ML20072L699
| ML20072L699 | |
| Person / Time | |
|---|---|
| Site: | Clinton, 05000000, Skagit |
| Issue date: | 09/27/1982 |
| From: | Yang J BROOKHAVEN NATIONAL LABORATORY |
| To: | Pratt W BROOKHAVEN NATIONAL LABORATORY |
| Shared Package | |
| ML20072L675 | List: |
| References | |
| FOIA-83-31, FOIA-83-81 NUDOCS 8303310481 | |
| Download: ML20072L699 (30) | |
Text
g.. :..
._ w 2...
a.
...2.
._.a.u._.._.
~.. _:-.
- ( ~'
4 BROCKHAVEN NATIONAL LABORATORY s-E i
MEMORANDUM d-
[
DATE:
September 27, 1982 i
~ %- t.2 L
.L To:
W. T. Pratt -
- 9 rL3
-FacM:
J.
W.' Yang 44 i MARCH Analysi's of Hydrogen' Burning.-
4N
~ sua;EcT:
During Degraded. Core Accidents for-the Clinton Power-Station and the.
.i Skagit Power Station
.[
.2 e.
j.
'i 1.
S'J!ViARY_
V L-
~
Hydr' ogen combustion during degrided' Tor ~e accidents hai b)en' studied 'for the Clinton.P.ower-Sta' tion and the' SI:a, git Power Station.-. Both Clinton and 1.
Skagit have.the BWR/6' reactor ve'ssel and MARK. III type containment. A de-tailed comparison of Skagit with Clinton, ' Grand Gulf, and GESSAR are given in-the Appendix. ' Because of the similarity between th_ese. plant's, the analysis was performed only for the Clinton Power Station' (CPS).
The results of the -
~ ~
analysis and the conclusions are: believed to be' applicable.'to the Skagit-Power
~
__ s
^
Station.
3T The accident sequences analyzed for CPS were assumed initiated by either-i transients (TQUV) or small break 1.0CA (S E and S E).
All accidents were,
'j.
1 2
2 terminated.by the restoration of ' full or p'a'rtial EC.C.S p'rior t.o core slump. A j
total of 13-cases were investigated.
The results are summhrized in Table 1..
For the degraded core accidents considered, the portion of clad reacted with p-d-
ste.am was calculated between.49f._to 76%'and the amount of hydrogen released (j
from the pressure vessel about 1400 % 2200 lbm.
Based on thh assumed 8303310481 830224 PDR FOIA 4
HIATT83-81 PDR
.. _. _ _ i;
2fA.LW 's Y& %2i=:2 ::~ D h,. a d.L n -~
.x
.a
~. ~. ae s : X Q. :.. =.aw MM2EG a e w L
Table, 1 Results of degraded core accidents for CPS, f.
):
l Nalmu s t
' li AJiabatic Prah
.l Oreak Core Start ECC Clad pf rogen lu. of fl Pressure Cent.s inment erf rogea d
d y
Olameter great LCC Uncovery Melt Da Neacted Aeicated Burned Durn (psla)'
Preswen-Case Event (In)
Iype 8estored
,(min)
(ain)
(min)
(1)
(th).
(1)
Dry Wet Dry, Wet (pla) l 1
.5 I
IquV All 204 252 2u0 49 14I5 69 1
2 86 50 44 s
2 10JV llPC5 204 252 200 49 1415 69 1
2
- 86 51 44 l
3 IquV LPC5 204
- 252 200 800 2886 77 0
5'
' 90 94 92 e
LPCI I'
i 5E 2
Water All 42 SI 136 66 ',
1921 il 1
3, 4
til SI 44 I
2 e
(
l' i
3 5
5(
2 Steam All 183 243 110 69 2025 65 2
2 122 50 4) 2 l
l' 6
SgE 3
Wate'r All 23 54 6
94
~67 1933 72 2
2; I48 50
, 44 e
g b
7 SE 3
Water (PC5 23 'e
)4 6 94 76 2167 65 2
2 '
148 50
, 44 g
e LPCI 9
i l*
i,
\\
8 5t 3
Steam trC5 154 RI)
\\272 g
44 1914
- l
.69., '
2, 2-125 51 1
46 l
8 6
9 5E 3
Steam LPC5
. 154 213
- 272 62 l 1838 il 2
2 125 Si 46 I
f LPC5
, ' "1 g
10
$gE 5
Water All
, 10 '
35
~75 63, 1889
. 65 1
2
. 4 28 ~
54 48 -
{~
[
s s
e.
t' In
' $gE 5
Water LPCs 10 35 15 63 1855 64
.I 2
129 54
- 48. -
LPCI i
8 l
i 12 5E 5
Steam liPCS 4 124 186 248 56
. 1630 75 4
2 Ill -
50.
46 t
3 f
[
13 5E 5
s5 team LPC5 124 186 245 52 1524 48 2
.L lil
'50 46 3
LPCI.
e j
s t
Note:
- 1) Case 3:
100% clad reactio'n indica.tes.failuretto terminate the accident by restoring the ECCS.
Coreslumpandvesselfai)urewerepredicte'dbyMARCll.
6 S E steam break scenario.also' simulates the Transient Event of Stuck Open j;
- 2) Case 5:
2 I
Relief Valve.
p 8
i, 0
0 s'
Ig-
. l
)
.a.-...
+.. - = -. - - _ =.
..--..a w
W......
Me.o to 16 T. Pratt September.27,.1982 i
.Page 3
,r q
d flanmability-limits of hydrogen at 8"-?%, MARCH predicted the ignition of hy-L drogen in both drywell a'nd wetwell.. About 487. to 77% of. the. hydr, ogen releas' ed S
'1 to the containment was bucned 'during the accident.
The. peak. containment < pres-Q Q.
sure, i.e....the equa'lizeii pres'suFe 'of,the 'tso compartments, j s much lower tihan'.
1
+5 t
q}
the e'stimated containment failure press'ure (11 psia). However, the predicted.
j adiabatic pressure of hydrogen burnini.in the.drywell. equals or exceeds the e'stimated failure pressure for several atcident sequences as shown in Table 1.
t MARCH resul.ts indicate that the high adiabatic pressure it caused by the igni-tion of hydrogen at.laregconcentrations in the drywell compartment. During the early. blowd'own period, steam relbased from th'e pres'sure jesiel pushed all air (oxygen) out of the.drywell thrb'uh the su'pp'ression pool vents..Conse-
.7.
quently, large hydrogen coocentrations were reached in the defwell because,ig-3 nition was prevented by low oxygen concentrations.
