ML20073J064

From kanterella
Jump to navigation Jump to search
Project Unit I,Reactor Containment Bldg Integrated Leakage Rate Test Rept
ML20073J064
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 02/04/1991
From: Floyd S
CAROLINA POWER & LIGHT CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
NLS-91-127, NUDOCS 9105080025
Download: ML20073J064 (77)


Text

CP&L Carolina Power & Light Company MAY 3 ' 1991 SERIAL: NLS-91 127 10CFR50, Appendix J United States Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555 BRUNSWICK STEAM ELECTRIC PLANT, UNIT NO. 1 DOCKET NO. 50 325/ LICENSE NO. DPR-71 INTEGRATED LEAK RATE TEST RESULTS Gentlemen:

In accordance with the requirements of 10 CFR 50, Appendix J, Paragraph V.B.1 and V.B.3, Carolina Power & Light Company hereby submits the results of the Brunswick Stcam Electric Plant, Unit 1 Integrated Leak Rate Test performed February 3 4, 1991. ,

Please refer any questions regarding this submittal to Mr. W. R. Murray at (919) 546-4661.

Yours very truly,

/)). [ 00kL ke' %DF S. D. Floyd i Manager Nuclear Licensing Section WRM/wrm (\blilrt. doc)

Enclosure i

-cc: Mr. S. D. Ebneter (with enclosure)

Mr. N. B. Lo (with enclosure)

Mr. R. L. Prevatte (with enclosure) m Fayuttevmo Street e P O Box 1551

  • naiegn N C 2M02 9105080025 910020 m a n"2 N X M N M M M E S E N M \

PDR p

ADOCK 05000325 PDR j J} f j,

B>RUNSTWICE KUCLEAR PROJECT REACTOR CONTAINMENT BUILDING INTEGRATED LEAKAGE RATE I

m f g 4 .

L 1

Mn M ,

1 l ,  ; . I l

, h l .

3  ; .

I i

'd 40 -

l l

1 i l L TEST REPORT -

l February 4,1991 '

d[1 y

GeneralPhysics Corporation

REMB.E.,h..RE.ER$5= R w HE e

a. ae-g& 1 ume n eg e  % n shmnwohw mtgapt %sge$wNUCLEMRC ECCL $,p$w$

S e~ m%nhqm u se a AM Md$$

4M d!C{@w@wp$)%sRENCTORLCONTAINMENTnBUILD

@kypg pay Magp$%gwenwesesNeuwwwwwweM@nl$$@p d MINTEGRATEDj6EAKAGElRATEi M%

g u+ a.

em% w ; S r

4 gy:(

m ma y e p _o %a a p-_gamp wmug~

_en vsm_%n ms uqwnwmmy

_p ' _p_yegw

$r4 a m m4 &a gb"g' #

hhhhhkM ap p gNbf (O_ fh!!hbfbbh&

  1. nMLpWW (

e .

Mfb:i!Yl,fhfhh}?Mg p$ K L  : m

$99%ggpp

{J p4 f' p4 r .

n #gg t

% $py#g$w( yJ

, z H*$ v a  %

w q QM pg ?fyty%$MR QA

  • i y4 e W t .

8 e &

EM%n Pdby h i)M#$$ %e $8y?lpi 7 :j 4 e

$1 "Q f' * , g$t  ?

x

)

(

6 $gkgj4 3

h ie <;

4 e

>a p g g# 6qqgp w

a 4ra_nao,h,a an.1;v ' wm.,,

~it ' MCr6QGral&hySECS$$_Ty0f_all0MN%_%%%%%%>%$5%

!f

_$ $ h & i %. 8 ,% ,M _$ s .

MPM M & m M n _6 5 % % h _ % ,M +N A _ % 2 E b 8 ,8 _% M

i CAROllNA POWER & LIGilT COMPANY Ilrunswick Nuclear Project Unit 1 REAC1'OR CONTAINMENT 13UILDING INTEGRNI'ED LEAKAGE RATE TEST REPORT February 4,1991 GENERAL PIIYSICS CORPOR ATION GP-R-2631%

! GP R-2631% GENERAL PHYSICS CORPORATION TABLE OF CONTEN'N

1. INTRODUCrlON II. TEST SYNOPSIS III. TEST DATA

SUMMARY

A. Plant Information B. Technical Data C. Type A Test Results D. Type B and C Test Results E. Integrated Leakage Rate Measurement System F. Information Retained at Plant IV. ANALYSIS AND INTERPRETATION V. REFERENCES VI. APPENDICES A. Stabilization Phase Data B. ILRT Test Data and Plots C. Verification Phase Data and Plots D. Instrument Selection Guide Calculations E. Failed Sensor Plot F. Description of General Physics ILRT Computer Program G. Local Leakage Rate Test Summaries H. Sensor Locations and Volume Fractions i

GP R-263106 GENERAL PHYSICS CORPORATION I. INTRODUCI'lON The Reactor Building Integrated Leakage Rate " Type A" Test is performed to demonstrate that icakage through the primary reactor containment sy.ctems and components penetrating primary containment do not exceed the allowable leakage rates specified in the Plant Technical Specifications.

The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Brunswick Nuclear Project Unit 1 Integrated Leakage Rate Test (ILRT).

Highlights of activities and events which occurred prior to and during the ILRT are presented in Section II, Test Synopsis.

Section III, Test Data Summary, contains data and results necessary to demonstrate containment emosphere stabilization, acceptable leakage rate, and successful verification test. In addition, plots provided in Appendices B and C supply a visual history of containment atmospheric conditions beginning with the 6.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> ILRT test period and ending with the verification test.

Information in Section IV, Analysis and Interpretation, supplies the technical details associated with the ILRT computer program and its asso:iated hardware as well as the instrumentation used during the ILRT.

Section V, References, lists the documents used for the conduct of the ILRT.

The successful periodic Type A and verification test were performed according to the requirements of the Brunswick Unit 1 Technical Specifications and 10CFR50, Appendix J. The test method used is the Absolute Method described in ANSI /ANS 56.8-1987, " Containment System Leakage Testing Requirements".

1

GP It 263106 GIINIIRAL PilYSICS CORPOltATION Leakage rates were calculated using the Total Time Analysis equations from UN-TOP 1, Rev.1,1972, during the Type A and verification tests. Mass Point Analysis as described in ANSI /ANS 56.8 1987, was run concurrently for informational purposes. The test results are reported in accordance with the requirements of 10CFil50, Appendix J,Section V B3, s

2

GP R 263106 GENERAL PilYSICS CORPORATION II. 'IINr SYNOPSIS i

Prior to containment pressurization on February 3,1991, site personnel were engaged in prerequisite activities for the conduct of the ILRT, localleakage rate testing was completed and those components with excessive leakage were repaired and retested.

The results of the local leakage rate tests are presented in Appendix G.

The following discussion highlights some of the activities that were essential to the successful and timely completion of the ILRT. These items are presented in chronological order, A. Pre pressurization Activities These activities included completing local leakage rate tests, ILRT proceoure review and finnilzation, ILRT computer program checkout and linkup to the Fluke Datt Acquisition System,ILRT instrumentation operability checks, and containment subvolume weighting factor and sensor failure analysis calculation.

The ILRT test procedure was reviewed against the requirements of the Plant Technical Specifications; 10CFR50, Appendix J; BN TOP.1, Rev,1,1972t and ANSI /ANS 56.81987, The ILRT instrumentation was calibrated prior to the ILRT as recommended by ANSI N45,41972, Section 6,2 and 6.3, Final ILRT instrumentation operability checks and in situ checks, as specified in ANSI /ANS 56.81987, Section 4.2.3.1, were performed to ensure that all instrumentation was operating correctly, Calibration records for the ILRTinstrumentation system components are retained at the plant.

3

G P R 263106 GENERAL PilYSICS CORPollATION l

B. Test Summary Time.1ine Phase Timeframe Dmnika Pressurization From: 0530 on 2/3/91 8.05 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> To: 1333 on 2/3/91 Stabilization From: 1345 on 2/3/91 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> To: 2145 on 2/3/91 ILRT Test From: 2200 on 2/3/91 6.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> To: 0430 on 2/4/91 Verification From: (445 on 2/4/91 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Test Stabilization To: 0545 on 2/4/91 Verification Test From: 0545 on 2/4/91 4 hop;s To: 0945 on 2/4/91 4

i GP R 263106 GENERAL PilYSICS CORPORATION C. Containment Pressurization Containment pressurization started at 0530 on February 3,1991 using two 1500 scfm portable diesel driven 1009'o oil free air compressors. The pressurization rate was maintained at approximately 7 psi per hour until containment pressure reached 45 psig. At this time the pressurization rate was reduced to approximately 3 psi per hour. The compressors were stopped when containn.cnt pressure reached approximately 50.3 psig at 1333 on February 3,1991. This was within the procedural limits of 49 + 2,0 psig.

During pressurization, a containment walkdown was performed to identify potentialleakage. No measurable leakage was observed. The pressurization, ILRT, and verification test were performed without the use of containment fans. No temperature stratification was observed.

D. Containment Atmosphere Stabilization The stabilization phase was started at 1345 on February 3,1991. By 1745 on February 3,1991, the temperature stabilization criteria of BN TOP 1 and ANSI /ANS 56.8 had been met, in addition, the containment air mass had also stabilized with consistent mass changes of approximately 10 pounds per hour.

With the reactor vessel level dropping at a rate of approximately 1 inch per hour, the current inventory would be insufficient without makeup for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ILRT. To allow for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test without makeup to the reactor vessel, it was decided to add water to the reactor vessel at this time, Vessel makeup was started at 1920 on February 3,1991 and was completed within one hour.

Additional stabilization data was taken until 2145 on February 3.1991 which showed that the containment temperature and air mass were still stable.

5

G P R 263106 G11N!!RAL l'ilYSICS CORPOllATION II. ILitT Test Period The ll.RT was officially started with the next data point at 2200 on February 3,1991 after the stabilization criteria had been met. After approximately 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, the containment leakage rate, as determined by both the hiass Point and Total Time Analyses, had stabilized at a value of approximately 0.28 %

wt. per day.

The ILitT was successfully completed at 0430 on February 4,1991. The maximum allowable leakage rate (L,) for the containment is 0.5 % wt. per day with a test acceptance limit of 0.375 % wt. per day (0.75 L3 ). The Mass l'olnt and Total Time Analyses were run concurrently on the General l'hysics ILRT Computer Program. The containment leakage rate data met all the requirements of 13N TOP 1, Rev.1, necessary to end the test in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. During the ILitT and verification test, sensor data was continuously monitored and plotted in order to detect sensor malfunctions. The leakage rate results are as follows:

hiass Point Total Time Analysis Analysis MrsJ.dn SkatJkty Calculated leakage Rate 0.2923' O.2894*

95 % Upper Confidence 0.2967* 0.3251' leakage Rate 20 Point hican 0.2832 Calculated 20 Point hican 0.2869 hicasured Does not include penalties for nonstandard alignments and water level changes l

6

GP.R 263106 GENERAL PilYSICS ColtPORATION l

F. Verification Test A successful verification test was conducted following the ILRT. At 0442 on February 4,1991, a leakage rate of 4.33 scfm was imposed on the primary containment and allowed to stabilize for one hour. The verification phase started at 0545 on February 4,1991 and was completed at 0945 on the same day. The 4.33 sefm leakage imposed (Lo) on the existing containment leakage was slightly less than L, (0.5%) % wt./ day) at 0.4829 % ,vt. per day.

At approximately 0900 on February 4,1991 during the latter stages of the verification test, temperature sensor RTD No.19 dropped by 0.5 degrees F.

This sensor is located in the Torus where conditions were extremely stable as indicated by the 5 other temperature sensors. None of the other sensors showed any significant tempera'"re -hange. As a result, temperature sensor RTD No.19 was removed (by use of the weighting factors) from the verification data. After reviewing the temperature data form the ILRT test phase which showed excellent agreement among all temperature sensors in the Torus,it was decided not to remove temperature sensor RTD No.19 from the ILRT data. Subsequent analysis indicated that the ILRT and verification test results would be acceptable in either case.

The verification test results are presented below:

Mass Point Total Time Analysis Analysis

% wt./ day  % wt./ day Leakage Rate (L,m) 0.2923 0.2894 Imposed Leak (Lo) 0.4829 0.4829 Lower Limit:

ly+L am 0.25 L, 0.6502 0.6474 Composite leakage (Lc ) 0.7398 0.7156 Upp+er Lo L,,Limit:

+ 0.25 L, 0.9002 0.8974 7

GP R 263106 GENIIRAL PilYSICS CollPORATION i

111. TliST DATA

SUMMARY

A. Plant Information Owner Carolina Power & Light Company Plant lirunswick Unit I location Southport, North Carolina Containment Type llWR Mark i NSSS Supplier, Type General Elcetric IlWR-4 Containment Description Steel lined, reinforced concrete,

light bulb" shaped drywell with torus shaped suppression chamber connected by a vent system.

Vacuum breakers are provided between the suppression chamber and both the drywell and reactor building.

Date Test Completed February 4,1991

11. Technical Data Containment Net Free Volume 294,981 cubic feet Design Pressure 62 psig Design Temperature 3000 F Drywell,2200 F Torus Calculated Peak Accident Pressure 49.0 psig Calculated Peak Accident Temperature 2970 F C. Test Results Type A Test Method Absolute Test Pressure 49.0 psig 8

O P R 263106 GENERAL PIlYSICS CORPORATION Integrated leakage Rate Total Time Analysis (Calculated per UN TOP 1)

Test Results:

Calculated leakage Rate, L am 0.2894 95 wt./ day 959b Upper Confidence Limit Leakage Rate 0.32519b wt./ day Integrated leakage Rate Mass Point Analysis Test Results (Presented for information only):

Calculated leakage Rate, L am 0.2923 96 wt./ day 9596 Upper Confidence Limit leakage Rate 0.2967 96 wt./ day Maximum Allowable leakage Rate, L, 0.500 9b wt./ day ILRT Acceptance Criteria 0.75 L, 0.375 96 wt./ day Verification Test imposed 4.33 sefm or Leakage Rate, Lo 0.4829 96 wt./ day Verification Test Total Time Analysis Results and Limits Upper Limit 0.8974 9b wt./ day (Lo+ Lam + 0.25 L,)

Calculated Composite Leakage Rate, Lc 0.7156 9b wt./ day Imwer Limit 0.6474 Ob wt./ day (Lo + Lam 0.25 L )

Verification Test Mass Point Analysis results and Limits (Presented for information only)

Upper Limit 0.9002 96 wt./ day (Lo+ L,, + 0.25 L,)

9

OP.it263106 011N1? ITAL PilYSICS CollPollATION Calculated Composite Leakage flate, L, 0.7398 95 wt./ day Lower Limit 0.6502 % wt./ day (Lo + Lam - 0.251.,)

Iteport Printouts

~

The report printouts of the ILitT and verification test calculations are provided for the Total Time and Mass Point Analyses in Appendices 11 and C. Stabilization data is also provided in Appendix A.

