ML20077J840

From kanterella
Jump to navigation Jump to search
Rev 9A to, Pilgrim Nuclear Power Station Core Operating Limits Rept (Cycle 9)
ML20077J840
Person / Time
Site: Pilgrim
Issue date: 07/11/1991
From: Kelly R
BOSTON EDISON CO.
To:
Shared Package
ML20077J839 List:
References
NUDOCS 9108050170
Download: ML20077J840 (23)


Text

{{#Wiki_filter:! t i, i PILGRIM NUCLEAR POWER STATION CORE OPERATING LIMITS REPORT I (CYCLE 9) b!JO!i/ Appro e Nuflear Analysis Division Manfjer Date NuSear Engineering Dehartment Mana em m In VF 6/dR Approved Reviewed h V OM *N 9/ /80 7//ohl 0 ationsfeviewCommittee ' Date 'f / 9 // "l / Approved N Station DirectoF ~ Date .I Revision 9A i Page 1 of 23 FNO kbbb b 93 y e. een

i PNPS CORE OPERATING LIMITS REPORT j l&BLE OF CONTENTS Eaae TITLE / SIGNATURE PAGE................................................ 1 TABLE OF CONTENTS................................................... 2 RECORD OF REVISIONS................................................ 3 LIST OF TABLES...................................................... 4 LIST OF FIGURES..................................................... 5

1.0 INTRODUCTION

6 2.0 INSTRUMENTATION TRIP SETTINGS................................... 6 2.1 APRM Flux Scram Trip Setting (Run Mode) 6 2.2 APRM Rod Block Trip Setting (Run Mode)................... 7 2.3 Rod Block Honitor Trip Setting.............................. 7 3.0 CORE OPERATING LIMITS.......................................... 8 3.1 Average Planar Linear Heat Generation Rate (APLHGR) 8 3.2 Linear Heat Generation Rate (LHGR) 8 3.3 Minimum Critical Power Ratio (MCPR) 16 3.4 Powe r/ Fl ow Rel a ti ons hi p.................................... 21 4.0 REACTOR VESSEL CORE DESIGN..................................... 21 5:0 REFERENCES..................................................... 21 Revision 9A Page 2 of 23

_. -. - -. =.. - _. - -. - - PNPS CORE OPERATING L1 HITS REPORT RECORD OF REVISIONS Revision Effective Date Descriotion 8A Effective date based Applicable for use during on issuance of license Cycle 8 operation, amendment by NRC. 9A Effective date based Applicable for use on issuance of license during Cycle 9 amendment by NRC operation, for ARTS and SAFER /GESTR. l l Revision 9A Page 3 of 23 t L--

_. - -. _... _. -. _ _ _ _ ~. _. _ _.. _ _ _. _ _ _ _ _... _.. _. __....._ - -._..___ PNPS CORE OPERATING LlHITS REPORT a LIST Of TABLES ((umhgr Iit1e EAg.e 3.2-1 LHGR Operating Limits 15 3.3-1 HCPR Operating Limits 18 -Revision 9A Page 4 of 23

PNPS CORE OPERATING L8HIVS REPORT LIST OF FIGURES thLmhgr lille EAgg 3.1-1 Maximum Average Planar Linear Heat Generation 9 Rate (MAPLHGR) for fuel Typet P80RB282 and BP8DRB282 3.1-2 Maximum Average Planar Linear Heat Generation 10 Rate (HAPLHGR) for fuel Type P8DRB265H 3.1-3 Maximum Average Planar Linear Heat Generation 11 Rate (HAPLHGR) for fuel Type BP80RB300 3.1-4 Maximum Average Planar Linear Heat Generation Rate (HAPLHGR) for fuel Type BP8DQB323 12 3.1-5 Flow-Dependent HAPLHGR Factor (HAPFACp) 13 3.1-6 Pccer-Dependent HAPLHGR factor (HAPFACp) 14 ) 3.3-1 Flow-Dependent MCPR Limits (MCPRp) 19 3.3-2 Power-Dependent MCPR Limits (MCPRp) 20 3.4-1 Power / Flow Operating Hap 22 4.0-1 Reactor Vessel Core Loading Pattern 23 t l Revision 9A Page 5 of 23 i.

