ML20070L596
| ML20070L596 | |
| Person / Time | |
|---|---|
| Site: | Clinch River |
| Issue date: | 12/29/1982 |
| From: | Longenecker J ENERGY, DEPT. OF, CLINCH RIVER BREEDER REACTOR PLANT |
| To: | Check P Office of Nuclear Reactor Regulation |
| References | |
| HQ:S:82:156, NUDOCS 8301030202 | |
| Download: ML20070L596 (42) | |
Text
,i O
Department of Energy Washington, D.C. 20545 Docket No. 50-537 OEC 2 91982 HQ:S:82:156 Mr. Paul S. Check, Director CRBR Program Office Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555
Dear Mr. Check:
MEETING
SUMMARY
FOR THE SAFETY EVALUATION REPORT OPEN ITEM MEETING, DECEMBER 21, 1982 The purpose of this letter is to summarize the resolution of items discussed between the Nuclear Regulatory Commission and the Clinch River Breeder Reactor Plant Project on December 21, 1982. is the agreements and commitments from the meeting, Enclosure 2 is the list of attendees, and Enclosure 3 is the handouts.
Any questions regarding the information provided or further activities can be addressed to A. Meller (FTS 626-6355), W. Kelly (FTS 626-6146),
P. Washer (FTS 626-6179), or D. Edmonds (FTS 626-6157), of the Project Office Oak Ridge Staff.
Sincerely,
~
y John R. Longenecker Acting Director, Office of Breeder Demonstration Projects Office of Nuclear Energy 3 Enclosures cc: Standard List Standard Distribution Licensing Distribution I
8301030202 821229 PDR ADOCK 05000537 E
AGREEMENTS AND COMMITMENTS SER OPEN ITEM MEETING December 21, 1982 A meeting was conducted to expeditiously resolve concerns NRC arrivea at in p/ commitments were determined for the reparing the draft SER.
Discussions were held and agreements following items:
l 1.
Leak Detection A.
The PSAR will be updated to reflect the 20 hour2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> leak detection requirement for a 100 gram /hr. leak in the IHTS air filled cells.
B.
The Project commits to preparing technical specifications for the IHTS leak detection operability.
C.
The Project commits to upgrading the leak detection capability in the PHTS, DHRS, and EVST systems to safety related; i.e.,
SeismAc Category 1, 1E power, environmental qualification and redundancy or i
diversity but not both.
The NRC indicated this commitment resolves the leak detection SER concern.
I I
2.
Containment A.
NRC indicated the SER will contain restrictions of 2500 hrs. on purging containment during the first year of operation and that subsequent relaxations i
will be based on operating experience.
The project j
found NRC's position acceptable.
B.
NRC indicated the detection diversity for containment isolation was acceptable.
C.
The PO will submit a letter to NRC confirming the l
PSAR modification for the chilled water isolation valve safety classification change.
D.
The Project will upgrade the RSB and annulus filtration system to safety class 2.
-_- 3.
Piping Integrity A.
There are no open SER items anticipated.
B.
NRC is currently reviewing the leak before break criteria on the hot leg.
4.
Cell Liners A.
NRC and the Project agreed with the attached
" Proposed Plan to Resolve Outstanding NRC Audit Items on CRBRP Cell Liners. "
The analyses for items 1 and 2 are attached.
B.
The Project will submit a tabulation of the actual cell liner and stud strains from analyses submitted previously along with the analyses submitted as part of items 1 and 2 of paragraph A.
C.
The scope of the analysis for items 3 and 4 was changed from the original plan by request fron NRC.
This change resulted in the dates for completi.on of items 3, 4, 5, and 6 being delayed.
NRC agrecs to use these results as input to the SER when going f rom the draf t to final version.
D.
The attached plan will be used as the basis for NRC's cell liner section of the SER.
5.
In Service Inspection A.
The Project and NRC are currently assessing the inservice inspection program.
B.
Inservice Inspection of the internals of the reactor vessel and EVST was identified as an area in which the Project needs to identify an approach prior to the SER. This will be provided to NRC by January 7, 1983.
t LIST OF ATTENDEES NRC BRIEFINGS ON CRBRP LEAK DETECTION t
December 21, 1982 Name Organization i
W. Kelly CRBRP-PO D. Elias CRBRP-PO R. Stark NRC D. Edmonds CRBRP-PO David H. Moran NRC Shelley Kowkabany Burns & Roe A. Meller CRBRP-PO-PMC P. R. Washer CRBRP-PO P. Bradbury Westinghouse H. J. Konish Westinghouse - Waltz Mill C. H. Fox DOE-CRBRPO R. Hottel Westinghouse G. Clare Westinghouse S. Additon WLLCO P. Docherty WLLCO P.' Gross CRBRP-PO-DOE D. Ujifusa DOE-Germantown I
LIST OF ATTENDEES PIPING INTEGRITY AND ISI MEETING December 21, 1982 Hame QIganization A. Meller CRBRP-PO D.
Edmonds CRBRP-PO P.
Gross CRBRP-PO C.
Fox CRBRP-PO R. Stark NRC P.
Docherty WLLCO H. J. Konish W-WM S.
Bhatt NRC-PI M. Hum NRC-ISI C. Y. Cheng NRC-ISI LIST OF ATTENDEES CELL LINER MEETING December 21, 1982 Name Organization P.. Washer CRBRP-PO G.
Clare W-OR T.
King NRC S.
Kowkanbany Burns & Roe C. Tan NRC R.
Stark NRC A. Meller CRBRP-PO f
i LIST OF ATTENDEES CONTAINMENT MEETING December 21, 1982 F
Hast QIganization A. Meller CRBRP-PO Shelley M.
Kowkabany Burns & Roe Jerry J.
Swift NRC-CRBRP P. Docherty WLLCO R.
Stark NRC G.