D. Test flesults Type Il and C Tests ,

A summary of local leakage rate test results since the ILitT in 1987 are included in Appendix 0.

10

. .. .- - . - . - . . . - . . . . . - . - - -.-- - . - .-. - - .. ~ _ .- - .-

GP R 263106 OENERAL PIIYSICS CORPORATION E. Integrated 1.cakage Rate Measurement System 1.. Absolute Pressure Quantity 'l Manufacturer llelse Type Series 10, Quartz Manometer Range 0-75 psia Accuracy + /- 0.006 % reading +

0.0027% f. s. .

Sensitivity . +/ 0.001 psia Repeatability +/ 0.001 psia Resolution 0.001 psia

2. Drybulb Temperature

. Ouantity 24 Manufacturer Rosemount Type = 78 S 100 ohm platinum resistance temperature- '

detectors (RTD)

- Range, calibrated 32 120. F Accuracy + /. 0.2 " F Sensitivity + /. 0.01 " F ,

3. Dewpoint Temperature Quantity 10-Manufacturer Foxboro ,

Type Model 2781 Deweell-Range, calibrated 32'- 93 F dewpoint Accuracy + / 1.5 " F 1 Sensitivity + / 0.01 " F

4. Verification' Flow Quantity 1 Manufacturer Ilrooks-

-Type Model 1110 Rotameter <

Range 1,0 10.0 scfm -

Accuracy + /- 1% full scale 11 ,

-e-,,.. , vw 76 4 - *.<.ws..m .----.--..,o... , - . .~.w-_w.w, -w--,,.wc....-,~mec.-J

GP R 263106 GENERAL FilYSICS CORPORATION

5. Readout Device Quantity 1 Manufacturer Fluke Type Model 228513 Repeatability + / 0.54 " F Resolution + / 0.01 " F The instrumentation Selection Guide (ISG) value from ANSI /ANS 56.81987 based on the above ILRT instrumentation configuration and a 6.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> test is 0.018 % wt./ day. ( Refer to Appendix D for calculations)

The sensor locations and volume fractions as installed for the ILRT are shown in Appendix 11.

F. Information Retained at Plant The following information is available for review at the Ilrunswick Nuclear Project site:

1. Access control procedures used to control access to the containment during testing.
2. A listing of containment penetrations, including the total number, ,

penetration size, and function.

3. A listing of normal operating instrumentation used for the leakage rate test.
4. A system lineup (at time of test ), showing required valve positions and status of piping systems.
5. A log of events from initial survey of containment to restoration of tes'ed systems.
6. Docume ntation ofinstru mentation calibrations and standards, including a sensor failure analysis.

12

GP ll 263106 Gl!NiillAL PilYSICS CollPollATION

7. Data to verify temperature stabilization criteria as established by test procedure (Appendix A).
8. The working copy of the test procedure that includes signature sign-offs of procedural steps.
9. The procedure and data that verifies completion of penetration and valve testing, including as found leak rates, corrective action, and final leak rates.
10. Computer printouts of ILRT data and automated data acquisition printouts along with a sununary description of the computer program.

11, A 'isting of test exceptions including changes in the containment system boundaries.

12. Description of sensor malfunctions, repairs, and methods used to redistribute vohime weighting fractions to operating instrumentation.
13. A review of confidence limits of test results with accompanying computer printouts.
14. Description of the method of leakage rate verification.
15. ILRT data plots obtained during the test.
16. The P&lDs of pertinent systems.

13

G P R 263106 GENERAL PilYSICS CORPORATION 4

i IV, ANALYSIS AND INTERPRETATION ,

l The upper 95% confidence limit (UCL) Total Time and Mass Point leakage rates  ;

calculated during the ILRT were less than the test acceptance criteria of 0.75 L, (0.375 % wt./ day). Additions to the calculated leakage rates must be made to account for penetration paths not exposed to the ILRT pressure and for changes in the ut free contalnment volume due to changes in containment water levels. These additions are discussed below, j l

A.. Type C Penalties Penetration paths not exposed to the ILRT pressure and the corresponding minimum pathway leakage rates are as follows: q Containment System Isolation Valves leakage Rate (SCFII)

Drywell Drains 1016 F003/F004 0.00 Drywell Drains 1G16 F019/F020 0.19 Feedwater (RCIC IB21.F032B,F0108, 0,00

- Injection Line B) 1E51 V88 Feedwater (HPCI 1B21 F032A,F010A, 0.00 Injection Line A) 1E41 F006 Reactor Building - 1RCC V28/V52 7.70 Cooling Water RXS SV1222B/C - 0.00 CRD Purge to 1B32 -V24/V22 0.00 Reactor Recire 1B32 V32/V30 0.00 Recire Sample - 1B32 F019/F020 0.50 RHR Suction 1E11 F008/F009 0.00 4

Reactor Water 1G31 F001/F0(M - 0.00 Cleanup The total applicable local leakage rate Type C penalty addition is 8.39 scfh which is

- equivalent to 0.0157% wt. per day.

14

GP it 263106 GENEllAL PilYSICS CollPollATION l

H. Voluine Change Corrections The following volurnes were rnonitored for liquid level changes which would affect the containtnent net free volurne:

Vessel Level Change Volurne Change lleactor Vessel 8 inches + 172.8 ft3 Torus 0 inches 0 Drywell Floor Drain 0 gallons 0 Tank Drywell Equip. Drain 0 gallons 0 Tank This represents a net increase in containn.,:nt net free volutne which is accounted for in the calculated leakage rates and no additional correction is required.

C. As left ILitT llesults The as left ILI(T leakage rate including the required additions is as follows:

Mass Point Total Time Analysis Analysis

(% wt./ day) (% wt./ day) 95% UCL Leakage llate 0.2967 0.3251 Type C Penalties 0.0157 0.0157 Volume Change 0.0 0.0 As left 95% UCL 0.3124 0.3408 leakage Itate The as left Total Time and Mass Point 95% UCL leakage rates are less than i i

the test acceptance criteria value of 0.75 L,(0.375 % wt./ day),

15

OP R 263106 GENERAL PilYSICS CORPORATION D. As Found ILRT Results The leakage savings due to repairs and/or adjustments to containment penetrations and isolation valves prior to performance of the ILRT was calculated to be 82.835 sefh or 0.1548% wt. per day. (Refer to Appendix G)

The as found ILRT leakage rate is as follows:

Mass Point Total Time Analysis Analysis (f% wtJday) (% wt./ day)

As Left 95% UCL 0.3124 0.3408 Leakage Rate Leakage Savings 0.1548 0.1548 As found 95% UCL 0.4672 0.4956 Leakage Rate The as found Total Time and Mass Point 95% UCL leakage rates are less than the maximum allowable leakage rate L, of 0.500% wt per day.

16

GP.lt.263106 GENEllAL PilYSICS ColtPollATION V. J1EEEltENCES A. Brunswick Unit 1 Periodie Test Procedure, Irl'.20.5, Integrated Primary Containment leak Itate Test.

1 B. Ilrunswick Unit 1 Technical Specifications.

C. lirunswick Unit 1 Updated Final Safety Analy. sis Itepart I l

D. Code of Federal llegulations, Title 10, Part 50, Appendix J Primary iteactor Containment Irakage Testing for Water Cooled Power iteactors.

E. ANSI N45,41972, Leakage itate Testing of Containment Structures for Nuclear iteactors.

F. Ilechtel Topleal lleport IIN TOP 1, llev.1,1972, Testing Criteria for Integrated Leakage Itate Testing of Primary Containment Structures for Nuclear Power Plants.

G. ANSI /ANS 56.81987, Containment System Leakage Testing itequirements.

l- 17

GP It 263106 GENEllAL l'IlYSICS COlti'OllNflON APPIINDIX A STAlllll7EllON Pi!ASil DATA

51ABL12AT1ON MODE T!ME : 0000 OFTIONS MODE

SUMMARY

1 - MANUAL DATA ENTRY 2 - PARAMATER GRAPHS W OF DATA POINTS = 74 7 - SENSOR PLOTS MODE DURATION (IN HRS) = 6.25 TOT TIME MEASURED LEA > u .1757 4 - SENSOR DIFFERENTIALS TOT T IME CAL CUL ATED LEAF r 0.0561 5 - ANSI STAblL124 TION ChlTERIA TDT TIME 95*'. UCL = D . b 9 6 6- DN-TOP-1 STAF. CRITERIA MASS PT LEA > c 7- ANSI ERITERIA FhlNTDUT .1167 MASS P7 W'. UCL = -.0779 8- DN-TOP-1 CRITERIA PRINTOUT 9 - REPRINT CURRENT DATA POIN1 P - PASS WORD MENU O- FLASH OFF ANSI PRESSURE / TEMPERATURE STABLE CRITERIA MET FN-TOP TEMFERATURE CRITERIA MET POINT

SUMMARY

CURRENT VALUE/ DIFFERENCE FROM fREVIOUS POINT AVG TEMP 72.29/ -0.002 AVG FRESS 64.561/ -0.005 MASS: 9t,630. T9 / -2.1 7 ?' AVG DEW PRESS: 0.0$52/+0.0001 73.8687

\

UNIT 1::)

~ ~\

T "s\

E M .

_s

'i p -

g E "

\

R " \

A " \

T " NN U "

R "

\ .

E .. \.

.F "

r

. . s ' - s.,

,/ ~..

72,262"

.~~

1

. __X ,

1345/ 3 TIME 2200/ 3

AVG. DATA VALUES UNIT # 1 DATE TIME T(1) P(l) OT(!) VP(!) MASS (!)

7 0.00 73.87 64.72 69.46 0.356 96585.36 3 0.25 73.52 64.69 69.50 0.357 96545.38 3 0.50 73.30 64.67 69.40 0 . ' *; 6 46600,77 3 0.75 7!.19 64.65 e9.44 0.3S6 96601.17 3 1.00 73.07 64.64 69.46 0.356 96549.44 3 1.25 72.99 64.62 69.44 0.356 96596.14 3 1.53 72.90 64.61 69.09 0.355 96594.84

? 1.75 72.84 64.60 69.43 0.356 96590.83 3 2.00 72.78 64.59 69.44 0.356 96588.55 3 2.25 72.72 64.58 69.40 0.356 96586.69 3 2.50 72.67 64.58 69.38 0.355 96583.73 3 2.75 72.62 64.57 69.41 0.356 96580.97 3 3.00 72.58 64.56 69.42 0.356 96576.85 3 3.25 72.54 64.55 69.36 0.355 96575.77 3 0.50 72.50 64.55 69.41 0.356 06571.06 3 3.75 72.46 64.54 69.34 0.355 96570.40 3 4.00 72.43 64.54 69.36 0.355 96565.16 3 4.25 72.41 64.53 69.36 0.355 96562.70 3 4.50 72.38 64.52 69.34 0.355 96560.47 3 4.75 72.34 64.52 69.02 0.355 96558.31 3 5.00 72.32 64.51 69.34 0.355 96554.66 3 5.25 72.30 64.51 69.25 0.354 96552.27 3 5.50 72.28 64.50 69.33 0.355 96547.38 3 5.75 72.06 64.51 69.32 0.355 96561.77 3 6.00 72.33 64.54 69.39 0.355 96594.52 3 6.25 72.45 64.57 69.30 0.355 96621.13 3 6.50 72.53 64.60 69.37 0.355 96643.27 3 6.75 72.51 64.59 69.38 0.355 96637.36 3 7.00 72.47 64.59 69.37 0.355 966'5.85 3 7.25 72.43 64.58 69. 4 t. 0.356 96633.00 3 7.50 72.39 64.58 69.35 0.355 96635.16 3 7.75 72.36 64.57 69.41 0.356 96631.77 3 8.00 70.32 64.57 69.36 0.355 96632.46 3 8.25 72.29 64.56 69.37 0.355 96630.29

fin-TOP-1 STABL12ATION CRITERIA TEMP DN EN T1ME dT dT2 B.25 72.2096 0.0264 -0.0796 72.3212 c.1007 -O,0022 8.00 7.75 72.3634 0.20$4 0.0507 72.3871 0,1125 n,0312 7.50 7.25 72.4329 0.0628 0.0649 72.4734 0,0 26 0,0749 7.00 6.75 72.5127 -0.0060 0.0854 6.50 72.5304 -0.0558 0.0767 6.25 72.4489 -0,0940 0.0226 6.00 72.32$6 -0.0967 -0.052' 5.75 72.2619 -O,1131 -0.1006 5.50 72.2846 -0.1278 -0.10e7 5.25 72.5032 -0.1303 -0.1162 5.00 72.3236 -0,1459 -0.1276 72.3418 -0.1582 -O,1412 4.75 72.376V -O,1720 -O,la04 4.50 -0,1B96 4.25 72,4037 -0.1812 72.4300 -o.1927 -O,1727 4.00

--o.2007 -O,1904 3.75 72.4631 3.50 72.5020 -0.2611 -0.2162 3.25 72.5355 -0.2666 -0.2264 3.00 72.5789 -0,2904 -0.2466 72.6242 -0,34s9 -O,2914 2.75 -0,3:39 2.50 72.6737 -0.4137 72.7229 -0.5429 -0,;981 2.25 -O,3431 2.00 72.7755 -O,9299 1.75 72.8439 0,0000 O.0000 1.53 72.B990 0.0000 O.0000 1.25 72.9907 0.0000 0.0000