PNPS CORE OPERATING LIMITS REPORT 1.0 JNTRODUCTION This report provides the cycle-specific limits for operation of the Pilgrim Nuclear Power Station (PNPS) during Cycle 9. In this report, Cycle 9 will frequently be referred to as the present cycle. Although this report is not part of the PNPS Technical Specifications, the Technical Specifications refer to this report for the applicable values of the following fuel-related parameters: Reference Technical Specificitiqu APRM flux Scram Trip Setting (Run Mode) Table 3.1.1 APRM Rod Block Trip Setting (Run Mode) Table 3.2.C-2 Rod Block Monitor Trip Setting Table 3.2.C-2 Average Planar Linear Heat Generation Rate (APLHGR) 3.11.A Linear Heat Generation Rate (LHGR) 3.11.8 Minimum Criticel Power Ratio (HCPR) 3.11.C Power / Flow Relationship 3.11.0 Reactor Vessel Core Design S.2 If any of the core operating limits in this report are exceedea, actions will be taken as defined in the referenced Technical Specification. The core operating limits in this report have been established for the present cycle using the NRC-approved methodology provided in the documents listed both in Section S.0, References, and in Technical Specification 6.9 A.4. These limits are established such that the applicable limits of the plant safety analysis are met. 2.0 INSTRUMENTATION TRIP SETTINGS 2.1 AEBM Flux Scram Trio Settina (Run Mode) Reference Technical Soecificationi: Table 3.1.1, 3.1.B.1 When the mode switch is in the run position, the average power range monitor (APRH) flux scram trip setting (S ) shall be: Ss 1 0.S8 H + 62%

Where, S3 - APRH flux scram trip setting in percent of rated thermal power-(1998 HW )*

t H - Percent of driva flow required to produce a rated core flow of 69 H1b/hr. Revision 9A Page 6 of 23 I

PNPS CORE OPERATING LIMITS REPORT 2.1 APRM Flux Scram Trio Settina (Run ModeL_C9Atinud The APRM flux scram trip setting is valid only for operation using two recirculation loops. Operation with one recirculation loop out of service is restricted by License Condition 3.E. In accordance with Technical Specification Table 3.1.1, Note 15, for no combination of loop recirculation flow rate and core thermal power shall the APRM flux scram trip setting be allowed to exceed 120% of rated thermal power. 2.2 APRM Rod Block Trio Settina (RtrLMg.dt1 Reference Technical Specifications: Table 3.2.C-2, 3.1.B.1 When the mode switch is in the run position, the average power range monitor (APRH) rod block trip setting (SRB) shall be: SRB 1 0.5B H + 50% Where, SRB - APRM rod block trip setting in percent of rated thermal power (1998 MH }* t H = Percent of drive flow required to produce a rated core flow of 69 Hib/hr. The APRM rod block trip setting is valid only for operation using two recirculation loops. Operation with one recirculation loop out of service is restricted by License Condition 3.E. 2.3 Rod Block Monitor Trio Setting Reference Technical Specification: Table 3.2.C. Allowable values for the power-dependent Rod Block Monitor trip setpoints shall be: Reactor Power, P Trip Setpoint L% of Rated) (% of Reference Level _1 P 1 25.9 Not Applicable (All RBH Trips Bypassed) 25.9 < P 1 62.0 120 62.0 < P 1 82.0 115 82.0 < P 110 The allowable value for the RBH downstale trip setpoint shall be 2 94.0% of the reference level. The RBH downstale trip is bypassed for reactor power 1 25.9% of rated. Revision 9A Page 7 of 23