Clare W-OR Farauk Eltawila NRC/DSI/CSB P.
J. Gross CRBRP-PO C.
H.
Fox CRBRP-PO H.
J. Konish W-WM n
~
~
TYPICAL LMFBR ACCIDENT RELATED '
CHARACTERISTICS LOW PRESSURE COOLANT SYSTEM o
I MAX. SYSTEM PRESSURE < 200 PSI MUCH OF SYSTEM, INCLUDING REACTOR VESSEL OUTLET f
PLENUM, IS AT ATMOSPHERIC OR SUB-ATMOSPHERIC PRESSURE NORMAL TEMPERATURES ARE. HUNDREDS OF DEGREES o
l BELOW COOLANT BOILING TEMPERATURE i
i o
ALL RADIOACTIVE SODIUM-CONTAINING COMPONENTS ARE HOUSED WITHIN SEPARATED, STEEL-LINED CELLS WITH MASSIVE CONCRETE WALLS, WITH' INERT ATMOSPHERES.
BECAUSE OF LOW STORED ENERGY AND BECAUSE STEEL IS IN o
DUCTILE TEMPERATURE RANGE, LARGE SPlLLS FROM THE w
PHTS ARE NOT ENVISAGED.
{
PHTS COMPONENTS ARE WITHIN GUARD VESSELS. WHICH u!
o WILL CONTAIN SODIUM SPILLS. PIPING IS ELEVATED BETWEEN COMPONENTS.
PRIMARY SODIUM STORAGE TANK & PHTS CELLS IN RCB REACTOR CONTAINMENT 1
BUILDING (RCB) i
_)
jPHTS lh N'
ki
,
d
(
)
,l 1
-s c)
".,f:4
- Is}:.
y PRI Na STORAGE
- o n t p.:e 6i
- o y
l TANK
.o f
l.
.. a
O 0
=
e ll i
1 FLOW +
F r
(
\\
'r 3 L, c
GUARD PUMP GUARD CORE-
=
VESSELS VESSEL q
J IHX REACTOR
.i
,,,,0....
e' e,
o q
I CURRENT DESIGN APPROACH o
LEAK DETECTION SYSTEMS ARE PROVIDED IN CRBRP TO MINIMIZE PLANT DAMAGE INCLUDING ASSURANCE THAT TI-lERE WILL NOT BE SIGNIFICANT CORROSION OF T11E COOLANT BOUNDARY.
o UNLIKE LWRs, LMFBRs,WILL NOT OPERATE WITil COOLANT LEAKAGE IN Tile S0DIUM SYSTEMS.
DETECTION OF S0DIUM T0 GAS LEAKS BY THE i_MGLDI SYSTEM O
ilAS BEEN. DEMONSTRATED FOR VERY SMALL LEAKS - - WELL BELOW LEAKS OF ANY OPERATIONAL CONCERN.
O
/
4 5
r 8
0
I 6
.i
~
l LIQUID METAL / GAS LEAK DETECTION SYSTEM FUACTI N
6 CONTINUOUS MONITORING OF LIQUID. METAL SYSTEMS FOR LEAKAGE INTO SURROUNDING GAS SPACES I
DETECTION OF SMALL LEAKS PRIOR TO SIGNIFICANT CORROSION e
4 1
- DETECTION OF LARGER LEAKS PRIOR TO SIGNIFICANT LOSS OF LIQUID METAL INVENTORY OR ONSET OF SIGNIFICANT ECONOMIC DAMAGE i
i_iOUID SIETAl./ GAS LEAK DET5CTION SYSTEM TYPICAL REQUIREMENTS (MHTS)
- DETECTION SENSITIVITY I
LK 100 grams /hr OR GREATER LESS THAN 250 hr
~
m LK 30 gpm OR GREATER LESS THAN 5 min a
j e DETECTION DIVERSITY (PHTS ONLY)
- LEAK LOCATION m CELL
= MAJOR COMPONENT (PUMP, HEAT EXCHANGER, REACTOR) a PIPING SECTION (HOT LEG, COLD LEG)
- LEAK CONFIRMATION i
e SEISMIC CATEGORY 11 I
l-
- ALARM AND INDICATOR IN C'ONTROL ROOM i
Rockwelllntemctional Ibergy Srstems Group
l CRBRP PROVIDES THE CAPABILITY TO DETECT LEAKAGE FROM LIQUID METAL SYSTEMS THROUGHOUT THE PLANT. THE MAJOR AREAS OF CONCERN FOR LIQUID METAL LEAKAGE ARE:
THE PRIMARY COOLANT BOUNDARY THE INTERMEDIATE HEAT TRANSPORT SYSTEM THE DIRECT HEAT REMOVAL SERVICE THE EX-VESSEL STORAGE TANK COOLING ' SYSTEM i n as e.
l l
I CRBRP PROVIDES THE CAPABILITY TO DETECT BOTH LARGE AND SMALL LEAKS FROM THE PRIMARY l
COOLANT BOUNDARY.
i 1
1 h$ Rh l $
BASED ON THE LEAKAGE CHARACTERISTICS AND THE CORROSION EFFECTS ON THE PRIMARY PIPING, A LEAK DETECTION SYSTEM IS PROVIDED TO DETECT SMALL LEAKAGE WHILE THE SYSTEM IS OPERATING SO THAT CORROSION OVER THE LONG TERM DOES NOT LEAD TO
~
l SUDDEN, LARGE FAILURES OF PIPING.
THE METHODS PROVIDED TO DETECT LEAKAGE FROM THE PRIMARY SYSTEM INCLUDE:
)
PLUGGING FILTER AEROSOL DETECTORS i
SODIUM IONIZATION DETECTORS l
PARTICULATE RADIATION MONITORS i
l l
l l
12 82 315e 3
a CRBRP ALSO PROVIDES THE CAPABILITY TO DETECT BOTH LARGE AND SMALL LEAKS FROM THE INTERMEDIATE HEAT TRANSPORT SYSTEM.