'3.0744 0.0000 O,0000 1.00 0.75 73,1892 0.0000 0.0000 0.50 73.3237 0.0000 0.0000 O,0000 O.25 73.5213 0.000c 73.B600 O.0000 0,0000 O.00 l

l STABILIZATION ANSI 56.8 TIME TEMP 56.8 56.8 4-1 PRESS 56.0 1 IIR 4 IIR IIR dP F/IIR F/llR ISI/llR 8.25 72.29 0.14 0.03 -0.11 64.56 .0192 8.00 72.32 0.15 0.03 -0.12 64.57 .0207 7.75 72.36 0.15 0.03 -0.12 64.57 .0219 7.50 72.39 0.14 0.03 -0.11 64.58 .0228 7.25 72.43 0.02 0.03 6.01 64.58 0.0060 7.00 72.47 0.14 0.03 -0.11 64.59 0.0455 6.75 72.51 0.25 0.03 -0.22 64.59 0.0809 6.50 72.53 0.25 0.04 -0.21 64.60 0.0939 6.25 72.45 0.15 0.07 -0.08 64.57 0.0637 6.00 72.33 0.01 0.11 0.10 64.54 0.0269 5.75 72.26 0.08 0.15 0.07 64.51 .0074 5.50 72.28 0.10 0.16 0.06 64.50 .0199 5.25 72.30 0.09 0.17 0.08 64.51 .vi94 5.00 72.32 0.11 0.19 0.08 64.51 .0206 4.75 72.34 0.12 0.21 0.09 64.52 .0228 4.50 72.38 0.12 0.24 0.12 64.52 .0222 4.25 72.41 0.13 0.28 0.15 64.53 .0245 4.00 72.43 0.15 0.36 0.21 64.54 .0252 3.75 72.46 0.16 0.00 0.00 64.54 .0206 3.50 72.50 0.17 0.00 0.00 64.55 .0293 3.25 72.54 0.18 0.00 0.00 64.55 .0300 3.00 72.58 0.20 0.00 0.00 64.56 .0317 2.75 72.62 0.22 0.00 0.00 64.57 .0332 2.50 72.67 0.24 0.00 0.00 64.58 .0340 2.25 72.72 0.27 0.00 0.00 64.58 .0388 2.00 72.78 0.29 0.00 0.00 64.59 .0435 1.75 72.84 0.35 0.00 0.00 64.60 .0488 1.53 72.90 0.41 0.00 0.00 64.61 .0555 1.25 72.99 0.53 0.00 0.00 64.62 .0639 1.00 73.07 0.00 0.00 0.00 64.64 .0869 0.75 73.19 0.00 0.00 0.00 64.65 0.0000 0.50 73.32 0.00 0.00 0.00 64.67 0.0000 0.25 73.52 0.00 0.00 0.00 64.69 0.0000 0.00 73.87 0.00 0.00 0.00 64.72 0.0000

OP R 263106 GENEllAL PilYSICS COllPORATION l

l APPENDIX Il ILRT TF5r DATA AND PIRIS

1CS1 MODE PLEACE DELECT Hit OP110N YOU W1Dil 10 Utile s if91 DATA 0430 3 MANUAL DATA FNIRY H Gr ITATA POINTS D ~/

1 il, AMt. II. R ORAL lit ;

M014 DURATIDII (IH llOURS) 6.5 3 SI.'NDOR PLO1S TUT T 1 ME ML: ASURI. D I1.AR - 0.292%

4 -

TREND ANALYSIG TO1 11ML CALCt! LATED LEAK = 0.0094 5 -

REPRINT CURRENT DATA PT TOT IINE Y$?; UCL = 0.3251 6 -

GENSUR DIFFERENT.1ALL MASU POIN1 LEAK u O.2923 MASS POINT 9b!; UCL u O.2967

'7 57; La = .37b P -

PASS WORD MENU MAHS n- 96553.'7S j SLLt.C7LD GP1lON= l l

l P0:1 N I 9UMM/iNY : Ct1RREITT UAt UL/ D Ii FI Nl.NCl: FROM FREV10Uri l' 'O I N I AVG 1!.:MI / 2 ., 00 '

, -0 004 (NU l 1:ESG 64.47 / - 0 ., 0 0 2' magus Y6SS7.7$ / -2.b78 AVO DEW PREuf>t 0.1SS1 /40.0000 0.5000: \

UNIT 1 :

TOT.

\

TIME \-

ANAL. :: _~

HTx/

DA

. . / 'W't ...

  • h% * . . #

N

. . 5 (

LEGEND" = L

" l

.W

.n 0.0000' . .

2200/ 3 TIME 0430/ 4 i

'TC';1 MODI l'l l. (Wl. Sl~ l. L C i 1ilt Of'i1 O!l Y e ll. ) ld i '. it i 10 l M .l'. ll i:1 DA1A 0 4.10 1 Mol4UAt- Do T /> LNile( 6> t il Dn1A i 0 f I 1 1 < ~. ,

'A k tit 1t il R L R AF'llu M nl Ir h , i ' I i li I ( j i.) l lut li c:i . S o Ul NSUF1- l'LOTU 10I i J r1t Mi A util:1:1> l_l:e W O . "N " ,

4 -

T R E N D fal-IA L Y G l S l f il i!ME Col CULA I E D l.f Al; *

0. i:UV'4

$ NE l~ ic i N ! CUlvhLill D A'i o l ' i 10T 1 IMl: Yb". llCL a- 0 . 3;'"..I 6 El 1490R D1 FI 11'I N T J Al ii M A U G I fl! N'T 1. li fd' " O ;"i ,

MJ i!, l 't )I N 1 Yb" UCL r O .. ' %'

/ ' '; L a . 3 7 ti l- ' -

l'Abb WORD MLHU MAUD e V6 S M , l

WI .l.:C i ED Ol~' I I ONn l 'O I 1.I'T ;R!f'il1/ i : Uhid141 V <l ! ti - D I F l' L kl. i li. I , "I i '! 1. V i i)' u , i i. El I 1 I (iVG f ilhi ",'. 6 0 / O.004 AVI) l 'i. L * , ~'t,47 / -0.000 MAUUs

' '." J , 7 5 /

', ' . S U AUG I'l. 4! laUS: O.0S$1 / + 0 ,. 0 4 0 0 0.5000;;

UNIT 1::

~ '

Mass t ANAL. ::

s.N WTX/

DAY ..

N ' ._ -

s_ ..,. . . . . . . - -

LEGEND::

_. L ..

0.0000"i ,

2200/ 3 TIME 0430/ 4

.- _ _ _ ,._._.._._-._.__...__-_____._.___.._.__m_._... . _ . - ..-._ _

k linURG ll OF DATA MEASURED CALCULATfD CHO IN CALC Of TFS1 1OINTE I.t:AK RAlt iEAK Roll: LEAK RATE 4 SO 27 40.2925 40.20Y4 +0.000$

. 6.25 26 40 2939 **0.2009 +0.0000 t 6 00 -2b 40.2079 40.0001 -0.0001 S.75 24 +0.2967 40 2002 40.00lb D.50 23 40,2914 +0,.206U +0.0007 5.2b 22 *0.2960 40 2061 +0.0017 b.00 21 +0.0002 40.2043 +0.0004 4.76 20 +0.2922 +0.203Y +0.0014 4.50 1 '? 40.2070 +0 2020 +0.0004 4 ,. 2 b 20 40.T.914 40.2823 40.0016 4.00 17 +0.2921 40.200b +0.0023 3 70 36 40.2741 +0.2784 -0.0025 3.50 15 +0.2014 +0.200'? -0.0010 20 DA'I A i'Ollir l'IEAN CAL Cll' A T ED Lt:AKAGE = .20'.12307 20 DATA l'f11NT MIiAH MfJ ASUh'L"D l.l::AKAGl: " .2U6V P6 InRESB ANY KEY ~IO CONT :iNUl:

1- .

'T IEND PLf'OR1 UH11 16 1 Drill 1 1 MI: 1ILM LPh . ALC UL t. AM LYb

.1 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 3 0.PS 0 ?bbo 0.0000 0.0000 0.0000 0.0000 3 0 50 0.3307 0.0000 0.0000 0. li1 P O . <W 93

, 0.75 0.3090 0 . ,'. 2 ' i Y 0 70?6 0. E'04 0.3000 3 1 00 0,303 O. It' 2 0 ., 4 U11/ 0.3100 0.3404 1 1.25 0.3094 0.31/U 0.4294 0.31.13 0 J,293 3 1 00 0.7731 0.2903 0.4023 0.207Y 0.3174 3 1. '/ S 0 ;'7$7 0. . (1U t O.3764 0.P7DS 0 302' 4 2.00 0.2S?? O..'722 0.JS3U O.2616 0. i' A ?3 4 2.?b 0.?O74 0.0/50 0.3490 0.26Y/ O.2Ytt 4 2 50 0.2VOO O.2007 0.3$04 0.27YS 0.3000

'l 2.75 0.2922 0.P031 0.3476 0.2035 0.3009 4 3.00 0.2070 0.203S 0.3435 0.0042 0.2900 4 3.2b 0. '.'0 0 3 0.2010 0. 3~17Y 0.2025 0.PYS) 4 3.SO 0.T)?I- O.2009 0. 13 M O . Tli! ? O.29?1 4 o .

0. P 4 :1 0 .. P ' H 'l 0.;i204 0.2705 0 !?O04 4 4.00 o. Y2l

'; . 21 tO S 0.JPOU O.201.7 0. 2 Y 1.1 4 4.2b t , 2 Y .- 0.007.1 0.,3PO? O . 2114 0 0.2Y27 4 '4 . $ 0 0. 20,- 0.PO2S 0.32/3 0.2047 0.?V2b 4 '4 . / S 0.292 0.203Y 0.327.1 0.. & 6 0.2Y30 4 S.00 0. T00;' O.?O43 0 3262 0.206U 0. i"7:iti 4 S ?S 0 . ;"> 6 0 0..?O61 0 326Y 0.20Y2 0.2VSS 4 S 50 0..'Yl4 0.?U60 0.JP64 0.20?O 0.;:956

't

%.75 0.PY67 0.200? 0.3270 0.2Y16 0.PY72 4 6.00 0.PU7v 0.?O01 0.3250 O.2Y11 0.2Y63 4 6.2b 0.PY3Y 0. 200'v 0.JPS7 0.2920 0.2Y60 4 6 60 0.2YP5 0.20Y4 0. J.P S 3 0.2Y23 0.2967

AVO. DATA VALUC9 UNIT O1 DAll 11 Mil T(J) P(.I) Pf(1) VP ( .t ) M A D F: ( 1 )

3 0.00 72. ?'? 64.$6 6V.37 0.355 96630 3 0.25 72.27 64.b6 6V.41 0.3b6 96620 3 0.SO 72.26 64.bS 69.36 0.330 Y660(i "1 0.7h /2. 2'l 64.bb ^Y.37 0.3SJ Y6621 s a 00 72.23 64 S4 69.20 0 db4 Y6610 3 1. .' S 72 21 64.54 69.36 0.3SD Y6615 3 1 50 72.19 64.b4 69.3S 0.3bb 96614 3 1. '7 b 72 17 64.53 69.33 0.3Sb 96611 4 2 00 72.16 64 S:.1 6Y.31 0.304 96610 4 2.2S 72.:1S 64.5i 6Y.36 0.3b3 Y6604 4 2.,50 72 14 64.52 6Y.42 0.356 V6600 4 2.7b 72.13 64.b2 6Y.3Y 0.3bb 96b98 4 3.00 '72.12 64.32 69.42 0.3b6 96b96 4 3.2S 72.11 64 b1 69.36 0.3Sb 96b94 4 3 Se /2 10 64 51 6Y.30 0.3D3 965Y1 4 3 7S 7 2 . 011 <4.S 69.31 0.35b 96 buy 4 4.00 72.00 'A.SO 6Y . ;iO O.3SD V6SO3 il 4 25 72.07 64.b0 6'/ . 3 7 0,,3bb Y6300 4 4 60 72.06 64.$0 6Y . JiO O.354 Y6570 4 4.7b '/2 05 64.49 69.30 0.3bb Yab74 4 D 00 72 04 64 4Y 69.33 0.355 96b72 4 S.25 /2 04 64.4Y 6Y.34 0.3bb Y6b60 4 b 50 72.03 64.49 6'7.36 0.395 96566 4 D.7b 72 02 64.40 69.34 0.3b3 96b62 4 6 00 '72.01 64.40 6".31 0.3Db '76561 4 6.29 72.00 64.40 6Y.36 0.3b5 Y6bb6 4 6.50 72.00 64 47 6Y.36 0.355 V65$4

l 72.2903'.

UN I T 1".. 'N, -

T "

's.s E "

\

M '.',

s p -- -

E ". .

N s, R ,M g ..

y .-

U --

.s 9

E

.N .

.p ..

.'s .,

71.996 , , ,

s,-

2200/ 3 TIME 0430/ 4 84.581~s'. .

5 UN I T 1". .

.s p --

p .- .. , . . ,

E x ...,

g .. s s -

U

,'s , ~..N R ..

E ". .

s. ,

PSIA  :: N

.. s..s...,

.. ~.~

s..s s 84.474 , ,

.,s 2200/ 3 TIME 9430/ 4

. . _ _ n-- - - - - - - - - - - - - - - - -

I 69.4249; h UNIT 1:: 6 lii\/ /g n

- i' \ i, V

G Ij f i l

/ I

, i'yt ,\ N l

1 g  ::

/ s.

.'s j i

/

l ,;  ; g .

j i s s I T l 'i k s 1 E

j \ / l f 1 (<'/ \i

\/\i

" l M I I ) s/

V  :: I 9 y N P .. I WG 69.280 '

2200/ 3 TIME 0430/ 4 0 9663:s, UNIT l': s.

MASS  :: 's LBM 's, X10^5 :: '~s ,

's "9

._',s 8

se,

\

a-WIS .