PNPS CORE OPERATING LIMITS REPORT e, 3.0 CORE OPERATING LIMITS 3.1 &veraae Planar, Linear Heat Gegentjon Rate (APLHGR) Reference Technical SoecificatioD: 3.11.A During power operation, APLHGR for each fuel type as a function of axial location and average planar exposure shall not exceed the applicable limiting value. The applicable limiting value for each fuel type is the smaller of the flow-and power-dependent APLHGR limits. HAPLHGRp and MAPLHGRp. The flow-dependent APLHGR limit. HAPLHGR, is the product of the MAPLHGR flow factor, MAPFACr, shown ir, F Figure 3.1-5 and the MAPLHGR for rated power and flow conditions. The is the product of the MAPLHGR power-dependent APLHGR limit, MAPLHGRp,3.1-6 and the MAPLHGR for rated power factor. HAPFACp, shown in figure power and flow conditions. The MAPLHGR for rated power and flow conditions for each fuel type as a function of axial location and average planar exposure are based on the approved methodology referenced in Section 5.0 and programmed in the plant process computer. The HAPLHGR for rated power and flow conditions for the limiting lattice in each fuel type (excluding natural uranium) are presented in figures 3.1-1 through 3.1-4. The core loading pattern-for each type of fuel in the reactor vessel is shown for the present cycle in Figure 4.0-1. 3.2 Linear Heat Generation Rate (LHGRl Reference Technical Soecificitian: 3.11.8 During reactor power operation, the LHGR of any rod in any fuel assembly at any axial location shall not exceed the limits presented in Table 3.2-1. l . Revision 9A Page 8 of 23

?1n. o= 12.5 I e l 12.1\\ 12 03 39 I r.x ~11.8 m 11.5 i II3 ' I I 2-,g,1 g j 11 i \\ g g O 'A 8:: 10.5 y 10r -j g 7.0 $s r 10 E 1000 98, 0 I 'A x 9.5 .re_, l y200 9 n' 9 O 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40.000 PLANAR AVERAGE EXPOSURE (MWD /ST) m FIGURE 3.1-1 Maximum Average Planar Linear licat Generation Rate i

3 (M APLIIGR) for Fuel Typcs PSDRII282 and 11PSDRIl282 m.

a ?1=. 8 12.5 e> 1 12 11.9 11.9 en 11.5 11 6 go !I.5 11 3 .c E s ~@ l1 W 10.7' O >= ] 10.5 z c. C 10.2 - r-2 -Y (yyy 5 g l 10 l U 96 >

c l

{(X) O 9.5 6 M 9 0 5,000 10,000 15,000 20,000 25,000 30,(XX) 35,fXX) 40,000 PLANAR AVERAGE EXPOSURE (MWD /ST) e ~ 'N FIGURE 3.1-2 ~o Maximum Average Planar Linear IIcat Generation Rate Cg (M APLIIGR) for Fuel Type PSDRB26511

i. g1-QxM o@5 d$ a xm=ons m JV L 0, 5 4 \\ 00 0, \\ 04 e ta 0 R 0 0, n 3'. 5 o 0 3 i0 1 t T a0 ) r3 S i eI / 0 D n 0 eR 0, W G D 0 M 8 3 t P ( a I E cI I R I e 0 U 3 rpay 0 S 0, O 1 eT 5 5 P 3 nl 1 i e 2 XE ELu 1 E R rF a G U r n o i 0 2' 0 A G af d 0, R l I 0 E F P)R 2 V egG A aI R rI eL 3 0 A 2 0 N vP AA 0, A l 5 L mM 1 P u( m i 0 0 x 2 0 a 1 0, M 0 1 0 ( 0 0, 5 00 0 0 0 1 1 0 1 7 2 [4 Y 0 9 5 0 5 5 8 5 2 5 3 1 0 9 8 1 2 1 1 1 1 @R2 $Z S i1r.8 e> =R _{3 f

I <f 13.5 ?' 13.1 A 13 \\2.8 12.5 '123 m U 2.i 3 3, 7 i 1.6 f 2 11.5 en S 33.4 b k E 11 e 2 \\ d } 10.5 ta2 C 4 10 m 1 U Y (XX) 9.5 y 9 I 9 200 Ci 8.7 8.5 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,(XX) 45,(XX) Planar Average Exposure (MWD /ST) E ~ 1 FIGURE 3.1-4 k Maximum Average Planar Linear IIcat Generation Rate O (M APLIIGR) for Fuel Type I:PSDQll323 4