At later stages in the ac-j L
cident, oxygen was pushed back to the drywell, by the high. pressure generated 1
3
)
during hydro' gen burning in the wetwell so alloking H2 in the drywell to
.4 Th'is high adiabati'c pressute rise duri.ng li2 b.utn,irig.in the drywell i
ignite.'
4
....----....,-.n..
d, has a potientfal threat to the integrity of the drywell structures. - The possi s
-l
. j ble failure'o'f the drywell remains to be assessed.
~
M 2.
INTRODUC' TION b
1i-The Clinton Power Station Units 1 and 2 are 3015 MWt BkR power plants with y
MARK III containments. The Emergency Core Cooling System (ECCS) consists of
~
C four components:
- 1) High-Pressure Core Spray (HPCS), 2) Low-Pressure Core n
d.
a c
e r
1 L
R
.a
=-
..w. -. a. u... ~.
a.-
n f..,-
Meco to Wc T. Pratt p'
September 27,'1982 Page 4 q
t!
Spray-(LPCS),'3). Automatic Depressurization System '(ADS), and 4) Lcw-Pressure'
's Coolant' Injection (LPCI). The ECCS is operated from ac of f-site' power
[,f sources.. Upon l'oss of.the regular power, operation is from.on-s.ite standby ac a ;.
q.
power sources.. Based on the diversity of the on-site power,. the ECCS can be.,
s".i '
. separated int'o three fun'ctional groups: ~
a 1:
- 1) HPCS I~
- 2) LPCS, one LPCI loop, and 100" service water and heat exchanger; 3) two LPCI loops, 100". service-water and' heat exchanger.
~
]
, The separated funct.f ons of-the,.ECCS-is used to perform the analyses for.
. the full or partial restoration of t'he'.ECCS durin'g the dehrased core E
,. a.
accidents.
T.he evaluation of containment p,rb.ss.ure was. done. for thrie-differen. t ac-cident sc'enarios:
~
-~
- 1) Transient event (TQUV):JFailure of normal feedwater system, and n-failure of the high pressure and low pressure-ECCS to provide 'cors -
j-j make-up water;. -
-m-j,,
7
- 2) Small pipe break LOCA in the drywell coupled with the failure of.-
l h
emergency core., cooling system (S E *a~nd S E-);
- 1 2
y.
-I.
3)' Trari'ient with stuck open relief valve:
Failure to reset one or more-s c
safety relief valves coupled with the failure of the power conversion 4
[i system to remove heat from the vessel, and the failure of ECCS to il g) provide flow to the pressure vessel.
g I
d O
~. -.
.~.
=
-- -.-..- -... = -. -.. -.. -.
-.=-=a..=.-..a u---.=.--
r..
I" immo to N.'T. Pratt-l
~
g Septe.mber;27, 1982-Page 5 y~
b A series of' full core meltdowri accidents were analyzed and used asa ba-I.$
sis for developing the degraded core accident cases. The'results of the full core meltdosn accidents are "given in Table 2.
Two break l'ocations were inves-tigated - for, the S E'and ^S E 'sei;0Ences.
Ths' first break 1ocqtion.is at a j.
1 2
t'j high~ elevation which permits only steam leakage from the reactor vessel.
It J.,
j is referred as steam break for the simp.lation. of a pipe break located in the
. 4-steamline. The seccad. break is located -at a-level slightly above the top of t:
i.
the reactor vessel. This break referr$d. as water break ' allows the leaicage of water prior to the core uncovery. The difference of the break location changes the transient event, such as the occurrence of cohe[)1usp as. indicated-
...t
-~
~
in Table 2.
But it' h,as no s.ignificanj effec,t'on containment pressure and hy-
- .s -
drogen ignition as shown 1,n Table i.Th'e occurrence "of the core slump shown in Table 2. is used to determine the maximum time for restoration of the ECCS.1
~
The in-vessel pressure at the timN'I)T ' core sfump indicates the.. type of E'CCS which cust be actuated in order (o termin. ate the accident. For example, the p
_,, vessel' pressure is 1202 psia at cor.e slump for,,the.TQJJV.g.ctnario, which is
- J.
4 higher than the shutoff pressure of the HPCS system (1192 psia). Thus, the 4
4 ADS nust be' utilized to provide the core make-up water.
The maximum vessel A
^1 pressure is determined by the.SRV set point.,- According to :the Clinton j
FSAR,E13 there are two sets of pressures.
T'he spring set p'ressures are 1
between 1175 to 1215 psig and the power actuated set point's vary from 1125 to.
[
V 1155 psig.
For the degraded core accidents' considered in this report, the p
[
spring set pressure of 1175'psig was used in the MARCH calculations. This Ig <
d e
.m.
w.y...
--w...
.. 2.
- -. _.. :. ~:-...
L-t s
i Table 2 Full Core Meltde'on Accidents (Base Cases j) for Degraded. Core Accidents)
,.,, =
1:
~
+
y a
?x :
Core Slump ct
.1-
'/
Break Core.
Yessel Clad' Gre'ak Uncovery Time Pr' essure
- Reacted Diadeter Case (in)
Type
- - -.(min)-
(min)
(psia)
~4
)f.
s.
204 289 1202 66-
,T TQUV.
SE 2
Water-
' 42_
139 485 6.8 2
2' Steam 183~
312 323.
69 SE 2
3 4
Water
,23
.97'
~. i 182 71 SE 3
1 p
g,
~
5E 3
Steani -
~154 277
'90 67 1
I SE 3 '_
~
Water'.
TO -
76 48 "
71 1
L, A.,
+
S E' 3
Steam 124' 254 27 74
- 1 s
'h.
j
[#
.i.
-,. j o
Of
- g
. V.
(,.
- i 7..
e'
.T:
e.
??::
k.
u in
.5
~
..d i I
~
...-..~._.a
- a.. __, u Memo *.o W. T. Pratt September 27,:1982
~
}-
Page 7
- j H
y
~
(
pressure is higher than the ncainal' set point.
The Clinton.FSAR clains that t
the higher pressure is-used to account for initial set point. errors and any -
a fj instrument set point dr,ift; that might occur during operation,.The fractio'n of n
~
~
i clad reacted with st'eam is incTuYed' in_ Tabis 2 to indicate the maximum amount a
~j of.hy'drogen production to be expected fbr each scenario.
~:
I According to the BWR core design,..zircalloy is contained in the struc-
~
7.
tures of each fuel assembly.
Since the structures are at lower temperatures.
during the. degraded core accident, _they ray not be involved in the me' 'l-water a
s 4-interaction.