WW k

,, my 0.8655 ,

2200/ 3 TIME 0430/ 4 l

GP R 263106 GENERAL PHYSICS CORPORATION APPENDIX C VERIFICN1 ION TEST DATA AND PIRIE

VERIFICA110x 00K TIGE 0945 0Fil0NS: TEST SUM"ARY 1 - MANUAL DATA Ek1RY l 0F DATA F0lN15 3 17 2 - PARAMETER SPAPHS ROIE DURAi!CN tlN HOURS)

  • 4 3 SENSOR PLO15 101 11ME MEAMRED LEAR 0.7575 4 - TREhD A%LYS!! T01 11ME CALCAATEC LEAR
  • 0.7156 5 - REMINi CPCEN1 DATA P1 MASS 71LEAT 0,7395 6 - SEN!0R O!FFERENT!ALS  !"10SEE LEAK = 0.48:9 101 TIME UPER LIMIT
  • 0.8974 P - FASS WORC MENU 101 TIME LOWER LIM 11 0.6474 MASS Fi UPPER LIMll : 0.9002 SELECTEDOPTION* MASSFi LOWER LIMil : 0.6502 TOT TIME VERIFICAllCh CR11ERIA HAS MEN MEI

' ASS FT VERIF.CAil0N CRl!ERIA BAS BEEN 9ET

  1. 0!NT SU"MRY: ZRSEh! N ALUl!!!FFE;EN:E FRDM PREVIOUS 70!NT AVS TEU 71,55!-0.004 AVS FRESti 64.' ul 0.007 MASS: 96;91.47/ -9.484 AVS DEW PRESS! 0.3540!+0.0000 1.100Z::

UN I T 1".. I\ s' TOT. \

TIME

'.,s s

ANAL. :: r ___ 2

~_

~ _

NTX/

DAY  :: l i

l LEGEND "

l

= L ..

i

. . j 1

.. 1 0.0000 J ,

5 4

5 I

0545/ 4 TIME 0945/ 4 1

VERifl8Ai!0N MODE TIME 004

.OPi!DNS: TEST S'mMt 1 -

MANUAL DA'A ENTRY I 0F DATA F0lWTS = 17 2 FARA9ETER GtArFS MODE DURA 110N !!N HOUPS) = 4 3 - SENSOR FLC16 101 ITPE P.EASUREt LEAt = 0.757!

4 -

TREhtANALYS!S 101 il?E CALCaATED LEAK = 0.7156

) - REFRlhiCURF;ENTDATAF1 MASS FT LIAK i 0.7296 6 -

SEhSOR DIFFEREhilALS IMPOSED ' EAR = 0.4529 101 TIME UFPER LIMIT

  • 0.B974 F -

FASSWORDMENU 101 T!ME LOWIF LIM 11 = 0.6474 MASS FT UPPER L!Pil : 0.9002 SELEtiED OPil0N MASS FT LOWER LIPIT = 0.650:

10111PE VERIFitATION CRiiERIA HAS PEEN MET PASS Fi VERif ttATION CRITERIA HAS BEEN pet .

1 POINTSM MY CURFENT ULLE!D rffREN:EFROMFREVIOUSF0lNT i

i AV6TEP.P: 71.95/ -0.004 Av6 PRESS: 64.360! ',.c07 MASS: 96',91.47/ -9.484 AVG DEW FRESS: 0.3540/d.000S 1 1.1002[ ,

UNIT 1::

MASS N ANAL. :: I WTX/

(\ -

~'

l .

DAY ,,

! l i

LEGEND. .

-- )

l

.. i j

1 ..

l 0.0000 , , ,  !

0545/ 4 TIME 0945/ 4

TOTAL TIME UMtf 81 DAi! 11PE TTLM LM2ALC SL LAN (9) 4 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 4 0.25 1.0338 0.0M0 0.0000 0.0000 0.0000 4 0. M 0.8700 0.0000 0.0000 0.8786 1.6464 4 0.75 0.7877 0.7768 1.0:57 0.7006 0.9834 4 1.00 0.8149 0.7666 1.0942 0.7848 0.8785 4 1.25 0.0029 0.7584 1.0178 0.7815 0.8372 4 1.50 0.7819 0.7457 0.9601 0.7689 0.6067 4 1.75 0.7644 0.7321 0.9177 0.7549 0.7872 4 2.00 0.7947 0.7377 0.9198 0.7648 0.7920 4 2.25 0.7612 0.7297 0.8961 0.7543 0.7780 4 2.50 0.7650 0.7267 0.8836 0.7517 0.7710 4 2.75 0.7675 0.7250 0.8760 0.7517 0.7676 4 3.00- 0.7616 0.7239 0.8677 0.7493 0.7629 4 3,25 0.7613 0.7229 0.8615 0.7480 0.7596 4 3.50 0.7449 0.7183 0.8505 0.7423 0.7541 4 3.75 0.7452 0.7151 0.8424 0.7384 0.7494 4 4.00 0.7575 0.7156 0.8405 0.7398 0.7495

AVE BA1A VALUES tmli i 1 CATE 11!tt illi Pl!) Dit!) VF(!) MAS 5(l) 4 0.00 72.01 64.45 69.70 0.353 96513.!?

4 0.25 72.01 64.44 69.32 0.355 96502.93 4 0.50 72.00 64.s4 69.30 0.354 96495.66 4 0.75 72.00 64.4: 69.07 0.354 96489.56 4 1.00 7: 00 64.43 69.30 0.354 96480.55 4 1.25 71.99 64.42 69.34 0.355 96472.96 4 1.50 71.98 64.41 69.35 0.355 96466.15 4 1.75 71.98 64.41 69.33 0.355 96459.53 4 2.00 71.96 64.40 69.38 0.355 96449.40 4 2.25 71.97 64.40 69.25 0.354 96444.45 4 2.50 71.97 64.39 69.32 0.355 96436.33 4 2.75 71.97 64.39 69.34 0.355 964:8.45 4 3.00 71.96 64.35 69.7 0.354 96421.44 4 3.25 71.96 64.!B 69. 7 0.354 96413.81 4 3.50 71.95 6 4. 'J 69.04 0.354 96400.46 4 3.75 71.95 64.37 69.02 0.353 .6400,95 4 4.00 71.95 64.36 69.29 0.359 96391.47 l

7 2 . 014'. .~..

UNIT 1:: N .

N T N.'

E ".

~3 g .

p -

E ". 'xs.,

p ..

A .. ...,__ s T " \

E U \

R E ". .

s.._

.p ..

,.. s ,, --

1 71.948 , , ,

0545/ 4 TIME 0945/ 4 8 4 . 8 0 3 X.. .s UNIT l': .

N p ..

' .s ,

y --

E .,.,

g ..

g -.

...s ,~

U "

R E ". . N..'N ..,,,

~~

PSIA ..

'N.. s s,

G4.714 ,

0545/ 4 TIME 0945/ 4

69.381~ . /

l UNIT 1:: /

Il

.. /N /

A - N /

l U \t'l /\

G

.' \

j i

( y D-y,\

I

/ I / \

\

E N

f\ \ s'

/ I I

\

\ / l \

" l \/ I \u T .

I v ,

E "

.I i M (I \.. ,

v  :: .

t y . . \ w j

.. ,,, /

. N 69.205' ,

0545/ 4 TIME 0945/ 4 0.9651hs -

UNIT 1;; -

' s ..

MASS '.:

.,N s...

x, LBM s' X10^5  ;; s..

s,

.. s.sN

~.,

s'.. .

.. .N.s,,

.. ~....,,

0.9639 , , ,

0545/ 4 TIME 0945/ 4

' GP R 263106 GENERAL FilYSICS CORPORATION l

I~

i l 1

{ l l

l APPENDIX D INS'ITtUMLINT SELEC110N GUIDE CAILUIEI'lON

k GP R 263106 ' GENERAL PliYSICS CORPORATION INSTRUMENT SELECDON GUIDE CALCUIEHON Page 1 of 2

.A. TEST PARAMETERS La = 0.5%/ day P = 64.9 psia l T .= 532 R Td = 69.4 F

- t =" 6.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />

- B. INSTRUMENT PARAMETERS u 1. Total Absolute Pressure l

I l.

~

. No. of Sensors = 1 '

,. Range: 0 - 75 psia j

- Sensor sensitivity error (E): + / 0.001 psia Measurement system error (c):

Resolution: 0.001 psia l Repeatability: +/- 0.001 psia L

e = +/- ((0.001)2 + (0.001)2)1/2 L _ e = +/. 0.001414 psia L

L c p = + /- ((0.001)2 + (0.001414)2)1/2 j(1)1/2-ep= +/ 0.00173 psia o

L 2. Water Vapor Pressure

.No. of Sensors = 10 Sensor sensitivity error (E): +/- 0.01" F Measurement system error (e):

- Resolution: 0.01 F Repeatability: +/- 0.054 F

-e = +/- ((0.01)2.+ (0.054)2)1/2 i

e = + /- 0.055 F -

l L - At a Edewpoint of ' 69.4 F, the' equivalent water vapor pressure change _ (as h

determined from steam tables) is 0.0118 psia /" F.

E = +/; 0.01 F (0.0118 psia / F)

- E = +/- 0.00012 psia i

l.

L

_ -. _ _ . _ . - _ . . _ . - _ . _ _ . - .. . _ . _ . - - . _ _ . . . _ _ _ _ . . . . ~

Y g i GP R 263106' GENERAL PilYSICS CORPORATION Page 2 of 2 f

e = +/- 0.055" F (0._0118 psla/" F) ,

c _= + / _0.00065 psia e py = +/- ((0.00012)2 + (0.00065)2)t/2 /(10)1/2 e py = +/- 0.00021 psia

3. Temperature

- No. of Sensors = 24 Sensor sensitivity error (E): +/- 0.01 F Measurement system error (c):

Resolution: 0.01 F -

Repeatability; +/ 0.054"F e _= +/ _((0.01)2 + (0.054)2)1/2 -

e L= - /- 0.055 F = + / 0.055 R e7 = +/- ((0.01)2 +- (0.055)2)t/2 /(24)t/2  !

- eT = /- 0.01141 R -

4. Instrumentatlon Selection Guide Formula ISG:=1+/- 2400/t (2(ep/P)2 +2(e p;/P)2 +2(eT/T)2)1/2 ISO = +/- (2400/6.5) (2(0.00173/64.9)2 + 2(0.00021/64.9)2

)

+ 2(0.01141/532)2)t/2 ISO = +/a 0.018 %/ day.

Due to the deletion of RTD 19 during the verification phase, the ISO was -.!

recalculatedLusing .the remaining 23 RTDs and the ISG value remains

unchanged at 0.018%/ day. In each case, the ISG value is substantially less than the value.of 0.25 L, (0.125 %/ day).-

t3 P

GP R 263106 GENERAL PI-lYSICS CORPORATION APPENDIX E SENSOR FAILURE DATA AND PLOTS

l, 75.59! 3 I UNIT 1:

S h

" s E "

\

N \

s -

\

O \

R

~~

.. s

" x R

18

\. .r - .

73.050, , , , , , , , , , , , , , , , , , ,

13:45/ 3 TIME 09:45/ 4 71.51! S UNIT l'. '

\

g -

-i E " \

N \s, g --

.. ,s O \

N R ".

R '_ ~~~

19 ". .

\

.. L-66.490, ,

,1 13:45/ 3 TIME 09:45/ 4

CAROIINA POWER & LIGHT COMPANY BRUNSWICK UNITS 1 & 2 SENSOR FAILURE ANALYSIS DOCUMENT Page 3 of 4 Failed Original Redistributed sensor #- WF WP TE 19 .0701- TE 19 - O, TE 20 - .0841 TE 21 - .0841, TE 22 - .0841 TE 23 - .0841, TE 24 - .0842

.0701 TE 19 - .0841, TE 20 - 0 TE 20 TE 21 - .0841, TE 22 - .0841 TE 23 - .0841, TE 24 - .0842

.0701 TE 19 - .0841, TE 20 - .0841 TE 21 TE 21 - O, TE 22 - .0841 TE 23 - .0841, TE 24 - .0842

.0701 TE 19 - .0841, TE 20 - .0841 TE 22 TE 21 - .0841, TE 22 - 0 TE 23 - .0841, TE 24 - .0842

.0701 TE 19 - .0841, TE 20 - .0841 TE 23 TE 21 - .0841, TE 22 - .0841 TE 23 - 0, TE 24 - .0842

.0701 TE 19 - .0841, TE 20 - .0841-TE 24- TE 21 - .0841, TE 22 - .0841 TE 23 - .0842, TE 24 - 0

.0527 DPE 1 - 0, DPE 2 - .0753 DPE 1 DPE 3 - .0G49

.0489 DPE 1 - .0772, DPE 2 - 0 DPE 2 DPE 3 - .0630 DPE 3 .0386 DPE 2 - .0682, DPE 3 - 0 DPE 4 - .0776 DPE 4 .0583 DPE 3 - .0678, DPE 4 - 0 DPE 5 -

.1793 DPE 5 .1502 DPE 4 - .1334, DPE 5 - 0 DPE 6 -

.3060 ,

DPE 6 .2309 DPE 5 - .3811, DPE 6 - 0

GP R 263106 GENERAL PilYSICS CORPORATION APPENDIX F GENERAL PHYSICS ILRT COMPUTER PROGRAM DESCRIPTION

GP R 263106 GENERAL PilYSICS CORPORATION DESCRIPTION OF GENERAL PIIYSICS ILRT COMPUTER PROGRAM The following paragraphs describe the various features and attributes of the General Physics ILRT Computer Program and the process used to certify it for each application.

REDUNDANCY The General Physics ILRT team was equipped with two fully operational IBM compatible microcomputers during the ILRT and for on site data reduction and analysis, The computer software and hardware interfaced directly with the ILRT Measurement System Data Acquisition System (Fluke 2285B).

Two computers were brought on site for 100% redundancy, and each computer and its software is capable of independently performing the ILRT. The General Physics ILRT Computer Software is also capable of accepting manual input of raw sensor data and performing all required sensor data conversions if the data logger should cease to function. Each computer was equipped with back up discs in the unlikely event of a dise " crash."

GP R 263106 GENERAL PlIYSICS CORPORATION l

SECUltrD' The General Physics ILRT Computer Program is written in IBM's BASICA.

BASICA is a high level programming language which combines programming case with user oriented command functions to create an easy to use and understand program. In order to increase speed of operation the program was then compiled into an executable command file. Compiling was accomplished using the IBM Basic Compiler, in addition to execution speed, this had the added benefit of making the program more secure as compiled programs cannot be edited or changed. The program requires a password to change modes of operation, start times, or enter the data editing routine to safeguard the integrity of the raw data files.