1.1 I o a-5' o C> 1.0 A f l -s Li. U l

    • O MAPLIKiRp = MAPFACp
  • MAPLliGRm 6

O f n f4 O / MAPLiiGRg = Standard MAPLI*GR Limits M / 0.8 fran Figures 3.1-1 thnngh 3.1-4 O U m k MAPFACF = MINIMUM (1.0, Ap+Bp F) ? / MAPFAC for / /, /[ sc op tube point F = Frac: ion of Rated Cue Rcw O N j calibration postiamed h that Rowmax= p y are fuel-type dependent C. A and B 0.7 -- = crmstants given below; Z X._ N, (% RatnD Ap Bp [ N Flowmax Fuel Tm: GE3GB.BP/P86R Q 107.0 re d ~,~ N. 112.0 % N. 3I70% m 0.6 r 102.5 0.4861 0.6734 7 h 107.0 0.4574 0.6758 i12.0 0.42I4 06807 H 117.0 03823 0.6886 I 0.5 30 50 70 90 110 y CORE FLOW (% RATED) C 2, FIGURE 3.1-5 O Flow Dependent MAPLIIGR Factor (MAPFAC ) p -_i_.--_=== 1

MVc2% M " m 1 i j l 1.0 x 3 j 0.9 - g-l P > 45% R~ c ^ a 0.8 \\ + l ~ / l r O r O.7 lPnypas,< P s 45%Q g3ptfor_p = y3,73cp. g3,7.3,og5 p Y- ] I O 8 MAPLilGRSTD = Stamiani MAPL 4GR Lim ts frtmt Figures 3.1-1 O 'hr'"Sh334 4 0.6 P = % Rated Corc TFermal Power O , = % Rated Cmc T%rmal Ibwer that C mspmds to the Sep Jnt N j C P g for Hyps<s < f Scram Signais Gcncreted t y Chsure of Turtune I g 0.5 +- ! C"'*' k " 5 5"

  • Rcd d Stop Valva or Fast Cieswc of Turbme Cemtml Valves

_O l O ~ 1 i = 45'L) y j m l (Maumum.h p.33 1 t i 1 .I t f _.a l Core Fk= >50% Rated Fm P < 2% No Thermal Maieg is RequrreJ (No Li: nits Specdied)_ u 8 /- 7 l / l Fw 25% < P s 45% : P <Pihprs ed C.xc Ficw s 50% R.ted: O

d F

M APT SCy e 81.55 + 0 005 (P - 45%) I E C $ 03 - l Fe 25% s P s 45% : P <pnm.s.# Cwe Fiow > So% Nate!; q MAPFACp - G? r J. A4 (P. 45%) Cn c. y l W Fm 25% s Ps 45% ane r4, 3% \\ a i G 0.2 - O MAPFACp z i f a T W rW (P - 19r5) x S 3 O f t c. For P > 45 0 MA1TACp = 1.0 2 Mc5225 (P.100%) 0.1 -d ( i i i 1 0'0 MuP I O 20 40 ayrass 60 80 100 7c RATED CORE THERM AL POWER (P) u e O FIGUR E 3.1-6 Power Dependent MAPLIIGR Factor (MAPFAC ) VJ p

_ - =. - PNPS CORE OPERATING LIMITS REPORT i Table 3.2-1 LHGR Operatina Limits LHGR Operating Limit fuel Tvoe (KH/ft) P0DRB282 13,4 P80RB265H 13,4 BP80RB282 13,4 BP8DRB300 13.4 BP8DQB323 14,4 Revision 9A Page 15 of 23 i a w- .+ Mew w w ww-*m s-.s,.m.n% -w-r., y-+%m Wmg nos.-.+- p w-P