Therefore, only zircalloy contained in the fuel rod was included in this s hdy..Hcwever, parametric studies were performed tg in'cluda.the I
2 t
l structures in the m'etal-water rea'ct,i,o.n,,
The ritsbits show that'more hydro 5en 2
. +
t is produced and frequent hy.drogen burnings occur over a largertime interval.
i However, no appreciable change -in -containment-peak pressure.and temperature
~
were predicted by the MARCH code".'-
i
~i 3.
A
-DISCUSSION OF RESULTS 3
9
{ -
j The bas'e' ca'se for the TQUV sc'enario shows that the reactor core is yr:-
m I
covered at 204 m.inu.tes and the core starts to melt at 252 minutes. At 285 N
a
~
minutes after the accident is initiated, 75'.' of the' core is melted and the a
1y core slumps into the lower head. The in-vessel pressure at core slump is-1202
)
Kgy psia which is too high to allow ECC water to enter the core. Thus, the ADS
~
S must be utilized to reduc.e the vessel pressure.
In.t'he first case (Case 1 of ied at 280 minutes and all ECCS is restored after l
j Table 1),theADSisapp{A q
by Tj g
x
g..,
_..m m
Memo to W. T. Pratt k
- September 27, 1982 y
Pace 8 s.
1, -
-, 1, g
2
,:m the. vessel is depressurized.
There are two hydrogen burns in the wetwell and fj.-
C.
~
6 one burn in the drywell.
The transient containment pressure and the adiabatic
[
pressures in. the drywel,l_ _(Volume 1) and. wetwell.(Volume,7.) are compared _ in~
m
.j ~
Figure 1.
All the p'eakfr'essur~esa're less' 't'han the estimated fail ~ure pressure, 1-
].
(110 psia).
~
.f.
The effect of restoring partial ECCS 'is tested in two cases (Cases 2 and
- 1 3 of Table 1).
In Case 2, only the HPCS is restored'and the results are iden,
f tical to that.of Case 1. - However, when only the -low-pressure systems (LPCI an'd LPCS) are restored, Rey _ fail to, prevent - core slump. The ac'cident pro-
~
^
ceeds to'a full core meltdown and th'e core slu ps'at 283 din 9tes. Apparently,.
4 g.
l the ADS was actuated too late.to.~ allow a f ow 'of water to enter the core from 4
+
E,
. the ic4. pressure cooling sy. stems in. time t.o prevent cor'e slump'~. This is 11-e~
~
.'I
[
lustrated in Figure 2, in which the containment pressure, vessel' pressure and-9 7
water level in the. vessel are compared for'.the two cases.
The timing of res- -
toration of the ECCS can consider' ably affect' the transient. Test cases show d
that ea'rly restoration of the ECCS at 250 minutes prevents core melt and no At-
}-
hydrogen.is produced. Delaying restoration of ECCS to 285 minut'es leads-to a
- j
},3.
full core mel'tdown and vessel failure.
q y[
s.
S_2e e.
[
This scenario is characterized by a small break (2-inch diameter) in the -
V.?.
g feedwater line.
The ECC is restored at 136 minutes prior to core slump to E'
f{
maximize the hydrogen release. At the time of restoring the ECC, the vessel p@
pressure is about a80 psia, which is higher than the shutof f pressures of the
$j
~
'..y
-,n..
._._-.:._.-. ~ -. -
= -
=. -.. - --
. ~. - - = ~. '.. ~ - - -.
?..
y a.-
=
. kl
- 2..
=.
y
..*l
{ *.-
\\
2
.e.
<n..
.r.
c.
2 O
l
'M ug..
y;
^
,g.
is..
I y
y
..o.
m..
.w.
.w.- m..
.... no.. >=. _in.
u..
m.
j riac - (uinure) 4 1
u.-
' CLINTON TQUV - ADS AT 280-ECC ON.
i
~
g
..p
- b. no-
.Dryiell
. =.
e,...
_3 a_
i
,3 5,,,.
8 e
o
.4
>=...
, t.
u 3..
,L s-
=
u.-
5,.
.r.-
r
-is.
u.
u..
m.
m.
.w.
.w.
w.
iw.-
r
.riuc - (ui.surc
- ~.
'VOLUut NO I
~
q' CLINTON TQUV '- ADS AT 280-ECC ON a
t n
,o m
N
.-e
- d. * * -
Wetwell ss.-
a+
.g p
x c.
=..-
q s
~
R s.
u.-
8 3..
t -
x W
g
}
s.
o 3
y g
a.-
[
E T
o<
- 6..
,k.
6.
6.
6.
s.
u.
.k.
6.
Lj Tl!.tC - (ulnUTC) l'b p
l VOLUME NO 2 E
T Figure 1 Transient pre'ssufes of TQU9 scenario (Full ECC restored at 28d cinutes) 4
.L
.9
.m
- A _i J.. Cl. '... _ ~
.:.. -... i J. _..i. i. i '
[ M i. '.',, ~~.,, 4 _ ; -
4 I
e.
9-w.
.9 c.
t 4.
,J.
~ (1.INTON TQliv \\lM AT.*.atus titri.u's (1.1!: Tite TQtiv AIN AT Zds IKI r!'.il UN
,3
,; j -
+
.p-3' s
4' v
y O
i E
?j i
p,1 e-
. 'g' r-
[l
.. l '-
' g i
ii,
-.m a.
1.w
.g
?
~.
t
.g g
g r.
e
.e s
t sw.
a..
.a.
sw..
e-o
..we dhe
. s e.
en.e ms.
a gi ng,:. gass >.*stJ '
T140.
(1sa%lang
. ud. : i -.
'i cl.INTux TQuv AtN AT :: tic tilf t ON cl.INTON TQUV AIN AT. t:0 8.10] l.858 Ok 1
.ne.
.=
=,
=
6
. i ***
s
=~*
p b
G i
t~
a y==
g g
t
=
Z
.q 2...
l L
4 b
sw.
.g n3 n.c. s...,rrr.w.
y r.
.c
.r..
1 ca.lsTnN TQtte AIM A7 aK In'ri UN ' *' "
r'in: Toff TQUV Al AT an I.101 1.P.sl UN
~ ~ *
., - s.
r.
~.
t.
-ls
~
g.
.s
%.a.=
.4 r
\\.
- f."
3_
s.
.r
.t.-
..-,,3 t
.. e....
.l~
(a)
(b) l l
I
...g-i
- d
,.3 1
.q j.