1
,12 82 3158 0
~ -.
THE OBJECTIVE OF DETECTING LARGE LEAKS IN THE IHTS IS TO PREVENT RELEASE OF SIGNIFICANT QUANTITIES OF SODIUM AEROSOL FRO.M THE SITE.
REDUNDANT, SEISMIC CATEGORY I INSTRUMENTATION IS PROVIDED FOR THIS PURPOSE.
l AEROSOL RELEASE MITIGATION SYSTEM (ARMS) j
'12 82 3158 5
AN ADDITIONAL LEAK DETECTION SYSTEM IS ALSO PROVIDED FOR THE IHTS IN ORDER TO DETECT SMALL AMOUNTS OF LEAKAGE PLUGGING FILTER AEROSOL DETECTORS l
SMOKE DETECTORS IN AIR FILLED CELLS I
SODIUM IONIZATION DETECTORS IN INERT CELLS i
i 12 82 3158 6
- ~ n.,
~t; '
. go
$.e i
2
.-2lO'O
-: n n
o
~
w~.
U
- l h
.>4 a
h ".-
8 A.
3 O se d
C C
C O
o so-
=.
s
~
~
~
~
~
~
=
s s;
.,a8 d
b es e
". nei
- g*
a b
b I oc<
g; Ce s:
m w
g E o o o,ro e o.s gi; s i.
s, ',,
O_
gy
, s. _g Z2 2
m g gW 4M g
de g
w
,6,; N
$ae e2 g
g
- c
==
m r
=
w -
yD-*M 28 g j"
=
w oo 9
g *a g
y BE%
ya E>E
$e w
-ed 5
%
22 we 5
v 5
a o g.
a-2 2
=
=
=
z.
30 O
o
.g:_
B-ee3
,J D w<
k M
3
~
Q 3e s
yv%,.v _ 4,4 Y
.A k
s y
i N
c-y.
f.
n 4-,-
~~ e m
25 q>
//
]%
- J el 2
2
- g.r t w I
e x=
J g,X
+ - >
we k
5 S
E
- 5 M
A w$
1e '
N..
cl 3 g
\\
e_
en
- e. 2 e
r 9
3 6,e e2
_ c.
h [.b
^$
8'u
?
/
L I.
l f
l C
d a
t fm
.Ak n h C
Cs
[
y\\
i SD
./
e ej.7*y l
e
>,4 7
~
~
t" D
g%?
G kh 1
4 &
l FOR THE DIRECT HEAT REMOVAL SERVICE, CAPABILITY FOR LEAK DETECTION IS PROVIDED BY:
PLUGGING FILTER AEROSOL DETECTORS FOR BOTH ANNULUS AND CELL MONITORING PARTICULATE RADIATION MONITORS
,f
=.
N k
\\.
w_
WF '
_( &
~-Q
\\
s h *316 7 ' __
- -~
FOR THE EX-VESSEL STORAGE TANK J
COOLING SYSTEM, CAPABILITY FOR LEAK DETECTION IS PROVIDED BY:
PLUGGING FILTER AEROSOL DETECTORS FOR BOTH ANNULUS AND CELL MONITORING CONTACT DETECTORS SMOKE DETECTORS I
f"""'
SAFETY RELATION 9 HIP OF PHTS LEAK DETECTORS 1.
RADIATION MONITORS ARE CATEGORY I DEVICES AND WILL RAPIDLY DETECT INCIPIENT LEAKS.
2.
MULTIPLE DIVERSE, REDUNDANT BUT NON-SAFETY RELATED DETECTION DEVICES EXIST AS BACKUP TO THE RADIATION MONITORS.
TECH.
SPECS, REQUIRE THESE TO BE OPERATIONAL CORROSION AND OTHER CRACK PROPAGATION MECHANISMS ARE EXTREMELY SLOW THE OPERATOR WOULD HAVE MONTHS IN WHICH TO TAKE MITIGATING ACTION IN EVENT OF SMALL LEAK 3.
IN THE HYPOTHETICAL SITUATION WHERE THE OPERATOR DOES NOT TAKE MITIGATING ACTION, TWO DIVERSE REDUNDANT TRIP FUNCTIONS ENSURE REACTOR SHUTDOWN WITHOUT SIGNIFICANT LOSS OF COOLANT INVENTORY REACTOR VESSEL LEVEL PROBES FLUX / REACTOR INLET PRESSURE O
e
SAFETY RELATIONSHIP OF IHTS LEAKS AND MITIGATING DEVICES 1.
IHTS LEAKS CAN ONLY AFFECT COOLANT INVENTORY / FUNCTION OF
~
ONE HEAT TRANSPORT LOOP 4
2.
IN THE EVENT OF AN IHTS LEAK, NUCLEAR SAFETY CONSIDERATIONS ARE DECAY HEAT REMOVAL REDUNDANCY STEAM GENERATOR BUILDING INTEGRITY AEROSOL ENVIRONMENT FOR SAFETY EQUIPMENT 3.
DECAY HEAT REMOVAL REDUNDANCY IS ASSURED BY REMAINING TWO LOOPS AND BY DHRS.
4.
SBG INTEGRITY / AEROSOL ENVIRONMENTS ONLY APPLY TO THAT PORTION OF THE IHTS IN AIR-FILLED CELLS 5.
SAFETY RELATED SMOKE DETECTORS ENSUREsPROPER FUNCTIONING OF SGB VENT SYSTEM TO PROTECT SGB AND LIMIT AEROSOL RELEASE.
6.
MULTIPLE, REDUNDANT BUT NON-SAFETY RELATED DETECTION DEVICES EXIST TO ALERT OFERATOR.