  • w

i PNPS CORE OPERATING LIMITS REPORT 3.3 Minimum Critiggj Power Ratio (MCPR) Refftence Technical Spetification: 3.11.C During power operation, HCPR shall be greater than or equal to the operating limit MCPR. The operating limit MCPR is the greater of the flow-and power-dependent MCPR operating limits, HCPRr and MCPRp. The flow-dependent HCPR operating limit HCPRr. is provided in figure For core thermal powers less than or equal to P the 3.3-1. power-dependent MCPR operatin limit MCPRp, is providehyS$3b,gure .i 3.3-2. Above P s, HCPRp s the product of the rated power and flowHCPRoperaN0glimitpresentedinTable3.3-1andtheK factor presented in Figure 3.3-2. Figure 3.3-2 also specifies the aximum value for PB The rated power and flow HCPR operating limits presentedin#Sabie. 3.3-1 are functions of cycle-average exposure and the average scram insertion time, t. The value of the average scram insertion time (t) in Table 3.3-1 shaII be equal to 1.0, unless it is calculated from the results of the surveillance testing of Technical Specification 4.3.C as follows: 5 ave - TB t - 1.275 - tg n Nj tj Where, t Average scram time to the 1-1 ave 30% insertion position n Ng i, Nj X p + 1.65 n a sg - Adjusted analysis mean scram time l N; n - Number of surveillance tests performed to date in the present cycle Ni - Total number of active control rods l th Ng - Number of active control rods measured in the i surveillance test l l Revision 9A Page 16 of 23

PNPS CORE OPERATI4G LIMITS REPOR1 j 3.3 tiinimVm Crititg1 Power Ratio (MCPR). Cont.ingfd tj -Averagestramtimetogie 30% ir.sertion position of all rods measured in the i surveillance test p - Hean of the distribution for average - 0.945 sec scram insertion time to the 30% position o - Standard deviation of the distribution - 0.004 sec for average scram insertion time to the 30% position Revision 9A Page 17 of 23

PNPS CORE OPERATING LIMITS REPORT i TABLE 3.3-1 HCPR OPERATING LIMITS Average Scram Insertion Time ( t ) MCPR Ooeratina limit for operation from the Beginning of Cycle (BOC) to the End of Cycle (EOC) - 2000 MHD/ST - All values of t 1.33 For operation from EOC - 2000 MHD/ST to EOC: All values of x 1.36 l-l l-Revision 9A Page 18 of 23 l

^ f' [ l 4 i N l l l l l l l o g-For F2 0.4&. MCPRp = Munnum (1.20. ApF+B )

  • [

p \\ i-1.6 For F < 0 4&. [ MCPRp = ( ApF + R )( 1 + 032 ( 0.40 - F)) i q p Wh F = Fractim of Rated Core Flow g ( '\\ Ay arx! By are Flow Dependent Constants l \\ \\ \\ g d 2 N N Fkmmas ^E E [ \\ 'N N O H O 102.5 0371 1.655 W l d N/ l 107.0 -0386 .1.697 M " 14 l e s i2.o -o.602 i.747 O t i Scoop nube setpoint 117.0 -0.632 1.809 tit } g calibration postionea / N .y i i i j' such ihat Fk-ma= = ff /^ K N d x x \\ \\ $7$04 / llf/ NQN j N N N ^ m \\ \\ h s 3. o n -4 t 1 u 2 20 30 40 50 60 70 - 80 90 100 110 i { CORE FLOW (% RATED) f e f O

3 FIGURE 3.3-1 Flow Dependent MCPR Limits (MCPR )

p 4% -W ,.w-- -m -.+,y-w w = r ,--r-

e , a 3 I I I W Operating Limit MCPRp o 34 5. a for Core flow > 50% Rated Operating Limit MCPRp=Kp

  • OLMCPR(100)

E g e / a 3.2 i / OLMCPR(100) = Operating Limit MCPR Values for 100% Rated Core hermal Ibwer ~~ 9 f fnnn Tabic 33-1 8 c> 4 3.0 P = % Rated Core hermal Power h l Bypass = Rated Cwe Thermal Power that Corresponds to the Serpoint for Bypass of P 2.8 i Scram Signals Generated by Closure of Turbine Stop Valvcs or Fast Closure of 6 p = Rated MCPR MultipIW as Defined Below;yp,3, = 45% ) Turbine Control Valves (Maximum g .3 8 i O 2.6 w K b Ohating Limit MCPRp 5 For P < 25%: No' Thermal Monitoring is Required (No Limits are Specified) 2.4 -- for Core Flow s 50% Hated N a / For 25% s P s 45% and P <I,nvmu : i m u.) 2.2 O i N_%3 P-OLMCPR(100) _Krim. Ksto (45% - Pi W i K M I I O l 1.8 Where K = 1.95 and K33o= 0.0125 for Core Flow s 50% Rated or m gyp yp = 235 and K ;o= 0.043 for Core Flow > 50% Rated Kg 3 For 25% < P s 45% and P >PBvrass : Kp = 1.28 + 0.01M (45% - P) d 1.6 4 2 C 8 For 45% < P < 60%: Kp = 1.15 + Om867 (NFL - P) 8 3 F 1.5 o i w i For P > 60%: Kp = 1.0 + 02375 (100% - P) i ~r "x 7 N Ni P "' PBypas,< P s 45% j K p for P > 60% l 33 I y K i A / O [ !\\ ( l j K for 45% < P < 60% l 1.1 ;c p l I.0 p' N i i I l ^^ %ypas5 50 60 70 80 90 100 20 30 40 ~ 3% '7c RATED CORE TilERMAL POWER (P) to O C 's FIGURE 3.3-2 v Power Dependent MCPR Limits (MCPRp) l l