~
[
]
(
l, )
R.1 D)-
Figure 2 Effect of partial restoration of ECCS for the TQUV
'.d
~
scenario.
(a) HPCS restored, (b) LPCS and LPCI restored; itARCH predicted core slump at 283 minutes.
!d
~
Q
-10
'l l
.nw
---...w--.-
._:.a. - _~ a w.w--_ --.
_+
si...
Memo to'W.S T. Pratt Z
September.27, 1982
~
-Page 111 y
5 P
los pressure systems (LPCS, LPCI).
Thus, 'onlylthe high pressure core spray system (HPCS) can be useif 'if the ADS Lis not-actuated.-. MARCH predicts that-
-about 66% of. clad hes-been oxidized and that 'about 1921,1bs.z6f., hydrogen has i
been released to the containment during the accident. Ther'e are 3 hydrogen..
burns-in the wetwell and 1 burn in the dryw.eN. About 77% of the released hy'-
-[
.'drogen was consumed dur'ing the 4"burtAr. 'The' first1 hydrogen burn occurs:.in the i.
wetwell at 131 minutes and -is followed'immediately by a hydrogen buintin the -
drywell, shich generatesia very largE p~ressure spike in the drywell -(117 psia). ' A total of' 3 pressure spik_es are predicted as shown.in Figure 3.. The
-equalized-containment pressures'and' the adiabatic. pressures',Iin the wetwell-are
, 1, -
..g.
all below the estimated containment-failure pressure. (110 psia)..However, the. '-
j' maximum adiab.atic pressuru i.n the drywell indicates a potentialithreat to the-t
~
- )-
integrity of the drywell.. This high pressure is caused by H ignition at~
2 r
.During the C
.large concentrations in the dryw.e.l.l.as.illustra_ted in Figure 4.
i
~
T early stages of' the accident (about 80 minutes), steam released. from the pres.
q f
.,sure vessel pushes all the air (oxygen) into' t'h'e wetweit pNior to the hydrogen-
_.m...
4 rel ease ( As hydrogen is released from the' vessel, it can accumulate to 'large a
/}~
concentrations.without burning due to oxygen deficiency.
(In the present.
is
~ '
[
case, hyifrogen accumulates to about 40%). 5ARQH jredicts[the first hydrogen
- .1 burn at 131 minutes in the wetwell.
The high pressure in.the-wetwell causes j
+
oxygen to re-enter the drywell'. When oxygen is returned to the drywell, the' 1
high concentrated hydrogen can ignite and produce a very sharp pressure rise.
9 The MARCH code cannot Muurately compute the combustion (and perhaps detona-tion) associated with H ignition at such high concentrations.
(The 2
R e
N 3
~
t L. _ _.
j 1
... ~....<......,..,.
...t - - a
..s.
M3 4'**.i..-
1 R.
w a.
c a
=
g... -
+
,.s 4:
6 b
e
- a...
g' f-
. = no. -
.. s,:
e
- li t
\\
6 m.
g.
a n.-
u.
.N. es.-
t
- a.....w.
im. iw.
m.
is. sse :s.
.k.
.s.
w.
J 1
Tiu e. c.u nvic) 5 1
I'
- im CLINTON S.2. C Dk2 ECC AT 130 M
- I 2
. n. :
g,,.
7
. Drywell
- 3
.c
=
a e.
g 7-u
,,e. -
u s.
S asi.4 t.
~~~
y
-(x
- g a..
j 1
sp.
im ia.
sw.
me r,.....
.w.
w.. -
..:.' TIMc, -(4,1NUTC) r vowuc no. i e
l*
CklNTON S2E D=2' ECC AT 136 -
m.
+
S w.-
-. - -....... _. n.
g
- l. ) *
- E o.-
Hetwell 1
=
r
=....
si
..g a,
- w. -
.g.
_73 g =.
\\
(
u.
- n. -
7 1
a..
?)
. a
,e r
w.
ro.
m.
u.
w.
r.
w.
TIMC.- (!.it'!L8TI:)
c e Y
VCt.UMC NO 2 W
hy.
f tl!;[
Figure 3 Transient pressures of S D (D=2") scenario.
i 2
(Water break, full ECC restored at 135 minutes)..
g 1
.n.
..m.
t
1
.,v,7,-
}
va
~1 Q
Cl.lNTON Mi" D,*2 ITC AT 17)fi
, Cl.lt:iCN !.'l*.!". D32 Mr AT 1:6
}
r x
u N'% *..
tt c.
1 8
Q N
y; c
y.=
j..
j C.
- = =
s
?
m m r.
m.
. o.
r.
~.
t r.i eu.in n.c. i. nn 3,.
, i so.P.r. we e suimr. a 3
.1 i
Cl.IN10N Mf; D.2 FTC AT IM
'CONTON mr. De2 ECC AT 13G i
v
...=
5 3o h
1,
-8 5.=
g
- 9
=
2 n.
t g
y.-
N c
t l
lgA m
m a r
~.
e..
..v
-. ~
t'* t - tv.imarn nec.tviung 90t'Put f 3 g WOIPisf' >A e,
1 Ct.IHTori ME D*2 CCC AT l'1G Ct.INTON SEE D=2 frC.AT IM 3
.~
=.
5 y
y y
-a u l
=
g 3-
~
- 1. 5 l
g,',
g
~
=
- -=
t
.e se
.j..
v_
s.-
n
)
m Hut. (wasnno j
...-_.m te nist su s w.cl i
mime -.
,0.
(a). Dr well
. (b) Wetwell.
j 4
1 w
3 4
^. s eirsre 4 Mole c'oncentrations of steam, oxygen and h'ydroCen for 4
S 0 (O'=2") scenario.
j.
2 g..
..e,9
1
'.r..
?
Hems to W T. Pratt 3
'Septecher 27,'1982.
F iPage 14 j
et
.. y,
s v
,j l
.j
- . i
pressure-equalizjtion'model of'the MARCH code shows numeric 51' instability when j
large' pressure differential = exists between the two compartments). Comparison
.with hand calculation. reveals that the hydrogen mass is not, accurately:bal-
^
anced; Dur.ing hydrogenTurn^idg in 'the 'drywill, NARCH predicts that 9% more
~
m
-]
hydrogen is consumed than should beLacc~ording to the combustion process. Thus, -
it is believed that MARCH over-estimate.s'the pressure,. rise during H2 burning 1
if from high concentrations.- However, the JihysicalJprocessiassociated with re'- 6,'
- ~
turniniO2 to. th'e drywell may be' fehsible a'ndIhigh H 2 concentrations would l
[
f be. expected. The imp.act of detonation-type burning remains to b'e assessed.
a; j
The same situation exists for the TQUV'sequenceind othe'r'Sf, S E -
2
--- u
.. g.