TECH. SPECS. REQUIRE THESE TO BE OPERATIONAL ALTHOUGH CORROSION RATES ARE FASTER IN AIR, THE OPERATOR WOULD HAVE SOME TENS OF HOURS IN WHICH TO ACT e
SAFETY CONSIDERATIONS OF DHRS LEAKS IN INERTED CELLS AND DETECTION DEVICES 1.
THAT PORTION OF THE DHRS WHICH IS IN INERTED CELLS IS NOT NORMALLY IN SERVICE.IN THE EVENT OF A LEAK, THE SAFETY CONSIDERATIONS ARE:
INTEGRITY OF CELL ASSURANCE OF CORRECTIVE ACTION BEFORE DHRS USE MIGHT BE REQUIRED 2.
CELL DESIGN BASE INCLUDES DESIGN BASIS SPILL.
l 3.
MULTIPLE REDUNDANT,DI' VERSE,BUT NON-SAFETY RELATED LEAK 1
DETECTION DEVICES EXIST.
TECH. SPECS. REQUIRE THESE TO BE OPERATIONAL OPERATOR WOULD HAVE AMPLE TIME TO TAKE CORRECTIVE ACTION IN EVENT OF SMALL LEAK 9
4
SAFETY RELATIONSHIP OF DHRS/ABHX LEAKS INTO AIR-FILLED AREAS, AND MITIGATING DEVICES 1.
FAILURES OF THIS TYPE AFFECT ONE DHRS/EVST SECONDARY LOOP ONLY AND DO NOT AFFECT CORE OR EVST COOLANT INVENTORY.
2.
IN THE EVENT OF SUCH A LEAK, THE NUCLEAR SAFETY C0kSIDER-ATIONS ARE:
EVST/DHRS DECAY HEAT REMOVAL REDUNDANCY AEROSOL ENVIRONMENT FOR SAFETY EQUIPMENT 3.
DECAY HEAT REMOVAL REDUNDANCY IS PROVIDED AS FOLLOWS:
FOR THE EVST BY THE REMAINING ABHX FOR THE DHRS BY THE MAIN LOOPS s
4.
AEROSOL ENVIRONMENT IS PROTECTED BY SAFETY RELATED DEVICES WHICH CLOSE ABHX DAMPERS.
5.
MULTIPLE, REDUNDANT BUT NON-SAFETY RELATED DETECTION DEVICES EXIST TO ALERT OPERATOR.
TECH. SPECS, REQUIRE THESE TO BE OPERATIONAL.
ALTHOUGH CORROSION RATES ARE FASTER IN AIR THE OPERATOR WOULD HAVE SOME TENS OF HOURS IN WHICH TO ACT.
I e
l SAFETY RELATIONSHIP OF EVST PRIMARY COOLING SYSTEM LEAKS AND DETECTION DEVICES 1.
FOR EVST PRIMARY COOLING SYSTEM LEAKS:
THE CORE IS NOT AFFECTED SPILLS ARE INTO INERTED CELLS - SLOW CORROSION RATES GV PLUS ELEVATED LOOPS ENSURES SPENT FUEL REMAINS COVERED SPENT FUEL DECAY HEAT IS MUCH LESS THAN CORE 2.
MULTIPLE DIVERSE, REDUNDANT BUT NON-SAFETY RELATED DE-TECTION DEVICES EXIST.
TECH. SPECS, REQUIRE THESE TO BE OPERATIONAL THE OPERATOR WOULD HAVE MONTHS IN WHICH TO TAKE MITIGATING ACTION IN EVENT OF SMALL LEAK 0
4
CONCLUSION 1.
SAFETY RELATED MITIGATING DEVICES ARE PROVIDED TO ENSURE APPROPRIATE AUTOMATIC ACTIN WHERE RAPID MITIGATION IS REQUIRED.
2.
FOR SPILLS FOR WHICH THE ACCEPTABLE REACTION TIME IS VERY LONG, MULTIPLE, REDUNDANT, DIVERSE,BUT NON-SAFETY RELATED DETECTION DEVICES ARE PROVIDED.
N s
1 1
I
CELL LINER FAILURE CRITERION RESOLUTION O
RESULTS OF SYMMETRICAL BUCKLING CASE USING FINE 3-D MESH PROVIDED.
O RESULTS OF ANALYSIS WITH CHECKERBOARD BUCKLING PATTERN PROVIDED.
LESS SEVERE THAN PREVIOUS SUBMITTAL.
O RE,SULTS OF CIRCULAR PENETRATION ANALYSIS WITH INWARD AND
~
~
OUTWARD BUCKLED PLATE TO NRC BY JANUARY 7, 1983.
O RESULT.S OF. SQUARE PENETRATION ANALYSIS TO NRC BY JANUARY 22, 1983.
0' FROM THESE ANALYSES, DETERMINE WORST CONDITION.
USE THIS CONDITION AND INPUT BOUNDARY CONDITIONS FROM LARGE MODEL
~
~
TO L'OCAL FINE'R MESH MODEL.
RESULTS TO NRC BY FEBRUARY 8, 1983.
'O FROM ANALYSIS DETERMINE CRITICAL EFFECTS IN TERMS OF STRESS AND STRAIN.
VALIDATE RESULTS WITH TEST PROGRAM.
PLAN TO NRC BY MARCH 1, 1983.
7.
0 BASED ON LOW TEMPS FOR WALL AND FLOOR FROM SMALL SODIUM SPILL, TRIPLANAR CORNER ANALYSIS IS NOT NECESSARY.
1
m O
O APPROACH TO RESOLVE CONCERN OVER CELL LINER FAILURE CRITERION lS ACCEPTABLE.
O en e
g, e
9 y
e g.
o O
e
TABLE I ACCIDENT CONDITIONS CELL NO.
POOL DEPTH Ta ( F)
Ta (OF)
Ta (oF)
(inches)
Gas Temp.