FEATURES The program itself is designed to be a menu driven program consisting of five separate, menu driven operating modes. These are the:

1, Pressurization Mode 4. Verification Mode

2. Stabilization Mode 5. Depressurization Mode
3. Test Mode

OP-R 263106 GENERAL PilYSICS CORPORATION i

These modes also correspond to the phases of the ILRT. Menu driven means that the user is presented with a list of options that the program can perform and from which the user can choose. It allows for interactive information exchange between the user and the computer and prevents invalid information or user mistakes from crashing the program. Program organization consists of a master menu which controls access to the five operating modes chained to the individual menus which control these modes. The data processing, information display capabilities and function of each mode is as follows:

1, Pressttti zation Mode: All data reduction, graphic displays of average temperature, dewpoint, and corrected pressure.

2. Slabilization Mode: All data reduction, automatic comparison of data against ANSI 56.8 and UN TOP 1 temperature stabilization criteria, notification whcn criteria is met, graphic displays of average temperature, dewpoint, and corrected pressure.
3. Test Mode: All data reduction, calculation of leakage rates using mass point, total time and point to-point analysis techniques, display of trend report information required by BN TOP-1, graphic display of average temperature, dewpoint, pressure and mass, as well as graphic display of mass point measured leakage,95% UCL; total time measured and calculated leakage and the total time leakage rate at the 95% UCL (as calculated by UN TOP-1),

including a superimposed acceptance criteria line).

4. Verification Test Mode: With input of imposed leakage in SCFM automatically calculates and displays on graph and trend report the acceptance criteria band, plus all graphics displays available in test mode.
5. Depressurization. Mode: All data and graphics capabilities of Pressurization Mode, in programs for BWR units, this mode also includes a Drywell to Suppression Chamber Bypass Test routine.

GP R 263106 GENERAL PHYSICS CORPORATION 1

l Other reduction and analysis capabilities of the General Physics ILRT computer i I

program include:

1. Containment total pressure conversicn from counts to psia (if required), and i averaging.
2. Containment drybulb temperature weighted averaging and conversion to absolute units.
3. Containment' dewpoint temperature weighted averaging (conversion from Foxboro dewcell element temperature to dewpoint temperature if required) and conversion to partial pressure of water vapor (psia).
4. Data storage of ILRT measurement system inputs for each data point.
5. Weight (mass) point calculations using the ideal gas law.
6. Automated Data Acquisition and/or Manual Data Entry.
7. Sensor performance and deviation information for sensor failure criteria, graphic display ofindividual sensor performance for selected operating mode.
8. Calculation ofISO formula at beginning of test; acceptance criteria based on i number of sensors remaining and actual test duration.
9. _ Computer System Error Functions automatically checks for error in incoming data, printer or disk drive faults.

G P R 263106 GENERAL PilYSICS CORPORATION The computer program used by General Physics has been previously certified for six tests at the San Onofre Nuclear Generating Station and over a dozen other ILRTs.

The initial certification required verification of the program through hand calculations and an independent review by Ucchtel Power Corporation. After certification was completed, a calibration set of raw data was used to verify software of the program prior to usage. Additionally, once the computer was linked to the data acquisition system and a complete data stream was available, the input function of each mode of the program was verified by comparing the data acquisition system output to the computer printout dat'. point summary.

General Physics supplied CP2L with certification documents for the ILRT microcomputer software for *.no ILRT in accordance with paragraph 4.2 of CLRT Project Procedures Manuai and CP&L's Work Authorization Document.

l

GP R 263106 GENERAL PilYSICS CORPORATION APPENDIX G LOCAL LEAKAGE RATE TEST SUMMARIES

I DBEP UNIT 1 i LOCAL LEAKAGE RATE TEST SUMMARIES TISI QQEPONPNT DATI LEAKAGE PT-20.3B Personnel Airlock 11/12/87 1.305 05/13/88 0.096 11/08/88 10.450 04/03/89 7.236 09/11/89 0.0 04/02/90 9.711 PT-20.3C Personel Airlock, Exterior Door 06/09/87 0.568 06/13/87 0.545 06/13/87 0.546 06/19/87 0.0 06/22/87 0.0 06/22/87 0.0 07/02/87 0.0 07/05/87 0.317 10/31/87 0.0 02/16/88 5.540 02/16/88 8.630 02/17/88 0.0 02/22/88 0.0 05/13/88 0.0 10/23/88 0.166 04/03/89 2.088 04/06/89 0697 04/08/89 0.716 04/14/89 0.386 06/23/89 0.0 06/29/89 0.0 09/11/89 0.0 09/26/89 7.182 09/26/89 0.064 09/27/89 0.064 11/17/89 0.000 11/18/89 0.185 04/02/90 0.0 06/07/90 0.0 06/09/90 0.106 PT-20.3C Personel Airlock, Interior Door 06/09/87 0.0 06/13/87 0.0 06/13/87 0.0 06/19/87 0.0 06/22/87 0.0 06/22/87 0.0 07/02/87 0.0 07/05/87 0.0 10/31/87 0.0 02/16/88 0.0 Page 1 of 8

T. EAT COMPOWENT DATE LEAEAQE j

PT-20.3C(cont)'Personel' Airlock, Interior Door 02/17/88 0.0 ]

02/22/88 0.0 1 10/23/88 0.0 04/03/89 0.107 04/06/89 0.0 04/08/89 0.0 04/14/89 0.0 l 06/23/89 0.0 1 06/29/89 0.0 09/26/89 0.0 09/27/89 0.0 11/17/89 0.002 k 11/18/89. 0.0 06/07/90 0.0 06/09/90 0.106

-PT-20.3-Al .B21-F022A, F028A 11/13/88 0.0 PT-20.3-A2 =B21-F022B, F028B 11/13/88 WNP 11/15/88 WNP

-13/17/88 WNP 12/09/88 0.0

'PT-20.3-A3; B21-F022C, F028C 11/13/88 0.0  :

PTa20.3-A4- B21-F022D,-F028D 11/13/88 47.507 11/15/88 WNP' 12/09/88 0.0 LPT-20.3-001 LElectrical Penetration X100A 11/12/88 0.0

.PT-20.3-002- Electrical Penetration'X100B. 11/12/88 0.0 PT-20.3-003- Electrical Penetration X1000 11/12/88 0. 0-PT-2 0. 3 -004 - l Electrical Penetration X103A -11/12/88 0.0

PT-20.3-005' ~ Electrical: Penetration X100D 11/12/88 0.0

-PT-20.'3-006- Electrical Penetration X104A 11/12/88 0.0 JPT-20.3-007' Electrical Penetration X102C 11/12/88 0. 0 -

'PT-20.3-008 Electrical Penetration X104B. 11/22/80 .0. 0 PT-20.3-009 Electrical Penetration-X102B 11/22/88 0.0

.PT-20.3-010 Electrical Penotration X101A 11/22/88 0.0

.PT-20.3-011 -Electrical Penetration X101C 11/22/88 0.0 PT-20.3-012 Electrical Penetration X105D 11/22/88 0 .' O Page 2 of 8

IERI COMPONENT DATE LEAKAGE PT-20.3-013 Electrical Penetration X105E 11/22/88 0.0 PT-20.3-014 Electrical Penetration X102C 11/16/88 0.0 PT-20.3-015 Electrical Penetration X104C 11/16/88 0.0 PT-20.3-016 Electrical Penetration X105H 11/16/88 0.0 PT-20.3-017 Electrical Penetration X105G 11/16/88 0.0 PT-20.3-018 Electrical Penetration X102E 12/03/88 0.0 PT-20.3-019 Electrical Ponotration X104E 12/03/88 0.0 PT-20.3-020 Electrical Penetration X100F 12/03/88 0.0 PT-20.3-021 Electrical Penetration X100E 12/03/88 0.0 PT-20.3-022 Electrical Penetration X100C 12/02/88 0.0 PT-20.3-023 Electrical Penetration X100H 12/02/88 0.0 PT-20.3-024 Electrical Penetration X102F 12/02/88 0.0 PT-20.3-025 Electrical Penetration X104F 12/02/88 0.0 PT-20.3-026 Electrical Penetration X103B 12/01/88 0.0 PT-20.3-027 Electrical Penetration X104G 12/01/88 0.0 PT-20.3-028 Electrical Penetration X102H 12/01/88 0.0 PT-20.3-029 Electrical Ponotration X105J 12/01/88 0.915 11/30/80 0.917 PT-20.3-030 Electrical Penetration X10SK 12/01/88 0.0 PT-20.3-031 Electrical Ponotration X101F 12/01/88 0.0 PT-20.3-032 Electrical Penetration X101D 12/01/88 0.0 PT-20.3-033 Electrical Penetration X105C 11/12/88 0.0 PT-20.3-034 Electrical Penetration X105B 11/12/88 0.0 PT-20.3-035 Electrical Penetration X232B 12/10/88 0.0 PT-20.3-036 Electrical Penetration X232C 12/11/88 0.0 PT-20.3-037 Electrical Penetration X232A 12/10/88 0.0 PT-20.3-038 Electrical Penetration X232D 12/11/88 0.0 Page 3 of 8

i IIC RQHP_QliENT D2tTE LEAKAQE PT-20.3-039 Equipment Hatch 11/12/88 0.0 03/17/89 0.0 PT-20.3-040 Pers. Lock To Drywell Liner Seal 11/12/88 0.707 PT-20.3-041 Dryvell Head Blank 11/29/88 0.0 PT-20.3-042 Drywell Head Access Hatch 11/29/88 0.0 PT-20.3-043 CRD Hatch 06/21/87 0.0 11/11/88 0.0 03/30/89 0.0 PT-20.3-044 South Torus Access Hatch 11/11/88 0.0 PT-20.3-045 North Torus Access Hatch 02/16/88 0.0 11/11/88 0.0 03/30/89 0.0 11/16/89 0.0 11/17/89 0.0 PT-20.3-046 Drywell To Drywell Head Seal 11/11/88 0.0 02/26/89 0.0 PT-20.3-047 CAC-V49 Inboard 0-Rings 11/29/88 0.0 PT-20.3-048 CAC-V5 Inboard 0-Rings 11/30/88 0.0 PT-20.3-049 CAC-V6 Inboard 0-Rings 11/30/88 0.0 PT-20.3-050 CAC-V7 Inboard 0-Rings 11/29/88 2.240 PT-20.3-051 CAC-V9 Inboard 0-Rings 11/29/88 0.0 PT-20.3-052 CAC-V16 Inboard 0-Rings 11/30/88 0.0 PT-20.3-053 CAC-V17 Inboard 0-Rings 11/30/88 0.0 01/22/89 0.0 PT-20.3-054 B21-F010A 11/15/88 WNP 01/15/89 0.0 PT-20.3-055 B21-F010B 11/20/88 WNP 01/11/89 0.0 PT-20.3-056 B21-F032A, E41-F006 11/19/88 5.469 01/19/89 6.356 PT-20.3-057 B21-F032B, E51-V88 11/21/88 0.0 01/07/89 12.143 01/09/89 8.125 '

Page 4 of 8

TIAI QQMPONENT DATE LEAEAQE PT-20.3-058 B21-F016, F019 11/24/88 54.292 01/06/89 74.479 01/16/89 0.616 PT-20.3-059 B32-V22, V30 01/19/89 13.388 02/20/89 0.0 PT-20.3-060 B32-F019, F020 12/29/88 2.607 PT-20.3-061 B32-V24 12/15/88 0.0 PT-20.3-062 B32-V32 12/12/88 0.0 PT-20.3-063 C41-F006 12/05/88 1.316 12/16/88 0.098 PT-20.3-064 C41-F007 12/04/88 0.0 12/16/88 0.920 PT-20.3-065 CAC-V170, V160, V162 11/23/88 0.097 PT-20.3-066 CAC-V171, V161, V163 11/29/88 1.606 PT-20.3-067A CAC-V4, VS, V6, V15 02/11/88 11.465 12/05/88 6.792 PT-20.3-067B CAC-VSS, V56 12/01/88 2.514

-PT-20.3-068A CAC-V7, V8 11/28/88 0.0 PT-20.3-068B CAC-V22 12/09/88 0.0 PT-20.3-069A CAC-V9, V10, V23 03/03/89 9.820 PT-20.3-069C CAC-V172 12/09/88 0.0 PT-20.3-070 CAC-X20A, V16 02/11/88 2.716 12/02/88 WNP 01/17/89 1.316 PT-20.3-071 CAC-X20B, V17 02/11/88 5.490 11/23/88 22.400 01/03/89 0.0 PT-20.3-072A CAC-V49 6/10/87 0.0 11/30/88 0.616 PT-20.3-072B CAC-V50 11/30/88 0.0 PT-20.3-073 CAC-SV-1200B 12/02/88 1.811 PT-20.3-074 CAC-SV-1261 12/08/88 0.0 Page 5 of 8

I IERI COMPONEHI DATE LEAKhg8 PT-20.3-078A CAC-SV-1227E 12/01/88 0.0 PT-20.3-079 CAC-SV-1260 11/26/88 0.0 PT-20.3-081 CAC-SV-3440 12/08/88 0.0 PT-20.3-082 CAC-SV-1225B 12/08/88 0.0 PT-20.3-083 CAC-SV-1211F 11/26/88 0.0 PT-20.3-084 CAC-SV-1262 12/01/88 0.0 PT-20.3-089 CAC-SV-1211E 12/09/88 0.0 PT-20.3-090 CAC-SV-3439 12/09/88 0.0 PT-20.3-108 E21-F008, F009 12/26/88 83.645 01/21/89 6.958 PT-20.3-111A E11-F015A 12/15/88 0.0 02/11/89 0.0 PT-20s3-111B E11-F015B 11/20/88 4.547 01/27/89 9.820 01/29/89 0.0 02/09/89 0.0 PT-20.3-112A E11-F017A 12/16/88 0.0 01/21/89 2.721 PT-20.3-112B E11-F017B 11/20/88 0.814 01/16/89 0.0 PT-20.3-113 E11-F016A, F021A 12/17/88 2.656 PT-20.3-114 E11-F016B, F021B 11/19/88 0.814 PT-20.3-117 E11-F022, F023 12/04/88 0.0 PT-20.3-118 E11-F024A, F027A, F028A 12/22/88 0.0 01/30/89 8.998 PT-20.3-119 E11-F024B, F027B, F028B 01/31/88 0.0 11/23/88 WNP 01/31/89 0.0 PT-20.3-142A E21-FOUSA 12/28/88 0.218 10/11/90 1.040 PT-20.3-142B E21-F005B 11/24/88 1.723 PT-20.3-143A E21-F004A 12/27/88 0.0 Page 6 of 8