~
sequences.
C.
Trahstent with Stuck Open Relief Yali/e y
This event assumes that one.otdaqre.of, thp safety relief valves are stuck e
open during a transient initiatetevent.
It is.further assumed-that the Power y{t Convers, ion System, the RCIC and the ECCS are unavailable.- The scenario is 3
similar to the S E seque.nce with. pipe. break-.in..the.steamli.ne. -
- 1 2
=
- py f
I The ' base, case for this sequence shows that core slumping would occur at
~
^
y.
312 minutes wherr the vessel pressure is about 323 psia.,, Thus, only the HPCS 4t'R is-restored at 310 minutes. The clad ' reacted 'is-69% and the hydrogen released.
m h;
is about 2025 lbs. MARCH predicts 4 hydrogen burns which consume 65% of the W1 There are two pressure spikes as e
g hydrogen released to the containment.
illustrated in Figure 5.
Each spike corresponds to.two hydrogen burns. The O,
first burn occurs in the wetwell and was followed irx::ediately (0.1 minutes 0
+
k 3
.1 y
i
.1
.L M.-.c.
3 0,
v...
s.
f M.
l l
L 2
[
3:
1 1-3,.
gg.
j
\\
j 8--
x y
- 5 E
g o.
st r.
[.j in.
m.
me u.
m.
sa.
.w.
.w.
m.
~
nuc - tuwurm s
t q
,]_
l CLINTON STUCK VALVE ECC AT 310 R
i...
3.
g e<
o i
- B '
Orywell t
.j g
i=..
n 2
l a
1 3
{
a...
9-5, g
- p y-6
_c as j
j;.-
i 2
__. s
=
,e..
-(L t-t e.
1 3
o
- 3 w.
im.
m.
e.
se se
.w.
4.
m.
-. TIME - (MINU,lQ.
- 3 7
VCLUMc NO l'-
f CLINTON STUCK.VALVs ECC AT 310
.a a.
l u
y g
.s..
. yetwe3 3..
..v
_..n L;.
=.
a....
f.t,.
z.
.. a g no.
1 a
{}
5 m..
s g.
=
a 1
no.
3 e
a..
-a.
y 3.
o y
< is..
u 5
i 4
a i.e.
u, me
- -a.
m.
- w
.w.
.u.
w.
b w.
nuc - (ninuna 1
,.{
vetuun so. a L.
e
- f. \\ -
h E
Figure 5 Transient pressures of the Transient Event of Stuck Open Relief Valve (, Full ECC Restored at P.
310 minutes)
' 15-1 c.,
i,-
J 1
Memo to W. T. Pratt September 27, 1982 Page 16 s
V;
-s
~
later) by ignition in the drywell. The ignition in the drywell caused a sharp
-i d
pressurb rise of more thart 100 psia because of hydrogen burning at large con-j centrations as. discussed before. The mole concentrations 'of steam, oxygen and q
hydrogen in.both drywell and wetwell are shown in Figure 6 SE
~
D.
i M
This scenario is similar to the S E s_equence but with an equivalent 2
break diameter of about 2"-6".
The.: larger break size causes rapid depressuri-2 zation in the reactor vessel. Hence, both the low pressure cooling systems (LPCI, LPCS) and'the higEpr~ essure 'c'ooling system. (HPCS):can,be applied to'
~
terminate the accident prior-to core slump-For, this scenario, two-break dia -
I
~
meters,(3" and 5") were considered for both water break, and steam break ficw
}
characteristics.
A' total of 8 cases sfeN studied as given in Table 1 (Cases 6
~
to 13)c In Case 6 (3-inch break-diameter yith water break), the fu'11 ECCS is j
restored at 94 minutes. MARCH prddic'ts two prqss0re spikes corresponding to 1';
two set.s of hydrogen burn.s.
Each set consists of, a hydrogen burn 'in the wet-j well immediately followed-by another. burn l-n-the drywellr.. Ag'ain, the burning
- - - l d
of hydrogen at large concentrations in the drywell g'anerates very sharp pres-d j
sure rises as sh'own in Figure 7.
Case 7 shows the effe,ct,of partial restora-
'O
,j tion of the'ECCS'.
In this case, it is assumed tHat the HPCS is unavailable and onif LPCSand LPCI were restored at 94 minutes.
No apparent change in
,g containment ' pressure is noticed as compared with Case 6.
Detailed examina-
[,
tion of MARCH computational results reveals that the clad-steam interaction li 1
'1
]
and hydrogen generation continued after the LPCS and LPCI were restored due q
d 1
1
t
~
4 F
e' P
.....n.w,..
%, n -...
CLINTON STUCK VAlyF. dCC AT 310 C1.lNTCN STUCK VAlyC FCC AT 310 y4 i
- ~
0
'd r.
ti.-
y 3..
s 5
g g..
i Ea
]
r...
1-m
.:-.=..w.
-m en.
. =
j nwt. twisvin tiut - tmsvin a
vces,ist m 3 Set ;.*t so 3
,ti
}
CLINTON STUCK VAlyC ECC AT 310 CLIN 10N STifCK VAlyC CCC AT 310 3
5..
5
=
5...
i 8
E g"
g g".'
wE~
t
(
v
.. i --.
n =
1:wc. gmnorrn tout tuiwi ro toiA.uc po e vcelsut No a i
n.
Cl.lNTON STUCK VAlyr. ECC AT 310 CLIN 10N STUCl* VAlrC frC AT l110.
l.
W o-3 j
.v..
.V i
3 t
5..
I Jl C
E 4
m f~
f
~
1 s.
_j
,,..,.,,.,.in
--,c..
1 g4
..e-.
.. e.,,, 3
~
(b) Hetwell (a) Drywell
,y
.1 1
,4
-J Figure 6 Mole concentrations of steam, oxygen and hydrogen for q
transient. event of Stuck Open Relief Valve.
se*
8.
yj l A,
'f
._..._,_.7 I
......s
..e 1
. y....
,i g...
c.
it t
5 wo-p xy n ne.
m e.
n j
8 no.
o
[q
-jj
[
g
,,o.
-9 no e.
co ce us an an e.ee
.n o oe cae
- r mic --(Mir:uin
, j CLINTON SIE D=3 - ECC AT 04 4
e
.I f.3 a
[{
Drytell ines.