4 PNPS CORE OPERATING LIMITS REPORT 3.4 Power / Flow Relationshio Durina Poser Ooeration Reference Technical Specification: 3.11.0 Tise power / flow relationship shall not exceed the limiting values shown on the Power / Flow Operating Map in Figure 3.4-1. 4.0 REACTOR VESSEL CORE DESIGN Reference Technical Soecification: 5.2 The reactor vessel core for the present cycle consists of 580 fuel assemblies of the types listed below. The core loading pattern for each type of fuel is shown for the present cycle in Figure 4.0-1. Fuel Tvoe Cycle Loajad Npmber Irradiated P80RB265H 6 20 P8DR8282 6 8 P8DR8282 7 160 BP8DRB282 7 32 BP80RB300 8 192 New BP8DQB323 9 1111 Total 580 The reactor vessel core contains 145 cruciform-shaped control rods. The control materials used are either boron carbide powder (8 C) compacted to 4 approximately 701, of theoretical density or a combination of boron carbide powder and solid hafnium.

5.0 REFERENCES

5.1 NEDE-24011-P-A-9 and NEDE-24011-P-A-8-US, " General Electric Standard Application for Reactor fuel," September 1988. l 5.2 NEDC-31852P, " Pilgrim Nuclear Power Station SAFER /GESTR-LOCA I Loss-of-Coolant Accident Analysis", September 1990. 5.3 NEDC-31312-P, " ARTS Improvement Program Analysis for Pilgrim Nuclear Power Station, " September 4, 1987. Revision 9A Page 21 of 23

a e ~. 120 2400 110 2200 -{ -- 0.p ";/I 100 gf 4 1998 gY 90 g 1800 \\ y b l \\ / b. Z ~+ l 80 ~- l \\ I /

  • 16fX)

[hk,g@ C Operation Prohibited 70 / Outside this Curve g

n g

f m 1400 g 6 60$ I1200 26% Pump 2 Speed Line 50 E 5 10(X) M y 5- .= 40$ d H Natural E S00 g g e Circulation g Line 30 =g q 600 r.n 20 400 f O / l y 10 200 &/ /]/ O 0 O 5 10 15 20 25 30 35 40 45 50 55 63 65 69 75 80 Core Flow (MLil/Illt)

F 3?

N FIGURE 3.4-1 EL Power / Flow Operating Map tJ u b

PNPS CORE OPERATING LIMITS REPORT EMNMMNN

P MMMMMMMMM MMMMMMMMMMM
M M M M M M M M M M M M M CMMMMMMMMMMMMM
M M M M M M M M M M M M M CMMMMMMMMMMMMM
litMMMMMMMMMMMM
MMMMMMMMMMMMM

":MMMMMMMMNMMMM MMMMMMMMMMM HMMMMMMMM PMMMMMM i 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 Fuel Types ( Cycle Loaded) @ P8DRB265H (Cycle 6) G PSDRB282 (Cycle 7) @ P8DRB282 (Cycle 6) Z BP8DRB300 (Cycle 8) O BP8DRB282 (Cycle 7) E BP8DQB323 (Cycle 9) FIGURE 4.0-1 Reactor Vessel Core Loading Pattern Revision 9A Page 23 of 23 __-_______ ______ - _}}