TIBI COMPOHEFI DATE LEAKAGE PT-20.3-143B E21-F004B 11/22/88 0.0 PT-20.3-148 E41-F002, F003 11/14/88 41.050 01/18/89 19.790 01/28/89 0.0 PT-20.3-153 E41-F075, F079 11/13/88 0.0 PT-20.3-156 E51-F007, F008 11/14/88 1.205 01/28/83 2.088 PT-20.3-161 E51-F062, F066 11/14/88 0.0 PT-20.3-162 G16-F003, F004 11/30/88 0.0 PT-20.3-163 G16-F019, F020 11/27/88 0.0 PT-20.3-164. G31-F001, F004 41/22/88 56.057 12/18/88 17.368 01/07/89 1.878 10/13/90 28.900 PT-20.3-165 G31-F042, E51-F013 11/23/88 WNP 01/10/89 2.505 06/16/89 0.0 10/17/90 43.070 12/26/90 0.0 PT-20.3-166 RCC-V28, VS2 01/17/89 WNP 03/11/89 1.326 PT-20.3-167A RCC-SV-1222B, 1222C 03/11/89 0.0 01/13/91 0.0 PT-20.3-168 RNA-SV-5262 12/07/88 0.0 10/22/90 0.0 PT-20.3-168A RNA-V351 10/23/90 19.000 01/06/91 19.600 PT-20.3-169 RNA-SV-5261 12/05/88 0.0 10/25/90 0.0 PT-20.3-169A RNA-V350 10/25/90 0.0 PT-20.3-170 RNA-SV-5251 12/06/88 1.628 10/26/90 1.040 PT-20.3-171 RNA-SV-5253 12/07/88 0.0 PT-20.3-172 RXS-SV-4186 11/17/88 0.0 PT-20.3-173 RXS-SV-4187 11/17/88 0.0 i Page 7 of 8

l I

TES.T RQMPONENT DATE LEAEA9E l

PT-20.3-174 RXS-SV-4188 11/20/88 0.0 I PT-20.3-175 RXS-SV-4189 11/20/88 0.0 PT-20.3-179 TIP-V1 11/20/88 0.0 PT-20.3-180 TIP-V2 11/20/88 0.0 PT-20 3-1El T1P-V3 11/20/88 0.0 PT-20.3-182 TIP-V4 11/20/08 0.0 PT-20.3-183 TIP N2 CHECK 11/20/88 0.0 PM 86-007 Pan X49A 03/03/89 0.0  ;

Pen X49B 03/04/89 0.0 '

A

/

Reviewed By _ # #24- _ m, Date _A / n /n s Reviewed By '! I Dato 'I/ 9 / 7/

Pago 8 of 8

UNIT ONI. "AS l'0VND" MNI'lJ SUMMATION R1 PORT "AS l'0UND" MN1'LR TOTALt .114.iQL SCFila

  • SEE ENP-16.8 11' TOTAL OR A Pl:Ni;TilAT10N I;XCI EDS 15 ).78 SCill
  • "As found"

" As l'ounci" Equitunent "Ar. lound" MNPl.l; per I ..m i n Penetratlon# Cotoponent0 Leakane Error MNi'lJ: Penet rat ion Code

======e===================r_=========e=================e=================ee===

X100A ELEC. IINET . X100A 0.000 0.264 0.000 0.000 A X100B L t.EC . PLNET. X1001 0.000 0.264 0.000 0.000  ;

X100C EIEC. PENi:T. X1000 0.000 0.284 0.000 0.000 A X101A ELi.C . PENE1. X103A 0.190 0.284 0.190 0.190 A X100D EILC. PENET. X100D 0.000 0.284 0.000 0.000 A X 10 <. A ELEC. PINL1. X104A 0.D00 0.284 0.000 0.000 4 X102A ELEC. II.NLT. X102A 0.000 0.484 0.030 0.000 A X104h LLLC. PENET. X104B 0.100 0.284 0.003 0.000 4 X10211 LLEC. PENET. X10211 0.000 0.284 0.000 0.000 A X101A E1.1 C . PINET. X101A 0.000 0.284 0.000 0.000 A X101C 1:1.1 C . PENLT. X101C 0.000 0.284 0.000 0.000 A X105D ELEC. PENI.T . X105D 0.003 0.284 0.000 0.000 A X10$L ElEC. PENET. X105L 0.000 0.284 0.000 0.000 A X102C El LC . Pi Si 1. X102C 0.000 0.284 0.003 0.000 A X104C ELEC. PLNET. X106C 0.300 0.284 0.000 0.000 A X105}l EllC . PLNE1. X10511 0.000 0.284 0.000 0.000 A X105G LLEC. PLNET. X105G 0.000 0.284 0.000 0.000 A S102L ELEC. PENIT. X102E 0.300 0.284 0.030 0.000 \

X104E ELLC. PENET. X104L 0.000 0.264 0.000 0.000 A X100r I;t.L C . PENE1, X100f 0.000 0.284 0.000 0.000 i X1000 ELEC. PENET . X1001 0.000 0.284 0.000 0.000 A X100G LLEC. Pl.NE1. X100G u .f 00 0.284 0.003 0.000  ;

X100li ELEC. PENET, N100ti o.000 0.284 0.000 0.000 A X102r ELEC. PENET. X102r 0 . 0 0.) 0.284 0.000 0.000 A X10M ELEC. PENET. X1041 0.000 0.284 0.000 0.000 A X10311 ELTC. IENET. X1031, 0.000 0.l84 0.000 0.000 A Xi 14G ELLC. PENET. X104G 0.000 0.284 0.000 0.000 A X10211 ELEC. PESET X102tl 0 los 0 ;84 0.000 0.000 A X105J ELEC. PENET. X10$J 3 , U,0 0.286 3.690 1.690 A X10$K ELEC. PENET. X105K 0.00u 0.264 0.000 0.000 A X101E rLLC. PENET . X101E 0.000 0.284 0.000 0.000 A X101D LLEC. FENET X101D 0.a00 0.284 0.000 0.000 A X105C ELEC PENET. X105C 0.000 0.264 0.000 0.000 A X105h ELEC. Pl%ET. X105b 0.000 0.264 C.000 0.000 A X232B ELEC. PENET. X232B 0.000 0.;84 0.000 0.000 A X232C ELEC PINEL X232C 0.300 0.264 0.000 0.000 A X232A ElEC. PENET. X232A b.000 0 . 2 8 <. 0.000 0.000 A X212D LLEC. PEKl.i. X232D 0.001 0.2S4 0.000 0.000 A X1 EQUIP. IIATCl! 0.300 0.284 0.000 0.000 E X2 ELL. LOCI; TO DW BEAL 0.003 0 . .* a 4 0.0D0 0.000 F X3A DEYWELL llEAD BLANK 0.a00 0.284 0.000 0.000 E X4 DW ill AD ACCiss llAICli 0. m 0.284 0.000 0.000 .

X6 CLD liAICil 3.300 0.284 0,000 0.000 E X200A 5. 10R,US IIA 1Cll 0.00 0.264 0.000 0.000 i X200Il N. TORU; ilATCil d.000 0.234 0.000 0.000 E 1 45*

~

h/A DF TO DW llEAD SEAL. 2.110 0.204 1.45" Puen i h a e at hem.i t : Al:lGi

UNIT ONi'. "AS l'0UND" KNPl.R SUMMATION REPORT "AS FOUND" MNPl.it TOTA 1,= 114.506 SCI'lla 650.1; ENP-16.8 IF TOTA 1 Olt A PENETRATION I;XCI;EDS 159.78 SCFil

  • " An Foutul"

" An Fourul" Equiptnent. "As Fotuul" MNI't.R pe r lus t r.

Penetratlon# Cocuponent # 1.caka ne I;rror MNPl.R Penetration Code

e================================================================================

X31 e CAC-V49 2.800 CAC-V50 0.590 0.284 0.590 0.590 C CAC-Y6,V171 V161 V163 0.000 0.284 0 000 X25 CAC-V4,V15.V16.V17 78.200 CAC-V35.V56 0.000 0.000 F X205 CAC-V5,V170,V160.

V162.X20A,X2011 44.900 CAC-V4.V15.Y1o.V17 78.200 0.284 4.300 CAC-V55.V56 0.000 0.284 0.000 4.800 G X220 CAC-V7,V172 24.800 CAC-V8,V22 0.000 0.284 0.000 0.000 C X26 CAC-V9 32.200 CAC-V10,V23 1.740 0.2B4 1.740 1.740 C X9A 1121-f010A WNP ll21-f032A.E41-F006 6.300 1.380 ti . 300 6.500 C X911 021-F010ll WNP B21-f032B.E51-V88 18.500 1.580 1h.500 G31- F04 2. E 51 - F013 62..'00 16.503 f.

fl21-1016, B 21- F019 0.000 0.284 0.000 0.000 E XS Xb2A B32-V22 0.000 0.084 0.000 B32-V24 0.5. 0.000 C X73A B32-V32 16.100 B32-V30 0.000 0.284 0.000 0.000 C X56E B32-F019,F020 9 r.03 0.204 0.300 0.500 E/El X42 C41-F006 0.490 0,296 0.490 C41-F007 1.660 0.690 C X49B CAC-SV-1000B 4.130 CAC-SV-1261 0.000 0.284 0.000 0.000 C X730 CAC-SV-1260 0.000 0.264 0.000 CAC-SV-1227E 0.000 0.000 C X7(B CAC-SV-3460 0.000 CAC-SV-1225B 0.000 0.236 0.000 0.000 C Paues: ; io t c <f lepott' 6/2/"i

j UNIT ONI; "AS FOUND" MNI't.R SUMMA'110N HEl' ORT "AS FOUND" HNPl.R TOTAL. t lli.dQft Scilla

  • SEl; ENP-16.8 IF TOTAL. OR A PENI;TRATION I;XCl;l.DS 159.7H SCfil
  • "An Founci" "Au fount!" 1:quipment " As Pottrul" HNPl.Il p,,( Bas i r.

Penetratlon# Componente 1.enku ne Frror MNPl.it Penetratlon Code ecue====== sect ==s=========ere=========e========re===e===e====eur=========================

X54F CAC-SV-12110 0.000 CAC-SV-1262 0.000 0,284 0.000 0.000 C s

X54E CAC-SV-12110 0.000 CAC-SV-3439 0.000 0.284 0.000 0.000 C 011-F003.r009 0.000 0.234 0.000 0.000 E X12 X13A f11-F015A 0.000 0.284 0.000 E11-1017 A 2.(10 0.000 C X13B Ell-F015B 0.350 0.000 0.284 0.000 0.000 c E11-r0178

! X34A E11-r021A 17.300 Ell-IOl6A 0.800 1.580 8.800 8.800 C-X39h Ell-F021B 0.000 0.264 0.000 Ell-F016B 4.020 0.000 C E11-F022,0023 0.000 0.284 0.000 0.000 E 2 X17 E11-F024A.r027A,r028A 11.100 1,580 5.550 5.550 E X210AIX211A X210D/X211tl E11-0024h,F027B,r028b 0.000 0.284 0.000 0,000 E X16A E21-F005A 1,040 E21-f004A 1.04a ~0.284 1.040 1.040 C E21-r005b 8,600 X16B 0.000.

E21-r0040 0.000 0,284 0.000 C E41-F002.r003 4.309 0.284 2.155 2.155 E X11 E41-F075.F079 0.000 0.284 0.000 0.000 0 X214/X218 E51-r007 F008 41.7IJ 3.908 20,355 20.855 E X10 E51-F062,F066 0.000 0.284 0.000 0.000 E X212/X216 G16-F003 0.000 0.284 0.000 X18 0,000 C G16-F004 0.590 X19 G16-r019 0.880 0,190 0.284 0,190 0.190 0 G16-F020

_ G11-F001. F00 4'. 28.900 1,880 14.450 14.450 E X14 Page a .

  • a r .?

. at deport : 4/i/91

__._____.__.__.___._..._..._-._______..__,_,._..-.._._,_-._..,__.a.,-,,,...)

  • 1
  • 1 1

IINIT ONE "AS F01'ND" MNI't.it SlfMMATION Rl;I' ORT l l

" AS 10iiND" HNI't.R TOTAL.= Il4.10h _Scl1l*

8 51'.1: 1:NI'-16.8 IF T01 Al. OR A l'l:NI:TRATION 1;XCl;tb5 159.78 SC111 4 " At6 l'ourul" "As; Found" I;quiseent " An l'ourul" MNi't.it pe t im i s l'enet rat lon# Component 6 f.calane Error HN1'!Ji l'enet rnt ion Code

e=n=======e=e==================e=======================================r===r=

X23/X24 I;CC-V28. VS 2 7.700 2.075 7.700 7.700 A X77Fi/N77C RCC-SV-1222b.1222C 0.000 0.284 0.000 0.000 A X55 RNA-SV-5262 0.000 0.284 0.000 KNA-V351 19.000 0.000 ,

X71 RNA-SV-5261 0.000 RNA-V350 0.000 0.284 0.000 0.000 c X83h KNA-SV-5251 1.040 0.264 1.040 1.040 A X52A RNA-SV-5253 0.000 0.284 0.000 0.000 A X209A-B RXS-SV-4186 0.000 hXS-sV-4187 0.000 0.284 0.000 0.000 C j X209A-b RXS-SV-4186 0.000 kXS-SV-4189 0.000 0 . .' 8 4 0.000 0.006 C X35A Til' V1 0.110 0.284 0.110 0.110 A N35B Til' V2 .l 740 0.284 1.740 1.740 A X35C Til' V3 0.000 0.284 0.000 0.000 A l'

X35D Til' V4 0.460 0.284 0.460 0.400 A X35i' Til' N2 CllECI' O.590 0.284 0.590 0.590 A N/A F Eh50NNEl AIRI.0Cl; 9.711 1.605 4.856 4.356 I TOTAL. 561.310 6.516 107.990 107.900 Reviewed Bv: h/

7 i ,/

Date: 1. E. 9/

Reviewed avi,_ ,. - naie u ..q CJ l

l'a r e a i. O., t c .i F.e t.o i t 4 / 2, ii

1 s_ .