.s 4
'd 3
6 s
M s
e fli C.
f 20. -
' I.
s
.t
- r.
e
)
C
-1 D
,De e -
9 C
~,
.1 5
we.
...)
8 i
S.
- 9. -
=
.a.c
_ _u ii k
no.
c a
)
ee 6e 4e di 6e ske siae -
ie
.,., e TIME - (Mit:UTr.)
d VOLUMC NO. l' 9
4
,3 4,
CLINTON SIE D=3
. ECC AT 01 n.
74 f3
+1 O*.
t
- {
B"
.se.
Wetwell
-i n:
a.
see.
..i se i
=
4 o
y,.
9 5.,...
kf.
O I
a:
I (b
$ ese-
}
.1
=
y u
no.
H.
E
[
m m
t
-- es. -
1 c
4 4
we 4.s coo one see aree i..
ico.
ee roe 2.,
TIMC - (MirJUTC)
- i V01.UME NO 2 i
1, p
l2' i wf Figure 7 Transient pressures of S E (D=3") scenario.
I p
(Ifater break, full ECC restored at 94 minutes).
I i A
,. ~ _ -,.
~
.j s.
Meno to W. T. Pratt September 27, 1982 Page 19 to the slower rate of core recovery. About 250 lbs. of additional hydrogen s,
il j
was released to containment after the ECCS was partially restored.
The hydro-gen was not burned in the containment and, hence, the characteristics-of hy-drogen burning remained the same as that of Case 6.
The centaina.ent pressures
.1, j
associated with Case 7 are shown in Figure 8.
.4:j Cases 8 and 9 show the effect of steam break for the S E (D=3") se-i I
q]
quence. The core uncovery was delayed to 154 minutes and the ECCS was re --
~-
o c) stored at 272 minutes prior to core slump which would occur at 277 minutes if j
the ECCS were not available. Only the HPCS was used in Case 8, and LPCS and 9
LPCI in Case 9.
Comparisons betheen 6 to 9 show that resto[ing 'of partial ECCS and the variation of break location do not have any significant,effect od.
~
hydrogen burning and containment response as indicated in Table 1.
Trie tran-sient pressures are given in Figures 9 and 10 for Case 8 and 9, respectively.
S E accident sequences with a break diameter of 5 inches were done for I
four cases, (Cases 10 to 13 in Table 1). The larger break cases are similar t
to the S E (0=3") sequences, the containment response is not affected by the f
I it break location and partial restoration of the ECCS. Figures 11 to 14 show the 3
1 predicted pressures for Cases 10 to 13, respectively.
M U
H)}
4.
CONCLUS10NS'
'!l Various degraded core accidents initiated by transient' events (TQUV) and 3
small break LOCA (S E and S E) have been analyzed.
Effects of break size,
.9 1
2 r;
partial restoration of the ECCS, and break location were included in the anal-L yses. The following conclusions are made based on the MARCH' predictions:
$m
[,y:
')'
.x f
1
..n.
~~-
(. i.i.. e V.'d h l l'.
s J ' s..i L i 1.41-
'8
- ,8
.a 3,
. M., o' r
i
+
g.
i
- y; a
a.
i 1
- n...
- s
~5
\\
W..,
1
- s. l \\. -
a no.
.J. %....
g g
s,
- f y_
f g
is..
d.
~...
,s.
.s,.
~.
TntC - UtINuTE) 4,
.*4 3
- CLINTON Sil' D=*3 1.PCI I,PCS AT 01 d
,a o
,4
=
j g
i.e.
Drywell p
=
E top y.
- ;lI
'd.
lon 0 -
n nao 8
$.(40-J4
,, =
U 00-
-='
4 4
Q-NO-
< = -.
.a,-
o.,,
roo we
.a.
me e,.oo
.u.e no 3
Tsuc - oi:xuTC)
. a, vo w u r. s o. i -
3 t
CLINTON Sils D=3 LPCI 1.PCS AT 01 N) '
j j
u 1
=
r.
uR '"'
Wetwell
.i
.]
n
- . aos
[.
k Q
'E n
n
~
- 10 e 8..
3
.C] me
'\\
ii j
~,
y' u
- n..
q q
f
.y m
1.
< is o <
2..,
5, F-d too ee too me om.
troo
- sioe wee F.,
no toe L-TlhtC - ('.tlNttTl:) '
, *)
i,f
\\'01.t'?.f C NO ::
's
't e
Figure 8 Transient pressures of S,0 (D=3") scenario.
w N
(Water break, LPCI and L@CS restored at 6.'
94 minutes).
W.:
A 9
-1 i
. _.. ~...
n
.3....
. =.....
3 M
'CLINTON SIE D=3 IIPCS AT 272 H
w.
u
,.1 Li..
, s.-
a
- g..
~
=
L:
a... -
v.
E C.
-r m..
5
'il r,;I g
w.
a p...
3l
$ no.
l 8
s 4
$"~<
d s
e,..
a EM 13.
,w.
u.
u.
m.
u.
w.
';l TiuC - (uireuTC)
,l r.
j CLINTON SIE D=3 HPCS. AT 272
~ r ' ~ ' ^:
. c.
.1 y
a,
.2 g
in..
Drywell
.)
E in.
m
,o s
u..
b d
g
- w..
2-
~
1.
e....
N m.
o w.
iw.
iw.
m.
w.
I TIME - (MINUTC) i
)a (d
CLINTON SIE D=3 HPCS AT 272 fIt u.
u M
.8 a
- )
H Wetwell
.J i_s....
g E....
a g,
(
=..
,w a
l y...
i
\\<
a
.t m..
q, J
u
- =..
1 g
s O
=C I..
i=.
iw.
u.
u.
w.
TIME - (MlfiUTC) t VCl.UttE !?O 2
,4
- . a
=\\,
j Figure 9 Transient pressure of S E (D=3") scenario 1
-9 (Steam break, HPCS restored at 272 minutes)
~ 'l j
'l
. ~.
Cl.1 NTGN St C D 23 1.PCI l.1W AT. 272.
L30
,. ]
- .3 410 h
5 C
(-
40 0 t
E.
Il t'--
g;
=0
-'d E ' es e -
.k it
.s
=
i
-\\
1 eb 20 tk'--~-
4 k1 8
1 20 0 '
e a
t, IS O -
4 e
9 10 0 00 SCO 800 0 1*:23
.73a ROO
- !00 0 T40 Di Tius - (ut::vTra
- I;
- .1 -
y ru
>j' CLINTON SIC D=3.LPCI LPCS ^T 272 3400 tal
- J
=,
i i
~.