UW W
(Unwetted (Wetted Liner)
Liner) 107A 1"
370 126 300 3"
440 147 479 122 2.2" 687 140 467 Inforbatioh transmitted by W/ARD per Telecon CS-299-82, H. Geiger to R.
C. Burrow dated 12/6/82.
e Dr G
GG w
, 9 9
0 e
r T.
--+t-.-
e.-,
3
,~4.,
__s-
,--v w-
e Cell Liners EBOPOSED PLAN TO RESOLVE OUTSTANDING NRC AUDIT ITEMS ON CRBRP CELL LINERS 1)
Results of an analysis f or the symmetrical buckling case that has been completed will be submitted to NRC by December 22, 1982.
This model includes a fine three dimensional mesh around the stud and consists of an j
axisymmetrical model with a 15 inch diameter and a stud at the center.
2)
Results of an analysis of a typical 15 x 15 inch liner panel with a stud at the center and a checkerboard buckling pattern has been completed and will be sub-mitted to NRC by December 22, 1982.
The results show that the non-symmetrical buckling condition already submitted to NRC at the November 17, 1982 meeting (Audit Finding I.A-ld) was more severe.
3)
An analysis of a circular penetration is being performed and stresses, strains and displacements will be reported to NRC by January 28, 1983.
This model results in a non-symmetrical buckling pattern.
Two cases will be considered:
with the liner plate adjacent to the pene-tration buckling both inward and outward.
4)
Square penetration analysis.
This analysis is being performed and results will be reported to NRC by February 14, 1983.
5)
From the analyses of typical panel, embedment, square and circular penetrations, the most severe condition with regard to stud and liner plate will be identified.
A local analysis f or that condition will be perf ormed using a finer finite element mesh.
The detailed model will include a 15 x 15 inch panel plate with a stud at the center and will have as boundary conditions the displacementr, calculated in the analysis of the larger model.
Results will be submitted by February 25, 1983.
o 6)
Based on the above analyses and those already submitted to NRC, the most critical ef fects in terms of strains and stresses will be identified.
A validation test program will be conducted based on the results of the analysis.
This test plan will be provided to the NRC by March 18, 1983.
7)
For the case of a triplanar corner having a hot floor liner and colder wall liners, an investigation of liner temperatures under shallow sodium pools (1 inch and 3 inch depths) has been conducted.
The cell considered was 107A which is the cell where the most severe DBA liner temperatures have been identified.
Also, a shallow pool (2.2 inch deep) was considered in a representative PHTS Cell (122).
The results are given in Table I.
The worst results, for Cell 107A with a 3 inch pool, show a floor and wetted wall liner tempera-ture of 4790F and an unwetted wall temperature of 1470F.
Based on these low temperature values it is considered that a stress analysis of the liner for a triplanar corner is not necessary.
i q m' y..
t...
_n
$9 nm.a;y
,~u c
J
'm m~c
~
AYW Q W Q;)w:;
.. \\
Q y n..: & ^ A} m? :;$ ;
s it?QA n'YS2
' Dr. C; II* TOX
~
CE *LINEE kh@Sh3p:M.af, '
I.
oor/Po at FL Mo '
N N % duv:d $ e.,
. SYMMETRICAL BUCKLING PATTERN
'. w(ik M d. $ M DETAILED ANALYSIS IN THE VICINITY OF STUD N5 p:W+
Tml%,.
3,.,
re
%y%m%:-',
o,. ~
. p;pi g
- q.,: $
1
.e6My:
~-
. m, w r +: W
+
E"Sp ME. Por' this analysis, an axisy=r;rical finite element math-wa e....
A 7.5' inch radius.
'.Q[M h W W. stud'a't'the contar.4@@i-Jesistical model
~
@qw-ye.. sp an -A fine mesn was~ used -in the vicin *.ty"of the stud / liner plate..
m pf j ' '
j
' M r i,M(uncture ara a coarser =elsh in areas tsyond that region.
g(%3
- f.,-
M S.
f,
,y
.[ Q h
- ' ST1F 42 axisy= metrical ANSYS elements were usad for plAh g/ q, and. stud, The. interface (gap) between liner and.concretoLvas A-rigid beam (represented by'
,1 Stepra:mnted by STIF 12 ele =ents.-the nodes of tha five layer elements s@ip -
1
. h Ph,.37 W 3% was used to connect / a tofthose of the ono layer, at the radiusA:f-1.875.dn R
free out-of-plane
. SQge,w;;Doundary conditiona at the plate edge weret:
. ppa. C,edisplacement and. fully rcatrained radial displacement and edge The stud end was fullv restrained.
Thn. result's of tne
. kdd M F rotation.
k,$@.MQadalysis in. tems of ' equivalent hon ?tises strains are givsn in
~-
!s#
M WPisute A-lO
. h;$ g w Tr w
(.d,,.The maximum equivalent von Mises strains are.023 in/2.n, for ug, W 3 u.
Wm %the platie~ and 0.'ue:i in/in for the stud.
These are: below the
- b MO
- e,x.ipkq11 sits
- established bf"the criteria.
7 gm t.
we
^k' R.@g a Thc W.aximum out-of-plane shear stress in the. plate.is 11.7
.-g NE@sifl4t;the section adjacent to the stud weld 71oser eIement).
v.:
i
. d&m a
- L w h:, @N ?c't strength.of.the material e..thq 40n F' temperature.w
- d.,
,.L. :-
g Thc average P
Q f d M ~fout-of-plane. shear stre.s is the same plate section'.is-8.4 kai -
s or.31% of' yield.
The naximun knear. sty m in the weldcent is
$fbP i
kps%%%?.(1426ksi'.
Figure - A-2 shows the deflected shape of the model.-
I lements in the vicinity.of the
. hihN@&dFigure A-3 lists stresses at soco e
%fstud.E M@M:e. m.
M -
(W'$yyj[ 4 n
..a, awz: - t.