l t!ili (K! ' Al TCMP 11'lIG llKM i

'AS 13rP lA'i:G i:ini ., Mil _Mih 4 m 4 - - h 4 k-54t.14 100) ' (.ip;M u!l Li nie.it N !I halait Eklif i!!;I losity G

-h.

tilst!%%!rtttttttfifflittkitt! Ettf8!!!!!Jt!!f*i' **:1 *E1 ttf47tT31118 tarts:tal;tt*1stf* tit; !!!!+**:til;*It Ubb k .N. f kNY. Nk h>(I! . h 0 (b [.hhh v, fi hrN A U006  !!IC, PHIL IIRh LOR 03 3 EJN LOM EJH LCR A IM(C ntL !!!tt I RCC OSC (JM ;Rt  ;.;M JH i.,N A UC3A nt;. f!HL Ilt3A L1R LlH 0,iH L M: tJH LOM A

- UD0! nit f!HL IIHI GM0 (JM LEC LCM v.:D vLI A

- %iM A n!0, IIHL de LOM  : 3 00 LHs 0E0 CJW 0.0C0 A

D:A ntt, it it liga (M0 (E: LD: DJM L.:H ;JM A 11045-~ ntL-f! NIL UHB 0E0 0300 C ,00 000; 0.iH 040 A

!- -1101  !!!Lf!4L UU6 (JR (JU C,M; La LH ISC A UCIA nic,flHL Uf!F 0.00 0. C W OM; (30 0JM IR; A '

! hic ntC. IIKII. IWIC 00H 0AM LC3 0.UU .!U CJM 14

!!0lt Ett !!h!T. UMt (JH 0M0 CJM (20 0. H :J00 A 11(5! - - RIL f tHL IM51 LHO LIM Lu( 0.G; L;H L.(X A IlMC n!L FEhti. UCIC LOM h(00 0,0M - 030 0JH- 03G A Ilt40 (i.10. ?!HT. UNC LOM (JM L000 Ord DJB LMI A 1105H E!C. fiXth Mc5}i LOM LOM 0JC0 0JM L2H GJR A UtM R10,Inth U?M ( . 'S ;S: l .4: L%: L:H (JM A U0a Utc. FIHL IH21 0AM .0 4 ; 0.CM LHO 0.:H tMC A UNI -ILIL ! tut. UNI C.tM ?S? LtG . (20 th! LM A 11MT nic.PlHL UMT 0E6 (S0 CMC C.000 0JH DJM A 11 3 I HLC' . IIHL !!M1 (JR ;2t LD0 [.LM - L:H OE0 A

' I!MG nit. ?!HL IKW - 0.0M 00H (MO SSC 0J61 0.H0 A UMii HtC, ilhEL UMW EJM LCM OM: 6 02: IJH DJM A ,

F IIHf titC. FIH i, U til LOM 0.0% L000 -020 LIH LOQ. A UNI n!L f!Ht. IIHf 0,03 0JM EJR 0.3L L:H 14: A U011 ELE, f!HT. IH)E 0.0H (JG- ;du 0JM t.!H (St A IMH I!!C. FIEIL UCH OMC ta? ' 0 2? CJD  ;.011 0M: A 002H !Lt;. f!Ht Il0 E 0J00 040 0,000 0,0% L:H C.CM A  !

- Ut!J UIC. ft:4!L IltM LHO h6% 3dH LOL LH C.3;- A

- UMt n!0,f!HT 004 .LCH 0 000 L;00 CJM 0. H 040 A U0li ufC.FIslic UMI 0JM t .X;t ort . LMi l H LL A-L Il010 ntt, PtHL 0010 040 LN0 0.H0 - L000 1,IH 0 N0 A UO50- -ntL f!Hi IR$C OJM- EJR O RC - OSC (JU  ;,;U A f 4 -

  • n . 4 4 4 l' U33. nn. ?!HL IM;5 tJG LCU 0,C3 CJR L;H t.Mt A I2HC~ ntL_ !!H7; UMC- 0J0F 0JH LOM 0JG ,JH C.0H A L

' DMA ILIL FLnt. ID2A - (R0 65L OSC 0.M; 0.:H ;JR A L

l: UMD nic,P!Ht.!!MD LOM' 030 LOM 0 J00 L;64 L 0.0H A l 21 HMi, UKH- LLH 03; 0JX 0JM L:H L:st I p U PIL LO3 70 DW Sin 0400 0000 0000 0,0X LHi 0Jr I DA UTVnt HM !!AH 030 EJR. (JM t.03 (Jh ' UE

, I-( H DV H H A0053 EATCH CS0 .E LOM DJH CJH L;M i I6 CR BATCH - LGC CJG :JM L M;  ; IH 02. lL

j. UHA . 5. 7013 M70s  :.CM t.M  ?.%0 (JG L;H 0.6 E-L . UHi 0 7005 liAKE L M( - lJO ;JG 'fS  : Hi LM: I '

j' X/A LV 10 N HAL HE LH0 1J)$ LG;  ; 1 00 0 ;H 1,05  !

I -4 -

4 k (  !

i

_. _ _ . _ _ _ _ _ _ _ . . _ - . - - . , _ . _ , . , . _ _ _ , _ _ _ - _ _ _ . _ , . _ _ - . - _ - - - _ - _ . _ _ , , _ _ _ , _ . , _ _ _ _ _ _ _ _ _ . - _ _ , ____ m , _

L' .

t L

F 6 F _

p-

,,,e i nr0 , . ILW. . ..,l a ... Dratisav dVaA&.t...r ,,,,,2 ,,, , , g , , ,, g }g g2 i

I 4 .

, h k h b h Ep .i hI kN h[sh

litellet10tl (ahoth!l Ltd6 NUtt irdne KXia in 5cin 3 .h.

4 3 8 8 ti t t t t 313 4 t t tli t i.t A t s t a t t t : 4 a s t s : s t t $ t i:t t- *ttitirt:

  • t!It 2sistct!'5:ta417tt a :si";ti tarttsift *1!
  • 1*d (AE*V4h  !.lbh 2,10 CAC V H 0.5H 0.Ht C.$N 0.5K  :.;i4 0.tts  :

4 -a a i 94 i' t - 4q e CA 44all,VILV11 76. 3 0 4 %;

CAC VHJH  ;,l[0 Lt ' . .IM I,tu i 1:05 CAM 5300J160, o VliLI!CA.1:0B 4LHO LG0 L6G ;H 4

CAM 4J!)J3,V;7 11.100 4.lQ 4.tll i

CA: VHJH DJM 0.0% 0.03 4.000 G I:10 CAC47,Vii; H,B; IJ00

["

CAC46J'i 0.000 0.000 0 J0; LJC0  ?.H4 L J;0 C

+

)

13 CAC45 3 l , ', % - Edu (JM  !.lH (AC4!D.VM L'i0 1,740 1.iu 1. ? G C i-I$A N1*Ihlth Nf [ t fv b h. I I, I$

5:143:A,!O4%6 6,500 L5M 3.!(0 6.5W C

In- 1
140101 .

W &J05 L.L5 L. H M14032LI51466 16 M0 1L500 LD0 L f4140H,1514H3 6L M. 0J0t H.H; i la $214016,121400 DAM 0,000 t

!- -IH4M! OJK ,

M14M9 0.30 0.80 0.264 0AM C

'!G A ;BW40 0410 i,GC 0,RC n . BM424 0.8, 0.M0 0J00 0.iH LEO . -C lilA BudM 16.1 0 T.M

- EM4M CJM 0 000 0,;00 LOM - 0J84 03M C

- 15it ' H24tH,1;M 9,6M --LHO L HO - 0.5M ' idh tJR - t/li -

- 10. C414006 0.00 LiH Li90 0.00- 0.36

, (1400 1JR 1.650 CAM C-10B CAC4V1;Hi 4,130 ;JM ,

'lAC4 V M il (JH. CR[ 0,ML ( . 'U !JH - 0. 1 3 17.*1 CAC*$7 IM! 0.000 OJM CAC4V U!?! t JR. - tE -L(h  :.'M L 14 t CR  :

Futi ltatt ci hpth (lill!

._ ._ a.; u .__ , n. _ ____u-.. ..__._.u.__.. _

9 i

l U II IXI 'A$ TUhi' $lN G l[fbl$

'Ai l' T $AVIG isilD R j]1_ 5 TE

'At h d"At in:# 'h hf L' 'A6 ;d!' laMtt! 'h is;T bid h uttallal' Cu m stil hab;e Ef;2 haba WH  !!al leva; ;As titltt3(tiflit$ tit *11tStittttttt157ttttt:1:21:111tittit!!!stittlart:ttr*ritti:tttitttttt: ftt!'itti3:2 *t:

_ 3 hk. (Ah*V'hikh h . k-h t i.b[

CA;iVi!;5B 0.000 s.t:0 0.~C0 0,MC CJH 0.;00  :

IMT CAC+5V*i!Mi (,'M i.;M CAO Ti ;;62 - 0J00 0dC ' CG

. 0.003 0.;H C.G0 .

!!41 - lAC ri ;;111 C.lM C.G CAO JV Ci 0,000 0J;; CJG 0J3 ' Ji4

. 0JC  :

., . . ,.,, ., t . .. , . . , , , . - , , , .,, ,-

4,44. 4 ll

  • J A VI e l kT 7 .

V e ,,i b fr ,6 k v,C k. kin L-sk> -6sl 4 ini &

UA .Ill1015A- 0.000  ;,;03 0' . 0L O 0, E F-1 0,;Ei

!!1IC1*A Lilt JiC a3  :

II3I  !!110!$1 0.MO IJ50 s 111 70 0 )  ;.Ri t. ': s JM  :.JI t,.fi (,'. r USA IIbitilA lijM t 000

. C.003  ;,;H

!!i10llA S.B00 6JCL 6.60 133 L US) til itill LC00 C.Ht 0.000 (.000 0, ia libi;;tt 4.00 .10.420 0,UL i

117 11biGhisu 043  :.005 0.000 C.0% saH 0,000 I ,

U101/UllA ' 11bfS:4A 10HA,IMBA 11.100 5,MC 11, u! 5,H; 1.H: 030; I

. !Il0B/U11B. Ui fG45,!0MB,lMES C.0% 0, XL - (J00 0,0M 0 J14 0J00 .I

. Illa UbiG!A 1.Cli iJi!

Ul 10;4A - i04G  !.h0 die !Ji0 L;54- 0.00; C Ull Ubl0Mt $dR  !.i; UbT000 0.000 0J;C 0.CC 0,03 0 di4 0,0G (-

lu liblOLfG3: - (J011 2.155 -

1-

c. UbfM2. 6.5N til TCO  ;,(G I,45; (Ju idi5 C.

MH/Ull  !(17U5,1075 0 000 0.0H 0.0M OJO (JH 0.00 .I

!)0 U FIG L1005_ II,710 '.155  :

UbiGG CJu iJ:0 MH 115bi';iL . t,H: .s in C F UHlC16 151 T00 ,TM6: 0.0G 0J00 0.00 0JEC CJH ;Z I L 100 2: hte d hmt 4"y!?)

k

- a- e i ., a ,-- _ , _ a _ _w. _ - -. . _ . ..---:.. - - _ ~ . .

L

. 6 s

.. . e, eU., se .,h.t .[t wf a" rP ' ' J' M' " o h a'tLi **'v*-'-*iY ti. t

  • r

\ ' ' S A' "1 s' h' u' 'i . '4 A' '6 *-e. g a.6. (.' w , r .^ I ;o te.

Av 4 6 .'6.

e)) .tL6wp , I.6 !s1 . . c.

M k, s .; *

  • 4 k t ( ,b e -

fit k i t h ,i- ' ,ki Iv L 'i.. . .

ial.6 Ii tt 'e l ll h kl (kh4hth'.l 'ftityt 6 kif d isel6M Ef3 $1.

3$iil s' 1 Jt

g;t:11:itzr?ttr:*:tigsittiststra tr; + +t
  • 2- It; *:: :rt: ? *
  • 5:i*ts!';titt: :1;
e. .. ...s , , ,, ... r , , +.-

e.

i ,4 5 v4b*J.+J vivi 1 . t etw.

  • a ..*n F-946*.af>4g e t h g 5 . h4  ?,tl40 t J 6,, s .

J

...- ,, . e., ,r 441 V d

  • I .,, , 63- t.tti 5.tbt )

.l .'4

.4, .

uiU*!U64 W l,,e t.63t .174 v.;h s ..n' s rn, <. .. e ne .

1.41 wi'Ie+A. , , [; e stst 4t.7.o . 41,4?> a et ... e.s hd

  • bVj k . 6- h i

.. , ,., ... ,. ,e ,

v j i, 'I . .v4 6-. i.i .ti .1 * ' s

,..e.. ge. ..e ,g. a 5.. . .. , gr* 4 .,4 . . . 4 66.b l 1 r S.

  • ef.V,6 s,'4'y i si .is& ike ,,L ) c.Ct a gr. . .+++* r * *. * * **

r6 ,s ur

.. ei' * * -

AJ /i,.I3..

/ t. r 4 * )3 *g...,a.660,164sv & 4 = il Ve*d vi 'l

  • s ! I i 6

. ..* .. ,.s.

1). g; t h;A

  • g..,y*5 6,4 (,m#,s v-,,Lh i, . i n v L s-- 9 6c4 e .. , . r ,+ y f.h.. u,g.esJ,1 al.v'.. 6.sv. i .6 i, t9. e -e rer e,ere e
k. h, A
  • a V
  • 3 6 01 v 9vV t . h. *vi,-

642

.Ph.a*, l. .sn

t. t ene vitv s . 56: s, 7,

. v$tesp . . e t, r..f4 s

?

6 s.tc 6 i 1., o, . , r . ,,e . .. fa. .

1.v(c, t..e4 A33) I- hk

  • J i' z, . 51 1.v4v i,,$. .i . t. ( rs ..tua n

(.re, - +e, >. u r. err . e , ,

$k . h. . , e 6)a t,r\*d*3.,. 6v ,. v.viv ..se, v.-g,#.t v.viv 1 1;C5 H UNHlie Cai C.G0

,n . . , , . .

i.(mvs

?14*$ek

  • i 4 6,, L ,, ,.&ve [ . ,s it,, ,,Li, v..il '...i t IIY3A*h $1$*il*4lhi S.( O 0.N 5 U;. *..3 'i * ,,t,s s e. i.vst i.Li1 e.ivv v.[iv s i . 6 k.1t 4 4 . t r +e>

v* *.lb g.4

. * ,is +g .