Drywell"
=M N-!
n we-D c.
sm o -
,.,_c
.c o
6 300-6 i.
' g
- s00-
.I x
g L.
o t.
v.
.00 y,
n
___. J s -
,1 a
q
..)
00-ene
~ee ra0 ma roe e.
,me -
Tiuc - (usuuna s.
1 YOt.tlut; NO I -
' -i d.
Cl.lNTON SIE D=3 1,PCI -LPCS AT 272 t
.b.
35 0 u
M M
4 6."..-
Wetwell Si -
" 5 g
..o
.s.
=...
.s an gl
. Pj C.
-4
- 6. age a'
.:.M' b :ine 8.
j;{t
=
.n m
!s' D me t
u 4 ** *
-~
1
=
C-ess o
c a
me me rae imo
^ ree no no y) oo me TIMl; - (u!NL.*TI:)
j VOI.t:MI: NO 2
..glj Figure 10 Transient pressures of S E (D=3") scenario I
j (Steam break. LPCI and LPCS restored at 8-272 minutes).
]
'l
- d,
4
,i
^
l-
-}.
-a.---
Cl,INTON SIE D=5 ECC AT 75
.4 t. ',
[
p,.
o.
V o
- s 0....
g me.
j e
u
- 30. -
- .x
,3 4
n..
-8 s
?g i "r V)
~,
+
.f
- 'f io.
w.
a.
in.
i..
.m.
a.
1)
Tius - (uinuit) i}
j.
CLINTON SIE D=5 ECC' AT 75 i...
w "i.
-t Drkwell t
g i,..
y 1
s.
a C.
.{
im e.
g O
M..
5
~8 g
- 00..
(
Q 4:
_ x g
1.
p
-e a
M
- 80..
1, s
e.
- m.
m.
.... in.
i..
y TIME - (ulNuTE) b, 7
VOLUMc NO. I CLINTON SIE D=5 ECC AT 75 3
n.
u l.
e.
g
- 5 M wa-
~
w.
u...
Wetwell
- ?.
=..
1-)
a L'}
E....
i f.4 m
m
- 3..
5 1-
.a 8
3...
=
a..
n..
J1 C,..
g f
-e
.s~
=
=
-s is.-
el Q
l so.
we w.
no
,n.
a.
n.
I-Tsuc - (uinuTe>
ji yotuuc.no 2 x
n -
Figure 11 Transient pressures of S E (D=5") scenario I
(1!ater break, full ECC restored at 75 minutes).
7.
- qy
- m j_
s 3,..
~
4.-
m-g,
1 :
t' o...
e-CLINTON SIE D=5' LPCS.LPCI AT 75 L.
' We a
t.1
.Se-I'g '
1' g.
.ee.
-c
"..F
, me-5
. g - we.
=
i
(
4
- 3. -
g
.3 PJ o -
1 9
4
' t-l- the -
~~
g sat s,
ee we
,x o me :- - a.
we me
-me
.we
- TluE - (uisuTQ
.?
.s-
- s Si
~ CLINTON SIE_ D=5 'LPCS LPCI AT_751....
\\,
,j i.co
--1
=
.o g >=-
'Drywell C. -
=.
, soco-i
=
3
. }
.a e -
M 4
.4..
. - Q _..e e.
ss h-
- t u
L.'
5 E
Q: 30-,
y
,{.
. g-1
- l '.
mee suo anos esse nooo see es noe
' coe TIME - (MINUTQ YOLUME NO. l.'
3 1
CLINTON SIE D=5 LPCS LPCl AT 75 t
u
=
c.4 o
a-0...
Metwell r
=
'.60-
==..ee-o 5.
e.
l
=e-a
- (
!p a ' =e-us se -
i 7
2 p
5 ibe.
-m M
a-A~
+1
.e a
u.
me roe.
me me 1[1.
TIME - 04tNUTQ VOLUME NO 2 1
4'/)
- 4 Figure 12 Transient pressures of S E (0=5") scenario i
I (Water break,l.PCS and 1.PCI restored at f-75 minutes).
. i' s
+
~
l l
CLINTON SIE D=5 LPCI LPCS AT 245
, j'3 f'
m 1
?q g
- a..
5 i
2 a..
y
=..
n Q
i a
m..
=
i
.- 1, 1,*
3
- n..
O u
- r...
'1 2,,..
a.
-j is. -
m.
u.
e.
so.
- . a.
u.
q Tit!* - (!!!NUTC) 1 a
CLINTON SIE D=5 LPCI LPCS AT 245
~
~j m.
e i
i 3
h **'
Drywell c-E3.-
.=
5...
4 g
ar
=
3
=
4..-
o 5
.l(-'
I g
5 a
a.
a.
me u.
u.
u.
True - tur:.uTr) i CLINTON SIE D=5 LPCI LPCS AT 2-15 g
u.
E 2
- w..
0 E
a.-
11etwell i.
3; ga-o
, no.
t d
L3
) me.
i
.j c
n.-
(
.i u
1 5a-g-
=
2
- a.,
i o
gy
- 1..
,A" m.
m.
so.
so.
sa.
ic..
True - (situuTE)
YOI.UMC NO 2
-1 4
p E
Figure 13 Transient pressures of S E (D=5") scenario I
(Steam break, LPCI and LPCS restored at 245 minutes).
a-~
m--
z_.
4,
~
?!..,
CLINTON SIEJD =5 IIPCS AT. Sill-we y
se-p 3
- t....
g
[
3..
n i
I i
i 2
- m..
h,i g;
n..
3:
g-m
[ **' f (i.
fl o.
. ;)
i.1 e..
,s.
is.
s.-
rk.
n.
u.
y TsuE - (ulNUTQ I$
CLINTON SIE. D=5 IIPCS AT'.248
~
,n.
.M Drywell e.
7, e
-_n-
.s t-4 s-g
~
-i a....
{
- kY
~
.9 : e.
5 i
m.
m.
==.
.2=.
.}.-
. =. - Tiuc - (uiNutt) i 2
3!
CLINTON ' SIR D'=5 HPCS AT. 248' J.
u.
=
m
?!-
!!.s.,
Wetwell 3;
e.
fj-p....
5
- j..
g. me.
i 8.
E e
i i
l q
n.-
\\,, Q u
y, g
u..,
h o
1 se.
1.
- oga a.
me u.
x..
u.
a.
.s..
TiHC - (HIN13TQ S
voi.Uut No 2
+
Transient pr'ssures of S E (D=5") scenario Figure 14 e
I (Steam break, HPCS restored at 248 minutes).
