I !. .i

w-

~e x.

STbNE E WEBSTER L%iG I NEER I NG CORP =' . A c'o u o t i'o s and~Vibrationo IIcb + = 2 AUXO 50.C+03. E VLN T-a i SHOREHAM ,D. G. 101 9-28-83 H- 'T .l-r; ^ TORQUE SHEAR STRESS PIN 5" R--- / b SU _ ^ 16 3 I ; ~~ IT-- 4 1Ch.000 PSI PER DIV. ~ ~ 3500 KW l TRIGGERED TAPE 2: 325 SYNC. l _ __ ___ __ }_ --i - i i e O. 4 -2.00

2. OD 8/16 SEC l ' i. cp. i r a 0-101

,i i1l. l' 4 e

iI ll

,!3'

!.l J

lI .i P 4 R.N ) O b L7 D O C a. V E 4T G A 5 L 2 R Ne 3 B I n I roe 3 L 2 l Ei 8 A E Et3 C P Na0 8 N A! r+ 2l U TC I 0 C G b E Ni 0 9 S R E V 2 E l 1 D 6 R d D O N 1 En E 1 I / Ta L R s S O E Y BsX G C G EoU G D Wi A I O 5 C R! 2. t 2 P T &s M 2 0 S 1 u A D Eo H S CiD 3 Nc E! S R E O N C 8 O A T Y T O R a S S 2 S H P ~r S i i g ^R U6 T i S1 I F 4 l

STONE WEBSTER ENGINEERING CORP. Acouoties a n ci \\/ i br at i o no Lab. 2 AUXO 6.00+03 E VLN T l-i' SHOREHAM D. G. 101 9-28-83 i I i i i I I I s s s e i e v A T. D. C.

  1. 7 ON FALLING EDGE
PIN 5

R- - SU _ _ 16 >= r t i-m_ 7 ;- __ r i ? 3500 KW SYNC. TRIGGEREO TAPE 2s 325 j.-- l -j j 04 2.00

2. CD B/16 SEC

!~ i gura 0--103

,l{j1lIl

I i, lI i

'I* l n ,~~ __l 8 P F R.N ._ O = Ob LC V CaV F. V 8 t-I I 8. L D D 4._ G ... / / Ns N N 2 ;- ~ I I I n I A A RoEE l E Ei 3 ___R R P Et33 8_ T T A ha 00 p__S S l r+5+8 I T;_ C I 5 2 O O E G b Ni 22 R R ._ S 9-C C p EV 1 1 jI D _._ I 1 __ M M I. R d 0_ R __. 8 En Ta 1 _._0 0 Gp / 5 _s p5 S AB 2 2 BsEE._ N __ Ec//.2 2 OA G D

O 4

Wi VV 5 7 W._ 1 0 t &s 66 M. K _. 1 s u A. N N 00 E o . H __ I Nc30 El-A A 0p A B I 0 OA00 R-R R 5_O O T. T e 3 T 55 1 r S H S S [._ - u S [ _- g Ap U1 T i 7 S A 1 (lt!h l}}