- /
%p % %"
%9;n.
.jo. ;w ;(
Y. l,.
,,n.,
I I
.v.c?, g l f' }, %'V k'[ s /,lT P
- a yg:. gL:3,%
1 gin ;,OM, g%q Qd s 'z: *.w A Y
5 k
'47.
bp...W( '
-~
?
^
' wid@M5b e g.i
.6 4
N
e; QJ.M
,.- mn 7#-
~
m w,.< ;.,.* A f, k?_ ' ! +.l.*:-
w;g6qrNn.. ~,*
eg n v.o> p =.
-}*[/~Y k
4#p.,'
- .. e d w, r.;~ -
1',...
%u;;;;~;w~ s; E me
=
w
=,j i.n 1
__s e.275. I.e-
.o+4 Fy.c 3
- e.tzs*-
tep,p ~ ~
. /..
y 5-4 n:.
m e s:%, :
=
l
.. c.
m
.ma
.ana,
>px /
b,,'gfcfS'[
'I r,
- m. :
-s
..s:,n.,n
. en I
.a
. h: ;,mWJ w
l u
,o -
4
. - [
w' m e,3:;.s y a
,,f g
es, t :_..
M.r a
{yw,,.'...~,
N GQfN*!
ge
. y..x,.,.#_+ y.
n u
e s
y:
3 M!-tf.jg;.%_5 ' a- *i e,
~h. 6 @ h.
_~
_m.
o.a, m ~.* o"<*
gR f
' p' x.~
p'h, w: s l f_}
~.
ww :.a.
uw;u w ~
.a
,g_
mm v c
t p;y:n~ r-L gir:
bi a
MO SY N(g N Y.
[I jj y.
1 2' hg.h.;...,
<t e
i.r..em ?...
g,m 2 i
n M TNi[g --.-
_1j w ;rg: w"
- 1. w... m a p.
ppi;gy &-
e-s n.uit's' nen deli?@ ' '
1 t.s.
- e..~.w x..., -
tse.d. -
,em. o g. 1 mas
- _._G2!'
9 9 625*
c,.,:
- 4 %;3
, e a
?
.g. ;;.
l
.a w wh. ~.
l n.
Yi((' ~ / s
"[
--ll I i
La ni tel I
low I
s"
- g,,, e a
-,...1.owi.,
1+=.1
.1 i
is.?T. ~
1 i
J.
- p..
.e-
~
rm
.sv er a
-s.
- 8. p:q:m 7
w -
s-3l4hy m, nista Link 3,..
ympv s
s s w --
o, g.y y ' ~ +
- r-h u-
- n. Use"
! t.--
Y tr.r m icxu.1
.E' 3
L, fW;;g
~.,
m 4 '..
g e: p y,.
fm!* '-.
ahn;t:g%,
.R y s' 3.a. s r a o
%t -i. s x (aADIAI.)
$g o$ 2 P,
- p,. :v..
- 4. w e e -
3'
~
' N $,g h
- ic:2co<rtsI m AI.)
. 6:g,g"f v
, '_2 x ijL,3r,,,,,, _
s.
=s93pp.- -
- 2W -
.J,.W.,...,
. g.c. u.
'g'Jeg ]Jj
.c 4 a,,.,.....a.
,., m
+
g.m:,
e..,..
$gg@Q+
FIGURE A-1 AXISYMMETRIC.TDEL 1
MATHEMATICAL MODEL AND EQUIVALENT 4Mus o
w STRAINS (900.s V "r Y x >,. :..y -
. = '. - y'.
7.i fNI 4'
- y. etc.C's
)
W,yn,.
>e
[.'
I4W e.!i'.g y ;.c
'[
b s
d g,$, b y k:.m.. he, ' #ff. ".,. m-ep m.
s w
s
.y -.
. w-m y
- M g m,.
g*wn r
, A..
eCW,,g;.,
4 n.r -
m.m, -.~
m,n m,.....
g M A-'
y p'
.h 6 s-
.n f Y h _.~. " ' ' ' ' '
Q % W'*..-L p Q y-2g., nr.cls. :+ *
+
{?. ? N. 0 *rf ^ ^ '_.'.
$hC1Wn
],1 * ^&< ij.~ '
,.,nx vwa -
an
.mg A m:;- -
4w.
q:
. >,2: t.":~
%e L ll,-
,2 g
s%. n. - - =.
PM. pa.v.r
- m. N c 4
> c ny og..> %w ;2 s...
- i.
4L
- 4 y%=
s II:w{'.- d
.m-s n
IP5.< 4 9 g.y r
- - +
w.n(
%pe. h. x,;...4cm.3 0.-224*~
-u l
=
^
H3w p
m gg -. ;:y,, } --
~
.-.-y---
..i g y ;g, a p;* *E r.o Enf& -
y 4
)
g y.d. 4
. ~. <
w U
" l 0.252
pq: W Mih, n.;,;b, ~f;
.^
%:c Liner j
j 1y_.,f%.,
.e.
Iqt %C5}f'>j.W T'M ;
'{ M.MQ.
- .a ~
e
<, lmb;c:
- w., ?.;'4 ;s.
pov.w<
,s
- n )
- -, ?.
cc s
wn h
T
, < w,, ijls:-
~-
F
[gdf 1
-,7.: e, z..,
r p.w. ; ~
E nchor gy@.n -,
. w A
a;e = E. e. -
.~
g 4. D h
. ":T yp y$, '.
,n.
p t pf g,I,<-.. t.
wpw/2 Le 4:
.k, M4.W. Da :n,.
W
, J, v :.m, u.
pw:: m.;
x, h ; Q, a<a:.~...,.
- y
- .3.c. ss ay --
ss a.
.1}Q w,,. m n_...
.j.
.m.
. 3 N,$$1fh,[
b
.' ' N P,..t,%.