4 d-
.2. 6--
9
'; )
..n.,
-i
.l Memo to W. T. Pratt September 27, 1982
,i 3
Pag.e 27 N
j
_ 1) For the TQUV event, the ADS must be actuated by the pressure and
]
water level monitoring systems in order to terminate the accident prior to a full core meltdown.
The peak containment pressure and the maximum adiabatic pressure do not threaten the containment
.f integrity.
1 1
For S E, S E and transients coupled with a Stuck Open Relief 2)
I 2
Valve, hydrogen' burning at high concentrations occurs in the drywell
.j and presents a severe threat to the integrity of drywell structures.
The predicted maximum adiabatic pressure in the drywell exceeds the estimated'cohtainment failure pressure.
~
- 3) MARCH predicts that both the equalized containment pressure and the adiabatic pressure in the wetwell compartment are lo.ver than the esti-f mated containment failure pressure.
i
'1
- 4) Variation of break location is calculated by MARCH to have no signi-
' i ficant effect on hydrogen burning and containr:.ent response during the 1
2:j degraded core accidents.
q
- i t, I
- 5) For the small break. LOCA and transients studied, the fraction of clad y
reacted'was calculated between 49% % 76% and the amount of hydrogen q
4 3d released from the vessel varies from 1400 lbs. to 2200 lbs.
About
{
48% % 77% of the hydrogen released is burned in the containment.
Reference
{
- 3 1.
Clinton Power Station Units 1 and 2, Final Safety Analysis Report.
3]
-:1 11 JJY:tr
.l 4
.e=,
- N
.ee*
~
n.
- . {
,j >
(
~
APPEfGIX COMPARISON OF SKAGIT WITH CLINTON,sCiRAND GULF AND GESSAR PLANTS 7.,
g 1
il.
f The Skagit/Hanford~ Nuclear plants consist of two units.
Each unit has a Bi.'R/6 reactor system with a rated power level of 3833 Myt.
The rated power is a
I,j larger than that of the-Clinton Power Station (2894 MWt),.but is at the same power level as the Grand Gulf plant ('383314Wt).
Both S/HNP ' units hgve Mark N
^
III type containment similar to that of GESSAR, Clinton'and.Gra'd Gulf. Tablef ;*
4 n
~
j A-1 shows a comparison of the conta"inments, emergency core cooling systeriis and the Auxiliary Engineered Safety Systens-for the four plants. Th'e Skagit plant is very similar t'o Grand Gulf add is comparable to GESSAR,a,nd Clinton. Be-cause of the similarity between these plants, it is believed that the results
~
)a of analyses repcrted in References. A-1 and..A-2 for Grabd Gulf, and the present.
analysis for the Clinton Power Station are also applicable to th Skagit 3
plant.
.i 1
References i
s
.3 1
i
)]
A-1.
R. Gasser, "An Assessment of Postulated Degraded Core Accident in the
]
Grand Gulf Reactor Plant," BNL Draft' Informal Report, June (1982)
.l
,]
A-2.
R. Gasser, " Analysis of Full Core Meltdown Accidents in the Grand-Gulf -
Reactor Plant," BNL Draft Infomal Report, August (1982).
~
1 y
a
-g c
l
- .-...~
..a.a w -. ~.x
. -. -. ~.,-
I..,
+i{
TABLE A-1 COMPARISONS OF DESIGN PAR / METERS.
~
5.
e b;
,j GESSAR Clinton Grand Gulf Skagit' BWR/6 BWR/6 BWR/6 BUR /6 238-732 218-624 251-800 251-848 g
y RatedPower(MWt) 3579 2894 3833 3833 (MWe) 1250 (6F43) 985-1306 1335
,a i
CONTAINMENT SYSTEMS
..Q Type MARK III MARK III:
MARK III MARK III i.!
. Construction ^- '-
' Cylindrical
~,
Reinforced
- Similar to Similar to e
i free-stand-concrete Clinton-
~ Clinton 1
ing steel cylindrical l
with ellip-structure soidal head with hemi-
. spherical dome; steel li ned
.,t Design Temp. *F 185 185 185 185 15 15 DesignPressure,ps{g 15 15 Free Air Volume, ft 1.168x10 1.4575x10 1.4x10 1.75x10
[
DRYWELL Construction
-Concrete Reinforced Similar to Similar to cylinder concrete Clinton Clinton cylinder
),
Design' Temp. *F 330 330
'330 330 25 30 30
. 30
.i DesignPressure,psjg Frea Air Volume, ft 280,000 246,500 270,000 303,000 9
.l' SUPPRESSION POOL I
f Steel Steel lined.
Similar to Similar to Construction cylinder concrete Clinton Clinton y
cyli nder 7
3 Design Temp. *F 185 185
' 185
~
200 g
Design Pressure, psig 15 15 15 15 3:
Water Volume, ft 152,600 135,700 133,240 153,930 r,
vi -
?
(
'I
\\
.mt
.~.
,j ^,
s*.
1 J
Table A-1 COMPARISONS OF DESIGN PARAMETEP.S (cont'd) l i
3 GESSAR Clinton Grand Gulf Skagit BWR/6
-BWR/6 BIR/6 BWR/6 238-732 218-624 251-800 251-848 i
EMERGENCY CORE
),
COOLING SYSTERS.
7 LPCS System
-j No. of Loops 1
1 1
1 j
Flow Rate (gpm) 6000 at 5010 at 7115 at 7000 at l
122 psid
,,,119 psid 128 psid 122 psid 2
i HPCS Sy~ stem -
c'
[
No. of L' oops'~~
'1 l
1 1
1'
.1 Flow Rate (gpm) 1465 at 1400 at 1650 at.
1650 at 1130 psid 1147 psid 1147 psid
'1147 psid LPCI System No. of Loops 3
3 3
3 Flow Rate (gpm) 5050 at 7450 at 7450 at 7100 at 20 psid-20 psid 20'psid
.20 psid AD System t!o. of Systems 1
1
~
1 1
~
AUXILIARY ENGINEERED SAFETY SYSTEMS I
Residual Heat Reraaval l
}t
.2 3
3 No. of Pumps 3
'j Flow Rate (gpm) 7100 5050 7450 7450 J
No. of Heat cj Exchangers 2
2 2
2
,]
Reactor Core Isola-3 tion Cooling System 1
Flow Rate (gpm) 700 at 600 at 800 at 800 at 1120 psid 1177 psid 1120 psid 1147 psid
'?
i r
f;
.e, 1