  • kes e g A, etf 44 ul k L,42ei FJ L.44s s. 4v s6d 6 , w r.

pe- .g,4 .)- . . , r ,. . -

..s . . sia ,

h*8.g4 3

7.de g h6

  • 46 J

~

i Y y4 h,EgN 4

  • I LJk4h 8 eA S. y 14 ~V v,Vn ben. ( , v+ * ,n i. . M, , pW..al Lp..n .

n bgr

... e , , ..,

gr. of (.iv',pe 4, e , $g, i

. 4- sat 64 5.4 h L . hc .i v.1** v +bi

. 4.ti e r g s e <, . .4e 1.bIJ .4&. I h,. . [,.gr d b, . .; g ;

5

.gr.

! v.g,)v n,. .a,s f r vlo

h. $ e.4 v # s.

3

4. [ t, e3 42. .i 1 , 6 ,v . s
  • .,= ,e. . , <5 .#., n. .+g

--*k.

h4 a g J ). ,li)g. 6t iv!,)14 .4) t(sv s

Ji. 't 6.ite "t.41J ktihHtd b f: _

bdt. [ {C { f

/

MotJ Bi. mg t v.r g.3,

.F4i,tl 1 a 6.t te f t' l e. . .ik- 147!!,4

. - - - - -- . - _ , . . - . . - , , . . - _ _ . - ~ , , _ - , . , - _ - - . _ - , _ . ,.

j UNIT ONE l PENETRATION MINIMUM PATHWAY LEAKAGE RATE BASIS DOCUMENT Page 1 of 3 i The "As Found" MNPLR Total shall equato to the sum of the Penetration MNPLR Total plus Equipment Error Total.

The Penetration MNPLR Total shall equato to the sum of the as found MNPLR for each panotration.

The Equipment Error Total shall equato to the square root of the sum of the square of the appropriato equipment error.

1 l

CODE ANALYSIS A The MNPLR is equal to the "as found" leakago rato.

B The MNPLR is equal to the "as found" leakago rato past the best valve (s) of the following two barriors (1.0, smallost leakage of the two tests):

B21-F010B B21-F032B,E51-V88 C The MNPLR is equal to the "as found" leakage rato past the best valve (s) of the two leakago barriors (i.e., smallest leakage of the two tests).

.D The MNPLR is equal to the sum of the "as found" leakage race of both valves.

E The MNPLR is equal to ono half of the "as found" leakage rato. The MNPLR may be reduced by repairing one of the two valves and rotesting. After the rotest, the MHPLR can be the "an loft" leakage rate or the "as found"_leakago rato, whichever is smaller.

El The B32-F020 valve was repaired.and this period tost was tested again. The "as left" leakago was 0.500 SCFH after rotesting. Thus, the leakage of 9.300 SCFH can be associated with the F020 valvo.

l-

l 2

UNIT ONE PENETRATION MINIMUM PATHWAY LEAKAGE RATE BASIS DOCUMENT Page 2 of 3 CODE ANALYSIS F If no repairs are mado, tho MNPLR is equal to the "as found" leakago rato past the CAC-V6/V171/V161/V163 I valves or CAC-V4/V15/V16/V17 valvos pluu leakago past  !

the V55/V56 valvos, whichever has the lowest leakago.

If repairs are mado, the MNPLR may be re-ovaluated after repairing one or more of the valvoo and retesting. This ovaluation shall becomo part of this document.

G If no repairs are mado, the MNPLR is equal to the "as found" leakago rato past the CAC-VS/V170/V160/V162/X20A/X20D valvos or V4/V15/V16/V17 valvos plus leakago past the V55/V56 valves, whichever has the lowest leakage. If repairs are mado, the MNPLR may be re-evaluated after repairing one or more of the valves and rotesting.

This ovaluation shall becomo part of this document.

Evaluation: When the CAC-V5/V170/V160/v162/X20A/X20B valvos were tested, a leakago rato of 44.900 SCFH was found and the test was considorod unsatisfactory. To datormino which valve was failing, the following troubleshooting was performod:

1) The CAC-X20A and X20B valvos woro bubble touted and no leakage was observed.

2)-The CAC-V165 valve was chockedL(vont for tho  ?

V160/V162 valves) and a small amount of-leakage was observod.

Based on the results of the troubleshooting and past history of the butterfly valves, the CAC-V5 valvo was considered the failure and was reworked.

When the CAC-V4/VS/V16/V17.valvos woro tostod, a leakage rato of approximately 78.200 was found and the tost was considorod unsatisfactory. To dotormino which valve was failing, the following troubleshooting was performod _

1) Tho CAC-V153 valvo (vent fcr tho-CAC-V4 valvo) was checkod and leakage observed..
2) The CAC-V16's valvo disk was bubble tested and

- loakage was observed 360 degroos around the disk.

- ,.p,--y,w-y,_w-- ,gpg-%yw-m,9-%-.w y y-99p 4 gp e,

I UNIT ONE PENETRATION MINIMUM PATHWAY LEAKAGE RATE BASIS DOCUMENT Pago 3 of 3 CODE ANALYSIS G (Continued) 3)-Small packing leak was observed at the CAC-V6 valvo.

4) No leakago was observed at the CAC-V45 (vont for i the CAC-V17 valvo) nor at the valvo disk Since the-CAC-V57/V58 valvos normally leak by, CAC-V16 was considorod the failure and was reworked.

- After the CAC-V16 and the CAC V5 valvos were reworked, the tests woro performed again and the result was

'4 . 800 SCFil and 0. 000, respectively. These results mean that 73.400 SCFl! was leaking by the V16 valvo and tho

, romaining valvos associated with the V5 woro leak tight. Since the X20A valve was demot.strated to bo

leak tight, the MNPLR for this pathway was 0.000 SCFill therefore,-the remaining leaking had to bo leaking by the CAC-V4 or CAC-V15 valves. For this reason, the "as found" and the "as left" MNPLR for the X205 penetration is 4.800 SCFil .

4 l w / Dato: 4'2 91 Reviewed Ey: / ,

/ "

Reviewed By: / N/ Date: . 4 o

~

4 ,

b

< n,--, -----e,- -,,,----,.,.w,-- , . . . , , , , , , . - , ,

,-v., - . - - - - - - - , . ,,,--,....,-en. n.,r----- , , ., ...,,a--n,re-

GPll263106 GENEltAL l'IlYSICS CollPollATION APPEND 1X 11 SENSOlt LOCATIONS AND VOLUME FilACrlONS l

l l

l l-l 1

i APIEND1X 11 COMPRESSED f 3 ElEV. 93' AIR IN

0' 180' 270' ELEV.78' 270' 00' 90' V JT /

' 0- ,80-Eg;;n PRECISION

--M-_ X E11

_o RHR o Et Ev. c v 3e 7e one hh f FfEhE[R QQ El EV. 46' 300' 0' 180' 180' ROT TER .

[ O' 120' 240' 270' INDUCED LEAK El EV.10' 0' 270' 180* 90' 00*

s  %

DRYWELL

' ELEV. 0' 4' LJ

^ ^fj ^ ^ ^ ^ j [^ ^TE

~ -

) TEMPERA 1URE ELEMENT (RTD)

DPE DEWPOINT ELEMENT (DEWCELL)

( ^ ^ ^ ^ ^ ^ ^{][' ^ l

]}- -- '~

2 1 3 0' 90' 180' 270' 0' GO' 120' 180' 240' 300'

)

o CAROLINA POWER & LIGHT COMPANY BRUNSWICK UNITS 1 & 2 SENSOR FAILURE ANALYSIS DOCUMENT  ;

1 Page 1 of 4 Failed Original Redistributed Sensor # WP WF TE 1 .0264 TE 1 - 0. TE 2 - .0352 TE 3 - .C675, TE 4 - .0275

.TE 2 .0264 TE 1 - .0352, TE 2 - 0 TE 3 - .0275, TE 4 - .0275 s

TE 3 .0187 TE 1 .0301, TE 2 .0301 TE 3 - 0, TE 4 .0224 TE 5 .0153, TE 6 .0153 TE 4 .0187 TE 1 .0301, TE 2 .0301 TE 3 - .0224, TE 4 - 0 TE 5 - .0153, TE 6 - .0153 TE 5 .0115 TE 3 .0210, TE ll .0210 TE 5 - 0, TE 6 . 0138 TE 7 - .0159, TE 8 - .0159-TE 6 .0115 TE 3 - .0210, TE 4 .0210 TE 5 - .0138, TE 6 - 0 TE 7 .0159,-TE 8 - .0159 TE 7 .0136 TE 5 .0137, TE 6 - .0137 TE 7 - 0, TE 8 - .0159 TE 9'- .0217, TE 10 - .0217 TE 11 .0217 TE 8 .0136 TE 5' .0137, TE 6 .0137 TE 7 .0159, TE 0 TE 9 - .0217, TE 10 .0217 TE 11 .0217.

.TE 9 .0194 TE 7 .0163, TE 8 - .0163 TE.9 - 0, TE 10 - .0222 TE 11 - .0222, TE .0528 TE 13 .0528, TE 14 - .0528 TE110 .0194 TE 7 - .0163, TE 8 - .0163 TE 9 - .0222, TE 10 - 0 TE 11 .0222, TE 12 - .0528 TE 13 .0528, TE 14 - .0528-

CAROLINA POWER & LIGHT COMPANY l BRUNSWICK UNITS 1 & 2 i

SENSOR FAILURE ANALYSIS DOCUMENT 4 Page 2 of 4 railed Original Redistributed sensor # WF _r W

TE 11 .0194 TE 7 .0163, TE 8 .0163 TE 9 .0222. TE 10 .0222 TE 11 - 0, TE 12 .0528 TE 13 - .0528, TE 14 .0528 TE 12 .0500 TE 9 .0250, TE 10 .0250 TE 11 - .0250, TE 12 - 0 TE 13 - .0556, TE 14. .0556 l TE 15 .0632, TE 16 - .0632 TE 17 .0632, TR 18 - .0632 TE 13 .0500 TE 9 - .0250, TE 10 - .0250 i

.0556 TE 11.- .0250, TE 12 TE 13 - 0, TE 14 .0556 ,

TE 15 .0632, TE 16 .0632 TE 17 .0632, TE 18 .0632 )

TE-14 .0500 TE 9 .0250, TE 10 - .0250 TE 11' .0250, TE 12 .055G j TB 13 - .0556, TE 14 - 0 1 TE 15 .0632, TE 16 .0632 j TE 17 .0632, TE 18 .0632 '

TE:15 .0577 TE 12 .0596, TE 13 .0596 TE 14 - 0596, TE 15:- 0 1 TE 16 - .0673, TE 17 .0673' 1 TE 18 - .0674 1

TE 16 .0577 TE-12 .0596, TE 13 .0596 <

TE 14 .0596, TE 15 - .0673 d TE 16 - 0, TE 17 - .0673 l TE 18 - .0674 l-l- TE 17. .0577 TE 12 .0596, TE 13 .0596 o

TE 14 - .0596, TE 15 .0673 j TE 16 - .0673, TE 17 - 0 TE 18 - .0674-TE 18 .0577 TE 12 .0596, TE 13 .0596 TE 14 - .0596, TE 15 .0673 j

TE 16 - .0673, TE 17 .0674 TE 18 - 0 j

l CAR 0!INA POWER & LIGHT COMPANY

. 1 BRUNSW1CE UNITS 1 & 2 SENSOR FAILURE ANALYSIS DOCUMPNT i l

Page 3 of 4 1

railed original Redistributed sensor # wr Wr ,

TE 19 .0701 TE 19 - 0, TE 20 - .0841 TE 21 .0041, TE 22 - .0041 TE 23 .0841 TE 24 .0842

~TE.20 .0701 TE 19 .0841, TE 20 - 0 TE 21 .0841, TE 22 . 0041 TE 23 .0841, TE 24 .0842 TE 21 -.0701 TE 19 .0841, TE 20 .0841 TE 21 - 0. TE 22 .0841 TE 23 ,.0841, TE 24 .0842 JTE 22 . .0701 TE 19 .0841, TE 20 .0841 TE 21 .0841, TE 0 TE 23 - .0841, TE 24 .0842 TE 23' .0701 TE 19 - .0841, TE 20 .0841 TE 21 -'.0041, TE 22 .0841 i TE 23_- 0, TE 24 .0842 TE 24- .0701' TE'19 .0841, TE 20 - .0841 TE 21 - .0841, TE 22 - .0841 TE 23 - .0842, TE 24 - 0 DPE 1 .0527 DPE 1 - 0, DPE 2 .0753 DPE 3 .0649 DPE 2- .0489- DPE 1 .0772,-DPE 2 .0-DPR 3 .0630 DPE 3 .0386 DPE 2 .0682, DPE 3 - 0 DPE 4 . 0776-DPE 4 .0583 DPE 3. .0678, DPE 4 - 0 DPE 5 - .1793 DPE-51 .1502 DPE 4 - .1334, DPE 5 - 0 DPE 6 .3060 DPE 6 .2309 DPE .3811, DPE 6-- 0

.h

.-a,------+--,,-----.+...-,+-+------ - ------__---------------____-seew~-

i i

CAROLINA POWER & LIGHT COMPANY  !

1 BRUNSWICK UNIT 8 1 & 2 SENSOR PAILURE ANALYSIS DOCUMENT Page 4 of 4 Failed original Redistributed sensor # WF WP I DPE 7 .1051 DPE 7 - 0, DPE 8 - .1402 1 DPR 9 .1401 DPE 10 - .3401 DPE 8 .1051 DPE 7 .1402, DPE 8 - 0 DPE 9 .1401, DPR 10 - .2401 DPR 9 .1051 DPE 7 .1401, DPR 8 .1401 DPE 9 - 0, DPE 10 .1402 DPE 10 .1051 DPE 7 .1401, DPE 8 - .1401 DPR 9 .1402, DPE 10 - 0 i

f f

?

<h 4

u f

f

. . . . .