(
c
- T..,.'l **' *,
. +
,.wm cWi
., i y m,,, b,s,
p.
- s. e 4
,, $:?. gf-W.. v.,
=
v f m ;;s - ;. % ; i ->..
pr
.+rQ; ;w y
.m QgN..y;.,.a 4
. n.--
,~
p... v s.,.. 2 - -
8 o
g% g+, p en 4
e. w.,
t, W..,,u
~..r
.,c
- 4. y.u.p..+%....
i mege. -
W s r e;
{tgA ;, e a; FIGURE A-2.
WAL.L LINER
.AXISYMMETRIC MODEL; ii >4.,.o%C....'c o
DISPLACEMEN" AT 900 F.
g g
- M* tS ry - -
w) ym,...,.
my g
- i.%
g. :p. v.. N
,gy< s.:m:n... -~ ~
+
y,
.. 9('
'-J 8
y*f 1,
Y
- M4..
- k.. u,. y.g,$d..
<g '.
.se ao w',-
. }:<y h
. g4}.
-, 1. [ e %,, ' -.
e 1.
@w[
M;t -
ca.,.v e
.M w "W r. %~ a..,
t 4
x n,.$~n b:-q r.s
-e 9
u a..x e.:, a bS's??lllA l l
,.2 0.1251-- -.eMJ.and'
..e.. C_.in.. 2.i'
~
Ny} p..3; x
8
.,w.,,
f 3 h,s,.,.
,e*'.c 4
y3.
. <n g.~. N,W4 s.
t > N'.Y,' e,n.i p
-x+
.g.
7; 72
' E7
' 62 57 17 y
yj 22 +
.s 27 r
n.
Qg w,a :
.n 73 g
{
A ff pr.r'7 s g$r:1?,$
.;e
~
7'41J,'..l 44 -
39 34 29 Fa 63 54 n
54--
o--
. p;+'MLS;y My; 75 70 l
A,%
m.
n-am m.as...;*
7g gg H-61 to
$1 ]46 1 at -
24 ^ t F
a
- 31 *
- 88,
- st.
i w.%@A;,h 1
C* .WiK64:Rh. '. g gy f.-
@bym.c s.- % a._,.
.Q.
r
- 1 : >
,y gy.
J m.'&
M;n m.; ?.r:.r,m 2
f3 @m [ 7..:
7, 4...- Q.M' M
9e -
rm, n....
b yM 'f(]
.83 c
A fg
- i ELEMiki aua3Ias h -
i,.
?r.w. "
A'll'.f. l_i? j f
r <*". 4:. g Aun beer M%n,-fe.7.n v.
ce e
r-9. -Mw.,,
- n.,
.m.
henpff;q:Mw-Q *tg
-95 ts -
MQIf
, (pyvi,y&$,MMk p i.g
,-c' n a) -
y%dl v M::q Og
, Q's.cft.',:_s rs
,n 4.y /;
4J.
nzxtx7 sntasts y?; f:' ".m
..; s'ummer v
%w e.: '
'm-
.q 3
U
. S.I.
g fM.y.:
r f
MW1
=g.
bd;}d>'.ht:k.., h [+,-.
II*6 1.C6 l.27.9'
-23;3 Y, n~#An MWigi. >
-~g
.g'* 3 -
31 8
-)9.3
-32.0-q?mnQe MX,ci&.. 'n
- g:
29.a 1.s
-n. :
'.u. 3
}Wy%.y 9.m:..
, I 9..
a w
k h h.
?
j'i 2,,
1.3 2g,g
- ,3
,,,3 m gf
&j. %:v. %.. M.o,
dgj f
- ~
2.81 23.7 3
-H. 6
-21.3 t
?
y
- w, ihh&EX l y '*-
O'3 3; 3
' C.?
-11.1
.n.i w
.g3]
p::M"k" W' '
24 26.1
- c. ) - -
.t7.o Ni g
~
.u..-
.WE)%%p ;:;:
+
R4
. 58
.3.12
- 13. 8 6 57 3.o t' $ $.~.i;p..
s g
' M* '
11.7
- &,1
,;$.3 0;25
-1.64
- s. y%E W. w..,Ys~yr, m on!m l73.
e-h.a M
'1.89 26.4
- 9, n 21 2 '
-23.9 ja
[ IN$9.m.W., #r
'1'
' I
- H. '
27.3
_10'. :
14.2
.g;,3 '
I -
J q
n.w n.
747 7,03
- 1 * *-
.9
- *. 5 1.70
+
4
.q.
swM W 2,,.,'. r v:.',
'N
'3E*"
- 3
- 3 -
2.lt Unitse kai l
en.
,g eM7 hl7 ". A
^
j; b?'
e
=
out et n oe h as sg,,
kf.)3 cyp 5u;gm, w. 4.+N 96 i
87 q-:
14.6 y,. o 3.+
=.33
.<.89
~
- m Stress Inteneity m
., ~
ns 9'
.5.3.
=
l
+ '
p'.gm.
hlpf!j:iW M
-.a2 H.2 n.1
-2.2 a
8J*3-rrhetpat st1 2 2 i.
p,l, g&@g
- W y
. - +
l WhWm m.',f. !.
+.
g !q n;;w m -:g =
.i p
e
, u g.py M:. r.g. m....,
.v a
I g u? y..i,;,. FIGURE A-3. AXISYMMETRIC MODEL-EI.EMENT STRESSES. (KS I. )
s
.,J g ~,-
t
$4-g a.w f...
j 4.
m 4
M4-a a 5.
o- %
hu'k.b.g. '
k y
YU_
- , m s:
@. 41..
6.h 4 47
)lp& 1 L >$
v.
a
, s.~-.w:
e.
J,n
. )
>S'
.. _ =,_ _
?
s
+
[.
t e
e
. -a
+
.0 2 0.125" 4-.9 4 *m.131'w 8 9.1,75 = 1.4" w
~
\\
snn 0009 j00E4
.0006 8
f7 8
I,
.P-si
.0056.0052
.0044 i
o
~
.=
.n
.00074.0008-
.0112
=
'O
.001M
's'
.004 E
m y
r to
+
to e-1 y
-- - ~ r l
pg. TAIL 'X' 5
E.
C-m p
.044 Y (MERIDIONAL) 5 lN I
f e
- x (aADIAL)
[
O t
y
~
.E.
g
~",
'f },
,y y
.: r-
~~ ~
. 'r-
- ~..,..n
'w. *'.
n.y.,
3%,$',. t :
y,/n 1, e -
t,j,!;:1. j.L.
4 s
'4
' i Yj,'p,.);g.,:, W;.
c A f ji% 3
..e,
'g,s,..
4
~..
3c v
. D
'.a.
8
- t
,4f li -
- 'y_, '.,, N't ' iju g {",,,.[ %.[ w.' y
',s,3 ((+?,1[A. ~..,*h'jh;
,ng.,%.M.
p s{f. n ~l
- n.. v.,
.x,q..,
, y;.
s wj t.
m, ",t,..,
- f' A;. ',
, w,
- = ', 'f'
,9.
o.,..
3'J '-
,?, '.f ' }p,0,y cQ)...; 6 ;,[., kj'"p., j~.{/ yl {c. A ;y.:q,' '
,, y:.
n.
, y
?,y; _ b';g':, { q;'y( ' e' - Q, y 'f E.f') A'.., N'yJ%[4 ?;
t:.k, y
!r, 1 (s s >
L, g.a g.
if-.
. '[...
!l^,',l. 'df,i),3sd j,'...f.$,,, ' y,.
7,
,ag,j g g, 3.ft i p
.c e_. y aj'
- t"t ep s
6 I
3 g
-(=,ipgG.Q pf,, y.g (-
y e
~
~
e t
4
y CELL LINER CHECKERBOIdlD BUCKLING PA"ATEFN DETAILED ANALYSIS CF TYPICAL _ LINER' PANEL 3
An evaluation of the strain conditions under a checkerboard pattern of buckling with the mathematical model of Figure B-1 was performed.
It consists of a 15 inch square pinte panel wit.h
'a stud at the center.
(Fif teen inch is,the spacing between studs).
The boundary condit. ions at the edge of the plate are:
free out-of-plane displacement, and ful.1 restrained in-plane displacement and edge rotation.
The following ANSYS c3ements were used in the model:
STIF 48 for plate, STIF 20 and STIF 8 for studs-and STIF 12 for gaps between plate and concrete.
Tc induce the desired buckling pattern a 2 lb. force was applied at tho diagonal corners that displaced away from the concrete.
The other two diagonal corners displaced in the opposite direction.
Figure B-1 shows the maximus strains and Figure 3-2 the displacement contours.
The maximum equivalent von Mises strains are:
Plate:
0.011 in/in (Membrane), 0.019 in/in (Membrano + Bending) stud:
0.0058 in/in (Membrane and Membrane + Bending)
The strain allowable 'litaits in accordance with the' liner criteria are 0.070 in/in for membrane and 0.094 in/in for membrany
.plus bending strains.
A comparison of the results of this case with that of unsymmetrical buckling (Besponse to Audit Finding I.A.ld) shows that the latter imposes higher strains on the liner and stud.
0 e
e e
e e
e
7-Y y
8 STMi (,U,T. F.DGrs) h k
t u
l 9
(.0054 0098)
(.0038,.015) s
(.01.. OJ.2) 1/2" 6 ST3D
{
(.011.
019)
(.0038,.0058)
(.011,.019)
S
(.010,.012)
(.0038,.013)
(.0054,.0098)
-b l
'l I
l-7.5" 7.5" m
I i
g Ficrrl 3-1 WA1.L LIhu nPICAL Plaa - CEE,Cr2?30/J.D IUCKLING -
STPJ. INS AT 900 ?
(Mc=brsna, l'.=5:=e. + 3endb:t) In/In
m'!y a
4 N.
e n:p2y -
.jv.
t
.: -~
ts
- -t.u i
I H
j B
u C
CO:*700R VALES (INCEs) 4 o
?
YV
-1 n
s y
A =
-1. 2
\\c 0
3
.1 C
.6
)
D =
,8 1/kSTUD E =
.4 F =
.2 G
=0 E
Y
- .2 l
N D
2 C
7
\\
m B
f J
H
'I I
i l
(.
7.$"
7.5" i
4 m
- Ec5ctive vrlue indicates displacc=e.:it avey fec=; concreta TIGUEZ E-2
'4LLt. LINC. n?! CAL PANEL - CECKEEEOAED EUCH.ING -
' DIS N C w.GIS S 900 F e
I
y.
yn lA dd f
i r
c o
+
u s
m 'c S
3 n
R e
(d e
nak
)
R 4
TT dS rk y
f>c U
nn wh e4 y
N j
ic h
A g
Mlvc h %i E
+
/
n s
R n
W S
e P
Q e
c r
S UTE Xn r
e eu I
c iPpmo ck pU s
eQ
(
k s
o c
+c il P
t s
enl S re M M I
re ujoTtwTH l
l o
v E
a m
e Y
H e
p c
e sl I
e s
6 e
a C
e L
S e
'mS M o el fae BE v
c t
r C
V t
I o
GT
}/
r W
[O nwl l
s e
aS opH t
LL o
T V
N s
d+
/
y%
c
}
e e;
O s
c f
P s w n +s k d mP m
oD u
l rS Lc a
y o
s%O e
E E o
r c
8a P
v V
c fp e r
V S k
e a
ug E
E ad R
sl e f fe p D 0 J
e P
hl h% Ot Qo u
e e
-